
Observable Sharing for Functional CircuitDescriptionKoen Claessen and David SandsChalmers?Abstract Pure functional programming languages have been proposed as avehicle to describe, simulate and manipulate circuit speci�cations. We proposean extension to Haskell to solve a standard problem when manipulating datatypes representing circuits in a lazy functional language. The problem is thatcircuits are �nite graphs { but viewing them as an algebraic (lazy) datatypemakes them indistinguishable from potentially in�nite regular trees. However,implementations of Haskell do indeed represent cyclic structures by graphs. Theproblem is that the sharing of nodes that creates such cycles is not observableby any function which traverses such a structure. In this paper we propose anextension to call-by-need languages which makes graph sharing observable. Theextension is based on non updatable reference cells and an equality test (sharingdetection) on this type. We show that this simple and practical extension haswell-behaved semantic properties, which means that many typical source-to-source program transformations, such as might be performed by a compiler, arestill valid in the presence of this extension.1 IntroductionIn this paper we investigate a particular problem of embedding a hardware de-scription language in a lazy functional language { in this case Haskell. The\embedded language" approach to domain-speci�c languages typically involvesthe designing a set of combinators (higher-order reusable programs) for an ap-plication area, and by constructing individual applications by combining and co-ordinating individual combinators. See [Hud96] for examples of domain-speci�clanguages embedded in Haskell. In the case of hardware design the objects con-structed are descriptions of circuits; by providing di�erent interpretations ofthese objects one can, for example, simulate, test, model-check or compile cir-cuits to a lower-level description. For this application (and other embedded de-scription languages) we motivate an extension to Haskell with a feature which wecall observable sharing, that allows us to detect and manipulate cycles in data-structures { a particularly useful feature when describing circuits containingfeedback. Observable sharing is added to the language by providing immutablereference cells, together with a reference equality test. In the �rst part of thepaper we present the problem and motivate the addition of observable sharing.? Department of Computing Sciences, Chalmers University of Technology andG�oteborg University, Sweden. www.cs.chalmers.se/~fkoen; daveg

A problem with observable sharing is that it is not a conservative extension ofa pure functional language. It is a \side e�ect" { albeit in a limited form { forwhich the semantic implications are not immediately apparent. This means thatthe addition of such a feature risks the loss of many of the desirable semanticfeatures of the host language. O'Donnell [O'D93] considered a form of observablesharing (Lisp-style pointer equality eq) in precisely the same context (i.e., themanipulation of hardware descriptions) and dismissed the idea thus:\ This hpointer equality predicatei is a hack that breaks referential trans-parency, destroying much of the advantages of using a functional lan-guage in the �rst place."But how much is actually \destroyed" by this construct? In the second part ofthis paper we show { for our more constrained version of pointer equality { thatin practice almost nothing is lost.We formally de�ne the semantics of the language extensions and investigate theirsemantic implications. The semantics is an extension to a call-by-need abstractmachine which faithfully re
ects the amount of sharing in typical Haskell imple-mentations.Not all the laws of pure functional programming are sound in this extension.The classic law of beta-reduction for lazy functional programs, which we couldrepresent as: let fx =Mg in N = N [M=x] (x 62M) does not hold in the theory.However, since this law could duplicate an arbitrary amount of computation (viathe duplication of the sub-expression M , it has been proposed that this law isnot appropriate for a language like Haskell [AFM+95], and that more restrictivelaws should be adopted. Indeed most Haskell compilers (and most Haskell pro-grammers?) do not apply such arbitrary transformations { for e�ciency reasonsthey are careful not to change the amount of sharing (the internal graph struc-ture) in programs. This is because all Haskell implemetations use a call-by-needparameter passing mechanism, whereby the argument to a function in a givencall is evaluated at most once.We develop the theory of operational equivalence for our language, and demon-strate that the extended language has a rich equational theory, containing, forexample, all the laws of Ariola et al's call-by-need lambda calculus [AFM+95].2 Functional Hardware DescriptionWe deal with the description of synchronous hardware circuits in which the be-haviour of a circuit and also its components can be modelled as functions fromstreams of inputs to streams of outputs. The description is realised using anembedded language in the pure functional language Haskell. There are goodmotivations in literature for being able to use higher-order functions, polymor-phism and laziness to describe hardware [She85,O'D96,CLM98,BCSS98].Describing CircuitsThe approach of modelling circuits as functions on streamswas taken as early as in the days of �FP [She85], and later modernised in systems

like Hydra [O'D96] and Hawk [CLM98]. The following introduction to functionalcircuit description owes much to the description in [O'D93].Here are some examples of primitive circuit components modelled as functions.We assume the existence of a datatype Signal, which represents an input, outputor internal wire in a circuit.inv :: Signal -> Signal and :: Signal -> Signal -> Signallatch :: Signal -> Signal xor :: Signal -> Signal -> SignalWe can put these components together in the normal way we compose functions;by abstraction, application, and local naming. Here are two examples of circuits.One consists of just an and-gate and an xor-gate, which is used as a componentin the other.halfAdd a b = (xor a b, and a b)fullAdd a b c = let (s1, c1) = halfAdd a b(s2, c2) = halfAdd s1 c in (s2, xor c1 c2)We use local naming of results of subcomponents using a let expression. Thetypes of these terms are:halfAdd :: Signal -> Signal -> (Signal, Signal)fullAdd :: Signal -> Signal -> Signal -> (Signal, Signal)Here is a third example of a circuit. It consists of an inverter and a latch, puttogether with a loop, also called feedback. The result is a circuit that toggles itsoutput.toggle :: Signaltoggle = let output = inv (latch output) in outputNote how we express the loop; by naming the wire and using it recursively.Simulating Circuits By interpreting the type Signal as streams of bits, andthe primitive components as functions on these streams, we can run, or simulatecircuit descriptions with concrete input.Here is a possible instantiation, where we model streams by Haskell's lazy lists.type Signal = [Bool] -- possibly infiniteinv bs = map not bs and as bs = zipWith (&&) as bslatch bs = False : bs xor as bs = zipWith (/=) as bsWe can simulate a circuit by applying it to inputs. The result of evaluatingfullAdd [False,True] [True,True] [True,True] is [(False,True),(True,True)], while the result of toggle is [True,False,True,False,True, : : :As parameters we provide lists or streams of inputs and as result we get a streamof outputs. Note that the toggle circuit does not take any parameter and resultsin an in�nite stream of outputs. The ability to both specify and execute (and per-form other operations) hardware as a functional program is a claimed strengthof the approach.Generating Netlists Simulating a circuit is not enough. If we want to im-plement it, for example on an FPGA, or prove properties about it, we need to

generate a netlist of the circuit. This is a description of the all components ofthe circuit, and how they are connected.We can reach this goal by symbolic evaluation. This means that we supply vari-ables as inputs to a circuit rather than concrete values, and construct an ex-pression representing the circuit. In order to do this, we have to reinterpret theSignal type and its operations.A �rst try might be along the following lines. A signal is either a variable name(a wire), or the result of a component which has been supplied with its inputsignals.type Signal = Var String | Comp String [Signal]inv b = Comp "inv" [b] and a b = Comp "and" [a, b]latch b = Comp "latch" [b] xor a b = Comp "xor" [a, b]Now, we can for example symbolically evaluate halfAdd (Var "a") (Var "b")(Comp "xor" [Var "a", Var "b"], Comp "and" [Var "a", Var "b"])And, similarly a full adder. But what happens when we try to evaluate toggle?Comp "inv" [Comp "latch" [Comp "inv" [Comp "latch" ...Since the Signal datatype is essentially a tree, and the toggle circuit contains acycle, the result is an in�nite structure. This is of course not usable as a symbolicdescription in an implementation. We get an in�nite data structure representinga �nite circuit.We encounter a similar problem when we provide inputs to the a circuit whichare themselves output wires of another circuit. The Signal type is a tree, whichmeans that when a result is used twice, is has to be copied. This shows thattrees are inappropriate for modelling circuits, because physically, circuits have aricher graph-like structure.2.1 Previous SolutionsOne possible solution, proposed by O'Donnell [O'D93], is to give every use ofcomponent a unique tag, explicitly. The signal datatype is then still a tree, butwhen we then traverse that tree, we can keep track of what tags we have alreadyencountered, and thus avoid cycles and detect sharing.In order to do this, we have to change the signal datatype slightly by adding atag to every use of a component, for example as follows.data Signal = Var String | Comp Tag String [Signal]When we de�ne a circuit, we have to explicitly label every component with aunique tag. O'Donnell then introduces some syntactic sugar for making it easierfor the programmer to do this.Though presented as \the �rst real solution to the problem of generating netlistsfrom executable circuit speci�cations [...] in a functional language", it is awk-ward to use. A particular weakness of the abstraction is that it does not enforcethat two components with the same tag are actually identical; there is nothing

to stop the programmer from mistakenly introducing the same tag on di�erentcomponents.But if explicit tagging is not the desired solution, why not let some underly-ing machinery guarantee that all the tags are unique? Monads are a standardapproach for such problems (see e.g., [Wad92]). In functional programming, amonad is a data structure that can abstract from an underlying computationmodel. A very common monad is the state monad, which threads a changingpiece of state through a computation. We can use such a state monad to gener-ate fresh tags for the signal datatype. This monadic approach is taken in Lava[BCSS98].Introducing a monad implies that the types of the primitive components and cir-cuit descriptions become monadic, that is, their result type becomes monadic. Abig disadvantage of this approach is not only that we must change the types, butalso the syntax. We can no longer use normal function abstraction, local namingand recursion anymore, we have to express this using monadic operators. Allthis turns out to be very inconvenient for the programmer.What we are looking for is a solution that does not require a change in the nat-ural circuit description style of using local naming and recursion, but allows usto detect sharing and loops in a description from within the language.3 Proposed SolutionThe core of the problem is: a description of a circuit is basically a graph, but wecannot observe the sharing of the nodes from within the program. The solutionwe propose is to make the graph structure of a program observable, by adding anew language construct.Objects with Identity The idea is that we want the weakest extension thatis still powerful enough to observe if two given objects have actually previouslybeen created as one and the same object.The reason for wanting as weak an extension as possible is that we want to retainas many semantic properties from the original language as possible. This is notjust for the bene�t of the programmer { it is important because compilers makeuse of semantic properties of programs to perform program transformations, andbecause we do not want to write our own compiler to implement this extension.Since we know in advance what kind of objects we will compare in this way, wechoose to be explicit about this at creation time of the object that we might endup comparing. In fact, one can view the objects as non-updatable references. Wecan create them, compare them for equality, and dereference them.Here is the interface we provide to the references. We introduce an abstract typeRef, with the following operators:type Ref a = ... ref :: a -> Ref a(<=>) :: Ref a -> Ref a -> Bool deref :: Ref a -> a

The following two examples show how we can use the new constructs to detectsharing: (i) let x = undefined in (let r = ref x in r <=> r)(ii) let x = undefined in ref x <=> ref xIn (i) we create one reference, and compare it with itself, which yields True. In(ii), we create two di�erent references to the same variable, and so the comparisonyields False.Thus, we have made a non conservative extension to the language; previouslyit was not possible to distinguish between a shared expression and two di�erentinstances of the same expression. We call the extension observable sharing. Wegive a formal description of the semantics in section 4.3.1 Back to CircuitsHow can we use this extension to help us to symbolically evaluate circuits? Letus take a look at the following two circuits.circ1 = let output = latch output in outputcirc2 = let output = latch (latch output) in outputIn Haskell's denotational semantics, these two circuits are identi�ed, since circ2is just a recursive unfolding of circ1. But we would like these descriptions torepresent di�erent circuits; circ1 has one latch and a loop, where as circ2 hastwo latches and a loop. If the signal type includes a reference, we could comparethe identities of the latch components and conclude that in circ1 all latches areidentical, where as in circ2 we have two di�erent latches.We can now modify the signal datatype in such a way that the creation ofidentities happens transparently to the programmer.data Signal = Var String | Comp (Ref (String, [Signal]))comp name args = Comp (ref (name, args))inv b = comp "inv" [b] and a b = comp "and" [a, b]latch b = comp "latch" [b] xor a b = comp "xor" [a, b]In this way, a circuit like toggle still creates a cyclic structure, but it is now pos-sible to de�ne a function which observes this cyclicity and therefore terminateswhen generating a netlist for the circuit.3.2 Other Possible SolutionsWe brie
y discuss two other solutions, both of which more or less well knownextensions to functional programming languages.Pointer Equality The language is extended with an operator (>=<) :: a ->a -> Bool that investigates if two expressions are pointer equal, that is, theyrefer to the same bindings.In our extension, we basically provide pointer equality in a more controlled way;you can only perform it on references, not on expressions of any type. This means

we can implement our references using a certain kind of pointer equality. Theother way around is not possible however, which shows that our extension isweaker.Gensym The language is extended with a new type Sym of abstract symbolswith equality, and an operator that generates fresh such symbols, gensym. It ispossible to de�ne gensym in terms of our Refs, and also the other way around.With the reference approach however, by get an important law by de�nition,which is: r1 <=> r2 = True) deref r1 = deref r24 The Semantic TheoryIn this section we formally de�ne the operational semantics of observable shar-ing, and study the induced notion of operational equivalence. For the technicaldevelopment we work with a de-sugared core language based on an untypedlambda calculus with recursive lets and structured data.The language of terms, �ref is given by the following grammar1:L;M;N ::= x j �x:M jM x j let f!x = !Mg in N j ref x j derefM jM
 NNote that we work with a restricted syntax in which the arguments in func-tion applications and the arguments to constructors are always variables (c.f,[PJPS96,PJS98,Lau93,Ses97]. It is trivial to translate programs into this syntaxby the introduction of let bindings for all non-variable arguments.The set of values, Val � �ref , ranged over by V and W are the lambda-expressions �x:M . We will write let f!x = !Mg in N as a shorthand for let fx1 =M1; : : : ; xn = Mng in N where the !x are distinct, the order of bindings is notsyntactically signi�cant, and the !x are considered bound in N and the !M (i.e.,all lets are potentially recursive).The only kind of substitution that we consider is variable for variable, with �ranging over such substitutions. The simultaneous substitution of one vector ofvariables for another will be written M [!y=!x], where the !x are assumed to bedistinct (but the !y need not be).4.1 The Abstract MachineThe semantics for the standard part of the language presented in this sectionis essentially Sestoft's \mark 1" abstract machine for laziness [Ses97]. Following[MS99], we believe an abstract machine semantics is well suited as the basis forstudying operational equivalence.Transitions in this machine are de�ned over con�gurations consisting of (i) aheap, containing a set of bindings, (ii) the expression currently being evaluated,1 In the full version of the paper we also include constructors and a case expression,as well as a strict sequential composition operator.

and (iii) a stack, representing the actions that will be performed on the result ofthe current expression.There are a number of possible ways to represent references in such a machine.One straightforward possibility is to use a global reference-environment, in whichevaluation of the ref operation creates a fresh reference to its argument. Wepresent an equivalent but syntactically more economical version. Instead of ref-erence environment, references are represented by a new (abstract) constructor(i.e. a constructor which is not part of �ref), which we denote by ref .Let �ref def= �ref [fref x j x 2 Varg, and Valref def= Val [fref x j x 2 Varg. Wewrite h�; M; S i for the abstract machine con�guration with heap � , expres-sion M 2 �ref , and stack S. A heap is a set of bindings from variables to termsof �ref ; we denote the empty heap by ;, and the addition of a group of bindings!x = !M to a heap � by juxtaposition: �f!x = !Mg.A stack is a list of stack elements. The stack written b : S will denote the astack S with b pushed on the top. The empty stack is denoted by �, and theconcatenation of two stacks S and T by ST (where S is on top of T). Stackelements are either:{ a variable x, representing the argument to a function,{ an update marker #x, indicating that the result of the current computationshould be bound to the variable x in the heap,{ a pending reference equality-test of the form (
M), or (ref x
),{ a dereference deref , indicating that the reference which is produced by thecurrent computation should be dereferenced.We will refer to the set of variables bound by � as dom� , and to the set ofvariables marked for update in a stack S as domS. Update markers shouldbe thought of as binding occurrences of variables. Since we cannot have morethan one binding occurrence of a variable, a con�guration is deemed well-formedif dom� and domS are disjoint. We write dom(�; S) for their union. For acon�guration h�; M; S i to be closed, any free variables in � , M , and S mustbe contained in dom(�; S).For sets of variables P and Q we will write P ? Q to mean that P and Q aredisjoint, i.e., P \Q = ;. The free variables of a term M will be denoted FV (M);for a vector of terms !M , we will write FV (!M). The abstract machine semanticsis presented in �gure 4.1; we implicitly restrict the de�nition to well-formedcon�gurations. The �rst collection of rules are standard. The second collectionof rules concern observable sharing. Rule (RefEq) �rst forces the evaluation of theleft argument, and (Ref1) switches evaluation to the right argument; once bothhave been evaluated to ref constructors, variable-equality is used to implementthe pointer-equality test.4.2 Convergence, Approximation and EquivalenceTwo terms will be considered equal if they exhibit the same behaviours whenused in any program context. The behaviour that we use as our test of equiv-

h�fx =Mg; x; S i ! h�; M; #x : S i (Lookup)h�; V; #x : S i ! h�fx = V g; V; S i (Update)h�; M x; S i ! h�; M; x : S i (Unwind)h�; �x:M; y : S i ! h�; M [y=x]; S i (Subst)h�; let f!x = !Mg in N; S i ! h�f!x = !Mg; N; S i !x ? dom(�; S) (Letrec)h�; refM; S i ! h�fx = Mg; ref x; S i x 62 dom(�; S) (Ref)h�; derefM; S i ! h�; M; deref : S i (Deref1)h�; ref x; deref : S i ! h�; x; S i (Deref2)h�; M
 N; S i ! h�; M; (
 N) : S i (RefEq)h�; ref x; (
 N) : S i ! h�; N; (ref x
) : S i (Ref1)h�; ref y; (ref x
) : S i ! h�; b; S i b = (true if x = yfalse otherwise (Ref2)Fig. 1. Abstract machine semanticsalence is simply termination. Termination behaviour is formalised by a conver-gence predicate:De�nition 41 (Convergence) A closed con�guration h�; M; S i converges,written h�; M; S i+, if there exists heap � and value V such thath�; M; S i !� h�; V; � i:We will also write M+, identifying closed M with the initial con�gurationh ;; M; � i. Closed con�gurations which do not converge are of four types: theyeither (i) reduce inde�nitely, or get stuck because of (ii) a type error, (iii) acase expression with an incomplete set of alternatives, or (iv) a black-hole (aself-dependent expression as in let x = x in x). All non-converging closed con-�gurations will be semantically identi�ed.Let C , D range over contexts { terms containing zero or more occurrences of ahole, [�] in the place where an arbitrary subterm might occur. Let C [M] denotethe result of �lling all the holes in C with the term M , possibly causing freevariables in M to become bound.De�nition 42 (Operational Approximation) We say thatM operationallyapproximates N , written M @� N , if for all C such that C [M] and C [N] areclosed, C [M]+ implies C [N]+ :We say that M and N are operationally equivalent, written M �= N , whenM @� N and N @�M . Note that equivalence is a non-trivial equivalence relation.Below we present a sample of basic laws of equivalence. In the statement of all

laws, we follow the standard convention that all bound variables in the statementof a law are distinct, and that they are disjoint from the free variables.(�x:M) y �=M [y=x]let fx = V;!y = !D [x]g in C [x] �= let fx = V;!y = !D [V]g in C [V]let fx = z;!y = !D [x]g in C [x] �= let fx = z;!y = !D [z]g in C [z]let fx = z;!y = !Mg in N �= let fx = z;!y = !M [z=x]g in N [z=x]let f!x = !Mg in N �= N; if !x ? FV (N)C [let f!y = !V g in M] �= let f!y = !V g in C [M]M
 N �= N
MRemark: The fact that the reference constructor ref is abstract (not availabledirectly in the language) is crucial to the variable-inlining properties. For exam-ple a (derivable) law like let fx = zg in N �= N [z=x] would fail if terms couldcontain ref . This failure could be disastrous in some implementations, becausein e�ect a con�guration-level analogy of this law is applied by some garbagecollectors.4.3 Proof Techniques for EquivalenceWe have presented a collection of laws for approximation and equivalence {but how are they established? The de�nition of operational equivalence su�ersfrom the standard problem: to prove that two terms are related requires one toexamine their behaviour in all contexts. For this reason, it is common to seek toprove a context lemma [Mil77] for an operational semantics: one tries to showthat to prove M operationally approximates N , one only need compare theirimmediate behaviour. The following context lemma simpli�es the proof of manylaws:Lemma 1 (Context Lemma). For all terms M and N , M @� N if and onlyif for all � , S and substitutions �, h�; M�; S i+ implies h�; N�; S i+It says that we need only consider con�guration contexts of the form h�; [�]; S iwhere the hole [�] appears only once. The substitution � from variables to vari-ables is necessary here, but since laws are typically closed under such substitu-tions, so there is no noticeable proof burden.The proof of the context lemma follows the same lines as the correspondingproof for the improvement theory for call-by-need [MS99], and it involves uni-form computation arguments which are similar to the proofs of related propertiesfor call-by-value languages with state [MT91].In the full paper we present some key technical properties and a proof that thecompiler optimisation performed after so-called strictness analysis is still soundin the presence of observable sharing.

4.4 Relation to Other CalculiSimilar languages have been considered by Odersky [Ode94] (call-by-name se-mantics) and Pitts and Stark [PS93] (call-by-value semantics). A reduction-calculus approach to call-by-need was introduced in [AFM+95], and extendedto deal with mutable state in recent work of Ariola and Sabry [AS98]. Thereduction-calculi approach in general has been pioneered by Felleisen et al (e.g.[FH92]), and its advantage is that it builds on the idea of a core calculus ofequivalences (generated by a con
uent rewriting relation on terms); each lan-guage extension is presented as a conservative extension of the core theory. Theprice paid for this modularity is that the theory of equality is rather limited.The approach we have taken { studying operational equivalence { is exempli�edby Mason and Talcott's work on call-by-value lambda calculi and state [MT91].An advantage of the operational-equivalence approach is that it is a much richertheory, in which induction principles may be derived that are inexpressible in re-duction calculi. Our starting point has been the call-by-need improvement theoryintroduced by Moran and Sands [MS99]. In improvement theory, the de�nitionof operational equivalences includes an observation of the number of reductionsteps to convergence. This makes sharing observable { although slightly moreindirectly.We have only scratched the surface of the existing theory. Induction principleswould be useful { and also seem straightforward to adapt from [MS99]. Fortechniques more speci�c to the subtleties of references, work on parametricityproperties of local names e.g., [Pit96], is likely to be relevant.5 ConclusionsWe have motivated a small extension to Haskell which provides a practical so-lution to a common problem when manipulating data structures representingcircuits. We have presented a precise operational semantics for this extension,and investigated laws of operational approximation. We have shown that theextended language has a rich equational theory, which means that the semanticsis robust with respect to program transformations which respect sharing prop-erties.The extension we propose is small, and turns out to be easy to add to existingHaskell compilers/interpreters in the form of an abstract data-type (a modulewith hidden data constructors). In fact similar functionality is already hiddenaway in the nonstandard libraries of many implementations.2 A simple imple-mentation using the Hugs-GHC library extensions is given in the full version ofthe paper.The feature is likely to be useful for other embedded description languages, andwe brie
y consider two such applications in the full paper: writing parsers forleft-recursive grammars, and an optimised representation of decision trees.2 www.haskell.org/implementations/

References[AFM+95] Z. Ariola, M. Felleisen, J. Maraist, M. Odersky, and P. Wadler. A call-by-need lambda calculus. In Proc. POPL'95, ACM Press, 1995.[AS98] Z. M. Ariola and A. Sabry. Correctness of monadic state: An imperativecall-by-need calculus. In Proc. POPL'98, pages 62{74. ACM Press, 1998.[BCSS98] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava: Hardware designin Haskell. In ICFP'98. ACM Press, 1998.[CLM98] B. Cook, J. Launchbury, and J. Matthews. Specifying superscalar micro-processors in Hawk. In Formal Techniques for Hardware and Hardware-likeSystems. Marstrand, Sweden, 1998.[FH92] Matthias Felleisen and Robert Hieb. The revised report on the syntactictheories of sequential control and state. TCS, 103:235{271, 1992.[Hud96] Paul Hudak. Building domain-speci�c embedded languages. ACM Comput-ing Surveys, 28(4):196, December 1996.[Lau93] J. Launchbury. A natural semantics for lazy evaluation. In Proc. POPL'93,pages 144{154. ACM Press, 1993.[Mil77] R. Milner. Fully abstract models of the typed �-calculus. TCS 4:1{22, 1977.[MS99] Andrew Moran and David Sands. Improvement in a lazy context: An oper-ational theory for call-by-need. In Proc. POPL'99, ACM Press, 1999.[MT91] I. Mason and C. Talcott. Equivalence in functional languages with e�ects.Journal of Functional Programming, 1(3):287{327, July 1991.[O'D93] J. O'Donnell. Generating netlists from executable circuit speci�cations ina pure functional language. In Functional Programming Glasgow, Springer-Verlag Workshops in Computing, pages 178{194, 1993.[O'D96] J. O'Donnell. From transistors to computer architecture: Teaching func-tional circuit speci�cation in Hydra. In Functional Programming Languaguesin Education, LNCS vol 1125, pages 221{234. Springer Verlag, 1996.[Ode94] Martin Odersky. A functional theory of local names. In POPL'94, pages48{59, ACM Press, 1994.[Pit96] A. M. Pitts. Reasoning about local variables with operationally-based log-ical relations. In 11th Annual Symposium on Logic in Computer Science,pages 152{163. IEEE Computer Society Press, 1996.[PJPS96] S. Peyton Jones, W. Partain, and A. Santos. Let-
oating: moving bindingsto give faster programs. In Proc. ICFP'96, pages 1{12. ACM Press, 1996.[PJS98] S. Peyton Jones and A. Santos. A transformation-based optimiser forHaskell. Science of Computer Programming, 32(1{3):3{47, 1998.[PS93] A. M. Pitts and I. D. B. Stark. Observable properties of higher order func-tions that create local names, or: What's new? In MFCS'93, LNCS vol 711,pages 122{141, Springer-Verlag, 1993.[Ses97] P. Sestoft. Deriving a lazy abstract machine. Journal of Functional Pro-gramming, 7(3):231{264, May 1997.[She85] M. Sheeran. Designing regular array architectures using higher order func-tions. In FPCS'95, LNCS vol 201, Springer Verlag, 1985.[Wad92] P. Wadler. Monads for Functional Programming. In Lecture notes for Mark-toberdorf Summer School on Program Design Calculi, NATO ASI Series F:Computer and systems sciences. Springer Verlag, August 1992.

