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AbstractThis work is a survey on decidable and undecidable problems in matrix the-ory. The problems studied are simply formulated, however most of them areundecidable. The method to prove undecidabilities is the one found by Pa-terson [Pat] in 1970 to prove that the mortality of �nitely generated matrixmonoids is undecidable. This method is based on the undecidability of thePost Correspondence Problem. We shall present a new proof to this mortalityproblem, which still uses the method of Paterson, but is a bit simpler.Keywords: decidability, undecidability, matrix semigroups, mortality, free-ness, �niteness, zero in the right upper-corner, Skolem's problem
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1 Introduction
This thesis deals with decidable and undecidable problems in matrix the-ory. The matrices we consider are over integers, and the problems we studyare simply formulated and elementary, but it turns out that many of theseproblems are algorithmically undecidable, which means that there exists nocomputer program to solve these problems.We use mainly only basic properties of matrices. These and other ba-sic de�nitions, notations and properties are presented in the next chapter.Occasionally we need more advanced properties of matrices that are statedwhen they are needed. The de�nitions and proofs of such properties can befound from [Gan].We are going to show that many simply formulated problems are actu-ally undecidable. Our undecidability proofs are based on the fact that theso called Post Correspondence Problem is undecidable. This undecidableproblem was introduced by E. Post [Pos] in 1946 and it is a very importantproblem in formal language theory. As we shall see, it is also suitable for ourpurposes in proving undecidability results. In the third chapter we study theexistence of the zero matrix in matrix semigroups, i.e. the so called mortal-ity problem. The proof of the undecidability of the mortality problem for3� 3 matrices by M.S. Paterson [Pat] in 1970 provides a tool to prove otherundecidability results for matrices. Paterson used the Post CorrespondenceProblem in his proof, and throughout this work we shall use the very samemethod.We shall present a shorter and simpli�ed proof for the undecidability ofthe mortality problem, however, using the same method than the originalproof of Paterson.We shall also consider the special case where the semigroup is generatedby two matrices. It turns out that also in this case the mortality problemis undecidable if the dimension of the matrices is at least 45. This result isfrom [CKa].In the third chapter we shall show that the method of Paterson does notsuit for problems of 2�2 matrices. This result is from [CHK]. It follows thatfor many problems, when we consider such matrices, it is not known whetherthey are decidable or not. 1



In the fourth chapter we study the freeness of matrix semigroups. Thisproblem is important from the point of view of semigroup theory, especiallyfor 2� 2 matrices. Results in that chapter is mainly from [CHK].In the �fth chapter we consider the �niteness of matrix monoids. Wewill prove that it is decidable whether a matrix semigroup of matrices overnatural numbers is �nite or not. The proof we present is from [MaS]. Thedecidability of �niteness helps us also to prove some other simple propertiesof matrix semigroups generated by one matrix. These results are mentionedat the end of the chapter.In the sixth chapter the existence of a zero in the right upper corner in amatrix semigroup is treated. We shall prove that this problem is undecidablefor matrices with dimension at least 3. The proof we present is from [Man].We shall also consider the case where semigroup is generated by twomatrices and we prove that this problem is undecidable, when the dimensionof the matrices is at least 24. This result is from [CKa].In the seventh and eighth chapters we study the existence of a zero inthe right upper corner in a matrix semigroup generated by one matrix. Thisproblem is so called Skolem's problem. In the seventh chapter we will showthat Skolem's problem is decidable for 2� 2 matrices. The proof we presentis based on ideas of J. Cassaigne [Cas].In the eighth chapter we will prove that it is decidable, whether there isin�nite number of zeros in the right upper corner in the powers of one matrix.This proof, due to [Han], is elementary, but not simple and it uses the theoryof rational series. The proof is based on so called Skolem's theorem. Resultsof rational series in that chapter is from [BeR].We shall summarize the results of this work in the tenth chapter where atable of decidable and undecidable matrix problems is presented.
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2 Preliminaries
2.1 BasicsWe shall denote the set of natural numbers by N. It is assumed troughoutthis paper that zero is in N , i.e. N = f0; 1; 2; : : :g. The sets of integers,rational numbers, real numbers and complex numbers are denoted by Z, Q ,R and C , respectively.2.2 Semigroups and monoidsLet S be a set. A pair (S; �) is called a semigroup, if � is a binary operationsuch that, for all a, b and c in S,a � b 2 S and (a � b) � c = a � (b � c):In other words � is an associative operation in S. Usually the operation � iscalled a product and the semigroup (S; �) is denoted simply by S.Semigroup S is called a monoid, if it has a neutral or identity element,i.e. there exists an element 1 in S such that for all a in S,1 � a = a � 1 = a:Form now on, we denote ab = a � b if no misunderstanding is possible.A semigroup S is said to be freely generated and it is free if there existssubset X of S such that every element of S has a unique factorization overX, i.e. every element of S can be uniquely expressed as a product of elementsof X. In this case the set X is called the free generating set.A monoid M is said to be free, if Mnf1g is a free semigroup.2.3 Matrix semigroups and monoidsIn this work we consider square matrices over integers, and in this sectionwe shall recall some basic notations and properties of these matrices. As3



a general reference for matrix theory we give F.P. Gantmacher's book TheTheory of Matrices [Gan].The set of n�n matrices over integers is denoted by Zn�n, and n is calledthe dimension. Sometimes Z is replaced by N or by some other semiring.Recall that K is a semiring, if it has two operations, + and �, satisfying thefollowing properties:(i) (K;+) is a commutative monoid with 0 as its neutral element.(ii) (Knf0g; �) is a monoid with 1 as its neutral element.(iii) For all a; b; c in K, a(b + c) = ab + ac and (b + c)a = ba + ca.(iv) For all a in K, 0a = a0 = 0.Let A be a matrix in Km�n. We denote the coe�cient in the i'th rowand on the j'th column of matrix A by Aij, and, consequently, a matrix Ais de�ned to be (Aij)m�n.It is clear that (Zn�n; �) forms a monoid, where � is the usual multiplicationof matrices, i.e. if A and B are in Zn�n, then(A �B)ij = (AB)ij = nXk=1 AikBkj;and the identity element is the identity matrix I (or In),I = 0BB@1 0 0 : : : 00 1 0 : : : 0: : : : : : : : : : : : : : :0 0 0 : : : 11CCAn�n :We will denote this monoid by Mn(Z). The above can be extended to othersemirings than Z, and the matrix monoid of n� n matrices over semiring Kis denoted by Mn(K).We call a matrix P in Mn(N) a permutation matrix, if it is derived fromIn by mixing the rows (or columns) by some permutation. Clearly, if P isa permutation matrix, then each row and each column has 1 in exactly oneposition and in the other positions there are 0's. We denote�ij = (1; if i = j;0; otherwise:Clearly Iij = �ij, and if � is a permutation on the set f1; : : : ; ng, then P ,for which Pij = �i;�(j), is a permutation matrix. It is also easy to see thatP�1 = ��(i);j. 4



For a square matrix A = (Aij)n�n de�ne the determinant of A bydet(A) = ��������A11 A12 : : : A1nA21 A22 : : : A2n: : : : : : : : : : : : : : : : : : :An1 An2 : : : Ann��������=X� sign(j1; j2; : : : ; jn)A1j1A2j2 � � �Anjn; (2.1)
where � runs through the permutations on f1; 2; : : : ; ng, � = (j1; j2; : : : ; jn),and sign(j1; : : : ; jn) is the sign of the permutation �,sign(j1; j2; : : : ; jn) = (�1)t(�);where t(�) is the number of inversions in �, i.e the number of cases wherejl > jk and l < k. Recall that in a permutation (j1; : : : ; jn) all ji's aredi�erent.There are also some other methods than the sum (2.1) to calculate thedeterminant, but we will use the one in the de�nition.Let A be an element of Mn(Q). If detA 6= 0, we say that A is in-vertible, and it has the unique inverse matrix A�1 in Mn(Q) such thatAA�1 = A�1A = I. Note that if A is an element of Zn�n and det(A) 6= 0,then the inverse matrix of A is not necessarily an element of Zn�n, but it isan element of Qn�n .The eigenvalue � in C and eigenvector x in C n , x 6= (0; : : : ; 0), of a matrixA in Mn(C ) satisfy the conditionAx = �x; (2.2)where C n denotes as usual the n dimensional vector space over the complexnumbers. The vector x can be understood also as an n� 1 matrix.From the equation (2.2) it follows that the eigenvalue � of A satis�es theequation det(A� �I) = 0:This equation is called the characteristic equation of the matrix A. The lefthand side of this equation is so called characteristic polynomial, which isdenoted by cA(�) = (�1)n(�n � c1�n�1 +� � � �+ (�1)ncn):5



This polynomial has degree n, if A is in C n�n , and the coe�cients ci are inC . If �0 is an eigenvalue of A, we know that cA(�0) = 0. Therefore, if we letthe eigenvalues of A be �i, i = 1; : : : ; n, it follows thatcA(�) = (�1)n(�� �1)(�� �2) � � � (�� �n);where the �i's need not be di�erent. Now we see thatcn = nYi=1 �i = c(0) = det(A) and c1 = nXi=1 �i:We call the sum of �i's the trace of the matrix A, and denote it by tr(A).Let p be a polynomial with coe�cients in C , p(x) = c1xk+c2xk�1+� � �+c1.Then for a matrix A in Mn(Z) we de�nep(A) = c1Ak + c2Ak�1 + � � �+ c1I:Next we present the so called Cayley{Hamilton theorem. We do not presenta proof here, a detailed proof can be found for example from [Gan].Theorem 2.1. Let A be a square matrix and let cA be its characteristicpolynomial. Then cA(A) = 0;where 0 = (0)n�n is the zero matrix.Note that since we are able to compute the determinant of a squarematrix, we are also able to compute the characteristic polynomial of a squarematrix.We end this section with a notation for the transpose matrix AT of A,(AT )ij = Aji.2.4 Decidability and undecidabilityLet P be a well-de�ned decision problem, i.e. a set of instances each of whicheither has or does not have a certain property. We say that the problem Pis decidable, if there exists an algorithm, which for every correct input oran instance of P terminates and gives an answer \yes", if the input has therequired property and answers \no" otherwise. If no such algorithm exists,then P is called undecidable. To prove that the problem P is decidable, we6



must �nd an algorithm which decides P , or show that such an algorithmexists.The usual method to prove the undecidability of a problem P is to reducesome already known undecidable problem Q to P . This means that, wetransform e�ectively an arbitrary instance q of Q to some instance p of P , sothat the condition \p has the property of P" is equivalent with the condition\q has the property of Q". It follows that if the problem P is decidable, thenthe instances q of the problemQ can be solved and therefore the problem Q isdecidable, which leads to a contradiction. We shall use a classical undecidableproblem, the Post Correspondence Problem or one of its modi�cations, in suchreductions. These undecidable problems are introduced later in this chapter.2.5 Word monoids and morphismsLet � be a �nite set of symbols. We call � an alphabet and its elements arecalled letters. A �nite sequence of letters is called a word. Denote by �+the set of all words over �. The set �+ is a semigroup, the word semigroup,when the binary operation � is de�ned as the concatenation of words, whichmeans that, if w1 = a1 : : : an and w2 = b1 : : : bm are in �+, thenw1 � w2 = a1 : : : anb1 : : : bm:The result of the catenation is clearly in �+ and it is an associative operation.Let � be the empty word and �� = �+ [ f�g. Clearly �� is a free monoidgenerated by � and � is its identity element.A subset of a word monoid is called a language.Next we de�ne a few properties of words. Let w = a1 : : : an be a word in�+, so ai is in � for all 1 � i � n. The length of the word w is n, and wedenote it by jwj = n.A word u in �� is called a pre�x of the word w, if there exists a word vin �� such that w = uv. Then the word v is called a su�x of w.A mapping h from a monoidM1 to a monoid M2 is called a morphism if,for all u and v in M1, h satis�es the conditionh(uv) = h(u)h(v):Note that in the right hand side of this equation the operation is the operationof the monoid M2. 7



2.6 The Post Correspondence ProblemWe shall next study the Post Correspondence Problem, PCP for short, intro-duced by E. Post [Pos] in 1946.Let h and g be two morphisms from �� into ��. The equality set of hand g is the set E(h; g) = fw 2 �+ j h(w) = g(w)g:The Post Correspondence Problem asks to decide for a given pair (h; g)whether or not E(h; g) = ;. Elements in E(h; g) are called solutions of theinstance (h; g) of PCP.This version of PCP is not the original version of the problem, but equiv-alent and more useful to our purposes.The size of an instance (h; g) of PCP is de�ned to be the cardinality ofthe alphabet �. We denote by PCP(n) the subproblem of PCP for instancesof size at most n.The undecidability of PCP is a classical result in formal language theory,and it was �rst proved by Post in [Pos] in the general case, i.e. there doesnot exist any algorithm for solving all instances of PCP. It is also knownthat if n � 2, then PCP(n) is decidable, and if n � 7 then it is undecidable.The proof of the undecidability of PCP(7) can be found from [MSe] and theproof of the decidability of PCP(n), for n � 2, can be found, for example,from [HaK]. For n greater than 2 and smaller than 7 the decidability statusis open.2.7 The Mixed Modi�cation of PCPThere exists many modi�cations of the Post Correspondence Problem, whichhave been proved to be undecidable. We shall next introduce one of thesethat is later used in the Chapter 4.The mixed modi�cation of PCP, MMPCP for short, asks to determine fortwo given morphisms h; g : �� ! �� whether there exists a word w = a1 : : : akwith ai in � and k � 1, such thath1(a1)h2(a2) : : : hk(ak) = g1(a1)g2(a2) : : : gk(ak); (2.3)where, for each i, hi and gi are in fh; gg and, for some j, hj 6= gj. The wordw satisfying the equation (2.3) is called a solution of the instance (h; g) ofMMPCP. 8



We show that MMPCP is undecidable. The proof is from [CHK], cf. also[HaK].Theorem 2.2. MMPCP is undecidable.Proof. We use the method, mentioned earlier in this chapter, to prove theundecidability. This requires to reduce PCP to MMPCP, that is, to transforman instance of PCP to that of MMPCP such that both of these have a solutionsimultaneously.Let (h; g) be an instance of PCP and assume that h; g : �� ! �� andthat c, d and e are new letters not in �[�. Further, let mappings l; r : �� !(� [ fdg)� be morphisms de�ned as l(a) = da and r(a) = ad for all a in �.Finally, for each a in � we de�ne two morphisms ha; ga : (� [ fd; eg)� !(� [ fc; d; eg)� by settingha(x) = l(h(x)); ga(x) = r(g(x)) for all x 2 �;ha(d) = cl(h(a)); ga(d) = cdr(g(a));ha(e) = de; ga(e) = e:Next we show that the instance (h; g) of PCP has a solution aw, w in ��,if and only if the instance (ha; ga) of PCP has a solution dwe. This followsfrom the equationsha(dwe) = cl(h(a))l(h(w))de = cl(h(aw))deand ga(dwe) = cdr(g(a))r(g(w))e = cdr(g(aw))e:Now, since the pair (ha; ga) can only have solutions of the form dwe, weconclude that it is undecidable whether for given morphisms h; g : �� ! ��the instance (ha; ga) of PCP has a solution.Finally we show that the pair (ha; ga), as an instance of PCP, has asolution if and only if the same pair has a solution as an instance of MMPCP.To simplify notation we denote h = ha and g = ga.If (h; g) has a solution as an instance of PCP, then it has a solution alsoas an instance of MMPCP, therefore the implication in one direction is clear.So assume that the pair (h; g) has a solution as an instance of MMPCP andlet w = a1 : : : ak be a solution of minimal length. We claim that then alsoh(w) = g(w), i.e. w is a solution of instance (h; g) of PCP.In notations of (2.3), the minimality of w implies that h1 6= g1 and hk 6=gk, so by the de�nitions of h and g, a1 = d and ak = e. We see also that ai9



is not d or e if i = 2; : : : ; k � 1, because otherwise there would be a shortersolution than w. We may assume, by symmetry, that h1 = h and g1 = g andwe will show that hi = h and gi = g for all i = 1; : : : ; k.Assume the contrary. Then there must be the smallest t such that gt = hor ht = g. Consider the �rst alternative. Then we haveg(a1 : : : at�1)h(at) 2 cd(�d)+(d�)+;and so there is a pre�x in the right hand side of (2.3) that ends with dd.But no pre�x of the left hand side of (2.3) matches with this pre�x, becauseif hi 6= g for all i, then h1(a1) : : : hk(ak) 2 c(d�)+, and if hi = g for some i,then there is a pre�x which is in c(d�)+�. Therefore we do not get two d'swithout having two consecutive letters of � �rst. This is a contradiction.In the second alternative, similarly, we get thath(a1 : : : at�1)g(at) 2 c(d�)+(�d)+;i.e. the left hand side of (2.3) has a pre�x that ends with two consecutiveletters of �. But no pre�x of the right hand side of (2.3) matches with thispre�x, because g(a1) : : : g(ak) 2 cd(�d)+, and if, for some i, gi = h, thenthere is a pre�x which is in cd(�d)+(d�)+. Therefore we cannot have twoconsecutive letters of � without having a factor dd �rst. This contradictionproves the claim.We shall use MMPCP in the proof of the undecidability of the freenessof matrix monoids, for which it suits very well.
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3 Mortality of Matrix Monoids
Let S be a given �nitely generated submonoid of n� n matrices from Zn�n.`Given' here means that we are given a �nite generator set of S. In thissection we consider the mortality problem, which is de�ned next.Problem 1. Determine whether the zero matrix belongs to S. In otherwords, determine whether there exists a sequence of matrices M1;M2; : : : ;Mkin S such that M1M2 � � �Mk = 0.
3.1 The undecidability of the mortality problemWe prove that the mortality problem is undecidable for 3� 3 matrices. Thisresult was �rst proved by M.S. Paterson in 1970 [Pat]. He used clever codingtechniques to make a reduction to PCP. We use the same method, but ourproof itself is simpler, althought the idea remains the same.The basic idea of the proof is to reduce an instance of PCP to the mor-tality problem. Let � be an alphabet. We use an injective morphism from����� into N3�3 to represent a pair of words in the multiplicative monoid ofmatrices. Then, of course, the product of matrices representing pairs (u; v)and (u0; v0) represents pair the (uu0; vv0).First we de�ne notions needed in the proof. Let � = fa1; a2; :::; ang andde�ne a function � : �� ! N by�(ai1ai2 :::aik) = kXj=1 ijnk�j and �(�) = 0:We see that, for each word w, the function � gives the value which w repre-sents as an n-adic number, and because each natural number has a uniquen-adic representation, � must be injective. We also note that, for all u andv in ��, �(uv) = njvj�(u) + �(v): (3.1)11



Next de�ne a mapping � : �� ! N2�2 by�(ai) = �n 0i 1� ;for all i = 1; 2; :::; n. Now if i; j 2 f1; : : : ; ng, we get that�(ai)�(aj) = �n 0i 1��n 0j 1�= � n2 0ni + j 1� = � njaiaj j 0�(aiaj) 1� :Clearly this can be extended for all w 2 ��, and therefore�(w) = � njwj 0�(w) 1� :This can be proved by induction. We note that � is a morphism from �� intoN2�2 , since if u and v are in ��, then�(u)�(v) = � njuj 0�(u) 1� = � njvj 0�(v) 1� =� njujnjvj 0�(u)njvj + �(v) 1� = � njuvj 0�(uv) 1� = �(uv):� is also injective, because � is injective and �(w) is the (2; 1)-entry of thematrix �(w).Next we de�ne a monoid morphism  : ����� ! N3�3 , where two copiesof � is applied simultaneously in 3� 3 matrices,(u; v) = 0@ njuj 0 00 njvj 0�(u) �(v) 11A : (3.2)The fact that  is a morphism follows from the fact that � is a morphism.The morphism  is also doubly injective, which means that, if (u1; v1)31 =(u2; v2)31, then u1 = u2, and if (u1; v1)32 = (u2; v2)32, then v1 = v2. Noticealso that for the empty word � we have (�; �) = I3.We are now ready to prove the undecidability result.Theorem 3.1. The mortality problem is undecidable for 3�3-matrices withinteger entries. 12



Proof. First de�ne matrix A,A = 0@ 1 0 1�1 0 �10 0 0 1A :Let Y be the set of matricesW (p; q; r; s) = 0@p 0 00 r 0q s 11A ; where p; r > 0; q; s � 0;and p; q; s and r are integers. If B and C are in Y , sayB = W (p1; q1; r1; s1) and C =W (p2; q2; r2; s2);thenBC = 0@ p1p2 0 00 r1r2 0q1p2 + q2 s1r2 + s2 11A =W (p1p2; q1p2 + q2; r1r2; s1r2 + s2);then clearly BC is in Y . Since also I is in Y , Y is a monoid.Let L be a �nitely generated submonoid of Y and S be the matrix monoidgenerated by fAg [ L.We notice that A2 = A, i.e. A is an idempotent, and that for allW (p; q; r; s) in L, AW (p; q; r; s)A = (p+ q � s)A: (3.3)Next we show that0 2 S () 9W 2 L : AWA = 0: (3.4)The reverse implication is trivial, because if AWA = 0 for someW 2 L, then0 2 S.Assume now that 0 2 S. Since 0 =2 L and for all k � 1, Ak = A, theremust be product AW1AW2A � � �AWtA = 0 (3.5)for some t � 1 and Wj 2 L, for all j = 1; : : : ; t. If we assume that t > 1 andthat t is minimal, then, because A is an idempotent, we haveAW1A � AW2A � � �AWtA = 0:13



Now by equation (3.3) we get that, for some integer m,mAW2A � � �AWtA = 0:Now we have two cases; ifm = 0, then AW1A = 0, and ifm 6= 0, then t is nota minimal. Both of these cases lead to a contradiction with the minimalityof t and therefore there exists W in L, such that AWA = 0.Next we reduce an instance of PCP to the mortality problem usingmapping  from �� � �� into N3�3 as de�ned in (3.2). Assume that � =fa1; a2; a3g, so that n = 3. Let (h; g) be an instance of PCP, where h; g :�� ! �� and � = fa2; a3g. De�ne the matricesWa = (h(a); g(a)) and W 0a = (h(a); a1g(a)) (3.6)for all a 2 �. Clearly, these matrices Wa and W 0a are in Y . Let L be the setof all matrices Wa and W 0a, where a 2 �. Consider now a matrix monoid Sgenerated by fAg [ L. By the claim (3.4), S is mortal if and only if thereis a matrix W generated by matrices of L such that AWA = 0. From thede�nition (3.6), and from the properties of the morphism , it follows thatW is of the form W = 0@ 3juj 0 00 3jvj 0�(u) �(v) 11A ;where u is in �� and v in ��. By (3.3) we have to analyse the condition3juj + �(u)� �(v) = 0:This is, by the property (3.1) of �, equivalent to the equation v = a1u.Because u = h(w) 2 �� and a1 =2 �, we must haveW =W 0w1Ww2 � � �Wwnwhere wi's are in � and w = w1 � � �wn. This is equivalent to the conditionv = a1g(w) = a1h(w):Therefore S is mortal if and only if the instance (h; g) of PCP has a solution,and this proves the claim.This proof works also for n� n matrices where n > 3. We just add zerocolumns to the right hand side and zero rows to the bottom of all matricesin the proof of Theorem 3.1 to get n � n matrices. The products of thesenew matrices depend only on product of original 3� 3 matrices.14



Corollary 3.1. The mortality problem is undecidable for n�n matrices withinteger entries and n � 3.As mentioned before, the idea of the proof of Theorem 3.1 is the same asin the original proof by Paterson. We used only one special matrix A whenPaterson had two of them. Also, by the choice of this A, we managed tosimplify some details in the proof.As mentioned before the PCP(7) is proved to be undecidable in [MSe].Therefore the size of the alphabet � in the proof can be set to be seven andtherefore we need 15 matrices in that proof.3.2 The mortality of semigroups with two generatorsIn this section we consider the mortality problem in the case, where thesemigroup is generated by only two matrices with integer entries. We shallshow that this problem is undecidable. The proof is based on Theorem 3.1and on a simple trick to represent a matrix semigroup with k generators ofdimension n in a semigroup with only two generators of dimension nk. Theproof of the following theorem is from [CKa].Theorem 3.2. Given two square matrices A and B with integer entries, itis undecidable whether the semigroup generated by fA;Bg contains the zeromatrix.Proof. By Theorem 3.1 we know that the presence of the zero matrix isundecidable for a semigroup T generated by M1; : : : ;Mk with dimension n =3, where k = 15. We shall construct two matrices A and B of dimension nksuch that the semigroup S generated by fA;Bg contains the zero matrix ifand only if T contains it. Since an algorithm to decide this property for Scould then be turned into an algorithm for any �nitely generated semigroup,also for T , this shows that the problem is undecidable.The construction is quite simple. A and B are de�ned with n�n blocks,using the matrices Mi, the n� n identity I and the n� n zero. A is a blockdiagonal and B is a permutation matrix:A = 0BBB@M1 0 � � � 00 M2 . . . ...... . . . . . . 00 � � � 0 Mk
1CCCA and B = 0BBBBB@0 0 � � � 0 II 0 0 � � � 00 I 0 � � � 0... . . . . . . . . . ...0 � � � 0 I 0

1CCCCCA15



It is quite clear that B�1 = Bk�1 = BT and that Bk = Ink. We shall provenext that for any index 1 � i � k, the element Ci = Bk�i+1ABi�1 is a blockdiagonal like A, but with the blocks circularly permuted, namely its diagonalis Mi;Mi+1; : : : ;Mk;M1; : : : ;Mi�1. The proof is by induction on i.First, if i = 1, then C1 = Bk�1+1AB1�1 = BkAI = IAI = A.Assume now that there exists i such that the claim holds for all t, 1 �t � i < n. Then Ci+1 = Bk�(i+1)+1ABi+1�1 = B�1CiB, and
B�1CiB = BT 0BBBBB@ 0 0 � � � 0 MiMi+1 0 0 � � � 00 Mi+2 0 � � � 0... . . . . . . . . . ...0 � � � 0 Mi�1 0

1CCCCCA
= 0BBB@Mi+1 0 � � � 00 Mi+2 . . . ...... . . . . . . 00 � � � 0 Mi

1CCCA :So Ci+1 is of the required form.Using the relation Bk = Ink, any element of the semigroup S can bewritten in the form BtCi1Ci2 � � �Cim with m � 0. Therefore, if we as-sume that the zero matrix is in S, we have Ci1Ci2 � � �Cim = 0, since Bis invertible. Now the left upper block of the product Ci1Ci2 � � �Cim is0 = Mi1Mi2 � � �Mim , which means that the zero matrix is in T . Conversely,assume that T contains the zero matrix and that Mi1Mi2 � � �Mim = 0. LetDj = Ci1�j+1Ci2�j+1 � � �Cim�j+1 for 1 � j � k, where the indices are takenmodulo k. The matrix Dj is block diagonal and its j'th diagonal block isMi1Mi2 � � �Mim = 0. Therefore, the product D1D2 � � �Dk, which is an ele-ment of S, is the zero matrix.It follows from the previous theorem that the mortality problem is un-decidable for semigroups generated by two matrices, if the dimension of thematrices is at least 3 � 15 = 45.We shall return to the question of the mortality of semigroups generatedby two matrices in the Chapter 7, where this problem is shown to be decidablefor 2� 2 matrices. 16



3.3 The existence of the zero element in matrix semi-groupsIn the two previous sections we considered the existence of the zero matrixin a �nitely generated matrix semigroup. In this section we consider theexistence of the zero element in a matrix semigroup, i.e. the existence of anelement x in a semigroup S such that, for all a in S, xa = ax = x. Clearly,if a matrix semigroup S contains the zero matrix, then it has also a zeroelement.We shall show in this section that also the existence of the zero elementis an undecidable property. We begin with an easy semigroup theoreticallemma.Lemma 3.1. The zero element in a semigroup is unique.Proof. Let (S; �) be a semigroup and to the contrary that S contains twozero elements, say x1 and x2. Then by the de�nition of a zero elementx1 = x1 � x2 = x2.Next theorem is obvious after the previous lemma.Theorem 3.3. For n � 3, it is undecidable whether a given �nitely gener-ated matrix semigroup of n � n matrices with integer entries contains thezero element.Proof. Assume that the matrices M1; : : : ;Mk are the given generator matri-ces of the semigroup. Assume to the contrary that it is decidable whether Scontains a zero element. Then we can also decide whether the zero matrix isin S. This follows, since if there does not exist a zero element in S, then thezero matrix is not in S either, and if there exists a zero element, we checkall the elements in S until we �nd it. The checking is easy to do, since X isa zero element if and only ifM1X = � � � =MkX = X = XM1 = � � � = XMk:Now when we �nd the zero element, we check if it is the zero matrix ornot. Hence, indeed, we can decide whether S contains the zero matrix, acontradiction with Theorem 3.1. 17



3.4 The mortality problem in dimension twoIt is clear that for 1 � 1 matrices the mortality problem is decidable. Theonly possibility to have the zero matrix in S is that it is one of the generators.What can we say about the problem for 2�2 matrices? Not much, becauseit is not known whether the mortality problem is decidable or undecidablefor 2� 2 matrices in the case, where we have more than two generators. Aswe mentioned before, it can be proved decidable in two generator case. Thisproof is presented in Chapter 7.One thing we can say is that if the mortality problem for 2� 2 matriceswith arbitrary many generators is undecidable, then it must be proved withsome other techniques than the undecidability for 3 � 3 matrices, becausethat proof was based on the injective morphism from ����� into N3�3 , andthere is no such morphism into N2�2 . We shall now prove this fact, but beforethat, we prove a lemma concerning the commutation of certain special 2� 2matrices.Lemma 3.2. Let A be an upper triangular 2� 2 matrix over C .1) If A = �a b0 a�, where b 6= 0, then for all matrices B 2 C 2�2 , AB =BA if and only if B = �e f0 e�.2) If A = �a 00 d�, where a 6= d, then for all B 2 C 2�2 , AB = BA if andonly if B = �e 00 h�.Proof. 1) Assume that B = �e fg h� and that AB = BA. These implythat (AB)11 = ae + bg = ae = (BA)11 and therefore g = 0. Now wesee that (AB)12 = af + bh = eb + fa = (BA)12, so h = e. Clearly also(AB)21 = 0 = (BA)21 and (AB)22 = ae = (BA)22. This shows that if Bcommutes with A it is of the required form, and conversily.2) Assume that B = �e fg h� and that AB = BA. Then (AB)12 =af = fd = (BA)11, and since a 6= d, it follows that f = 0. Also (AB)21 =dg = ga = (BA)21, so g = 0 and we are done, since the other direction isobvious.The reason we need the previous lemma is that we use in the next proofthe existence of so called Jordan normal form of square matrices. The Jordan18



normal form J of a matrix A in Zn�n is an upper triangular matrix, which issimilar to A, that is, there exists an invertible matrix P in C n�n such that,A = PJP�1. The diagonal of J consists of the eigenvalues of A.For a matrix A in Z2�2, the Jordan normal form has two possibilities:1) If A has two di�erent eigenvalues, say � and �, then J = �� 00 ��.2) If A has only one eigenvalue, say �, then then J = �� 00 �� orJ = �� 10 ��.For the proof of these facts we refer to [Gan].The next theorem shows that there is no injective morphism from �����into C 2�2 . Actually we need this property only for morphisms into N2�2 , butwe use C 2�2 here, because in the proof we need the Jordan normal form ofmatrices, which is in C 2�2 , since the eigenvalues are in C .Now we are ready for the theorem, the proof of it being from [CHK].Theorem 3.4. There is no injective morphism� : �� � �� ! C 2�2for any alphabet � with at least two elements.Proof. It is su�cient to prove the theorem in the case where � = f0; 1g. Inthis case the monoid S = �� � �� has a generating setL = f(0; �); (1; �); (�; 0); (�; 1); (�; �)g;where � is the empty word. To simplify the notations we set a = (0; �),b = (1; �), c = (�; 0), d = (�; 1) and e = (�; �).Assume to the contrary that there is an injective morphism � from S intoC 2�2 , and let A = �(a), B = �(b), C = �(c), D = �(d), and E = �(e). Sincethe conjugation by an invertible matrix does not inuence the injectivity, wecan suppose that A is in the Jordan normal form.Suppose that A has two di�erent eigenvalues. Then A = �� 00 ��, andthe matrices commuting with A are exactly the diagonal matrices by Lemma3.2. Therefore C and D must be diagonal, since ac = ca and ad = da in19



S. It follows that also matrices C and D commute, which contradicts theinjectivity, since c and d do not commute in S.If A has only one eigenvalue, then A = �� 00 �� or A = �� 10 ��. The�rst case is impossible, because then A = �I commutes with all matrices,especially with B, but b and a do not commute in S. In the second caseA would commute only with the matrices of the form �x y0 x� by Lemma3.2, and they commute with each others, which yields a contradiction asabove.The mortality of 2 � 2 matrices is also connected to other branches ofmathematics, cf. [Sch].We end this chapter by showing that the mortality problem is decidablefor the 2�2 upper triangular matrices. This special case is not very importantand it does not say anything about the general case.Theorem 3.5. Let L be a set of 2�2 upper triangular matrices with integerentries. Then the zero matrix belongs to the semigroup generated by L if andonly if there are matrices A and B in L such thatA11 = 0 and B22 = 0:Proof. Let A and B be 2� 2 upper triangular matrices,A = �a11 a120 a22� and B = �b11 b120 b22� :Then AB = �a11b11 a11b12 + a12b220 a22b22 � :We see that the product is also an upper triangular matrix. To get zeros tothe diagonal, necessarily either a11 or b11 equals with the zero and either a22or b22 equals with the zero. So we have four cases, but, by symmetry, it isenough to consider only two of those. First, if a11 = a22 = 0, then AA = 0.The second case is that a11 = b22 = 0, and then AB = 0. Both directions ofthe equivalence follow from this.
20



4 Freeness of Matrix Semigroups
In this chapter we concentrate on the freeness property of semigroups whichis one of the fundamental properties of semigroups and monoids.Recall that a semigroup S is said to be free if there exists a subset X ofS such that every element of S has a unique factorization over X, i.e. everyelement of S can be uniquely expressed as a product of elements of X. Theresults in this chapter also concern monoids, because a monoid M is said tobe free if Mnf1g is a free semigroup.Next we de�ne the freeness problem for square matrices.Problem 2. Determine whether a given �nitely generated semigroup of n�nmatrices with non-negative integer entries is free?As in the case of the mortality problem, we �rst prove that this problemis undecidable for 3 � 3 matrices, and therefore also for all n � n matrices,where n � 3. After that we consider the case of 2� 2 matrices.In the �nal section of this chapter we prove that it is undecidable, whethertwo matrix semigroups have an equal element.4.1 The undecidability of the freenessWe shall now prove that the freeness problem is undecidable for 3�3 matrices.This result was �rst proved by Klarner, Birget and Satter�eld [KBS] in 1990,but we will present a proof which was developed by J. Cassaigne, T. Harjuand J. Karhum�aki [CHK]. This proof is shorter and also gives a better boundfor the number of matrices.The proof uses the same techniques than the proof of the mortality prob-lem, but instead of an instance of PCP we will reduce an instance of MMPCPto this problem.Assume that � is an alphabet, � = fa1; : : : ; ang, and let function � :�� ! N correspond a value of word as an n-adic representation as in themortality chapter. 21



We now de�ne a mapping 1 : �� � �� ! N3�3 by setting1(u; v) = ((u; v))T = 0@njuj 0 �(u)0 njvj �(v)0 0 1 1A ;where  is the injective morphism de�ned in Section 3.1. Clearly also 1 is adoubly injective morphism.Theorem 4.1. It is undecidable whether a semigroup generated by �nite setof upper-triangular 3� 3 matrices of non-negative integers is free.Proof. Let (h; g) be an instance of MMPCP. Of course, we may assume thath and g are morphism from �� into �� i.e. they are endomorphisms. Nextde�ne the set M = f1(a; h(a)); 1(a; g(a)) j a 2 �gand let S be the semigroup generated by M .Let �i1 ; : : : ; �ip; �j1; : : : ; �jq be in M , �it = 1(ait; hit(ait)) and �js =1(bjs; gjs(bjs)), with hit and gjs in fh; gg and ait and bjs in �, for t = 1; : : : ; pand s = 1; : : : ; q. Then, by the de�nition of 1 (and ), we have:�i1 : : : �ip = �j1 : : : �jq in Sif and only if(�i1 : : : �ip)1;3 = (�j1 : : : �jq)1;3 and (�i1 : : : �ip)2;3 = (�j1 : : : �jq)2;3:But this is equivalent toai1 : : : aip = bj1 : : : bjq and hi1(ai1) : : : hip(aip) = gj1(bj1) : : : gjq(bjq)by the uniqueness of the n-adic representations.We have proved that S is nonfree if and only if the instance (h; g) ofMMPCP has a solution. Hence the nonfreeness, and so also the freeness, isan undecidable property.We could have used also the morphism  itself in the above proof but weprefered to formulate the result for upper triangular matrices. This is the�rst reason that this proof is better than the proof of Klarner, Birget andSatter�eld [KBS]. The second reason is that they needed 29 matrices whenwe needed only 18, assuming that in the PCP we consider instances over 722



letter domain alphabet, as can be done, cf. [MSe] - in the undecidabilityproof of the MMPCP we added two letters to this alphabet.The next corollary is clear by extending the matrices in the above proofin an obvious way.Corollary 4.1. The freeness problem is undecidable for n � n upper trian-gular matrices with non-negative integer entries for any n � 3 .
4.2 The freeness problem in dimension twoAs in the case of the mortality problem, it is not known whether the freenessproblem is decidable or undecidable in the case of 2�2-matrices. But, again,we know that if it is undecidable, it cannot be proved using a constructionsimilar to the one used for 3� 3-matrices. This is due to Theorem 3.4.In the theory of semigroups, it is known that every �nitely generatedfree semigroup is isomorphic to some free word semigroup �+k , where k isthe number of letters in the alphabet �. It is also known that every freesemigroup �+k can be embedded into the semigroup of 2 � 2-matrices overnonnegative integer, i.e. into N2�2 . Such embeddings can be done in manydi�erent ways. For example, if �k = fa0; a1; : : : ; ak�1g, then the morphismde�ned by ai 7! �k i0 1�is one such embedding. Another one is the embedding � de�ned in thechapter considering the mortality problem, Chapter 3.It is known that it is decidable whether a �nite set of words is a freegenerating set, i.e. whether a semigroup generated by a �nite set of words isfree, cf. [BeP]. Therefore it is natural to ask, whether the freeness problemis decidable for the 2 � 2 matrices over nonnegative integers. This problemseems to be very di�cult. Indeed, in [CHK] Cassaigne, Harju and Karhum�akiconsidered a restricted case, where the semigroup is generated by two uppertriangular 2 � 2 matrices over Q , but even in this case, no general methodfor deciding the freeness was found. 23



4.3 Common elements in semigroupsIn this section we consider the existence of a common element in two matrixsemigroups.Problem 3. Given two �nitely generated subsemigroups of Mn(Z), say Mand N , determine whether there exists a matrix X, which is both in M andin N .Here `given' means again that we are given the generators of M and N .The existence of a common element is actually an independent problemand it is not connected to the freeness problem, but we present it here, sincein the proof of the undecidability we use the same mapping 1 as de�nedearlier in this chapter.M. Krom considered a variant of this problem in [Kro]. He asked, whetherthere exists a matrix X in bothM and N such that X is a product of equallymany generators of bothM and N . We shall prove that the problem of equalelement is undecidable, if n � 3, and the proof we present suits also for thevariant of Krom.Theorem 4.2. It is undecidable whether two �nitely generated subsemigroupsof M3(Z) have a common element.Proof. Let (h; g) be an instance of PCP, where h and g are morphism from�� into ��. Assume that � � � and let 1 be the morphism de�ned inSection 4.1. Now let SH and SG be two semigroups generated by the matricesHa = 1(a; h(a)) and Ga = 1(a; g(a)) for all a in �, respectively.Since 1 is doubly injective, we get thatHa1 � � �Hak = Gb1 � � �Gbtif and only ifa1 : : : ak = b1 : : : bt and h(a1) : : : h(ak) = g(b1) : : : g(bt):Therefore the claim follows from the undecidability of the PCP.Clearly this proof works for the variant of Krom, since in the proof nec-cessarily k = t.
24



5 Finiteness of Matrix Semigroups
We are given a �nitely generated subsemigroup S of Nn�n , i.e. we are giventhe generator matrices of S. In this chapter we consider the problem whichasks:Problem 4. Determine whether the semigroup S is �nite or not?We show that this problem is decidable by showing that, if S is �nite,then an upper bound of the cardinality of S can be computed.Natural extensions of the �niteness problem are the ones considering semi-groups of matrices over the rational numbers Q and, in general, over any �eld.Also these extensions can be proved to be decidable, cf. [MaS].Our proofs and notions are from the article [MaS] by A. Mandel and I.Simon in 1977. At the end of this chapter we mention also some other resultswhich give better upper bounds than the bound proved here.5.1 The decidability of the �nitenessAs mentioned above, we shall show that there exists an upper bound forthe cardinality of a �nite subsemigroup of Nn�n , which depends on n andon the number of generators of the semigroup. The proof we present is acombinatorial one. First we need some new de�nitions.Let S be a semigroup. An element a of S is called a torsion (or periodic),if ap = aq for some natural numbers p < q. If every element of S is a torsion,then S is a torsion semigroup (or a periodic semigroup).Note that a matrix A from M(N) is torsion if and only if there exists anatural number m, such that (Ar)ij � m for all r.We need also the next theorem, which is a classical result of Ramsey[Ram].Theorem 5.1. Given natural numbers m, n and k such that m � 2 and n �k � 1, then there exist a natural number R(m;n; k) such that for every setX of cardinality at least R(m;n; k) and every partition of k element subsetsof X into m blocks, there exists a subset Y of X, with the cardinality n, suchthat all k element subsets of Y belong to the same block.25



Ramsey's theorem has many equivalent formulations and there exists abranch in combinatorics, namely The Ramsey Theory, which is based on thistheorem, cf. [GRS].Next we de�ne a graph representation of a matrix in Mn(N). For a givenA in Mn(N), we de�ne a graph GA to have a vertex set V = n = f1; : : : ; ngand an edge set E, such that, there is a directed edge from i to j in E withlabel Aij, whenever Aij 6= 0. For an edge e, we denote its label by �(e). Fora walk T = (i0; e1; i1; : : : ; er; ir) in GA, where ij's are vertices, and ei is anedge from ij�1 to ij, we de�ne the label �(T ) to be Qrj=1 �(ej). We say thatthe length of T is r.The next lemma follows from the above de�nitions.Lemma 5.1. Assume that A is in Mn(N). For all r in N, (Ar)ij is the sumof the labels of the length r walks from i to j in GA.Proof. We prove this by induction on r.If r = 1, then this is clear by the de�nition of GA.Assume that for some k � 1, the claim holds, whenever r � k. Thismeans that for all i and j, (Ar)ij is the sum of the labels of all walks from ito j of length r. Now(Ak+1)ij = (A � Ak)ij = kXh=1 Aih(Ak)hj;which is the sum of all labels of walks of length k + 1 from i to j.Before our next lemma we de�ne one more property of graphs. Let G bea directed graph, G = (V;E), where V is the set of vertices and E is the setof directed edges. Then a subgraph H of G, H = (VH ; EH), where VH � Vand EH � E, is called a strong component of G, if for all i and j in VH , thereis a directed path (or walk) from i to j and from j to i.Lemma 5.2. Let A be a matrix in Mn(N). Then the following statementsare equivalent:(a) A is a torsion.(b) GA contains neither a directed cycle with label at least 2, nor twodirected cycles which are connected by a path.(c) There exists a permutation matrix P such that P�1AP has the blockform 0@B11 B12 B130 B22 B230 0 B331A ; (5.1)26



where some blocks might be empty, B11 and B33 are upper triangular withzeros on the diagonals, and B22 is a permutation matrix.Proof. To show that (a) implies (b), let A be in Mn(N) and let GA be itsgraph representation. Assume that GA contains a cycle T with �(T ) � 2,and assume also that i is a vertex in T . Denote by l the length of T ; clearlyl � 1. By Lemma 5.1, (Alr)ii � �(T )r � 2r, and hence A is not a torsion.Assume now that GA has two distinct cycles T1 and T2 through verticesi and j, respectively, and that there is a path T3 from i to j. Let lk be thelength of Tk for k = 1; 2; 3. Consider the walks of the form Tm1l21 T3Tm2l12 .The length of such a walk is clearly (m1 + m2)l1l2 + l3. If m = m1 + m2,then for all m in N we have at least m di�erent paths from i to j of lengthml1l2+ l3, because there is m di�erent ways to express m as a sum m1+m2.Therefore by Lemma 5.1, (Aml1l2+l3)ij � m, and so A is not a torsion.Next we show that (b) implies (c). We say that a strong component of thegraph GA is trivial if it contains no edges. Consider the following partitionof the vertex set of GA:V2 = fi 2 n j i belongs to a nontrivial strong component of GAg;V1 = fi 2 nnV2 j there exists a path from i to some vertex in V2g;V3 = nn(V1 [ V2):Let Gk denote the subgraph of GA induced by Vk for k = 1; 2; 3, i.e. Gkconsists of all vertices of Vk and all edges between the vertices of Vk. Becausethe vertices that are in some cycle of GA belong to V2, it follows that G1 andG3 are acyclic. Therefore we are able to de�ne total orders �1 and �3 onV1 and V3, respectively, such that if there is a edge from i to j in Gk, theni �k j. Now there exists a permutation � of n, such that8 i; j 2 Vk; i 6= j : �(i) < �(j) () i <k j for k = 1; 3; (5.2)8 i 2 Vk; j 2 Vl : k < l =) �(i) < �(j): (5.3)Such a permutation can be constructed in such a way that n is �rst dividedinto three parts according to (5.3), and then the permutation is de�ned using(5.2).Let P to be the permutation matrix de�ned by Pij = �i;�(j). Then thematrix P�1AP satis�es the condition (P�1AP )ij = A�(i);�(j), since the mul-tiplication by P�1 = ��(i);j from the left permutes the rows of A accordingto �, i.e. (P�1A)ij = A�(i);j, and the multiplication by P from the rightpermutes the columns of A�(i)j according to �. Let Bij denote the restrictionof the matrix P�1AP to �(Vi)��(Vj). Because no vertices of V3 is connected27



to V1 or V2 (by de�nition), it follows from (5.3) that B31 and B32 are zeromatrices. Also B21 is zero, because there exists no path from the vertices ofV2 to the vertices of V1, only vice versa. Further since no element in V1 [ V3belongs to any nontrivial strong component of GA, it follows that B11 andB33 have zeros on the diagonals: from (5.2) it also follows that they are up-per triangular. Conditions (b) imply that the strong components of GA arecycles with label 1, and because no two distinct cycles are joined by a path,there are no edges, such that i and j belong to di�erent strong componentsand there is a an edge from i to j in GA. Therefore B22 is a permutationmatrix.Finally we show that (c) implies (a). Clearly, for a permutation matrixP there exists a natural number r such that P r = I. Let r be such a naturalnumber that Br22 = I and r � n. Now we have(P�1AP )r = P�1ArP = 0@0 B012 B0130 I B0230 0 0 1A ;because B11 and B33 are upper triangular with zeros on the diagonals; soBn11 = Bn33 = 0. Hence(P�1AP )2r = P�1A2rP = P�10@0 B012 B012B0230 I B0230 0 0 1AP(P�1AP )3r = P�1A3rP = P�10@0 B012 B012B0230 I B0230 0 0 1AP:Therefore A2r = A3r, i.e. A is a torsion.As corollaries of the previous lemma we prove two lemmas, but �rst wemust set a few new de�nitions. De�ne a semiring N2 = f0; 1; 2g � N with theoperations a� b = minfa + b; 2g and a� b = minfab; 2g. Let 	 : Mn(N) !Mn(N2) be the monoid morphism given by 	(A)ij = minfAij; 2g and let �denote the set inclusion � :Mn(N2)!Mn(N).Note that, for a matrix A in Mn(N), G	(A) has exactly the same edgesthan GA, and if GA has a cycle with a label at least 2, then so does G	(A),since in GA, necessarily one of the edges on this cycle has a label at least 2,and in G	(A) this label is exactly 2. Similarly, if G	(A) contains a cycle witha label 2, (the product of labels of a path is �), then GA contains a cyclewith a label at least 2. Therefore, the graph GA satis�es the condition (b)of Lemma 5.2 if and only if the graph G	(A) satis�es it.28



We shall use these considerations as the �nal conclusion in the proof ofthe next lemma.Lemma 5.3. Let A and B be matrices of Mn(N) such that 	(A) = 	(B).Then A is a torsion if and only if B is a torsion.Proof. Because 	(A) = 	(B), graphs G	(A) and G	(B) are equal. Therefore,if GA satis�es Condition (b) of Lemma 5.2, so does GB.Recall that an element a of a semiring is called idempotent, if a2 = a.The next lemma shows how the torsions of the monoidMn(N) are connectedto the idempotents of the monoid Mn(N2).Lemma 5.4. If A 2 Mn(N) is a torsion and 	(A) is an idempotent, thenA2 = A3, and there exists a permutation matrix P such that P�1AP has ablock form 0@0 C D0 I E0 0 01A ; (5.4)where I is an identity matrix.Proof. Let P be a permutation matrix such that P�1AP has the form (5.1)of Lemma 5.2. Since 	(A) is idempotent in Mn(N2) and 	 is a morphism,	((P�1AP )2) = 	(P�1A2P ) = 	(P�1AP ):Now since B11 and B33 are upper triangular with zeros on the diagonals, B11and B33 must be zero matrices. Indeed, if they are not zero matrices, thenon each power the number of zero entries grows. Since B22 is a permutationmatrix and therefore invertible, from B222 = B22 it follows that B22 = I.Hence P�1AP is of the form (5.4). Now(P�1AP )2 = P�1A2P = P�10@0 C CE0 I E0 0 0 1AP;(P�1AP )3 = P�1A3P = P�10@0 C CE0 I E0 0 0 1AP:So we have that P�1A2P = P�1A3P , and by multiplying this equation by Pfrom the left and by P�1 from the right we get that A2 = A3.29



We are ready for the main theorem of this section. It shows that if a�nitely generated subsemigroup S of Mn(N) is �nite, then we can state anupper bound for cardinality of S.Theorem 5.2. Let S be a subsemigroup of Mn(N), generated by k of itselements. The following statement are equivalent:(a) S is �nite.(b) For all A 2 	(S), if A is idempotent then �(A)2 = �(A)3.(c) jSj � g(n; k) where g is a function depending only on n and k.Proof. First we show that (a) implies (b). Since S is �nite, it is torsion. LetA in 	(S) be idempotent and let B in S be such that 	(B) = A. Since A =	(�(A)), it follows that 	(B) = 	(�(A)). Since B is a torsion, by Lemma5.3, so is �(A), and by Lemma 5.4, since A is idempotent, �(A)2 = �(A)3.Second we show that (b) implies (c). Let m = 3n2 = jMn(N2)j, p =R(m; 4; 2) and g(n; k) =Pp�1i=0 ki. Without loss of generality we may assumethat S is a monoid. Since S is generated by k of its elements, there is anepimorphism, i.e. a surjective morphism, � : X� ! S, where X� is the freeword monoid generated by an alphabet X of cardinality k. We continue byproving the next claim.Claim. If x in X� is a word of length jxj � p, then there exists another wordy in X�, with jyj < jxj, such that �(x) = �(y).Proof of the Claim. Let r = jxj and let x = x1x2 : : : xr, with xi's in X. Letus partition the 2-subsets of f1; : : : ; rg into m blocks fQA j A 2 Mn(N2)g;by letting QA = ffi; jg j i < j and 	(�(xixi+1 : : : xj)) = Ag:Since r � p, there exists, by Theorem 5.1, a set Y = fi1; i2; i3; i4g, with1 � i1 < i2 < i3 < i4 � r, such that all 2-subsets of Y belong to the sameblock, say QA. Let yk = xik : : : xik+1�1 for k = 1; 2; 3, and let u and v inX� be such that x = uy1y2y3v. Denote the composition (	 � �) by �. Sincefi1; i2g, fi2; i3g, fi1; i3g and fi3; i4g are in QA, we haveA = �(y1) = �(y2) = �(y1y2) = �(y3): (5.5)Now, because � is a morphism (since 	 and � are), we have that A =�(y1y2) = �(y1)�(y2) = A2, i.e. A is an idempotent in 	(S). By our as-sumption (b), this implies that �(A)2 = �(A)3, and by Lemma 5.4, thereexists a permutation matrix P such that P�1�(A)P has a block form (5.4).Since P and P�1 are permutation matrices, it is clear that 	(P ) = P and30



	(P�1) = P�1, and it follows from (5.5) that P�1�(A)P = 	(P�1�(yk)P ),for k = 1; 2; 3. Hence by the de�nition of 	 and �, P�1�(yk)P has the blockform 0@0 Ck Dk0 I Ek0 0 0 1A :This implies that(P�1�(y1)P )(P�1�(y2)P )(P�1�(y3)P ) = 0@0 C1 C1E20 I E20 0 0 1A0@0 C3 D30 I E30 0 0 1A= 0@0 C1 C1E30 I E30 0 0 1A = (P�1�(y1)P )(P�1�(y3)P ):Now P�1�(y1y2y3)P = P�1�(y1y3)P , i.e. �(y1y2y3) = �(y1y3). Thus, �(x) =�(uy1y3v) and this completes the proof of the Claim, since jy2j > 0.It follows that �(x) = �(z) for some word z in X�, such that jzj < p;hence jSj � g(n; k).It is clear that (c) implies (a).In our proof we had p = R(m; 4; 2), but these Ramsey numbers are verylarge. We mention that A. Weber and H. Seidl proved in [WeS] that thenumber R(m; 4; 2) can be replaced by the number de2 �n!e�1, where e is thenatural base of logarithms. Their proof is based on the theory of automata,and it is di�erent from the one we presented. Weber and Seidl also mentionin the appendix of [WeS] that it can be decided in time O(n6 � jHj), whethera subsemigroup of Mn(N) generated by the set H is �nite. There exists alsomany other papers concerning this upper bound and the exact algorithm, forexample by G. Jacob, [Ja1] and [Ja2], and by some of the authors alreadymentioned in this chapter.Corollary 5.1. It is decidable whether a given �nitely generated subsemi-group of Mn(N) is �nite.Proof. The previous theorem shows that we have to �nd only g(n; k) + 1di�erent matrices from S to see that S is in�nite. If we cannot �nd thatmany di�erent matrices, then S is �nite.31



Mandel and Simon also proved in [MaS], that there is an upper bound forthe cardinality of the �nite subsemigroups of Mn(Q ) and of Mn(F ), whereF is an arbitrary �eld.The next two theorems are corollaries of the result of Mandel and Simonfor Mn(Q ).Theorem 5.3. It is decidable whether a semigroup generated by one integermatrix is free.Proof. We can decide whether the semigroup generated by a given matrix is�nite or not, and if the semigroup is �nite, then it is not free, and otherwiseit is free.Theorem 5.4. It is decidable whether some power of a given integer matrixis zero, i.e. the mortality problem for the semigroup generated by one matrixis decidable.Proof. We can decide whether the matrix semigroup generated by this matrixis �nite or not, and if it is, we check if one of these matrices is zero.The same conclusion holds for the decidability of the existence of theidentity matrix as a power of given matrix. It is also decidable.
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6 Zero in the Right Upper CornerThe problem considered in this chapter is called the zero in the right uppercorner.Problem 5. For a given �nite subset of Zn�n, determine whether there existsan M in the semigroup generated by these matrices such that M1n = 0.In the �rst section we shall show that if n � 3, then the problem isundecidable. The method we use is the usual coding of pairs of words into 3�3 matrices. First we have to recall and introduce few notions and functions.In the latter part of this chapter we consider the above problem in thecase where we have only two generators. We shall prove that also in thiscase the problem is undecidable, when the dimension of the matrices is largeenough.6.1 The undecidability of the zero in the right uppercornerWe begin with some de�nitions for the proof. Let � = fa1; a2; :::; ang be analphabet and let function � be as in Chapter 2, i.e. � : �� ! N such that�(ai1ai2 :::aik) = kXj=1 ijnk�j and �(1) = 0:We recall that � is injective, and that for all u; v in ���(uv) = �(v) + njvj�(u): (6.1)Assume now that n = 2, i.e. � = fa1; a2g, and de�ne a mapping 2 :�� � �� ! Z3�3 by 2(u; v) = 0@1 �(v) �(u)� �(v)0 2jvj 2juj � 2jvj0 0 2juj 1A :This mapping is clearly injective, because � is injective, and it is also a33



morphism, since for all u1; u2; v1; v2 in ��,2(u1; v1)2(u2; v2)= 0@1 �(v1) �(u1)� �(v1)0 2jv1j 2ju1j � 2jv1j0 0 2ju1j 1A0@1 �(v2) �(u2)� �(v2)0 2jv2j 2ju2j � 2jv2j0 0 2ju2j 1A= 0BB@1 �(v2) + �(v1)2jv1j �(u2)� �(v2) + �(v1)(2ju2j � 2jv2j)+2ju2j(�(u1)� �(v1))0 2jv1j2jv2j 2jv1j(2ju2j � 2jv2j) + 2ju2j(2ju1j � 2jv1j)0 0 2ju1j2ju2j 1CCA(6.1)= 0@1 �(v1v2) �(u1u2)� �(v1v2)0 2jv1v2j 2ju1u2j � 2jv1v2j0 0 2ju1u2j 1A = 2(u1u2; v1v2):The next theorem is attributed to R.W. Floyd in [Man].Theorem 6.1. It is undecidable whether a �nitely generated subsemigroupof M3(Z) contains a matrix M with M13 = 0.Proof. Let (h; g) be an instance of PCP, let h and g be morphisms from ��into ��, and de�ne the matrices Ma = 2(h(a); g(a)) for all a in �. Then,because 2 is morphism, for a matrix M =Ma1Ma2 � � �Mam ,M13 = 0if and only if �(h(a1)h(a2):::h(am)) = �(g(a1)g(a2):::g(am));i.e. �(h(w)) = �(g(w)), where w = a1a2 : : : am. Now, because � is injective,we get that M13 = 0 if and only if h(w) = g(w), and the claim follows fromthe undecidability of PCP.Note that in the proof we needed 7 generators, since, as remarked before,PCP(7) is undecidable.Because we may add zero columns to the left and zero rows to the bottomof the matrices in the previous proof, we get the next corollary.Corollary 6.1. If n � 3, it is undecidable whether a �nitely generated sub-semigroup of Mn(Z) contains a matrix M with M1n = 0.The decidability of the existence of the zero in the right upper corner for2� 2 matrices is an open question. We note again, that if it is undecidable,it must be proved with some other method than the one used in the proof ofthe previous theorem. 34



6.2 The two generator caseIn Chapter 3 we considered the mortality problem in the case, where the semi-group is generated by two matrices. We used the construction from matricesM1; : : : ;Mk with dimension n into two matrices A and B with dimension nksuch thatA = 0BBB@M1 0 � � � 00 M2 . . . ...... . . . . . . 00 � � � 0 Mn
1CCCA and B = 0BBBBB@0 0 � � � 0 II 0 0 � � � 00 I 0 � � � 0... . . . . . . . . . ...0 � � � 0 I 0

1CCCCCAWe cannot apply these matrices to the problem of the zero in the right uppercorner, but we shall use them as blocks in the matrices with dimension nk+3.First we de�ne two vectors of dimension n, namelyX = �1 0 : : : 0� and Y = 0BBB@0...011CCCA ;so XMY is the entry in the right upper corner of M in Zn�n. Next de�netwo vectors of dimension nk,U = �X : : : X� and V = 0BBB@Y0...01CCCA :Now we de�ne the matrices A0 and B0 with dimension nk + 3 to beA0 = 0BB@0 1 U 10 0 0 10 0 A V0 0 0 01CCA and B0 = 0BB@0 1 U 10 1 0 10 0 B V0 0 0 01CCA :Note the di�erence in the second diagonal entry.The proof of the next theorem is from [CKa].Theorem 6.2. It is undecidable whether the semigroup generated by fA0; B0ghas an element such that it has a zero in the right upper corner.35



Proof. Let S be the semigroup generated by fA;Bg, S 0 be the semigroupgenerated by fA0; B0g, and T be the semigroup generated by fM1; : : : ;Mkg.Let C 0 be an element of S 0. ThenC 0 = 0BB@0 � � �0 � 0 �0 0 C �0 0 0 01CCA ;where �'s represent the unimportant values, C is an element of S, and � is1, if C 0 is power of B0, and 0 otherwise.Consider any element of S 0 other than the generators A0 and B0. It canbe written in the form PC 0Q, where P and Q are equal to A0 or B0,P = 0BB@0 1 U 10 � 0 10 0 � V0 0 0 01CCA and Q = 0BB@0 1 U 10 � 0 10 0 � V0 0 0 01CCA ;and C 0 is an element of S 0. The product expands toPC 0Q = 0BB@0 � � �+ UCV0 � 0 �0 0 � �0 0 0 0 1CCA ;where the right upper corner entry is �+ UCV . If C 0 is a power of B0, thenC is a power of B and � = 1 and UCV = 0, hence the right upper entryof PC 0Q is 1. Otherwise, � = 0 and if we divide C to n � n blocks Nij,where 1 � i; j � k, then UCV =Pki=1XNi1Y . As in the proof of Theorem3.2, we can write C = BtCi1Ci2 � � �Cim , where Cij = Bk�ij+1ABij�1, where1 � ij � k. The initial Bt permutes the lines only, so the Ni1's are also, in adi�erent order, the elements of the �rst block column of Ci1Ci2 � � �Cim , andone of them is M = Mi1Mi2 � � �Mim and the k � 1 others are zero blocks.Therefore the right upper corner entry of PC 0Q is XMY , i.e. the rightupper corner entry of M , which can be any element of T . If we now de�nethe matrices Mi to be the matrices of the proof of Theorem 6.1, we get thatfor S 0 the existence of the zero in the right upper corner is undecidable, sinceit is undecidable for T .Notice that dimension of A0 and B0 is nk+3 and, by the proof of Theorem6.1, we may set n = 3 and k = 7. Therefore we get that the problem of thezero in the right upper corner is undecidable in two generator semigroups,when the dimension of these matrices is at least 24. This is an obviouscorollary of the previous theorem. 36



7 Skolem's Problem
In this and next chapters we consider the so called Skolem's problem, whichwe de�ne next. It is related to the problem of the zero in the right uppercorner in a way that in Skolem's problem we consider semigroups generatedby one matrix.Problem 6. LetM be a given matrix fromMn(Z). Determine whether thereexist a power k such that (Mk)1n = 0?It is not known whether the Skolem's problem is decidable or not, whenn � 3. We shall prove the decidability for case of dimension two in the �rstsection and the main result of the next chapter is that it is decidable, whetherthere exists in�nitely many powers k such that (Mk)1n = 0.In the proof of the decidability of the Skolem's problem in dimension twowe shall use Theorem 7.1 which suits for deciding the existence of the zero inany entry of the powers of a given 2� 2 matrix, and the decidability of theSkolem's problem is a corollary of that theorem. That theorem gives us alsoa way to prove the decidability of the mortality problem in the case, whenthe semigroup is generated by two 2� 2 matrices. This proof is presented inthe second section of this chapter.7.1 Skolem's problem in dimension twoWe are now going to prove that the Skolem's problem is decidable in the caseof 2� 2 matrices. To prove this we need certain properties of sequences.Let (un)1n=1 be an integer sequence, de�ned by constants u0 = c0, u1 = c1and a formula un + a1un�1 + a2un�2 = 0; (7.1)where ai's are in Q . Let � and � are the roots of the equationy2 + a1y + a2 = 0: (7.2)The next lemma has an elementary combinatorial proof, which we givefor the sake of completeness. 37



Lemma 7.1. Let (un)1n=0 be as above. Then we have two cases, namely:(i) If � 6= �, then there exists constants a and b such thatun = a�n + b�nfor all n in N.(ii) If � = �, then there exists constants c and d such thatun = (cn+ d)�nProof. (i): If the claim holds, then by the equalities a+b = c0 and a�+b� =c1, we have a = c1 � c0��� � and b = c1 � c0�� � � :We assume that a and b are as above and prove the claim (i) by induction.Clearly, when n = 0; 1 the claim holds. Assume that it holds for alln � k + 1, where k � 0. Then by the assumption (7.1)uk+2 = �a1uk+1 � a2uk = �a1(a�k+1 + b�k+1)� a2(a�k + b�k)= �a�k(a1� + a2)� b�k(a1� + a2) = a�k+2 + b�k+1;where the last equation follows from the fact that � and � are roots of theequation (7.2), and therefore ��2 = a1� + a2 and ��2 = a1� + a2.(ii): Like in the previous case, if the claim holds, then we have that d = c0and c = (c1 � c0�)=�. We prove the claim (ii) by induction.If n = 0; 1, then the claim holds. Assume that claim holds for all n � k+1,where k � 0. Then by the assumption (7.1)uk+2 = �a1(c(k + 1) + d)�k+1 � a2(ck + d)�k= �k(�a1c(k + 1)�� a1d�� a2ck � a2d)= �k(ck(�a1�� a2) + d(�a1�� a2)� a1c�)= �k(ck�2 + d�2 � (�2�)c�) = (c(k + 2) + d)�k+2;since � is a root of equation (7.2) and t2 + a1t + a2 = (t � �)2, we havea1 = �2�.Let p be a prime number. We de�ne the p-adic valuation vp over Q byvp(0) = 1 and vp(q) = n, where q = pn ab with a and b in Z and p dividesneither a nor b.It is clear by the de�nition of vp that vp(a + b) � inffvp(a); vp(b)g. Andif a and b are integers, we can prove a stronger result for vp(a+ b) as statedin the next lemma. 38



Lemma 7.2. Let a and b be two integers and p a prime number. If vp(a) <vp(b), then vp(a + b) = vp(a).Proof. Assume that vp(a) = n and vp(b) = k, with n < k. Then a + b =pn(a1 + b1), where vp(a1) = 0 and vp(b1) > 1. Clearly vp(a + b) � n, and ifvp(a+b) > n, then a1+b1 � 0 (mod p) and therefore a1 � �b1 � 0 (mod p),and we have a contradiction. Now vp(a+ b) = n = vp(a).Now we are ready for the main theorem of this section. The proof ismodelled after the ideas of J.Cassaigne [Cas].Theorem 7.1. Let A be a 2�2 matrix over integers and assume that u andv are integer vectors of dimension 2. Then it is decidable whether uAnvT = 0for some n > 0.Proof. Let t = tr(A) and d = det(A). By Section 2.3 we know that thecharacteristic polynomial of A is cA(�) = �2� t�+d. Also by Section 2.3 weknow that cA(A) = A2 � tA+ dI = 0, so we see thatA2 = tA� dI: (7.3)Consider the sequence (xn)n�0 = uAnvT . By multiplying the equation (7.3)by uAn from the left and by vT from the right we get xn+2 = txn+1 � dxn.We see that xn is de�ned by x0 and x1, and if both of these are zero, thenfor all n, xn = 0. We assume that this is not the case.Consider next the equation (7.2) for the sequence xn, i.e. the equationy2 � ty + d = 0: (7.4)We know that the roots of this equation are of the form y = t�pt2�4d2 . Let� = t2 � 4d. We divide the proof into three cases:1) � = 0. Then by the case (ii) of Lemma 7.1, xn = ( t2)n(cn+ d), wherec and d are in Q , and they are �xed by x0 and x1. Now if t = 0,then (xn)n�0has in�nitely many zeros, and if t 6= 0 and �dc in N , then (xn)n�0 has exactlyone zero. Otherwise (xn)n�0 has no zeros.2) � > 0. If t = 0, thenxn = ((�d)n2 x0; if n is even;(�d)bn2 cx1; if n is odd: (7.5)If x0 or x1 is zero, then (xn)n�0 has in�nitely many zeros. Otherwise it hasno zeros. 39



If t 6= 0, then we have case (i) in Lemma 7.1, i.e.xn = a�n + b�n;where � and � (in R) are the roots of the equation (7.4) and a and b are inQ�p�� = fu+ vp� j u; v 2 Qg � Rby the proof of Lemma 7.1. They can be e�ectively computed by the sameproof. Assume that � > �. Now xn = 0 if and only if (�� )n = � ba . As j�� j > 1,a bound on n can be found and we are able to check whether (xn)n�0 has azero or not.3) � < 0. If t = 0, we have the case (7.5), and it is easy to verify whetherxn = 0 for some n. We assume that t 6= 0. We know that d > 0 and we shallprove �rst that xn = O(dn2 ), which means that there exist constants c andn0 such that for all n � n0, xn � c � dn2 . Since � < 0, it follows by the case(i) of Lemma 7.1 that, for some constants a and b,xn = a�t +pt2 � 4d2 �n + b� t�pt2 � 4d2 �n:Now we get thatjxnj = ����a� t+pt2 � 4d2 �n + b�t�pt2 � 4d2 �n����� ����a�t +pt2 � 4d2 �n����+ ����b�t�pt2 � 4d2 �n����� jaj2n jt+pt2 � 4djn + jbj2n jt�pt2 � 4djn= jaj2n jt+ ip4d� t2jn + jbj2n jt� ip4d� t2jn= jaj2npt2 + 4d� t2n + jbj2npt2 + 4d� t2n= jaj2np4dn + jbj2np4dn = jajdn2 + jbjdn2 = dn2 (jaj+ jbj);and therefore xn � (jaj+ jbj)dn2 � O(dn2 ).Assume that p is a prime number such that p divides t and p2 divides d.Then pn�1 divides xn, and by setting t0 = tp and d0 = dp2 , we can de�ne aninteger sequence (x0n)n�0 such that x00 = x0, x01 = x1 and for n � 2,x0n = t0x0n1 � d0x0n�2 = xnpn�1 :40



Clearly x0n = 0 if and only if xn = 0 and therefore we may consider thesequence (x0n)n�0 instead of (xn)n�0. So we may assume that there is no suchprime p that p divides t and p2 divides d.Let u be the greatest common divisor of t and d, we denote, as usual,u = gcd(t; d) > 0, and t = uv, d = uw for some integers v and w. By theabove assumption about prime factors of t and d, gcd(u; w) = gcd(v; w) = 1.Assume that p is a prime factor of u. Then, again by induction, we canprove that vp(xn) � [n2 ]. Also vp(x2) � inffvp(tx1); vp(dx0)g � 1 and theinduction step isvp(xn+1) � inffvp(uvxn); vp(uwxn�1)g � 1 + [n�12 ] = [n+12 ]:This means that u[n2 ] divides xn for all n � 2.Assume now that for all prime factors p of w, and for all n, vp(xn+1) �vp(xn) � vp(w). This implies that xn 6= 0 for all n. Also since vp(w) � 1, itimplies that wn divides xn. Now, since gcd(u; w) = 1, we know that u[n2 ]wndivides xn. Therefore u[n2 ]wn � xn = O(dn2 );and because d = uw > 0, necessarily w = 1. Now � = (uv)2 � 4u < 0, sowe get that uv2 < 4, and jvj = 1 and u 2 f1; 2; 3g. Since d = u, we seethat d 2 f1; 2; 3g, and t = d or t = �d. All these cases lead to an equationxn+12 = d6xn, which can be veri�ed by simple calculations. For example, ifd = t = 3, then xn+2 = 3xn+1 � 3xn. We prove the equation by induction.First, for n = 0x12 = 3x11 � 3x10 = 9x10 � 9x9 � 3x10 = 6x10 � 9x9 = 18x9 � 18x8 � 9x9= 9x9 � 18x8 = 9x8 � 27x7 = �27x6 = �81x5 + 81x4= �162x4 + 243x3 = �243x3 + 486x2 = �243x2 + 729x1 = 729x0= 36x0;and similarly for n = 1, we get that x13 = 36x1. The induction step is forn � 2 x(n+1)+12 = 3xn+12 � 3x(n�1)+12 = 3 � 36xn � 3 � 36xn�1= 36(3xn � 3xn�1) = 36xn+1:This proves the case d = t = 3, and the other cases can be proved similarly.We can easily verify whether xn+12 = d6xn and t = �d. If this is not thecase, then for some prime factor p of w and some n, vp(xn+1)�vp(xn) < vp(w).Now vp(xn+1) < vp(xn) + vp(w) = vp(uwxn), so by Lemma 7.2vp(xn+2) = vp(uvxn+1 + uwxn) = vp(xn+1):41



By induction we prove thatvp(xm) = vp(xn+1) <1 for all m � n+ 1: (7.6)Assume that for some m, (7.6) holds for all k, m � k � n + 1vp(xm+1) = vp(uvxm + uwxm�1) = inffvp(xn+1); 1 + vp(xn+1)g = vp(xn+1):Clearly the only possible zero is xn where vp(xn+1)� vp(xn) < vp(w) for the�rst time. So we check whether this xn = 0.Note that p and n are not known at �rst, but we can compute the valuesvp(xn+1)� vp(xn) for all prime factors p of w until p and n are found. Thereis no explicit bound for this loop of computation; it terminates always, sincewe evaluate this loop for all prime factors p of w at the same time. The loopterminates, when the �rst pair p and n is found and then the only possibilityfor the zero in (xn)n�0 is found. We check that one, and we are done.We have proved that there is a method in all cases of � to solve whetherthere is n � 0 such that uAnv = 0.Corollary 7.1. Skolem's problem is decidable for 2� 2 matrices over inte-gers.Proof. If we set u = (1; 0) and v = (0; 1) in Theorem 7.1, then the productuAnvT equals (An)22.7.2 Skolem's problem and the mortality problemWe shall now return to the mortality problem. We restrict to the case whenwe are given two 2� 2 matrices over integers. We shall prove that this caseis decidable. The proof is based on Theorem 7.1.First we consider some properties of 2� 2 matrices over integers. Let Aand B be elements of Zn�n. We recall that det(AB) = det(A) det(B) andthat if A is singular, i.e. det(A) = 0, we know that the rows and the columnsof A are linearly dependent vectors. Set B = fv1; : : : ; vkg of vectors from Znis linearly dependent if the exists integers c1; : : : ; ck such thatc1v1 = c2v2 + c3v3 + � � �+ ckvkand at least for one i, ci 6= 0. Otherwise B is called linearly independent.42



The number of linearly independent rows in A is called the rank of A anddenoted by rank(A). It can be proved that the number of linearly indepen-dent columns is is also rank(A). Note that the rank of a matrix is also thedimension of the vectors space generated by the rows or the columns of thematrix.Let A be inZn�n. It is known that A can be presented in the formA = rank(A)Xi=1 aTi bi;where ai and bi are vectors in Zn for i = 1; : : : ; rank(A). Clearly, if rank(A) =1, then there exists vectors a and b in Zn such that A = aT b.Lemma 7.3. Let A, B and C three matrices with rank 1 from Zn�n. IfABC = 0, then either AB or BC is zero.Proof. Assume that A = aT b, B = cTd and C = eTf . If one of these matricesis zero, then the claim obviously holds, so we may assume that this is notthe case. It follows thatABC = aT bcTdeTf = (bcT )(deT )aTf;where bcT and deT is are integers. If now ABC = 0, then clearly either bcTor deT is zero. Since AB = aT bcTd = (bcT )aTdand BC = cTdeTf = (deT )cTf;the claim follows.Theorem 7.2. Given two 2 � 2 matrices over integers, say A and B, it isdecidable whether the zero matrix is in the semigroup generated by fA;Bg.Proof. Assume that A and B are non-zero, otherwise we are done. As wementioned earlier, det(AB) = det(A) det(B) and det(0) = 0, so if A and Bare both invertible, then the zero matrix is not in the semigroup S generatedby fA;Bg. It also follows that if the zero is in S, then at least one of thesematrices is singular, i.e. has determinant equal to zero.Assume that either A or B is singular. Then by Lemma 7.3, in theminimal-length zero product of S, the singular element can occur only as the�rst and the last factor. We have two possible cases:43



1) If A and B are both singular, then we have to check only the productsAB, BA, B2 and A2.2) If A is invertible and B is singular, then B can be written in formB = xT y, where x and y are vectors in Z2. NowBAkB = xTyAkxT y = (yAkxT )xT y = 0if and only if yAkxT = 0;and by Theorem 7.1 this is decidable.We shall next show that the decidability status of the Skolem's prob-lem is equivalent with the decidability status of the certain instance of themortality problem. The decidability status of a problem is either decidable,undecidable or unknown.The theorem in this section is based on Lemma 7.3 and on next lemma.Lemma 7.4. Let A be an element of Zn�n, u and v be in Zn. There existsmatrix M in Z(n+2)�(n+2) such that for all integers k � 1uAkvT = (1; 0; : : : ; 0)Mk(0; : : : ; 0; 1)T : (7.7)Proof. De�ne M as block formM = 0@0 uA2 uAvT0 A vT0 0 0 1A :The right hand side of the equation (7.7) clearly is the right upper cornerelement of Mk. We shall prove by induction thatMk = 0@0 uAk+1 uAkvT0 Ak Ak�1vT0 0 0 1A (7.8)for all integers k � 1.First, for k = 1 (7.8) is obvious by the de�nition. Assume now that (7.8)holds for all k � j, j > 1. SoM j+1 =M jM = 0@0 uAj+1 uAjvT0 Aj Aj�1vT0 0 0 1AM = 0@0 uAj+2 uAj+1vT0 Aj+1 AjvT0 0 0 1A :This proves the lemma. 44



Now we are ready for the next theorem.Theorem 7.3. Let I be an instance of the mortality problem such that weare given matrices M1; : : : ;Mt and A in Zn�n and rank(Mi) = 1 for all i =1; : : : ; t. The decidability status of instance I is equivalent with decidabilitystatus of Skolem's problem for matrix with dimension n+ 2.Proof. By Lemma 7.3 in I it is enough to study productsMiMj andMiAkMj,i; j = 1; : : : ; t and k � 1. The products of the second form are actually ofthe form uAkvT , since rankMi = 1 for all i = 1; : : : ; t, and by Lemma 7.4these are equivalent with the Skolem's problem for matrices with dimensionn+ 2.We have proved that there is a certain relation between the mortalityproblem and the Skolem's problem. Note that the decidability status ofinstances I of the mortality problem is unknown.7.3 Skolem's problem for matrices over natural num-bersIf we restrict in Skolem's problem to square matrices over natural numbers,we have a simple decidable special case. It follows from the fact that if M isin Mn(N) , then in Mk we are only interested in whether (Mk)1n is positiveor zero.Let B be the boolean semiring, B = f0; 1g, where the operations are theusual product and addition of integers except that 1 + 1 = 1.Assume that A is in Mn(N) and de�ne a mapping  : Mn(N) ! Mn(B )by  (A)ij = (0; if Aij = 0;1; otherwise:We end this chapter with a simple theorem.Theorem 7.4. Let A be in Mn(N). It is decidable whether (Ak)1n = 0 forsome k � 1.Proof. Assume that B is in Mn(B ) and that B =  (A). Clearly (Bk)1n = 0if and only if (Ak)1n. There are 2n2 elements in Mn(B ), and we can computeBk for all k, and stop if (Bk)1n = 0 or if Bk = Bh for some h < k. Thisprocedure terminates, since the number of elements in Mn(B ) is �nite.45



8 An In�nite Number of Zeros in Skolem'sProblem
In this chapter we will show that it is decidable for a given matrix M fromMn(Z) whether there exist in�nitely many k's such that (Mk)1n = 0. Theproof uses the theory of rational series so we begin with the basics of theseseries.Our presentation on rational series follows the book Rational Series andTheir Languages by J. Berstel and C. Reutenauer [BeR].8.1 Rational seriesLet X be a �nite, nonempty alphabet and denote the empty word by �.Recall that X� is a monoid, the product is the concatenation of two wordsand with neutral element �.Let K be a semiring and X an alphabet. A formal series (or formal powerseries) S is a function X� ! K:The image of word w under S is denoted by (S;w) and is called the coe�cientof w in S. The image of X� under S is denoted by =(S). The support of Sis the language supp(S) = fw 2 X� j (S;w) 6= 0g:The set of formal series over X with coe�cients in K is denoted by KhhXii.Let S and T be two formal series in KhhXii. Then their sum is given by(S + T; w) = (S;w) + (T; w)and their product by (ST; w) = Xuv=w(S; u)(T; v):46



Note that here the sum is always �nite. We note also that KhhXii is asemiring under these operations. The identity element with respect to theproduct is the series 1 de�ned by(1; w) = (1K if w = �;0K otherwise;and the identity element with respect to the sum is the series 0 de�ned by(0; w) = 0K.We also de�ne two external operations of K in KhhXii. Assume that ais in K and S in KhhXii, then the series aS and Sa are de�ned by(aS; w) = a(S;w) and (Sa; w) = (S;w)a:A formal series with a �nite support is called a polynomial. The set ofpolynomials is denoted by KhXi.If X = fxg, i.e. X is a unary alphabet, then we have the usual sets offormal power series Khhxii = K[[x]] and of polynomials K[x]A formal series S can also be written in the sum form S =P aww, wherew is in X� and aw is the coe�cient of w in K, i.e. (S;w) = aw.Example 1. Let X = fx; y; zg and consider the formal series in ZhhXiide�ned by S = xy + xxyz + 2zx. We get, for example, that (S; xy) = 1,(S; zx) = 2 and (S; xx) = 0.A family of formal series, say (Si)i2I is called locally �nite, if, for everyword w in X�, there exists only a �nite number of indicies i in I such that(Si; w) 6= 0.A formal series S in KhhXii is called proper if the coe�cient of the emptyword vanishes, that is (S; �) = 0.Let S be proper formal series. Then the family (Sn)n�0 is locally �nite,since for any word w, if jwj > n, then (Sn; w) = 0. The sum of this family isdenoted by S�, S� =Xn�0 Snand it is called the the star of S. Similarly we de�ne the plus of S, S+ =Pn�1 Sn. Clearly S0 = 1, and it can be proved that the equationsS� = 1 + S+ and S+ = SS� = S�S47



hold for proper formal series.The rational operations in KhhXii are the sum, the product, the twoexternal products of K in KhhXii and the star operation. The subset ofKhhXii is called rationally closed, if it is closed under the rational operations.The smallest rationally closed subset of KhhXii containing a subset E ofKhhXii is called the rational closure of E.A formal series is called rational if it is an element of the rational closureof KhXi, i.e. it can be de�ned using the polynomials KhXi and the rationaloperations.Example 2. Denote by X̂ the formal series Px2X x. X̂ is proper, since(X̂; 1) = 0, and rational, since it is a polynomial. The seriesX̂� =Xn�0 X̂n = Xw2X�w:is also rational.We denote Km�n, as usual, the set of the m� n matrices over K.A formal series S 2 KhhXii is called recognizable if there exists an integern � 1, and a morphism of monoids � : X� ! Kn�n, into the multiplicativestructure of Kn�n, and two matrices (or vectors) � 2 Kn�1 and � 2 K1�nsuch that for all words w, (S;w) = ��(w)�:The triple (�; �; �) is called a linear representation of S with dimension n.A linear representation of a rational series S is called reduced, if its di-mension is minimum among all linear representations of S.Note that if we de�ne � and � as vectors in Kn, then(S;w) = ��(w)�T :The next theorem is fundamental in the theory of rational series. Itwas �rst proved by Kleene in 1956 for languages that are those series withcoe�cients in the Boolean semiring. It was later extented by Sch�utzenberger[Scb] to arbitrary semirings.Theorem 8.1. A formal series is recognizable if and only if it is rational.48



The proof by Sch�utzenberger uses some properties of K-modules and itis quite long, and omitted here.It is clear by the de�nition of recognizable series that we can transformour problem of matrices into rational series quite nicely.From now on we shall �x the alphabet to be X = fxg. We denote theformal series S over X byS =Xn�0 anxn =X anxn:A rational series is called regular, if it has a linear representations (�; �; �)such that �(x) is an invertible matrix.There are also other ways to de�ne regular series. It can be proved thatfor a regular series S, any reduced linear representation (�; �; �) has invertible�(x).Assume thatK = Z and that S is a rational series in Z[[x]] having a linearrepresentation (�; �; �), and moreover that the characteristic polynomial ofthe matrix �(x) in Zk�k is c(�). Thenc(�) = (�1)k(�k + c1�k�1 + � � �+ ck);where ci's are in Z and k is the dimension of the linear representation (�; �; �).By the Cayley{Hamilton theorem we know thatc(�(x)) = �(xk) + c1�(xk�1) + � � �+ ckI = 0:If we multiply this equation from the left by ��(xn) (n 2 N) and from theright by �, we get an+k + c1an+k�1 + � � �+ ckan = 0: (8.1)The equation an+h + �1an+h�1 + � � �+ �han = 0;for n � 0, satis�ed by rational series S =P anxn in Z[[x]] is called a linearrecurrence relation. A linear recurrence relation is called proper, if �h 6= 0.Note that having a linear recurrence relation, every an for n � h can becomputed if we know the elements a0, a1, : : : , ah�1 of the series S. These h�rst elements are called the starting conditions.Next lemma gives a method to calculate a regular linear representationfrom a proper linear recurrence relation.49



Lemma 8.1. If rational series S 2 Z[[x]] satis�es a proper linear recurrencerelation, then it is has a regular linear representation (�1; �1; �1), i.e. a linearrepresentation satisfying det(�1(x)) 6= 0.Proof. Let an+h � �1an+h�1 � � � � � �han = 0be a proper linear recurrence relation of S and assume that aj's, 0 � j < h,are the starting conditions. Let�1 = (1; 0; : : : ; 0); �1(x) = 0BBBBB@ 0 1 0 : 00 0 1 � � � 0... . . . . . . . . . ...0 : : : : : : : : : : : : 1�h : : : : : : : : : : : : �1
1CCCCCA ; �1 = 0BBB@ a0a1...ah�1

1CCCA :
The matrix �1(x) is called the companion matrix. It is easy to see thatdet(�1(x)) = ��h 6= 0. Now �1�1(xj) gives the �rst row of matrix �1(xj). If0 � j � h� 1, then the �rst row of �1(xj) has 1 in the j'th entry and all theothers are 0. Therefore �1�1(xj)�1 = aj, if 0 � j � h� 1.To prove that an = �1�(xn)�1 for all n � 0, we use the method mentionedbefore the lemma, i.e. we calculate the characteristic polynomial of �1(x) toget a linear recurrence relation. So we calculatedet(�1(x)� �I) = �����������

�� 1 0 � � � 00 �� 1 � � � 0... . . . . . . . . . ...... . . . 0 �� 1�h : : : : : : : : : : : : �1 � �
�����������= hXi=1 (�1)i�1�i(��)h�i + (��)h;where the last equality follows from the de�nition of the determinant inSection 2.3:det((Aij)n�n) =X� sign(j1; j2; : : : ; jn)A1j1A2j2 � � �Anjn;where � repsesents a permutation of the set f1; : : : ; ng, and from the factthat only permutations with non-zero product are of the form (1; : : : ; i�1; i+50



1; : : : ; h; i). These permutations have i� 1 inversions, and the signs of thesepermutations are (�1)i�1. The last term (��)h follows from the permutation(h; 1; : : : ; h� 1) and from the element �1 � � in the product. Nowdet(�1(x)� �I) = (�1)h� hXi=1 (�1)i�1�i�i�h�1 + �h�= (�1)h(�� �1�h�1 � � � � � �h):Thus the rational series with linear representation (�1; �1; �1) satis�es thesame linear recurrence relation than S. Therefore they are equal.Note that one way to de�ne the regular rational series is to use the factthat they satisfy a proper linear recurrence relation.8.2 Skolem's theoremIn this section we prove an important theorem concerning the zeros in rationalseries over fxg with coe�cients in Z, namely a theorem proved by Skolem in1934.Theorem 8.2. Let S = P anxn be a rational series with coe�cients in Z.Then the set fn 2 N j an = 0gis a union of a �nite set and of a �nite number of arithmetic progressions.The proof we give here is based on the proof by G. Hansel in [Han], cf.also [BeR]. Hansel proved the theorem for rational series with coe�cients inthe �elds of characteristic 0. His �rst step was to prove the claim for regularrational series with coe�cients in Z. We use that proof up to that point, andthen present a proof for all rational series with coe�cients in Z. The proofrequires several de�nitions and lemmas.A set A of natural numbers is called purely periodic, if there exists anatural number N and integers k1; k2; : : : ; kr 2 f0; 1; : : : ; N � 1g such thatA = fki + nN j n 2 N ; 1 � i � rg:The integer N is called a period of A. A quasiperiodic set of period N is asubset of N that is a union of a �nite set and a purely periodic set of periodN . 51



Lemma 8.2. The intersection of a family of quasiperiodic sets of period Nis a quasiperiodic set of period N .Proof. Let (Ai)i2I be a family of quasiperiodic sets, all having period N . Forall j 2 f0; 1; : : : ; N � 1g and for all i in I, the set (j + nN) \ Ai is either�nite or equal to (j + nN). Clearly the same holds for (j + nN) \ (\i2IAi)and therefore the intersection \Ai is quasiperiodic.Assume that S = P anxn is a rational series. We denote the set fn 2N j an = 0g by ann(S), and it is called the annihilator of S. Clearly theannihilator is the complement of the support de�ned in the previous section.Let vp be the p-adic valuation de�ned in the previous chapter. Our nextLemma states an inequality, which we shall use later. Recall �rst thatvp(q1 � � � qn) = nXi=1 vp(qi)and vp(q1 + � � �+ qn) � inffvp(q1); : : : ; vp(qn)g;where qi's are in Q .Lemma 8.3. If p is a prime number and n a natural number, thenvp�pnn!� � np� 2p� 1 :Proof. First, since bn=pc of the numbers 1; : : : ; n are dividable by p, bn=p2care dividable by p2 and so on, we have thatvp(n!) � bn=pc + bn=p2c + : : :+ bn=pkc + : : :� n=p+ n=p2 + : : :+ n=pk + : : : � n=(p� 1):Therefore, vp�pnn!� = n� vp(n!) � n� np� 1 = np� 2p� 1 :52



Consider next an arbitrary polynomial P (x) = a0 + a1x + : : : + anxn inQ [x]. For any integer k � 0, let!k(P ) = inffvp(aj) j j � kg:Clearly, !0(P ) � !1(P ) � : : : � !k(P ) � : : :and for k > n, !k(P ) =1:Note also that vp(P (t)) � inffvp(a0); vp(a1t); : : : ; vp(antn)g for any integert, and therefore vp(P (t)) � !0(P ): (8.2)Lemma 8.4. Let P and Q be two polynomials with rational coe�cients suchthat P (x) = (x� t)Q(x)for some t 2 Z. Then for all k 2 N!k+1(P ) � !k(Q):Proof. Assume that Q(x) = a0 + a1x + : : :+ anxn;P (x) = b0 + b1x+ : : :+ bn+1xn+1:Then bj+1 = aj � taj+1, for 0 � j � n� 1, and bn+1 = an, and therefore forj = 0; : : : ; n aj = bj+1 + tbj+2 + � � �+ tn�jbn+1:It follows that vp(aj) � !j+1(P ) for any j in N . Thus, for any given k in N ,if j � k, then vp(aj) � !j+1(P ) � !k+1(P );and consequently, !k(Q) � !k+1(P ):53



Our next corollary is a straightforward extension of the previous lemma.Corollary 8.1. Let Q be a polynomial with rational coe�cients, and assumethat t1; t2; : : : ; tk are in Z and letP (x) = (x� t1)(x� t2) � � � (x� tk)Q(x):Then !k(P ) � !0(Q).The main argument in our proof of Skolem's theorem is the followinglemma.Lemma 8.5. Let (dn)n2N be any sequence of integers and let (bn)n2N be thesequence de�ned by bn = nXi=0 �ni�pidiwhere p is an odd prime number. If bn = 0 for in�nitely many indices n,then the sequence bn vanishes, i.e. bn = 0 for all n in N.Proof. For n in N , letRn(x) = nXi=0 dipix(x� 1) � � � (x� i+ 1)i! :Then for t in N ,Rn(t) = nXi=0 dipi t(t� 1) � � � (t� i+ 1)i! = nXi=0 dipi t!i!(t� i)!= nXi=0 �ti�pidiand since �ti� = 0 for i > t, it follows thatbt = Rt(t) = Rn(t) for n � t: (8.3)Next, we show that for all k; n � 0,!k(Rn) � kp� 2p� 1 :54



For this we write Rn(x) = Pni=0 c(n)i xk. Clearly each c(n)k is a linear com-bination, with integer coe�cients, of the numbers di pii! , for indices i withk � i � n, i.ec(n)k = akdk pkk! + ak+1dk+1 pk+1(k + 1)! + � � �+ andnpnn! ;where aj's are integers. Consequently,vp(c(n)k ) � infk�i�n�vp�dipii! ��;and so Lemma 8.3 implies thatvp(c(n)k ) � infk�i�n�ip� 2p� 1� � kp� 1p� 2 ;which in turn shows that !k(Rn(x)) � kp� 2p� 1 : (8.4)Consider now any coe�cient bt of the sequence (bn)n2N. We shall see that,for any integer k, vp(bt) � kp� 2p� 1 ;which means that bt = 0. For this, let t1 < t2 < � � � < tk be the �rst kindices with bt1 = � � � = btk = 0, and let n � maxft; tkg. By equation (8.3),Rn(ti) = bti = 0 for i = 1; : : : ; k. ThereforeRn(x) = (x� t1)(x� t2) � � � (x� tk)Q(x)for some polynomialQ(x) with integer coe�cients. By Corollary 8.1 we knowthat !k(Rn) � !0(Q). Now vp(Rn(t)) � vp(Q(t)), and by the equation (8.2),vp(Q(t)) � !0(Q). So we getvp(Rn(t)) � vp(Q(t)) � !0(Q) � !k(Rn):Finally, by equation (8.3), vp(bt) = vp(Rn(t)), and therefore it follows fromequation (8.4) that vp(bt) � kp� 2p� 1for all k � 0. This proves the claim. 55



We shall �rst prove Theorem 8.2 for regular rational series with coe�-cients in Z.Recall that, for a prime p, Zp = f0; 1; : : : ; p� 1g is the ring, where theusual operations of the semiring Z are done modulo p. Zp is a ring, since itis a semiring and furthermore, every element a of Zp has an inverse elementa�1 in Zp such that a � a�1 = 1.Lemma 8.6. Let S = P anxn in Z[[x]] be a regular rational series and let(�; �; �) be a linear representation of S of minimal dimension k with integercoe�cients. For any odd prime p not dividing det(�(x)), the annihilatorann(S) is quasiperiodic of period at most pk2.Proof. Let p be an odd prime not dividing det(�(x)). Let n 7! n be thecanonical morphism from Z to Zp, i.e. n is in f0; 1; : : : ; p� 1g and n � n(mod p). Since det(�(x)) = det(�(x)) 6= 0, the matrix �(x) has the inversematrix in Mk(Zp), and it can be calculated from the inverse matrix of �(x)in Mk(Q ) by mapping every element to Zp. Now there are pk2 di�erentelements in Mk(Zp), therefore there exist some i and j in N , i 6= j, such that�(x)i = �(x)j. Since �(x) has an inverse matrix, it follows that there existsan integer N , 0 � N � pk2, such that�(xN ) = I:This means that for the original matrix �(x), there exists a matrix M withinteger coe�cients such that �(xN ) = I + pM:Consider a �xed integer j 2 f0; 1; : : : ; N � 1g, and de�ne seriesbn = aj+nN ; (8.5)where n � 0. Thenbn = ��(xj+nN)� = ��(xj)(I + pM)n� = nXi=0 �ni�pi��(xj)M i�;since (I + pM)n = nXi=0 �ni�(pM)iIn�i = nXi=0 �ni�piM i:56



By setting di = ��(xj)M i�, we obtainbn = nXi=0 �ni�pidi:Now by Lemma 8.5, the sequence bn either vanishes or contains only �nitelymany vanishing terms. Thus the annihilator of S is a union of �nite andpurely periodic sets by de�nition (8.5) of series bn. Therefore ann(S) isquasiperiodic.Proof of Theorem 8.2. Let (�; �; �) be a linear representation of S =P anxnin Z[[x]]. If det(�(x)) 6= 0, by Lemma 8.6, ann(S) is quasiperiodic. So wecan assume that det(�(x)) = 0.Let c(�) be the characteristic polynomial of �(x),c(�) = (�1)k(�k + c1�k�1 + � � �+ ck):As mentioned in the previous section, the equationan+k + c1an+k�1 + � � �+ ckan = 0; (8.6)where n � 0, is a linear recurrence relation satis�ed by S.Since c(0) = det(�(x)), by de�nition of the characteristic polynomial,necessarily ck = 0, and we may write equation (8.6) in the forman+k + c1an+k�1 + � � �+ cman+k�m = 0;where 0 � m < k and cm 6= 0. Let T =P enxn be the rational series de�nedby the (proper) linear recurrence relationen+h + c1en+h�1 + � � �+ cmen = 0;for n � 0, and let the starting conditions bee0 = ak�m; e1 = ak�m+1; : : : ; eh�1 = ak�1:Now T has a linear representation (�1; �1; �1) of Lemma 8.1, and det(�1) =�cm and T is regular, and so by Lemma 8.6, ann(T ) is quasiperiodic. Theannihilator of S is not necessarily quasiperiodic, but sinceann(S) = fi j 0 � i < k �m; ai = 0g [ (ann(T ) + (k �m));where ann(T ) + (k �m) denotes the addition of (k �m) to all elements ofann(T ), the annihilator of S is clearly a union of a �nite set and of a �nitenumber of arithmetic progressions. 57



From the proof of Skolem's theorem we obtain a corollary for the rationalseries over rational numbers.Corollary 8.2. Let S =P anxn be a rational series with coe�cients in Q .Then the set fn 2 N j an = 0gis a union of a �nite set and of a �nite number of arithmetic progressions.Proof. Let (�; �; �) be a linear representation of S = P anxn 2 Q [[x]], andlet q be the common multiple of the denominators of coe�cients in � , �and �. Then (q�; q�; q�) is a linear representation of rational series S 0 withcoe�cients in Z. Now S 0 =P qn+2anxn, and therefore ann(S) = ann(S 0).As mentioned earlier the idea of the proof in this section is due to G.Hansel. This proof, as we saw, is elementary, but not short. Skolem's originalproof and its extensions by Mahler to rational series with coe�cients inalgebraic number �elds, and by Lech to �elds of characteristic 0, were muchmore di�cult using p-adic analysis. The last extension to rational series withcoe�cients in a �eld of characteristic 0 is referred to as Skolem{Mahler{Lechtheorem.The proofs in this section were also constructive. This is very nice fromour point of view, since we are looking for an algorithm to decide whethersquare a matrix M has in�nitely many powers k such that (Mk)1n = 0.8.3 Decidability of the in�nite number of zerosWe end this chapter with a theorem the proof of which is based on theconstructive ideas in previous section.Theorem 8.3. Given a square matrix M in Mn(Z), it is decidable whetherthere exists an in�nite number of natural numbers k such that (Mk)1n = 0,i.e. Mk has zero in the right upper corner.Proof. We construct a rational series S = P akxk, where ak = (Mk)1n.Clearly this has an linear representation (�; �; �), where� = (1; 0; : : : ; 0) 2 Z1�n; �(x) =M and � = (0; : : : ; 0; 1)T 2 Zn�1:58



First we decide whether �(x) is invertible or not, i.e. whether the linearrepresentation (�; �; �) is regular. If not, we consider the regular rationalseries T de�ned in the proof of Skolem's theorem.Now we have a regular series to consider, and we can use the proof ofLemma 8.5. By this proof we can compute the period N , and we then dividethe rational series considered into series (bn)n�0. We obtain N series, andfrom the proof we also get linear representations satis�ed by these series. Sowe can compute linear recurrence relations satis�ed by these series from thecharacteristic polynomials of their linear representations. Finally we knowthat these series (bn)n�0 either vanish or have only �nitely many nonzeroelements. If some of these series vanish then there is in�nitely many n suchthat (Mk)1n = 0, otherwise none.
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9 SummaryWe have considered many simply formulated problems in matrix theory.Some of them are proved to be decidable and some undecidable, but manyproblems are also left open. For instance, the freeness and the mortalityproblem for 2� 2 matrices and Skolem's problem for n� n matrices, wheren � 3, were such.We have also seen that the Post Correspondence Problem is very usefulin the proofs of the undecidability results in the matrix theory. Actuallyall undecidability results were based on the undecidability of PCP. Theyalso used the same method, coding of two independent words to matrices, amethod that was �rst used by Paterson.We also notice that the proofs for the decidable cases are complicated,and need some backround from other branches of mathematics. We usedcombinatorics, graph theory and theory of rational series in these proofs.We shall now present the results proved in this work in the form of a table.The entries are vectors of two parameters (n; k), where n is the dimensionof matrices and k the number of matrices. We restrict to the cases, wherematrices are over integers. Numbers n and k in the table present arbitraryvalues of these parameters and Skolem's problem is included in the problemof the zero in the right upper corner.Problem Decidable UndecidableMortality (2; 2), (n; 1) (� 3; 15), (� 45; 2)Freeness (n; 1) (� 3; 18)Finiteness (n; k)Zero in the right upper corner (� 2; 1) (� 3; 7), (� 24; 2)Common element (� 3; 7)Table: Summary of decidable and undecidable matrix problems.
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