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Abstract

This work is a survey on decidable and undecidable problems in matrix the-
ory. The problems studied are simply formulated, however most of them are
undecidable. The method to prove undecidabilities is the one found by Pa-
terson [Pat] in 1970 to prove that the mortality of finitely generated matrix
monoids is undecidable. This method is based on the undecidability of the
Post Correspondence Problem. We shall present a new proof to this mortality
problem, which still uses the method of Paterson, but is a bit simpler.

Keywords: decidability, undecidability, matrix semigroups, mortality, free-
ness, finiteness, zero in the right upper-corner, Skolem’s problem
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1 Introduction

This thesis deals with decidable and undecidable problems in matrix the-
ory. The matrices we consider are over integers, and the problems we study
are simply formulated and elementary, but it turns out that many of these
problems are algorithmically undecidable, which means that there exists no
computer program to solve these problems.

We use mainly only basic properties of matrices. These and other ba-
sic definitions, notations and properties are presented in the next chapter.
Occasionally we need more advanced properties of matrices that are stated
when they are needed. The definitions and proofs of such properties can be
found from [Gan].

We are going to show that many simply formulated problems are actu-
ally undecidable. Our undecidability proofs are based on the fact that the
so called Post Correspondence Problem is undecidable. This undecidable
problem was introduced by E. Post [Pos| in 1946 and it is a very important
problem in formal language theory. As we shall see, it is also suitable for our
purposes in proving undecidability results. In the third chapter we study the
existence of the zero matrix in matrix semigroups, i.e. the so called mortal-
ity problem. The proof of the undecidability of the mortality problem for
3 x 3 matrices by M.S. Paterson [Pat] in 1970 provides a tool to prove other
undecidability results for matrices. Paterson used the Post Correspondence
Problem in his proof, and throughout this work we shall use the very same
method.

We shall present a shorter and simplified proof for the undecidability of
the mortality problem, however, using the same method than the original
proof of Paterson.

We shall also consider the special case where the semigroup is generated
by two matrices. It turns out that also in this case the mortality problem
is undecidable if the dimension of the matrices is at least 45. This result is

from [CKal.

In the third chapter we shall show that the method of Paterson does not
suit for problems of 2 x 2 matrices. This result is from [CHK]. Tt follows that
for many problems, when we consider such matrices, it is not known whether
they are decidable or not.



In the fourth chapter we study the freeness of matrix semigroups. This
problem is important from the point of view of semigroup theory, especially
for 2 x 2 matrices. Results in that chapter is mainly from [CHK].

In the fifth chapter we consider the finiteness of matrix monoids. We
will prove that it is decidable whether a matrix semigroup of matrices over
natural numbers is finite or not. The proof we present is from [MaS]. The
decidability of finiteness helps us also to prove some other simple properties
of matrix semigroups generated by one matrix. These results are mentioned
at the end of the chapter.

In the sixth chapter the existence of a zero in the right upper corner in a
matrix semigroup is treated. We shall prove that this problem is undecidable
for matrices with dimension at least 3. The proof we present is from [Man].

We shall also consider the case where semigroup is generated by two
matrices and we prove that this problem is undecidable, when the dimension
of the matrices is at least 24. This result is from [CKal.

In the seventh and eighth chapters we study the existence of a zero in
the right upper corner in a matrix semigroup generated by one matrix. This
problem is so called Skolem’s problem. In the seventh chapter we will show
that Skolem’s problem is decidable for 2 x 2 matrices. The proof we present
is based on ideas of J. Cassaigne [Cas].

In the eighth chapter we will prove that it is decidable, whether there is
infinite number of zeros in the right upper corner in the powers of one matrix.
This proof, due to [Han], is elementary, but not simple and it uses the theory
of rational series. The proof is based on so called Skolem’s theorem. Results
of rational series in that chapter is from [BeR].

We shall summarize the results of this work in the tenth chapter where a
table of decidable and undecidable matrix problems is presented.



2 Preliminaries

2.1 Basics

We shall denote the set of natural numbers by N. It is assumed troughout
this paper that zero is in N, i.e. N = {0,1,2,...}. The sets of integers,
rational numbers, real numbers and complex numbers are denoted by Z, Q,
R and C, respectively.

2.2 Semigroups and monoids

Let S be a set. A pair (S, ) is called a semigroup, if - is a binary operation
such that, for all a, b and cin S,

a-beS and (a-b)-c=a-(b-c).

In other words - is an associative operation in S. Usually the operation - is
called a product and the semigroup (S, -) is denoted simply by S.

Semigroup S is called a monoid, if it has a neutral or identity element,
i.e. there exists an element 1 in S such that for all a in S,

Form now on, we denote ab = a - b if no misunderstanding is possible.

A semigroup S is said to be freely generated and it is free if there exists
subset X of S such that every element of S has a unique factorization over
X, i.e. every element of S can be uniquely expressed as a product of elements
of X. In this case the set X is called the free generating set.

A monoid M is said to be free, if M\{1} is a free semigroup.

2.3 Matrix semigroups and monoids

In this work we consider square matrices over integers, and in this section
we shall recall some basic notations and properties of these matrices. As



a general reference for matrix theory we give F.P. Gantmacher’s book The
Theory of Matrices [Gan].

The set of n x n matrices over integers is denoted by Z"*", and n is called
the dimension. Sometimes Z is replaced by N or by some other semiring.
Recall that K is a semiring, if it has two operations, 4+ and -, satisfying the
following properties:

(i) (K,+) is a commutative monoid with 0 as its neutral element.
(ii) (K\{0},-) is a monoid with 1 as its neutral element.

(iii) For all a,b,c in K, a(b+ ¢) = ab+ ac and (b + ¢)a = ba + ca.
(iv) For all a in K, Oa = a0 = 0.

Let A be a matrix in K™*". We denote the coefficient in the i’th row
and on the j'th column of matrix A by A;;, and, consequently, a matrix A
is defined to be (A;;)mxn-

It is clear that (Z"*",-) forms a monoid, where - is the usual multiplication
of matrices, i.e. if A and B are in Z"*", then

k=1

and the identity element is the identity matriz I (or I,),

100 ... 0O
j 010 ... 0
0 00 1

nxn

We will denote this monoid by M, (Z). The above can be extended to other
semirings than Z, and the matrix monoid of n X n matrices over semiring K
is denoted by M, (K).

We call a matrix P in M,,(N) a permutation matriz, if it is derived from
I, by mixing the rows (or columns) by some permutation. Clearly, if P is
a permutation matrix, then each row and each column has 1 in exactly one
position and in the other positions there are 0’s. We denote

1, ifi=y,
0ij = .
0, otherwise.

Clearly I;; = 0;;, and if 7 is a permutation on the set {1,...,n}, then P,
for which P;; = ;1(j), is a permutation matrix. It is also easy to see that
Pl = 0,4



For a square matrix A = (A;;),xn define the determinant of A by

AH A]Q A]n
det(A) — AQ] AQQ AQn
= Z sign(ji, jo, - - - Jn) Ajy Azjy + ++ Anj,
where a runs through the permutations on {1,2,....n}, @ = (j1,J2,- -, Jn),
and sign(ji, ..., jn) is the sign of the permutation «,

Sign(j1aj27 B a]n) = (71)?5(&)’

where ¢(«) is the number of inversions in «, i.e the number of cases where
Ji > jr and [ < k. Recall that in a permutation (ji,...,7,) all j;’s are
different.

There are also some other methods than the sum (2.1) to calculate the
determinant, but we will use the one in the definition.

Let A be an element of M,(Q). If det A # 0, we say that A is in-
vertible, and it has the unique inverse matriz A~' in M,(Q) such that
AA™' = A7'A = I. Note that if A is an element of Z"*" and det(A) # 0,
then the inverse matrix of A is not necessarily an element of Z™*", but it is
an element of Q"*".

The eigenvalue A in C and eigenvector x in C", x # (0, ...,0), of a matrix
A in M, (C) satisfy the condition

Ax = Ax, (2.2)

where C" denotes as usual the n dimensional vector space over the complex
numbers. The vector x can be understood also as an n x 1 matrix.

From the equation (2.2) it follows that the eigenvalue A of A satisfies the
equation

det(A — M) = 0.

This equation is called the characteristic equation of the matrix A. The left
hand side of this equation is so called characteristic polynomial, which is
denoted by

cAA) = (D) — e A" T 4+ e (1)),



This polynomial has degree n, if A is in C**", and the coefficients ¢; are in
C. If X is an eigenvalue of A, we know that c4(\') = 0. Therefore, if we let
the eigenvalues of A be \;, i =1,...,n, it follows that

CA()‘) = (_1)77,()\ - )\1)()‘ - )\2) T ()\ - )‘n)a

where the A;’s need not be different. Now we see that
Cp = H Ai = ¢(0) =det(A) and ¢ = Z A
i=1 i=1

We call the sum of \;’s the trace of the matrix A, and denote it by tr(A).

Let p be a polynomial with coefficients in C, p(z) = c1af +epat "+ - 4.
Then for a matrix A in M, (Z) we define

p(A) = C]Ak + CQAkil +idal.

Next we present the so called Cayley Hamilton theorem. We do not present
a proof here, a detailed proof can be found for example from [Gan].

Theorem 2.1. Let A be a square matrixz and let ¢4 be its characteristic
polynomial. Then

where 0 = (0)pxn 18 the zero matriz.

Note that since we are able to compute the determinant of a square
matrix, we are also able to compute the characteristic polynomial of a square
matrix.

We end this section with a notation for the transpose matriz AT of A,

(AT)i; = Aji.

2.4 Decidability and undecidability

Let P be a well-defined decision problem, i.e. a set of instances each of which
either has or does not have a certain property. We say that the problem P
is decidable, if there exists an algorithm, which for every correct input or
an instance of P terminates and gives an answer “yes”, if the input has the
required property and answers “no” otherwise. If no such algorithm exists,
then P is called undecidable. To prove that the problem P is decidable, we



must find an algorithm which decides P, or show that such an algorithm
exists.

The usual method to prove the undecidability of a problem P is to reduce
some already known undecidable problem ) to P. This means that, we
transform effectively an arbitrary instance ¢ of ) to some instance p of P, so
that the condition “p has the property of P” is equivalent with the condition
“q has the property of Q”. It follows that if the problem P is decidable, then
the instances ¢ of the problem () can be solved and therefore the problem () is
decidable, which leads to a contradiction. We shall use a classical undecidable
problem, the Post Correspondence Problem or one of its modifications, in such
reductions. These undecidable problems are introduced later in this chapter.

2.5 Word monoids and morphisms

Let X be a finite set of symbols. We call ¥ an alphabet and its elements are
called letters. A finite sequence of letters is called a word. Denote by X*
the set of all words over ¥. The set ¥ is a semigroup, the word semigroup,
when the binary operation - is defined as the concatenation of words, which
means that, if w; =ay...a, and wy = by ...b,, are in X7, then

Wy Wy = Gy ...0,01 ... by

The result of the catenation is clearly in X1 and it is an associative operation.
Let € be the empty word and ¥* = X+ U {e}. Clearly ¥* is a free monoid
generated by ¥ and € is its identity element.
A subset of a word monoid is called a language.

Next we define a few properties of words. Let w = a;...a, be a word in
Yt so a; is in X for all 1 < ¢ < n. The length of the word w is n, and we
denote it by |w| = n.

A word u in ¥* is called a prefiz of the word w, if there exists a word v
in ¥* such that w = uv. Then the word v is called a suffiz of w.

A mapping h from a monoid M; to a monoid M; is called a morphism if,
for all w and v in M;, h satisfies the condition

h(uv) = h(u)h(v).

Note that in the right hand side of this equation the operation is the operation
of the monoid M,.



2.6 The Post Correspondence Problem

We shall next study the Post Correspondence Problem, PCP for short, intro-
duced by E. Post [Pos| in 1946.

Let h and g be two morphisms from X* into A*. The equality set of h
and g is the set

E(h,g) = {w € X" | h(w) = g(w)}.

The Post Correspondence Problem asks to decide for a given pair (h,g)
whether or not E(h,g) = (). Elements in E(h, g) are called solutions of the
instance (h, g) of PCP.

This version of PCP is not the original version of the problem, but equiv-
alent and more useful to our purposes.

The size of an instance (h, g) of PCP is defined to be the cardinality of
the alphabet Y. We denote by PCP(n) the subproblem of PCP for instances
of size at most n.

The undecidability of PCP is a classical result in formal language theory,
and it was first proved by Post in [Pos| in the general case, i.e. there does
not exist any algorithm for solving all instances of PCP. It is also known
that if n < 2, then PCP(n) is decidable, and if n > 7 then it is undecidable.
The proof of the undecidability of PCP(7) can be found from [MSe| and the
proof of the decidability of PCP(n), for n < 2, can be found, for example,
from [HaK]. For n greater than 2 and smaller than 7 the decidability status
is open.

2.7 The Mixed Modification of PCP

There exists many modifications of the Post Correspondence Problem, which
have been proved to be undecidable. We shall next introduce one of these
that is later used in the Chapter 4.

The mized modification of PCP, MMPCP for short, asks to determine for
two given morphisms h, g : ¥* — A* whether there exists a word w = a; ... ay
with a; in ¥ and k£ > 1, such that

hi(ai)ha(az) - .. hi(ax) = g1(a1)gz(az) - - - gr(ar), (2-3)

where, for each 4, h; and g¢; are in {h, g} and, for some j, h; # g;. The word
w satisfying the equation (2.3) is called a solution of the instance (h,g) of

MMPCP.



We show that MMPCP is undecidable. The proof is from [CHK], cf. also
[HaK].

Theorem 2.2. MMPCRP is undecidable.

Proof. We use the method, mentioned earlier in this chapter, to prove the
undecidability. This requires to reduce PCP to MMPCP, that is, to transform
an instance of PCP to that of MMPCP such that both of these have a solution
simultaneously.

Let (h,g) be an instance of PCP and assume that h,g : ¥* — A* and
that ¢, d and e are new letters not in X UA. Further, let mappings [, : A* —
(AU {d})* be morphisms defined as I(a) = da and r(a) = ad for all a in A.
Finally, for each a in A we define two morphisms hy, g, : (X U {d,e})* —
(AU {e,d,e})* by setting

ha(@) = Uh(2)),  gule) =r(g(x))  forallzes,
ha(d) = cl(h(a)),  ga(d) = cdr(g(a),
hale) = de. gale) = e.

Next we show that the instance (h,g) of PCP has a solution aw, w in 3*,
if and only if the instance (hy, g,) of PCP has a solution dwe. This follows
from the equations

he(dwe) = cl(h(a))l(h(w))de = cl(h(aw))de

and

ga(dwe) = cdr(g(a))r(g(w))e = cdr(g(aw))e.

Now, since the pair (h4,g,) can only have solutions of the form dwe, we
conclude that it is undecidable whether for given morphisms A, g : ¥* — A*
the instance (hg, g,) of PCP has a solution.

Finally we show that the pair (h,,g,), as an instance of PCP, has a
solution if and only if the same pair has a solution as an instance of MMPCP.
To simplify notation we denote h = h, and g = g,.

If (h, g) has a solution as an instance of PCP, then it has a solution also
as an instance of MMPCP, therefore the implication in one direction is clear.
So assume that the pair (h, g) has a solution as an instance of MMPCP and
let w = ay...a; be a solution of minimal length. We claim that then also
h(w) = g(w), i.e. w is a solution of instance (h, g) of PCP.

In notations of (2.3), the minimality of w implies that h; # ¢; and hy #
gk, so by the definitions of h and ¢, a; = d and a;, = e. We see also that a;

9



isnot doreifi=2,... k— 1, because otherwise there would be a shorter
solution than w. We may assume, by symmetry, that h; = h and ¢g; = ¢g and
we will show that h; = h and g; =g foralli=1,..., k.

Assume the contrary. Then there must be the smallest ¢ such that ¢, = h
or hy = g. Consider the first alternative. Then we have

glay...a;1)h(ay) € cd(Xd)*(dX)*,

and so there is a prefix in the right hand side of (2.3) that ends with dd.
But no prefix of the left hand side of (2.3) matches with this prefix, because
if h; # g for all 4, then hy(ay) ... hg(ar) € c(dX)T, and if h; = g for some i,
then there is a prefix which is in ¢(dX)"X. Therefore we do not get two d’s
without having two consecutive letters of X first. This is a contradiction.

In the second alternative, similarly, we get that

hiay...a;1)g(a;) € c(dX)t(Xd)*,

i.e. the left hand side of (2.3) has a prefix that ends with two consecutive
letters of Y. But no prefix of the right hand side of (2.3) matches with this
prefix, because g(aj)...g(ar) € cd(3d)*, and if, for some i, g; = h, then
there is a prefix which is in ¢d(Xd)*(dX)". Therefore we cannot have two
consecutive letters of ¥ without having a factor dd first. This contradiction
proves the claim. ]

We shall use MMPCP in the proof of the undecidability of the freeness
of matrix monoids, for which it suits very well.

10



3 Mortality of Matrix Monoids

Let S be a given finitely generated submonoid of n x n matrices from Z"*".
‘Given’ here means that we are given a finite generator set of S. In this
section we consider the mortality problem, which is defined next.

Problem 1. Determine whether the zero matriz belongs to S. In other
words, determine whether there exists a sequence of matrices My, Mo, ..., My
in S such that My My --- M, = 0.

3.1 The undecidability of the mortality problem

We prove that the mortality problem is undecidable for 3 x 3 matrices. This
result was first proved by M.S. Paterson in 1970 [Pat]. He used clever coding
techniques to make a reduction to PCP. We use the same method, but our
proof itself is simpler, althought the idea remains the same.

The basic idea of the proof is to reduce an instance of PCP to the mor-
tality problem. Let [' be an alphabet. We use an injective morphism from
['* x I'* into N**? to represent a pair of words in the multiplicative monoid of
matrices. Then, of course, the product of matrices representing pairs (u,v)
and (u',v") represents pair the (uu', vv').

First we define notions needed in the proof. Let I' = {ay, as, ..., a,} and
define a function o : I'* — N by

k
o(a;, ai,...a;,) = Zijn’“j and o(e) = 0.

J=1

We see that, for each word w, the function o gives the value which w repre-
sents as an n-adic number, and because each natural number has a unique
n-adic representation, ¢ must be injective. We also note that, for all © and
vin I,

o(uv) = n'lo(u) + o (v). (3.1)

11



Next define a mapping 8 : I'* — N?**2 by

B(a;) = (7 (1)> :

foralli=1,2,...,n. Now ifi,j € {1,...,n}, we get that

Blai)Blay) = <777 ?) (;r (1)>
(s 1) = (Gl 1)

Clearly this can be extended for all w € I'*, and therefore

|w| 0

n

Blw) = ((J’(’ll)) 1) '

This can be proved by induction. We note that 3 is a morphism from I'* into
N?*2 since if w and v are in ['*| then

n'“l 0 n'*l 0
Blu)Blv) = ((I(u) 1) = (0(7)) 1) =
n\u\n\v\ 0 n\m)\ 0
(U(u)nv +o(v) 1) - ((I(m)) 1) = Bluv).
(3 is also injective, because o is injective and o(w) is the (2, 1)-entry of the
matrix f(w).

Next we define a monoid morphism ~ : I'* x I'* — N**3 | where two copies
of 3 is applied simultaneously in 3 X 3 matrices,

n 00
v(u,v) = 0 ' 0]. (3.2)
o(u) o) 1

The fact that v is a morphism follows from the fact that § is a morphism.
The morphism « is also doubly injective, which means that, if v(u,v1)3 =
v(ug, v9)31, then uy = uy, and if y(uy, v1)39 = (U2, v2)32, then v; = vy. Notice
also that for the empty word e we have (e, €) = I.

We are now ready to prove the undecidability result.

Theorem 3.1. The mortality problem is undecidable for 3 x 3-matrices with
integer entries.

12



Proof. First define matrix A,

1 0 1
A=1-1 0 -1
0 0 0
Let Y be the set of matrices
p 0 0
Wi(p,q,r,s)= 10 r 0], wherep,r>0,q,s>0,
qg s 1

and p, q,s and r are integers. If B and C' are in Y, say

B = W(pI;QI:TI;SI) and C = W(P2;C]2,7"2782);
then

Pip2 0 0
BC = 0 179 0| = W(pip2, 1p2 + G2, 1172, 5179 + S2),
qip2 +q2 sira+s2 1

then clearly BC'is in Y. Since also [ isin Y, Y is a monoid.

Let L be a finitely generated submonoid of Y and S be the matrix monoid
generated by {A} U L.

We notice that A2 = A, i.e. A is an idempotent, and that for all
W(p,q,r,s) in L,

AW (p,q,r,s)A= (p+q— s)A. (3.3)
Next we show that
0eS<=dIWelL: AWA=0. (3.4)

The reverse implication is trivial, because if AW A = 0 for some W € L, then
0eS.

Assume now that 0 € S. Since 0 ¢ L and for all kK > 1, A* = A, there
must be product

AW AW A - AW, A = 0 (3.5)

for some ¢t > 1 and W; € L, for all j = 1,...,¢. If we assume that ¢ > 1 and
that ¢ is minimal, then, because A is an idempotent, we have

AW A - AWHA - AW A = 0.

13



Now by equation (3.3) we get that, for some integer m,
mAWLA -+ AW, A = 0.

Now we have two cases; if m = 0, then AW A = 0, and if m # 0, then ¢ is not
a minimal. Both of these cases lead to a contradiction with the minimality
of ¢t and therefore there exists W in L, such that AW A = 0.

Next we reduce an instance of PCP to the mortality problem using
mapping 7 from T'* x T'* into N**% as defined in (3.2). Assume that T' =
{a1,ay,a3}, so that n = 3. Let (h,g) be an instance of PCP, where h, g :
¥* — A* and A = {as, az}. Define the matrices

W, = ~(h(a). g(a) and W, = y(h(a), ag(a)) (3.6)

for all a € . Clearly, these matrices W, and W, are in Y. Let L be the set
of all matrices W, and W,, where a € ¥. Consider now a matrix monoid S
generated by {A} U L. By the claim (3.4), S is mortal if and only if there
is a matrix W generated by matrices of L such that AW A = 0. From the
definition (3.6), and from the properties of the morphism =, it follows that
W is of the form

el 00
w=1| o 3¢ o],
o(u) o) 1

where v is in A* and v in ['*. By (3.3) we have to analyse the condition
3+ o(u) — o(v) = 0.

This is, by the property (3.1) of o, equivalent to the equation v = au.
Because u = h(w) € A* and a; ¢ A, we must have

!
W =W, Wy, Wy,
where w;’s are in ¥ and w = wy - - - w,. This is equivalent to the condition
v =a19(w) = arh(w).

Therefore S is mortal if and only if the instance (h, g) of PCP has a solution,
and this proves the claim. ]

This proof works also for n x n matrices where n > 3. We just add zero
columns to the right hand side and zero rows to the bottom of all matrices
in the proof of Theorem 3.1 to get n x n matrices. The products of these
new matrices depend only on product of original 3 x 3 matrices.

14



Corollary 3.1. The mortality problem is undecidable for n X n matrices with
integer entries and n > 3.

As mentioned before, the idea of the proof of Theorem 3.1 is the same as
in the original proof by Paterson. We used only one special matrix A when
Paterson had two of them. Also, by the choice of this A, we managed to
simplify some details in the proof.

As mentioned before the PCP(7) is proved to be undecidable in [MSe].
Therefore the size of the alphabet ¥ in the proof can be set to be seven and
therefore we need 15 matrices in that proof.

3.2 The mortality of semigroups with two generators

In this section we consider the mortality problem in the case, where the
semigroup is generated by only two matrices with integer entries. We shall
show that this problem is undecidable. The proof is based on Theorem 3.1
and on a simple trick to represent a matrix semigroup with k£ generators of
dimension n in a semigroup with only two generators of dimension nk. The
proof of the following theorem is from [CKa)].

Theorem 3.2. Given two square matrices A and B with integer entries, it
is undecidable whether the semigroup generated by {A, B} contains the zero
matriz.

Proof. By Theorem 3.1 we know that the presence of the zero matrix is
undecidable for a semigroup T' generated by M, ..., My with dimension n =
3, where k£ = 15. We shall construct two matrices A and B of dimension nk
such that the semigroup S generated by {A, B} contains the zero matrix if
and only if T" contains it. Since an algorithm to decide this property for S
could then be turned into an algorithm for any finitely generated semigroup,
also for T', this shows that the problem is undecidable.

The construction is quite simple. A and B are defined with n x n blocks,
using the matrices M;, the n x n identity I and the n x n zero. A is a block
diagonal and B is a permutation matrix:

MO0 0 0 0 0 I

I 0 0 0

A= 0 M and B=10 [ 0 0
o .

0 0 M 0 0 I 0
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It is quite clear that B~' = B*~! = B” and that B* = I,,,. We shall prove
next that for any index 1 < i < k, the element C; = B¥~"*'AB~! is a block
diagonal like A, but with the blocks circularly permuted, namely its diagonal
is M;, My q,...., My, My, ..., M; 1. The proof is by induction on .

First, if i = 1, then C} = B*¥"HAB'""! = BFAJ] = [AI = A.

Assume now that there exists 7 such that the claim holds for all ¢, 1 <
t <i<mn. Then C;yy = BF- ()1 ABiH1-1 — B-1C; B, and

0 o - 0 M,
M;yy 0 0 0
B'ccB=B"| 0 My 0 -+ 0
0 0 M4, O

M, 0 0

- 0 M
' 0
0 0 M;
So U4 is of the required form.

Using the relation B¥ = I, any element of the semigroup S can be
written in the form B'C; C;,---C; ~with m > 0. Therefore, if we as-
sume that the zero matrix is in S, we have C;,C;,---C; = 0, since B
is invertible. Now the left upper block of the product C; C;,---C;, is

0 = M;, M, ---M;, , which means that the zero matrix is in 7". Conversely,
assume that 7' contains the zero matrix and that M; M;, ---M; = 0. Let
D; = Ci_j11Ci—jy1+--C;,—jy1 for 1 < j < k, where the indices are taken
modulo k. The matrix D; is block diagonal and its j’th diagonal block is
M;, M;, ---M,; = 0. Therefore, the product DyDs--- Dy, which is an ele-
ment of S, is the zero matrix. O

It follows from the previous theorem that the mortality problem is un-
decidable for semigroups generated by two matrices, if the dimension of the
matrices is at least 3 - 15 = 45.

We shall return to the question of the mortality of semigroups generated
by two matrices in the Chapter 7, where this problem is shown to be decidable
for 2 x 2 matrices.
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3.3 The existence of the zero element in matrix semi-
groups

In the two previous sections we considered the existence of the zero matrix
in a finitely generated matrix semigroup. In this section we consider the
existence of the zero element in a matrix semigroup, i.e. the existence of an
element x in a semigroup S such that, for all @ in S, xa = ax = x. Clearly,
if a matrix semigroup S contains the zero matrix, then it has also a zero
element.

We shall show in this section that also the existence of the zero element
is an undecidable property. We begin with an easy semigroup theoretical
lemma.

Lemma 3.1. The zero element in a semigroup is unique.

Proof. Let (S,-) be a semigroup and to the contrary that S contains two
zero elements, say x; and x5. Then by the definition of a zero element
T1 =TTy = T9. O

Next theorem is obvious after the previous lemma.

Theorem 3.3. For n > 3, it is undecidable whether a given finitely gener-
ated matrixz semigroup of n X n matrices with integer entries contains the
zero element.

Proof. Assume that the matrices My, ..., M, are the given generator matri-
ces of the semigroup. Assume to the contrary that it is decidable whether S
contains a zero element. Then we can also decide whether the zero matrix is
in S. This follows, since if there does not exist a zero element in S, then the
zero matrix is not in S either, and if there exists a zero element, we check
all the elements in S until we find it. The checking is easy to do, since X is
a zero element if and only if

Now when we find the zero element, we check if it is the zero matrix or

not. Hence, indeed, we can decide whether S contains the zero matrix, a
contradiction with Theorem 3.1. ]
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3.4 The mortality problem in dimension two

It is clear that for 1 x 1 matrices the mortality problem is decidable. The
only possibility to have the zero matrix in S is that it is one of the generators.

What can we say about the problem for 2x2 matricesI" Not much, because
it is not known whether the mortality problem is decidable or undecidable
for 2 x 2 matrices in the case, where we have more than two generators. As
we mentioned before, it can be proved decidable in two generator case. This
proof is presented in Chapter 7.

One thing we can say is that if the mortality problem for 2 x 2 matrices
with arbitrary many generators is undecidable, then it must be proved with
some other techniques than the undecidability for 3 x 3 matrices, because
that proof was based on the injective morphism from Y* x ¥* into N**3_ and
there is no such morphism into N?*?. We shall now prove this fact, but before
that, we prove a lemma concerning the commutation of certain special 2 x 2
matrices.

Lemma 3.2. Let A be an upper triangular 2 X 2 matrixz over C.

1) If A = <g 2), where b # 0, then for all matrices B € C**?, AB =

BA if and only if B = (8 é)
a

2) If A= 0 2) , where a # d, then for all B € C**?, AB = BA if and
only if B = (8 2)

Proof. 1) Assume that B = (; g) and that AB = BA. These imply

that (AB);; = ae + bg = ae = (BA);; and therefore ¢ = 0. Now we
see that (AB)12 = af + bh = eb+ fa = (BA)j2, so h = e. Clearly also
(AB)Ql =0= (BA)Ql and (AB)QQ = ae —= (BA)QQ This shows that if B
commutes with A it is of the required form, and conversily.

2) Assume that B = <; £> and that AB = BA. Then (AB);y =

af = fd = (BA)i1, and since a # d, it follows that f = 0. Also (AB)qy =
dg = ga = (BA)y1, so g = 0 and we are done, since the other direction is
obvious. O

The reason we need the previous lemma is that we use in the next proof
the existence of so called Jordan normal form of square matrices. The Jordan
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normal form .J of a matrix A in Z"*" is an upper triangular matrix, which is
similar to A, that is, there exists an invertible matrix P in C"*" such that,
A = PJP~'. The diagonal of .J consists of the eigenvalues of A.

For a matrix A in Z?*2, the Jordan normal form has two possibilities:

1) If A has two different eigenvalues, say A and p, then .J = (3 2)

2) If A has only one eigenvalue, say A, then then J = (A O) or

0 A
Al
1= (5 3)
For the proof of these facts we refer to [Gan].

The next theorem shows that there is no injective morphism from »* x 3*
into C**2. Actually we need this property only for morphisms into N>*2? but
we use C?*2 here, because in the proof we need the Jordan normal form of
matrices, which is in C**2, since the eigenvalues are in C.

Now we are ready for the theorem, the proof of it being from [CHK].

Theorem 3.4. There is no injective morphism
¢: T x T — C?
for any alphabet ¥ with at least two elements.

Proof. 1t is sufficient to prove the theorem in the case where ¥ = {0,1}. In
this case the monoid S = ¥* x ¥* has a generating set

L={(0,¢), (1,€),(¢,0), (e, 1), (e, €) },

where € is the empty word. To simplify the notations we set a = (0,¢€),
b= (1,¢), c=(¢,0),d= (¢1) and e = (€, ¢).

Assume to the contrary that there is an injective morphism ¢ from S into
C**% and let A = ¢(a), B= ¢(b), C = ¢(c), D = ¢(d), and E = ¢(e). Since
the conjugation by an invertible matrix does not influence the injectivity, we
can suppose that A is in the Jordan normal form.

. . A0

Suppose that A has two different eigenvalues. Then A = (O M)’ and
the matrices commuting with A are exactly the diagonal matrices by Lemma
3.2. Therefore C' and D must be diagonal, since ac = ca and ad = da in
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S. It follows that also matrices C' and D commute, which contradicts the
injectivity, since ¢ and d do not commute in S.

If A has only one eigenvalue, then A = <())\ ?\) or A = <())\ i\) The

first case is impossible, because then A = AI commutes with all matrices,
especially with B, but b and a do not commute in S. In the second case

A would commute only with the matrices of the form ”g
3.2, and they commute with each others, which yields a contradiction as
above. O

Y
T) by Lemma

The mortality of 2 x 2 matrices is also connected to other branches of
mathematics, cf. [Sch].

We end this chapter by showing that the mortality problem is decidable
for the 2x 2 upper triangular matrices. This special case is not very important
and it does not say anything about the general case.

Theorem 3.5. Let L be a set of 2 X 2 upper triangular matrices with integer
entries. Then the zero matriz belongs to the semigroup generated by L if and
only if there are matrices A and B in L such that

A]] =0 and BQQ = 0.

Proof. Let A and B be 2 x 2 upper triangular matrices,
(G111 a2 . bii bio
() wa m ()

AB = (allbll aiibis + a12b22> .

0 92099

Then

We see that the product is also an upper triangular matrix. To get zeros to
the diagonal, necessarily either a;; or by; equals with the zero and either ayy
or by equals with the zero. So we have four cases, but, by symmetry, it is
enough to consider only two of those. First, if a;; = a9 = 0, then AA = 0.
The second case is that a;; = bys = 0, and then AB = 0. Both directions of
the equivalence follow from this. O
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4 Freeness of Matrix Semigroups

In this chapter we concentrate on the freeness property of semigroups which
is one of the fundamental properties of semigroups and monoids.

Recall that a semigroup S is said to be free if there exists a subset X of
S such that every element of S has a unique factorization over X, i.e. every
element of S can be uniquely expressed as a product of elements of X. The
results in this chapter also concern monoids, because a monoid M is said to
be free if M\{1} is a free semigroup.

Next we define the freeness problem for square matrices.

Problem 2. Determine whether a given finitely generated semigroup of nxn
matrices with non-negative integer entries is free?

As in the case of the mortality problem, we first prove that this problem
is undecidable for 3 x 3 matrices, and therefore also for all n x n matrices,
where n > 3. After that we consider the case of 2 x 2 matrices.

In the final section of this chapter we prove that it is undecidable, whether
two matrix semigroups have an equal element.

4.1 The undecidability of the freeness

We shall now prove that the freeness problem is undecidable for 3x3 matrices.
This result was first proved by Klarner, Birget and Satterfield [KBS] in 1990,
but we will present a proof which was developed by J. Cassaigne, T. Harju
and J. Karhumaiki [CHK]. This proof is shorter and also gives a better bound
for the number of matrices.

The proof uses the same techniques than the proof of the mortality prob-
lem, but instead of an instance of PCP we will reduce an instance of MMPCP
to this problem.

Assume that ¥ is an alphabet, ¥ = {ay,...,a,}, and let function o :
¥* — N correspond a value of word as an n-adic representation as in the
mortality chapter.
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We now define a mapping v, : ¥* x ¥* — N**3 by setting

nlvl 0 o(u)

yi(w,v) = ()" = 0 n" o)
0 0 1

where 7 is the injective morphism defined in Section 3.1. Clearly also v, is a
doubly injective morphism.

Theorem 4.1. It is undecidable whether a semigroup generated by finite set
of upper-triangular 3 x 3 matrices of non-negative integers is free.

Proof. Let (h,g) be an instance of MMPCP. Of course, we may assume that
h and ¢ are morphism from X* into ¥* i.e. they are endomorphisms. Next
define the set

M = {7(a, h(a)), i (a,g(a)) | a € £}

and let S be the semigroup generated by M.

Let o ,...,05,,0;,...,03;, bein M, a;, = vi(aj, hs(a;,)) and 3, =
71(bj,, g5, (b)), with h;, and g;, in {h, g} and a;, and b;, in 3, fort =1,...,p
and s = 1,...,¢. Then, by the definition of v; (and ), we have:

a,;l...aip:ﬁﬁ...ﬁjq in S

if and only if

(a,;l . a,;p)Lg = (ﬁ]l . /qu)173 and (Oéi1 .. .Oéip)Q’g = (5]1 .. 'ﬁjq>273'

But this is equivalent to

Ay - .aip = b]l ... qu and hi1 (ah) ... hip(aip) = (]]1 (b]1) .. 'gjq (b]q)

by the uniqueness of the n-adic representations.

We have proved that S is nonfree if and only if the instance (h,g) of
MMPCP has a solution. Hence the nonfreeness, and so also the freeness, is
an undecidable property. ]

We could have used also the morphism = itself in the above proof but we
prefered to formulate the result for upper triangular matrices. This is the
first reason that this proof is better than the proof of Klarner, Birget and
Satterfield [KBS]. The second reason is that they needed 29 matrices when
we needed only 18, assuming that in the PCP we consider instances over 7
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letter domain alphabet, as can be done, cf. [MSe] - in the undecidability
proof of the MMPCP we added two letters to this alphabet.

The next corollary is clear by extending the matrices in the above proof
in an obvious way.

Corollary 4.1. The freeness problem is undecidable for n x n upper trian-
gular matrices with non-negative integer entries for any n > 3 .

4.2 The freeness problem in dimension two

As in the case of the mortality problem, it is not known whether the freeness
problem is decidable or undecidable in the case of 2 x 2-matrices. But, again,
we know that if it is undecidable, it cannot be proved using a construction
similar to the one used for 3 x 3-matrices. This is due to Theorem 3.4.

In the theory of semigroups, it is known that every finitely generated
free semigroup is isomorphic to some free word semigroup ¥}, where k is
the number of letters in the alphabet ¥. It is also known that every free
semigroup ¥, can be embedded into the semigroup of 2 x 2-matrices over
nonnegative integer, i.e. into N°*2. Such embeddings can be done in many
different ways. For example, if ¥y = {ag,aq,...,ar_1}, then the morphism

defined by
N k i
“T\0 1

is one such embedding. Another one is the embedding [ defined in the
chapter considering the mortality problem, Chapter 3.

It is known that it is decidable whether a finite set of words is a free
generating set, i.e. whether a semigroup generated by a finite set of words is
free, cf. [BeP]. Therefore it is natural to ask, whether the freeness problem
is decidable for the 2 x 2 matrices over nonnegative integers. This problem
seems to be very difficult. Indeed, in [CHK] Cassaigne, Harju and Karhuméki
considered a restricted case, where the semigroup is generated by two upper
triangular 2 x 2 matrices over Q, but even in this case, no general method
for deciding the freeness was found.

23



4.3 Common elements in semigroups

In this section we consider the existence of a common element in two matrix
semigroups.

Problem 3. Given two finitely generated subsemigroups of My(Z), say M
and N, determine whether there exists a matriz X, which is both in M and
i N.

Here ‘given’ means again that we are given the generators of M and N.

The existence of a common element is actually an independent problem
and it is not connected to the freeness problem, but we present it here, since
in the proof of the undecidability we use the same mapping 7v; as defined
earlier in this chapter.

M. Krom considered a variant of this problem in [Kro]. He asked, whether
there exists a matrix X in both M and N such that X is a product of equally
many generators of both M and N. We shall prove that the problem of equal
element is undecidable, if n > 3, and the proof we present suits also for the
variant of Krom.

Theorem 4.2. [t is undecidable whether two finitely generated subsemigroups
of M3(Z) have a common element.

Proof. Let (h, g) be an instance of PCP, where h and g are morphism from
¥* into A*. Assume that A C ¥ and let 7; be the morphism defined in
Section 4.1. Now let Sy and S be two semigroups generated by the matrices
H, = v(a,h(a)) and G, = 71(a, g(a)) for all a in 3, respectively.

Since 7, is doubly injective, we get that

Ha,1 H{Lk — Gb1 ...th
if and only if
ap...a =0by...b and h(ay)...h(ag) = g(by) ... g(by).

Therefore the claim follows from the undecidability of the PCP. O

Clearly this proof works for the variant of Krom, since in the proof nec-
cessarily k = t.
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5 Finiteness of Matrix Semigroups

We are given a finitely generated subsemigroup S of N"*" i.e. we are given
the generator matrices of S. In this chapter we consider the problem which
asks:

Problem 4. Determine whether the semigroup S is finite or not?

We show that this problem is decidable by showing that, if S is finite,
then an upper bound of the cardinality of S can be computed.

Natural extensions of the finiteness problem are the ones considering semi-
groups of matrices over the rational numbers Q and, in general, over any field.
Also these extensions can be proved to be decidable, cf. [MaS].

Our proofs and notions are from the article [MaS]| by A. Mandel and I.
Simon in 1977. At the end of this chapter we mention also some other results
which give better upper bounds than the bound proved here.

5.1 The decidability of the finiteness

As mentioned above, we shall show that there exists an upper bound for
the cardinality of a finite subsemigroup of N**" which depends on n and
on the number of generators of the semigroup. The proof we present is a
combinatorial one. First we need some new definitions.

Let S be a semigroup. An element a of S is called a torsion (or periodic),
if a? = a“ for some natural numbers p < ¢. If every element of S is a torsion,
then S is a torsion semigroup (or a periodic semigroup).

Note that a matrix A from M (N) is torsion if and only if there exists a
natural number m, such that (A");; < m for all r.

We need also the next theorem, which is a classical result of Ramsey
[Ram].

Theorem 5.1. Given natural numbers m, n and k such that m > 2 and n >
k > 1, then there exist a natural number R(m,n,k) such that for every set
X of cardinality at least R(m,n, k) and every partition of k element subsets
of X into m blocks, there exists a subset'Y of X, with the cardinality n, such
that all k element subsets of Y belong to the same block.
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Ramsey’s theorem has many equivalent formulations and there exists a
branch in combinatorics, namely The Ramsey Theory, which is based on this
theorem, cf. [GRS].

Next we define a graph representation of a matrix in M, (N). For a given
A in M, (N), we define a graph G4 to have a vertex set V =n = {1,...,n}
and an edge set E, such that, there is a directed edge from i to j in E with
label A;;, whenever A;; # 0. For an edge e, we denote its label by p(e). For
a walk T' = (i, 1,71, ... ,€,1,) in G4, where i;’s are vertices, and e; is an
edge from 7; ; to i;, we define the label p(T) to be [[;_, p(e;). We say that
the length of T is r.

The next lemma follows from the above definitions.

Lemma 5.1. Assume that A is in M,(N). For allr in N, (A");; is the sum
of the labels of the length r walks from i to j in G 4.

Proof. We prove this by induction on r.

If r =1, then this is clear by the definition of G 4.

Assume that for some k£ > 1, the claim holds, whenever r < k. This
means that for all 7 and j, (A");; is the sum of the labels of all walks from ¢
to j of length . Now

k
(Ak+1)v:j =(A- Ak)ij = ZAih,(Ak)h,j;
h=1
which is the sum of all labels of walks of length £+ 1 from 7 to j. O

Before our next lemma we define one more property of graphs. Let G be
a directed graph, G = (V| E), where V is the set of vertices and F is the set
of directed edges. Then a subgraph H of G, H = (Vg, Ey), where Vi C V
and Fy C F, is called a strong component of GG, if for all = and j in Vy, there
is a directed path (or walk) from i to j and from j to i.

Lemma 5.2. Let A be a matriz in M,(N). Then the following statements
are equivalent:

(a) A is a torsion.

(b) Ga contains neither a directed cycle with label at least 2, nor two
directed cycles which are connected by a path.

(c) There exists a permutation matriz P such that P~YAP has the block
form

Bll B12 B13
0 By Ba|, (5.1)
0 0 Bass
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where some blocks might be empty, Bi1 and Bss are upper triangular with
zeros on the diagonals, and Byy is a permutation matriz.

Proof. To show that (a) implies (b), let A be in M, (N) and let G4 be its
graph representation. Assume that G4 contains a cycle T with p(T) > 2,
and assume also that 7 is a vertex in T". Denote by [ the length of T'; clearly
[ > 1. By Lemma 5.1, (A");; > p(T)" > 27, and hence A is not a torsion.
Assume now that G4 has two distinct cycles 77 and T, through vertices
1 and 7, respectively, and that there is a path T3 from ¢ to j. Let [y be the
length of T, for k = 1,2,3. Consider the walks of the form T7™"2TyT,""
The length of such a walk is clearly (mq + ma)lily + l3. If m = my + my,
then for all m in N we have at least m different paths from ¢ to j of length
mlyly + l3, because there is m different ways to express m as a sum my + ms.
Therefore by Lemma 5.1, (A™"2%1),. > m_ and so A is not a torsion.

Next we show that (b) implies (¢). We say that a strong component of the
graph G4 is trivial if it contains no edges. Consider the following partition
of the vertex set of Gy4:

Vo = {i € n | i belongs to a nontrivial strong component of G 4},
Vi = {i € n\V, | there exists a path from i to some vertex in V5},
Vs =mn\(V UV3).

Let G} denote the subgraph of G4 induced by V, for £k = 1,2,3, i.e. G
consists of all vertices of Vj, and all edges between the vertices of V. Because
the vertices that are in some cycle of G 4 belong to V5, it follows that G; and
(G5 are acyclic. Therefore we are able to define total orders <; and <3 on
Vi and V3, respectively, such that if there is a edge from ¢ to j in GGy, then
1 <k j. Now there exists a permutation 7 of n, such that

Vi,jeVi,i#j: w(i)<7(j) < i<pj fork=1,3, (5.2)
VieVi,jeVi: k<l = w(i) <n(j).

Such a permutation can be constructed in such a way that n is first divided
into three parts according to (5.3), and then the permutation is defined using
(5.2).

Let P to be the permutation matrix defined by Pj; = 0; »(;). Then the
matrix P~'AP satisfies the condition (P~'AP);; = Ay(i).x(j), since the mul-
tiplication by P! = d,(;); from the left permutes the rows of A according
to m, i.e. (P 'A);; = A, and the multiplication by P from the right
permutes the columns of Az (;); according to w. Let B;; denote the restriction
of the matrix P~ AP to n(V;) x 7(V;). Because no vertices of V3 is connected
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to V1 or V, (by definition), it follows from (5.3) that B3; and Bsy are zero
matrices. Also By; is zero, because there exists no path from the vertices of
V5 to the vertices of V7, only vice versa. Further since no element in V; U V3
belongs to any nontrivial strong component of G4, it follows that B;; and
Bss have zeros on the diagonals: from (5.2) it also follows that they are up-
per triangular. Conditions (b) imply that the strong components of G4 are
cycles with label 1, and because no two distinct cycles are joined by a path,
there are no edges, such that ¢ and j belong to different strong components
and there is a an edge from 7 to j in G 4. Therefore Byy is a permutation
matrix.

Finally we show that (¢) implies (a). Clearly, for a permutation matrix
P there exists a natural number r such that P" = I. Let r be such a natural
number that B}, = I and r > n. Now we have

0 B, Big
(P'AP) =P 'A"P= |0 I By,
0 0 0

because By; and Bsz are upper triangular with zeros on the diagonals; so
B}, = Bi; = 0. Hence

0 By BiyBag
(P AP =P 'A"P=P'[0 I Bl P
0 0 0
0 By BBy
(P 'AP)" =ptAPp=pP ' [0 I By |P
0 O 0
Therefore A% = A% ie. A is a torsion. O

As corollaries of the previous lemma we prove two lemmas, but first we
must set a few new definitions. Define a semiring Ny = {0, 1,2} C N with the
operations a ® b = min{a + b,2} and a ® b = min{ab, 2}. Let ¥ : M, (N) —
M, (Nz) be the monoid morphism given by W(A);; = min{A,;, 2} and let ¢
denote the set inclusion ¢ : M, (Ny) — M, (N).

Note that, for a matrix A in M, (N), Gya) has exactly the same edges
than G4, and if G4 has a cycle with a label at least 2, then so does G'y(a),
since in (G 4, necessarily one of the edges on this cycle has a label at least 2,
and in Gy(a) this label is exactly 2. Similarly, if GGy (4) contains a cycle with
a label 2, (the product of labels of a path is ®), then G4 contains a cycle
with a label at least 2. Therefore, the graph G, satisfies the condition (b)
of Lemma 5.2 if and only if the graph Gy(4) satisfies it.

i
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We shall use these considerations as the final conclusion in the proof of
the next lemma.

Lemma 5.3. Let A and B be matrices of M, (N) such that V(A) = U(B).
Then A s a torsion if and only if B is a torsion.

Proof. Because W(A) = U(B), graphs Gy(4) and Gy(p) are equal. Therefore,
if G 4 satisfies Condition (b) of Lemma 5.2, so does G . O

Recall that an element a of a semiring is called idempotent, if a?> = a.
The next lemma shows how the torsions of the monoid M, (N) are connected
to the idempotents of the monoid M, (Ny).

Lemma 5.4. If A € M,(N) is a torsion and V(A) is an idempotent, then
A? = A3, and there exists a permutation matriz P such that P~'AP has a
block form

C D
1 E|, (5.4)
0 0

o O O

where I is an identity matriz.

Proof. Let P be a permutation matrix such that P~'AP has the form (5.1)
of Lemma 5.2. Since ¥(A) is idempotent in M, (Ny) and ¥ is a morphism,

V(P 'AP)Y) = U(P 'A’P) = W(P 'AP).

Now since Bj; and Bsg are upper triangular with zeros on the diagonals, By,
and B3z must be zero matrices. Indeed, if they are not zero matrices, then
on each power the number of zero entries grows. Since Bgs is a permutation
matrix and therefore invertible, from B2, = By, it follows that By = I.
Hence P~'AP is of the form (5.4). Now

(P'AP)> = P 'A’P = P

(P'AP)* = P 'A?P = P

o O O O o o
o~Q0O o~Q0Q
Q
&

So we have that P~1A%2P = P~'A3P, and by multiplying this equation by P
from the left and by P! from the right we get that A2 = A3, O
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We are ready for the main theorem of this section. It shows that if a
finitely generated subsemigroup S of M, (N) is finite, then we can state an
upper bound for cardinality of S.

Theorem 5.2. Let S be a subsemigroup of M,(N), generated by k of its
elements. The following statement are equivalent:

(a) S is finite.

(b) For all A € U(S), if A is idempotent then 1(A)? = 1(A)>.

(c) |S]| < g(n, k) where g is a function depending only on n and k.

Proof. First we show that (a) implies (b). Since S is finite, it is torsion. Let
A in ¥(S) be idempotent and let B in S be such that ¥(B) = A. Since A =
U((A)), it follows that ¥(B) = W(.(A)). Since B is a torsion, by Lemma
5.3, so is t(A), and by Lemma 5.4, since A is idempotent, +(A4)? = 1(A)3.

Second we show that (b) implies (c). Let m = 3" = |M,(N,)|, p =
R(m,4,2) and g(n, k) = 37 k'. Without loss of generality we may assume
that S is a monoid. Since S is generated by k of its elements, there is an
epimorphism, i.e. a surjective morphism, y : X* — S, where X™ is the free
word monoid generated by an alphabet X of cardinality k. We continue by
proving the next claim.

Claim. If z in X* is a word of length |z| > p, then there exists another word
y in X*, with |y| < |z|, such that x(z) = x(y).

Proof of the Claim. Let r = |z| and let © = zy25 ... 2,, with z;’s in X. Let
us partition the 2-subsets of {1,...,7} into m blocks {Q4 | A € M, (Ny)};
by letting

Qa={{i,j}|i<jand ¥(x(z;xit1...7;)) = A}

Since r > p, there exists, by Theorem 5.1, a set Y = {iy,1s,13,44}, with
1 <y < iy <3 < iy <r,such that all 2-subsets of Y belong to the same
block, say Qa. Let y, = x;, ...2; 1 for k = 1,2,3, and let u and v in
X* be such that x = uy ysyzv. Denote the composition (¥ o x) by £. Since

{il,iQ}, {ig,ig}, {Zl,lg} and {13,24} are in QA; we have

A=) = &(y2) = E(niya) = &(vs3). (5.5)

Now, because £ is a morphism (since W and x are), we have that A =
E(yry2) = E(y1)€(ye) = A% ie. A is an idempotent in ¥(S). By our as-
sumption (b), this implies that ((A4)*> = (A)?, and by Lemma 5.4, there
exists a permutation matrix P such that P~'.(A)P has a block form (5.4).
Since P and P~! are permutation matrices, it is clear that ¥(P) = P and
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U(P~')y = P!, and it follows from (5.5) that P~'(A)P = ¥ (P 'x(yx)P),
for k =1,2,3. Hence by the definition of ¥ and ¢, P~"x(yx)P has the block
form

0 C, Dy
0 I E,
00 0
This implies that
0 ¢, CiE,\ [0 Cs Dy
(P~ 'X(n)P)(P "X (1) P) (P 'x(y5)P) = [0 T  Ej 0 I Fj
00 0 00 0
0 C, CyFEs
=0 I Es | =(P "x(n)P)(P 'x(ys)P).
00 0

Now P 'x(y1y2yz) P = P~ x(y193) P, i-e. x(y19293) = X (y1y3)- Thus, x(z) =
X(uy1ysv) and this completes the proof of the Claim, since |ys| > 0.

It follows that y(z) = x(z) for some word z in X*, such that |z| < p;
hence |S| < g(n, k).

It is clear that (c) implies (a). O

In our proof we had p = R(m,4,2), but these Ramsey numbers are very
large. We mention that A. Weber and H. Seidl proved in [WeS] that the
number R(m, 4,2) can be replaced by the number [¢?-n!] — 1, where e is the
natural base of logarithms. Their proof is based on the theory of automata,
and it is different from the one we presented. Weber and Seidl also mention
in the appendix of [WeS] that it can be decided in time O(n®- |H|), whether
a subsemigroup of M, (N) generated by the set H is finite. There exists also
many other papers concerning this upper bound and the exact algorithm, for
example by G. Jacob, [Jal] and [Ja2], and by some of the authors already
mentioned in this chapter.

Corollary 5.1. It is decidable whether a given finitely generated subsemi-
group of M, (N) is finite.

Proof. The previous theorem shows that we have to find only g(n,k) + 1
different matrices from S to see that S is infinite. If we cannot find that
many different matrices, then S is finite. O
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Mandel and Simon also proved in [MaS], that there is an upper bound for
the cardinality of the finite subsemigroups of M, (Q) and of M, (F), where
F'is an arbitrary field.

The next two theorems are corollaries of the result of Mandel and Simon

for M, (Q).

Theorem 5.3. It is decidable whether a semigroup generated by one integer
matrix is free.

Proof. We can decide whether the semigroup generated by a given matrix is
finite or not, and if the semigroup is finite, then it is not free, and otherwise
it is free. O

Theorem 5.4. It is decidable whether some power of a given integer matriz
15 zero, i.e. the mortality problem for the semigroup generated by one matrix
is decidable.

Proof. We can decide whether the matrix semigroup generated by this matrix
is finite or not, and if it is, we check if one of these matrices is zero. O

The same conclusion holds for the decidability of the existence of the
identity matrix as a power of given matrix. It is also decidable.
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6 Zero in the Right Upper Corner

The problem considered in this chapter is called the zero in the right upper
corner.

Problem 5. For a given finite subset of Z"*", determine whether there exists
an M in the semigroup generated by these matrices such that My, = 0.

In the first section we shall show that if n > 3, then the problem is
undecidable. The method we use is the usual coding of pairs of words into 3 x
3 matrices. First we have to recall and introduce few notions and functions.

In the latter part of this chapter we consider the above problem in the
case where we have only two generators. We shall prove that also in this
case the problem is undecidable, when the dimension of the matrices is large
enough.

6.1 The undecidability of the zero in the right upper
corner

We begin with some definitions for the proof. Let I' = {aj, as, ..., a,} be an
alphabet and let function o be as in Chapter 2, i.e. ¢ : I'* — N such that

k
o(ai, a,...a;,) = Zijnk*j and o(1) =0.

J=1
We recall that o is injective, and that for all u,v in ['*
o(uv) = o(v) + n'o(u). (6.1)

Assume now that n = 2, i.e. T' = {aj,as}, and define a mapping v, :
I* x T* — Z¥3 by

1 o(v) o(u)—o(v)
Yolu,v) = |0 20 2l 9hl
0 0 olul

This mapping is clearly injective, because ¢ is injective, and it is also a
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morphism, since for all uy, us, vy, vy in I'*,

72(“1; 01)72(112, UQ)

1 o(v) o(uy) —o(vq) 1 o(vg) o(uz) —o(ve)
= |0 2lul olut| _ 9glvil 0 2l 9luz| _ 9lvs
0 0 2lul 0 0 2luz|

1 o(w) + o2 o(uy) — o(vy) + o(vy) (22l — 2v2))
+2l"l(a(uy) — o (vy))

= 1o 2\1;1\2\@2\ 2\1;1\(2\11,2\ o 2\1;2\) + 2\11,2\(2\11,1\ o 2\1)1\)
0 0 2lurlgfuz|
. 1 o(vnvy) o(ujug) — o(v1v9)
(:) 0 2\1)11)2\ 2\1“11,2\ o 2\1)1’112\ — ’}/Q(U1U2, Uﬂ)g).
0 0 2\11,111,2\

The next theorem is attributed to R.W. Floyd in [Man].

Theorem 6.1. It is undecidable whether a finitely generated subsemigroup
of M3(Z) contains a matriz M with M3 = 0.

Proof. Let (h,g) be an instance of PCP, let h and g be morphisms from *
into I'*, and define the matrices M, = 72(h(a), g(a)) for all @ in 3. Then,
because 5 is morphism, for a matrix M = M,, M,, --- M, ,

M3 =0
if and only if
o(h(ar)h(az)...h(an)) = o(g(ar)g(as)...g(am)),

i.e. o(h(w)) = o(g(w)), where w = ajas...a,. Now, because o is injective,
we get that M3 = 0 if and only if h(w) = g(w), and the claim follows from
the undecidability of PCP. O

Note that in the proof we needed 7 generators, since, as remarked before,
PCP(7) is undecidable.

Because we may add zero columns to the left and zero rows to the bottom
of the matrices in the previous proof, we get the next corollary.

Corollary 6.1. If n > 3, it is undecidable whether a finitely generated sub-
semigroup of M, (Z) contains a matriz M with M, = 0.

The decidability of the existence of the zero in the right upper corner for
2 X 2 matrices is an open question. We note again, that if it is undecidable,
it must be proved with some other method than the one used in the proof of
the previous theorem.
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6.2 The two generator case

In Chapter 3 we considered the mortality problem in the case, where the semi-
group is generated by two matrices. We used the construction from matrices

My, ..., M, with dimension n into two matrices A and B with dimension nk
such that
M, 0 0 0 O 0 I
I 0 0 0
A= 0 M and B=10 [ 0 0
: L . 0 - :
0 - 0 M, 0 0 I 0

We cannot apply these matrices to the problem of the zero in the right upper
corner, but we shall use them as blocks in the matrices with dimension nk+ 3.
First we define two vectors of dimension n, namely

so XMY is the entry in the right upper corner of M in Z™*". Next define
two vectors of dimension nk,

oo oo
oo™

1
1
v
0

o O ==

Note the difference in the second diagonal entry.
The proof of the next theorem is from [CKa].

Theorem 6.2. [tis undecidable whether the semigroup generated by {A', B'}
has an element such that it has a zero in the right upper corner.
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Proof. Let S be the semigroup generated by {A, B}, S’ be the semigroup
generated by {A’, B'}, and T be the semigroup generated by {M, ..., My}.
Let C' be an element of S’. Then

0 = * =
, 10 A 0 =*
C_OOC*’
00 0 0

where *’s represent the unimportant values, C' is an element of S, and A is
1, if C" is power of B’, and 0 otherwise.

Consider any element of S’ other than the generators A" and B’. It can
be written in the form PC'Q), where P and @ are equal to A’ or B’,

01U 1 01U 1
0 = 0 1 0 = 0 1
P=1o o0 « v|™Q@=1g ¢ « v|
0 00 O 000 O
and (" is an element of S’. The product expands to

0 x x N+UCV

i~ |0 % 0 *
PC@ = 0 0 =« * ’
0 00 0

where the right upper corner entry is A+ UCV. If C" is a power of B’, then
C is a power of B and A\ =1 and UCV = 0, hence the right upper entry
of PC'Q) is 1. Otherwise, A = 0 and if we divide C to n x n blocks N;;,
where 1 <4, <k, then UCV = Zle X N;;Y. As in the proof of Theorem
3.2, we can write C = B'C;,Cy, -+ - C;,,, where C;; = B¥ %t AB' ! where
1 <i; < k. The initial B* permutes the lines only, so the N;;’s are also, in a
different order, the elements of the first block column of C;,C;, ---C;, . and
one of them is M = M; M;,---M; and the k& — 1 others are zero blocks.
Therefore the right upper corner entry of PC'Q) is XMY, i.e. the right
upper corner entry of M, which can be any element of T'. If we now define
the matrices M; to be the matrices of the proof of Theorem 6.1, we get that
for S’ the existence of the zero in the right upper corner is undecidable, since

it is undecidable for 7. O

Notice that dimension of A" and B’ is nk+3 and, by the proof of Theorem
6.1, we may set n = 3 and k = 7. Therefore we get that the problem of the
zero in the right upper corner is undecidable in two generator semigroups,
when the dimension of these matrices is at least 24. This is an obvious
corollary of the previous theorem.
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7 Skolem’s Problem

In this and next chapters we consider the so called Skolem’s problem, which
we define next. It is related to the problem of the zero in the right upper
corner in a way that in Skolem’s problem we consider semigroups generated
by one matrix.

Problem 6. Let M be a given matriz from M, (Z). Determine whether there
exist a power k such that (M*),, =07

It is not known whether the Skolem’s problem is decidable or not, when
n > 3. We shall prove the decidability for case of dimension two in the first
section and the main result of the next chapter is that it is decidable, whether
there exists infinitely many powers k such that (M*);, = 0.

In the proof of the decidability of the Skolem’s problem in dimension two
we shall use Theorem 7.1 which suits for deciding the existence of the zero in
any entry of the powers of a given 2 x 2 matrix, and the decidability of the
Skolem’s problem is a corollary of that theorem. That theorem gives us also
a way to prove the decidability of the mortality problem in the case, when
the semigroup is generated by two 2 x 2 matrices. This proof is presented in
the second section of this chapter.

7.1 Skolem’s problem in dimension two

We are now going to prove that the Skolem’s problem is decidable in the case
of 2 x 2 matrices. To prove this we need certain properties of sequences.

Let (u,)S%, be an integer sequence, defined by constants uy = ¢y, u; = ¢;
and a formula

Up + QU1 + Aoty 9 = 0, (7.1)
where a;’s are in Q. Let o and [ are the roots of the equation
y2+a1y+a2 =0. (72)

The next lemma has an elementary combinatorial proof, which we give
for the sake of completeness.
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Lemma 7.1. Let (u,), be as above. Then we have two cases, namely:
(i) If a # B3, then there exists constants a and b such that

U, = aa” + bs"

for all n in N.
(ii) If o = 3, then there exists constants ¢ and d such that

up = (en + d)a”
Proof. (i): If the claim holds, then by the equalities a+b = ¢y and aa+b3 =

c1, we have

c—c €1 — Coov
a= & ol and b= ———.
a—pf B -«
We assume that a and b are as above and prove the claim (i) by induction.
Clearly, when n = 0,1 the claim holds. Assume that it holds for all

n < k -+ 1, where k > 0. Then by the assumption (7.1)
Upypo = —A U1 — Gty = —ap (@™ + DB* ) — ay(ac® + bB")
= —aak(aya + ay) — b3 (a, B + ay) = aak T + b
where the last equation follows from the fact that o« and § are roots of the
equation (7.2), and therefore —(3? = ;3 + as and —a? = a;a + as.
(ii): Like in the previous case, if the claim holds, then we have that d = ¢
and ¢ = (¢; — ¢pr) /. We prove the claim (ii) by induction.
If n = 0,1, then the claim holds. Assume that claim holds for all n < k+1,
where £ > 0. Then by the assumption (7.1)
Upyo = —ay (c(k + 1) + d)a* ' — ay(ck + d)a”
= a*(—arc(k + 1)a — ayda — ayck — ayd)
= a*(ck(—ar1a — as) + d(—ara — as) — arcq)
= of(cka® + do? — (—2a)ca) = (c(k + 2) + d)a*?,
since « is a root of equation (7.2) and #* + a1t + ay = (t — a)?, we have
a1 = —2a. O

Let p be a prime number. We define the p-adic valuation v, over Q by
v,(0) = oo and v,(q) = n, where ¢ = p"§ with a and b in Z and p divides
neither a nor b.

It is clear by the definition of v, that v,(a + b) > inf{v,(a), v,(b)}. And
if a and b are integers, we can prove a stronger result for v,(a + b) as stated
in the next lemma.
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Lemma 7.2. Let a and b be two integers and p a prime number. If v,(a) <
vp(b), then vy(a+b) = vy(a).

Proof. Assume that v,(a) = n and v,(b) = k, with n < k. Then a +b =
p"(ay + by), where v,(a;) = 0 and v,(by) > 1. Clearly v,(a + b) > n, and if
vp(a+0b) > n, then a;+b; = 0 (mod p) and therefore a; = —b; =0 (mod p),
and we have a contradiction. Now v,(a +b) = n = v,(a). O

Now we are ready for the main theorem of this section. The proof is
modelled after the ideas of J.Cassaigne [Cas].

Theorem 7.1. Let A be a 2 X 2 matriz over integers and assume that u and

for some n > 0.

Proof. Let t = tr(A) and d = det(A). By Section 2.3 we know that the
characteristic polynomial of A is c4(\) = A? — A +d. Also by Section 2.3 we
know that ca(A) = A2 — tA +dI = 0, so we see that

A? =tA —dl. (7.3)

Consider the sequence (,),>0 = uA™v". By multiplying the equation (7.3)
by uA" from the left and by v” from the right we get 2,9 = tx,.1 — da,.
We see that x,, is defined by zy and z7, and if both of these are zero, then
for all n, x,, = 0. We assume that this is not the case.

Consider next the equation (7.2) for the sequence x,, i.e. the equation

y*—ty+d=0. (7.4)

We know that the roots of this equation are of the form y = ZEvi—4d Vt;"ld. Let

A = t2 — 4d. We divide the proof into three cases:

1) A =0. Then by the case (ii) of Lemma 7.1, z, = (§)"(cn + d), where
c and d are in Q, and they are fixed by zy and ;. Now if ¢ = 0,then (z,,)n>0
has infinitely many zeros, and if ¢ # 0 and —% in N, then (x,),>¢ has exactly
one zero. Otherwise (x,),>¢ has no zeros.

2) A>0. Ift =0, then

- {(d)nmo, if n is even, (75)

(—d)l2lzy, if nis odd.

If 2y or x; is zero, then (x,),>0 has infinitely many zeros. Otherwise it has
0 3 n)n>0
no zeros.
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If t # 0, then we have case (i) in Lemma 7.1, i.e.
T, = aa™ + bB",
where a and  (in R) are the roots of the equation (7.4) and a and b are in
Q[\/Z] —{u+oVA|uveQ} CR

by the proof of Lemma 7.1. They can be effectively computed by the same
proof. Assume that o > 3. Now z,, = 0 if and only if (§)" = —2 As 15> 1,
a bound on n can be found and we are able to check whether (z,),>¢ has a
7ero or not.

3) A < 0. If t = 0, we have the case (7.5), and it is easy to verify whether
r, = 0 for some n. We assume that ¢ # 0. We know that d > 0 and we shall
prove first that x, = O(d?), which means that there exist constants ¢ and
ng such that for all n > ng, z, < ¢-dz. Since A < 0, it follows by the case
(i) of Lemma 7.1 that, for some constants a and b,

(t+\/t2 4d>"+b<t V12 4d>”
2 2 '

Ty =
Now we get that

\xn\ = |a

(t+\/t2 4d>"+b(t V2 4d>”
2

2
< a<t+\/t2—4d>"’ +b<t—\/t2—4d>"’
= 2 2

<y e+ Dy v aap
|2—f+i\/4dt2|”+2—7lti\/4dt2|”
Ly e L ey e
— 12 + 4d — /1% + 4d — t?
o VI + o VI
a n b n n n n
= |2—\/4d + |2—n\/4 = |a|d> + |b|d> = d2(|a| + |b]),

and therefore z,, < (|a| + [b])d> < O(d?).

Assume that p is a prime number such that p divides t and p? divides d.

Then p"~! divides z,, and by setting ¢ = £ and d' = 2, we can define an
)

integer sequence (x],),>o such that xy = zg, 2} = 2, and for n > 2,
Tn

Pt

Y SO A T o
T, =tw, —dr, ,=

i
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Clearly 2!, = 0 if and only if z,, = 0 and therefore we may consider the
sequence (z},)n>o instead of (z,,)n>0. So we may assume that there is no such
prime p that p divides ¢ and p? divides d.

Let u be the greatest common divisor of £ and d, we denote, as usual,
u = ged(t,d) > 0, and t = wv, d = vw for some integers v and w. By the
above assumption about prime factors of ¢ and d, ged(u, w) = ged(v, w) = 1.

Assume that p is a prime factor of w. Then, again by induction, we can
prove that v,(z,) > [5]. Also v,(72) > inf{v,(tz1),v,(dzo)} > 1 and the
induction step is

Up(Tng1) > inf{v, (wory,), vy(vwz, 1)} > 1+ [254] = 2.

This means that u!?! divides x,, for all n > 2.

Assume now that for all prime factors p of w, and for all n, v,(z,4+1) —
Up(,) > vy(w). This implies that =z, # 0 for all n. Also since v,(w) > 1, it
implies that w” divides z,,. Now, since ged(u, w) = 1, we know that ulzlwm™
divides x,,. Therefore

uFlu™ <z, = O(d?),
and because d = uw > 0, necessarily w = 1. Now A = (uv)? — 4u < 0, so
we get that uv? < 4, and |v] = 1 and u € {1,2,3}. Since d = u, we see
that d € {1,2,3}, and t = d or t = —d. All these cases lead to an equation
Tpi12 = d%z,, which can be verified by simple calculations. For example, if
d =1t =3, then x,,9 = 32,1 — 3z,. We prove the equation by induction.
First, for n =0

T19 = 3.77]] - 3.7,']0 = 9.7,']0 - 9.779 - 3.7,']0 = 6.7,']0 - 9.779 = ]_8?79 - ]_8?78 - 9.7,'9
= 9.1'9 — 18.’178 = 9.’178 — 27.1‘7 = —27.1'6 = —81.1'5 + 81.’174
= —162x4 + 24313 = —243x3 + 48629 = —243x5 + 72921 = 7292
= 36.?70,
and similarly for n = 1, we get that 2,3 = 3%z,. The induction step is for

n > 2

Tnt1)+12 = 3Tni12 — 3T(n_1)412 = 3+ 3%, — 3+ 3%2, 4

=33z, — 37, 1) = 37,41

This proves the case d =t = 3, and the other cases can be proved similarly.

We can easily verify whether z,, 1o = d®z, and t = 4d. If this is not the
case, then for some prime factor p of w and some n, v, (Tn41) —v,(2,) < v,(w).
Now vy (2p41) < vp(2y) + vy(w) = vy(vwexy,), so by Lemma 7.2

Vp(Tnt2) = vp (W p1 + uwey,) = vy(Tp41).
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By induction we prove that
Up(Tm) = Up(2py1) < oo forallm>n+1. (7.6)
Assume that for some m, (7.6) holds for all k, m >k >n+1

Up(Tmt1) = vp(W0Ty, + uwey, 1) = inf{v,(2,11), 1+ vy (Tp41) } = vp(Tngr).

Clearly the only possible zero is x,, where v,(2,41) — v,(z,) < v,(w) for the
first time. So we check whether this x,, = 0.

Note that p and n are not known at first, but we can compute the values
Up(Tnt1) — vp(x,) for all prime factors p of w until p and n are found. There
is no explicit bound for this loop of computation; it terminates always, since
we evaluate this loop for all prime factors p of w at the same time. The loop
terminates, when the first pair p and n is found and then the only possibility
for the zero in (x,),>0 is found. We check that one, and we are done.

We have proved that there is a method in all cases of A to solve whether
there is n > 0 such that vA™v = 0. O

Corollary 7.1. Skolem’s problem is decidable for 2 x 2 matrices over inte-
gers.

Proof. 1f we set u = (1,0) and v = (0,1) in Theorem 7.1, then the product
uA™" equals (A™)g. O

7.2 Skolem’s problem and the mortality problem

We shall now return to the mortality problem. We restrict to the case when
we are given two 2 X 2 matrices over integers. We shall prove that this case
is decidable. The proof is based on Theorem 7.1.

First we consider some properties of 2 x 2 matrices over integers. Let A
and B be elements of Z"*". We recall that det(AB) = det(A) det(B) and
that if A is singular, i.e. det(A) = 0, we know that the rows and the columns
of A are linearly dependent vectors. Set B = {vy,..., v} of vectors from Z"
is linearly dependent if the exists integers ¢y, ..., ¢, such that

C1U] = CoUg + C3V3 + + - - + CrUk

and at least for one 7, ¢; # 0. Otherwise B is called linearly independent.
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The number of linearly independent rows in A is called the rank of A and
denoted by rank(A). It can be proved that the number of linearly indepen-
dent columns is is also rank(A). Note that the rank of a matrix is also the
dimension of the vectors space generated by the rows or the columns of the
matrix.

Let A be inZ™*". It is known that A can be presented in the form

rank(A)

A= " alb;

i=1
where a; and b; are vectors in Z" for i = 1, ..., rank(A). Clearly, if rank(A) =

1, then there exists vectors a and b in Z" such that A = a™b.

Lemma 7.3. Let A, B and C three matrices with rank 1 from Z"*". If
ABC =0, then either AB or BC is zero.

Proof. Assume that A = a’b, B = ¢!'d and C = e! f. If one of these matrices
is zero, then the claim obviously holds, so we may assume that this is not
the case. It follows that

ABC = a"bclde’ f = (beh) (de)a™ f,

where be! and de? is are integers. If now ABC = 0, then clearly either be’
or del is zero. Since

AB = a"bc"d = (bc")a"d
and
BC = clde’ f = (de')c! f,
the claim follows. O

Theorem 7.2. Given two 2 X 2 matrices over integers, say A and B, it is
decidable whether the zero matriz is in the semigroup generated by {A, B}.

Proof. Assume that A and B are non-zero, otherwise we are done. As we
mentioned earlier, det(AB) = det(A) det(B) and det(0) = 0, so if A and B
are both invertible, then the zero matrix is not in the semigroup S generated
by {A, B}. Tt also follows that if the zero is in S, then at least one of these
matrices is singular, i.e. has determinant equal to zero.

Assume that either A or B is singular. Then by Lemma 7.3, in the
minimal-length zero product of S, the singular element can occur only as the
first and the last factor. We have two possible cases:
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1) If A and B are both singular, then we have to check only the products
AB, BA, B? and A%

2) If A is invertible and B is singular, then B can be written in form
B = z'y, where z and y are vectors in Z2. Now

BA*B = 2Ty AFsTy = (yAF2")2Ty = 0

if and only if
yArzT =0,

and by Theorem 7.1 this is decidable. O

We shall next show that the decidability status of the Skolem’s prob-
lem is equivalent with the decidability status of the certain instance of the
mortality problem. The decidability status of a problem is either decidable,
undecidable or unknown.

The theorem in this section is based on Lemma 7.3 and on next lemma.

Lemma 7.4. Let A be an element of Z™*", u and v be in Z". There exists
matriz M in ZOFT2DX42) sych that for all integers k > 1

uA*y" = (1,0,...,0)M*(0,...,0,1)". (7.7)
Proof. Define M as block form

0 uA? uAv”
M=10 A ol
0 0 0

The right hand side of the equation (7.7) clearly is the right upper corner
element of M*. We shall prove by induction that

0 wAktt  yAkyT
ME=10 AF AT (7.8)
0 0 0

for all integers £ > 1.
First, for £ =1 (7.8) is obvious by the definition. Assume now that (7.8)
holds for all £ < 7, j > 1. So

0 wA*t uAY" 0 uAIT? yAIFT
MY =MM=(0 A4 AW M=[0 A4t! Wiy
0 0 0 0 0 0
This proves the lemma. .
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Now we are ready for the next theorem.

Theorem 7.3. Let [ be an instance of the mortality problem such that we
are given matrices My, ..., My and A in Z"*" and rank(M;) = 1 for all i =
1,...,t. The decidability status of instance I is equivalent with decidability
status of Skolem’s problem for matrixz with dimension n + 2.

Proof. By Lemma 7.3 in [ it is enough to study products M; M; and M; A* M,
1,7 =1,...,t and k£ > 1. The products of the second form are actually of
the form uA*v”, since rank M; = 1 for all i = 1,...,t, and by Lemma 7.4
these are equivalent with the Skolem’s problem for matrices with dimension
n+ 2. U

We have proved that there is a certain relation between the mortality
problem and the Skolem’s problem. Note that the decidability status of
instances I of the mortality problem is unknown.

7.3 Skolem’s problem for matrices over natural num-
bers

If we restrict in Skolem’s problem to square matrices over natural numbers,
we have a simple decidable special case. It follows from the fact that if M is
in M, (N) , then in M* we are only interested in whether (M*),, is positive
or 7ero.

Let B be the boolean semiring, B = {0,1}, where the operations are the
usual product and addition of integers except that 1+ 1 = 1.

Assume that A is in M, (N) and define a mapping ¢ : M, (N) — M, (B)
by

0, if A =0,

1. otherwise.

Y(A)i; = {

We end this chapter with a simple theorem.

Theorem 7.4. Let A be in M,(N). It is decidable whether (A¥)y, = 0 for
some k > 1.

Proof. Assume that B is in M, (B) and that B = t¢(A). Clearly (B¥);, =0
if and only if (A*)y,. There are 2 elements in M, (B), and we can compute
B for all k, and stop if (B¥);, = 0 or if B¥ = B" for some h < k. This
procedure terminates, since the number of elements in M, (B) is finite. O
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8 An Infinite Number of Zeros in Skolem’s
Problem

In this chapter we will show that it is decidable for a given matrix M from
M, (Z) whether there exist infinitely many k’s such that (M*¥);,, = 0. The
proof uses the theory of rational series so we begin with the basics of these
series.

Our presentation on rational series follows the book Rational Series and
Their Languages by J. Berstel and C. Reutenauer [BeR].

8.1 Rational series

Let X be a finite, nonempty alphabet and denote the empty word by e.
Recall that X* is a monoid, the product is the concatenation of two words
and with neutral element e.

Let K be a semiring and X an alphabet. A formal series (or formal power
series) S is a function

X* = K.

The image of word w under S is denoted by (S, w) and is called the coefficient
of w in S. The image of X* under S is denoted by (S). The support of S
is the language

supp(S) = {w € X* | (5, w) # 0},
The set of formal series over X with coefficients in K is denoted by K ((X)).
Let S and T be two formal series in K ((X)). Then their sum is given by

(S+T,w) = (S,w)+ (T, w)

and their product by

(ST, w) = ) (S, u)(T,v).

uv=w
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Note that here the sum is always finite. We note also that K{((X)) is a
semiring under these operations. The identity element with respect to the
product is the series 1 defined by

g fw=e
(1’?”)_{ k Lw=re¢,

Ox otherwise,

and the identity element with respect to the sum is the series 0 defined by
(0, w) = Ok

We also define two external operations of K in K((X)). Assume that a
is in K and S in K((X)), then the series aS and Sa are defined by

(aS,w) = a(S,w) and (Sa,w) = (S,w)a.

A formal series with a finite support is called a polynomial. The set of
polynomials is denoted by K(X).

If X = {z}, ie. X is a unary alphabet, then we have the usual sets of
formal power series K ((z)) = K[[z]|] and of polynomials K|z]

A formal series S can also be written in the sum form S = > a,,w, where
w is in X* and a,, is the coefficient of w in K, i.e. (S,w) = a,.

Example 1. Let X = {z,y, z} and consider the formal series in Z{(X))
defined by S = zy + zxyz + 2zz. We get, for example, that (S,zy) = 1,
(S,zx) =2 and (S,zz) = 0.

A family of formal series, say (S;);c; is called locally finite, if, for every

word w in X*, there exists only a finite number of indicies ¢ in [ such that

(Si,w) #0.

A formal series S in K ((X)) is called proper if the coefficient of the empty
word vanishes, that is (S, €) = 0.

Let S be proper formal series. Then the family (S™),>¢ is locally finite,
since for any word w, if |w| > n, then (S™ w) = 0. The sum of this family is
denoted by S*,

n>0

and it is called the the star of S. Similarly we define the plus of S, ST =
2@1 S™. Clearly S° = 1, and it can be proved that the equations

S*=1+S* and St=55"=5*S
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hold for proper formal series.

The rational operations in K ((X)) are the sum, the product, the two
external products of K in K((X)) and the star operation. The subset of
K((X)) is called rationally closed, if it is closed under the rational operations.
The smallest rationally closed subset of K((X)) containing a subset E of
K({(X)) is called the rational closure of E.

A formal series is called rational if it is an element of the rational closure
of K(X), i.e. it can be defined using the polynomials K (X) and the rational
operations.

Example 2. Denote by X the formal series erx z. X is proper, since
(X, 1) = 0, and rational, since it is a polynomial. The series

X*:g X" = g w.
n>0 weX*

is also rational.

We denote K™*™, as usual, the set of the m x n matrices over K.

A formal series S € K ((X)) is called recognizable if there exists an integer
n > 1, and a morphism of monoids g : X* — K™*", into the multiplicative
structure of K™ " and two matrices (or vectors) 7 € K"*! and p € K"
such that for all words w,

(S, w) = Tp(w)p.

The triple (7, i, p) is called a linear representation of S with dimension n.
A linear representation of a rational series S is called reduced, if its di-
mension is minimum among all linear representations of S.

Note that if we define 7 and p as vectors in K™, then

(S, w) = Tu(w)p".

The next theorem is fundamental in the theory of rational series. It
was first proved by Kleene in 1956 for languages that are those series with
coefficients in the Boolean semiring. It was later extented by Schiitzenberger
[Scb] to arbitrary semirings.

Theorem 8.1. A formal series is recognizable if and only if it is rational.
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The proof by Schiitzenberger uses some properties of K-modules and it
is quite long, and omitted here.

It is clear by the definition of recognizable series that we can transform
our problem of matrices into rational series quite nicely.

From now on we shall fix the alphabet to be X = {z}. We denote the
formal series S over X by

S = E a,r" = E a,r".

n>0

A rational series is called regular, if it has a linear representations (7, y, p)
such that p(z) is an invertible matrix.

There are also other ways to define regular series. It can be proved that
for a regular series S, any reduced linear representation (7, u1, p) has invertible
().

Assume that K = Z and that S is a rational series in Z[[z]] having a linear
representation (7, y1, p), and moreover that the characteristic polynomial of
the matrix p(x) in Z¥** is ¢()\). Then

c(A) = (=DFONF e X ),

where ¢;’s are in Z and k is the dimension of the linear representation (7, u, p).
By the Cayley Hamilton theorem we know that

c(pu(z)) = p(a®) + eyp(a® ) + -+ T = 0.

If we multiply this equation from the left by 7u(z") (n € N) and from the
right by p, we get

pig + Crapig 1+ -+ cga, = 0. (8.1)
The equation
Unih + B1Onyn 1+ -+ Bran =0,

for n > 0, satisfied by rational series S = Y a,z" in Z[[z]] is called a linear
recurrence relation. A linear recurrence relation is called proper, if 8, # 0.

Note that having a linear recurrence relation, every a, for n > h can be
computed if we know the elements aq, a1, ..., ap_1 of the series S. These h
first elements are called the starting conditions.

Next lemma gives a method to calculate a regular linear representation
from a proper linear recurrence relation.
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Lemma 8.1. If rational series S € Z[[z]] satisfies a proper linear recurrence
relation, then it is has a regular linear representation (11, 1, p1), i.e. a linear
representation satisfying det(u,(z)) # 0.

Proof. Let

Ap4h — ﬁlan—l—hfl — ﬁhan =0

be a proper linear recurrence relation of S and assume that a;’s, 0 < j < h,
are the starting conditions. Let

0 1 0 0
0 0 1 0 ag
ai
R =000, )= | =]
0 ... 1 .
On oo o5 h—1

The matrix pu;(z) is called the companion matriz. It is easy to see that
det(py(x)) = 6, # 0. Now 711 (27) gives the first row of matrix py(27). If
0 < j < h—1, then the first row of u;(27) has 1 in the j'th entry and all the
others are 0. Therefore 7y (27)p1 = a;, if 0 < j < h—1.

To prove that a,, = T]u(m”)m for all n > 0, we use the method mentioned
before the lemma, i.e. we calculate the characteristic polynomial of () to
get a linear recurrence relation. So we calculate

-1 0
0 —Xx 1 0
det(pi(z) — AI) =
0 —A 1
Brn e Br— A
h
=D (DTN (A
i=1

where the last equality follows from the definition of the determinant in
Section 2.3:

det((Aij)an) = Z Sign(jhj% cee ajn)A1,]'1A2jz e Anjna

e
where « repsesents a permutation of the set {1,...,n}, and from the fact
that only permutations with non-zero product are of the form (1,...,i—1,i+
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1,...,h,i). These permutations have i — 1 inversions, and the signs of these
permutations are (—1)"'. The last term (—\)" follows from the permutation
(h,1,...,h — 1) and from the element 3; — A in the product. Now

h
det (i (z) — M) = (—=1)" (Z(—ni**imh*l + )\h'>
i=1
= () A= BN ),
Thus the rational series with linear representation (71, u1, p1) satisfies the
same linear recurrence relation than S. Therefore they are equal. O

Note that one way to define the regular rational series is to use the fact
that they satisfy a proper linear recurrence relation.

8.2 Skolem’s theorem

In this section we prove an important theorem concerning the zeros in rational
series over {x} with coefficients in Z, namely a theorem proved by Skolem in
1934.

Theorem 8.2. Let S = ) a,z" be a rational series with coefficients in Z.
Then the set

{neNJa, =0}
s a union of a finite set and of a finite number of arithmetic progressions.

The proof we give here is based on the proof by G. Hansel in [Han]|, cf.
also [BeR]. Hansel proved the theorem for rational series with coefficients in
the fields of characteristic 0. His first step was to prove the claim for regular
rational series with coefficients in Z. We use that proof up to that point, and
then present a proof for all rational series with coefficients in Z. The proof
requires several definitions and lemmas.

A set A of natural numbers is called purely periodic, if there exists a
natural number N and integers ki, ko, ... k. € {0,1,... ;N — 1} such that

A={ki+nN|neN, 1<i<r}.

The integer N is called a period of A. A quasiperiodic set of period N is a
subset of N that is a union of a finite set and a purely periodic set of period
N.
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Lemma 8.2. The intersection of a family of quasiperiodic sets of period N
18 a quasiperiodic set of period N.

Proof. Let (A;)ic; be a family of quasiperiodic sets, all having period N. For
all j € {0,1,...,N — 1} and for all i in I, the set (j + nN) N A; is either
finite or equal to (j +nN). Clearly the same holds for (j + nN) N (N;er4;)

and therefore the intersection NA; is quasiperiodic. ]

Assume that S = > a,2" is a rational series. We denote the set {n €
N | a, = 0} by ann(S), and it is called the annihilator of S. Clearly the
annihilator is the complement of the support defined in the previous section.

Let v, be the p-adic valuation defined in the previous chapter. Our next
Lemma states an inequality, which we shall use later. Recall first that

n

Up((h s 'Qn) - va(%)

i=1

and

vp(q1 + -+ qn) > Inf{v,(q1), ..., vp(qn) }
where ¢;’s are in Q.

Lemma 8.3. If p is a prime number and n a natural number, then

T

-2
1)p<p—> an .
n! p—1

Proof. First, since |n/p| of the numbers 1, ... ,n are dividable by p, [n/p?|
are dividable by p? and so on, we have that

vp(nl) < [n/p) + [n/p*| + ...+ [n/P"] + ...
<n/p+n/p’+...+n/pF+... <n/(p—1).

Therefore,
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Consider next an arbitrary polynomial P(x) = ag + a12 + ... + a,z" in
Q|x]. For any integer k > 0, let

we(P) = inf{uy(a;) | j > k}.

Clearly,

and for k£ > n,

Note also that v,(P(t)) > inf{v,(ag),v,(a1t), ..., v,(a,t")} for any integer
t, and therefore

vy (P(1)) > wo(P). (8.2)

Lemma 8.4. Let P and Q) be two polynomials with rational coefficients such
that

P(2) = (v - HQ(x)
for somet € Z. Then for all k € N
wi11(P) < wi(Q).
Proof. Assume that

Qz) =ap+ a1z + ...+ a,z”,
P(.’E) = b[) +b1.’17 + ...+ bn+1.’17n+].

Then b1 = a; — tajy1, for 0 < j <n—1, and b,41 = a,, and therefore for
j=0,...,n

(I,j = bj+] + tbj+2 + -+ tni'jbn+1 .

It follows that v,(a;) > w;41(P) for any j in N. Thus, for any given £ in N,
if j > k, then

vp(a;) = wjs1(P) = wit1(P),
and consequently,

wr(Q) > wiy1(P).
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Our next corollary is a straightforward extension of the previous lemma.

Corollary 8.1. Let QQ be a polynomial with rational coefficients, and assume
that t1,t9, ..., t, are in Z and let

P(a) = (x — )& — 1) - (& — 4)Q(2).

Then wi(P) < wo(Q).

The main argument in our proof of Skolem’s theorem is the following
lemma.

Lemma 8.5. Let (dn)nen be any sequence of integers and let (by)nen be the
sequence defined by

=0

where p 1s an odd prime number. If b, = 0 for infinitely many indices n,
then the sequence b, vanishes, i.e. b, =0 for all n in N.

Proof. For n in N, let

7!

- e —1)--- (v —i+1
Ror) = dp ( ) .( )‘
i=0

Then for t in N,

n

Rn(t) = Zdipit(t_ 1) .“.(t_i—i_ 1) = Zdvp7z,(tt7lz),

il
()
i=0

and since (';) = 0 for 7 > t, it follows that

b= Ri(t) = Ro(t) forn>t. (8.3)

Next, we show that for all k,n > 0,



For this we write R,(z) = >, cgn)mk. Clearly each cén) is a linear com-
bination, with integer coefficients, of the numbers d;%, for indices i with

k<i1<n,ie

- o k+1 "

¢ = akdkﬂ + ak+1dk+1m +ot andnaa
where a;’s are integers. Consequently,

> (0 (02).
and so Lemma 8.3 implies that
wlel)> ot (525) > 1=
which in turn shows that
wi(Ru(z)) > ki%i (8.4)

Consider now any coefficient b, of the sequence (b,)nen. We shall see that,
for any integer k,

which means that b, = 0. For this, let t; < t3 < --- < t; be the first k
indices with b, = --- = b;, = 0, and let n > max{t,¢;}. By equation (8.3),
R,(t;) =0, =0fori=1,...,k. Therefore

Ru(2) = (& — t)(x — ) - - (& — ) Q(x)

for some polynomial Q(z) with integer coefficients. By Corollary 8.1 we know
that wi(R,) < wo(Q). Now v,(R,(t)) > v,(Q(%)), and by the equation (8.2),
0,(Q(1)) > wn(Q). So we get

up(Bn(t)) 2 0p(Q(1) = wo(@Q) = wi(£n)-

Finally, by equation (8.3), v,(b;) = v,(R,(t)), and therefore it follows from
equation (8.4) that

— 2
vp(br) > k‘%

for all £ > 0. This proves the claim. ]
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We shall first prove Theorem 8.2 for regular rational series with coeffi-
cients in Z.

Recall that, for a prime p, Z, = {0,1,...,p — 1} is the ring, where the
usual operations of the semiring Z are done modulo p. Z, is a ring, since it
is a semiring and furthermore, every element a of Z, has an inverse element
a ' in Z, such that a-a~' = 1.

Lemma 8.6. Let S = ) a,x, in Z[[z]] be a reqular rational series and let
(T, 1, p) be a linear representation of S of minimal dimension k with integer
coefficients. For any odd prime p not dividing det(u(z)), the annihilator
ann(S) is quasiperiodic of period at most *.

Proof. Let p be an odd prime not dividing det(u(z)). Let n — T be the
canonical morphism from Z to Z,, i.e. misin {0,1,...,p—1} andn =7n
(mod p). Since det(u(z)) = det(u(x)) # 0, the matrix p(z) has the inverse
matrix in My (Z,), and it can be calculated from the inverse matrix of pu(z)
in M(Q) by mapping every element to Z,. Now there are p*” different
elements in My (Z,), therefore there exist some i and j in N, 7 # j, such that

,u(a:)Z = ,u(m)']. Since pu(x) has an inverse matrix, it follows that there exists
an integer N, 0 < N < pkz, such that

p(zV) =1.

This means that for the original matrix u(z), there exists a matrix M with
integer coefficients such that

pw(x™N) =1+ pM.
Consider a fixed integer j € {0,1,..., N — 1}, and define series
bn = Qj4nN, (85)

where n > 0. Then

n

by = T(a* ™) = ra(ad) (I + pM)p =3 (

1=0

n . . .
)pzm(mJ)M ‘p,

I

since
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By setting d; = Tu(27)Mp, we obtain
b, = “d;.

Now by Lemma 8.5, the sequence b,, either vanishes or contains only finitely
many vanishing terms. Thus the annihilator of S is a union of finite and
purely periodic sets by definition (8.5) of series b,. Therefore ann(S) is
quasiperiodic. ]

Proof of Theorem 8.2. Let (7, i1, p) be a linear representation of S = > a,z"
in Z[[z]]. If det(u(z)) # 0, by Lemma 8.6, ann(S) is quasiperiodic. So we
can assume that det(u(x)) = 0.

Let ¢(\) be the characteristic polynomial of u(x),

c(A) = (—DFOF e M ).
As mentioned in the previous section, the equation
nyk + Cllpig 1+ -+ cpay =0, (86)

where n > 0, is a linear recurrence relation satisfied by S.
Since ¢(0) = det(u(z)), by definition of the characteristic polynomial,
necessarily ¢, = 0, and we may write equation (8.6) in the form

Optk + ClOptk—1 + -+ Cplpik—m = 0,

where 0 < m < k and ¢,,, # 0. Let T =) _ e,z" be the rational series defined
by the (proper) linear recurrence relation

€nth + Cllpip—1 + -+ Cpép = 0,
for n > 0, and let the starting conditions be
€0 = Ok—m, €1 = Qk—m415 -+, €p—1 = Q1.

Now T has a linear representation (71, 11, p1) of Lemma 8.1, and det(u;) =
+¢,, and T is regular, and so by Lemma 8.6, ann(T") is quasiperiodic. The
annihilator of S is not necessarily quasiperiodic, but since

ann(S)={i|0<i<k—m, a;=0}U(ann(T) + (k —m)),

where ann(7") 4+ (k — m) denotes the addition of (k — m) to all elements of
ann(7), the annihilator of S is clearly a union of a finite set and of a finite
number of arithmetic progressions. O
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From the proof of Skolem’s theorem we obtain a corollary for the rational
series over rational numbers.

Corollary 8.2. Let S = > a,z™ be a rational series with coefficients in Q.
Then the set

{neN|a, =0}
15 a union of a finite set and of a finite number of arithmetic progressions.

Proof. Let (7, u, p) be a linear representation of S = >  a,z" € Q[[z]], and
let ¢ be the common multiple of the denominators of coefficients in 7, pu
and p. Then (g7, qu, qp) is a linear representation of rational series S’ with
coefficients in Z. Now S’ = >~ ¢"*2a,, 2", and therefore ann(S) = ann(S’). O

As mentioned earlier the idea of the proof in this section is due to G.
Hansel. This proof, as we saw, is elementary, but not short. Skolem’s original
proof and its extensions by Mahler to rational series with coefficients in
algebraic number fields, and by Lech to fields of characteristic 0, were much
more difficult using p-adic analysis. The last extension to rational series with
coefficients in a field of characteristic 0 is referred to as Skolem—Mahler—Lech
theorem.

The proofs in this section were also constructive. This is very nice from
our point of view, since we are looking for an algorithm to decide whether
square a matrix M has infinitely many powers k such that (M*),, = 0.

8.3 Decidability of the infinite number of zeros

We end this chapter with a theorem the proof of which is based on the
constructive ideas in previous section.

Theorem 8.3. Given a square matriz M in M, (Z), it is decidable whether
there exists an infinite number of natural numbers k such that (M*),, = 0,
i.e. M* has zero in the right upper corner.

Proof. We construct a rational series S = Y apa*, where a), = (M*)y,.
Clearly this has an linear representation (7, i, p), where

T=(1,0,...,0) € Z"", pu(x)=M and p=(0,...,0,1)" € Z™".

o8



First we decide whether p(x) is invertible or not, i.e. whether the linear
representation (7, u, p) is regular. If not, we consider the regular rational
series T' defined in the proof of Skolem’s theorem.

Now we have a regular series to consider, and we can use the proof of
Lemma 8.5. By this proof we can compute the period N, and we then divide
the rational series considered into series (b,)n,>o. We obtain N series, and
from the proof we also get linear representations satisfied by these series. So
we can compute linear recurrence relations satisfied by these series from the
characteristic polynomials of their linear representations. Finally we know
that these series (b,),>o either vanish or have only finitely many nonzero
elements. If some of these series vanish then there is infinitely many n such
that (M*)y, = 0, otherwise none. O
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9 Summary

We have considered many simply formulated problems in matrix theory.
Some of them are proved to be decidable and some undecidable, but many
problems are also left open. For instance, the freeness and the mortality
problem for 2 x 2 matrices and Skolem’s problem for n x n matrices, where
n > 3, were such.

We have also seen that the Post Correspondence Problem is very useful
in the proofs of the undecidability results in the matrix theory. Actually
all undecidability results were based on the undecidability of PCP. They
also used the same method, coding of two independent words to matrices, a
method that was first used by Paterson.

We also notice that the proofs for the decidable cases are complicated,
and need some backround from other branches of mathematics. We used
combinatorics, graph theory and theory of rational series in these proofs.

We shall now present the results proved in this work in the form of a table.
The entries are vectors of two parameters (n, k), where n is the dimension
of matrices and k the number of matrices. We restrict to the cases, where
matrices are over integers. Numbers n and k in the table present arbitrary
values of these parameters and Skolem’s problem is included in the problem
of the zero in the right upper corner.

PROBLEM DECIDABLE UNDECIDABLE
Mortality (2,2), (n,1) | (> 3,15), (> 45,2)
Freeness (n,1) (> 3,18)
Finiteness (n, k)

Zero in the right upper corner (<2,1) (>3,7), (>24,2)
Common element (>3,7)

Table: Summary of decidable and undecidable matrix problems.
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