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Abstract. This paper re-addresses the old problem of providing a cat-
egorical model for Intuitionistic Linear Logic (ILL). In particular we
compare the now standard model proposed by Seely to the lesser known
one proposed by Benton, Bierman, Hyland and de Paiva. Surprisingly
we find that Seely’s model is unsound in that it does not preserve equal-
ity of proofs. We shall propose how to adapt Seely’s definition so as to
correct this problem and consider how this compares with the model due
to Benton et al.

1 Intuitionistic Linear Logic

For the first part we shall consider only the multiplicative, exponential fragment
of Intuitionistic Linear Logic (MELL). Rather than give a detailed description
of the logic and associated term calculus we assume that the reader is familiar
with other work [15, 5]. The sequent calculus formulation is originally due to
Girard [9] and is given below.
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Sequents are written as I' — A, where A, B represent formulae and I', A represent
multisets of formulae. Where I" represents the multiset Aq,..., A,, then !I" is
taken to represent the multiset !4,,...,!4,.

The natural deduction presentation proved harder to formalize and early
proposals [1, 15] failed to have the vital property of closure under substitution.
A natural deduction system which has this property was given by Benton et
al. [4] and is given below.

147]
: A—oB A
LAY — 5
A—oB
- (I7) A I
I
1 (lg)
| 4] [BY]
A B o) A®B C
ey % (®&)ay
. ['B*] ['BY]
!B ! :
) 'B
Weakening Contraction, ,
C
A7 - 1Az
B : : :
— Dereliction A . M, B Promotion
) B zl,...,.xn

The main difference between this and earlier presentations is in the Promotion
rule where here substitutions are ‘built-in’.

The Curry-Howard correspondence [10] provides a systematic process for at-
taching names, or terms, to proof trees from the natural deduction formulation
of a given constructive logic (a clear description is given by Gallier [7]). We can
apply it to get the following term assignment system for MELL, which rather
than presenting in a tree-like fashion, we choose to present in a sequent style.
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Normalization is the process of removing ‘detours’ from a proof in natural de-
duction. At the level of terms it can be seen as providing a set of reduction rules,
which are known as (-rules. For MELL there are six §-rules which are given
below.
1. (Az: A.M) N ~3 M|z := N]
let * be x in M ~3 M
let MQN bez@ylang Plz := M,y := N]
derellct(promote M for Zin N) ~5 N[ := M]
discard (promote M for Zin N) in P ~»g discard M in P
. copy (promote M for #in N)asy,zin P~z copy M as i, @in
P [y := promote @ for Zin N,
z := promote ¥ for Z in N|

Dereliction
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In addition there are other term equalities: commuting conversions, which arise
from consideration of the subformula property, as well as those suggested by the
process of cut elimination for the sequent calculus formulation.! For the purposes
of this paper these need not be considered here. The interested reader is again
referred to other work [6, 4].

! In fact there are other term equalities due to the interaction between our formulation
of the Promotion rule and the fact that we are suppressing the Ezchange rule.



2 Two Categorical Models

The fundamental idea of a categorical treatment of proof theory is that proposi-
tions should be interpreted as the objects of the category and proofs should be
interpreted as morphisms. The proof rules correspond to natural transformations
between appropriate hom-functors. As mentioned above, the proof theoretic set-
ting will reveal a number of reduction rules, which can be viewed as equalities
between proofs. In particular, these equalities should hold in the categorical
model.

Let us fix some notation. The interpretation of a proof is represented using
semantic braces, [—], making the usual simplification of using the same letter
to represent a proposition as its interpretation. Given a term I'> M: A where
M ~»3 N, we shall write I'> M = N: A.

Definition 1. A category, C, is said to be a categorical model of a given logic,
L, iff

1. For all proofs I' >z M: A, there is a morphism [M]:I" - A in C,
2. For all equalities I'b, M = N: A it is the case that [M] =c¢ [N] (where =¢
represents equality of morphisms in the category C).

The second condition is often referred to as ‘soundness’. Given this definition
we shall now consider in detail two proposals for a categorical model of Linear
Logic. Firstly that proposed by Seely [14] and secondly that of Benton et al. [4].
First we recall Seely’s definition (where for clarity we have named the natural
isomorphisms relating the tensor and categorical products).

Definition 2 (Seely). A Seely category, C, consists of

1. A symmetric monoidal closed category (SMCC) with finite products, to-
gether with a comonad (!, ¢,6), such that

2. For each object A of C, (14,da,e4) is a comonoid with respect to the tensor
product,

3. There exists natural isomorphisms n:!A®!B —!(4 x B) and p: I —!1,

4. The functor ! takes the comonoid structure of the cartesian product to the
comonoid structure of the tensor product.

It is instructive to consider this definition in more detail. The naturality of n
amounts to the following diagram commuting for morphisms f: A — C and
g B —D.

142!B — s 1(A x B)
lf®lg (f x g)

I0®!D —— I(C x D)
n



Condition 4 (which seems to have been overlooked by Barr [2] and Troelstra [15])
amounts to requiring that the following two diagrams commute.

A9 agia a4
1A " T P
I(A x A) 1

Now let us consider the model proposed by Benton et al. (the version given
here is taken from my thesis [6] and is a slight adaptation from the original
definition [4]).

Definition 3. A Linear category, C, consists of

1. A SMCC, C, together with
2. A symmetric monoidal comonad (!,&,4, m4 g, mr) such that
(a) For every free !-coalgebra (!A4,4) there are two distinguished monoidal
natural transformations with components es:!A — I and ds:'A —
'A®!A? which form a commutative comonoid and are coalgebra mor-
phisms,
(b) Whenever f:(14,54) — (!B,dp) is a coalgebra morphism between free
coalgebras, then it is also a comonoid morphism.

Let us consider in detail the conditions in this definition. Firstly requiring that
(!, ma, B, my) is a symmetric monoidal functor amounts to the following diagrams
commuting.

@lA —L2 \(10A4) Aol —2L (4o
m;®idi 4 !(/\A) idj4®my !(pA)
IxIA 1A IA®1 1A
1A pra
®id, m

(1Ax!B)elC TAPZAC  aeBywic —22PS 1(40B)2C)
QA BIC Naa.B.0)

IA®(IB!C) - IAR!I(B®C) (A®(B®(C))

IdgA®mB’(j M4, BRC

2 This necessitates showing that !®! and I are monoidal functors, but this is trivial
and omitted.
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Requiring that € is a monoidal natural transformation amounts to the following
two commuting diagrams.
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3 my \
EARER AQB \

A®B 1

€1

Requiring that § is a monoidal natural transformation amounts to the following
two commuting diagrams.

mA.B
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M g
my 61
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Requiring that e4:!'A — [ is a monoidal natural transformation amounts to
requiring that the following three diagrams commute, for any morphism f: A —
B.

1A

\f &

!B

€B
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Requiring that ds:!A -!A®!A is a monoidal natural transformation amounts
to requiring that the following three diagrams commute, for all f: A — B.

d At
1A AL 1AIA I I®I
'f 'f®'f my m;@my
'B !BR!B 17 I\
B T
da®dp

142!IB —28 (14014)2(IB®!B) — (I42!B)®(!A®!B)

ma,B ma,BOMA B

I(A®B) y (A2 B)®!(A®B)
A®B

Requiring that (!4, d4,e4) forms a commutative comonoid amounts to requiring
that the following three diagrams commute.

1A
-1y ' /\71
P v da
v
v
TARI < IA®!IA _ I®'A
idia®eq eA®idia
1A da IA®!A
da idi 4®d 4
IA®!A (IAx!A)®!A AR (1A®!A)

A®id 2 QIANANA
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Requiring that e4 is a coalgebra morphism amounts to requiring that the fol-
lowing diagram commutes.

€A

1A 1
5,4 my
A 17
!6,4

Requiring that d4 is a coalgebra morphism amounts to requiring that the fol-
lowing diagram commutes.

1A 04 - 1A
dA !dA
1A A NARNA (1A®!A)
0AR04 MiA A

Finally all coalgebra morphisms between free coalgebras are also comonoid mor-
phisms. Thus given a coalgebra morphism f, between the free coalgebras (4, d4)
and (1B, 0p), i.e. which makes the following diagram commute.

m—I B
54 op
A B
'f

Then it is also a comonoid morphism between the comonoids (4,e4,d4) and
(!B,ep,dg), i.e. it makes the following diagram commute.
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These amount to some strong conditions on the model and some of their conse-
quences are explored in my thesis. It is, however, reasonably straightforward to
show the following.

Theorem 1. A Linear category, C, is a categorical model for MELL.

Proof. The first condition is proved by a trivial induction on the structure of
the proof I'> M: A. The second condition is proved by checking the six S-rules
from earlier.

The main difference between these two models is that a Seely category critically
needs categorical products to model the exponential (!). Consider the interpre-
tation of the Promotion rule. With a Seely category this is interpreted as

[I1,...,I > promote My, ..., M, forxy,...,x, in N:!B]

3 3 3

COn s My A @ @[T, > My 1AL n: 6 In= ' ([ 1Ay, . 2t LA, > N2 B]).
With a Linear category this is interpreted as

[I,...,I,>promote My, ..., M, forxy,. .., Z, in N:|B]

COrr s My A ® .. @D b My 1An];6® ... @6 m; ([a1: 1Ay, . .., 20: 1A, > N: B]).

Let us consider whether a Seely category is a categorical model for MELL. Seely
showed that the first requirement is satisfied.

Proposition 1 (Seely). Given a Seely category, C, for all proofs I'>M: A there
is a morphism [M]:I" - A in C.

However the second condition is not satisfied.

Fact 1. Given a Seely category, C, it is not the case that for all term equalities
I'>M = N: A that [M] =¢ [N].2

% It should be noted that the term equalities were not generally known when Seely
proposed his model.



One counter-example is the sixth S-rule from earlier. In fact we only need use a
simplified version where the promoted term, N, has only one free variable, i.e.

I' > copy (promote M forxzin N) asy, zin P
= copy M asz',z" in P[y := promote z' for z in N, z := promote z" for z in N]: C.

This term equality implies the same commuting diagram for a Linear category
as for a Seely category,

L S R R Y
d d (1)
TAQIA —— NARQUA 'BR!B C.
0R4 In®n p
For a Linear category we can complete the diagram as
L S R B LT
d d d
JARIA —— NARIA 'Bo!B C.
0R4 In®n D

The left hand square commutes by the condition that all free coalgebra mor-
phisms are comonoid morphisms. The right hand square commutes by naturality
of d. Unfortunately it is not clear how to make diagram 1 commute for a Seely
category. Indeed it is straightforward to see how a term model can be constructed
from Seely’s original definition such that this diagram does not commute.

At this stage we might try adding the condition that all (free) coalgebra
morphisms are comonoid morphisms to Seely’s definition (and hence add extra
equations to the term model). This proves still to be incomplete as we find that
neither the sixth nor the fifth term equalities are modelled correctly in the cases
when the promoted term, IV, has zero or more than one free variable. One might
be further tempted to add additional ad-hoc conditions to make a Seely category
a model for MELL. However, as shown in my thesis, this is by no means simple
and rather it would seem more prudent to consider a more abstract view. Rather
we consider some of the motivation behind the Seely construction.

First we shall recall a construction, the dual of which (i.e. that generated by
a monad) is known as the “Kleisli category” [13, Page 143].

Definition 4. Given a comonad (!, &, d) on a category C, we take all the objects
Ain C and for each morphism f:!A — B in C we take a new morphism f: A — B.
The objects and morphisms form the co-Kleisli category C,, where the compo-

sition of the morphisms f: A — B and §: B — C is defined as f; § def (5mg).



The interest in this construction is that it has strong similarities with the Gi-

rard translation [8] of Intuitionistic Logic (IL) into ILL where the intuitionistic
implication is decomposed as (A D B)° def (A°)—o B°. In fact, as first shown by
Seely [14], the co-Kleisli construction can be thought of as a categorical equiva-

lent of the Girard translation in the following sense.

Proposition 2 (Seely). Given a Seely category, C, the co-Kleisli category, C,
is cartesian closed.

Proof. (Sketch) Given two objects A and B their exponent is defined to be
!A—oB. Then we have the following sequence of isomorphisms.

C(Ax B,C)=C(/(A x B),C) By definition,
= C(lA®!B,C) By use of the n isomorphism,
~ C(!A,!B—(C) By C having a closed structure,
~ G (A,!B—C) By definition.

We know from Kleisli’s construction that we have the adjunction

G
G|+ |F

C

—

where @G is the functor defined by g: A — B — (g;g) and F' is the functor defined
by f:A—) By lf.

Seely’s model arises from at least the desire to make the co-Kleisli category
a cartesian closed category (CCC), which is achieved by including the n and p
natural isomorphisms. This means that there is an adjunction between a SMCC
(C) and a CCC (C). As a CCC is trivially a SMCC, there is then an adjunction
between two SMCCs. We might expect that this is a monoidal adjunction.

Definition 5. An adjunction (F,G,n,€):C — D is said to be a monoidal ad-
junction when F' and G are monoidal functors and n and e are monoidal natural
transformations.

We now state a new definition for a Seely-style category and then investigate
some of its properties.

Definition 6. A new-Seely category, C, consists of

1. a SMCC, C, with finite products, together with
2. a comonad, (!,¢,d), and
3. two natural isomorphisms, n: !A®!B -=!(A x B) and p: I -1

such that the adjunction, (F, G, n, ), between C and C, is a monoidal adjunction.



Assuming that F' is monoidal gives us the morphism and natural transformation

mp:l — F1,
map: FARFB — F(A x B).

Assuming that G is monoidal gives us the morphism and natural transformation

mi:1 — GI,
m'y g: GA X GB — G(A®B).

By assumption € and 7 are monoidal natural transformations.
It is easy to see that m; is Seely’s morphism p and m4 g is Seely’s natural
transformation n. In fact, we can define their inverses

_1 def
m; ' Z Fmier: F1 - 1,

_ def
mA’lB = F(’I]A X nB);FmIFAyFB;EFA@FB:F(A X B) — FA@FB

Hence the monoidal adjunction itself provides the isomorphisms !A®!B =!(A x
B) and I =!1. As the co-Kleisli category is a CCC it has a trivial commutative
comonoid structure, (4, A, T), on all objects A. We can use this and the natu-
ral transformations arising from the monoidal adjunction to define a comonoid
structure, (F'(A4),d,e), on the objects of C, with the structure maps defined as

d ™ F(A);my!: F(A) = F(A)F(A),

e F(T)m L F(4) > I

It is easy to see that these definitions amount to condition 4 of Seely’s original
definition. Thus there is at least as much structure as in Seely’s original definition
but with the extra structure of the monoidal adjunction. Some consequences of
this adjunction are given in the following lemma.

Lemmal. Given a new-Seely category, C, the following facts hold:

1. The induced comonad (FG, Fne,e) on C is a monoidal comonad
(FG, Fng,e,ma g, my).

2. The comonoid morphisms e: FG(A) — I and d: FG(A) —» FG(A)QFG(A)
are monoidal natural transformations.

3. The comonoid morphisms e: FG(A) —» I and d: FG(A) - FG(A)®FG(A)
are coalgebra morphisms.

4. If f: (FG(A), Fnga) — (FG(B), Fngg) is a coalgebra morphism then it is
also a comonoid morphism.

Proof. For part 1 we take the definitions

m; < mp Fml: T — FG(I),
map = mgacn; Fm'y g: FG(A)®FG(A) - FG(A= B).

The rest of the lemma holds by construction.



Corollary 1. FEvery new-Seely category is a Linear category.

(It is clear that the converse is not true, as the Linear category need not have
finite products.) We can hence show that a new-Seely category is a sound model
for the MELL.

Theorem 2. A new-Seely category, C, is a categorical model for MELL

3 Including the additives

Now we shall consider the whole of ILL by adding the additive connectives to
MELL. Logically these are given by the following sequent calculus rules (we
shall ignore the additive units).

I''AvC ( ) I'Bv+C ( )
E——_ — (X, _
I'AxBrC et I''AxBwrC £
I'r- A FFB( )
X
I'-AxB ®
I'Av C I'BvC
(®r)
IN'Ae®B v C
I'rA ( ) I'+B ( )
7@7 7697‘
rv 4B ! r'vAeB 7

There are a number of ways of formulating the additives in a natural deduction
system which are discussed in my thesis. However, for now we shall simply take
the term assignment system which is familiar from that of the A-calculus. The
term assignment rules as well as the S-rules for the additives are given below.

I'>M:A I'>N:B

I's(M,N):AxB xz)
I'sM:Ax B I'sM:Ax B
m(xf—l) W(XE,Q)
I's>M:A I's M:B
I'>inl(M):A® B (1) I'sinr(M): A® B (z-2)

A>M:A¢ B Iz:A>N:C Iy:B> P:C

b
I' A case M of inl(z) — N ||inr(y) — P:C e)




fst((M, N)) ~5 M
snd((M,N)) ~3 N
case (inl(M)) of inl(z) — N |linr(y) = P~ N[z := M]
case (inr(M)) of inl(z) — N || inr(y) — P ~pg Ply := M]

To model these additive connectives we shall add finite products and coproducts
to a Linear category and finite coproducts to a new-Seely category. As might be
expected both models are sound.

Theorem 3. Both a new-Seely category with finite coproducts and a Linear cat-
egory with finite products and coproducts, are models for ILL.

Somewhat surprisingly, we find that the so-called Seely isomorphisms (n and p)
exist in a Linear category with products.

Lemma 2. Given a Linear category with finite products we can define the nat-
ural isomorphisms

n 005 mia 3 (A); ((1d@en) x (ea®id));(p x V) l(e x €):LABLB S1(A x B),
n-1 def daxp;!fst®!snd: (A x B) »!A®!B,
p déf m]; 'T I —)|17

p! def er:!l — 1.

Thus the co-Kleisli category associated with a Linear category is also a CCC.
Given our earlier calculations we might consider the adjunction between a Linear
category and its co-Kleisli category, where we find the following holds.

Lemma 3. The adjunction between a Linear category, C, with finite products
and its co-Kleisli category, C,, is a monoidal adjunction.

Thus when considering the complete intuitionistic fragment, the new-Seely and
Linear categories are equivalent. It is easy to check that common models such as
coherent spaces, dI-domains and pointed cpos and strict maps are all examples
of new-Seely/Linear categories.

An interesting question is whether the co-Kleisli category C, has an induced
coproduct structure given a coproduct structure on C. Seely [14] showed that C,
does not have a coproduct structure, but in fact it is possible to identify a weak
coproduct structure. We use the following well-known fact about the co-Kleisli
category [12, Corollary 6.9].

Fact 2. The co-Kleisli category of a comonad is equivalent to the full subcategory
of the category of coalgebras consisting of the free coalgebras.

Lemmad. Given two free coalgebras (1A,04) and (!B,0p), we define their co-

product to be ((1A®!B), iagis). We define the injection morphisms to be inl def



da;linl: 1A =1(A®!B) and inr def 0p;linr: !B =1(1A®!B), which are (free) coalge-
bra morphisms. Given two (free) coalgebra morphisms f:!A —=1C and g:!B —=!C,
then the morphism (![f,g];lec):{(lA®!B) —!C is a (free) coalgebra morphism
and makes a coproduct diagram commute.

So far we have followed others [14, 11] and only considered whether the co-
Kleisli category C, generated by the comonad is cartesian closed. It is should
be noted that alternatively one can consider the full Eilenberg-Moore category
of coalgebras (C') instead. In other work [4, 6], various subcategories of C' are
shown to be cartesian closed. An important feature of these (sub)categories is
that the underlying category C need not necessarily have products, in contrast
to the situation for C,. The interested reader is referred to these other works.

4 Conclusions

In this paper we have considered the definition of a categorical model for ILL.
Surprisingly, Seely’s now standard definition [14] was shown to be unsound, in
that it does not model all equal proofs with equal morphisms. A model given in
our earlier work [4] was shown to be sound. We have also considered a method
for improving Seely’s original definition so as to be sound. In fact both (sound)
models turn out to be equivalent. It is worth pointing out that these models are
sound with respect to the equalities arising from the commuting conversions.

Lafont [11] also proposed a categorical model for ILL, which amounts to re-
quiring an adjunction between a SMCC and a category of commutative comonoids.
In my thesis [6] it is shown that this model is a categorical model of ILL by
demonstrating that every Lafont category is a Linear category.

In Lemma 1 it was proved that a monoidal adjunction between a particular
SMCC (a new-Seely category) and CCC (its co-Kleisli category) yielded the
structure of a Linear category. Lemma 3 shows that a Linear category also has
the structure of a monoidal adjunction between it (a SMCC) and its associated
co-Kleisli category (a CCC). Thus the notion of a Linear category is in some
senses equivalent to the existence of a monoidal adjunction between a SMCC
and a CCC. This observation has been used by Benton [3] to derive the syntax
of a mixed linear and non-linear term calculus.

Categorically, most models proposed for Classical Linear Logic (CLL) are
extensions of Seely’s model for ILL to Ifautonomous categories [14, 2]. Thus
the problems identified with Seely’s model in this paper apply to these models.
Extending a Linear category with a dualizing object gives a (sound) model of
CLL, although the categorical import of this construction is work in progress.
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