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Abstract

The utility of Lanczos methods for the approximation of
large-scale dynamical systems is considered. In particu-
lar, it is shown that the Lanczos method is a technique
for yielding Padé approximants which has several advan-
tages over more traditional explicit moment matching ap-
proaches. An extension of the Lanczos algorithm is de-
veloped for computing multi-point Padé approximations of
descriptor systems.*
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1. Introduction

This paper explores the use of Lanczos techniques for
the reduced-order modeling and simulation of large-scale,
SISO dynamical systems. One can define such a system
through the set of state space equations

{Exu) = Ax(t) + bu(t) )
y(t) = ex(t)+ du(?).

The scalar functions «(t) and y(¢) are the system’s input
and output while x(¢) is the state vector of dimension n.
For simplicity, the direct-coupling term, d, will be assumed
to be zero. The system matrix, A € R"*", and descriptor
matrix, E € R"*", are assumed to be sparse or structured
(e.g., Toeplitz). We stress that this last assumption is met
by large-scale problems arising from most applications.
For the case where E is an identity matrix, the zero-
state (x(0) = 0) solution to the first expression in (1) is
x(t) = fot =" bu(r) dr. Thus determining a good k < n

order approximation,
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is intimately connected with finding a pair {A,f)} which
yields a good approximation to the matrix exponential,
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e*'b. A method based on orthogonal Krylov projectors
(the Arnoldi algorithm) is utilized in [9, 22] for approxi-
mating e*'b. But in fact, these concepts can be taken one
step further by noting that one is really only interested in
that information in e*'b which lies in the direction of ¢
(one ultimately desires ||y — ¢|| small for some desired range
of inputs ). Numerous papers [2, 15, 23, 24] are begin-
ning to explore this last fact in the context of control. In
particular, these papers begin to investigate the use of an
oblique Krylov projector (i.e., the Lanczos algorithm) for
generating the reduced-order system {A, b, ¢l

Intertwined with the Krylov projections performed in
all of these papers is the Padé approximation of the trans-
fer function, h(s) = ¢(sI — A)™'b. It is known [11, 25]
that Krylov projections yield Padé approximations without
explicitly using moments. The Lanczos method requires
approximately the same amount of effort as existing, ex-
plicit moment matching techniques [7]. More importantly,
the Lanczos method provides the flexibility needed to effi-
ciently handle many of the shortcomings of Padé approxi-
mants, e.g.,

1. a loss of accuracy as k increases due to the power
method aspects of explicit moment matching,

2. singularities in the Padé table (ill-conditioned leading
submatrices in the system’s Hankel matrix) [18],

3. poor approximation of the frequency response of (1)
away from the Padé expansion frequency, so,

4. unstable approximations of stable systems [3].

In §2, existing Lanczos techniques for the case E =1 are
briefly reviewed. It is demonstrated that the Lanczos
method provides the means to treat the first two shortcom-
ings. In §3, an extension of the Lanczos method is developed
for a general descriptor matrix, E. Additionally, this new
variant implicitly matches moments about multiple expan-
sion frequencies (multi-point Padé approximation). Prac-
tical experience [19, 26] suggests that moment matching
about multiple frequencies provides sufficient information
to treat the third and fourth of the listed shortcomings.
These results are of interest to any application currently
utilizing Padé approximants of dynamical systems. For ex-
ample, asymptotic waveform evaluation (AWE) is a recently
developed technique for acquiring low-order Padé approxi-
mations for large, linearized circuits [19]. However, existing



AWE papers do not link Krylov projectors and Padé ap-
proximation together.

2. Padé approximation with Lanczos methods

In conventional Padé techniques [5], an approximation
for the dynamical system (1) is typically obtained through a
two-step process. First, moments which correspond to fre-
quency domain expansions of the circuit’s impulse response
are explicitly computed. Most commonly, the expansion is
performed either about s = 0 to yield the low-frequency
moments, m; = cA™?"'b, j > 0, or about s = oo to
yield the high-frequency moments (Markov parameters),
m; = ¢cA™?7'b, 5 < 0. In the second step, the impulse
response

k—1
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h =
) = T ds T+ T dis 1 do

(3)

of the approximate realization is chosen so that 2k moments
of the original system are matched. In particular, a linear
system of equations of the form Md = m is solved where
M is a Hankel matrix whose elements are the moments,
mj. Note that given (3), is is not difficult to obtain some
state space realization {A, f), ¢}. The order-k system which
matches 2k moments of the original system is said to be a
partial realization. The impulse response corresponding to
the partial realization is a Padé approximant.

As an alternative to explicit moment matching, con-
sider using the oblique Krylov projector m, = 72 = V, WF
to produce a k'" order model,

{

for the original system (1), see [24]. The matrices Vj and
Wy, are related to Krylov spaces, Ky, in that

= (WFAV)X + (Wib)u = A% + bu
(eVi)% = éx,

(4)
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COLSP(Vi) = Ki(A,b)
= span{b,Ab,... A" 'b}, (5)
COLSP(W;) = Ki(A",c")

= span{cT, ATeT, L Ak_chT}. (6)

The utility of selecting Vi and Wy, in Krylov spaces comes
from the fact that they can be generated with only inner-
products and matrix-vector multiplications, thereby allow-
ing for the exploitation of the sparsity or structure of A.

But regardless of how quickly 7 can be computed, one
is certainly also interested in the correspondence between
the original system {A,b,c} and the reduced-order system
{A, b, ¢}. An important insight into this relationship comes
from [11, 25].

Theorem 1 Let the reduced-order system {A,f),é} be a
restriction of the system {A, b, c} by the projector mi where
Vi and Wy, are defined as in (5) and (6) respectively. Then
the first 2k Markov parameters of the original and reduced-
order systems are tdentical.

Restating Theorem 1, the reduced-order model is a Padé
approximation (partial realization) which matches the first
2k high-frequency moments of the original system.
Through a projector corresponding to Kix(A,b) and
Kk (AT, cT), one can obtain a state space realization which

matches moments about sg = co. In a completely anal-
ogous manner, a projector corresponding to Kx(A™',b)
and le(A_T,cT) can be employed to generate a realiza-
tion which matches moments about so = 0 [25] I.

A popular technique for computing Vi and Wy, in the
Krylov projector is due to Lanczos [10, 17]. Given the start-
ing vectors vi and wi, the Lanczos algorithm produces
the rectangular matrices Vi = [vi,...,Vvg] € R * and
Wi = [wi,...,wg] € R™** which satisfy the recursive
identities

AV,
ATw,

ViTi + 6k+1vk+1e£a (1)
W, Ti + 7k+1wk+1e£~ (8)

The vector ey, is the k' standard basis vector while T} is a
truncated reduction of A that is in tridiagonal form. Gener-
ally, the elements 3; and +v; are chosen so that V{H Wit =
I. When Viy1 and Wy, are biorthogonal, multiplying (7)
on the left by W¥ yields the relationship WFAV, = Ty.

To choose the starting vectors, vi and wq, it is impor-
tant to note from (7) and (8) that viq1 € Kipt1(A,v1)
and Wit+1 € K:k+1(AT,W1). Then if vi = b/ﬁ1 and
wi, = cT/71, the matrices Vi and Wy correspond to
the Krylov spaces Ki(A,b) and Ki(AT,e?) respectively.
And more importantly from (4), A = WIAV, = Ty,
b= W'b = e and é = ¢V, = el 1, which is our
reduced-order model.

Compared to explicit moment matching, the Lanczos
method provides superior results and/or greater flexibility
in several areas [4, 7]. In particular, the remainder of this
section demonstrates that the Lanczos method is able to
successfully treat the first two Padé shortcomings listed in
81.

Note that explicitly computing moments entails a
power method approach. If s = oo for example, the prod-
uct A?b must be computed for successively higher powers of
j. But it is well known that the product A’b will converge
to that eigenvector corresponding to the largest eigenvalue
of A as j increases. In finite precision, the information
corresponding to the other eigenvectors will be lost in the
higher moments. The Hankel matrix, M, containing the
moments will become nearly singular. And regardless of
how many additional moments are supposedly matched in
this situation, the computed approximation never converges
to the original one (see [1, example 1]). To contend with
this difficulty, [1] suggests working around the problem by
attempting to modify the expansion frequency, so. If form-
ing a certain type of moment emphasizes an extreme eigen-
value of A, one must select other types of moments which
emphasize information from other portions of the spectrum.

The Lanczos method, on the other hand, completely
avoids this issue because it never computes the moments.
Rather {A,f),é} are computed from Krylov spaces. Main-
taining the biorthogonality Vi and Wy insures that ad-
ditional information is introduced into the projection as k
is incremented. As an example, consider the state space

t Although analogous in approach to the sg = oo case, the
computation of the Krylov spaces corresponding to so = 0O is
more costly as a series of linear equations must be solved.



equations arising from a small; stiff RC ladder circuit

—2crt ot 0 crt
Al|lb | cyt o oyt ot 0
cl|d |~ 0 cyt -7t o
1 -1 0o | o

where C = 10_3, Cy = 10_6, and Cs = 1072, Allowing
k = 3, the eigenvalues of the realization obtained with both
explicit moment matching (about Sg = 0) and the Lanczos
method (corresponding to Kx(A™!,b) and Kr(A~T,eT))
are presented in Table 2. Due to the poor scaling of the
moments, explicit moment matching is unable to accurately
determine the fastest pole. The Lanczos method, on the
other hand, can capture all of the eigenvalues, A, of A.

Table 1: Computed Eigenvalues of A

Exact Explicit Match Lanczos

A1 ] -9.98999000e2 | -9.89999000e2 | -9.98999000e2

Az | -1.00000100e6 | -1.00000078e6 | -1.00000100e6

As | -1.00100100e9 | -5.45486876e6 | -1.00100100e9

Even if explicit moment matching can somehow avoid
the loss of precision due to its power method approach,
singularities can still occur in the moment matrix, M. Such
singularities depend only on the properties of the system
itself [18]. Where they exist, partial realizations (2) will not
be possible. Additionally, nearly singular matrices must be
avoided. This issue is oftentimes not addressed in explicit
moment matching. Yet the occurrence of singularities is
well-studied in the context of the Lanczos algorithm [13, 14],
where it is termed a serious breakdown. By employing look-
aheadinto the Lanczos method [6], one possesses a powerful
tool for detecting and avoiding ill-conditioned entries in the

Padé table.

3. Multi-point Padé approximation with Lanczos
methods

In this section, we extend the results and benefits of
existing Lanczos methods to the case of generalized state
space systems (i.e., E # I). This new technique possesses
the additional advantage of allowing for multi-point Padé
approximation. That is, the resulting reduced-order model
of dimension k = 7j satisfies

my(s:) =my(ss), §=1,2,...,23, i=1,2,...,1, (9)
where
m;(si) =c {(A—s;E)"E} 7 (A - s,E)"'D,

is the j'* moment of (1) about the expansion frequency s;
and

(s) =& {(A-sE)TEY T (A-sE)7D

is the jth moment of reduced-order model about s;. It will
be assumed for notational simplicity that 27 moments are
to be matched about each of the frequencies s; through s;.
In general, the number of moments matched may vary from
expansion frequency to expansion frequency. One can easily
modify the following results to handle this case.

The variant of the Lanczos method employed to gen-
erate a reduced-order model {E,A,f),é} satisfying (9) will
be denoted the rational Lanczos algorithm as it is an adap-
tation of the rational Arnoldi method of [20, 21]. The
most glaring difference between the two rational methods
is that rational Lanczos computes a biorthogonal Vj and
W, rather than an orthogonal V. There are, however,
smaller dissimilarities between the two methods which are
necessary to insure that the oblique projector, 7 = V; Wy,
of rational Lanczos yields multi-point Padé approximants.

Algorithm 1 Rational Lanczos algorithm
Initializero = (A — le)_lb and qo = ¢*';
Fori=1tor,

Forjgj=1toj,
(1) k=(—-1)j+y;
(2) hi g1 = /I dr—]
(3) vie = (tr—1/hr r—1) and
Wi = Sign(l'g_lq/kq) (r—1/hrr-1);
4)ifj<jandi<rt,
(41) rx = (A — s, E)'Evy, and
ar =E"(A - s;E)""wy ;
else if j =7 and 1 < 1,
(42)rr = (A - si+1E)_1b/h170 and
ar =ET(A — 5,11 E) " TeT;
else
(4.3) rx = (A — 51 E) ' Ev; and
ar = E"(A - s1E) Twy;
end
(5) hi.xx = Wiry and g1 xx = Vids;
(6) re =rx — Vihi xr and qr = qr — Wig1. ki

end
end
Vigt1l = (Yey/hagt1,5) where hopp1; = |1'7Tj(hj|~

Strong similarities exist between Algorithm 1 and the
traditional Lanczos algorithm (see [10] for the standard
method). The key difference between the standard and ra-
tional Lanczos algorithms lies in step (4) of Algorithm 1.
In rational Lanczos the matrix, (A — sE)™'E, multiplying
the previous v vector changes with the expansion frequency.
By making this matrix a function of s, sequences of Krylov
spaces are computed.

Theorem 2 If Vi and Wy, are the results of the first k
steps of the rational Lanczos algorithm with 1 < k < 1J
then

colsp(Vx) = {/ck_](i_l) ((A-sE)7'E,(A - sE)"'b)

1=1""J

1K (A= siE)'E, (A — E)"'b) }



where 1 — 1 is the quotient of k/j. Correspondingly,

colsp(Wy) = {/cj (E"(A-siE)™" ")
1—1
K5 (B"(A - sB)™" E"(A - sB)~ ")
=2

U Kisimny (BT (A = siB)™" E(A - 5 B) ") }

if 1 > 1; otherwise
colsp(W) = Kix (E"(A =1 E)™",¢") .

Proof: Due to space constraints we refer the reader to [8].

Recall that the Vi and W} matrices resulting from
the standard Lanczos method each corresponded to a sin-
gle Krylov space. In the rational Lanczos method, multiple
Krylov spaces are computed. FEach space corresponds to
an expansion frequency s;. The cost of combining multiple
Krylov spaces into Vi and Wy, is the loss of a three-term
recurrence in step (6) of the algorithm. Thus one should
expect to see upper-Hessenberg rather than tridiagonal ma-
trices appearing out of the rational Krylov projection.

As one is ultimately interested in obtaining a rational
Krylov projection of (1), the effects of Vi and W; on A
and E are of interest. To obtain a relationship between Vi,
Wiy, A and E; we begin by analyzing Algorithm 1 for the
case when k is a multiple of 7. This case involves the execu-
tion of step (4.2) and corresponds to a change in the expan-
sion frequency from s; to s;41. Note that hry1 xVit1 = I
due to step (3). Then plugging step (4.2) into step (6)’s
expression for ry yields

h _ _
Vi | et | < - snmr
=(A—-s5i41E)7(A - siE)Vyies (10)

since hiovi = (A—s; E)_lb. Multiplying (10) on the right
by (A — si+1E) and rearranging the expression results in

hi ko e _
s ([ =15 ) -
h
o (8321

which can be rewritten as

hi ko e
(A —51E) Vi hrs1,e | — 0 =
0 0

h;

hi kg
EVigpr [ | frtre | (sipn—s1) | (11)
0

ki

When k is not a multiple of 7, step (4.1) is executed
and the next v vector computed is still associated with the
expansion frequency s;. For this case, placing step (4.1)
into step (6)’s expression for ry yields

hi ko —
Vit [ h;+1,k :| = (A - sE) '"EViex. (12)

Multiplying (12) on the left by (A — s;E) produces

h
EVier = (A — s;E)Viys [ h;f: ]

which can be rewritten as
hi ko
(A=s1E)Vegpr | hrgip | =

0

— ——’
h;

hi ko
EVia hegir | (si—s1)+

0

ki
Combining all k = 77 steps of Algorithm 1 yields
(A - SlE)VE+1HE+1,E = EV;}+1K;}+1,E (14)

where the columns of Hz,, ; and Kz, ; are defined via
(11) and (13). Specifically, columns 7, 27,...(z — 1)7 of
H;,, z and Ky, ;7 fit the form of (11) while the remain-
ing columns satisfy (13). Note that Hy,, 7 and Kz, ; are
upper-Hessenberg. Special mention should also be given
to the k'™ columns of Hzyi 5z and Kz 5. Due to step
(4.3) of Algorithm 1, the k™ column satisfies the general
form of (13) with s; = s;. Thus kz = [e] 0] so that
Vi1 Kiq1p = Vi Kj ;. Making use of this last fact when
multiplying (14) on the left by Wg(A — 51 E)7! yields

Hi;=W;(A-s:E)"EV;K; ;. (15)

Expressions (14) and (15) serve as the principal relations
between the projector VEVV% and E and A.

For the remainder of this section, it will be assumed
that Algorithm 1 is executed to completion and the value
of k will be fixed as k = k = 77. Then given the results of the
rational Lanczos method, we will define the reduced-order
model so that

E=H;,,
(16)
¢ = ch Kk k-

To begin to motivate the choices in (16), rewrite the defini-
tion (1) of the original system as

(A - ,E)"'Ex =
(A - le)_1 (A-s1E+s1E)x+ (A — le)_lbu
Y = CX.

The restriction of the original system by the projector 7 is
formed by replacing the state vector, x, with VW Ix and



multiplying on the left by W7 to yield

WA - s1E) " Exx =
Wix+siWI (A - s E) ' Exrx+
WI(A - 51E)'bu

g = chng.

(17)

If one temporarily assumes that Ky j is invertible, (15) can
be used to rewrite (17) as

HkykK;}CWgX =
s1Hpgx K;ing +Wix + W{(A - s5E)'bu
g = chng.
which in turn becomes

Hj 1% =
(Kix+ 51 Hie )% + WI(A - s1E)'bu
:l) = CVkKkyk)A(.

(18)

by defining %(¢) to be K} W{x(1).

Comparing (2) and (18) indicates that the prescribed
choices for A, E, b and € are quite logical. However, (18)
was obtained assuming Ky i to be invertible. This assump-
tion is in fact not necessary for our purposes. The following
result states that the reduced-order model corresponding to
(16) matches the desired moments of the original system
without placing any restrictions on the invertibility of Ky i

or E.

Theorem 3 Let the 5\ moments of the original and re-
duced order systems about the expansion frequency s; be
m;(si) = c{(A—s;E)"EY T (A—sE)~'b and i, (si) =
é{(A — siE)_lE}]_l(A — si]:])_ll; respectively. If A =
Kir+s1Hex, E = Hyp, b = WI(A — 5;E)"'b and
¢ = CVkKkyk where Hk+17k, Kk+17k, Vk+1 and Wk+1 are
the results of Algorithm 1 with k = 13, then m;(s;) = 1 (s;)
fore=1,2,...;7and y=1,2,...,2].

Proof: see [8].

Thus the projection resulting from the rational Lanc-
zos method satisfies the multi-point condition of (9). It
also would appear that the benefits of the standard Lanc-
zos method (e.g., avoiding a power method, look-ahead) can
be easily extended to the rational Lanczos approach.

4. Example

As a brief example of the utility of multi-point Padé ap-
proximations, we will study the 120'" order system which
describes the effects of a magnetic actuator on the radial
tracking arm of a portable compact disc player, see [12].
Figure 1 plots the frequency responses of the original sys-
tem (solid line), a 24" order Padé approximation about
50 = oo (dashed line), a 12" order Padé approximation
about sg = 0 (dotted line) and a 6'" order multi-point Padé
approximation (dashed-dotted line) for the CD player. The
multi-point approximation matches six moments expanded
about s; = 0, four moments about s; = 105, and two mo-
ments about ss = 10*. To keep this example short, a discus-

gain (db)

sion of the algorithm used to choose these expansion points
must be postponed until a later time.

300

200
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Original system
Pade approximant about s=infty
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frequency (w)

Figure 1: Frequency responses for the example.

Note that the frequency response of the original sys-
tem displays two sharp peaks at w = 30 and w & 30*. The
frequency response of the multi-point Padé approximation
captures both of these peaks and is almost indistinguishable
with the response of the original system. As one should ex-
pect, the Padé approximation about sq = 0 displays the
first peak but demonstrates significant error at high fre-
quencies. The approximation about infinity, on the other
hand, captures the second peak but smoothes over the peak
at w = 30.

The impulse response of the stable, original system is
dominated by those modes corresponding to the frequency
response peak at w a2 30. The multi-point approximation
is stable and its impulse response recreates that of the orig-
inal system with great precision. The Padé approximation
about so = 0 identifies those modes corresponding to the
low-frequency peak but its impulse response is unstable.
However, the techniques of [12] can stabilize the so = 0
approximation so that the so = 0 response to an impulse
(which may or may not be the input of interest for a given
application) follows that of the original system with great
precision. Finally, the Padé approximation about infinity is
not stable nor does it capture those modes corresponding
to the low-frequency peak. As a result, even a stabilized
model about s; = co does a poor job of approximating the
system’s impulse response. Note that because the Krylov
sequences corresponding to so = oo do not invert A, the
oftentimes desirable low-frequency information is lost.

5. Conclusion

Both explicit moment matching and the Lanczos algo-
rithm are efficient techniques for generating partial realiza-
tions of large-scale systems. But by either avoiding a diffi-
culty or providing well-defined techniques for fixing it, the
Lanczos method is better suited for handling the problems
inherent to Padé approximation.



Through Algorithm 1, the Lanczos method can be
extended to treat multiple expansion frequencies. Multi-
point approximation shows promise in several applications
[16, 19, 26] as an approach for handling false instabilities
and frequency response errors in the reduced-order model.
However, the techniques for choosing the expansion fre-
quencies are still rather heuristic; a more formal approach
should be explored in future work.

The Lanczos method must also still be extended to the
multiple input-multiple output (MIMO) case. Block ver-
sions of the Lanczos method are already in existence, see
[2] for example. But the extension of look-ahead to handle
the breakdowns in MIMO Lanczos remains an open issue.

Finally, we note that the inversion of (A — s;E) is an
area requiring additional work. Regardless of whether ex-
plicit moment matching or the Lanczos method is being
employed, one must avoid explicit inversions and instead
utilize sparse factorizations of the matrix or iterative tech-
niques. One must further insure that the values for s; are
chosen so that (A — s;E) is well-conditioned.
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