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Abstract

In this article, we demonstrate how to approximate geometric optimization with [,-
norm optimization. These two categories of problems are well known in structured convex
optimization. We describe a family of [,-norm optimization problems that can be made
arbitrarily close to a geometric optimization problem, and show that the dual problems for
these approximations are also approximating the dual geometric optimization problem.
Finally, we use these approximations and the duality theory for [,-norm optimization to
derive simple proofs of the weak and strong duality theorems for geometric optimization.
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1 Introduction

Let us start by introducing the primal [,-norm optimization problem [PE70a, Ter85], which
is basically a slight modification of a linear optimization problem where the use of /,-norms
applied to linear terms is allowed within the constraints. In order to state its formulation
in the most general setting, we need to introduce the following sets: let K = {1,2,...,r},
I ={1,2,...,n} and let {I;}, ., be a partition of I into r classes. The problem data is
given by two matrices A € R™*™ and F € R™*" (whose columns will be denoted by a;, i € T
and f, k € K) and four column vectors b € R™, ¢ € R", d € R" and p € R” such that
p; > 1 Vi € I. Our primal problem consists in optimizing a linear function of a column vector
y € R™ under a set of constraints involving /,-norms of linear forms, and can be written as

1 )
sup b’y s.t. Z — i — a;ry‘m <dy—fly VkeK. (Ply)
i€l b

It is not too difficult to see that this problem is a generalization of several well-known
convex optimization problems: linear optimization corresponds to the case where n = 0, while
linearly and quadratically constrained convex quadratic problems can be modelled using a
reformulation of the quadratic terms as 2-norms [Ter85]. Problems of approximation in [,-
norm can also be easily modelled, such as the problems described in [NN94, Ter85].

The purpose of this note is to show that this category of problems can be used to approx-
imate another famous class of problems known as geometric optimization [DPZ67]. Using the
same notations as above for sets K and I, k € K, matrix A and vectors b, ¢ and a;, 1 € I,
this category of problems can be stated as

sup by s.t. Z eV <1VEeK | (PG)
i€1ly,

This formulation differs slightly from the traditional formulation of geometric optimization
with respect to the following two aspects:

¢ The vector of variables that is traditionally considered is not y € R™ but rather the
strictly positive vector ¢ € R, defined by t; = e%,Vj € {1,2,...,m}. With this
convention, the constraints in (PG) can be written as

m

Salls <
icl,  j=1

(with C; = e~ % Vi € I), where the expression on the left-hand side is called a posynomial
(this name comes from the fact that it bears some resemblance with a polynomial
whose coefficients are positive, since C; > 0). However, formulation (PG), while being
completely equivalent, presents the additional advantage of being convex and is thus
much more suitable for analysis (notably from the point of view of duality).

o The traditional formulation deals with a posynomial objective. However, it can be
replaced by a linear objective without any loss of generality, as shown in [Kla74, Kla76,

G1i99].



We will start by presenting in Section 2 an approximation of the exponential function,
which central in the definition of the constraints of a geometric optimization problem. This
will allow us to present a family of /,-norm optimization problems which can be made arbitrar-
ily close to a primal geometric optimization problem. We derive in Section 3 a dual problem
for this approximation, and show that the limiting case for these dual approximations is
equivalent to the traditional dual geometric optimization problem. Using this family of pairs
of primal-dual problems and the weak and strong duality theorems for /,-norm optimization,
we will then show how to derive the corresponding theorems for geometric optimization in a
simple manner. Section 4 will conclude and present some topics for further research.

2 Approximating geometric optimization

In this section, we will show how geometric optimization problems can be approximated with
l,-norm optimization.
2.1 An approximation of the exponential function

A key ingredient in our approach is the function that will be used to approximate the expo-
nential terms that arise within the constraints of (PG). Let a € R, and let us define

T |&
o Ry = R, :m»—)‘lf—
o
We have the following lemma relating g, (x) to e™":
Lemma 2.1 For any fived x € R, we have that
ga(x) <e ™ VYa>z and e * <gu(z)+a ! Va>0, (2.1)

equality occurring in the first inequality if and only if © = 0. Moreover, we have

li =e 7.
o 9al®) = ¢
Proof. Let us fix x € R,. When 1 < a < x, we only have to prove the second inequality
in (2.1), which is straightforward: we have e * < e @ < a ! < go(z) + a !, where we used
the obvious inequalities e* > a and g, (z) > 0. Assuming o > z for the rest of this proof, we
define the auxiliary function i : R, ~— R : @ — log fo(z). Using the Taylor expansion of
log(1 — z) around z = 0

log(l —z) = — Z ~ for all  such that |z| <1 (2.2)

i

i=1
we have

i o i

o
X X x x
R R Y e

=1 =2

h(a) = alog

(where we used the fact that £ < 1 to write the Taylor expansion). It is now clear that
h(a) < —z, with equality if and only if z = 0, which in turn implies that g,(z) < e™", with
equality if and only if z = 0, which is the first inequality in (2.1).



The second inequality is equivalent, after multiplication by e*, to
1< e%go(z) + e &1 —ca ! <@ o1 —e?a! < thal@)

This last inequality trivially holds when its left-hand side is negative, i.e. when o < e*. When
a > e, we take the logarithm of both sides, use again the Taylor expansion (2.2) and the
expression for hy(z) in (2.3) to find

i

1 e S g zitl
log(l —e*a ') < x4+ ho(z) & — — < — — &S 0< — | — - .
og( e'a ) T+ ho(z) Zial Ziazfl ;az ( F z'—|—1>

This last inequality holds since each of the coefficients between parentheses can be shown to
be strictly positive: writing the well-known inequality e* > ﬂ fora=xiandn=1+1, we

find "

()it e I N AL e
" - A T & — = - >0
(i + 1) i (1+1) 4! i i+1 i i+l
(where we used i* > i! to derive the third inequality).
To conclude this proof, we note that (2.3) implies that lim,_, 1 o A(c) = —z, which gives
limg, 400 fo(z) = e %, as announced. This last property can also be easily derived from the
two inequalities in (2.1). O

The first inequality in (2.1) and the limit of g, (z) are well-known, and are sometimes used
as definition for the real exponential function, while the second inequality in (2.1) is much
less common.

2.2 An approximation using /,-norm optimization

The formulation of the primal geometric optimization problem (PG) relies heavily on the
exponential function. Since Lemma 2.1 shows that it is possible to approximate e~ " with
increasing accuracy using the function g,, we can consider using this function to formulate an
approximation of problem (PG). The key observation we make here is that this approximation
can be expressed as a [,-norm optimization problem.

Indeed, let us fix o € R, , and write the approximate problem

sup b’y s.t. Z(Qa(Ci —aly)+a ) <1VEkEK. (PGy)
i€},

We note that this problem is a restriction of the original problem (PG), i.e. that any y that
is feasible for (PG,,) is also feasible for (PG), with the same objective value. This is indeed a
direct consequence of the second inequality in (2.1), which implies for any y feasible for (PG,)

Z eci*azﬂy < Z(q(x(ﬁ - avTU) + 0‘71) <1.

i€l i€l

We need now to transform the expressions g,(c; — aly) + o' to fit the format of the
constraints of a [,-norm optimization problem. Assuming that a > 1 for the rest of this



paper, we write

Z(ga(ci—a;y)+(fl)§l & Zq(, ci—aly) <1—npat

€1y, €1y,
T [0
¢ — a; _
AN Z 14 "%Y <1—npa’
: !
s
0] —
& Z‘a—ci+a;ry‘ <a®(1 —nga ")
i€l

1 T, |% a—1 -1
& E —lg—a—a;yl <a® (1 —nga ")
iEIkal Z ‘

(where ny is the number of elements in Ii), which allows us to write (PG,) as

1
sup bTy S.t. ZE‘Ci—a—a?y‘a S04(%*1(1_”’90[71) Vk e K . (PG&)
i€l )

This is indeed a [,-norm optimization in the form (Pl,): dimensions m, n and r are the
same in both problems, sets I, K and I are identical, the vector of exponents p satisfies
p;i = a > 1 for all 1 € I, matrix A and vector b are the same for both problems while matrix
F is equal to zero. The only difference consists in vectors ¢ and d, which satisfy ¢; = ¢; — «
and dj, = a1 (1 — npa 1),

We have thus shown how to approximate a geometric optimization problem with a stan-
dard [,-norm optimization problem. Solving this problem for a fixed value of o will give a
feasible solution to the original geometric optimization problem. Letting a tend to +oo, the
approximations g, (c; — (IT’U) will be more and more accurate, and the corresponding feasible
regions will approximate the feasible region of (PG) better and better. We can thus expect
the optimal solutions of problems (PG.,) to tend to an optimal solution of (PG). Indeed, this
is the most common situation, but it does not happen in all the cases, as will be explained in
the next section.

3 Deriving duality properties

The purpose of this section is to study the duality properties of our geometric optimization
problem and its approximations. Namely, using the duality properties of /,-norm optimization
problems, we will derive the corresponding properties for geometric optimization, using our
family of approximate problems.

3.1 Duality for /,-norm optimization

Defining a vector ¢ € R” such that + — = 1forall i € I, the dual problem for (Pl,,) consists
in finding two vectors = € R"” and z € RT that maximize a highly nonlinear objective while
satisfying some linear equalities and nonnegativity constraints [Ter85, GT00]:

o Az + Fz=band z >0
T — Y,
inf o(z,2) =clz+d 2+ E Z’CE 7 s.t. {zk:0:>m7;:0ViEIk. (Diy)
kefg i€l
Zp>



We note that a special convention has been taken to handle the case when one or more
components of z are equal to zero: the associated terms are left out of the first sum (to avoid
a zero denominator) and the corresponding components of - have to be equal to zero. When
compared with the primal problem (Pl,), this problem has a simpler feasible region at the
price of a more complicated (but convex) objective.

We have the following duality properties for the pair of problems (Pl,,)-(Dl,) (these results
were first obtained by Peterson and Ecker [PE70a, PE67, PE70b], see also [GT00] for simpler
alternative proofs using conic duality) :

Theorem 3.1 (Weak duality) Ify is feasible for (Pl,) and (z,z) is feasible for (Dly,), we
have (z,z) > bly.

Theorem 3.2 (Strong duality) If both problems (Pl,) and (Dl,) are feasible, the primal
optimal objective value is attained with a zero duality gap, i.e.

1 .
p* =maxb’y st Zf‘ci—a;ryngdk—,f,?y Vk € K

icl, pi

=inf¢(zr,2) s.t {

Ar+ Fz=band z> 0 _ g
zp=0=z;,=0Vi eI} C

The weak duality property is a rather straightforward consequence of the convexity of
the problem, and is shared by all the convex optimization problems. This contrasts with the
absence of a duality gap and the guaranteed attainment of the primal optimal objective value,
which are due to the specific structure of [,-norm optimization problems (i.e. they do not hold
for a general convex problem, where a strictly positive duality gap and/or non-attainment for
both problems may occur [SW70, Stu00]).

We would like to bring the reader’s attention to an interesting special case of dual /,-norm
optimization problem. When all p;’s are equal to p and when matrix F' is identically equal to
0, i.e. when there are no pure linear terms in the constraints, problem (DI,) becomes

1 _ Ar=band z >0
: _Tr T - 1—gq 14 =Y, !
inf Y(z,z) =c' z+d z+q E 2, E lz;|? st { = 0=z —0Vi€ Iy | (DL,)
k

This kind of formulation arises in problems of approximation in /,-norm, see [NN94, Sec-
tion 6.3.2] and [Ter85, Section 11, page 98].

Since variables z; do not appear any more in the linear constraints but only in the objective
function ¢ (z, z), we may try to find a closed form for their optimal value. Looking at one
variable z; at a time and isolating the corresponding terms in the objective, one finds diz; +
%Z}Ciq > ier, [zil?, whose derivative is equal to dg + %Z;q >ier, [7il?. One easily sees that
this quantity admits a single maximum when

_1
2 = (pdy) 7 |l

1
(where ||-[|, corresponds to the usual p-norm defined by |z||, = (32, [#:/’)» and z7, denotes

the vector made of the components of 2 whose indices belong to i), which always satisfies



the nonnegativity constraint in (DI;) and gives after some straightforward computations a
value of

dizy, +

p 1
qu D lailt = = (14 g)dkzk =pdezr = (pdi)? |21,
i€l

for the two corresponding terms in the objective. Our dual problem (Dl’p) becomes then
1
inf ¢(z) ="z + Z(pdk)g lzr |, st. Az=0, (DI})
keK

a great simplification when compared to (DI},). One can check that the special treatment for
the case zp = 0 is well handled: indeed, z; = 0 happens when z;, = 0, and the implication
that is stated in the constraints of (DI},) is thus satisfied.

3.2 A dual for the approximate problem

We are now going to write the dual for the approximate problem (PG!). Since we are in the
case where F' = 0 and all p;’s are equal to a, we can use the simplified version of the dual
problem (D) and write

Q=

inf o (z) =z — ae x—l—z Y1 —npa™ ))

keK

lzrllg st Az =0

(where e, is a notation for the all-one n-dimensional column vector and 5 > 1 is a constant
such that % + % = 1), which can be simplified to give

inf o(z) =c'z — aelz + a Z(l - nkofl)% lzr g st Az=b. (DGa)
keK

We observe that the constraints and thus the feasible region of this problem are independent
from «, which only appears in the objective function 1, (). Intuitively, since problems (PG.)
become closer and closer to (PG) as « tends to 4+oc, the corresponding dual problems (PGY.)
should approximate the dual of (PG) better and better. It is thus interesting to write down
the limiting case for these problems, i.e. find the limit of 1, when o« — +o0c. Looking first at
the terms that are related to single set of indices I, we write

1
Vi) = Lol ol o)
T T -1,
= o, — e, I o lznlly —alznl, +a(l —nga ])a Hx’kHﬁ

1,1
= chan +aflonly — b +a [0 a3 oy — o]

p

1\ L
= on +allonl, - o] + 575 [0 e e el o]

(where we used at the last line the fact that o = ﬁi) When « tends to +o0c (and thus
B — 1), we have
o T . T . /6 - -1 % _
i (o) = o+t o flonlh — o] + lm 57 [0 me e o, = lenly
— —

T . T ;
= cpon+ tm o (lanl, - e + Iim

-1 8—1



The last term in this limit is equal to the derivative of the real function my : 8 — ||z, || 5 at
the point S = 1. We can check without difficulties that

1
, A 5
mk(ﬁ):T B> |wil loglail — g, |l og lzrll, | = mi(1 Zlﬂ\log ”
i€l iely, Tk Th
;>0 ’I“>U

which gives

— T ;
{ILI)TOOwk (l( ) - kax’k +all)I—|1:looa |:||‘/Eik||] - ‘/Eik Z ‘xl‘log ||
B—1 i€l Tkl

z; >0

It is easy to see that [|z7, ||, — egkx;k > 0, with equality if and only if 27, > 0. This means
that the limit of our objective ¢y o(2) will be +00 unless z;, > 0. An objective equal to 400
for a minimization problem can be assimilated to an unfeasible problem, which means that
the limit of our dual approximations (DG,) admits the hidden constraint x;, > 0. Gathering
now all terms in the objective, we eventually find the limit of problems (DG, ) when a — +o00
to be

inf ¢p(z) = c T+ZZT7logz 1331 st. Az=bandz >0, (DG)
kER icl, 1€},
z; >0
which is exactly the dual geometric optimization problem one can find in the literature [Kla74,
Kla76, G1i99].

3.3 Duality for geometric optimization

Before we start to prove duality results for geometric optimization, we make a technical
assumption on problem (PG), whose purpose will become clear further in this section: we
will assume that ng > 2 for all k£ € K, i.e. forbid problems where a constraint is defined with
a single exponential term. This can be done without any loss of generality, since a constraint
of the form e® ¥—¢i < 1 can be equivalently rewritten as eai y—ei—log2 4 cafy—ci—log2 <1

Let us now state the weak duality theorem for geometric optimization:

Theorem 3.3 (Weak duality) Ify is feasible for (PG) and x is feasible for (DG), we have
¢(z) > bTy.

Proof . Our objective is to prove this theorem using our family of approximate problems (PG!,)—
(DG4). We first note that z is feasible for (DG,) for every a, since the only constraints for
this family of problems are the linear constraints Az = b, which are also present in (DG).
The situation is a little different on the primal side: the first inequality in (2.1) and feasibility

of y for (PG) imply
Zga z_a y Zea?yfci Sl,
lEIk ZE’k

with equality if and only if ¢; — aTy = 0 for all 7 € I},. But this cannot happen, since we would

have Zzel et Y=Ci = Zieik 1 = ng > 1, because of our assumption on ng, which contradicts
the feasibility of y. We can conclude that the following strict inequality holds for all £ € K:

Zga ci—ajy) <l.

i€}



Since the set K is finite, this means that there exists a constant M such that for all @ > M,

Z.%(Ci —a/y)<1-nga 'VEEK
i€}

which in turn implies feasibility of y for problems (PG.) as soon as @ > M. Feasibility of
both y and z for their respective problem allows us to apply the weak duality Theorem 3.1
of l,-norm optimization to our pair of approximate problems (PG/))-(DG,), which implies
Yo (z) > bTy for all @ > M. Taking now the limit of 1, (z) for o tending to +oo, which
is finite and equal to ¢(x) since z > 0, we find that ¢(z) > b'y, which is the announced
inequality. [

The strong duality theorem for geometric optimization is stated below. We note that
contrary to the class of /,-norm optimization problems, attainment cannot be guaranteed for
any of the primal and dual optimum objective values.

Theorem 3.4 If both problems (PG) and (DG) are feasible, their optimum objective values
p* and d*are equal.

Proof. As shown in the proof of the previous theorem, the existence of a feasible solution
for (PG) and (DG) implies that problems (PG.) and (DG,) are both feasible for all «
greater than some constant M. Denoting by p} (resp. d},) the optimal objective value of
problem (PG.) (resp. (DG,)), we can thus apply the strong duality Theorem 3.2 of [,-norm
optimization to these pairs of problems to find that p}, = d}, for all @« > M. Since all
the dual approximate problems p}, = d}, share the same feasible region, it is clear that the
optimal value corresponding to the limit of the objective 1, when o — +oc is equal to
the limit of the optimal objective values d}, for « — +o00. Since the problem featuring this
limiting objective has been shown to be equivalent to (DG) in Section 3.2 (including the
hidden constraint > 0), we must have d* = lim,_, y d’,. On the other hand, Theorem 3.2
guarantees for each of the problems (PG!)) the existence of an optimal solution y, that
satisfies b'y, = p?. Since each of these solutions is also a feasible solution for (PG) (since
problems (PG!)) are restrictions of (PG)), which shares the same objective function, we
have that the optimal objective value of (PG) p* is at least equal to b'y, for all o > M,
which implies p* > limg_, 100 by, = limg 400 Pl = limg—y1 o d), = d*. Combining this last
inequality with the easy consequence of the weak duality Theorem 3.3 that states d* > p*,
we end up with the announced equality p* = d*. O

The reason why attainment of the primal optimum objective value cannot be guaranteed
is that the sequence y, may not have a finite limit point: indeed, it may happen that one
or more components of y, tend to infinity as @ — +oo (see e.g. the third example in [G1i99,
Section 4.4]).

4 Concluding remarks

In this paper, we have shown that the important class of geometric optimization problems
can be approximated with /,-norm optimization.

We have indeed described a parameterized family of primal and dual /,-norm optimization
problems, which can be made arbitrarily close to the geometric primal and dual problems. It is
worth to note that the primal approximations are restrictions of the original geometric primal

10



problem, sharing the same objective function, while the dual approximations share essentially
the same constraints as the original geometric dual problem (except for the nonnegativity
constraints) but feature a different objective.

Another possible approach would be to work with relaxations instead of restrictions on
the primal side, using the first inequality in (2.1) instead of the second one, leading to the
following problem:

sup by s.t. Zga(ci —aly) <1VkeK.
=
However, two problems arise in this setting:

o the first inequality in (2.1) is only valid when a > z, which means we would have to
add a set of explicit linear inequalities ¢; — aZTy < @ to our approximations, which would
make them and their dual problems more difficult to handle,

¢ following the same line of reasoning as in the proof of Theorem 3.2, we would end up
with another family of optimal solutions y, for the approximate problems; however,
since all of these problems are relaxations, we would have no guarantee that any of the
optimal vectors y, are feasible for the original primal geometric optimization problem,
which would prevent us to conclude that the duality gap is equal to zero. This would
only show that there is a family of asymptotically feasible solutions with their objective
values tending to the objective value of the dual, a fact that is always true in convex
optimization (see e.g. the notion of subinfimum in [SW70, Stu00]).

To conclude, we note that our approximate problems belong to a very special subcategory
of l,-norm optimization problem, since they satisfy /' = (. It might be fruitful to investigate
which class of generalized geometric optimization problems can be approximated with general
l,-norm optimization problems, a topic we leave for further research.
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