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Abstract. We illustrate a simple and effective solution to semantics-based
compiling. Our solution is based on “type-directed partial evaluation”, and

– our compiler generator is expressed in a few lines, and is efficient;

– its input is a well-typed, purely functional definitional interpreter in
the style of denotational semantics;

– the output of the generated compiler is effectively three-address code,
in the fashion and efficiency of the Dragon Book;

– the generated compiler processes several hundred lines of source code
per second.

The source language considered in this case study is imperative, block-
structured, higher-order, call-by-value, allows subtyping, and obeys stack
discipline. It is bigger than what is usually reported in the literature on
semantics-based compiling and partial evaluation.

Our compiling technique uses the first Futamura projection, i.e., we compile
programs by specializing a definitional interpreter with respect to the pro-
gram. Specialization is carried out using type-directed partial evaluation,
which is a mild version of partial evaluation akin to λ-calculus normaliza-
tion.

Our definitional interpreter follows the format of denotational semantics,
with a clear separation between semantic algebras, and valuation functions.
It is thus a completely straightforward stack-based interpreter in direct
style, which requires no clever staging technique (currying, continuations,
binding-time improvements, etc.), and does not rely on any other frame-
work (attribute grammars, annotations, etc.) than the typed λ-calculus. In
particular, it uses no other program analysis than traditional type inference.

The overall simplicity and effectiveness of the approach has encouraged
us to write this paper, to illustrate this genuine solution to denotational
semantics-directed compilation, in the spirit of Scott and Strachey. Our
conclusion is that λ-calculus normalization suffices for compiling by spe-
cializing an interpreter.
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1 Introduction

1.1 Denotational semantics and semantics-implementation systems

Twenty years ago, when denotational semantics was developed [23, 37], there were
high hopes for it to be used to specify most, if not all programming languages.
When Mosses developed his Semantics Implementation System [25], it was with
the explicit goal of generating compilers from denotational specifications.

Time passed, and these hopes did not materialize as concretely as was wished.
Other semantic frameworks are used today, and other associated semantics-
implementation systems as well. Two explanations could be that (1) domains
proved to be an interesting area of research per se, and they are studied today
quite independently of programming-language design and specification; and (2)
the λ-notation of denotational semantics was deemed untamable — indeed writing
a denotational specification can be compared to writing a program in a module-less,
lazy functional language without automatic type-checker.

As for semantics-implementation systems, there have been many [1, 13, 16, 22,
25, 28, 29, 31, 34, 35, 38, 39, 40], and they were all quite complicated. (Note: this
list of references is by no means exhaustive. It is merely meant to be indicative.)

1.2 Partial evaluation

For a while, partial evaluation has held some promise for compiling and compiler
generation, through the Futamura projections [17, 18]. The first Futamura pro-
jection states that specializing a definitional interpreter with respect to a source
program “compiles” the source program from the defined language to the defin-
ing language [32]. This idea has been applied to a variety of interpreters and
programming-language paradigms, as reported in the literature [7, 17].

One of the biggest and most successful applications is Jørgensen’s BAWL, which
produces code that is competitive with commercially available systems, given a
good Scheme implementation [19]. The problem with partial evaluation, however,
is the same as for most semantics-implementation system: it requires an expert to
use it successfully.

1.3 Type-directed partial evaluation

Recently, the first author has developed an alternative approach to partial eval-
uation which is better adapted to specializing interpreters and strikingly simpler
[8]. The approach is type-directed and amounts to normalizing a closed, well-typed
program, given its type (see Figure 1). The approach has been illustrated on a
toy programming language, by transliterating a denotational specification into a
definitional interpreter, making this term closed by abstracting all the (run-time)
semantics operators, applying it to the source program, and normalizing the result.

Type-directed partial evaluation thus merely requires the user to write a purely
functional, well-typed definitional interpreter, to close it by abstracting its semantic
operators, and to provide its type. The type is obtained for free, using ML or
Haskell. No annotations or binding-time improvements are needed.

The point of the experiment with a toy programming language [8] is that it can
be carried out at all. The point of this paper is to show that the approach scales
up to a non-trivial language.



t ∈ Type ::= b | t1 × t2 | t1 → t2

reify = λt.λv.↓t
v

↓b
v = v

↓t1×t2 v = pair(↓t1 fst v, ↓t2 snd v)

↓t1→t2 v = λx1.↓
t2 (v @(↑t1

x1))

where x1 is fresh.

reflect = λt.λe.↑t e

↑b e = e

↑t1×t2
e = pair(↑t1

fst e, ↑t2
snd e)

↑t1→t2
e = λv1.↑t2

(e@(↓t1 v1))

residualize = statically-reduce ◦ reify

The down arrow is read reify: it maps a static value and its type into a
two-level λ-term [27] that statically reduces to the dynamic counterpart of
this static value. Conversely, the up arrow is read reflect: it maps a dynamic
expression into a two-level λ-term representing the static counterpart of this
dynamic expression.

In residualize, reify (resp. reflect) is applied to types occurring positively
(resp. negatively) in the source type.

N.B. In practice, residual let expressions need to be inserted to maintain the
order of execution, à la Similix [5]. This feature makes it possible to special-
ize direct-style programs with the same advantages one gets when specializing
continuation-passing programs, and is described elsewhere [9].

Fig. 1. Type-directed partial evaluation (a.k.a. residualization)

1.4 Disclaimer

We are not suggesting that well-typed, compositional and purely definitional inter-
preters written in the fashion of denotational semantics are the way to go always.
This method of definition faces the same problems as denotational semantics. For
example, it cannot scale up easily to truly large languages, which has motivated
e.g., the development of Action Semantics [26].

Our point is that given such a definitional interpreter, type-directed partial
evaluation provides a remarkably simple and effective solution to semantics-based
compiling.

1.5 This paper

We consider an imperative language with block structure, higher-order and mu-
tually recursive procedures, call-by-value, and that allows subtyping. We write a
direct-style definitional interpreter that is stack-based, reflecting the traditional
call/return strategy of Algol 60 [30], but is otherwise completely straightforward.3

3 Being stack-based is of course not a requirement. An unstructured store would also need
to be threaded throughout, but its implementation would require a garbage collector
[23].



We specialize it and obtain three-address code that is comparable to what can be
expected from a compiler implemented e.g., according to the Dragon Book [1].

This experiment is significant for the following reasons:

Semantics-implementation systems: Our source language is realistic. Our compiler
generator is extremely simple (it is displayed in Figure 1). Our language speci-
fication is naturally in direct style and requires no staging transformations [20].
Our compiler is efficient (several hundred lines per second). Our target code is
reasonable.

We are not aware of other semantics-implementation systems that yield similar
target code with a similar efficiency. In any case, our primary goal is not efficiency.
Our point here is that the problem of semantics-based compiling can be stated in
such a way that a solution exists that is extremely simple and yields reasonable
results.

Partial evaluation: Similar results can be obtained using traditional partial evalu-
ation, but not as simply and not as efficiently.

An online partial evaluator incurs a significant interpretive overhead. An of-
fline partial evaluator necessitates a binding-time analysis, and then either incurs
interpretive overhead by direct specialization, or requires its user to generate a
generating extension. Furthermore, an offline partial evaluator usually requires
binding-time improvements, which are an art in themselves [17, Chapter 12].

It is our experience that in a way, partial evaluators today are too powerful: our
present experiment shows that λ-calculus normalization is enough for compiling by
interpreter specialization.

1.6 Overview

Section 2 presents the essence of semantics-based compiling by type-directed partial
evaluation. Section 3 briefly outlines our source programming language. Based on
this description, it is simple to transcribe its denotational specification into a defi-
nitional interpreter [32]. We describe one such interpreter in Section 4, and display
the outline of it in Figure 6. It is well-typed. Given its type and a source program
such as the one in Figure 3, we can residualize the application of the interpreter to
the source program and obtain a residual program such as the one in Figure 4. Each
residual program is a specialized version of the definitional interpreter and appears
as three-address code. We use the syntax of Scheme to represent this three-address
code, but it is trivial to map it into assembly code.

2 The essence of semantics-based compiling by

type-directed partial evaluation

Our point here is that to compile programs by interpreter specialization, λ-calculus
normalization is enough.

Interpreter specialization: the first Futamura projection states that specializ-
ing an interpreter with respect to a program (i.e., performing all the interpreter
operations that only depend on the program, but not on its input) amounts



to compiling this program into the defining language of the interpreter [17].
Along with the second and third Futamura projections, this property has been
instrumental to the renaissance of partial evaluation in the 80’s [18].

Normalization is enough: the technique of type-directed partial evaluation is
otherwise used to normalize simply typed programs extracted from proofs.
There, it is referred to as “normalization by evaluation” [3, 4]. Type-directed
partial evaluation slightly differs in that to make it fit call-by-value, we insert
let expressions naming residual expressions to avoid code and computation
duplication.

Throughout, we consider Schmidt-style denotational specifications [34], i.e., specifi-
cations with a clear separation between semantic algebras, and valuation functions.
We normalize the result of applying the main valuation function to a program, given
the type of its denotation. The result is a combination of semantic-algebra opera-
tions, sequentialized with let expressions, and thus corresponding to three-address
code [1].

Let us illustrate this point with one extremely simple example. We consider a
microscopic imperative language and its definitional interpreter (Figure 2). Apply-
ing this interpreter to a source program yields a functional value. Normalizing it
yields a textual representation of the dynamic semantics of the source program,
i.e., its compiled version: a sequence of semantic-algebra operations.

2.1 Syntax

The following BNF specifies our microscopic imperative language. A program con-
sists of a sequence of zeros and ones terminated by a stop.

p ∈ Program ::= c

c ∈ Command ::= stop | i ; c

i ∈ Instruction ::= zero | one

2.2 Semantic algebra

The valuation functions uses a semantic algebra consisting of a store and two store-
transforming operations f and g.

2.3 Valuation functions

We respectively interpret zero and one with f and g.

C : Command → Store → Store
C[[stop]] = λσ.σ

C[[i ; c]] = λσ.C[[c]](I[[i]]σ)

I : Instruction → Store → Store
I[[zero]] = f

I[[one]] = g

2.4 Compiling by normalization

Figure 2 displays a direct-style definitional interpreter, expressed in Scheme. This
interpreter is curried: when applied to a source program, it returns a higher-order
procedure expecting f and g and returning a store transformer. We have parame-
terized it with f and g merely for convenience (precisely: to make it a closed term,
i.e., a term without free variables that can be characterized with its type).



(define-record (Stop))

(define-record (Sequence i c))

(define-record (Zero))

(define-record (One))

(define meaning

(lambda (c)

(lambda (f g)

(letrec ([meaning-command

(lambda (c)

(case-record c

[(Stop) (lambda (s) s)]

[(Sequence i c) (lambda (s)

((meaning-command c)

((meaning-instruction i) s)))]))]

[meaning-instruction

(lambda (i)

(case-record i

[(Zero) f]

[(One) g]))])

(meaning-command c)))))

(define-base-type sto "s")

(define-compound-type one (sto -!> sto) "f" alias)

(define-compound-type two (sto -!> sto) "g" alias)

(define-compound-type denotation-type ((one two) => sto -!> sto))

Fig. 2. Microscopic definitional interpreter

The figure also shows the definition of the abstract syntax as records, and the
definition of the types of the store, of f , and g. The function type of f and g is
annotated with “!” to indicate that they operate on a single-threaded value, and
thus that their application should be named with a let expression [9].

Let p denote the source program “zero; one; zero; one; stop”. In the following
Scheme session, we residualize the application of the definitional interpreter with
respect to the type of the denotation. The result is the text of the corresponding
normal form, i.e., of the dynamic semantics of p.

> (load "tdpe.scm")

> (load "mic-def-int.scm")

> (residualize (meaning p) ’denotation-type)

(lambda (f g)

(lambda (s0)

(let* ([s1 (f s0)]

[s2 (g s1)]

[s3 (f s2)])

(g s3))))

This residual Scheme program is the specialized version of the interpreter of Figure



2 with respect to the source program p. It performs the run-time actions of p,
sequentially. The interpretive overhead is gone.

2.5 Assessment

This microscopic example is significant for at least three reasons.

This is semantics-based compilation: we have compiled a program based on
the semantics of a programming language.

This is partial evaluation: we have specialized a definitional interpreter with
respect to a source program.

This is normalization: all we have used is a λ-calculus normalizer.

Furthermore, the target language of the normalizer (a flat sequence of let expres-
sions) has the same structure as three-address code as described in the Dragon
book [1]. Translating residual programs into assembly language therefore does not
amount to writing a compiler for the λ-calculus, but more simply to writing the
back-end of a standard compiler. The method is thus not a step sideways, but an ac-
tual step forward in the process of compiling a source program. In essence, it makes
it possible to derive the front-end of a compiler from a definitional interpreter.

Methodologically, our type-directed partial evaluator is simpler than a tradi-
tional semantics-implementation system or a standard partial evaluator for three
more reasons:

1. Normalization is simpler than partial evaluation.

2. Type-directed partial evaluation does not require one to re-implement the λ-
calculus: it relies on an existing implementation (presently Scheme, but ML or
Haskell would do just as well).

3. There is no need to massage (a.k.a. stage [20]) the definitional interpreter to
derive [the front-end of] the compiler. It is enough to follow the format of
denotational semantics: semantic algebras, and valuation functions.

We come back to these issues in Section 6.

The example language of this section is deliberately microscopic, but it captures
the essence of our case study. Examples of semantics-based compiling by type-
directed partial evaluation have been published for Paulson’s Tiny language [8,
9], which is an imperative while-language traditional in the semantics community
[16]. In this paper, we explore semantics-based compiling with a more substantial
programming language, in an effort to explore the applicability of type-directed
partial evaluation.

3 A block-structured procedural language with subtyping

The following programming language is deliberately reminiscent of Reynolds’s ide-
alized Algol [33], although it uses call-by-value. We briefly present it here. A full
description is available in a companion technical report [10] and in the second
author’s MS thesis (forthcoming).



3.1 Abstract Syntax

The language is imperative: its basic syntactic units are commands. It is block-
structured: any command can have local declarations. It is procedural: commands
can be abstracted and parameterized. It is higher-order: procedures can be passed
as arguments (though not returned, to enable stack discipline for activation records)
to other procedures. Finally it is typed and supports subtyping in that an integer
value can be assigned to a real variable, a procedure expecting a real can be passed
instead of a procedure expecting an integer, etc.

p, 〈pgm〉 ∈ Pgm —domain of programs
c, 〈cmd〉 ∈ Cmd —domain of commands
e, 〈exp〉 ∈ Exp —domain of expressions
i , 〈ide〉 ∈ Ide —domain of identifiers
d , 〈decl〉 ∈ Decl —domain of declarations
t , 〈type〉 ∈ Type —domain of types
o, 〈btype〉 ∈ BType —domain of base types

〈pgm〉 ::= 〈cmd〉
〈decl〉 ::= Var 〈ide〉 : 〈btype〉 = 〈exp〉

| Proc 〈ide〉 (〈ide〉:〈type〉, . . . , 〈ide〉:〈type〉) = 〈cmd〉
〈cmd〉 ::= skip | write 〈exp〉 | read 〈ide〉 | 〈cmd〉 ; 〈cmd〉

| 〈ide〉 := 〈exp〉 | if 〈exp〉 then 〈cmd〉 else 〈cmd〉
| while 〈exp〉 do 〈cmd〉 | call 〈ide〉 (〈exp〉, . . . , 〈exp〉)
| block (〈decl〉, . . . , 〈decl〉) in 〈cmd〉

〈exp〉 ::= 〈lit〉 | 〈ide〉 | 〈exp〉 〈op〉 〈exp〉
〈lit〉 ::= 〈bool〉 | 〈int〉 | 〈real〉
〈op〉 ::= + | × | − | < | = | and | or

〈btype〉 ::= Bool | Int | Real

〈type〉 ::= 〈btype〉 | Proc (〈type〉, . . . , 〈type〉)

3.2 Semantics

The language is block structured, procedural, and higher-order. Since it is also
typed, we define the corresponding domain of values inductively, following its typ-
ing structure. Our implementation is stack-based, and so we want to pass param-
eters on top of the stack. We thus define the denotation of procedures as a store
transformer, whose elements are functions accepting a stack whose top frame con-
tains parameters of an appropriate type. We furthermore index the denotation of
a procedure with its free variables.

The store can hold untagged booleans, integers, reals, and procedures. It is
accessed with typed operators. We define expressible values (the result of evaluating
an expression) to be type-annotated storable values. A denotable value (held in the
environment) is a reference to the stack, paired with the type of the corresponding
stored value.

The stack holds a sequence of activation records which are statically (for the
environment) and dynamically (for the continuation) linked via base pointers, as
is traditional in Algol-like languages [1, 30]. An activation record is pushed at
each procedure call, and popped at each procedure return. A block (of bindings) is



pushed whenever we enter the scope of a declaration, and popped upon exit of this
scope. Each block extends the current activation record. Procedures are call-by-
value: they are passed the (storable) values of their arguments on the stack [1, 30].
The global store pairs a push-down stack and i/o channels. It is addressed through
type-indexed operators.

The language is statically typed: any type mismatch yields an error. In addition,
subtyping is allowed: any context expecting a value of type t (i.e., assignments
and parameter passing) accepts an expressible value whose type is a subtype of t.
Our coercions at higher type simulate intermediate procedures that coerce their
arguments as required by their types [33]. Along the same lines, the type-directed
partial evaluator of Figure 1 is simply a coercion from static to dynamic [8].

We want the language to obey a stack discipline. Stack discipline can only be
broken when values may outlive the scope of their free variables. This can only
occur when an identifier i of higher type is updated with the value of an identifier
j which was declared in the scope of i. We thus specify that at higher type, i must
be local to j.

4 A definitional interpreter and its specialization

We have transcribed the denotational specification of Section 3 into a definitional
interpreter which is compositional and purely functional [32, 36]. We make the
interpreter a closed term by abstracting all its free variables at the outset (i.e., the
semantic operators fix, test, etc.). Figure 6 displays the skeleton of the interpreter.

As in Section 2, we can then residualize the application of the definitional
interpreter to any source program, with respect to the codomain of the definitional
interpreter, i.e., with respect to the type of the meaning of a source program. The
result is a textual representation of the dynamic semantics of the source program,
i.e., of its step-by-step execution without interpretive overhead.

Figure 3 displays such a source program. Figures 4 and 5 display the resulting
target program, unedited (except for the comments).

block Var x : Int = 100
Proc print (y : Real) = write y

Proc p (q : Proc(Int), y : Int) = call q (x + y)
in call p (print, 4)

Fig. 3. Sample source program

(lambda (fix test int-to-real conj disj eq-bool read-int read-real

read-bool write-int write-real write-bool add-int mul-int

sub-int less-int eq-int add-real mul-real sub-real less-real

eq-real push-int push-real push-bool push-proc push-func

push-al push-base-pointer pop-block update-base-pointer

pop-frame lookup-int lookup-real lookup-bool lookup-proc

lookup-func update-int update-real update-bool update-proc

update-func current-al lookup-al update-al) ...

Fig. 4. Sample target program (specialized version of Fig. 6 with respect to Fig. 3)



...

(lambda (s)

(let* ([s (push-int 100 s)] ;;; decl. of x

[a0 (current-al s)]

[s (push-proc

(lambda (s) ;;; decl. of print (code pointer)

(let ([r1 (lookup-real 0 0 s)])

(write-real s r1)))

s)]

[s (push-al a0 s)] ;;; decl. of print (access link)

[a2 (current-al s)]

[s (push-proc

(lambda (s) ;;; decl. of p (code pointer)

(let* ([p3 (lookup-proc 0 0 s)]

[a4 (lookup-al 0 1 s)]

[i5 (lookup-int 1 0 s)]

[i6 (lookup-int 0 2 s)]

[i7 (add-int i5 i6)]

[s (push-al a4 s)]

[s (push-base-pointer s)]

[s (push-int i7 s)]

[s (update-base-pointer s 1)]

[s (p3 s)])

(pop-frame s)))

s)]

[s (push-al a2 s)] ;;; decl. of p (access link)

[p8 (lookup-proc 0 3 s)]

[a9 (lookup-al 0 4 s)]

[p10 (lookup-proc 0 1 s)]

[a11 (lookup-al 0 2 s)]

[s (push-al a9 s)]

[s (push-base-pointer s)]

[s (push-proc

(lambda (s) ;;; coercion of print (code pointer)

(let* ([i12 (lookup-int 0 0 s)]

[a13 (current-al s)]

[s (push-al a13 s)]

[s (push-base-pointer s)]

[s (push-real (int-to-real i12) s)]

[s (update-base-pointer s 1)]

[s (p10 s)])

(pop-frame s)))

s)

[s (push-al a11 s)] ;;; coercion of print (access link)

[s (push-int 4 s)]

[s (update-base-pointer s 3)]

[s (p8 s)] ;;; actual call to p

[s (pop-frame s)])

(pop-block s 5))))

Fig. 5. Fig. 4 (continued and ended)



(define meaning

(lambda (p)

(lambda (fix test ...)

(lambda (s)

(letrec ([meaning-program (lambda (p s) ...)]

[meaning-command

(lambda (c r s)

(case-record c

...

[(Assign i1 e)

(case-record e

[(Ide i2)

(let ([(Pair x1 t1) ((cdr r) i1)]

[(Pair x2 t2) ((cdr r) i2)])

(if (or (is-local? x1 x2)

(and (is-base-type? t1)

(is-base-type? t2)))

(update t1 x1

(coerce t2 t1 (lookup t2 x2 s))

s)

(wrong "not stackable")))]

[else

(let ([(Pair x1 t1) ((cdr r) i1)]

[(ExpVal t2 v2)

(meaning-expression e r s)])

(update t1 x1 (coerce t2 t1 v2) s))])]

...))]

[meaning-expression (lambda (e r s) ...)]

[meaning-operator (lambda (op v1 v2) ...)]

[meaning-declarations (lambda (ds r s) ...)]

[meaning-declaration (lambda (d r s) ...)])

(meaning-program p s))))))

Fig. 6. Skeleton of the medium definitional interpreter

The source program of Figure 3 illustrates block structure, non-local variables,
higher-order procedures, and subtyping. The body of Procedure p refers to the two
parameters of p and also to the global integer-typed variable x. Procedure p ex-
pects an integer-expecting procedure and an integer. It is passed the real-expecting
procedure print, which is legal in the present subtyping discipline. Procedure print

needs to be coerced into an integer-expecting procedure, which is then passed to
Procedure p.

The residual program of Figure 4 is a specialized version of the definitional
interpreter of Figure 6 with respect to the source program of Figure 3. It is a flat
Scheme program threading the store throughout and reflecting the step-by-step
execution of the source program. The static semantics of the source program, i.e.,
all the interpretive steps that only depend on the text of the source program, has
been processed at partial-evaluation time: all the location offsets are solved and
all primitive operations are properly typed. The coercion, in particular, has been



residualized as a call to an intermediate procedure coercing its integer argument
to a real and calling Procedure print.

The target language of this partial evaluator is reminiscent of continuation-
passing style without continuations, otherwise known as nqCPS, A-normal forms

[11], or monadic normal forms [15], i.e., for all practical purposes, three-address
code, as in the Dragon book [1]. It can be indifferently considered as a Scheme
program or be translated into assembly language.

5 Assessment

5.1 The definitional interpreter

Our definitional interpreter has roughly the same size as the denotational specifi-
cation of Section 3: 530 lines of Scheme code and less than 16 Kb. This however
also includes the treatment of functions, which we have elided here.

The semantic operations occupy 120 lines of Scheme code and about 3.5 Kb.

5.2 Compiler generation

Generating a compiler out of an interpreter, using type-directed partial evaluation,
amounts to specializing the type-directed partial evaluator with respect to the type
of the interpreter (applied to a source program) [8, Section 2.4]. The improvement
obtained by eliminating the type interpretive overhead is negligible in practice.

5.3 Compiling efficiency

We have constructed a number of source programs of varying size (up to 18,000
lines), and have observed that on the average, compiling takes place at about 400
lines per second on a SPARC station 20 with two 75 Mhz processors running Solaris
2.4, using R. Kent Dybvig’s Chez Scheme Version 4.1u. On a smaller machine, a
SPARC Station ELC with one 33 Mhz processor running SunOS 4.1.1, about 100
lines are compiled per second, again using Chez Scheme.

5.4 Efficiency of the compiled code

The compiled code is of standard, Dragon-book quality [1]. It accounts for the
dynamic interpretation steps of the source program. As this paper is going to
press, we do not have actual figures yet about the efficiency of assembly code (only
of intermediate code).

5.5 Interpreted vs. compiled code

Compiled intermediate code runs four times faster than interpreted code, on the
average, in Scheme. This is consistent with traditional results in partial evaluation
[7, 17].

6 Related work

6.1 Semantics-implementation systems

Our use of type-directed partial evaluation to specialize a definitional interpreter
very precisely matches the goal of Mosses’s Semantics Implementation System [25],
as witnessed by the following recent quote [26]:



“SIS [...] took denotational descriptions as input. It transformed a denota-
tional description into a λ-expression which, when applied to the abstract
syntax of a program, reduced to a λ-expression that represented the seman-
tics of the program in the form of an input-output function. This expression
could be regarded as the ‘object code’ of the program for the λ-reduction
machine that SIS provided. By applying this code to some input, and re-
ducing again, one could get the output of the program according to the
semantics.”

When SIS was developed, functional languages and their programming environment
did not exist. Today’s definitional interpreters can be (1) type-checked automati-
cally and (2) interactively tested. Correspondingly, today’s λ-reduction machines
are simply Scheme, ML, or Haskell systems. Alternatively, though, we can translate
our target three-address code directly into assembly language.

SIS was the first semantics-implementation system, but as mentioned in Section
1, it was followed by a considerable number of other systems. All of these systems
are non-trivial. Some of them are definitely on the sophisticated side. None of
them are so simple that they can, in a type-directed fashion and in a few lines, as
in Figure 1,

1. take a well-typed, runnable, unannotated definitional interpreter in direct style,
as in Figure 6, together with a source program, as in Figure 3; and

2. produce a textual representation of its dynamic semantics, as in Figure 4.

6.2 Compiler derivation

Deriving compilers from interpreters is a well-documented exercise by now [12, 24,
40]. These derivations are significantly more involved than the present work, and re-
quire significant more handcraft and ingenuity. For example, the source interpreter
usually has to be expressed in continuation-passing style.

6.3 Partial evaluation

The renaissance of partial evaluation we see in the 90s originates in Jones’s Mix
project [18], which aimed at compiling by interpreter specialization and at gen-
erating compilers by self-application. This seminal work has paved the way for
further work on partial evaluation, namely with offline strategies and binding-time
improvements [7, 17]. Let us simply mention two such works.

Definitional interpreter for an imperative language: In the proceedings of POPL’91
[6], Consel and Danvy report the successful compilation and compiler generation for
an imperative language that is much simpler than the present one (procedureless
and stackless). The quality of the residual code is comparable, but a full-fledged
partial evaluator is used, including source annotations, and so are several non-trivial
binding-time improvements, most notably continuations.

Definitional interpreter for a lazy language: In the proceedings of POPL’92 [19],
Jørgensen reports the successful compilation and compiler generation for a lazy
language of a commercial scale. The target language is the high-level program-
ming language Scheme. The quality of the result is competitive with contemporary



implementations, given an efficient Scheme implementation. Again, a full-fledged
partial evaluator is used, including source annotations, and so is a veritable arsenal
of binding-time improvements, including continuations.

This work: In our work, we use λ-calculus normalization, no annotations, no
binding-time analysis, no binding-time improvements, and no continuations. Our
results are of Dragon-book quality.

7 Conclusion

We hope to have shown that type-directed partial evaluation of a definitional inter-
preter does scale up to a realistic example with non-trivial programming features.
We would also like to point out that our work offers evidence that Scott and
Strachey were right, each in their own way, when they developed Denotational Se-
mantics: Strachey in that the λ-calculus provides a proper medium for encoding at
least traditional programming languages, as illustrated by Landin [21]; and Scott
for organizing this encoding with types and domain theory. The resulting format of
denotational semantics proves ideal to apply a six-lines λ-calculus normalizer (using
a higher-order functional language) and obtain the front-end of a semantics-based
compiler towards three-address code — a strikingly concise and elegant solution to
the old problem of semantics-based compiling.

8 Limitations

Modern programming languages (such as ML) have more type structure than Algol-
like languages, in that whereas the type of the denotation of an Algol program is
always the same, the type of the denotation of an ML program depends on the type
of this program. Such languages are beyond the reach of the current state-of-the-art
of type-directed partial evaluation, which is simply typed. Higher type systems are
necessary — a topic for future work.
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