
77

[33] B. Stroustrup, \Possible directions for C++," in Usenix C++Workshop Proceedings

[39], pp. 399{416.

[34] B. Stroustrup, \What is \object-oriented programming"," in Usenix C++ Work-

shop Proceedings [39], pp. 159{180.

[35] B. Stroustrup, C++ Reference Manual. AT&T, May 1989.

[36] D. Ungar, \Generation Scavenging: A non{disruptive high performance storage

reclamation algorithm," in ACM SIGPLAN/SIGSOFT Symposium on Practical

Software Development Environments, (Pittsburgh, PA), pp. 157{167, Association

for Computing Machinery, Apr. 1984.

[37] D. Ungar and F. Jackson, \Tenuring policies for generation-based storage reclama-

tion," in OOPSLA '88 Conference Proceedings, pp. 1{17, Association for Computing

Machinery, ACM Press, Sept. 1988.

[38] D. M. Ungar, The Design and Evaluation of a High Performance Smalltalk System.

Cambridge, MA: The MIT Press, 1986.

[39] Usenix Association, Usenix C++Workshop Proceedings, (Santa Fe, NM), Nov. 1987.

[40] C. B. Weinstock, Dynamic Storage Allocation. PhD thesis, Carnegie-Mellon Uni-

versity, 1976.

[41] A. Wikstrom, Functional programming using standard ML. Prentice Hall, 1987.

76

[16] D. Edelson and I. Pohl, \Solving C's shortcomings: Use C++," Computer Lan-

guages, vol. 14, no. 3, 1989.

[17] M. A. Ellis and B. Stroustrup, The Annotated C++ Reference Manual. Addison-

Wesley Publishing Company, Feb. 1990.

[18] R. Fenichel and J. Yochelson, \A LISP garbage-collector for virtual-memory sys-

tems," Communications of the ACM, vol. 12, pp. 611{612, Nov. 1969.

[19] R. Gabriel, Performance and Evaluation of LISP Systems. MIT Press, 1985.

[20] A. Goldberg and D. Robson, Smalltalk-80: The Language and Its Implementation.

Reading, MA: Addison-Wesley Publishing Company, 1983.

[21] B. Kernighan and D. Ritchie, The C Programming Language. Englewood-Cli�s,

N.J.: Prentice-Hall, 1978.

[22] D. E. Knuth, The Art of Computer Programming, vol. 1. Reading, Mass.: Addison,

Wesley, 1973. Second ed.

[23] A. Koenig, \An example of dynamic binding in C++," The Journal of Object-

Oriented Programming, Aug. 1988.

[24] H. Lieberman and C. Hewitt, \A real-time garbage collector based on the lifetimes

of objects," Communications of the ACM, vol. 26, pp. 419{429, June 1983.

[25] J. McCarthy, P. W. Abrahams, D. J. Edwards, T. P. Hart, and M. Levin, \Lisp 1.5

programmers manual," in Programming Languages: A Grand Tour (E. Horowitz,

ed.), Computer Science Press, second edition ed., 1985.

[26] B. Meyer, Object-Oriented Software Construction. Prentice Hall, 1988.

[27] M. L. Minsky, \A LISP garbage collector algorithm using serial secondary storage,"

Tech. Rep. Memo 58 (rev.), Project Mac, MIT, Cambridge, MA, Dec. 1963.

[28] D. Moon, \Garbage collection in a large LISP system," in SIGPLAN Symposium

on Lisp and Functional Programming, pp. 235{246, Association for Computing Ma-

chinery, 1984.

[29] I. Pohl and D. Edelson, \A{Z: C language shortcomings," Computer Languages,

vol. 13, no. 2, 1988.

[30] P. Rovner, R. Levin, and J. Wick, \On extending Modula-2 for building large,

integrated systems," Tech. Rep. Research Report 3, Digital Equipment Corporation

Systems Research Center, 1985.

[31] T. A. Standish, Data Structure Techniques. Addison-Wesley, 1980.

[32] B. Stroustrup, \The evolution of C++ 1985 to 1987," in Usenix C++ Workshop

Proceedings [39], pp. 1{22.

75

References

[1] \ANSI C Standard," 1989. American National Standard X3.159-1989.

[2] A. W. Appel, \Garbage collection can be faster than stack allocation," Information

Processing Letters, vol. 25, pp. 275{279, June 1987.

[3] A. W. Appel, \Simple generational garbage collection and fast allocation,"

Software|Practice and Experience, vol. 19, pp. 171{183, Feb. 1989.

[4] A. W. Appel, J. R. Ellis, and K. Li, \Real-time concurrent collection on stock

multiprocessors," in Proceedings of the SIGPLAN '88 Conference on Programming

Language Design and Implementation, pp. 11{20, Association for Computing Ma-

chinery, ACM Press, July 1988.

[5] H. G. Baker, \List processing in real time on a serial computer," Communications

of the ACM, vol. 21, pp. 280{294, Apr. 1978.

[6] J. F. Bartlett, \Compacting garbage collection with ambiguous roots," tech. rep.,

Digital Equipment Corporation, Western Research Laboratory, Palo Alto, Califor-

nia, Feb. 1988.

[7] J. F. Bartlett, \Mostly copying garbage collection picks up generations and C++,"

Tech. Rep. TN{12, DEC WRL, Oct. 1989.

[8] H.-J. Boehm and M. Weiser, \Garbage collection in an uncooperative environment,"

Software|Practice and Experience, vol. 18, pp. 807{820, Sept. 1988.

[9] A. Burgess, Apr. 1990. Personal Communication.

[10] J. A. Campbell, \A note on an optimal-�t method for dynamic allocation of storage,"

Computer Journal, vol. 14, pp. 7{9, Feb. 1971.

[11] L. Cardelli, J. Donahue, L. Glassman, M. Jordan, B. Kalsow, and G. Nelson,

\Modula-3 report," tech. rep., Digital Systems Research Center and Olivetti Re-

search Center, Palo Alto, CA, 1988.

[12] J. Cohen, \Garbage collection of linked data structures," ACM Computing Surveys,

vol. 13, pp. 341{367, Sept. 1981.

[13] A. Demers, Dec. 1989. private communication.

[14] A. Demers, M. Weiser, B. Hayes, H. Bohem, D. Bobrow, and S. Shenker, \Combin-

ing generational and conservative garbage collection: Framework and implementa-

tions," in popl90, pp. 261{269, 1980.

[15] E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten, and E. F. M. Ste�ens,

\On-the-y garbage collection: An excercise in cooperation," Communications of

the ACM, vol. 21, pp. 966{974, Nov. 1978.

74

#ifdef NONE

t = NULL; == copy no data

#endif

#ifdef HALF

t!trunc1(); == copy half of the data

#endif

#ifndef NODELETE

Node::gc();

#endif

g

73

Tree::Tree(char� op, Node � n)

f

p = new UnaryNode(op, n);

g

Tree::Tree(char� op, Node � left, Node � right)

f

p = new BinaryNode(op, left, right);

g

Tree::Tree(char� op, Tree left, Tree right)

f

p = new BinaryNode(op, left.p, right.p);

g

ostream & operator�(ostream & o, Node � p)

f

p!print(o);

return o;

g

ostream & operator�(ostream & o, R Node & t)

f

t!print(o);

return o;

g

Tree MakeTree(int depth)

f

if (depth == 1)

return Tree("+", Tree(1), Tree(1));

else

return Tree("+", MakeTree(depth-1), MakeTree(depth-1));

g

main(int argc,char �� argv)

f

if (argc==1) f

cerr � "Need depth on command line.nn";

exit(2);

g

int depth = atoi(argv[1]);

R Node t;

t = MakeTree(depth);

72

int value();

virtual void copy(Node � & ptr);

virtual void trunc1() f left = NULL; g

g;

void BinaryNode::copy(Node � & ptr)

f

register BinaryNode � newptr;

if (!(ptr = (Node�) get forward())) f

ptr = newptr = new BinaryNode(�this); == copy object

set forward(newptr); == set forward

if (left) left!copy(newptr!left); == copy child

if (right) right!copy(newptr!right); == copy child

g

g

int BinaryNode::value()

f

switch (�op) f

case '-': return left!value()-right!value();

case '+': return left!value()+right!value();

case '�': return left!value()�right!value();

case '/': return left!value()=right!value();

case '^': return left!value()^right!value();

default: cerr � "Binary Node ``" � op � "'' unknown.nn";

g

return 1;

g

Tree::Tree(int n)

f

p = new IntNode(n);

g

Tree::Tree(char� op, Tree t)

f

p = new UnaryNode(op, t.p);

g

71

class UnaryNode: public Node f

friend class Tree;

char � op;

Node � opnd;

UnaryNode(char� a, Node � b): op(a), opnd(b) fg

void print (ostream& o) fo � "(" � op � opnd � ")";g

int value();

virtual void copy(Node � & ptr);

g;

void UnaryNode::copy(Node � & ptr)

f

register UnaryNode � newptr;

#ifdef DEBUG

copied++;

#endif

if (!(ptr = (Node�) get forward())) f

ptr = newptr = new UnaryNode(�this); == copy object

set forward(newptr); == set forward

if (opnd) opnd!copy(newptr!opnd); == copy child

g

g

int UnaryNode::value()

f

switch (�op) f

case '-': return -opnd!value();

case '+': return opnd!value();

default: cerr � "Unary Node ``" � op � "'' unknown.nn";

g

return 1;

g

class BinaryNode: public Node f

friend class Tree;

char� op;

Node � left;

Node � right;

BinaryNode(char� a, Node � b, Node � c): op(a), left(b), right(c)fg

void print (ostream& o) fo � "(" � left � op � right � ")";g

70

class Tree f

friend class Node;

friend ostream& operator�(ostream&, const Tree&);

Node � p;

public:

Tree(int);

Tree(Node � n) : p(n) f g

Tree(char�, Tree);

Tree(char�, Tree, Tree);

Tree(char�, Node �);

Tree(char�, Node �, Node �);

Tree(const Tree& t) f p = t.p; g

void operator=(const Tree& t);

int value() f return p!value(); g

operator R Node() f return p; g

operator Node �() f return p; g

g;

void Tree:: operator=(const Tree& t)

f

p = t.p;

g

ostream& operator�(ostream& o, const Tree& t)

f

t.p ! print(o);

return (o);

g

class IntNode: public Node f

friend class Tree;

int n;

IntNode(int k): n (k) fg

void print(ostream& o) f o � n; g

int value() f return n; g

virtual void copy(Node � & ptr)

f

if ((ptr = (Node�) get forward()) == NULL)

set forward(ptr = new IntNode(�this));

g

g;

69

A.3.3 Garbage Collected

== C++ example JOOP august 1988 Andrew Koenig

== Heavily modi�ed

== Necessary modi�cations:

== In the copy routine need to copy not a member but

== rather a member of a member.

==

#include <iostream.h>

#include <stdlib.h>

#include "low mallor.h"

#include "testing mallor.h"

#include "root.h"

#include "gc.h"

class R Node;

class Node f

friend class Tree;

friend ostream& operator�(ostream&, const Tree&);

friend ostream & operator�(ostream &, Node �);

friend ostream & operator�(ostream &, R Node &);

protected:

virtual void print(ostream&) = 0;

public:

virtual void copy(Node � & ptr) = 0;

virtual void trunc1() f g

COLLECTION MEMBERS(Node)

virtual int value() = 0;

g;

mallor Node::heap(Node::gc,32 � 1024);

ROOT(Node)

DROOT(Node)

DECLARE GC(Node)

68

Node � left;

Node � right;

public:

BinaryNode(char� a, Node � b, Node � c): op(a), left(b), right(c)fg

void print (ostream& o) fo � "(" � left � op � right � ")";g

int value();

�BinaryNode() f g

g;

int BinaryNode::value()

f

switch (�op) f

case '-': return left!value()-right!value();

case '+': return left!value()+right!value();

case '�': return left!value()�right!value();

case '/': return left!value()=right!value();

case '^': return left!value()^right!value();

default: cerr � "Binary node ``" � op � "'' unknown.nn";

g

return 1;

g

Node � MakeTree(int depth)

f

if (depth == 1)

return new BinaryNode("+", new IntNode(1), new IntNode(1));

else

return new BinaryNode("+", MakeTree(depth-1),

MakeTree(depth-1));

g

main(int argc,char �� argv)

f

if (argc==1) f

cerr � "Need depth on command line.nn";

exit(2);

g

int depth = atoi(argv[1]);

Node � t = MakeTree(depth);

#ifndef NODELETE

delete t;

#endif

g

67

#include <iostream.h>

#include <stdlib.h>

class Node f

public:

virtual int value() = 0;

virtual void print(ostream&) = 0;

Node()fg

virtual �Node() fg ==note virtual destructor

g;

class IntNode: public Node f

int n;

public:

IntNode(int k): n (k) fg

�IntNode() fg

void print(ostream& o) f o � n; g

int value() f return n; g

g;

class UnaryNode: public Node f

char� op;

Node � opnd;

public:

UnaryNode(char� a, Node � b): op(a), opnd(b) fg

void print (ostream& o) fo � "(" � op � opnd � ")";g

int value();

�UnaryNode() f g

g;

int UnaryNode::value()

f

switch (�op) f

case '-': return -opnd!value();

case '+': return opnd!value();

default: cerr � "Unary node ``" � op � "'' unknown.nn";

g

return 1;

g

class BinaryNode: public Node f

char� op;

66

Tree::Tree(int n)

f

p = new IntNode(n);

g

Tree::Tree(char� op, Tree t)

f

p = new UnaryNode(op, t);

g

Tree::Tree(char� op, Tree left, Tree right)

f

p = new BinaryNode(op, left, right);

g

Tree MakeTree(int depth)

f

if (depth == 1)

return Tree("+", Tree(1), Tree(1));

else

return Tree("+", MakeTree(depth-1), MakeTree(depth-1));

g

main(int argc,char �� argv)

f

if (argc==1) f

cerr � "Need depth on command line.nn";

exit(2);

g

int depth = atoi(argv[1]);

Tree t = MakeTree(depth);

==cout << "Value is " << t.value() << endl;

#ifdef NODELETE

++t.p!use;

#endif

g

A.3.2 Manually Reclaimed

==C++ example JOOP august 1988 Andrew Koenig

== Totally rewritten

65

g;

class UnaryNode: public Node f

friend class Tree;

char� op;

Tree opnd;

UnaryNode(char� a, Tree b): op(a), opnd(b) fg

void print (ostream& o) fo � "(" � op � opnd � ")";g

int value();

g;

int UnaryNode::value()

f

switch (�op) f

case '-': return -opnd.value();

case '+': return opnd.value();

default: cerr � "Unary node ``" � op � "'' unknown.nn";

g

return 1;

g

class BinaryNode: public Node f

friend class Tree;

char� op;

Tree left;

Tree right;

BinaryNode(char� a, Tree b, Tree c): op(a), left(b), right(c)fg

void print (ostream& o) fo � "(" � left � op � right � ")";g

int value();

g;

int BinaryNode::value()

f

switch (�op) f

case '-': return left.value()-right.value();

case '+': return left.value()+right.value();

case '�': return left.value()�right.value();

case '/': return left.value()=right.value();

case '^': return left.value()^right.value();

default: cerr � "Binary node ``" � op � "'' unknown.nn";

g

return 1;

g

64

Node() f use = 1; g

virtual int value() = 0;

virtual void print(ostream&) = 0;

virtual �Node() fg ==note virtual destructor

g;

class Tree f

friend int main(int, char��);

friend class Node;

friend ostream& operator�(ostream&, const Tree&);

Node � p;

public:

Tree(int);

Tree(char�, Tree);

Tree(char�, Tree, Tree);

Tree(const Tree& t) f p = t.p; ++p ! use;g

�Tree() f if (--p!use == 0) delete p; g ==ref count

void operator=(const Tree& t);

int value() f return p!value(); g

g;

void Tree:: operator=(const Tree& t)

f

++t.p ! use;

if (--p ! use == 0)

delete p;

p = t.p;

g

ostream& operator�(ostream& o, const Tree& t)

f

t.p ! print(o);

return (o);

g

class IntNode: public Node f

friend class Tree;

int n;

IntNode(int k): n (k) fg

void print(ostream& o) f o � n; g

int value() f return n; g

63

void

main(int argc, char ** argv)

{

int total;

int chunks;

sscanf(argv[1], "%d", &total);

sscanf(argv[2], "%d", &chunks);

#if FAULT || TEST

node::heap = new mallor(NULL, chunks * 1024);

#endif

register node * p;

register int limit = 1024 * total / sizeof(node);

while (limit--) {

p = new node;

if (!p) {

fprintf(stderr, "Allocation failed.\n");

exit(1);

}

p->data[0] = 0;

}

}

A.3 Expression Tree Example

The following code was used to create the expression tree measurements of x4.5.

A.3.1 Reference Counted

==C++ example JOOP august 1988 Andrew Koenig

==Extensively modi�ed by Daniel Edelson

#include <iostream.h>

#include <stdlib.h>

class Node f

friend int main(int, char��);

friend class Tree;

friend ostream& operator�(ostream&, const Tree&);

private:

int use;

protected:

62

main(int argc, char * * argv)

{

int allocated = 0;

char *curr_brk = 0, *old_brk;

int INCR = 0;

int counter = 0, counter_max = 10;

double expansion;

sscanf(argv[1], "%d", &INCR)); // get request size

sbrk(0); // make brk stabilize

char *mem_start = old_brk = sbrk(0);

while (1) {

new char[INCR];

curr_brk = sbrk(0);

if (curr_brk != old_brk)

++counter;

if (counter == counter_max)

break;

old_brk = curr_brk;

allocated += INCR;

}

expansion = double(curr_brk - mem_start) / allocated;

cout << double(INCR) << tab << expansion << endl;

}

The following program was used to obtain allocator timing information. It was

exec'ed by another program that used the wait3 system call to obtain timing infor-

mation. It was compiled with one of four #define macros turned on to yield one of

for programs. The four test respectively, ::new, malloc, the custom allocator with an

explicit test, and the custom allocator with write protection.

struct node {

char data[20];

#if FAULT || TEST

static mallor * heap;

void * operator new(size_t size) { return heap->get(size); }

void operator delete(void * p) { }

#endif

};

#if FAULT || TEST

mallor * node::heap = NULL;

#endif

61

for (int i=0; i<2000000; i++)

f();

}

void f()

{

node * r = NULL;

}

int

main()

{

for (int i=0; i<2000000; i++)

f();

}

void f()

{

}

int

main()

{

for (int i=0; i<2000000; i++)

f();

}

void f()

{

DR_node r = NULL;

}

int

main()

{

for (int i=0; i<2000000; i++)

f();

}

A.2 Allocator Measurements

The following program was used to determine the space e�ciency of the various alloca-

tors. The version shown below tested the standard allocator. It was run for every block

size from 1 to 2499 bytes.

60

6 Future Work

There is justi�cation for the assumption that a generation-based collector would not be

appropriate for an imperative language like C++. However, this needs to be explored.

Burgess has implemented a generation-based mark-and-sweep collector for Sil [9], an

imperative object-oriented programming language based on Pascal. He found that gen-

erations improved the performance of the system by a factor of approximately 10. This

is in spite of the fact that the system checks on every assignment to determine if a back

pointer is being created. This is in the context of a free-store of M bytes where the

system has M=2 bytes of real memory. The generation-based collector examines fewer

objects so it causes fewer page faults. If that works for a non-copying generation-based

collector in an imperative object-oriented language, it should certainly work for a copy-

ing collector. This would best serve applications that maintain a very large amount of

living, dynamic data.

In a system with several allocators, our low-level allocator should use the buddy-

system to reduce external fragmentation. Determination of the optimal chunk size for

the main allocator is an open problem.

Our intention is to develop an incremental, concurrent version of the collector.

The most important future step, now that we've validated the approach, is reimple-

menting the collector in a C++ compiler. This requires a new syntax because it does

not seem appropriate to treat \collectible" as a system-de�ned base class. This raises

new problems, such as how to treat incomplete declarations of collected types, that are

beyond the scope of this thesis.

A Appendices

A.1 Root Measurements

A.1.1 Creating and Destroying Roots

The following programs were executed with the Unix C-shell time command to measure

the cost of creating and destroying roots and droots. The �rst program creates and

destroys twomillion roots. The second program creates and destroys twomillion pointers.

The third program does nothing two million times. By subtracting the third program's

time from those of the �rst two, the expense of creating roots versus pointers can be

measured. The fourth program creates and destroys two million droots.

void f()

{

R_node r = NULL;

}

int

main()

{

59

with the Unix mprotect system call. Then it allocates objects and touches each one

that it allocates. A SIGSEGV (write-fault) signal from the operating system indicates

that the collector is out of space. Appel suggests this scheme in [2]. In C++ an object's

initialization is under the control of the programmer; thus its �elds may be initialized in

any order, or not initialized at all. The allocator cannot rely on initialization to cause the

fault; it must touch the object itself. This means that two instructions, a compare and a

conditional branch, are eliminated, but one is added. This scheme is highly inappropriate

when objects may be larger than one page. The performance of the faulting allocator

did not justify its added complexity.

Dynamic allocation in C++ incurs additional overhead because the constructor must

do nothing when the allocator returns zero. This test, plus the passing and saving of

values on the stack, tends to reduce the importance of saving one or two instructions

in the allocator. If allocation and construction could share code then initialization of a

vptr could be used by the allocator to trigger a fault. This would save an instruction

and improve the e�ciency of the faulting-allocator. It probably still would not justify

the complexity.

Since this collector can allocate low-level chunks incrementally it may do work pro-

portional to the total size of the free-store. Using large chunks reduces the overhead due

to freeing them. If only one large chunk is used this allocator emulates a standard one.

We have proposed tracking the roots of the data structure using an auxiliary last-in

�rst-out (LIFO) list. The advantage of this is that it does not require tags or hardware

support making it appropriate for C++. It also has the advantage that locating the

roots of the data structure takes time proportional to the number of such roots, rather

than the current stack depth and the total amount of global data.

This implementation of the collector requires no modi�cations to the compiler, but

it does require assistance from the programmer. Another version in the compiler would

require changes to the language. Such a collector could be more e�cient than this one.

The system is composed of encapsulated data structures making it appropriate for

an object-oriented imperative programming language. This collector shows a way that

garbage collection can be made an e�cient, non-invasive part of the C++ programming

language.

In this system we have accomplished the following:

1. added e�cient and reasonably convenient automatic storage reclamation to C++,

2. found an appropriate organization for dynamic memory reclamation in C++ that

remains within the philosophy of the language,

3. developed a platform for research into new collection techniques and algorithms,

particularly in copying collection and virtual memory issues, and

4. identi�ed one way in which C++ could better support this activity, namely, by

diverging from the stated intention of the language and allowing allocation and

construction to interact.

58

The collector has a scheme for working with foreign roots. However, since destructors

are not called for collected objects, a foreign (doubly-linked) root must not be inside an

object that is reclaimed with copying garbage collection. If a collected object contained

a droot to another object, the root would continue to exist even after the containing

object was deallocated. Objects containing foreign roots must be reclaimed another way,

such as manually.

Collecting a homomorphic data structure is quite easy from the perspective of the

client programmer. It becomes more complicated when the data structure is highly

polymorphic and derived classes have di�erent numbers of internal pointers than the

base class. New copy routines must be supplied for each derived class. This is not hard

and is only done once when the classes are de�ned.

5 Conclusion

E�cient management of dynamic data is di�cult. Only in simple cases can programmer-

controlled deallocation be safe, e�cient and simple. Reclamation of generalized dynamic

graph data structures requires edge traversal to identify unused blocks. Unless blocks

are reused objects will be scattered in memory causing excessive paging and using an

unnecessarily large amount of backing store.

There are two predominant classes of reclamation algorithms: mark-and-sweep and

copying. Mark-and-sweep collectors must be able to recognize pointers to collected

objects. They take one pass to mark all living objects and one pass to deallocate inac-

cessible ones. Another pass may be used to compact objects. A conservative collector|

conservative is a subclass of mark-and-sweep|can be implemented with minimal com-

piler support. These collectors need not di�erentiate between pointers and integers.

They reclaim most, though not all, of the inaccessible memory. They can never compact

objects in memory because they cannot adjust pointers. Neither mark-and-sweep nor

conservative collection permits the use of very fast allocators. These collectors do work

proportional to the total size of the free-store rather than the amount of living data.

Copying collection collects and compacts in one pass. Its work is proportional to the

amount of living data rather than the size of the free-store when it collects.

This thesis has presented a copying collector and its C++ implementation. The

collector will work with lists, trees, DAGs, or cyclic graphs. It incorporates very fast

allocation and a novel way of tracking roots that does not require tagged pointers or

integers. The collector's work is proportional to the amount of living data, therefore

when most objects die it is highly e�cient. This is likely if the free-store is allowed to

grow very large. When the amount of data that must be copied can be kept small, the

collector is more e�cient than reference counting or manual reclamation. This is because

the allocator is faster and there is only 58�s (approximately 600 integer arithmetic

instructions) overhead in a null collection, thus the deallocation overhead is very small

if most objects die.

Two allocators accompany this collector. They obtain memory from a low-level

allocator that is also provided. One of them performs an explicit bounds check on every

allocation to ensure that space is available. The other write-protects the last usable page

57

followed, inaccessible memory will be recycled and live objects will be compacted. This

increases programmer productivity by removing from the application programmer re-

sponsibility for deallocating data. It reduces paging by compacting objects.

Unlike the conservative collector described in [8] this collector works in the presence

of foreign roots, i.e., roots contained in dynamic objects allocated from di�erent free-

stores. Unlike Appel's collector [3] this allocator does not dictate where in the processes

address space the free-store must reside. This allows multiple, independent collected

data structures. It removes the need for an extra copy to move the surviving objects

back to the lowest addresses of the free-store. With this allocator the free-store can

grow dynamically. Many copying collector allocators �x the size of the free-store. This

allocator will more closely track the actual amount of memory required since, after a

collection, it is o� by no more than one chunk. The behavior of other allocators is

easily emulated by using a very large (e.g., multi-megabyte) chunk size and disallowing

expansion.

This collector demonstrates a new way of tracking roots of the data structure without

compiler assistance. The e�ciency of this scheme is reported in x4.

C++ provides the new and delete operators that are overloaded to use the e�cient

allocator. The allocator supplied with this package is fast. It is not as fast as the hypo-

thetical one described by Appel, but that one had very limited scope. Appel's allocator

integrated allocation with initialization. It would not be appropriate in C++ where

base-classes and constructors de�ne the order of sub-object and member initialization,

respectively. The measurements of x4.1.1 show that the allocator supplied with this

system is much faster than the allocator provided in the standard libraries.

4.7 Limitations

One problem, not with this implementation but with copying collection for C++, results

from the fact that objects are never individually deallocated. Without deallocation of

individual objects destructors cannot be called for collected objects. A programmer

who provides a collected class with a destructor is likely to be surprised when the

destructor is never invoked. Never examining dead objects increases the e�ciency of

copying collectors. This explains why copying collectors do work proportional to the

number of living objects rather than number of dead plus living objects. If copying

collection is preferred, this cannot be seen as a disadvantage. It is only a disadvantage

because it is a divergence from the C++ style.

Certain pointer operations become more expensive under this root scheme. The

primary ine�ciency involves the current implementations of the root-stack. The linked-

list implementation uses two words for roots making it inconvenient to put them in

registers. The array implementation has ine�ciencies in growing the array. The proposed

implementation described in x3.5.4 solves both problems.

The system does not support arrays of collected objects, though it does support arrays

of pointers to collected objects. All objects of a collected type must be dynamically

allocated. A global or static object of such a type can be simulated using a global root

that always references the same object.

56

0

488

977

1465

1953

2441

2930

Pr
oc

es
s

Si
ze

 (
k)

0 20000 40000 60000 80000 100000 120000 140000

Number of Nodes in Tree

Reference counted
Collected: all data copied
Collected: 50% of data copied
Collected: no data copied
Manual reclamation: new and delete

Figure 26: Process Size to Construct, Compute and Destroy the Expression Tree.

55

0

5

10

15

20

25

T
im

e
to

 C
om

pl
et

e
(s

)

0 20000 40000 60000 80000 100000 120000 140000

Number of Nodes in Tree

Reference counted
Collected: all data copied
Collected: 50% of data copied
Collected: no data copied
Manual reclamation: new and delete

Figure 25: Time to Construct, Compute and Destroy the Expression Tree.

54

0

1

2

3

4

5

6

7

8

9

10

T
im

e
to

 C
om

pl
et

e
(s

)

0 20000 40000 60000 80000 100000 120000 140000

Number of Nodes in Tree

Reference counted
Collected: all data copied
Collected: 50% of data copied
Collected: no data copied
Manual reclamation: new and delete

Figure 24: Time to Construct the Expression Tree: SPARCstation 1.

Each test was timed many times until reasonably tight 95% con�dence intervals were

obtained. Some tests required as few as 300 runs; others needed over 1500 executions.

The 95% con�dence intervals are shown in the graphs as vertical bars at every point.

In many cases the width of the interval does not exceed the thickness of the line so no

interval bar is visible. The time each program required to construct and evaluate the

data structure is shown in the graph of �gure 24, the total time each took to execute

is shown in the graph of �gure 25, and the space required is shown in �gure 26. The

three garbage collected versions took exactly the same amount of time to construct the

data structure. This is consistent since they di�er only in the amount of data they copy

during the collection.

The results show that the reference counted version takes much longer and requires

much more space than any other version. The garbage collected version can construct

and copy the entire data structure in almost the same amount of time it takes manual

reclamation to construct and free it.

4.6 Advantages

Reclaiming dynamically allocated objects can be di�cult. As currently implemented,

this collector requires only a little help from the application programmer and is com-

piler independent. Thereafter, provided the collector is correct and its restrictions are

53

11 1 1 1 1 1 1

Figure 23: A sample data structure from the expression example.

4.5 Expression Tree Example

In [23] Koenig presents an example of using a polymorphic data structure in C++. The

example uses inheritance and virtual functions to construct and print arithmetic expres-

sions. Koenig's example uses reference counting to allow shared subgraphs. We have

reimplemented the example to use both manual reclamation and garbage collection and

compared the implementations for space and time e�ciency. The three class de�nitions

are shown in the appendix.

The data structure that we use is a balanced binary tree in which all internal nodes

are \+" nodes and all leaf nodes are \1" nodes. A sample data structure is shown in

�gure 23. A tree data structure was used rather than a more general directed graph so

that manual reclamation could be compared against the other forms. Trees with depths

ranging from 10 to 17 were used.

The tests recursively construct and evaluate the data structure, and then free it.

The reference counted and manually reclaimed versions destroy the data structure with

destructors and calls to delete. Three cases of the collected version are shown. One

deletes the entire data structure by overwriting the root with NULL. Another makes

half the tree unreachable, and the third leaves the whole tree reachable. All three invoke

a garbage collection. By overwriting pointers the versions cause 0%, 50% and 100%,

respectively, of the data structure to be copied. The tests do not take into account the

fact that a copying collection compacts objects.

The versions are compared for time to complete and process size. The measurements

were obtained by a driver program written by the author that uses the Unix wait3

system call to obtain the data. Times are reported by the operating system with 17ms

granularity; space is reported in 1024 byte units.

52

Table 3: Collector E�ciency Measurements

Nodes have 12 bytes of data, 4 bytes of forwarding pointer, and 4 bytes of vptr .

The data structure of 2

17

� 1 nodes requires 2559k bytes.

Operation Time to Complete

VAXstation SPARCstation

3520 1

Collect \null", 1 root, 1 chunk, no data 58.5�s 11.5�s

Build a binary tree: 2

17

� 1 nodes 4.2s 2.4s

Build and collect the tree 12.3s 4.2s

Time to copy 2

17

� 1 binary nodes 6.0s 1.8s

Time per node (minus overhead) 45.8�s 13.7�s

Nodes copied per second 21,845 72,992

Kbytes copied per second 426 1425

the base class type. In that case there is only one root stack adding 9 instructions or

about 3�s. Further, let us assume there are no droots. The remaining cost of the

collection is the time spent copying nodes. Copying a node entails: a virtual function

call to the copy routine, a call to new to allocate the new memory, a call to the copy

constructor, and virtual function calls through the internal pointers of the node. It is

di�cult to estimate the amount of time this will take because the application de�nes the

copy constructor; it may not be simply linear in the size of the object.

Copying the data requires a call to the copy routine for every edge in the graph, plus

calls to new and the copy constructor for every node. The main overhead associated with

the copy routine is invoking it through the vptr .

Calls to the allocator take 6 instructions, except when a fault occurs. With 256k

chunks faults will be very rare, there would be four if a megabyte were copied. Twenty

byte objects, such as those benchmarked in this thesis, would require 5 instructions each

to copy. If many objects are copied this expense will be signi�cant. The key in copying

collection is to wait to collect until many objects have died. That way copying will be

fast.

A \null" collection when there is one root in one root stack and only one chunk has

been allocated requires 60�s on the VAXstation. The collection time is independent of

the amount of global data or the depth of the current stack frame because the collector

need not search blindly for the roots; it can iterate over them directly.

For comparison purposes the collector was benchmarked collecting a graph of 20 byte

nodes on both the VAXstation and a SPARCstation. The results are shown in table

3.

51

Table 2: E�ciency of creating roots compared to simple pointers.

Operation Time

Create/initialize/destroy 2,000,000 pointers 11:8s

Create/initialize/destroy 2,000,000 roots 14:2s

Create/initialize/destroy 2,000,000 droots 23:1s

Startup, termination and function call overhead 11:0s

Time per pointer 0:4�s

Time per root 1:6�s

Time per droot 6:1�s

4.3.2 Creating and Destroying a Droot

Constructing and destroying droots requires a doubly-linked list insertion and deletion,

respectively. However, droots are only found within dynamic data structures. The al-

locator cannot be the ultra-fast block allocator of a copying collector because droot

destructors must be called. The allocator must be a general purpose one such as Se-

quential Fit, Buddy System or Quick Fit. Taking a little more time to create and destroy

droots should substantially impact program performance only in pathological cases. The

time to create and destroy two million droots was 23.4 seconds. Subtracting the over-

head and dividing by two million gives a time of 6:2�s per droot. Thus, doubly-linked

roots are about four times as expensive as stackable roots. A doubly linked-list insertion

requires four operations whereas a linked-stack insertion requires two. The construction

takes four times as long rather than twice as long because two of the operations are

doubly-indirected rather than singly.

4.4 Collecting

The next important measurement is the speed of a collection. A garbage collection pass

visits every root, and then copies every node reachable from the root. The code that

accomplishes this for a garbage-collected type node is shown in �gure 16.

A garbage collection includes processing for the ip plus the deep copy of the data

structure. The ip is constant time and fast. On the VAXstation, when a low-level

block is available, it requires approximately 22 instructions. When the low level allocator

must go to the operating system for more memory that adds 4 instructions plus a call to

the sbrk system call. Deleting from-space adds approximately 12 instructions per chunk

of from-space. With large chunks this time is very small. Assume four megabytes have

been allocated in 256k chunks and that the low-level allocator has a free 256k chunk.

Then on the two processor VAXstation 3520 the overhead for managing spaces during

a collection would be 102 instructions. Estimating the machine's throughput at 3 MIPS

gives a total of 34�s managing spaces.

A polymorphic data structure is often manipulated with only a single kind of root,

50

check. Assuming 20 byte objects that means 36k chunks, rounding up to a power of two

as required by the low-level allocator gives 64k chunks.

4.3 Roots

Increasing the e�ciency of root creation and object allocation is extremely important

because these are very common operations. A program that uses a very large free-

store may never need to garbage collect, yet it can still be slow if these operations are

ine�cient.

4.3.1 Creating and Destroying a Root

Creating a root means allocating and constructing a pointer variable. Global and static

variables are created once at the beginning of the program. The e�ciency of construct-

ing them contributes little to the e�ciency of a program. The critical roots are those

allocated on the stack including: local variables, by-value function parameters, function

return values, and temporaries.

Creating a pointer (root) on the stack normally requires two instructions: decrement-

ing the stack pointer and initializing the root. The stack pointer allocation is performed

with one subtraction for all the local variables to the function. Destroying such a vari-

able normally requires no instructions because the stack pointer is restored during the

normal function return sequence.

Replacing the pointer with a root adds three instructions for maintaining the root

stack. The root's link gets the former stack head, and the stack head gets the new root's

address. This takes two instructions. Unlike a normal pointer variable, a root's pointer

component must not be uninitialized; it defaults to a NULL pointer. Initializing the

pointer component of the root takes one instruction. The root destructor requires one

instruction. Finally, the compilers move an unnecessary value into r0 for the expression

value. Creating, initializing and destroying a root, which should take four instructions,

takes 5 under these compilers.

The �gures in table 2 show the performance of root allocation and destruction. The

code that yielded the measurement is provided in appendix A.

As predicted, creating roots is on the order of four times more expensive than creating

pointers. It requires three machine instructions per root that are not required by a simple

pointer.

Multiple roots will be created and destroyed when there are multiple local variables

of type root. An unsophisticated compiler might not optimize their construction and

destruction. However, the compiler could safely eliminate all but one mov to set the

list head, and all but one mov to restore the old list head. Thus, the obvious code to

construct and destroy n roots will use 3n instructions, however, optimization reduces

that to n+ 2 instructions.

49

Table 1: E�ciency of Trapping a Fault

Operation Time to Complete

VAXstation 3520 SPARCstation 1

getpid (trivial) system call 55�s 29�s

mprotect system call 117�s 39�s

fault/trap/return � 394�s � 795�s

Decrement and conditional branch 0:7�s 0:12�s

4.2 Write-Protection and Faulting

How e�ective is circumventing the explicit bound check with write-protection and fault-

ing? This is useful because every instruction is critical in common operations, and

because conditional branches tend to disrupt pipelines. The bene�t of this depends on

its e�ciency and on the number of instructions it replaces. The faulting implementa-

tion of the allocator described in this thesis performs two mprotect system calls plus

additional processing on every write-fault.

7

These calls unprotect the faulting page and

protect a new boundary. This memory-management requires 584�s. That time equals

approximately 834 decrement-compare sequences. The system permits any number of

coexisting allocators, therefore the trap had to be directed to the fault handler of the

correct object. This required a linked-list search and a virtual function call. In this

system the time to handle and return from a trap was 630�s on the VAXstation. The

fault/trap/return numbers shown in table 1 do not include the time for the two mprotect

system calls. The SPARCstation, while much faster than the VAX for most opera-

tions, handles and returns from the faults more slowly. The discrepancy may result from

the VAXstation's multiple processors. On the SPARCstation a fault/trap/return

takes approximately 717�s. Warning: these numbers are very rough approximations

and should be used as such.

This data indicates that replacing a compare and branch with a fault is an improve-

ment (on the VAXstation) when:

1. The two instructions really disappear, i.e., an extra instruction to force the trap is

not required, and,

2. More than 900 operations occur between faults, hopefully much more than 900. If

it's only an even trade the additional complexity is unjusti�ed.

This allocator needed an extra instruction to force the fault. Therefore the number

of operations to parity is closer to 1800 than 900. For blocks of size n the chunks would

have to be 1800n bytes long for this scheme to approximately equal an explicit bounds

7

The mprotect system call changes the protection status of a region of memory, e.g., it can be used

to write-protect a page.

48

per chunk in the faulting allocator. Two factors lead to external fragmentation. The use

of large chunks increases external fragmentation unless the entire chunk is used. The

use of small chunks leads to fragmentation when there is insu�cient space remaining

in the chunk to satisfy a request. The former is ameliorated through the use of small

chunks; this aggravates the latter. Static type information can be used to select the most

appropriate chunk size. The write-protected page is not important since even though it

consumes virtual address space it doesn't use real memory because it is never touched. If

protected pages are reused by the faulting allocator then they will not take up secondary

storage since there will not be any data on them to page out.

The initial version of the faulting allocator used the valloc library routine for its low-

level allocation. This routine returns a block of memory subject to alignment constraints,

for example, page-aligned memory. The use of this library function doubled the memory

consumption of the allocator. Using customized low-level allocators brought the memory

consumption of both allocators to a reasonable amount that, for 20 byte blocks, is

signi�cantly less than that used by the standard allocator.

4.1.3 Allocator Summary

With this copying collector is provided a customized memory allocator. One version

of the allocator uses Appel's suggestion of avoiding a compare and conditional branch

through virtual memory protection. This is less appropriate for C++ because of the

complexity of object initialization. The protection only replaces one instruction, not two

as in Appel's. When objects may be larger than one page it is much less e�cient then a

simple comparison.

The protected-page implementation of the allocator is roughly the same speed as the

explicit-test version. Both are more than twice as fast as the standard allocator. 16k

chunks are too small for the faulting allocator. The testing version was never observed

to be signi�cantly slower than the faulting one.

The standard allocator su�ers from severe fragmentation when requests are in pow-

ers of two bytes. The application has no way to avoid this if it is allocating near a

breakpoint. This also applies to the specialized allocators such as valloc. The custom

allocators su�er no internal fragmentation. The use of large chunks increases external

fragmentation unless the entire chunk is used. The use of small chunks leads to frag-

mentation when there is insu�cient space remaining in the chunk to satisfy a request.

The former is ameliorated through the use of small chunks; this aggravates the latter.

Determination of the optimal chunk size is beyond the scope of this thesis.

The custom allocator comes with a low-level allocator that obtains memory directly

from the operating system. Either version of the custom allocator is a signi�cant improve-

ment over the standard one, in terms of both time and space. This is unsurprising given

the simple allocation strategy that copying collection permits. The faulting allocator is

not fast enough to justify its added complexity. With 16k chunks it is signi�cantly slower

than the testing allocator. The following section suggests that the smallest appropriate

chunk size for the faulting allocator is 64k bytes.

47

0.0

1.0

1.9

2.9

3.8

4.8

5.7

6.7
T

ot
al

 b
re

ak
 E

xp
an

si
on

 (
M

by
te

)

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Amount Requested (k)

x=y
Mallor, test, 16k chunks
Mallor, test, 1024k chunks
Mallor, fault, 16k chunks
Mallor, fault, 1024k chunks
::new

Figure 22: Total memory allocated, SPARCstation 1.

versions of the custom allocator. Both are roughly 2-3 times faster than the standard

allocator. The faulting allocator with 16k chunks is signi�cantly slower than the other

con�gurations for reasons discussed in x4.2.

4.1.2 Space E�ciency

Another question is how much memory does each allocator waste? Waste, in this context,

is memory obtained from the operating system but not available to the user. This can be

determined by examining the program break before and after all the allocations. Under

Unix the break is the program's dynamic storage space limit. It grows toward higher

addresses as the program obtains memory from the operating system. The sbrk system

call with an argument of zero returns the current break without changing it. The total

memory obtained from the operating system by each allocator is shown in �gure 22.

In this test the standard allocator always obtained about 1.5 times as much memory

as it provided. This fraction is dependent on the request size. When requests are equal

to or slightly larger than a power of two the allocator is very space ine�cient. When

allocating objects in sizes that are powers of 2, for example, 32 byte objects, it obtains

2n bytes from the operating system to provide n bytes to the application. Very e�cient

sizes are one word smaller than a power of two such as 124 bytes. In those cases its

overhead is very small.

There is no per-object space overhead in the custom allocator. The losses are due to

external fragmentation, one word per chunk for making lists, and a write-protected page

46

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

T
im

e
(s

)

500 1000 1500 2000 2500 3000 3500 4000 4500

Amount Requested (k)

Mallor, test, 16k chunks
Mallor, test, 256k chunks
Mallor, test, 1024k chunks
Mallor, fault, 16k chunks
Mallor, fault, 256k chunks
Mallor, fault, 1024k chunks
::new

Figure 21: Time to Allocate and Touch: 20 Byte Requests, SPARCstation 1

Mallor: means the custom memory allocator

fault: the version that uses write-faulting to avoid the test

test: the version with an explicit bounds check

45

struct node { /* sizeof node == 20 */

static mallor * heap;

void * operator new(size_t size) { return heap->get(size); }

void operator delete(void * p) { }

char data[20];

};

Figure 20: The object used in allocator tests.

This code compiles to the following. (Liberties have been taken with identi�er

names.)

// This routine is mallor::get().

// r11 is used for the ``pointer'' value being generated.

// The first two instructions compute the pointer value.

// The cmpl and the bgeq check its bounds.

// Then it's stored back into the allocator state and used.

// The instructions marked with `*' are the common case.

get: subl3 $20,free_ptr,r11 //* compute new free_ptr

cmpl r11,lower_limit //* test against bound

bgeq success //* if ok, save it

pushal this // allocator fault

calls $1,fault // get more space

subl3 $20,r0,r11 // compute new ptr

success: movl r11,free_ptr //* save new free_ptr

A faulting allocation request compiles to 4 inline VAX instructions all of which are

executed. A larger number of instructions are being executed when objects are allocated

than these low counts would suggest. The constructor is comparing this to zero before

it invokes the allocator. The allocator is saving its return value in a temporary on the

stack. The constructor is then comparing the return value to zero. The extra work

reduces the signi�cance of a one or two instruction di�erence.

The time measurements shown in the graph of �gure 21 were obtained as follows.

The allocators were used to allocate 20 byte objects such as shown in �gure 20. After

allocation one byte was initialized in each object. This seems fair because uninitialized

dynamically allocated objects should be rare. The test program repeatedly allocates new

objects until a �xed amount of memory has been obtained. The test was run to obtain

512k through 4M bytes. The custom allocators are parameterized by their internal chunk

size. Chunks of 16k, 256k and 1M bytes were tested. Timing information was obtained

with the wait3 system call because it provides better granularity than either the time

program or the C-shell time function. The times reported are user time plus system

time. The vertical bars at each point show 95% con�dence intervals.

The data presented in the graph of �gure 21 show little di�erence between the two

44

/* Coded by the application programmer in node.h */

class node {

... // whatever required by the application

... // normal constructors

... // no destructor

COLLECTION_MEMBERS

virtual void copy(node * &);

};

void node::copy(node * &)

{

...

}

Figure 19: Declaring a collected node type.

We wish to measure the speed of the allocators by issuing many allocation requests

and seeing how long they take to complete. This was done once and the times showed

that the faulting allocator was much slower than the testing allocator, though still much

faster than the standard one. The complication was that the faulting allocator was

writing to every object while the other two were not. Since it modi�ed the objects, their

pages had to be written out to backing store before the memory could be reattached.

This made the faulting test program take many times longer to complete than the testing

version. After this two observations inuenced the testing:

� Object are typically initialized when they are allocated.

� We expect to allocate nodes in polymorphic data structures, therefore objects will

have vptrs that require immediate initialization.

Given these two guidelines, it appears appropriate to touch every object when bench-

marking the speeds of the allocators. To accomplish this we write a byte into every

object to dirty the page that contains the object. In the faulting allocator this is in

addition to the write that causes a fault.

A testing allocation request compiles to 7 inline VAX instructions of which 4 are ex-

ecuted in the common case. This instruction count does not include object construction.

The Sparc code is considerably less dense. A testing allocation request calls:

inline byte * mallor::get(size_t n)

{

if ((free_ptr -= n) < lower_limit)

free_ptr = fault() - n;

return free_ptr;

}

43

/* Supplied in gc.h */

#define COLLECTION_MEMBERS(T) \

private: \

static mallor freestore; \

struct T/**/_forward { \

T * forward; \

T/**/_forward() : forward(NULL) { } \

} fa; \

void set_forward(void * p) { fa.forward = p; } \

void * get_forward() { return fa.forward; } \

public: \

void * operator new(size_t n) \

{ return freestore.get(n); } \

void operator delete(void * p) { } \

static void gc_collect() \

{ freestore.setmode(mallor::collect); } \

static void gc_grow() \

{ freestore.setmode(mallor::grow); } \

static void gc();

Figure 18: The necessary members of a collected type.

The tests reported here were compiled with optimization enabled on a two processor

VAXstation 3520, cfront 2.0 and the Ultrix 3.0 C compiler. For comparison purposes

many tests were also run on a Sun SPARCstation 1 running SunOS 4.0.3 and cfront

2.0 and are so indicated.

In analyzing the performance of individual components we examine the following

operations:

� allocating an object

� creating and destroying roots, both stacked and doubly-linked

� collecting a data structure

4.1 The Allocator

We compare three di�erent allocators for time and space: the faulting version, the testing

version, and the global ::new allocator on top of the standard libraries.

4.1.1 Allocation Speed

When comparing the time-e�ciencies (rather than space-e�ciencies) of the allocators, a

complication arose that made it di�cult to isolate the allocation overhead.

42

// Copy from every root in a stack.

// Linked list implementation of the stack.

void root_list_head_node::copy()

{

R_node * rootp = R_node::head.root_list;

while (rootp) {

if (rootp->ptr)

rootp->ptr->copy(rootp->ptr);

rootp = rootp->link;

}

}

Figure 17: Copying node objects from a root-stack.

1. the overloaded new operator to allocate memory from the current to-space

2. the static member gc() that is used to garbage collect all objects of the type, and

3. a virtual copy function to recursively copy objects and update pointers.

The overloaded delete operator is nonfunctional. It is implemented so that, should

the application programmer accidently delete a pointer, the global ::delete operator

will not try to free the memory. When the argument to delete is an l-value, it can

overwrite the pointer with NULL; this will reduce the amount of garbage that is copied.

Garbage collection is triggered either by the application, when it knows it is done

allocating, or by the allocator when it runs out of space. The garbage collection algorithm

�rst switches the allocator to a new space, a ip, and saves a pointer to the old space.

Then from every root it traverses and copies the reachable data structure. The virtual

copy function accomplishes the copy and updates the pointers. The function must be

reimplemented for every collected class. It is simple to implement, generally requiring

less than ten lines. Every object is copied the �rst time it is visited. If an already copied

object is revisited a forwarding pointer indicates that fact. After the reachable data

structure has been copied the from-space pointer is used to recycle that space.

This implementation of the collector is not generation-based. If Appel is correct,

however, generations might be of little bene�t in an assignment-based Algol-like language

such as C++ [3].

4 Analysis

We have shown why this dynamic memory management organization does not impact

code that does not use it, thereby satisfying the �rst important e�ciency criterion. The

other is that code that does use the collector is also e�cient.

41

void node::gc()

{

chunk * fromspace = freestore->flip();

// for each root stack

root_stack * stackp = root_stack_node::head;

while (stackp) {

stackp->copy(); // fix each root in the stack

stackp = stackp->next;

}

// for each doubly-linked root list

droot_base_node * curr = dummy_node::dummy.next;

droot_base_node * limit = &dummy_node::dummy;

while (curr != limit) {

curr->copy(); // copy from the droot

curr = curr->next;

}

mallor::release(fromspace); // recycle from-space

}

Figure 16: Garbage collecting objects of base type node.

This is for the linked-list implementation of the root-stack.

3.9 Review

We have now described all the principle components of the copying collector: the allo-

cator, tracking roots, and the collector algorithm. We now give a detailed review of the

system. In this discussion the type node is a garbage collected type with two internal

pointers as shown in �gure 13.

Roots are of two types: (1) R node for fast, auto and global roots, and (2) DR node

for the rare roots that must be linked into the doubly linked list. These two types

of roots can be located for a collection by searching the list of node root stacks and

the list of node root doubly-linked lists, respectively. The head of the list of stacks is a

static member of the R node class; the head of the list of doubly-linked lists is a static

member of the DR node type. The doubly-linked list of droots should be empty for most

applications.

The data structure's memory allocator is a static member of the node type. The

overloaded node::new() routine uses this object to allocate memory.

The are three critical member functions of the collected type:

40

class dnode : public node {

node * center;

...

virtual void copy(node * &);

virtual void copy(dnode * &);

};

void dnode::copy(node * & n)

{

...

n = new dnode(*this); // safe, implicit conversion

...

}

void dnode::copy(dnode * & n)

{

...

n = new dnode(*this); // No conversion needed

...

}

Figure 15: Overloaded copy functions for a derived node type.

Polymorphism in C++ requires a base class. The programmer de�nes this base class

and adds to it the collection members. The collection members include the forwarding

address object, the overloaded new operator, and the static free-store object. The

parameterized macro COLLECTION MEMBERS(T) provides all the requisite members except

the copy function. This macro is shown in �gure 18. The copy function must be coded

by the programmer. An example of the way a collected class is declared is shown in

�gure 19.

Only one thing must be done after the type is declared: the copy routine must be

de�ned. When the collector is in the compiler, the compiler will implement these routines

but this version requires the programmer to supply it.

The copy routine has four tasks:

1. reallocate (copy) the object

2. set the forwarding pointer

3. recursively copy descendents of the object

4. update the pointer that led to the object

A sample copy routine was shown in �gure 13.

39

// assume node is a collected type

class derived_node : public other_type, public node {

...

} obj;

Figure 14: An object such that (node*) &obj != &obj.

forwarding pointer is not known until runtime. The �eld that contains the forwarding

address is of type base *, where base is the base class of the polymorphic type hierarchy.

Type safety would be preserved by rede�ning the pointer in every derived class but this

would be ine�cient. Only the copy routine reads or writes the forwarding pointer and

the copy routine, because it is virtual, knows the runtime type of the pointer. Therefore

it may convert the forwarding pointer to and from base * safely.

3.7 A Collection

The collector is nonincremental and copying. It is invoked by the allocator when an

allocation request cannot be satis�ed. The collector takes the following steps:

1. make the allocator \ip" to a new space, saving the from-space pointer,

2. traverse the data structure, reallocating every object in the new space and updating

pointers,

3. release the old space, and

4. resume the interrupted allocation request.

The collector \ips" the allocator with a call to the mallor::flip() routine. This

returns a pointer to from-space. Future allocation requests are satis�ed out of the new

space.

After the ip the collector calls the traverse virtual member of each root stack.

That routine performs a depth-�rst traversal from each root in the stack. Every object

encountered is copied to the new space by its copy virtual function. After the entire data

structure has been copied the old space is released with a call to the allocator release()

static member function.

The routine of �gure 16 is the collection routine for a node type. The routine shown

in �gure 17 copies the subtree rooted at each root in a root-stack.

3.8 Using the Collector

This section describes how the collector is realized and how it is imported into an ap-

plication. We assume that the objects to be collected are polymorphic because the

homomorphic case is less interesting and easier.

38

This collector requires that every collected type have a copy() virtual function. This

function reallocates the object, sets a forwarding pointer, copies the descendents, and

updates the pointer that led to the object. A sample copy function is shown in �gure

13.

A traditional system could accomplish this by using the structure tag to index into

a table of function pointers. The problem with using that scheme in C++ is the fact

that a base class pointer may not actually point at a base class object. The copy must

be accomplished|or the structure tag must be obtained|with a virtual function call.

class node {

node * left, * right;

...

virtual void copy(node * &);

};

void node::copy(node * & n)

{

node * newptr;

if (n = (node*) get_forward()) return; // already done

n = newptr = new node(*this); // copy object

set_forward(newptr); // set forward

if (left) left->copy(newptr->left); // copy children

if (right) right->copy(newptr->right); // copy children

}

Figure 13: A copy function for a node type.

When an object is copied the pointer that led to the object must be updated. If

the object is of a derived class type then the pointer may be either a base class pointer

or a derived class pointer. If it is a derived class pointer then the new address may be

used directly, otherwise the new address must be converted to be a base class pointer

type. This conversion, in the presense of multiple inheritance, may change the value

of the pointer. Therefore it is mandatory that the copy routine of a derived class have

available the actual type of the pointer that led to the object. In the derived node class

of �gure 14 converting a pointer of type derived node * to type node * changes the

value of the pointer. This problem is solved in this collector with function overloading.

The copy virtual function is overloaded based on the type of the pointer that leads

to the object. A derived class must have a copy function for every type of pointer that

can lead to such an object. A simple derived class based on the node class of �gure 13

is shown with its copy functions in �gure 15.

The copy routine still requires an explicit type coercion because the type of the

37

A root or other linked list node

Stack-List Head

Stack
System

Dynamic Object Allocation Area

Stack
List

Global Data

A pointer

A dynamically allocated object

Figure 12: Runtime organization of the copying collector.

The linked-list implementation of the root-stack is shown.

No doubly-linked roots are shown.

36

a linked list when they're constructed. Since the collector can �nd the head of this list

it can �nd all the root stacks.

This implementation, similarly to the array implementation, requires two words per

root. One is the pointer the other is the list link. Since roots are two words long it is

inconvenient to pass or return them in registers.

The runtime organization of this data structure is shown in �gure 12.

3.5.4 Proposed Third Implementation

The array implementation has the advantage that roots are only one word so they are

easily passed in registers. The problem involves growing the array. If it could be treated

by the operating system the same way the system stack is treated this problem would

be eliminated.

The system stack grows down from a �xed address. Virtual addresses below the stack

are backed by real memory as they are required. If this can be done for the root-stack then

no copy will be required. As before, the �rst word beyond the stack is write-protected.

Upon a fault the protected page is unprotected and one or more new pages are backed

with real memory. The new end of the stack is then write-protected. The stack remains

contiguous and no copies are required as the array grows. This implementation is better

than the linked stack implementation because these roots are only one word long so they

can be passed in registers conveniently.

3.5.5 Doubly-Linked Roots

Dynamically allocated roots that are not in the data structure need not have LIFO

lifetimes, therefore they cannot be tracked with a stack. Boehm's conservative collector

referred to these as foreign roots and disallowed them [8]. This collector tracks them

with a doubly linked list rather than a stack. The doubly linked list permits deletion of

any list element to support non-last-in �rst-out (LIFO) insertion and removal.

These roots must have a distinct type. Dynamic roots to objects of type T are of

type DR T. They are called droots because they insert themselves into a doubly linked

list when they are created (doubly-linked roots.) As with stacked-roots there is one list

for every kind of root and the heads of the lists link themselves into a list. The collector

can �nd the meta-list head and thus can �nd all the lists, therefore it can �nd all the

pointers. The head of all the lists is a static member of the DR T class.

Doubly-linked roots take up three words in memory. Their construction and destruc-

tion entail doubly-linked list insertion and removal.

3.6 Copying

Tracking the roots is the �rst di�cult operation. Copying the data structure is the

second. Other collectors have accomplished this by giving every structure a tag �eld and

using that to determine how to copy the object. Our approach is essentially equivalent,

except that since it is currently implemented in C++ it remains within the language.

35

Stack-Array

A root or an array element

Stack
System

Head

Dynamic Object Allocation Area

Global Data

A pointer

A dynamically allocated object

Stack
Array

Figure 11: Runtime organization of the copying collector.

The array implementation of the root-stack is shown.

34

popped. The instance data of a root is the actual pointer. The array entry points at the

pointer.

A stack push, which copies the pointer's address into the array cell and increments the

limit, requires two instructions. A stack pop decrements the limit using one instruction.

During a collection all the roots can be located because the base address and size of the

stack are available to the collector.

The �rst page beyond the array is write-protected so that no bounds check is required

on the critical push operation. The problem is what to do when a write-fault indicates

that the stack is full.

When the array runs out of data it has to be extended. Two options are available.

We can reallocate and copy the stack, or add a segment. Adding a segment makes the

common push operation expensive because the array is no longer contiguous. Copying

the array is also ine�cient and becomes worse as the stack grows.

The disadvantage to this scheme is that either a push is slow because the array is

discontiguous or else copies are required decreasing scalability of the system. We intend

the system to be e�cient with very large applications so this is a problem. A proposal in

x3.5.4 shows how to implement the root stack as an array with neither of these di�culties.

The advantage to the array implementation is that a root's instance data is only one

pointer which may be conveniently passed and returned in a register.

Under this scheme each root requires two words, its pointer value and its array entry.

The runtime organization of this data structure is shown in �gure 11.

3.5.3 List Implementation of Stackable Roots

The second implementation of the root stack uses a linked list for the stack. Every root

consists of its object pointer and its list link.

The stack head is a static member of class R T. When a root is created its con-

structor pushes (links) its address into the stack; its destructor removes it.

A program that manipulates a polymorphic data structure may require several kinds

of roots. For example functions that allocate new nodes require pointers to the correct

kind of object. When the node is inserted into the data structure the pointer is converted

to a base class pointer. To support this we require polymorphic roots.

There is a choice about whether the di�erent kinds of roots share the same stack. If

they were tracked with the same stack then going from root to root, i.e. traversing the

stack, would require a virtual function call per list link. This would also give roots a

vptr �eld slowing down root construction, a critical operation.

Instead there is a separate stack for every kind of root. The stacks are themselves

linked into a list so that they can all be found from a single pointer. Advancing from

stack to stack requires a virtual function call, but traversing a single stack entails only

normal function calls or inline code. This way collecting is more e�cient and allocating

roots is more e�cient because they do not contain vptrs .

In a polymorphic data structure with n types of roots there would be n stacks. If

only one pointer type, say the base pointer type, was ever used as a root, then only one

stack would be needed. All of the root stacks have stack heads that link themselves into

33

the fault. This �eld is more appropriate than any application-de�ned data because it's

initialization is controlled by the compiler.

If initialization of a vptr is to be used to trigger a fault then allocation must be

performed from high addresses to low ones, i.e., the write-protected page must be at a

lower address then all the available pages.

3.5 Roots

A copying collector must be able to identify the roots of the data structure. Traditional

collectors scan the program's stack, global data and registers looking for pointers to col-

lected objects. This is impossible for our system because the collector cannot identify the

pointers. (Tagged pointers have already been rejected.) Furthermore, this is ine�cient

in that the time it takes to �nd the roots depends not on the number of roots, but on

the stack depth and the amount of global data. This leads to the case of a very small

collected data structure requiring a comparatively long time to collect because other

program components have a lot of data and a very deep call stack. For example, an

operating system might have more than 250k bytes of global data. It could not garbage

collect even a small data structure e�ciently if a collection required scanning all that

data. This collector uses auxiliary data structures to track roots.

Roots of a data structure are a parameterized type; for nodes of some type T, roots

are of type R T. They are currently generated with #define macros because no C++

compiler that implements Stroustrup's template mechanism [17] is available. Their pa-

rameter is the type of object they reference. This allows them to act as \smart pointers"

[32]. A root is a class object that is convertible to a normal pointer type. It can be

dereferenced just as a normal pointer. It has a constructor and a destructor that are

used to track its lifetime.

The roots of the collection are located using two data structures. Most roots are

either global or static variables, or auto variables. These roots can be tracked with a

stack. Other roots, such as those contained in other dynamic data structures, cannot be

tracked using a stack. Their addresses are kept in a doubly linked list.

3.5.1 Stackable Roots

Every time a global root is created, or a root is allocated on the runtime stack, its address

is pushed onto a stack. When the root is destroyed its address is popped from the root

stack. Global objects are pushed when the program starts to run; auto roots' addresses

are pushed as the roots are constructed. At any moment all the global and local roots in

a program can be found by examining the stack. This data structure was implemented

two ways and a third is proposed.

3.5.2 Array Implementation of Stackable Roots

The �rst implementation uses an array for the stack. The cells of an array point at the

roots. An index associated with the array indicates the current stack top. When a root

is created its address is pushed onto the stack. When a root is destroyed the stack is

32

allocator while smaller objects used the faulting version.

The class de�nition of the testing allocator is shown in �gure 10. The faulting

implementation lacks the lower limit bound since it does not perform an explicit test.

It is a derived class of protection client.

Section 4.1.1 compares the two implementations and explains one of the di�culties

in benchmarking the faulting allocator against the testing and standard allocators.

class mallor { // A memory allocator class

public:

enum heapmode {grow, collect};

private:

int chunk_size; // for low-level allocation requests

chunk * curr_chunk; // ``to-space'' chunk list

byte * free_ptr; // current allocation point

byte * lower_limit; // lower-limit of current space

heapmode mode; // to collect or to grow on fault

byte * fault(); // handle ``insufficient space''

void (*gc)(); // pointer to collection routine

public:

byte * get(int n); // for an allocation request

chunk * flip(); // switch spaces, return old one

void release(chunk *); // deallocate a space

heapmode setmode(heapmode); // ``collect'' versus ``grow''

mallor(void (*)(), size_t, heapmode);

~mallor();

};

Figure 10: The memory allocator class, testing version.

3.4.2 Proposed Third Implementation

The version of the allocator that avoids bound checking with write-protection adds an

instruction to force the fault. This might be circumventable if the implementation were

in the compiler.

The overhead of the extra assignment can be eliminated if a required initialization can

be used. This can be realized if the object is laid-out with a known, compiler-initialized

�eld at an end of the object. The high-o�sets of an object contain user-de�ned data. The

low o�sets also contain user data, but in some cases a satisfactory �eld can be placed in

the �rst word of the object. The vptrs are under the control of the compiler. When it

can put a vptr in the �rst word of the object it can use initialization of that �eld to cause

31

3.4.1 Two Implementations

The allocator has two implementations that di�er in how they know when there is

insu�cient space in the current chunk to satisfy the current allocation request. One

performs an explicit comparison during each allocation request. The other uses virtual

memory protection to avoid the explicit test as suggested by Appel [2]. The last page of

the current chunk is write-protected. Every object is touched as it is allocated. When an

object crosses the write-protection boundary this will cause a protection violation. The

operating system sends a signal to the program that is trapped by the protected obj

class and routed to the faulting allocator. The allocator either collects or allocates a new

chunk and resumes the interrupted request. We refer to the two versions of the allocator

as the faulting version and the testing version.

Both versions maintain a linked list of chunks, i.e., a space, that constitutes to-space.

They also keep a pointer into the lead chunk that demarks the current allocation point.

The chunk at the head of the list is the only one used to satisfy allocation requests. The

other chunks are never again examined by the allocator until they are returned to the

low-level allocator.

The low-level allocator quickly allocates large blocks of memory. It allocates blocks

in sizes of powers of two between 2

10

and 2

24

bytes. The version for the faulting allocator

always returns page-aligned blocks. The low-level allocator obtains its memory from the

sbrk system call. When chunks are deallocated they are linked into lists and used for

future allocation requests. This allocator could also sort chunks by address and shrink

the address space when possible. This would reduce secondary storage use.

Using write-protection to circumvent the test is more di�cult in C++ programs than

it is in the simple allocator described by Appel. In that case allocation and initializa-

tion occur together. The allocator can attempt to cause a write-fault during normal

initialization. This hides the allocation overhead. In C++ allocation and initialization

are distinct operations. Initialization is almost entirely under the control of the appli-

cation. Initialization of members and base-class sub-objects is generally performed by

constructors. Constructors may have side-e�ects. If the fault occurs after one or more

constructors have executed it may be impossible to undo the e�ects of those construc-

tors. For this reason, a write to the object must cause the fault before any sub-object

constructors are invoked. Unfortunately, when an object crosses the boundary into the

write-protected memory, the part of the object in the protected region may be initialized

at the application's discretion with a constructor, or not initialized at all. Therefore, the

normal initialization sequence cannot be used to trigger the fault; an extra instruction

must be inserted. Thus we are replacing two instructions with one. The instruction

being eliminated is a conditional branch. These instructions disrupt pipelines on some

architectures so the trade-o� may still be worthwhile in some cases. A way to eliminate

the extra instruction is described in section 3.4.2. Objects that are larger than one page

cannot bene�t from bypassing the explicit test with write-protection because every page

must be touched. This requires two or more instructions making it no less expensive

than an explicit test. The lack of dynamic arrays in C++ makes it easily determinable

at compile time what objects are larger than a page. These objects can use the testing

30

Through that pointer the client's fault handler is invoked upon a write-fault.

This is a general way of allowing multiple protected-objects to be conveniently used

within a program. This is useful because they are a powerful tool.

3.4 The Memory Allocator

The strategy used in this allocator is based on the block allocation scheme described

in x1.1.5, however, it uses a variation that supports discontiguous spaces. A chunk is a

large block with which the allocator satis�es allocation requests. A space is a linked-list

of chunks. The allocator reserves the �rst word (pointer-sized region) of each chunk

for creating the linked list. The chunk from which the allocator is currently satisfying

allocation requests heads the list. When a chunk is exhausted the allocator may either

begin a collection or it may obtain another chunk from the low-level allocator, link it

into the list, and satisfy the current allocation request out of the new chunk.

This permits the free-store to shrink and grow dynamically to accommodate the

changing needs of the data structure. After a collection the free-store is exactly the

necessary size, subject to the granularity of the chunk size. The allocator may permit

the application to decide whether the allocator should expand or collect, the allocator

may base its decision on the anticipated needs of the application, or it may decide based

on the current paging or swapping load of the virtual memory system.

The allocator is encapsulated in a C++ class called a mallor. The name mallor

was selected because it suggests memory allocator. The common term malloc was not

used to preclude confusion with the ANSI C [1] library routine of that name. In this

discussion the noun an allocator denotes an instance of class mallor.

Individual objects can not be individually freed therefore headers and footers are not

required. An entire space is deallocated by returning its chunks to the low-level allocator.

The allocator is initialized with a function pointer to the collection routine. When it

runs out of space it can either garbage collect by calling through this pointer or continue

allocating from a new chunk. To continue allocating it allocates a new chunk and links

it to the beginning of to-space. It resets the pointers to indicate the current allocation

point and, in the testing version, the lower bound. The �rst word of every chunk is

reserved for constructing this linked list.

By calling through its gc function pointer the allocator invokes the garbage collector.

The collector causes the allocator to begin using a new allocation space with a call to

the allocator flip() member. This function returns to the collector a pointer to the old

space, that is, a pointer to from-space. The collector garbage collects the objects into

the new space by reallocating and copying them. Then it releases the old memory with

the static allocator routine release(). Finally, the collector returns and the allocator

resumes the interrupted allocation request.

An allocator is a static member of the base class of the collected data structure.

The overloaded new operator of the class obtains memory from the mallor.

29

3.3 Virtual Memory Protection

Several recent dynamic memory management systems have used standard virtual mem-

ory hardware to increase e�ciency. Appel, Ellis and Li disallow accesses to pages of

memory as a form of medium-grained synchronization between the concurrent mutator

and collector [4]. Appel uses write-protection to avoid an explicit bound check in the

allocator. His allocator write-protects a page beyond the current allocation area and

allocates until the initialization of an object produces a write-fault [3]. This avoids a

compare and conditional branch in the allocation-request code.

A protected obj is a C++ class that encapsulates this functionality. Such an

object contains a sequence of pages, the last (or �rst) of which is write-protected. A

client of the class provides a fault-handler that is invoked when a write-fault occurs.

This is used in one version of the memory allocator to avoid an explicit bound check.

A write-protected page of memory may be read normally. An attempt to write to

the page results in a write-fault. Under Unix this interrupts the program with a signal.

This signal causes the program to terminate unless the signal is trapped. The class

that encapsulates this data structure traps the signal. The protected obj module may

have many clients because there may be any number of protected objects in existence at

a given moment. The address of the protection violation is compared with the addresses

of all the write-protected pages. The fault-handler associated with the object on which

the fault occurred is invoked. Figure 9 shows the public interface of the protected obj

class.

class protection_client {

protected:

virtual void fault_handler() = 0;

};

class protected_obj {

private:

...

public:

protected_obj(protection_client * cp, int npages);

~protected_obj();

char * getbase(); // lowest address of the segment

char * getlimit(); // lowest write-protected address

};

Figure 9: The public interface of the protected obj class.

An object that wants to use a protected obj makes itself a publicly derived class

from protection client. That gives it a fault handler virtual function that it must

implement. The client passes its address (this) to the protected obj constructor.

28

research: the creation of a useful system for comparing collection techniques. In this

sense the programmer who codes a collection algorithm is as much a client of the system

as the application programmer who uses one of the provided collectors. An indication

of the success of this project, and the usefulness of C++ toward these goals, will be

the simplicity of the interface. This goal is essentially vacuously satis�ed. Conserva-

tive collection could be implemented with practically no impact on the programmer's

style. These two collection paradigms, copying and conservative, would be a basis for

interesting comparisons in e�ciency, convenience, and virtual memory performance.

3.2 Overview

This thesis describes the implementation of an e�cient allocator with a copying collector

for C++. It has the following features:

� The system is modular, encapsulated and very exible. The application may com-

municate with the memory manager to con�gure it appropriately. Any number of

collectors and allocators can exist concurrently in an application on disjoint data

structures.

� The allocator is fast; it compiles inline to 7Vax instructions of which 4 are executed

in the common case. It supports discontiguous chunks.

� The collector is a copying collector that collects and compacts in one pass.

� This implementation is entirely compiler external and independent.

� The components are small, simple and e�cient. In many cases it is more e�cient

than a standard manual memory allocator such as the global new and delete

operators or malloc and free.

This system is implemented as a memory allocator class called mallor and a set

of parameterized macros for de�ning garbage collected types. The macros generate the

requisite members of the collected type and class types for roots of the data structure.

Two versions of the allocator are presented and compared. One avoids bounds-checking

by write-protecting the last page of its available memory, touching every object it allo-

cates, and intercepting the write-fault signal. The other version simply tests the bounds

of the segment on every allocation.

If a C++ compiler supporting templates were available it would not be necessary to

use the preprocessor to de�ne parameterized types [33,17].

The collector uses a non-incremental stop-and-copy algorithm. The system solves

the critical copying collector operations: identifying roots and deeply copying the data

structure. It takes full advantage of C++ features such as virtual functions to be general,

simple and safe.

This version of the collector requires some assistance from the client programmer: the

programmer must give every collected type a member function that copies the object,

and recursively, its descendents. Were the collector implemented in the compiler this

requirement would disappear.

27

unused. Large chunks reduce the overhead from expanding and freeing the space. They

also reduce external fragmentation which depends more on the number of chunks rather

than their size.

Conservative collection may be rendered less e�cient by discontiguous chunks. When

a conservative collector identi�es a quantity that may be a pointer it determines if the

referent would be a dynamically allocated object. Pointers to non-dynamic objects need

not be considered because the objects themselves will be scanned. When spaces may

consist of discontiguous chunks identifying pointers to dynamic objects is more di�cult.

It may be accomplished in log time by searching a tree. It may be done by hashing.

An argument could be made that in a process with contiguous global data it could be

determined by elimination, but this argument ceases to be valid when foreign dynamic

memory managers are permitted.

3.1.4 Other Requirements

A perceived advantage of the C programming language is transparency [29]. Tool libraries

that are expensive in a non-obvious way make it hard to analyze the performance of a

segment of a program. The important criterion is this: are program fragments that do

not use the feature penalized? In the context of garbage collection adding functionality

to the global new and delete operators would penalize all code, not just operations on

collected types. This would not be a philosophically consistent implementation. It is

mandatory that code that does not need the automatic reclamation not pay any penalty.

The notation for declaring and manipulating collected types should be consistent with

the normal syntax. It will not be entirely possible to achieve this while the collector is

outside the compiler. Collected types should be declared and used like uncollected types;

they will be allocated with new, and other than not requiring deletion, should look like

other types of objects.

Pointers to objects of the collected type should behave like normal pointers: pointer

arithmetic, dereferencing operators, etc., however, the collector must have information

about these pointers; it must be able to traverse all of the pointers from a set of unam-

biguously identi�able roots. Operator overloading makes it possible to use the standard

* and -> operators on user-de�ned types. Unfortunately, it will not be possible to declare

a pointer to a tracked type T as an object of type T *. These pointers must be of a

class type so that they can have overloaded operators and construction and destruction

code. Our requirement of remaining within the language dictates that the programming

style used will need to make minor accommodations. Such a pointer will require a type

along the lines of T ptr.

An overriding goal of this project is that the garbage collection interface should be

simple to use. There should be few complexities exposed to the client programmer. If

there are many exceptions that accompany the system it will not be a useful programming

tool.

Along with ease of use there is the desire to compare algorithms. Therefore it should

also be easy to code garbage collection algorithms to conform to the interface speci�ed

herein. Accomplishing this will directly contribute to one of the prime goals of this

26

3. It reduces compiler complexity.

4. It allows communication between the application and the collector to occur through

the existing language. This will permit the exibility we seek without requiring

rede�nition of the language.

5. Writing the collector as an application makes it easier for researchers and developers

to write or modify a collector. It no longer requires a source license for the compiler.

6. It makes dissemination of the collector easier.

On the other hand there are compelling reasons to keep it in the compiler. The

compiler has access to type information. The compiler can generate code that the client

programmer would otherwise have to write. It can perform optimizations that the pro-

grammer cannot express in the language (this may well be a shortcoming of the language.)

It can a�ect code that the application does not directly generate. In C++ vptrs are an

example of such code. This project is an exploration of copying collection in the C++

implementation language. This version is outside of the compiler. If there is bene�t to

be derived from moving it into the compiler, and there is, then this research will identify

the necessary functionality and propose an organization. We do not suggest a syntax for

incorporating it into the language. That is beyond the scope of this thesis.

This research is predicated upon the assumption that no single collector is always the

right one. However, one must be implemented initially. There is a choice of conserva-

tive, non-generational copying, or generational collection. The collector implemented for

this thesis is a non-generational copying collector. While conservative collection would

be easy to implement copying collectors are easier to encapsulate because they do not

need private information to coexist with other dynamic memory allocators, and copying

collection is appropriate for large virtual and real memories. The collector is not gener-

ational because C++ is assignment-based and tracking roots of the young generations

could be expensive.

3.1.3 Discontiguous Chunks

The ability to handle discontiguous chunks gives the memory manager the exibility

to adjust to changing requirements or resources more quickly than an allocator that

operates with immutable spaces. When su�cient real memory and paging throughput are

available the collector can defer collection and continue allocating. This is advantageous

for a copying collector because this gives objects more time in which to die. When many

objects die the system is more e�cient. On the other hand, when a system is paging

heavily the allocator can force a collection in order to compact objects, deallocate virtual

address space, and free frames of memory.

When an allocator grows its allocation space incrementally, immediately after a col-

lection the free-store is exactly the right size subject to the granularity of chunks. Small

chunks decrease internal fragmentation in chunks. For example, with megabyte chunks

the average unallocated memory immediately after a collection is half of a megabyte

regardless of the size of the data structure. With 16k chunks only 8k is expected to be

25

the philosophy of C++ because one module should not a�ect another unless they com-

municate. This resembles generation-based collection except that nodes are partitioned

according to their type rather than their age.

Modules should be able to select appropriate parameters for their allocator and op-

tional collector. Selecting the allocator's chunk size based on the application's allocation

pattern can reduce external fragmentation.

6

For example, when requests to an allocator

are homogeneous, chunks can be allocated in even multiples of the size of a request.

LISP systems formed the foundation for research into dynamic memory management.

A LISP interpreter would work with a �xed-size free-store. It would allocate until it ran

out of space, and then collect. That model is too simple for an object-oriented program.

In the presence of copying collection, providing too much memory to a data structure can

lead to bad locality, excessive paging and poor performance. Providing too little memory

leads to excessive copying and worse performance. Of course, a more sophisticated model

such as the one presented in this thesis can trivially emulate the simple one.

Who should decide when to collect? In many cases the application can best decide.

A compiler performs much of its work in discrete steps. For example, it has actions to

perform for every function of a �le, for every block, for every statement, and for every

expression. One compiler known to the author managed its dynamic storage to take

advantage of this property. While compiling each statement it would allocate storage.

After it was done with the statement it would free much of the associated storage in a

single constant-time operation; it recycled the entire space exactly the way a copying

collector does. This functionality is useful and easy to provide if the model is general

and the interface is safe.

3.1.2 The Compiler

Dynamic memory management and garbage collection has traditionally been imple-

mented in the compiler. This is sensible because the compiler often has better access to

type information, for example, tags. LISP [25] and Smalltalk-80 [20] systems always have

a garbage collector. Modula-3 [11] provides optional garbage collection. Most compilers

have provided only a single reclamation algorithm, not a choice. This has forced all

applications and all modules of one application to use the same collector and allocator.

This is too restrictive since the choice of the proper memory manager or parameters

depend on the characteristics of application. Indeed many programs may be best served

if di�erent collection algorithms can be applied to di�erent data structures.

It is possible to provide the exibility that we seek in the compiler. Multiple collec-

tors can be supplied, either in the compiler or in libraries. There are, however, other

advantages|especially for a researcher|in moving the collector out of the compiler.

1. Keeping the collector outside of the compiler facilitates benchmark comparisons of

collectors in the absence of compiler modi�cations.

2. It keeps changes to the collector from requiring recompilation of the compiler.

6

Allocators for copying collectors do not su�er from internal fragmentation so external fragmentation

is the most important source of wasted memory.

24

3 A Copying Collector for C++

3.1 Motivation

Managing dynamic memory is di�cult; Meyer has called garbage collection a critical

feature of an object-oriented programming environment [26] because of the usefulness of

the feature. C++ is already a complicated language even without the added complex-

ity of e�ciently deallocating dynamic objects. Providing convenient, e�cient garbage

collection in C++ makes the language easier and more convenient to use. Copying col-

lection has the added advantage of compacting objects in memory after only one pass.

The research reported in this thesis had several goals, the most important of which is to

add convenient, e�cient, automatic dynamic storage reclamation to C++. Other goals

were:

� to implement an appropriate model for dynamic memory management in object-

oriented imperative programming languages,

� to develop a platform for research in collection techniques and algorithms, in par-

ticular virtual memory issues, and

� to identify ways C++ could better support these activities.

3.1.1 The Model

Top-down design and stepwise re�nement leads to monolithic programs in which an

identi�able top level decomposes into more speci�c modules that are themselves further

re�ned. Under this model all of the modules are contributing toward the end result,

for example, a working LISP interpreter. The modules are speci�cally designed for

the application. Programs developed under this paradigm have typically used a global

allocator (and global collector, when present) for dynamic object allocation throughout

the code.

By contrast, in the object-oriented universe, modules are not designed toward a

common goal. They are designed to be reusable: to be useful and e�cient in a wide

variety of applications. In this model it is not reasonable for modules with disjoint

dynamic data structures to share a dynamic memory manager. Some components of a

program may bene�t greatly from garbage collection, other parts of the program will

not. The parts that will not must not be penalized for coexisting peacefully with a

module that does. For example, reducing the range of all integers by using a tag bit

would be unacceptable. Encapsulating the dynamic memory management functionality

makes it easier to support the concurrent use of copying and manual reclamation within

a program on di�erent data structures. Since the dynamic memory systems are not

global and do not communicate, they do not interfere with each other.

In a object-oriented system, there is more opportunity to tune the dynamic memory

manager to improve locality and e�ciency. For example, a program may generate two

data structures at di�erent rates. Segregating their storage allows the intensive one to

be collected without copying nodes of the other data structure. This is consistent with

23

2.8 Discussion

Modern collectors are of two main varieties: conservative or copying. An important sub-

class of copying is generational collectors. Conservative collectors are easy to implement

in the absence of compiler support and require only minimal operating system support.

While they may not reclaim as much garbage as a copying collector, the discrepancy

is probably quite small in most cases. Conservative collectors cannot update pointers,

therefore they cannot compact memory. Since they are based on mark-and-sweep their

work is proportional to the total memory allocated.

When a conservative collector identi�es a quantity that may be a pointer to a dynamic

object it scans the object to �nd other potential pointers. This requires that the collector

know the size of the object. Therefore a system with such a collector cannot have a

separate, uncooperative allocator. This makes conservative collection less appropriate

for object-oriented systems in which a module's implementation details are unavailable

to other modules.

Copying collectors are e�cient but not without limitations. Their advantages include

the fact that their work is proportional to the amount of living objects rather than the

total number of allocated objects. They interact well with very simple, fast memory allo-

cators. They compact memory thus improving locality and virtual memory performance.

Their disadvantage is that copying collectors require more information than conservative

collectors. They must be able to unambiguously identify roots of the data structure and

internal pointers of objects. Their peak memory requirements are twice the size of the

usable free-store.

Copying collectors are appropriate for systems with large virtual and real memories.

Conservative collection may be more appropriate for systems with very limited amounts

of real memory or backing store, since all of the free-store is usable at any given time.

An important technique in modern collectors is the use of virtual memory protection

to avoid bounds checks. Any frequent operation that requires a pointer bounds check is

a good candidate for using protection to avoid the need for an explicit check. It is used

in Appel's collector to determine when the allocator has insu�cient memory to satisfy

a request. It is used in the Appel/Ellis/Li collector to detect references to unscanned

objects. It is used in two implementations of two data structures in the collector that is

presented in this thesis.

Generational collectors can further improve the e�ciency of copying collectors for

appropriate applications. These collectors must identify pointers from old objects to

young ones. These pointers are roots of a collection of the young generation. In languages

that rarely use assignment there will be few such pointers because they can only be

created by assignments. LISP is the typical example of such a language. Generational

collectors di�er in how they identify these pointers. Most of the existing generational

collectors rely on there being a minimal number of such assignments to remain e�cient.

In an assignment-based Algol-like language, Appel suggests the overhead of tracking such

pointers would o�set the bene�ts of generational collection [3].

22

ML [41]. A linked-list of roots similar to this one is used in the collector described later

in the paper.

As one last noteworthy item, the collector requires that old, living objects be at a

�xed end of the space. However, after a major collection they have been copied to the

middle of the space. The collector uses a block copy to move them down to the end

where it requires them. This is an additional copy of all the living objects. After the

copy all of the pointers to the objects must be updated.

This collector is simple and appears e�cient. It uses virtual memory protection

to avoid bound checks. It does not support allocation from discontiguous chunks. It

is appealing for its simplicity, however, it is specialized for its target language. The

object-initialization code requires that the entire object be initialized when the object is

allocated. The collector's scheme for tracking pointers from old-objects to young ones is

e�cient only provided assignments are rare.

2.7 Boehm/Weiser

Boehm and Weiser describe a conservative garbage collector (cf. x1.2.6) for use with

statically type-checked languages like Pascal and C without compiler assistance [8]. They

rejected tagged or limited integers or incompatibility with the standard libraries. They

wanted to design a collector that would not penalize programs that didn't use it. Their

goals are quite similar to those of the author's project. The primary di�erence is their use

of conservative collection instead of copying collection. This is consistent because copying

collection without compiler assistance would be impossible or prohibitively inconvenient

for the application programmer in languages like C and Pascal. For reasons discussed

in x2.8 this is less appropriate than other types of garbage collection for object-oriented

imperative programming languages.

The free lists for small objects are organized as linked lists of blocks, so allocation

takes four or �ve machine instructions including the test for an empty list. When the

list is empty a 4k block is obtained from the low-level allocator. This allocation strategy

allows the compiler or mutator to explicitly deallocate objects that are known to be

inaccessible.

The low-level allocator uses 4k chunks that may be discontiguous. The sweep routine

coalesces adjacent free blocks and identi�es and returns to the low-level allocator free

4k chunks. Their allocation strategy allows them to identify a pointer-sized quantity

that points at the beginning of an object, even though the free-store memory may be

discontinuous. Handling pointers into the middle of objects is more di�cult requiring

an expensive hash.

The collector cannot tolerate roots contained in dynamically allocated objects from

other free-stores.

5

5

See [8] page 812

21

very few Vax assembly instructions. Virtual memory protection is used to avoid explicit

bound checks during allocation. When a new object is initialized, if a write-fault occurs,

then the allocator is out of space and must garbage collect. This relys on the fact

that initialization of objects in functional languages is comparatively straightforward;

there are no uninitialized �elds. In simple cases this scheme leads to very little (or

no) allocation overhead because the only required instructions, the initialization of the

object, would be required anyway.

Like all copying collectors his must di�erentiate between pointers and integers. The

three schemes Appel identi�es for accomplishing this in statically typed languages are:

1. allocating integers dynamically and from a distinct region of memory

2. tagging records with a format

3. obtaining a map from the compiler

Segregating types by address would require replacing all integers with pointers to integers

allocated in a speci�c region. This would slow down integer arithmetic. In this collector

he tags records with a value that identi�es the type, and therefore the structure, of the

object. By comparison, traditional mark-and-sweep LISP collectors frequently have used

tagged pointers, and conservative collectors use no type information whatsoever. The

collector described later in this paper uses a combination of dynamic and static type

information.

Appel suggests that generational collectors may be most e�cient when they use

exactly two generations. The goal of a generational collector is to let objects die before

it becomes necessary to copy them. A collector with only two generations maximizes the

amount of memory that can be allocated to the youngest generation, therefore a long

time can pass before that generation �lls up and must be collected. This increases the

probability that most objects in the generation will have had time to die.

This paper calls a collection of only the youngest generation a minor collection and

a collection of both generations major . The roots of minor collections, just as in other

generational collectors (e.g., Hewitt, Moon, Ungar) are the registers, the stack, global

data, and pointers from old objects to young objects. Roots in old objects are the hardest

ones to identify and maintain. Appel's collector requires that the mutator, through the

compiler, maintain a linked list of old-objects that may be roots. An assignment into

an old object causes the object's address to be inserted into a linked list of objects.

At collection time the collector traverses the linked list looking for pointers into the

young generation. Pointers to young objects can be identi�ed by their value because

the allocator uses contiguous chunks. Space for the linked list of roots is allocated out

of the same free-store as other dynamic objects. Objects may be inserted into this list

multiple times. The collector identi�es duplications the same way other duplicate roots

are identi�ed: by the forwarding pointer left behind when an object is scavenged. One

ine�ciency with this scheme is that objects are inserted even if they do not reference

a young object, e.g., if the assignment was of an old-space pointer. The ameliorating

factor is that these assignments are comparatively rare in functional languages such as

20

2.5 Appel, Ellis, Li

Appel, Ellis and Li describe a realtime, concurrent garbage collector implemented on a

DEC Firey multiprocessor [4]. The algorithm allows the mutators to run concurrently

with the collector. Synchronization is medium-grained and accomplished with virtual

memory hardware.

Their collector is based on the Baker algorithm. It partitions memory into to-space

and from-space; to-space is partitioned into two regions: the region from which new

objects are allocated and the copy region. The copy region is partitioned into scanned

objects and unscanned objects. The unscanned objects contain the only pointers into

from-space that may exist. This structure is identical to that of the Baker algorithm

(x2.1).

The collector sets the virtual memory protection of the pages of unscanned objects

to no-access. The program traps when the mutator tries to read or write an object

on an inaccessible page. The collector handles the trap and scans the faulting page. It

scavenges the objects referenced by pointers on the page, leaves forwarding pointers, and

updates the pointers on the page. Then it unprotects the page and resumes the mutator.

When the mutator resumes the page contains only to-space pointers.

The collector also executes concurrently with the mutator. It scans unscanned pages

and scavenges any referenced objects. It unprotects each page after scanning it. The

more pages the collector can scan the fewer page traps the mutator will cause.

The collector performs a flip when it has insu�cient free memory to satisfy an

allocation request. For a ip, the collector stops all the mutator threads and scans all

the unscanned to-space pages. Then it exchanges the roles of the spaces and reinitializes

the to-space boundary pointers: new, scanned and unscanned. Then it scavenges the

root objects and resumes the mutator threads.

This algorithm is incremental because pages are scanned when the mutator references

them (or sooner). When to-space runs out of memory the amount of work that the

collector must perform is unpredictable. Additionally an access of a from-space object

may result in very little work or in a lot of work. The amortized cost of collection

is still small, however, and according to the authors, the algorithm is e�cient. The

performance measurements of the Boyer benchmark from Gabriel [19] show a garbage

collection overhead of 13%.

2.6 Appel

Appel describes a generational garbage collector suitable for use in functional language

systems under Unix [3]. The intent of his paper is to explain the major problems inherent

in generational collectors and to o�er e�cient solutions. He identi�es and incorporates

Unix features such as the memory layout of a process's address space and the virtual

memory system calls.

In an earlier paper Appel argues that because copying collectors never deallocate

individual objects garbage collection can be faster than stack allocation [2]. Therefore

he stresses the importance of very fast allocation for improving e�ciency of copying

collectors. This collector uses a simple allocation strategy that can be hand coded in

19

2.4 Generation Scavenging

Generation scavenging is a memory reclamation algorithm designed by Ungar [36,38,37].

Like the two algorithms considered earlier in this section, Generation Scavenging sepa-

rates young objects from old objects. Unlike Lieberman's and Moon's algorithms Gen-

eration Scavenging is not incremental.

Initially in Generation Scavenging all objects are young and they live in a single

space. As that space becomes full it is scavenged. The number of scavenges that an

object survives is recorded in the object. After an object survives some number of

scavenges it is tenured to the next generation. In an early description of the algorithm

[38] the number of scavenges that an object needed to survive was �xed. Later work by

Ungar and Jackson discusses ways of using feedback to inuence the tenure threshold

[37].

Since the number of generations that an object survives must be counted the algo-

rithm requires a counter per object. It also requires a single mark bit per object for

marking during scavenges.

When a scavenge is performed all references to objects involved in the scavenge must

be located, including back-pointers. In Lieberman's algorithm this was done with per-

generation reference tables. In Moon's algorithm this was done with bitmaps of pages of

objects. In Ungar's algorithm objects that have been tenured are distinguished based on

whether or not they refer to younger objects. Objects that do refer to younger objects

are put into a special set called the remembered set. This set is implemented as an array

of object pointers. When a generation is scavenged, all the younger generations, the

machine registers, the stack and all the remembered sets are the roots.

The Generation Scavenging algorithm partitions each generation into three spaces:

NewSpace, PastSurvivorSpace, and FutureSurvivorSpace. These spaces serve as areas for

new object allocation and for copying during scavenges.

After a scavenging pass if objects were tenured the remembered set of a generation

may have grown. If it has, the new part needs to be scavenged. This may cause objects

to be added to FutureSurvivorSpace. If any objects are added they need to be scavenged

and that may cause the remembered set to grow again.

Generation Scavenging very rarely scavenges the oldest generation; doing so is very

expensive. Therefore objects that live a long time and then die are not detected. When

it happens, this results in wasted virtual address space, possibly wasted memory, and

fragmentation. If that were all that happened, it might not be signi�cant because the

amount of memory involved is small. However, these dead objects may still contain refer-

ences to other objects. Though invalid, these references will keep the other objects alive

past when they should be reclaimed. Therefore the algorithm su�ers when tenured ob-

jects die. To prevent this, Ungar inserts intermediate generations between the youngest

(undergraduate) generation and the eldest (full professor) generation. By the time an

object reaches full-professorhood it has lived a long time and is unlikely to die. That

heuristic is not perfect and memory does get lost. Therefore, a full, compacting mark

and sweep garbage collection is performed o�-line about once a day.

18

may be in a condemned state and in the process of being scavenged. The scans move

through the data spaces like waves from older regions to younger ones.

The collector can coalesce older regions when the number of objects between them

shrinks to an amount that is appropriate for a single generation. The sizes of regions

can be adjusted. Users can indicate the expected lifetimes of objects.

Every value fetched from an old object must be checked to see if it points at an

assignment table; without hardware support this is expensive. The assignment tables are

updated on every store into an old object, not just on stores of pointers to young objects.

Thus the tables can become large giving an exaggerated root set for the collection [3].

2.3 Ephemeral Garbage Collector

The ephemeral garbage collector described by Moon in [28] is an incremental copying

garbage collector based on the Baker algorithm. It segregates objects according to the

expected longevity to concentrate e�ort where it is likely to be of most bene�t. The

collector works very closely with virtual memory and related dedicated hardware of

the Symbolics 3600 LISP system to perform collection-related processing quickly and

concurrently with the mutator.

This collector identi�es three categories of objects. Ephemeral objects will proba-

bly become garbage shortly after they're created. The collector is designed to collect

ephemeral objects e�ciently. Dynamic objects will probably become garbage sometime

in the future. Ephemeral objects that survive a certain number of collections are pro-

moted to dynamic status. Static objects are not expected to become garbage. They are

never collected except as the result of an explicit, slow command to \do a full garbage

collection." Examples of static objects include compiled functions and internal LISP

data structures such as hash tables.

This collector is incremental so that interactive response is not degraded by long

pauses. The Baker algorithm identi�es pointers to old-space objects in software and

substitutes the forwarding pointer. Moon's collector uses hardware to implement a bar-

rier . On the Symbolics 3600 pointers and integers are di�erentiated by tags. When the

mutator loads a pointer from memory, the barrier hardware checks to see if it points at

an old-space page. If so, the appropriate forwarding pointer is substituted.

The roots of a collection include all of the static objects. The normal LISP distribu-

tion includes approximately 4M words of static objects so unless the root set could be

narrowed down the collector would be very ine�cient. To keep track of roots the system

maintains tables of locations that contain references to ephemeral objects. Whenever

a pointer to an ephemeral object is created the address of the pointer is stored in the

table. When ephemeral objects are collected these tables identify the roots. The table

is maintained with dedicated hardware; when a word is stored into memory the barrier

hardware determines if it points into an ephemeral page. If so, the address is added

to a table of references. Pointers are not removed from these tables when they become

invalid; the tables actually indicate a superset of the roots. The tables are implemented

as bit-maps to indicate pages that contain roots. Separate tables indicated in-core pages

and swapped pages since in-core pages need to be processed more e�ciently.

17

from-space

from-space

objects

objects

Scanned

Unscanned

Newly created objects

new

relocated

scanned

Unallocated memory

Figure 8: The structure of Baker's to-space.

2.2 Generation Garbage Collector

Lieberman and Hewitt designed an incremental copying garbage collection algorithm

that segregates objects by their age [24]. The algorithm creates a number of regions

of objects that are garbage collected at di�erent rates. A region that is very young

probably contains more garbage than an older region and therefore is garbage collected

more frequently.

The creation region is used to allocate new objects. When the creation region is

�lled a new one is allocated. The system maintains a current generation number; when

a region is created it is assigned the current generation number, which is periodically

incremented.

The process of initiating garbage collection in a region is called condemning the

region. Objects in a condemned region are called obsolete. When a region is condemned

all the live objects in the region are scavenged into a new region with the same generation

number but a higher version number. Then the memory allocated to the condemned

region is recycled.

Objects are evacuated from a region to the next version of the region in the same

way as in Baker's algorithm. In the common case, it is assumed that there will not be

back-pointers. The algorithm is optimized for this case.

When a region is condemned all pointers to objects in the region must be updated.

All the younger regions must be scanned for pointers into the condemned one. Given

this fact it is much less expensive to condemn young regions than old ones. This is why

the collector groups together young objects and scavenges them frequently.

Pointers from old regions to young ones are treated specially. Every region has

associated with it a table that tracks back pointers (x1.2.8) into the region. When the

region is condemned this table is used to update the back pointers without scanning

their regions.

In this collector there may be multiple scavenges active concurrently. Several regions

16

Programmer controlled storage reclamation can be very e�cient. It is e�ective on

directed acyclic graph (DAG) data structures having no node with in-degree greater

than one. It also works for vectors, however, this is less important in languages that

have powerful array types. Since C++ lacks a real array type this is a primary use of

the dynamic memory allocator in that language.

Even in simple cases programmer-controlled storage reclamation can be error-prone,

especially in a language of the complexity of C++. The need to manage the memory

takes e�ort away from the more important problem at hand. With generalized graph

data structures the programmer must implement one of the two more complex schemes

to ensure that appropriate memory is freed. If the functionality must be provided then

it should not be the programmer's responsibility.

Reference counts are appropriate for some kinds of objects. They are suitable for

generalized directed acyclic graphs but not for self-referential data structures. Reference

counting can be ine�cient because of the high cost of copying, initializing, and destroying

pointers.

Garbage collection is the �nal alternative. Traditional garbage collection was very

slow but modern copying collectors are comparatively e�cient. Copying collectors collect

and compact in a single pass. Their e�ciency increases with the size of the virtual and

real memories, making them a scalable memory management solution for the inde�nite

future. The presense of automatic, e�cient garbage collection increases the value of a

programming environment.

2 Related Work

2.1 Baker's Algorithm

Baker's algorithm partitions memory into two hemispaces: from-space and to-space. New

objects are allocated from one end of to-space. In �gure 8 the boundary new indicates the

point at which new objects are allocated. During an allocation operation the collector

copies some small number of objects from from-space to to-space. This process is called

scavenging . Scavenging begins by copying the objects referenced by the roots to to-

space. The region of scavenged objects grows up from the bottom of to-space and is

delimited by the relocated pointer. After the roots have been scanned the scavenged

objects themselves are scanned since they may contain pointers to from-space objects.

The scanned marker partitions the to-space objects into those that have been scanned

for from-space pointers and those that have not. When a pointer to a from-space object

is encountered the object is scavenged to to-space. When all of the roots and all of the

scavenged objects have been scanned there are no more live objects in from-space. This

is the case when the scanned pointer catches up to the relocated pointer. At that

point a ip occurs: the names of the hemi-spaces are swapped and the process resumes.

The algorithm performs its work while satisfying allocation requests. The amount of

work that it performs during a request is proportional to the size of the request. While

incremental and therefore by de�nition real-time, this algorithm is ine�cient.

15

nism of polymorphism in C++. Private derivation allows the derived class to inherit

functionality without being a subtype of the base class.

C++ provides a mechanism intended to help software developers use specialized

dynamic storage allocators. The two free-store operators new and delete permit a

class to de�ne specialized allocation and deallocation strategies.

C++ supports object-oriented design (OOD). In OOD a system is decomposed into

encapsulated modules that interact via message passing or procedure call. Modules,

called objects in an object-oriented system (OOS), are not intended to a�ect each other

except through their respective public interfaces. In C++ the class is the instantiation

mechanism for objects.

The advantage to OOD is that it supports the development of maintainable, reusable

software components. Encapsulation helps clients remain independent of the implemen-

tation of a class they utilize. This allows that implementation to change to reect

changing needs of the system. Such changes are localized. Inheritance promotes reusabil-

ity because a class may be re�ned by a derived class to make it more appropriate for a

particular application.

By contrast, in traditional monolithic programs the data structure is designed specif-

ically for the application. This makes both reuse and maintenance more di�cult because

code that manipulates the data structure need not be localized, and because the data

structure operates on �xed data types.

4

The client may manipulate the implementation

of the data structure making it harder to change that implementation.

In spite of its advantages C++ is very complex and di�cult to master. As in C,

implementation details such as the use of dynamic or static data are visible to clients

of a class [16]. Reducing the complexity of the task facing the programmer is a key to

enhancing productivity and correctness. One way to achieve this is to remove the re-

sponsibility for reclaiming inaccessible dynamic objects from the programmer; automatic

storage reclamation accomplishes this. Making the software developer's task easier by

providing garbage collection is one of the goals of this thesis.

1.4 Summary

Dynamically allocated memory is a pervasive element of modern programming practices.

It is vital in graph algorithms which constitute one of the most important abstractions

in computer science. Managing dynamically allocated memory is nontrivial. Essentially

there are three ways to determine when memory may be recycled:

1. The programmer can be responsible for freeing memory.

2. By maintaining reference counts some inaccessible storage can be detected and

recycled.

3. Graph-traversal algorithms can be used to identify active memory and free inactive

memory. This is known as garbage collection.

4

Parameterized types are required to alleviate this limitation.

14

1.2.8 Generational Collection

In 1983{1984 three copying collectors were presented that improved e�ciency by seg-

regating objects according to their actual age or anticipated life expectancy [24,28,36].

These collectors by Lieberman and Hewitt, Moon, and Ungar respectively, were the �rst

generation-based collectors. These collectors and more recent ones are described in the

next chapter.

Generation-based collectors exploit the following empirically observed phenomenon:

young objects are likely to become garbage quickly and old objects are likely to live for

a long time. These collectors separate old objects from young objects. Young objects

are likely to die quickly, therefore they are collected frequently. Old objects are unlikely

to die so they are collected less frequently. The rationale is that garbage collecting old

objects is unlikely to be pro�table since few are expected to have died since the last

collection.

Lieberman and Hewitt's was the �rst of this class. It de�nes several generations and

conducts incremental collection at di�erent rates in di�erent generations. A generation

is a set of objects that are of approximately the same age. Moon's collector uses virtual

memory hardware and longevity-based object segregation to improve the e�ciency of

the Baker algorithm. It identi�es ephemeral objects that are very short lived, and keeps

them separate from static (permanent) and dynamic but longer-lived objects. Moon's

and Lieberman's collectors are incremental while Ungar's is stop-and-copy.

When collecting a space, the roots for that space must be located. Generational

collectors share a common problem of tracking pointers to young objects, particularly

pointers inside old objects. These pointers must be located because, like pointers on the

stack and in global data, they are roots for the collection. In discussions of generational

collectors a back pointer is a pointer from an old object to a young one. The methods

they use to handle back-pointers is one of the things that distinguishes these algorithms

from each other.

1.3 C++

C++ [35,17] is a modern programming language that improves on the C programming

language [21] in important ways [29,16].

C++ adds to C features that make it a safer and more convenient language. However,

additions such as const, inline, function prototypes and references are minor compared

to the addition of classes to support object-oriented programming [34].

C++ classes permit the compiler to enforce the separation of data objects into

encapsulated state and public operations. The public members constitute the object's

interface. The implementation of the object (that is, the private members) can change

without a�ecting code that uses the class provided the interface remains unchanged.

Classes have a mechanism for inheritance. One class may inherit data and opera-

tions from another class, called the base class. C++ has multiple inheritance allowing

one type to inherit from many base types. The resulting type hierarchy may form

a directed acyclic graph (DAG). Inheritance may be public or private. In public

derivation the derived type is a subtype of the base type; this is the primary mecha-

13

Denotes a forwarding pointer

Denotes an objectKey:
Denotes an application pointer

FROM-SPACE TO-SPACE

The Stack

Global data

D

C

A

E

C’

E’

F’

B’B

F

Figure 7: A snapshot after collection: all objects have been copied.

12

FROM-SPACE TO-SPACE

The Stack

Global data

D

C

A

E

C’

E’

B

F

Figure 6: A snapshot during collection: two objects have been compactly copied.

When an object is visited it is scanned for values that resemble pointers. Any value that

were it a pointer, would point at an allocated object, is assumed to be a pointer. The

data structure that this technique marks is a supergraph of the actual live graph. After

the graph traversal a sweep phase deallocates the unmarked allocated nodes.

Conservative collection cannot copy or compact objects. Copying objects implies

updating pointers, but under conservative collection a value interpreted as a pointer

may not actually be one.

Conservative collection is less e�cient than copying collection, but it does not re-

quire tags or other type information. It is a useful technique for implementing garbage

collection in languages like C [21]. Conservative collection is being used for the CEDAR

project at Xerox PARC [14,13].

1.2.7 Incremental Collection

A variation on standard garbage collection is real-time collection. In real-time collection

long periods of time in which the mutator is stopped are disallowed. Real-time collec-

tion is normally synonymous with incremental collection. Under this paradigm a small

amount of garbage collection work is done frequently.

Reference counting is one incremental reclamation technique. Baker's 1978 algorithm

was incremental, but ine�cient. Baker's was the �rst incremental, copying collector [5].

11

A

FROM-SPACE TO-SPACE

The Stack

Global data

D

C

E
B

F

Figure 5: A snapshot of the data structure before a copying collection.

pointers it precludes conservative collection (x1.2.6).

3

The key operations in a copying collector are twofold: 1) unambiguously identifying

the roots, and 2) deeply copying the data structure. Figures 5, 6 and 7 show a data

structure being copied by a copying collector. In those �gures obsolescent pointers in

from-space are omitted for clarity.

1.2.6 Conservative Collectors

Conservative garbage collection is described by Boehm and Weiser in [8] and by Bartlett

in [6]. In other types of collectors it is necessary to di�erentiate between pointers and

integers; conservative collection removes that requirement.

Conservative collection does not require that the roots of the data structure be ex-

plicitly identi�ed. It begins by scanning all of the memory accessible to the program. On

contemporary architectures this means the stack, the registers and the global data space.

Any value found in that scan that might be a pointer is assumed actually to be a pointer.

Thus an integer with a value that happens to resemble a pointer will be interpreted as

a pointer. The quantities presumed to be pointers constitute the perceived roots of the

data structure.

The perceived roots will be a superset of the real roots. Starting from the perceived

roots the data structure is traversed and objects are marked (cf. mark-and-sweep x1.2.4).

3

Papers by Demers et. al. [14] and Bartlett [6,7] discuss collectors that use both conservative and

copying techniques.

10

structure has all the components of �gure 3.

The collector identi�es the root pointers of the data structure. It traverses the

subgraph reachable from each root. Every node it visits is copied to the new memory

space; the pointer that led to the object is redirected to the new location. In the old copy

the traversal algorithm stores a forwarding pointer to the new copy. When the collector

�nds a pointer to an object that has already been copied, it updates the pointer with

the forwarding address stored in the object.

The data structure can be traversed breadth-�rst with a queue or depth-�rst with

a stack. The to-space region can supply memory for the queue or stack. Objects are

copied into to-space from one end of the region; the process of collecting compacts all

the living objects.

The collector algorithm is given in pseudo-code in �gure 4. The algorithm is shown

here in recursive form using the run-time stack rather than the memory in to-space. This

presentation makes the algorithm easy to understand.

void collect(root-set)

{

rename to-space to from-space

allocate a new to-space

For each root, r, in root-set

r.traverse()

free from-space

}

void traverse(by-reference: pointer)

{

if pointer refers to a copied object then

pointer = pointer->forwarding-address

else

new_pointer = copy the object into to-space

pointer->forwarding-address = new_pointer

pointer = new_pointer

for every internal pointer, ip, in the object

ip.traverse()

}

Figure 4: The copying collector algorithm.

Copying collection requires time proportional to the size of the reachable data struc-

ture, not the total size of the space. Since memory is divided into hemispaces, only

half of the required memory is usable. When virtual and real memory spaces are large

this trade-o� is well worth the performance bene�ts. Since copying collection updates

9

1.2.5 Copying Collectors

Modern copying collectors are based on the work of Baker [5], Fenichel and Yochelson

[18], and Minsky [27]. Copying collectors allocate objects from one region and then

copy all live objects into another region. These collectors do work proportional to the

amount of live objects rather than the total amount of allocated objects; this is a vast

improvement when many objects become garbage. These collectors compact the objects

into the new region improving virtual memory performance. Since they never deallocate

individual objects a very simple, fast storage allocator such as that described in x1.1.5

can be used with copying collectors.

The stack

Global data

Figure 3: A representative data structure for a collector.

Large circles represent graph nodes.

The tall rectangle represents the runtime stack with two roots.

The square represents all global data with one root.

Garbage collection is triggered by the allocator when the allocation space does not

have su�cient free memory to satisfy an allocation request. At this point the data

8

Mutator This term refers to client or application processes. They are

given this name because they continuously alter the data struc-

ture by allocating new objects and overwriting existing pointers.

Collector The term \collector" can refer to either the garbage collection

process or to the algorithm.

The data structure The data structure denotes the set of allocated objects and their

interconnections. An edge in this graph is a pointer. A node in

the graph is a dynamically allocated object.

Roots The roots are pointers into the data structure that the mutator

can read. Roots are found on the stack, in global data, and in

other dynamic data structures.

Internal pointer An internal pointer is a pointer inside a node that references

another node. To traverse the data structure the collector must

be able to identify internal pointers.

From-space This term and the next one apply to copying garbage collectors

(x1.2.5). This space is the pool of memory that contains the

dynamically allocated objects when a collection begins. The

living objects are copied to a new space so that this space may

be recycled.

To-space During a collection by a copying collector, this is the pool of

memory into which objects are copied and from which new ob-

jects are allocated. When a collection starts the old to-space is

renamed from-space and a new to-space is initialized.

1.2.4 Mark-and-Sweep

Garbage collection has been a �eld of active research for thirty years. In that period

e�ciency has improved dramatically. Early|and current|collectors based on the mark-

and-sweep algorithm [22,12] took time proportional to the size of the heap.

2

In its

simplest form mark-and-sweep garbage collection traverses the data structure marking

every object that it visits. That is the `mark' phase. Then it traverses all of the allocated

objects deallocating each one that is not marked. That is the sweep phase. The primary

disadvantages to this technique are 1) it requires time proportional to total number of

allocated objects, and 2) its requires two full passes. Variations that compact objects

in memory require three passes. In some systems with mark-and-sweep collection large

LISP programs can spend 30% of their time managing dynamic storage [38]. There

are many variations on the mark-and-sweep algorithm that have become obsolete. An

excellent survey of early garbage collection techniques was published by Cohen in 1981

and can be found in [12].

2

In the remainder of this document we use free-store rather than heap to preclude ambiguity with the

heap data structure.

7

4. Copy the pointer value.

It is important that the increment happen before the decrement otherwise copying a

pointer to itself could deallocate the object.

The second problem with reference counting is demonstrated in �gure 2. Suppose

the pointer \P" is the only reference of the indicated data structure. The data structure

will not be reclaimed when \P" is destroyed because the counter associated with \A"

will not go to zero. Reference counting can not reclaim cyclic data structures.

C

A BP

Figure 2: A reference to a cyclic data structure.

The solution to this problem for self-referential data structures is automatic storage

reclamation, commonly called, garbage collection.

1.2.3 Garbage Collection: Problem and Terminology

Garbage collection is a process in which dynamically allocated objects that the program

cannot reference are deallocated. All other objects are retained. The amount of research

that has been done in garbage collection has resulted in a well-de�ned problem with

standard terminology.

Certain classes of garbage collection schemes compact objects in memory and do not

increase the cost of most pointer operations. They have no di�culty reclaiming cyclic

data structures.

The dynamically allocated objects are interpreted as nodes in a graph. Edges in the

graph are pointers that the application maintains, as well as internal pointers of objects.

The graph may be disconnected and/or cyclic. The graph is often referred to as the data

structure.

The client program is called the mutator. If it is a parallel program then there are

mutators , referring to the parallel threads of the application. The name \mutator" is

used because the client program operates by continuously changing, or mutating , the

data structure.

The mutators have pointers into the graph. These pointers are called the roots of the

data structure. The nodes of the subgraph reachable by following edges from the roots are

the live nodes. All other nodes are garbage. Any node that is garbage cannot be accessed

by the mutator and should be delivered to the memory allocator for deallocation. One

or more collector processes identify and deallocate garbage objects. The terms mutator

and collector were introduced in 1978 in [15] and have since become standard.

6

reachable data structure and deallocates the remainder. There are numerous ways of

accomplishing this that are described in the remainder of this section.

1.2.1 Manual Reclamation

One way to manage deallocation is to require that the programmer issue deallocation

requests explicitly. Giving responsibility to the programmer forces that individual to

engage in reasoning that is secondary to the main task. It can be error-prone and

tedious.

From the perspective of the programmer the logical time to deallocate a block of

memory is when a pointer to the memory is destroyed. Consider �gure 1. In this

example two nodes each reference a third. Suppose the node labeled \A" is deleted.

It contains a pointer to node \C." Node \C" should also be deleted if and only if \A"

contains the only reference to \C." Nodes that may have in-degree greater than one

cannot be deleted simply when any pointer to the node is destroyed.

C

BA

Figure 1: A node with in-degree greater than 1.

1.2.2 Reference Count Reclamation

One solution to the problem of identifying deallocatable data is to add a reference count

to the data. The counter tracks the number of pointers that currently refer to the data.

The pointer-copy operation copies the pointer and increments the reference count on the

data. Destruction of a pointer decrements the counter of the referenced object. When a

counter goes to zero the object is deallocated.

There are two problems with reference counting. The overhead that reference count-

ing imposes on pointer operations is substantial. Creating, copying or destroying a

pointer is normally inexpensive. When tracking a reference-counted object, however,

these operations become expensive. Normally copying a pointer is one machine instruc-

tion. With reference counting it may require �ve or more instructions even when no

counter goes to zero.

1. Increment the counter of the object referenced by the source of the copy.

2. Decrement the counter of the object referenced by the destination of the copy.

3. Compare and branch if that counter went to zero.

5

1.1.5 Block Allocation from a Bu�er

A memory management method that will be described later in this paper is copying

garbage collection. This technique is unique in that individually allocated blocks are

never individually deallocated. Instead, the entire space is deallocated at once. The three

allocation strategies mentioned previously, Sequential Fit, Buddy System and Quick Fit

all expect to handle deallocation requests. The �rst two coalesce adjacent free blocks.

All three entail unnecessary overhead for a system based on copying garbage collection.

In copying collection the allocator can satisfy allocation requests out of a large chunk

of memory. To allocate a block, the current allocation-point pointer is incremented (or

decremented) by the size of the request and the old (or new) value is returned. The

bound must be checked to ensure that there is available storage. Allocated blocks do not

need headers or footers containing the size and allocation status of the block. Allocated

blocks cannot be individually deallocated. Instead the entire space is deallocated en

masse. This allocation strategy, when applicable, is more memory e�cient and faster

than the others described herein.

1.1.6 Deallocation

The deallocation operation of the memory allocator causes a previously allocated block

to be marked as free. If the newly freed block is adjacent to another free block the two

may be coalesced to form a larger free block. This is done in Sequential Fit methods

and in the Buddy System to reduce external fragmentation. Quick Fit saves time by not

coalescing adjacent free blocks.

After the block has been deallocated its memory may be used to satisfy a future

allocation request. The strategy and data structures used by the memory allocator

dictate the cost of executing a deallocation request.

1.2 Reclamation

Reclamation is the process of returning allocated blocks to the allocator, in e�ect, recy-

cling the memory. In the presense of huge virtual memories one might question the need

for reclamation, however, it remains crucial.

Programs that allocate a large amount of data over time will use arbitrarily large

amounts of virtual address space and secondary storage unless unused memory is re-

claimed. These programs will have data distributed throughout the virtual address

space unless there is compaction. Such distribution results in poor locality and excessive

paging.

There are three paradigms for storage reclamation. Manual reclamation requires

that the programmer of the application issue deallocation requests explicitly. This is the

normal technique in many imperative programming languages such as Pascal, C and Ada.

Reference counting keeps track of the number of pointers that reference a block. When

that count drops to zero the block is deallocated. The Modula-2+ compiler uses reference

counting [4,30]. The �nal alternative is garbage collection. This process traverses the

4

1.1.3 Buddy System Allocation

Buddy System allocation is a family of strategies that attempt to be fast while minimizing

external fragmentation. The most common strategy is based on blocks whose sizes are

powers of two, another is based on the �bonacci sequence.

The Binary Buddy System allocates blocks in sizes that are powers of two. Block

sizes of 8, 16, 32 or 1024 units (bytes, words) might be allocated. The allocator keeps

linked lists of free blocks of each size and satis�es a request with the smallest size block

that is su�ciently large. For example, a request for 10 bytes would be satis�ed with a

16 byte block. How this is accomplished if no 16 byte block is available is described in

the following paragraphs.

Every block has its buddy [22]. A block of size 2

k

is always aligned so that the last

k� 1 bits of its address are zero. The k

th

bit may be either one or zero. The buddy of a

block is the unique block of the same size whose address is di�erent only in the k

th

bit.

For example, suppose a 64 byte block is at binary address abc100000. The digits abc

represent \don't care" values. The buddy of this block is the 64 byte block at address

abc000000.

To satisfy a request of size n the allocator examines the linked list of free blocks of

size 2

k

where k is the smallest integer such that 2

k

� n. In the best case that list is non-

empty and a block is used to satisfy the request. If that list is empty the next larger list

is examined. If a larger block is available the block is broken into its component buddies.

It is removed from its former free list. One component is added to the smaller free list

while the other is returned. If the next larger list is empty the algorithm continues up

lists until it �nds a nonempty one.

When a block is deallocated the allocator determines if its buddy is free. If the buddy

is also free the allocator combines them into one larger free block and checks if its buddy

is free, etc. Finally the free block is inserted into the list of its size.

1.1.4 Quick Fit

Many programs allocate blocks in a small number of discrete sizes. In these cases a very

simple allocation strategy can be very e�cient.

Linked lists of free blocks are maintained for each discrete size. When a block is

requested a free block is taken o� the correct list. When a block is deallocated the block

is added to the list of blocks of its size.

When an allocation request is issued and the corresponding free-list is empty, the

memory allocator invokes a lower-level allocator. The lower-level can be simple or com-

plicated. Hopefully it is not invoked too often.

The second level is backed-up by the operating system memory allocator. This is the

Quick Fit strategy described by Weinstock in his doctoral thesis [40] and by Standish

[31]. Weinstock found that in some cases First Fit is faster, and in some cases Best Fit

results in less fragmentation, but on the average Quick Fit is the overall best strategy.

The �rst level Quick Fit allocator is very simple to implement. For many programs good

e�ciency can be obtained when the second level is simple also.

3

2. whether or not the proceeding block is free

3. whether or not the following block is free

Proceeding and following are de�ned in terms of absolute address, not linked-list order.

Thus, let a ten byte block begin at address 1000. The proceeding block has its last

byte at address 999; this byte is part of the block's footer. The trailing block begins at

address 1010; this byte is part of that block's header. This administrative information

is needed for coalescing adjacent free blocks.

A roving pointer indicates the last block in the ring that the allocator examined. To

satisfy an allocation request the allocator examines some number of blocks starting at

the block referenced by the roving pointer. It selects a block with which to satisfy the

request. If the ring contains no su�ciently large block the request fails. If the block it

�nds is very close to the requested size then it uses the block to satisfy the request. The

block is marked as allocated in its header and footer. The roving pointer is advanced

past the block; the block is removed from the ring and returned to the application.

Often the block chosen is so much larger than the request that returning it would

entail excessive internal fragmentation. In these cases the block is broken into two. One

part is used to satisfy the request and the other is left in the free ring.

When a block is deallocated the allocator attempts to coalesce it with adjacent free

blocks. Using the headers and footers the allocator can tell whether or not the adjacent

blocks are free. If one or both are free the allocator combines them into one larger free

block.

The variations on this technique are First Fit , Best Fit , Worst Fit , and Optimal Fit .

First Fit satis�es an allocation request with the �rst block it �nds that is su�ciently

large. It frequently chooses a block that is much larger. This can lead to external

fragmentation. It is attractive because allocation can be very fast.

Best Fit always scans the entire ring. It selects the block that is most nearly the

exact size required. It is the best in terms of fragmentation, external and internal. It is

generally slower than First Fit.

Worst Fit always scans the entire ring and uses the largest block it �nds. The justi-

�cation is that this will not create many small blocks that cause external fragmentation.

Optimal Fit scans part of the ring to get a representative sample of its contents [10].

After scanning some fraction of the ring it then selects the next block it �nds that is

better than all the ones it has seen. Optimal Fit examines fewer blocks than Best Fit so

it is faster. It examines more blocks than First Fit so it causes less fragmentation.

A naive Sequential Fit allocator might use a linear linked list rather than a circular

one. Knuth found that this leads to many very small fragments at the beginning of

the list [22]. This slows down the First Fit and Optimal Fit strategies. This was an

important observation because First Fit was the most common strategy at the time it

was made. Using a ring distributes the fragments better.

2

request is available the allocator returns an indication of failure. A deallocation request

informs the memory allocator that a block of memory previously obtained through an

allocation request is no longer needed by the program. The memory allocator may use

that memory to satisfy a future allocation request.

Generally a �rst-level memory allocator is backed-up by a second-level memory al-

locator. On Unix systems the �rst memory allocator is in the programming language

standard library, for example, malloc. The second level allocator is often part of the

operating system, such as the Unix sbrk system call. This system call extends the

process' heap region to make more memory available.

Dynamic memory allocation occurs continuously in languages such as LISP and Pro-

log. Some programming languages allocate function activation records dynamically. In

imperative languages like Pascal, ADA and C, memory allocation occurs at the explicit

request of the program. The program issues allocation requests when it needs room for

a computation and issues a deallocation request when it identi�es a block of memory

that has become free. Dynamic memory is used in these languages for building graph

data structures and for holding objects of variable size such as strings and vectors.

1.1.1 Allocation

E�cient memory allocation has been a �eld of active research since the late 1950's.

Running time of LISP programs is signi�cantly impacted by the e�ciency of the memory

allocator. Research into improving e�ciency has resulted in a wide variety of strategies.

There are four common classes of memory allocation strategies: Sequential Fit, Buddy

System, Segregated Free-list, and Bu�er Block allocation.

1

Knuth [22] and Standish

[31] are good references for detailed descriptions of the issues that arise in implementing

these strategies. Knuth's book predates the Quick Fit Segregated Free-list method.

Dynamic allocation strategies are di�cult to analyze analytically but easy to measure

empirically. Weinstock compared allocation strategies in [40]. Improving the e�ciency

of these techniques resulted in substantially faster LISP systems.

1.1.2 Sequential Fit Allocation

Sequential Fit allocation is a family of allocation strategies that use the same data

structure but di�er in how they choose the block to satisfy a request. They use a

circular doubly-linked list of free blocks. Every free block contains its size and pointers

to its neighbors in the ring. The initial free list consists of one block that points to itself

in both directions.

Every block has a header and footer consisting of a small number of bytes that contain

the block's size, its ring pointers, and its current status, namely, allocated or currently

free. Given a pointer to a block the allocator can tell three things:

1. whether or not the block is currently free

1

This is a nonstandard term that the author uses to describe the simple allocation scheme for a

copying collector described by Appel in [3].

1

Introduction

This thesis studies the problem of e�cient dynamic memory management for object-

oriented imperative programming languages. The two aspects of the problem are allo-

cation and reclamation. The memory allocator provides storage to the program upon

demand in a way that is expected to avoid excessive fragmentation. Reclamation is

the process of recycling inaccessible memory so that it may be used to satisfy future

allocation requests. On virtual memory (VM) systems this keeps processes small and

reduces paging. On non-VM systems this permits a program to allocate more data over

the course of its lifetime than the machine has available memory.

Manual storage reclamation is error-prone and, on dynamic generalized, cyclic graph

data structures, impossible without graph traversal. The lack of automatic reclama-

tion makes many common imperative programming languages such as C and Pascal

inconvenient for such manipulations. The lack of automatic reclamation also makes the

programmer expend creativity in a way that is secondary to the primary goal.

Since the 1970's hierarchical design and stepwise re�nement have led to monolithic

software systems. In such systems, a global dynamic memory manager was e�cient

and appropriate. However, the software design paradigm is evolving into independent

components linked into client-server relationships, the object-oriented approach. Under

this model the global dynamic memory manager must be abandoned to be replaced by

multiple localized memory managers that can be customized for the data structures they

administrate.

C++ is a modern, general purpose programming language that extends the C pro-

gramming language into the object-oriented design domain. C++ is a useful tool, but

it is more di�cult to use than it should be because it lacks automatic memory reclama-

tion. This thesis presents a dynamic storage management organization for C++ based

on copying garbage collection.

This document is organized as follows. Section 1 describes the components of a

dynamic memory manager including the allocator and the optional collector. Section 2

discusses related work in automatic reclamation. Section 3 presents our approach and

its implementation. Section 4 analyzes the new dynamic memory manager for e�ciency

and exibility. Section 5 concludes with a summary of what has been presented while

section 6 looks to the future. Section A contains appendices and source code.

1 Dynamic Memory Management

1.1 The Memory Allocator

Nearly all modern, general purpose programming languages provide a memory allocation

interface. A component of a program that accepts and satis�es allocation and dealloca-

tion requests is called a memory allocator . An allocation request is a message from the

program's main computational engine to the memory allocator that asks for a block of

memory of a particular size. The memory allocator identi�es a block of the requested

size and returns its address to the program. If no block large enough to satisfy the

Abstract of the Thesis

Dynamic Storage Reclamation in C++

Daniel Ross Edelson

Abstract

Dynamically allocated memory is a pervasive element of modern programming practices,

but e�cient dynamic memory reclamation is di�cult. One class of algorithms that

accomplish this is copying garbage collection. These algorithms require one pass to collect

and compact objects in memory. It is the preferred form of garbage collection for systems

with large virtual memories and large free-stores because the work of these algorithms

is proportional to the amount of living data rather than the total data allocated.

A copying collector organization appropriate for object-oriented imperative program-

ming languages is presented. The system is both encapsulated and e�cient. The e�-

ciency of reclaiming a data structure depends solely on the size of the data structure,

not the size of the program. It remains within the philosophy of its implementation

language, C++, because code fragments that do not use the collector are not a�ected in

any way. Any number of collectors can coexist concurrently in an application on disjoint

data structures, making it an appropriate component of an object-oriented system.

This system adds an important feature to C++ that increases productivity and makes

the language more convenient. It makes dynamic memory management more e�cient

than manual reclamation for an important class of problems. It serves as a platform

for research into reclamation techniques, particularly virtual memory issues, and, it

provides an appropriate organization for automatic dynamic memory reclamation in

object-oriented imperative programming languages.

vi

List of Tables

1 E�ciency of Trapping a Fault : 49

2 E�ciency of creating roots compared to simple pointers. : : : : : : : : : 51

3 Collector E�ciency Measurements : 52

v

List of Figures

1 A node with in-degree greater than 1. : 6

2 A reference to a cyclic data structure. : 7

3 A representative data structure for a collector. : : : : : : : : : : : : : : : 9

4 The copying collector algorithm. : 10

5 A snapshot of the data structure before a copying collection. : : : : : : : 11

6 A snapshot during collection: two objects have been compactly copied. : : 12

7 A snapshot after collection: all objects have been copied. : : : : : : : : : 13

8 The structure of Baker's to-space. : 17

9 The public interface of the protected obj class. : : : : : : : : : : : : : : 29

10 The memory allocator class, testing version. : : : : : : : : : : : : : : : : : 32

11 Runtime organization of the copying collector. : : : : : : : : : : : : : : : : 35

12 Runtime organization of the copying collector. : : : : : : : : : : : : : : : : 37

13 A copy function for a node type. : 38

14 An object such that (node*) &obj != &obj. : : : : : : : : : : : : : : : : 39

15 Overloaded copy functions for a derived node type. : : : : : : : : : : : : : 40

16 Garbage collecting objects of base type node. : : : : : : : : : : : : : : : : 41

17 Copying node objects from a root-stack. : : : : : : : : : : : : : : : : : : : 42

18 The necessary members of a collected type. : : : : : : : : : : : : : : : : : 43

19 Declaring a collected node type. : 44

20 The object used in allocator tests. : 45

21 Time to Allocate and Touch: 20 Byte Requests, SPARCstation 1 : : : : 46

22 Total memory allocated, SPARCstation 1. : : : : : : : : : : : : : : : : 47

23 A sample data structure from the expression example. : : : : : : : : : : : 53

24 Time to Construct the Expression Tree: SPARCstation 1. : : : : : : : : 54

25 Time to Construct, Compute and Destroy the Expression Tree. : : : : : : 55

26 Process Size to Construct, Compute and Destroy the Expression Tree. : : 56

iv

3.5 Roots : 33

3.5.1 Stackable Roots : 33

3.5.2 Array Implementation of Stackable Roots : : : : : : : : : : : : : : 33

3.5.3 List Implementation of Stackable Roots : : : : : : : : : : : : : : : 34

3.5.4 Proposed Third Implementation : : : : : : : : : : : : : : : : : : : 36

3.5.5 Doubly-Linked Roots : 36

3.6 Copying : 36

3.7 A Collection : 39

3.8 Using the Collector : 39

3.9 Review : 41

4 Analysis 42

4.1 The Allocator : 43

4.1.1 Allocation Speed : 43

4.1.2 Space E�ciency : 47

4.1.3 Allocator Summary : 48

4.2 Write-Protection and Faulting : 49

4.3 Roots : 50

4.3.1 Creating and Destroying a Root : : : : : : : : : : : : : : : : : : : 50

4.3.2 Creating and Destroying a Droot : : : : : : : : : : : : : : : : : : : 51

4.4 Collecting : 51

4.5 Expression Tree Example : 53

4.6 Advantages : 54

4.7 Limitations : 57

5 Conclusion 58

6 Future Work 60

A Appendices 60

A.1 Root Measurements : 60

A.1.1 Creating and Destroying Roots : 60

A.2 Allocator Measurements : 61

A.3 Expression Tree Example : 63

A.3.1 Reference Counted : 63

A.3.2 Manually Reclaimed : 66

A.3.3 Garbage Collected : 69

iii

Contents

Abstract vii

1 Dynamic Memory Management 1

1.1 The Memory Allocator : 1

1.1.1 Allocation : 2

1.1.2 Sequential Fit Allocation : 2

1.1.3 Buddy System Allocation : 4

1.1.4 Quick Fit : 4

1.1.5 Block Allocation from a Bu�er : 5

1.1.6 Deallocation : 5

1.2 Reclamation : 5

1.2.1 Manual Reclamation : 6

1.2.2 Reference Count Reclamation : 6

1.2.3 Garbage Collection: Problem and Terminology : : : : : : : : : : : 7

1.2.4 Mark-and-Sweep : 8

1.2.5 Copying Collectors : 9

1.2.6 Conservative Collectors : 11

1.2.7 Incremental Collection : 12

1.2.8 Generational Collection : 14

1.3 C++ : 14

1.4 Summary : 15

2 Related Work 16

2.1 Baker's Algorithm : 16

2.2 Generation Garbage Collector : 17

2.3 Ephemeral Garbage Collector : 18

2.4 Generation Scavenging : 19

2.5 Appel, Ellis, Li : 20

2.6 Appel : 20

2.7 Boehm/Weiser : 22

2.8 Discussion : 23

3 A Copying Collector for C++ 24

3.1 Motivation : 24

3.1.1 The Model : 24

3.1.2 The Compiler : 25

3.1.3 Discontiguous Chunks : 26

3.1.4 Other Requirements : 27

3.2 Overview : 28

3.3 Virtual Memory Protection : 29

3.4 The Memory Allocator : 30

3.4.1 Two Implementations : 31

3.4.2 Proposed Third Implementation : : : : : : : : : : : : : : : : : : : 32

Copyright
c
 by

Daniel Ross Edelson

1990

Dynamic Storage

Reclamation in C++

Daniel Ross Edelson

daniel@cis.ucsc.edu

UCSC-CRL-90-19

June 1990

Board of Studies in Computer and Information Sciences

University of California at Santa Cruz

Santa Cruz, CA 95064

