
PAD�E APPROXIMATION OF LARGE-SCALEDYNAMIC SYSTEMS WITH LANCZOS METHODS �K. Gallivan, E. Grimme and P. Van DoorenCoordinated Science LaboratoryUniversity of Illinois at Urbana-Champaign1308 West Main StreetUrbana, IL 61801AbstractThe utility of Lanczos methods for the approximation oflarge-scale dynamical systems is considered. In particu-lar, it is shown that the Lanczos method is a techniquefor yielding Pad�e approximants which has several advan-tages over more traditional explicit moment matching ap-proaches. An extension of the Lanczos algorithm is de-veloped for computing multi-point Pad�e approximations ofdescriptor systems.�Keywords: Dynamic system, Pad�e approximation, Lanczosalgorithm, model reduction.1. IntroductionThis paper explores the use of Lanczos techniques forthe reduced-order modeling and simulation of large-scale,SISO dynamical systems. One can de�ne such a systemthrough the set of state space equations� E _x(t) = Ax(t) + bu(t)y(t) = cx(t) + du(t): (1)The scalar functions u(t) and y(t) are the system's inputand output while x(t) is the state vector of dimension n.For simplicity, the direct-coupling term, d, will be assumedto be zero. The system matrix, A 2 Rn�n, and descriptormatrix, E 2 Rn�n, are assumed to be sparse or structured(e.g., Toeplitz). We stress that this last assumption is metby large-scale problems arising from most applications.For the case where E is an identity matrix, the zero-state (x(0) = 0) solution to the �rst expression in (1) isx(t) = R t0 eA(t��)bu(�)d�: Thus determining a good k � norder approximation,� _̂x(t) = Âx̂(t) + b̂u(t)ŷ(t) = ĉx̂(t); (2)is intimately connected with �nding a pair fÂ; b̂g whichyields a good approximation to the matrix exponential,�This work has been supported in part by the National Sci-ence Foundation under grants CCR-9120105 and CCR-9209349.The work of the second author was also supported in part by aDOE Computational Science Graduate Fellowship.�Also available in Procs. IEEE 33rd Conf. on Decision andControl, pp. 443{448.

eAtb. A method based on orthogonal Krylov projectors(the Arnoldi algorithm) is utilized in [9, 22] for approxi-mating eAtb. But in fact, these concepts can be taken onestep further by noting that one is really only interested inthat information in eAtb which lies in the direction of c(one ultimately desires ky� ŷk small for some desired rangeof inputs u). Numerous papers [2, 15, 23, 24] are begin-ning to explore this last fact in the context of control. Inparticular, these papers begin to investigate the use of anoblique Krylov projector (i.e., the Lanczos algorithm) forgenerating the reduced-order system fÂ; b̂; ĉg.Intertwined with the Krylov projections performed inall of these papers is the Pad�e approximation of the trans-fer function, h(s) = c(sI � A)�1b. It is known [11, 25]that Krylov projections yield Pad�e approximations withoutexplicitly using moments. The Lanczos method requiresapproximately the same amount of e�ort as existing, ex-plicit moment matching techniques [7]. More importantly,the Lanczos method provides the exibility needed to e�-ciently handle many of the shortcomings of Pad�e approxi-mants, e.g.,1. a loss of accuracy as k increases due to the powermethod aspects of explicit moment matching,2. singularities in the Pad�e table (ill-conditioned leadingsubmatrices in the system's Hankel matrix) [18],3. poor approximation of the frequency response of (1)away from the Pad�e expansion frequency, s0,4. unstable approximations of stable systems [3].In x2, existing Lanczos techniques for the case E = I arebriey reviewed. It is demonstrated that the Lanczosmethod provides the means to treat the �rst two shortcom-ings. In x3, an extension of the Lanczos method is developedfor a general descriptor matrix, E. Additionally, this newvariant implicitly matches moments about multiple expan-sion frequencies (multi-point Pad�e approximation). Prac-tical experience [19, 26] suggests that moment matchingabout multiple frequencies provides su�cient informationto treat the third and fourth of the listed shortcomings.These results are of interest to any application currentlyutilizing Pad�e approximants of dynamical systems. For ex-ample, asymptotic waveform evaluation (AWE) is a recentlydeveloped technique for acquiring low-order Pad�e approxi-mations for large, linearized circuits [19]. However, existing



AWE papers do not link Krylov projectors and Pad�e ap-proximation together.2. Pad�e approximation with Lanczos methodsIn conventional Pad�e techniques [5], an approximationfor the dynamical system (1) is typically obtained through atwo-step process. First, moments which correspond to fre-quency domain expansions of the circuit's impulse responseare explicitly computed. Most commonly, the expansion isperformed either about s0 = 0 to yield the low-frequencymoments, mj = cA�j�1b, j � 0; or about s0 = 1 toyield the high-frequency moments (Markov parameters),mj = cA�j�1b, j < 0: In the second step, the impulseresponse ĥ(s) = nk�1sk�1 + : : :+ n1s+ n0sk + dk�1sk�1 + : : :+ d1s+ d0 (3)of the approximate realization is chosen so that 2k momentsof the original system are matched. In particular, a linearsystem of equations of the form Md =m is solved whereM is a Hankel matrix whose elements are the moments,mj. Note that given (3), is is not di�cult to obtain somestate space realization fÂ; b̂; ĉg. The order-k system whichmatches 2k moments of the original system is said to be apartial realization. The impulse response corresponding tothe partial realization is a Pad�e approximant.As an alternative to explicit moment matching, con-sider using the oblique Krylov projector �k = �2k = VkWTkto produce a kth order model,� _̂x = (WTkAVk)x̂+ (WTk b)u = Âx̂+ b̂uŷ = (cVk)x̂ = ĉx̂; (4)for the original system (1), see [24]. The matrices Vk andWk are related to Krylov spaces, Kk, in thatCOLSP(Vk) = Kk(A;b)= spanfb;Ab; : : : ;Ak�1bg; (5)COLSP(Wk) = Kk(AT ;cT )= spanfcT ;AT cT ; : : : ;Ak�1T cT g: (6)The utility of selecting Vk and Wk in Krylov spaces comesfrom the fact that they can be generated with only inner-products and matrix-vector multiplications, thereby allow-ing for the exploitation of the sparsity or structure of A.But regardless of how quickly �k can be computed, oneis certainly also interested in the correspondence betweenthe original system fA;b;cg and the reduced-order systemfÂ; b̂; ĉg. An important insight into this relationship comesfrom [11, 25].Theorem 1 Let the reduced-order system fÂ; b̂; ĉg be arestriction of the system fA;b;cg by the projector �k whereVk andWk are de�ned as in (5) and (6) respectively. Thenthe �rst 2k Markov parameters of the original and reduced-order systems are identical.Restating Theorem 1, the reduced-order model is a Pad�eapproximation (partial realization) which matches the �rst2k high-frequency moments of the original system.Through a projector corresponding to Kk(A;b) andKk(AT ;cT ), one can obtain a state space realization which

matches moments about s0 = 1. In a completely anal-ogous manner, a projector corresponding to Kk(A�1;b)and Kk(A�T ;cT ) can be employed to generate a realiza-tion which matches moments about s0 = 0 [25] y.A popular technique for computing Vk and Wk in theKrylov projector is due to Lanczos [10, 17]. Given the start-ing vectors v1 and w1, the Lanczos algorithm producesthe rectangular matrices Vk = [v1; : : : ;vk] 2 Rn�k andWk = [w1; : : : ;wk] 2 Rn�k which satisfy the recursiveidentities AVk = VkTk + �k+1vk+1eTk ; (7)ATWk = WkTTk + k+1wk+1eTk : (8)The vector ek is the kth standard basis vector while Tk is atruncated reduction ofA that is in tridiagonal form. Gener-ally, the elements �i and i are chosen so that VTk+1Wk+1 =I. When Vk+1 andWk+1 are biorthogonal, multiplying (7)on the left by WTk yields the relationship WTkAVk = Tk.To choose the starting vectors, v1 and w1, it is impor-tant to note from (7) and (8) that vk+1 2 Kk+1(A; v1)and wk+1 2 Kk+1(AT ;w1). Then if v1 = b=�1 andw1 = cT =1, the matrices Vk and Wk correspond tothe Krylov spaces Kk(A;b) and Kk(AT ;cT ) respectively.And more importantly from (4), Â = WTkAVk = Tk,b̂ = WTb = e1�1 and ĉ = cVk = eT1 1, which is ourreduced-order model.Compared to explicit moment matching, the Lanczosmethod provides superior results and/or greater exibilityin several areas [4, 7]. In particular, the remainder of thissection demonstrates that the Lanczos method is able tosuccessfully treat the �rst two Pad�e shortcomings listed inx1. Note that explicitly computing moments entails apower method approach. If s0 =1 for example, the prod-uctAjbmust be computed for successively higher powers ofj. But it is well known that the product Ajb will convergeto that eigenvector corresponding to the largest eigenvalueof A as j increases. In �nite precision, the informationcorresponding to the other eigenvectors will be lost in thehigher moments. The Hankel matrix, M, containing themoments will become nearly singular. And regardless ofhow many additional moments are supposedly matched inthis situation, the computed approximation never convergesto the original one (see [1, example 1]). To contend withthis di�culty, [1] suggests working around the problem byattempting to modify the expansion frequency, s0. If form-ing a certain type of moment emphasizes an extreme eigen-value of A, one must select other types of moments whichemphasize information from other portions of the spectrum.The Lanczos method, on the other hand, completelyavoids this issue because it never computes the moments.Rather fÂ; b̂; ĉg are computed from Krylov spaces. Main-taining the biorthogonality Vk and Wk insures that ad-ditional information is introduced into the projection as kis incremented. As an example, consider the state spaceyAlthough analogous in approach to the s0 = 1 case, thecomputation of the Krylov spaces corresponding to s0 = 0 ismore costly as a series of linear equations must be solved.



equations arising from a small, sti� RC ladder circuit� A bc d � = 264 �2C�11 C�11 0 C�11C�12 �2C�12 C�12 00 C�13 �C�13 01 �1 0 0 375where C1 = 10�3, C2 = 10�6, and C3 = 10�9. Allowingk = 3, the eigenvalues of the realization obtained with bothexplicit moment matching (about s0 = 0) and the Lanczosmethod (corresponding to Kk(A�1;b) and Kk(A�T ;cT ))are presented in Table 2. Due to the poor scaling of themoments, explicit moment matching is unable to accuratelydetermine the fastest pole. The Lanczos method, on theother hand, can capture all of the eigenvalues, �, of A.Table 1: Computed Eigenvalues of AExact Explicit Match Lanczos�1 -9.98999000e2 -9.89999000e2 -9.98999000e2�2 -1.00000100e6 -1.00000078e6 -1.00000100e6�3 -1.00100100e9 -5.45486876e6 -1.00100100e9Even if explicit moment matching can somehow avoidthe loss of precision due to its power method approach,singularities can still occur in the moment matrix,M. Suchsingularities depend only on the properties of the systemitself [18]. Where they exist, partial realizations (2) will notbe possible. Additionally, nearly singular matrices must beavoided. This issue is oftentimes not addressed in explicitmoment matching. Yet the occurrence of singularities iswell-studied in the context of the Lanczos algorithm [13, 14],where it is termed a serious breakdown. By employing look-ahead into the Lanczos method [6], one possesses a powerfultool for detecting and avoiding ill-conditioned entries in thePad�e table.3. Multi-point Pad�e approximation with LanczosmethodsIn this section, we extend the results and bene�ts ofexisting Lanczos methods to the case of generalized statespace systems (i.e., E 6= I). This new technique possessesthe additional advantage of allowing for multi-point Pad�eapproximation. That is, the resulting reduced-order modelof dimension k = �{�| satis�esmj(si) = m̂j(si); j = 1; 2; : : : ; 2�|; i = 1; 2; : : : ;�{; (9)wheremj(si) = c�(A� siE)�1E	j�1 (A� siE)�1b;is the jth moment of (1) about the expansion frequency siand m̂j(si) = ĉ�(Â� siÊ)�1Ê	j�1 (Â� siÊ)�1b̂is the jth moment of reduced-order model about si. It willbe assumed for notational simplicity that 2�| moments areto be matched about each of the frequencies s1 through s�{.In general, the number of moments matched may vary fromexpansion frequency to expansion frequency. One can easilymodify the following results to handle this case.

The variant of the Lanczos method employed to gen-erate a reduced-order model fÊ; Â; b̂; ĉg satisfying (9) willbe denoted the rational Lanczos algorithm as it is an adap-tation of the rational Arnoldi method of [20, 21]. Themost glaring di�erence between the two rational methodsis that rational Lanczos computes a biorthogonal Vk andWk rather than an orthogonal Vk. There are, however,smaller dissimilarities between the two methods which arenecessary to insure that the oblique projector, � = VkWk,of rational Lanczos yields multi-point Pad�e approximants.Algorithm 1 Rational Lanczos algorithmInitialize r0 = (A� s1E)�1b and q0 = cT ;For i = 1 to �{,For j = 1 to �|,(1) k = (i� 1)�|+ j;(2) hk;k�1 =pjrTk�1qk�1j(3) vk = (rk�1=hk;k�1) andwk = sign(rTk�1qk�1) � (qk�1=hk;k�1);(4) if j < �| and i < �{,(4:1) rk = (A� siE)�1Evk andqk = ET (A� siE)�Twk ;else if j = �| and i < �{,(4:2) rk = (A� si+1E)�1b=h1;0 andqk = ET (A� si+1E)�T cT ;else(4:3) rk = (A� s1E)�1Ev�| andqk = ET (A� s1E)�Tw�|;end(5) h1:::k;k =WTk rk and g1:::k;k = VTk qk;(6) rk = rk �Vkh1:::k;k and qk = qk �Wkg1:::k;k;endendv�{�|+1 = (r�{�|=h�{�|+1;�{�|) where h�{�|+1;�{�| =pjrT�{�|q�{�|j.Strong similarities exist between Algorithm 1 and thetraditional Lanczos algorithm (see [10] for the standardmethod). The key di�erence between the standard and ra-tional Lanczos algorithms lies in step (4) of Algorithm 1.In rational Lanczos the matrix, (A� sE)�1E, multiplyingthe previous v vector changes with the expansion frequency.By making this matrix a function of s, sequences of Krylovspaces are computed.Theorem 2 If Vk and Wk are the results of the �rst ksteps of the rational Lanczos algorithm with 1 � k � �{�|thencolsp(Vk) = �Kk��|(i�1) �(A� siE)�1E; (A� siE)�1b�Si�1l=1 K�| �(A� slE)�1E; (A� slE)�1b��



where i� 1 is the quotient of k=�|. Correspondingly,colsp(Wk) = �K�| �ET (A� s1E)�T ;cT �i�1[l=2K�| �ET (A� slE)�T ;ET (A� slE)�T cT �[Kk��|(i�1) �ET (A� siE)�T ;ET (A� siE)�T cT ��if i > 1; otherwisecolsp(Wk) = Kk �ET (A� s1E)�T ;cT � :Proof: Due to space constraints we refer the reader to [8].Recall that the Vk and Wk matrices resulting fromthe standard Lanczos method each corresponded to a sin-gle Krylov space. In the rational Lanczos method, multipleKrylov spaces are computed. Each space corresponds toan expansion frequency si. The cost of combining multipleKrylov spaces into Vk and Wk is the loss of a three-termrecurrence in step (6) of the algorithm. Thus one shouldexpect to see upper-Hessenberg rather than tridiagonal ma-trices appearing out of the rational Krylov projection.As one is ultimately interested in obtaining a rationalKrylov projection of (1), the e�ects of Vk and Wk on Aand E are of interest. To obtain a relationship between Vk,Wk, A and E, we begin by analyzing Algorithm 1 for thecase when k is a multiple of �|. This case involves the execu-tion of step (4.2) and corresponds to a change in the expan-sion frequency from si to si+1. Note that hk+1;kvk+1 = rkdue to step (3). Then plugging step (4.2) into step (6)'sexpression for rk yieldsVk+1 � h1:::k;khk+1;k � = h�11;0(A� si+1E)�1b= (A� si+1E)�1(A� s1E)Vke1 (10)since h1;0v1 = (A�s1E)�1b. Multiplying (10) on the rightby (A� si+1E) and rearranging the expression results inAVk+1�� h1:::k;khk+1;k �� � e10 �� =EVk+1�si+1 � h1:::k;khk+1;k � � s1 � e10 ��which can be rewritten as(A� s1E)V�{�|+1 " h1:::k;khk+1;k0 # � " e100 #!| {z }hk =EV�{�|+1 " h1:::k;khk+1;k0 # (si+1 � s1)!| {z }kk : (11)

When k is not a multiple of �|, step (4.1) is executedand the next v vector computed is still associated with theexpansion frequency si. For this case, placing step (4.1)into step (6)'s expression for rk yieldsVk+1 � h1:::k;khk+1;k � = (A� siE)�1EVkek : (12)Multiplying (12) on the left by (A� siE) producesEVkek = (A� siE)Vk+1 � h1:::k;khk+1;k �which can be rewritten as(A� s1E)V�{�|+1 " h1:::k;khk+1;k0 #| {z }hk =EV�{�|+1 " h1:::k;khk+1;k0 # (si � s1) + " ek00 #!| {z }kk : (13)Combining all �k � �{�| steps of Algorithm 1 yields(A� s1E)V�k+1H�k+1;�k = EV�k+1K�k+1;�k (14)where the columns of H�k+1;�k and K�k+1;�k are de�ned via(11) and (13). Speci�cally, columns �|, 2�|,: : : (�{ � 1)�| ofH�k+1;�k and K�k+1;�k �t the form of (11) while the remain-ing columns satisfy (13). Note that H�k+1;�k and K�k+1;�k areupper-Hessenberg. Special mention should also be givento the �kth columns of H�k+1;�k and K�k+1;�k . Due to step(4.3) of Algorithm 1, the �kth column satis�es the generalform of (13) with si = s1. Thus k�k = [eT�| 0]T so thatV�k+1K�k+1;�k = V�kK�k;�k . Making use of this last fact whenmultiplying (14) on the left by WT�k (A� s1E)�1 yieldsH�k;�k =WT�k (A� s1E)�1EV�kK�k;�k : (15)Expressions (14) and (15) serve as the principal relationsbetween the projector V�kWT�k and E and A.For the remainder of this section, it will be assumedthat Algorithm 1 is executed to completion and the valueof k will be �xed as k = �k � �{�|. Then given the results of therational Lanczos method, we will de�ne the reduced-ordermodel so thatÂ = Kk;k + s1Hk;k; Ê =Hk;k;b̂ =WTk (A� s1E)�1b; ĉ = cVkKk;k: (16)To begin to motivate the choices in (16), rewrite the de�ni-tion (1) of the original system as( (A� s1E)�1E _x =(A� s1E)�1(A� s1E+ s1E)x+ (A� s1E)�1buy = cx:The restriction of the original system by the projector � isformed by replacing the state vector, x, with VkWTk x and



multiplying on the left by WTk to yield8>>><>>>: WTk (A� s1E)�1E� _x =WTk x+ s1WTk (A� s1E)�1E�x+WTk (A� s1E)�1buŷ = cVkWTk x: (17)If one temporarily assumes that Kk;k is invertible, (15) canbe used to rewrite (17) as8><>: Hk;kK�1k;kWTk _x =s1Hk;kK�1k;kWTk x+WTk x+WTk (A� s1E)�1buŷ = cVkWTk x:which in turn becomes8<: Hk;k _̂x =(Kk;k + s1Hk;k)x̂+WTk (A� s1E)�1buŷ = cVkKk;kx̂: (18)by de�ning x̂(t) to be K�1k;kWTk x(t).Comparing (2) and (18) indicates that the prescribedchoices for Â, Ê, b̂ and ĉ are quite logical. However, (18)was obtained assuming Kk;k to be invertible. This assump-tion is in fact not necessary for our purposes. The followingresult states that the reduced-order model corresponding to(16) matches the desired moments of the original systemwithout placing any restrictions on the invertibility of Kk;kor E.Theorem 3 Let the jth moments of the original and re-duced order systems about the expansion frequency si bemj(si) = c�(A�siE)�1E	j�1(A�siE)�1b and m̂j(si) =ĉ�(Â � siÊ)�1Ê	j�1(Â � siÊ)�1b̂ respectively. If Â =Kk;k + s1Hk;k, Ê = Hk;k, b̂ = WTk (A � s1E)�1b andĉ = cVkKk;k where Hk+1;k, Kk+1;k , Vk+1 and Wk+1 arethe results of Algorithm 1 with k = �{�|, thenmj(si) = m̂j(si)for i = 1; 2; : : : ;�{ and j = 1; 2; : : : ; 2�|.Proof: see [8].Thus the projection resulting from the rational Lanc-zos method satis�es the multi-point condition of (9). Italso would appear that the bene�ts of the standard Lanc-zos method (e.g., avoiding a power method, look-ahead) canbe easily extended to the rational Lanczos approach.4. ExampleAs a brief example of the utility of multi-point Pad�e ap-proximations, we will study the 120th order system whichdescribes the e�ects of a magnetic actuator on the radialtracking arm of a portable compact disc player, see [12].Figure 1 plots the frequency responses of the original sys-tem (solid line), a 24th order Pad�e approximation abouts0 = 1 (dashed line), a 12th order Pad�e approximationabout s0 = 0 (dotted line) and a 6th order multi-point Pad�eapproximation (dashed-dotted line) for the CD player. Themulti-point approximation matches six moments expandedabout s1 = 0, four moments about s2 = 105, and two mo-ments about s3 = 104. To keep this example short, a discus-

sion of the algorithm used to choose these expansion pointsmust be postponed until a later time.
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Through Algorithm 1, the Lanczos method can beextended to treat multiple expansion frequencies. Multi-point approximation shows promise in several applications[16, 19, 26] as an approach for handling false instabilitiesand frequency response errors in the reduced-order model.However, the techniques for choosing the expansion fre-quencies are still rather heuristic; a more formal approachshould be explored in future work.The Lanczos method must also still be extended to themultiple input-multiple output (MIMO) case. Block ver-sions of the Lanczos method are already in existence, see[2] for example. But the extension of look-ahead to handlethe breakdowns in MIMO Lanczos remains an open issue.Finally, we note that the inversion of (A � siE) is anarea requiring additional work. Regardless of whether ex-plicit moment matching or the Lanczos method is beingemployed, one must avoid explicit inversions and insteadutilize sparse factorizations of the matrix or iterative tech-niques. One must further insure that the values for si arechosen so that (A� siE) is well-conditioned.6. References[1] M. M. Alaybeyi, J. Y. Lee and R. A. Rohrer, \Nu-merical integration algorithms and asymptotic wave-form evaluation (AWE)," Tech. Digest IEEE Inter-nat. Conf. on Computer-Aided Design, 1992.[2] D. L. Boley, \Krylov space methods on state-spacecontrol models," Technical Report, Univ. of Min-nesota, Minneapolis, MN 55455, 1992.[3] C. I. Byrnes and A. Lindquist, \The stability and in-stability of partial realizations," Systems Control Lett.,vol. 2, pp. 99{105, 1982.[4] P. Feldman and R. W. Freund, \E�cient linear cir-cuit analysis by Pad�e approximation via the Lanczosprocess," Technical Report, AT&T Bell Laboratories,Murray Hill, NJ 07974, 1994.[5] L. Fortuna, G. Nunnari and A. Gallo, Model ReductionTechniques with Applications in Electrical Engineering,London: Springer-Verlag, 1992.[6] R. W. Freund, M. H. Gutknecht and N. M. Nachtigal,\An implementation of the look-ahead Lanczos algo-rithm for non-Hermitian matrices," Technical Reports90.45 and 90.46, RIACS, NASA Ames Research Cen-ter, 1990.[7] K. Gallivan, E. Grimme and P. Van Dooren, \Asymp-totic waveform evaluation via a Lanczos method," toappear Appl. Math. Lett., 1994.[8] K. Gallivan, E. Grimme and P. Van Dooren, \Multi-point Pad�e approximation of large-scale systems via atwo-sided rational Krylov algorithm," Techical Report,Univ. of Illinois, Urbana, IL 61801, 1994.[9] E. Gallopoulos and Y. Saad, \E�cient solution ofparabolic equations by Krylov approximation meth-ods," SIAM J. Sci. Statist. Comput., vol. 13, pp. 1236{1264, 1992.[10] G. H. Golub and C. Van Loan, Matrix Computations,2nd ed. Baltimore, MD: Johns Hopkins UniversityPress, 1989.
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