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Abstra
tIn this arti
le, we demonstrate how to approximate geometri
 optimization with lp-norm optimization. These two 
ategories of problems are well known in stru
tured 
onvexoptimization. We des
ribe a family of lp-norm optimization problems that 
an be madearbitrarily 
lose to a geometri
 optimization problem, and show that the dual problems forthese approximations are also approximating the dual geometri
 optimization problem.Finally, we use these approximations and the duality theory for lp-norm optimization toderive simple proofs of the weak and strong duality theorems for geometri
 optimization.Keywords. geometri
 optimization, lp-norm optimization, approximation, duality.
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1 Introdu
tionLet us start by introdu
ing the primal lp-norm optimization problem [PE70a, Ter85℄, whi
his basi
ally a slight modi�
ation of a linear optimization problem where the use of lp-normsapplied to linear terms is allowed within the 
onstraints. In order to state its formulationin the most general setting, we need to introdu
e the following sets: let K = f1; 2; : : : ; rg,I = f1; 2; : : : ; ng and let fIkgk2K be a partition of I into r 
lasses. The problem data isgiven by two matri
es A 2 Rm�n and F 2 Rm�r (whose 
olumns will be denoted by ai; i 2 Iand fk; k 2 K) and four 
olumn ve
tors b 2 Rm , 
 2 Rn , d 2 Rr and p 2 Rn su
h thatpi > 1 8i 2 I. Our primal problem 
onsists in optimizing a linear fun
tion of a 
olumn ve
tory 2 Rm under a set of 
onstraints involving lp-norms of linear forms, and 
an be written assup bT y s.t. Xi2Ik 1pi ��
i � aTi y��pi � dk � fTk y 8k 2 K : (Plp)It is not too diÆ
ult to see that this problem is a generalization of several well-known
onvex optimization problems: linear optimization 
orresponds to the 
ase where n = 0, whilelinearly and quadrati
ally 
onstrained 
onvex quadrati
 problems 
an be modelled using areformulation of the quadrati
 terms as 2-norms [Ter85℄. Problems of approximation in lp-norm 
an also be easily modelled, su
h as the problems des
ribed in [NN94, Ter85℄.The purpose of this note is to show that this 
ategory of problems 
an be used to approx-imate another famous 
lass of problems known as geometri
 optimization [DPZ67℄. Using thesame notations as above for sets K and Ik; k 2 K, matrix A and ve
tors b, 
 and ai; i 2 I,this 
ategory of problems 
an be stated assup bT y s.t. Xi2Ik eaTi y�
i � 1 8k 2 K : (PG)This formulation di�ers slightly from the traditional formulation of geometri
 optimizationwith respe
t to the following two aspe
ts:� The ve
tor of variables that is traditionally 
onsidered is not y 2 Rm but rather thestri
tly positive ve
tor t 2 Rm++ de�ned by tj = eyj ; 8j 2 f1; 2; : : : ;mg. With this
onvention, the 
onstraints in (PG) 
an be written asXi2Ik Ci mYj=1 taijj � 1(with Cj = e�
i 8i 2 I), where the expression on the left-hand side is 
alled a posynomial(this name 
omes from the fa
t that it bears some resemblan
e with a polynomialwhose 
oeÆ
ients are positive, sin
e Cj > 0). However, formulation (PG), while being
ompletely equivalent, presents the additional advantage of being 
onvex and is thusmu
h more suitable for analysis (notably from the point of view of duality).� The traditional formulation deals with a posynomial obje
tive. However, it 
an berepla
ed by a linear obje
tive without any loss of generality, as shown in [Kla74, Kla76,Gli99℄. 3



We will start by presenting in Se
tion 2 an approximation of the exponential fun
tion,whi
h 
entral in the de�nition of the 
onstraints of a geometri
 optimization problem. Thiswill allow us to present a family of lp-norm optimization problems whi
h 
an be made arbitrar-ily 
lose to a primal geometri
 optimization problem. We derive in Se
tion 3 a dual problemfor this approximation, and show that the limiting 
ase for these dual approximations isequivalent to the traditional dual geometri
 optimization problem. Using this family of pairsof primal-dual problems and the weak and strong duality theorems for lp-norm optimization,we will then show how to derive the 
orresponding theorems for geometri
 optimization in asimple manner. Se
tion 4 will 
on
lude and present some topi
s for further resear
h.2 Approximating geometri
 optimizationIn this se
tion, we will show how geometri
 optimization problems 
an be approximated withlp-norm optimization.2.1 An approximation of the exponential fun
tionA key ingredient in our approa
h is the fun
tion that will be used to approximate the expo-nential terms that arise within the 
onstraints of (PG). Let � 2 R++ and let us de�neg� : R+ 7! R+ : x 7! ���1� x� ���� :We have the following lemma relating g�(x) to e�x:Lemma 2.1 For any �xed x 2 R+ , we have thatg�(x) � e�x 8� � x and e�x < g�(x) + ��1 8� > 0 ; (2.1)equality o

urring in the �rst inequality if and only if x = 0. Moreover, we havelim�!+1 g�(x) = e�x :Proof . Let us �x x 2 R+ . When 1 < � < x, we only have to prove the se
ond inequalityin (2.1), whi
h is straightforward: we have e�x < e�� < ��1 < g�(x) + ��1, where we usedthe obvious inequalities e� > � and g�(x) > 0. Assuming � � x for the rest of this proof, wede�ne the auxiliary fun
tion h : R++ 7! R : � 7! log f�(x). Using the Taylor expansion oflog(1� x) around x = 0log(1� x) = � 1Xi=1 xii for all x su
h that jxj � 1 (2.2)we have h(�) = � log���1� x� ��� = � log�1� x�� = � 1Xi=1 xii�i�1 = �x� 1Xi=2 xii�i�1 (2.3)(where we used the fa
t that x� � 1 to write the Taylor expansion). It is now 
lear thath(�) � �x, with equality if and only if x = 0, whi
h in turn implies that g�(x) � e�x, withequality if and only if x = 0, whi
h is the �rst inequality in (2.1).4



The se
ond inequality is equivalent, after multipli
ation by ex, to1 < exg�(x) + ex��1 , 1� ex��1 < exeh�(x) , 1� ex��1 < ex+h�(x) :This last inequality trivially holds when its left-hand side is negative, i.e. when � � ex. When� > ex, we take the logarithm of both sides, use again the Taylor expansion (2.2) and theexpression for h�(x) in (2.3) to �ndlog�1� ex��1� < x+ h�(x), � 1Xi=1 exii�i < � 1Xi=2 xii�i�1 , 0 < 1Xi=1 1�i �exii � xi+1i+ 1� :This last inequality holds sin
e ea
h of the 
oeÆ
ients between parentheses 
an be shown tobe stri
tly positive: writing the well-known inequality ea > ann! for a = xi and n = i + 1, we�nd exi > (xi)i+1(i+ 1)! , exii > xi+1(i+ 1) iii! ) exii > xi+1i+ 1 , exii � xi+1i+ 1 > 0(where we used ii � i! to derive the third inequality).To 
on
lude this proof, we note that (2.3) implies that lim�!+1 h(�) = �x, whi
h giveslim�!+1 f�(x) = e�x, as announ
ed. This last property 
an also be easily derived from thetwo inequalities in (2.1). �The �rst inequality in (2.1) and the limit of g�(x) are well-known, and are sometimes usedas de�nition for the real exponential fun
tion, while the se
ond inequality in (2.1) is mu
hless 
ommon.2.2 An approximation using lp-norm optimizationThe formulation of the primal geometri
 optimization problem (PG) relies heavily on theexponential fun
tion. Sin
e Lemma 2.1 shows that it is possible to approximate e�x within
reasing a

ura
y using the fun
tion g�, we 
an 
onsider using this fun
tion to formulate anapproximation of problem (PG). The key observation we make here is that this approximation
an be expressed as a lp-norm optimization problem.Indeed, let us �x � 2 R++ and write the approximate problemsup bT y s.t. Xi2Ik�g�(
i � aTi y) + ��1� � 1 8k 2 K : (PG�)We note that this problem is a restri
tion of the original problem (PG), i.e. that any y thatis feasible for (PG�) is also feasible for (PG), with the same obje
tive value. This is indeed adire
t 
onsequen
e of the se
ond inequality in (2.1), whi
h implies for any y feasible for (PG�)Xi2Ik e
i�aTi y <Xi2Ik�g�(
i � aTi y) + ��1� � 1 :We need now to transform the expressions g�(
i � aTi y) + ��1 to �t the format of the
onstraints of a lp-norm optimization problem. Assuming that � > 1 for the rest of this
5



paper, we writeXi2Ik�g�(
i � aTi y) + ��1� � 1 , Xi2Ik g�(
i � aTi y) � 1� nk��1, Xi2Ik ����1� 
i � aTi y� ����� � 1� nk��1, Xi2Ik ���� 
i + aTi y��� � ��(1� nk��1), Xi2Ik 1� ��
i � �� aTi y��� � ���1(1� nk��1)(where nk is the number of elements in Ik), whi
h allows us to write (PG�) assup bT y s.t. Xi2Ik 1� ��
i � �� aTi y��� � ���1(1� nk��1) 8k 2 K : (PG0�)This is indeed a lp-norm optimization in the form (Plp): dimensions m, n and r are thesame in both problems, sets I, K and Ik are identi
al, the ve
tor of exponents p satis�espi = � > 1 for all i 2 I, matrix A and ve
tor b are the same for both problems while matrixF is equal to zero. The only di�eren
e 
onsists in ve
tors ~
 and d, whi
h satisfy ~
i = 
i � �and dk = ���1(1� nk��1).We have thus shown how to approximate a geometri
 optimization problem with a stan-dard lp-norm optimization problem. Solving this problem for a �xed value of � will give afeasible solution to the original geometri
 optimization problem. Letting � tend to +1, theapproximations g�(
i � aTi y) will be more and more a

urate, and the 
orresponding feasibleregions will approximate the feasible region of (PG) better and better. We 
an thus expe
tthe optimal solutions of problems (PG0�) to tend to an optimal solution of (PG). Indeed, thisis the most 
ommon situation, but it does not happen in all the 
ases, as will be explained inthe next se
tion.3 Deriving duality propertiesThe purpose of this se
tion is to study the duality properties of our geometri
 optimizationproblem and its approximations. Namely, using the duality properties of lp-norm optimizationproblems, we will derive the 
orresponding properties for geometri
 optimization, using ourfamily of approximate problems.3.1 Duality for lp-norm optimizationDe�ning a ve
tor q 2 Rn su
h that 1pi + 1qi = 1 for all i 2 I, the dual problem for (Plp) 
onsistsin �nding two ve
tors x 2 Rn and z 2 Rr that maximize a highly nonlinear obje
tive whilesatisfying some linear equalities and nonnegativity 
onstraints [Ter85, GT00℄:inf  (x; z) = 
Tx+ dT z + Xk2Kzk>0 zkXi2Ik 1qi ����xizk ����qi s.t. � Ax+ Fz = b and z � 0 ;zk = 0) xi = 0 8i 2 Ik : (Dlp)6



We note that a spe
ial 
onvention has been taken to handle the 
ase when one or more
omponents of z are equal to zero: the asso
iated terms are left out of the �rst sum (to avoida zero denominator) and the 
orresponding 
omponents of x have to be equal to zero. When
ompared with the primal problem (Plp), this problem has a simpler feasible region at thepri
e of a more 
ompli
ated (but 
onvex) obje
tive.We have the following duality properties for the pair of problems (Plp){(Dlp) (these resultswere �rst obtained by Peterson and E
ker [PE70a, PE67, PE70b℄, see also [GT00℄ for simpleralternative proofs using 
oni
 duality) :Theorem 3.1 (Weak duality) If y is feasible for (Plp) and (x; z) is feasible for (Dlp), wehave  (x; z) � bT y.Theorem 3.2 (Strong duality) If both problems (Plp) and (Dlp) are feasible, the primaloptimal obje
tive value is attained with a zero duality gap, i.e.p� = max bT y s.t. Xi2Ik 1pi ��
i � aTi y��pi � dk � fTk y 8k 2 K= inf  (x; z) s.t. � Ax+ Fz = b and z � 0zk = 0) xi = 0 8i 2 Ik = d� :The weak duality property is a rather straightforward 
onsequen
e of the 
onvexity ofthe problem, and is shared by all the 
onvex optimization problems. This 
ontrasts with theabsen
e of a duality gap and the guaranteed attainment of the primal optimal obje
tive value,whi
h are due to the spe
i�
 stru
ture of lp-norm optimization problems (i.e. they do not holdfor a general 
onvex problem, where a stri
tly positive duality gap and/or non-attainment forboth problems may o

ur [SW70, Stu00℄).We would like to bring the reader's attention to an interesting spe
ial 
ase of dual lp-normoptimization problem. When all pi's are equal to p and when matrix F is identi
ally equal to0, i.e. when there are no pure linear terms in the 
onstraints, problem (Dlp) be
omesinf  (x; z) = 
Tx+ dT z + 1q Xk2Kzk>0 z1�qk Xi2Ik jxijq s.t. � Ax = b and z � 0 ;zk = 0) xi = 0 8i 2 Ik : (Dl0p)This kind of formulation arises in problems of approximation in lp-norm, see [NN94, Se
-tion 6.3.2℄ and [Ter85, Se
tion 11, page 98℄.Sin
e variables zk do not appear any more in the linear 
onstraints but only in the obje
tivefun
tion  (x; z), we may try to �nd a 
losed form for their optimal value. Looking at onevariable zk at a time and isolating the 
orresponding terms in the obje
tive, one �nds dkzk +1qz1�qk Pi2Ik jxijq, whose derivative is equal to dk + 1�qq z�qk Pi2Ik jxijq. One easily sees thatthis quantity admits a single maximum whenzk = (p dk)� 1q kxIkkq(where k�kp 
orresponds to the usual p-norm de�ned by kxkp = (Pi jxijp) 1p and xIk denotesthe ve
tor made of the 
omponents of x whose indi
es belong to Ik), whi
h always satis�es7



the nonnegativity 
onstraint in (Dl0p) and gives after some straightforward 
omputations avalue of dkzk + 1� qq z�qk Xi2Ik jxijq = : : : = �1 + pq �dkzk = p dkzk = (p dk) 1p kxIkkqfor the two 
orresponding terms in the obje
tive. Our dual problem (Dl0p) be
omes theninf  (x) = 
Tx+ Xk2K(p dk) 1p kxIkkq s.t. Ax = b ; (Dl00p)a great simpli�
ation when 
ompared to (Dl0p). One 
an 
he
k that the spe
ial treatment forthe 
ase zk = 0 is well handled: indeed, zk = 0 happens when xIk = 0, and the impli
ationthat is stated in the 
onstraints of (Dl0p) is thus satis�ed.3.2 A dual for the approximate problemWe are now going to write the dual for the approximate problem (PG0�). Sin
e we are in the
ase where F = 0 and all pi's are equal to �, we 
an use the simpli�ed version of the dualproblem (Dl00p) and writeinf  �(x) = 
Tx� �eTnx+ Xk2K �����1(1� nk��1)� 1� kxIkk� s.t. Ax = b(where en is a notation for the all-one n-dimensional 
olumn ve
tor and � > 1 is a 
onstantsu
h that 1� + 1� = 1), whi
h 
an be simpli�ed to giveinf  �(x) = 
Tx� �eTnx+ �Xk2K(1� nk��1) 1� kxIkk� s.t. Ax = b : (DG�)We observe that the 
onstraints and thus the feasible region of this problem are independentfrom �, whi
h only appears in the obje
tive fun
tion  �(x). Intuitively, sin
e problems (PG0�)be
ome 
loser and 
loser to (PG) as � tends to +1, the 
orresponding dual problems (PG0�)should approximate the dual of (PG) better and better. It is thus interesting to write downthe limiting 
ase for these problems, i.e. �nd the limit of  � when �! +1. Looking �rst atthe terms that are related to single set of indi
es Ik, we write k;�(x) = 
TIkxIk � �eTnkxIk + �(1 � nk��1) 1� kxIkk�= 
TIkxIk � �eTnkxIk + � kxIkk1 � � kxIkk1 + �(1 � nk��1) 1� kxIkk�= 
TIkxIk + � �kxIkk1 � eTnkxIk�+ � h(1� nk��1) 1� kxIkk� � kxIkk1i= 
TIkxIk + � �kxIkk1 � eTnkxIk�+ �� � 1 h(1� nk��1) 1� kxIkk� � kxIkk1i(where we used at the last line the fa
t that � = ���1 ). When � tends to +1 (and thus� ! 1), we havelim�!+1�!1  k;�(x) = 
TIkxIk + lim�!+1� �kxIkk1 � eTnkxIk�+ lim�!+1�!1 �� � 1 h(1� nk��1) 1� kxIkk� � kxIkk1i= 
TIkxIk + lim�!+1� �kxIkk1 � eTnkxIk�+ lim�!1 kxIkk� � kxIkk1� � 18



The last term in this limit is equal to the derivative of the real fun
tion mk : � 7! kxIkk� atthe point � = 1. We 
an 
he
k without diÆ
ulties thatm0k(�) = kxIkk 1��1��2 2664� Xi2Ikxi>0 jxij� log jxij � kxIkk1 log kxIkk13775) m0k(1) = Xi2Ikxi>0 jxij log jxijkxIkk1 ;whi
h giveslim�!+1�!1  k;�(x) = 
TIkxIk + lim�!+1� �kxIkk1 � eTnkxIk�+ Xi2Ikxi>0 jxij log jxijkxIkk1 :It is easy to see that kxIkk1 � eTnkxIk � 0, with equality if and only if xIk � 0. This meansthat the limit of our obje
tive  k;�(x) will be +1 unless xIk � 0. An obje
tive equal to +1for a minimization problem 
an be assimilated to an unfeasible problem, whi
h means thatthe limit of our dual approximations (DG�) admits the hidden 
onstraint xIk � 0. Gatheringnow all terms in the obje
tive, we eventually �nd the limit of problems (DG�) when �! +1to be inf �(x) = 
Tx+Xk2R Xi2Ikxi>0xi log xiPi2Ik xi s.t. Ax = b and x � 0 ; (DG)whi
h is exa
tly the dual geometri
 optimization problem one 
an �nd in the literature [Kla74,Kla76, Gli99℄.3.3 Duality for geometri
 optimizationBefore we start to prove duality results for geometri
 optimization, we make a te
hni
alassumption on problem (PG), whose purpose will be
ome 
lear further in this se
tion: wewill assume that nk � 2 for all k 2 K, i.e. forbid problems where a 
onstraint is de�ned witha single exponential term. This 
an be done without any loss of generality, sin
e a 
onstraintof the form eaTi y�
i � 1 
an be equivalently rewritten as eaTi y�
i�log 2 + eaTi y�
i�log 2 � 1.Let us now state the weak duality theorem for geometri
 optimization:Theorem 3.3 (Weak duality) If y is feasible for (PG) and x is feasible for (DG), we have�(x) � bT y.Proof . Our obje
tive is to prove this theorem using our family of approximate problems (PG0�){(DG�). We �rst note that x is feasible for (DG�) for every �, sin
e the only 
onstraints forthis family of problems are the linear 
onstraints Ax = b, whi
h are also present in (DG).The situation is a little di�erent on the primal side: the �rst inequality in (2.1) and feasibilityof y for (PG) imply Xi2Ik g�(
i � aTi y) �Xi2Ik eaTi y�
i � 1 ;with equality if and only if 
i�aTi y = 0 for all i 2 Ik. But this 
annot happen, sin
e we wouldhave Pi2Ik eaTi y�
i =Pi2Ik 1 = nk > 1, be
ause of our assumption on nk, whi
h 
ontradi
tsthe feasibility of y. We 
an 
on
lude that the following stri
t inequality holds for all k 2 K:Xi2Ik g�(
i � aTi y) < 1 :9



Sin
e the set K is �nite, this means that there exists a 
onstant M su
h that for all � �M ,Xi2Ik g�(
i � aTi y) � 1� nk��1 8k 2 K ;whi
h in turn implies feasibility of y for problems (PG0�) as soon as � � M . Feasibility ofboth y and x for their respe
tive problem allows us to apply the weak duality Theorem 3.1of lp-norm optimization to our pair of approximate problems (PG0�){(DG�), whi
h implies �(x) � bT y for all � � M . Taking now the limit of  �(x) for � tending to +1, whi
his �nite and equal to �(x) sin
e x � 0, we �nd that �(x) � bT y, whi
h is the announ
edinequality. �The strong duality theorem for geometri
 optimization is stated below. We note that
ontrary to the 
lass of lp-norm optimization problems, attainment 
annot be guaranteed forany of the primal and dual optimum obje
tive values.Theorem 3.4 If both problems (PG) and (DG) are feasible, their optimum obje
tive valuesp� and d�are equal.Proof . As shown in the proof of the previous theorem, the existen
e of a feasible solutionfor (PG) and (DG) implies that problems (PG0�) and (DG�) are both feasible for all �greater than some 
onstant M . Denoting by p�� (resp. d��) the optimal obje
tive value ofproblem (PG0�) (resp. (DG�)), we 
an thus apply the strong duality Theorem 3.2 of lp-normoptimization to these pairs of problems to �nd that p�� = d�� for all � � M . Sin
e allthe dual approximate problems p�� = d�� share the same feasible region, it is 
lear that theoptimal value 
orresponding to the limit of the obje
tive  � when � ! +1 is equal tothe limit of the optimal obje
tive values d�� for � ! +1. Sin
e the problem featuring thislimiting obje
tive has been shown to be equivalent to (DG) in Se
tion 3.2 (in
luding thehidden 
onstraint x � 0), we must have d� = lim�!+1 d��. On the other hand, Theorem 3.2guarantees for ea
h of the problems (PG0�) the existen
e of an optimal solution y� thatsatis�es bT y� = p��. Sin
e ea
h of these solutions is also a feasible solution for (PG) (sin
eproblems (PG0�) are restri
tions of (PG)), whi
h shares the same obje
tive fun
tion, wehave that the optimal obje
tive value of (PG) p� is at least equal to bT y� for all � � M ,whi
h implies p� � lim�!+1 bT y� = lim�!+1 p�� = lim�!+1 d�� = d�. Combining this lastinequality with the easy 
onsequen
e of the weak duality Theorem 3.3 that states d� � p�,we end up with the announ
ed equality p� = d�. �The reason why attainment of the primal optimum obje
tive value 
annot be guaranteedis that the sequen
e y� may not have a �nite limit point: indeed, it may happen that oneor more 
omponents of y� tend to in�nity as �! +1 (see e.g. the third example in [Gli99,Se
tion 4.4℄).4 Con
luding remarksIn this paper, we have shown that the important 
lass of geometri
 optimization problems
an be approximated with lp-norm optimization.We have indeed des
ribed a parameterized family of primal and dual lp-norm optimizationproblems, whi
h 
an be made arbitrarily 
lose to the geometri
 primal and dual problems. It isworth to note that the primal approximations are restri
tions of the original geometri
 primal10



problem, sharing the same obje
tive fun
tion, while the dual approximations share essentiallythe same 
onstraints as the original geometri
 dual problem (ex
ept for the nonnegativity
onstraints) but feature a di�erent obje
tive.Another possible approa
h would be to work with relaxations instead of restri
tions onthe primal side, using the �rst inequality in (2.1) instead of the se
ond one, leading to thefollowing problem: sup bT y s.t. Xi2Ik g�(
i � aTi y) � 1 8k 2 K :However, two problems arise in this setting:� the �rst inequality in (2.1) is only valid when � � x, whi
h means we would have toadd a set of expli
it linear inequalities 
i�aTi y � � to our approximations, whi
h wouldmake them and their dual problems more diÆ
ult to handle,� following the same line of reasoning as in the proof of Theorem 3.2, we would end upwith another family of optimal solutions y� for the approximate problems; however,sin
e all of these problems are relaxations, we would have no guarantee that any of theoptimal ve
tors y� are feasible for the original primal geometri
 optimization problem,whi
h would prevent us to 
on
lude that the duality gap is equal to zero. This wouldonly show that there is a family of asymptoti
ally feasible solutions with their obje
tivevalues tending to the obje
tive value of the dual, a fa
t that is always true in 
onvexoptimization (see e.g. the notion of subin�mum in [SW70, Stu00℄).To 
on
lude, we note that our approximate problems belong to a very spe
ial sub
ategoryof lp-norm optimization problem, sin
e they satisfy F = 0. It might be fruitful to investigatewhi
h 
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