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AbstratIn this artile, we demonstrate how to approximate geometri optimization with lp-norm optimization. These two ategories of problems are well known in strutured onvexoptimization. We desribe a family of lp-norm optimization problems that an be madearbitrarily lose to a geometri optimization problem, and show that the dual problems forthese approximations are also approximating the dual geometri optimization problem.Finally, we use these approximations and the duality theory for lp-norm optimization toderive simple proofs of the weak and strong duality theorems for geometri optimization.Keywords. geometri optimization, lp-norm optimization, approximation, duality.
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1 IntrodutionLet us start by introduing the primal lp-norm optimization problem [PE70a, Ter85℄, whihis basially a slight modi�ation of a linear optimization problem where the use of lp-normsapplied to linear terms is allowed within the onstraints. In order to state its formulationin the most general setting, we need to introdue the following sets: let K = f1; 2; : : : ; rg,I = f1; 2; : : : ; ng and let fIkgk2K be a partition of I into r lasses. The problem data isgiven by two matries A 2 Rm�n and F 2 Rm�r (whose olumns will be denoted by ai; i 2 Iand fk; k 2 K) and four olumn vetors b 2 Rm ,  2 Rn , d 2 Rr and p 2 Rn suh thatpi > 1 8i 2 I. Our primal problem onsists in optimizing a linear funtion of a olumn vetory 2 Rm under a set of onstraints involving lp-norms of linear forms, and an be written assup bT y s.t. Xi2Ik 1pi ��i � aTi y��pi � dk � fTk y 8k 2 K : (Plp)It is not too diÆult to see that this problem is a generalization of several well-knownonvex optimization problems: linear optimization orresponds to the ase where n = 0, whilelinearly and quadratially onstrained onvex quadrati problems an be modelled using areformulation of the quadrati terms as 2-norms [Ter85℄. Problems of approximation in lp-norm an also be easily modelled, suh as the problems desribed in [NN94, Ter85℄.The purpose of this note is to show that this ategory of problems an be used to approx-imate another famous lass of problems known as geometri optimization [DPZ67℄. Using thesame notations as above for sets K and Ik; k 2 K, matrix A and vetors b,  and ai; i 2 I,this ategory of problems an be stated assup bT y s.t. Xi2Ik eaTi y�i � 1 8k 2 K : (PG)This formulation di�ers slightly from the traditional formulation of geometri optimizationwith respet to the following two aspets:� The vetor of variables that is traditionally onsidered is not y 2 Rm but rather thestritly positive vetor t 2 Rm++ de�ned by tj = eyj ; 8j 2 f1; 2; : : : ;mg. With thisonvention, the onstraints in (PG) an be written asXi2Ik Ci mYj=1 taijj � 1(with Cj = e�i 8i 2 I), where the expression on the left-hand side is alled a posynomial(this name omes from the fat that it bears some resemblane with a polynomialwhose oeÆients are positive, sine Cj > 0). However, formulation (PG), while beingompletely equivalent, presents the additional advantage of being onvex and is thusmuh more suitable for analysis (notably from the point of view of duality).� The traditional formulation deals with a posynomial objetive. However, it an bereplaed by a linear objetive without any loss of generality, as shown in [Kla74, Kla76,Gli99℄. 3



We will start by presenting in Setion 2 an approximation of the exponential funtion,whih entral in the de�nition of the onstraints of a geometri optimization problem. Thiswill allow us to present a family of lp-norm optimization problems whih an be made arbitrar-ily lose to a primal geometri optimization problem. We derive in Setion 3 a dual problemfor this approximation, and show that the limiting ase for these dual approximations isequivalent to the traditional dual geometri optimization problem. Using this family of pairsof primal-dual problems and the weak and strong duality theorems for lp-norm optimization,we will then show how to derive the orresponding theorems for geometri optimization in asimple manner. Setion 4 will onlude and present some topis for further researh.2 Approximating geometri optimizationIn this setion, we will show how geometri optimization problems an be approximated withlp-norm optimization.2.1 An approximation of the exponential funtionA key ingredient in our approah is the funtion that will be used to approximate the expo-nential terms that arise within the onstraints of (PG). Let � 2 R++ and let us de�neg� : R+ 7! R+ : x 7! ���1� x� ���� :We have the following lemma relating g�(x) to e�x:Lemma 2.1 For any �xed x 2 R+ , we have thatg�(x) � e�x 8� � x and e�x < g�(x) + ��1 8� > 0 ; (2.1)equality ourring in the �rst inequality if and only if x = 0. Moreover, we havelim�!+1 g�(x) = e�x :Proof . Let us �x x 2 R+ . When 1 < � < x, we only have to prove the seond inequalityin (2.1), whih is straightforward: we have e�x < e�� < ��1 < g�(x) + ��1, where we usedthe obvious inequalities e� > � and g�(x) > 0. Assuming � � x for the rest of this proof, wede�ne the auxiliary funtion h : R++ 7! R : � 7! log f�(x). Using the Taylor expansion oflog(1� x) around x = 0log(1� x) = � 1Xi=1 xii for all x suh that jxj � 1 (2.2)we have h(�) = � log���1� x� ��� = � log�1� x�� = � 1Xi=1 xii�i�1 = �x� 1Xi=2 xii�i�1 (2.3)(where we used the fat that x� � 1 to write the Taylor expansion). It is now lear thath(�) � �x, with equality if and only if x = 0, whih in turn implies that g�(x) � e�x, withequality if and only if x = 0, whih is the �rst inequality in (2.1).4



The seond inequality is equivalent, after multipliation by ex, to1 < exg�(x) + ex��1 , 1� ex��1 < exeh�(x) , 1� ex��1 < ex+h�(x) :This last inequality trivially holds when its left-hand side is negative, i.e. when � � ex. When� > ex, we take the logarithm of both sides, use again the Taylor expansion (2.2) and theexpression for h�(x) in (2.3) to �ndlog�1� ex��1� < x+ h�(x), � 1Xi=1 exii�i < � 1Xi=2 xii�i�1 , 0 < 1Xi=1 1�i �exii � xi+1i+ 1� :This last inequality holds sine eah of the oeÆients between parentheses an be shown tobe stritly positive: writing the well-known inequality ea > ann! for a = xi and n = i + 1, we�nd exi > (xi)i+1(i+ 1)! , exii > xi+1(i+ 1) iii! ) exii > xi+1i+ 1 , exii � xi+1i+ 1 > 0(where we used ii � i! to derive the third inequality).To onlude this proof, we note that (2.3) implies that lim�!+1 h(�) = �x, whih giveslim�!+1 f�(x) = e�x, as announed. This last property an also be easily derived from thetwo inequalities in (2.1). �The �rst inequality in (2.1) and the limit of g�(x) are well-known, and are sometimes usedas de�nition for the real exponential funtion, while the seond inequality in (2.1) is muhless ommon.2.2 An approximation using lp-norm optimizationThe formulation of the primal geometri optimization problem (PG) relies heavily on theexponential funtion. Sine Lemma 2.1 shows that it is possible to approximate e�x withinreasing auray using the funtion g�, we an onsider using this funtion to formulate anapproximation of problem (PG). The key observation we make here is that this approximationan be expressed as a lp-norm optimization problem.Indeed, let us �x � 2 R++ and write the approximate problemsup bT y s.t. Xi2Ik�g�(i � aTi y) + ��1� � 1 8k 2 K : (PG�)We note that this problem is a restrition of the original problem (PG), i.e. that any y thatis feasible for (PG�) is also feasible for (PG), with the same objetive value. This is indeed adiret onsequene of the seond inequality in (2.1), whih implies for any y feasible for (PG�)Xi2Ik ei�aTi y <Xi2Ik�g�(i � aTi y) + ��1� � 1 :We need now to transform the expressions g�(i � aTi y) + ��1 to �t the format of theonstraints of a lp-norm optimization problem. Assuming that � > 1 for the rest of this
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paper, we writeXi2Ik�g�(i � aTi y) + ��1� � 1 , Xi2Ik g�(i � aTi y) � 1� nk��1, Xi2Ik ����1� i � aTi y� ����� � 1� nk��1, Xi2Ik ���� i + aTi y��� � ��(1� nk��1), Xi2Ik 1� ��i � �� aTi y��� � ���1(1� nk��1)(where nk is the number of elements in Ik), whih allows us to write (PG�) assup bT y s.t. Xi2Ik 1� ��i � �� aTi y��� � ���1(1� nk��1) 8k 2 K : (PG0�)This is indeed a lp-norm optimization in the form (Plp): dimensions m, n and r are thesame in both problems, sets I, K and Ik are idential, the vetor of exponents p satis�espi = � > 1 for all i 2 I, matrix A and vetor b are the same for both problems while matrixF is equal to zero. The only di�erene onsists in vetors ~ and d, whih satisfy ~i = i � �and dk = ���1(1� nk��1).We have thus shown how to approximate a geometri optimization problem with a stan-dard lp-norm optimization problem. Solving this problem for a �xed value of � will give afeasible solution to the original geometri optimization problem. Letting � tend to +1, theapproximations g�(i � aTi y) will be more and more aurate, and the orresponding feasibleregions will approximate the feasible region of (PG) better and better. We an thus expetthe optimal solutions of problems (PG0�) to tend to an optimal solution of (PG). Indeed, thisis the most ommon situation, but it does not happen in all the ases, as will be explained inthe next setion.3 Deriving duality propertiesThe purpose of this setion is to study the duality properties of our geometri optimizationproblem and its approximations. Namely, using the duality properties of lp-norm optimizationproblems, we will derive the orresponding properties for geometri optimization, using ourfamily of approximate problems.3.1 Duality for lp-norm optimizationDe�ning a vetor q 2 Rn suh that 1pi + 1qi = 1 for all i 2 I, the dual problem for (Plp) onsistsin �nding two vetors x 2 Rn and z 2 Rr that maximize a highly nonlinear objetive whilesatisfying some linear equalities and nonnegativity onstraints [Ter85, GT00℄:inf  (x; z) = Tx+ dT z + Xk2Kzk>0 zkXi2Ik 1qi ����xizk ����qi s.t. � Ax+ Fz = b and z � 0 ;zk = 0) xi = 0 8i 2 Ik : (Dlp)6



We note that a speial onvention has been taken to handle the ase when one or moreomponents of z are equal to zero: the assoiated terms are left out of the �rst sum (to avoida zero denominator) and the orresponding omponents of x have to be equal to zero. Whenompared with the primal problem (Plp), this problem has a simpler feasible region at theprie of a more ompliated (but onvex) objetive.We have the following duality properties for the pair of problems (Plp){(Dlp) (these resultswere �rst obtained by Peterson and Eker [PE70a, PE67, PE70b℄, see also [GT00℄ for simpleralternative proofs using oni duality) :Theorem 3.1 (Weak duality) If y is feasible for (Plp) and (x; z) is feasible for (Dlp), wehave  (x; z) � bT y.Theorem 3.2 (Strong duality) If both problems (Plp) and (Dlp) are feasible, the primaloptimal objetive value is attained with a zero duality gap, i.e.p� = max bT y s.t. Xi2Ik 1pi ��i � aTi y��pi � dk � fTk y 8k 2 K= inf  (x; z) s.t. � Ax+ Fz = b and z � 0zk = 0) xi = 0 8i 2 Ik = d� :The weak duality property is a rather straightforward onsequene of the onvexity ofthe problem, and is shared by all the onvex optimization problems. This ontrasts with theabsene of a duality gap and the guaranteed attainment of the primal optimal objetive value,whih are due to the spei� struture of lp-norm optimization problems (i.e. they do not holdfor a general onvex problem, where a stritly positive duality gap and/or non-attainment forboth problems may our [SW70, Stu00℄).We would like to bring the reader's attention to an interesting speial ase of dual lp-normoptimization problem. When all pi's are equal to p and when matrix F is identially equal to0, i.e. when there are no pure linear terms in the onstraints, problem (Dlp) beomesinf  (x; z) = Tx+ dT z + 1q Xk2Kzk>0 z1�qk Xi2Ik jxijq s.t. � Ax = b and z � 0 ;zk = 0) xi = 0 8i 2 Ik : (Dl0p)This kind of formulation arises in problems of approximation in lp-norm, see [NN94, Se-tion 6.3.2℄ and [Ter85, Setion 11, page 98℄.Sine variables zk do not appear any more in the linear onstraints but only in the objetivefuntion  (x; z), we may try to �nd a losed form for their optimal value. Looking at onevariable zk at a time and isolating the orresponding terms in the objetive, one �nds dkzk +1qz1�qk Pi2Ik jxijq, whose derivative is equal to dk + 1�qq z�qk Pi2Ik jxijq. One easily sees thatthis quantity admits a single maximum whenzk = (p dk)� 1q kxIkkq(where k�kp orresponds to the usual p-norm de�ned by kxkp = (Pi jxijp) 1p and xIk denotesthe vetor made of the omponents of x whose indies belong to Ik), whih always satis�es7



the nonnegativity onstraint in (Dl0p) and gives after some straightforward omputations avalue of dkzk + 1� qq z�qk Xi2Ik jxijq = : : : = �1 + pq �dkzk = p dkzk = (p dk) 1p kxIkkqfor the two orresponding terms in the objetive. Our dual problem (Dl0p) beomes theninf  (x) = Tx+ Xk2K(p dk) 1p kxIkkq s.t. Ax = b ; (Dl00p)a great simpli�ation when ompared to (Dl0p). One an hek that the speial treatment forthe ase zk = 0 is well handled: indeed, zk = 0 happens when xIk = 0, and the impliationthat is stated in the onstraints of (Dl0p) is thus satis�ed.3.2 A dual for the approximate problemWe are now going to write the dual for the approximate problem (PG0�). Sine we are in thease where F = 0 and all pi's are equal to �, we an use the simpli�ed version of the dualproblem (Dl00p) and writeinf  �(x) = Tx� �eTnx+ Xk2K �����1(1� nk��1)� 1� kxIkk� s.t. Ax = b(where en is a notation for the all-one n-dimensional olumn vetor and � > 1 is a onstantsuh that 1� + 1� = 1), whih an be simpli�ed to giveinf  �(x) = Tx� �eTnx+ �Xk2K(1� nk��1) 1� kxIkk� s.t. Ax = b : (DG�)We observe that the onstraints and thus the feasible region of this problem are independentfrom �, whih only appears in the objetive funtion  �(x). Intuitively, sine problems (PG0�)beome loser and loser to (PG) as � tends to +1, the orresponding dual problems (PG0�)should approximate the dual of (PG) better and better. It is thus interesting to write downthe limiting ase for these problems, i.e. �nd the limit of  � when �! +1. Looking �rst atthe terms that are related to single set of indies Ik, we write k;�(x) = TIkxIk � �eTnkxIk + �(1 � nk��1) 1� kxIkk�= TIkxIk � �eTnkxIk + � kxIkk1 � � kxIkk1 + �(1 � nk��1) 1� kxIkk�= TIkxIk + � �kxIkk1 � eTnkxIk�+ � h(1� nk��1) 1� kxIkk� � kxIkk1i= TIkxIk + � �kxIkk1 � eTnkxIk�+ �� � 1 h(1� nk��1) 1� kxIkk� � kxIkk1i(where we used at the last line the fat that � = ���1 ). When � tends to +1 (and thus� ! 1), we havelim�!+1�!1  k;�(x) = TIkxIk + lim�!+1� �kxIkk1 � eTnkxIk�+ lim�!+1�!1 �� � 1 h(1� nk��1) 1� kxIkk� � kxIkk1i= TIkxIk + lim�!+1� �kxIkk1 � eTnkxIk�+ lim�!1 kxIkk� � kxIkk1� � 18



The last term in this limit is equal to the derivative of the real funtion mk : � 7! kxIkk� atthe point � = 1. We an hek without diÆulties thatm0k(�) = kxIkk 1��1��2 2664� Xi2Ikxi>0 jxij� log jxij � kxIkk1 log kxIkk13775) m0k(1) = Xi2Ikxi>0 jxij log jxijkxIkk1 ;whih giveslim�!+1�!1  k;�(x) = TIkxIk + lim�!+1� �kxIkk1 � eTnkxIk�+ Xi2Ikxi>0 jxij log jxijkxIkk1 :It is easy to see that kxIkk1 � eTnkxIk � 0, with equality if and only if xIk � 0. This meansthat the limit of our objetive  k;�(x) will be +1 unless xIk � 0. An objetive equal to +1for a minimization problem an be assimilated to an unfeasible problem, whih means thatthe limit of our dual approximations (DG�) admits the hidden onstraint xIk � 0. Gatheringnow all terms in the objetive, we eventually �nd the limit of problems (DG�) when �! +1to be inf �(x) = Tx+Xk2R Xi2Ikxi>0xi log xiPi2Ik xi s.t. Ax = b and x � 0 ; (DG)whih is exatly the dual geometri optimization problem one an �nd in the literature [Kla74,Kla76, Gli99℄.3.3 Duality for geometri optimizationBefore we start to prove duality results for geometri optimization, we make a tehnialassumption on problem (PG), whose purpose will beome lear further in this setion: wewill assume that nk � 2 for all k 2 K, i.e. forbid problems where a onstraint is de�ned witha single exponential term. This an be done without any loss of generality, sine a onstraintof the form eaTi y�i � 1 an be equivalently rewritten as eaTi y�i�log 2 + eaTi y�i�log 2 � 1.Let us now state the weak duality theorem for geometri optimization:Theorem 3.3 (Weak duality) If y is feasible for (PG) and x is feasible for (DG), we have�(x) � bT y.Proof . Our objetive is to prove this theorem using our family of approximate problems (PG0�){(DG�). We �rst note that x is feasible for (DG�) for every �, sine the only onstraints forthis family of problems are the linear onstraints Ax = b, whih are also present in (DG).The situation is a little di�erent on the primal side: the �rst inequality in (2.1) and feasibilityof y for (PG) imply Xi2Ik g�(i � aTi y) �Xi2Ik eaTi y�i � 1 ;with equality if and only if i�aTi y = 0 for all i 2 Ik. But this annot happen, sine we wouldhave Pi2Ik eaTi y�i =Pi2Ik 1 = nk > 1, beause of our assumption on nk, whih ontraditsthe feasibility of y. We an onlude that the following strit inequality holds for all k 2 K:Xi2Ik g�(i � aTi y) < 1 :9



Sine the set K is �nite, this means that there exists a onstant M suh that for all � �M ,Xi2Ik g�(i � aTi y) � 1� nk��1 8k 2 K ;whih in turn implies feasibility of y for problems (PG0�) as soon as � � M . Feasibility ofboth y and x for their respetive problem allows us to apply the weak duality Theorem 3.1of lp-norm optimization to our pair of approximate problems (PG0�){(DG�), whih implies �(x) � bT y for all � � M . Taking now the limit of  �(x) for � tending to +1, whihis �nite and equal to �(x) sine x � 0, we �nd that �(x) � bT y, whih is the announedinequality. �The strong duality theorem for geometri optimization is stated below. We note thatontrary to the lass of lp-norm optimization problems, attainment annot be guaranteed forany of the primal and dual optimum objetive values.Theorem 3.4 If both problems (PG) and (DG) are feasible, their optimum objetive valuesp� and d�are equal.Proof . As shown in the proof of the previous theorem, the existene of a feasible solutionfor (PG) and (DG) implies that problems (PG0�) and (DG�) are both feasible for all �greater than some onstant M . Denoting by p�� (resp. d��) the optimal objetive value ofproblem (PG0�) (resp. (DG�)), we an thus apply the strong duality Theorem 3.2 of lp-normoptimization to these pairs of problems to �nd that p�� = d�� for all � � M . Sine allthe dual approximate problems p�� = d�� share the same feasible region, it is lear that theoptimal value orresponding to the limit of the objetive  � when � ! +1 is equal tothe limit of the optimal objetive values d�� for � ! +1. Sine the problem featuring thislimiting objetive has been shown to be equivalent to (DG) in Setion 3.2 (inluding thehidden onstraint x � 0), we must have d� = lim�!+1 d��. On the other hand, Theorem 3.2guarantees for eah of the problems (PG0�) the existene of an optimal solution y� thatsatis�es bT y� = p��. Sine eah of these solutions is also a feasible solution for (PG) (sineproblems (PG0�) are restritions of (PG)), whih shares the same objetive funtion, wehave that the optimal objetive value of (PG) p� is at least equal to bT y� for all � � M ,whih implies p� � lim�!+1 bT y� = lim�!+1 p�� = lim�!+1 d�� = d�. Combining this lastinequality with the easy onsequene of the weak duality Theorem 3.3 that states d� � p�,we end up with the announed equality p� = d�. �The reason why attainment of the primal optimum objetive value annot be guaranteedis that the sequene y� may not have a �nite limit point: indeed, it may happen that oneor more omponents of y� tend to in�nity as �! +1 (see e.g. the third example in [Gli99,Setion 4.4℄).4 Conluding remarksIn this paper, we have shown that the important lass of geometri optimization problemsan be approximated with lp-norm optimization.We have indeed desribed a parameterized family of primal and dual lp-norm optimizationproblems, whih an be made arbitrarily lose to the geometri primal and dual problems. It isworth to note that the primal approximations are restritions of the original geometri primal10



problem, sharing the same objetive funtion, while the dual approximations share essentiallythe same onstraints as the original geometri dual problem (exept for the nonnegativityonstraints) but feature a di�erent objetive.Another possible approah would be to work with relaxations instead of restritions onthe primal side, using the �rst inequality in (2.1) instead of the seond one, leading to thefollowing problem: sup bT y s.t. Xi2Ik g�(i � aTi y) � 1 8k 2 K :However, two problems arise in this setting:� the �rst inequality in (2.1) is only valid when � � x, whih means we would have toadd a set of expliit linear inequalities i�aTi y � � to our approximations, whih wouldmake them and their dual problems more diÆult to handle,� following the same line of reasoning as in the proof of Theorem 3.2, we would end upwith another family of optimal solutions y� for the approximate problems; however,sine all of these problems are relaxations, we would have no guarantee that any of theoptimal vetors y� are feasible for the original primal geometri optimization problem,whih would prevent us to onlude that the duality gap is equal to zero. This wouldonly show that there is a family of asymptotially feasible solutions with their objetivevalues tending to the objetive value of the dual, a fat that is always true in onvexoptimization (see e.g. the notion of subin�mum in [SW70, Stu00℄).To onlude, we note that our approximate problems belong to a very speial subategoryof lp-norm optimization problem, sine they satisfy F = 0. It might be fruitful to investigatewhih lass of generalized geometri optimization problems an be approximated with generallp-norm optimization problems, a topi we leave for further researh.Referenes[DPZ67℄ R. J. DuÆn, E. L. Peterson, and C. Zener, Geometri programming, John Wiley &Sons, New York, 1967.[Gli99℄ Fr. Glineur, Proving strong duality for geometri optimization using a oni for-mulation, IMAGE Tehnial Report 9903, Fault�e Polytehnique de Mons, Mons,Belgium, Otober 1999, to appear in Annals of Operations Researh.[GT00℄ Fr. Glineur and T. Terlaky, A oni formulation for lp-norm optimization, IMAGETehnial Report 0005, Fault�e Polytehnique de Mons, Mons, Belgium, May 2000,submitted to Journal of Optimization Theory and Appliations.[Kla74℄ E. Klafszky, Geometri programming and some appliations, Ph.D. thesis,Tanulm�anyok, No. 8, 1974.[Kla76℄ E. Klafszky, Geometri programming, Seminar Notes, no. 11.976, Hungarian Com-mittee for Systems Analysis, Budapest, 1976.[NN94℄ Y. E. Nesterov and A. S. Nemirovsky, Interior-point polynomial methods in onvexprogramming, SIAM Studies in Applied Mathematis, SIAM Publiations, Philadel-phia, 1994. 11
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