
JOURNAL OF FORMALIZED MATHEMATICSVolume 4, Released 1992, Published 2000Inst. of Computer Science, University of Bia lystok
A Mathematical Model of CPUYatsuka NakamuraShinshu UniversityNagano Andrzej TrybulecWarsaw UniversityBia lystokSummary. This paper is based on a previous work of the �rst author [15] inwhich a mathematical model of the computer has been presented. The model dealswith random access memory, such as RASP of C. C. Elgot and A. Robinson [13],however, it allows for a more realistic modeling of real computers. This new modelof computers has been named by the author (Y. Nakamura, [15]) Architecture Modelfor Instructions (AMI). It is more developed than previous models, both in the de-scription of hardware (e.g., the concept of the program counter, the structure ofmemory) as well as in the description of instructions (instruction codes, addresses).The structure of AMI over an arbitrary collection of mathematical domains N con-sists of:- a non-empty set of objects,- the instruction counter,- a non-empty set of objects called instruction locations,- a non-empty set of instruction codes,- an instruction code for halting,- a set of instructions that are ordered pairs with the �rst element being an in-struction code and the second a �nite sequence in which members are eitherobjects of the AMI or elements of one of the domains included in N,- a function that assigns to every object of AMI its kind that is either an instructionor an instruction location or an element of N,- a function that assigns to every instruction its execution that is again a functionmapping states of AMI into the set of states.By a state of AMI we mean a function that assigns to every object of AMI an elementof the same kind. In this paper we develop the theory of AMI. Some properties ofAMI are introduced ensuring it to have some properties of real computers:- a von Neumann AMI, in which only addresses to instruction locations are storedin the program counter,- data oriented, those in which instructions cannot be stored in data locations,- halting, in which the execution of the halt instruction is the identity mapping ofthe states of an AMI,- steady programmed, the condition in which the contents of the instruction loca-tions do not change during execution,- de�nite, a property in which only instructions may be stored in instruction loca-tions.We present an example of AMI called a Small Concrete Model which has beenconstructed in [15]. The Small Concrete Model has only one kind of data: integersand a set of instructions, small but su�cient to cope with integers.MML Identi�er: AMI_1. 1 c Association of Mizar Users

a mathematical model of cpu 2WWW: http://mizar.org/JFM/Vol4/ami_1.htmlThe articles [18], [22], [8], [14], [2], [23], [5], [21], [6], [17], [12], [20], [1], [9], [19], [16], [10],[3], [11], [4], and [7] provide the notation and terminology for this paper.1. PreliminariesThe following three propositions are true:(1) N 6= Z:(2) For all sets a, b holds 1 6= hha; bii:(3) For all sets a, b holds 2 6= hha; bii:Let X be a set. One can verify that XX is non empty.We now state two propositions:(4) For all sets a, b, c, d and for every function g such that dom g = fa; bg and g(a) = cand g(b) = d holds g = [a 7�! c; b 7�! d]:(5) For all sets a, b, c, d such that a 6= b holds Q[a 7�! fcg; b 7�! fdg] = f[a 7�!c; b 7�! d]g:Let I1 be a set. We say that I1 has non empty elements if and only if:(Def. 1) ; =2 I1:Let us mention that there exists a set which is non empty and has non empty elements.Let A be a non empty set. One can check that fAg has non empty elements. Let B bea non empty set. Note that fA;Bg has non empty elements.Let A, B be sets with non empty elements. Note that A [B has non empty elements.2. General conceptsIn the sequel N denotes a set with non empty elements.Let N be a set. We introduce AMI's over N which are systemsh objects, an instruction counter, instruction locations, instruction codes, instructions,a object kind, a execution i,where the objects constitute a non empty set, the instruction counter is an element ofthe objects, the instruction locations constitute a non empty subset of the objects, theinstruction codes constitute a non empty set, the instructions constitute a non empty subsetof [: the instruction codes; (SN [the objects)� :], the object kind is a function from theobjects intoN[fthe instructions; the instruction locations g; and the execution is a functionfrom the instructions into (Q the object kind)Q the object kind.Let N be a set and let S be an AMI over N . An object of S is an element of the objectsof S. An instruction-location of S is an element of the instruction locations of S.Let N be a set and let S be an AMI over N .(Def. 2) An element of the instructions of S is said to be an instruction of S.The functor ICS yields an object of S and is de�ned by:(Def. 3) ICS = the instruction counter of S.Let N be a set, let S be an AMI over N , and let o be an object of S. The functorObjectKind(o) yielding an element of N [fthe instructions of S, the instruction locationsof S g is de�ned by:

a mathematical model of cpu 3(Def. 4) ObjectKind(o) = (the object kind of S)(o):Let A, B be sets and let f be a function from A into B. Note that Q f is functional.Let A be a set, let B be a set with non empty elements, and let f be a function from Ainto B. Observe that Q f is non empty.Let P be a functional set. Note that every element of P is function-like and relation-like.Let N be a set and let S be an AMI over N . A state of S is an element of Q (the objectkind of S).Let N be a set with non empty elements, let S be an AMI overN , let I be an instructionof S, and let s be a state of S. The functor Exec(I; s) yields a state of S and is de�ned asfollows:(Def. 5) Exec(I; s) = (the execution of S)(I)(s):Let N be a set. The functor AMIt yielding a strict AMI over N is de�ned by theconditions (Def. 6).(Def. 6) The objects of (AMIt) = f0; 1g and the instruction counter of (AMIt) = 0 andthe instruction locations of (AMIt) = f1g and the instruction codes of (AMIt)= f0g and the instructions of (AMIt) = fhh0; "iig and the object kind of (AMIt)= [0 7�! f1g; 1 7�! fhh0; "iig] and the execution of (AMIt) = fhh0; "iig 7�!idQ[07�!f1g;17�!fhh0; "iig]:Let us consider N , let S be an AMI over N , and let I be an instruction of S. We saythat I is halting if and only if:(Def. 7) For every state s of S holds Exec(I; s) = s:Let us consider N and let S be an AMI over N . We say that S is halting if and only if:(Def. 8) There exists an instruction I of S such that I is halting and for every instructionJ of S such that J is halting holds I = J:One can prove the following proposition(6) AMIt is halting.Let us consider N . Note that AMIt is halting.Let us consider N . Note that there exists an AMI over N which is halting.Let us consider N and let S be a halting AMI over N . The functor haltS yields aninstruction of S and is de�ned by:(Def. 9) There exists an instruction I of S such that I is halting and haltS = I:Let us consider N and let S be a halting AMI over N . Note that haltS is halting.Let N be a set and let I1 be an AMI over N . We say that I1 is von Neumann if andonly if:(Def. 10) ObjectKind(IC(I1)) = the instruction locations of I1.Let N be a set and let I1 be an AMI over N . We say that I1 is data-oriented if andonly if:(Def. 11) (The object kind of I1)�1(fthe instructions of I1 g) � the instruction locations ofI1.Let N be a set with non empty elements and let I1 be an AMI over N . We say that I1is steady-programmed if and only if:(Def. 12) For every state s of I1 and for every instruction i of I1 and for every instruction-location l of I1 holds (Exec(i; s))(l) = s(l):

a mathematical model of cpu 4Let N be a set and let I1 be an AMI over N . We say that I1 is de�nite if and only if:(Def. 13) For every instruction-location l of I1 holds ObjectKind(l) = the instructions of I1.In the sequel E is a set.The following propositions are true:(7) AMIt is von Neumann.(8) AMIt is data-oriented.(9) For all states s1, s2 of AMIt holds s1 = s2:(10) AMIt is steady-programmed.(11) AMIt is de�nite.Let E be a set. Observe that AMIt is data-oriented.Let E be a set. One can check that AMIt is von Neumann and de�nite.Let N be a set with non empty elements. Note that AMIt is steady-programmed.Let E be a set. One can check that there exists an AMI over E which is data-orientedand strict.Let M be a set. Note that there exists an AMI over M which is von Neumann, data-oriented, de�nite, and strict.Let us consider N . Observe that there exists an AMI over N which is von Neumann,data-oriented, halting, steady-programmed, de�nite, and strict.Let N be a set with non empty elements, let S be a von Neumann AMI over N , and lets be a state of S. The functor ICs yielding an instruction-location of S is de�ned by:(Def. 14) ICs = s(ICS): 3. PreliminariesWe adopt the following convention: x, y, z, A, B, C denote sets, f , g, h denote functions,and i, j, k denote natural numbers.One can prove the following propositions:(12) A misses B n C i� B misses A n C:(13) For every function f holds �1(dom f � rng f)�f = dom f:(14) If f � g and hhx; yii 2 f and hhx; zii 2 g; then y = z:(15) Suppose for every x such that x 2 A holds x is a function and for all functions f ,g such that f 2 A and g 2 A holds f � g: Then SA is a function.(16) If dom f � A [B; then f↾A+�f↾B = f:(17) dom f � dom(f+�g) and dom g � dom(f+�g):(18) For all sets x1, x2, y1, y2 holds [x1 7�! y1; x2 7�! y2] = (x1 7�!. y1)+�(x2 7�!. y2):(19) For all x, y holds x7�!. y = fhhx; yiig:(20) For all sets a, b, c holds [a 7�! b; a 7�! c] = a7�!. c:(21) For every function f holds dom f is �nite i� f is �nite.(22) If x 2Q f; then x is a function.

a mathematical model of cpu 54. SuperproductsLet f be a function. The functor Q� f yields a set and is de�ned by:(Def. 15) x 2Q� f i� there exists g such that x = g and domg � domf and for every x suchthat x 2 domg holds g(x) 2 f(x):Let f be a function. One can check that Q� f is functional and non empty.One can prove the following propositions:(23) x 2Q� f i� there exists g such that x = g and domg � domf and for every x suchthat x 2 domg holds g(x) 2 f(x):(24) If dom g � dom f and for every x such that x 2 dom g holds g(x) 2 f(x); theng 2Q� f:(25) If g 2 Q� f; then domg � dom f and for every x such that x 2 dom g holdsg(x) 2 f(x):(26) � 2Q� f:(27) Q f �Q� f:(28) If x 2Q� f; then x is a partial function from dom f to S rng f:(29) If g 2Q f and h 2Q� f; then g+�h 2 Q f:(30) If Q f 6= ;; then g 2Q� f i� there exists h such that h 2Q f and g � h:(31) Q� f � dom f _!S rng f:(32) If f � g; then Q� f �Q� g:(33) Q�
� = f�g:(34) A _!B =Q�(A 7�! B):(35) For all non empty sets A, B and for every function f from A into B holds Q� f =Q�(f↾fx;x ranges over elements of A: f(x) 6= ;g):(36) If x 2 dom f and y 2 f(x); then x7�!. y 2Q� f:(37) Q� f = f�g i� for every x such that x 2 dom f holds f(x) = ;:(38) If A �Q� f and for all functions h1, h2 such that h1 2 A and h2 2 A holds h1 � h2;then SA 2 Q� f:(39) If g � h and g 2Q� f and h 2Q� f; then g [h 2Q� f:(40) If g � h and h 2 Q� f; then g 2 Q� f:(41) If g 2Q� f; then g↾A 2Q� f:(42) If g 2Q� f; then g↾A 2Q�(f↾A):(43) If h 2Q�(f+�g); then there exist functions f 0, g0 such that f 0 2Q� f and g0 2Q� gand h = f 0+�g0:(44) For all functions f 0, g0 such that dom g misses dom f 0 n dom g0 and f 0 2 Q� f andg0 2Q� g holds f 0+�g0 2 Q�(f+�g):(45) For all functions f 0, g0 such that dom f 0 misses domg n dom g0 and f 0 2 Q� f andg0 2Q� g holds f 0+�g0 2 Q�(f+�g):(46) If g 2Q� f and h 2Q� f; then g+�h 2 Q� f:(47) For all sets x1, x2, y1, y2 such that x1 2 domf and y1 2 f(x1) and x2 2 dom f andy2 2 f(x2) holds [x1 7�! y1; x2 7�! y2] 2 Q� f:

a mathematical model of cpu 65. General theoryLet us consider N , let S be a von Neumann de�nite AMI over N , and let s be a state of S.The functor CurInstr(s) yields an instruction of S and is de�ned by:(Def. 16) CurInstr(s) = s(ICs):Let us consider N , let S be a von Neumann de�nite AMI over N , and let s be a stateof S. The functor Following(s) yields a state of S and is de�ned as follows:(Def. 17) Following(s) = Exec(CurInstr(s); s):Let us consider N , let S be a von Neumann de�nite AMI over N , and let s be a stateof S. The functor Computation(s) yielding a function from N into Q (the object kind of S)is de�ned by:(Def. 18) (Computation(s))(0) = s and for every i holds (Computation(s))(i + 1) =Following((Computation(s))(i)):Let us consider N , let S be an AMI over N , let f be a function from N into Q (theobject kind of S), and let us consider k. Then f(k) is a state of S.Let us consider N , let S be a halting von Neumann de�nite AMI over N , and let I1 bea state of S. We say that I1 is halting if and only if:(Def. 19) There exists k such that CurInstr((Computation(I1))(k)) = haltS :Let N be a set and let I1 be an AMI over N . We say that I1 is realistic if and only if:(Def. 20) The instructions of I1 6= the instruction locations of I1.Next we state the proposition(48) Let S be a von Neumann de�nite AMI over E. Suppose S is realistic. Then it isnot true that there exists an instruction-location l of S such that ICS = l:In the sequel S is a von Neumann de�nite AMI over N and s is a state of S.Next we state four propositions:(49) (Computation(s))(0) = s:(50) (Computation(s))(k + 1) = Following((Computation(s))(k)):(51) For every k holds (Computation(s))(i+k) = (Computation((Computation(s))(i)))(k):(52) Suppose i � j: Let given N , S be a halting von Neumann de�nite AMI overN , and s be a state of S. If CurInstr((Computation(s))(i)) = haltS ; then(Computation(s))(j) = (Computation(s))(i):Let us consider N , let S be a halting von Neumann de�nite AMI over N , and let s bea state of S. Let us assume that s is halting. The functor Result(s) yields a state of S andis de�ned by:(Def. 21) There exists k such that Result(s) = (Computation(s))(k) and CurInstr(Result(s)) =haltS :One can prove the following proposition(53) Let S be a steady-programmed von Neumann de�nite AMI over N , s be a state ofS, and i be an instruction-location of S. Then s(i) = (Following(s))(i):Let us consider N , let S be a de�nite AMI over N , let s be a state of S, and let l be aninstruction-location of S. Then s(l) is an instruction of S.The following propositions are true:

a mathematical model of cpu 7(54) Let S be a steady-programmed von Neumann de�nite AMI over N , s be a state ofS, i be an instruction-location of S, and given k. Then s(i) = (Computation(s))(k)(i):(55) Let S be a steady-programmed von Neumann de�nite AMI over N and s be a stateof S. Then (Computation(s))(k+1) = Exec(s(IC(Computation(s))(k)); (Computation(s))(k)):(56) Let S be a steady-programmed von Neumann halting de�nite AMI over N , s bea state of S, and given k. If s(IC(Computation(s))(k)) = haltS ; then Result(s) =(Computation(s))(k):(57) Let S be a steady-programmed von Neumann halting de�nite AMI over N and sbe a state of S. If there exists k such that s(IC(Computation(s))(k)) = haltS ; then forevery i holds Result(s) = Result((Computation(s))(i)):Let us consider N , let S be an AMI over N , and let o be an object of S. Note thatObjectKind(o) is non empty. 6. Finite substatesLet N be a set and let S be an AMI over N . The functor FinPartSt(S) yields a subset ofQ� (the object kind of S) and is de�ned by:(Def. 22) FinPartSt(S) = fp; p ranges over elements of Q� (the object kind of S): p is �niteg:Let N be a set and let S be an AMI over N . An element of Q� (the object kind of S)is said to be a �nite partial state of S if:(Def. 23) It is �nite.Let us consider N , let S be a von Neumann de�nite AMI over N , and let I1 be a �nitepartial state of S. We say that I1 is autonomic if and only if:(Def. 24) For all states s1, s2 of S such that I1 � s1 and I1 � s2 and for every i holds(Computation(s1))(i)↾ dom I1 = (Computation(s2))(i)↾ dom I1:Let us consider N , let S be a halting von Neumann de�nite AMI over N , and let I1 bea �nite partial state of S. We say that I1 is halting if and only if:(Def. 25) For every state s of S such that I1 � s holds s is halting.Let us consider N and let I1 be a von Neumann de�nite AMI over N . We say that I1is programmable if and only if:(Def. 26) There exists a �nite partial state of I1 which is non empty and autonomic.We now state two propositions:(58) Let S be a von Neumann de�nite AMI over N , A, B be sets, and l1, l2 be objectsof S. Suppose ObjectKind(l1) = A and ObjectKind(l2) = B: Let a be an element ofA and b be an element of B. Then [l1 7�! a; l2 7�! b] is a �nite partial state of S.(59) Let S be a von Neumann de�nite AMI over N , A be a set, and l1 be an object ofS. Suppose ObjectKind(l1) = A: Let a be an element of A. Then l1 7�!. a is a �nitepartial state of S.Let us consider N , let S be a von Neumann de�nite AMI over N , let l1 be an object ofS, and let a be an element of ObjectKind(l1). Then l1 7�!. a is a �nite partial state of S.Let us consider N , let S be a von Neumann de�nite AMI over N , let l1, l2 be objects ofS, let a be an element of ObjectKind(l1), and let b be an element of ObjectKind(l2). Then[l1 7�! a; l2 7�! b] is a �nite partial state of S.Next we state two propositions:

a mathematical model of cpu 8(60) AMIt is realistic.(61) AMIt is programmable.Let us consider E. One can check that AMIt is realistic.Let us consider N . Note that AMIt is programmable.Let us considerE. Note that there exists an AMI over E which is data-oriented, realistic,and strict.Let M be a set. Note that there exists an AMI over M which is data-oriented, realistic,strict, von Neumann, and de�nite.Let us consider N . Note that there exists a von Neumann de�nite AMI over N whichis data-oriented, halting, steady-programmed, realistic, programmable, and strict.Next we state two propositions:(62) Let S be an AMI over N , s be a state of S, and p be a �nite partial state of S.Then s↾dom p is a �nite partial state of S.(63) For every set N and for every AMI S over N holds ; is a �nite partial state of S.Let us considerN and let S be a programmable von Neumann de�nite AMI overN . Onecan check that there exists a �nite partial state of S which is non empty and autonomic.Let N be a set, let S be an AMI over N , and let f , g be �nite partial states of S. Thenf+�g is a �nite partial state of S. 7. PreprogramsThe following four propositions are true:(64) Let S be a halting realistic von Neumann de�nite AMI overN , l3 be an instruction-location of S, and l be an element of ObjectKind(ICS). Suppose l = l3: Let h bean element of ObjectKind(l3). If h = haltS ; then for every state s of S such that[ICS 7�! l; l3 7�! h] � s holds CurInstr(s) = haltS :(65) Let S be a halting realistic von Neumann de�nite AMI overN , l3 be an instruction-location of S, and l be an element of ObjectKind(ICS). Suppose l = l3: Let h be anelement of ObjectKind(l3). If h = haltS ; then [ICS 7�! l; l3 7�! h] is halting.(66) Let S be a realistic halting von Neumann de�nite AMI overN , l3 be an instruction-location of S, and l be an element of ObjectKind(ICS). Suppose l = l3: Let hbe an element of ObjectKind(l3). Suppose h = haltS : Let s be a state of S. If[ICS 7�! l; l3 7�! h] � s; then for every i holds (Computation(s))(i) = s:(67) Let S be a realistic halting von Neumann de�nite AMI overN , l3 be an instruction-location of S, and l be an element of ObjectKind(ICS). Suppose l = l3: Let h be anelement of ObjectKind(l3). If h = haltS ; then [ICS 7�! l; l3 7�! h] is autonomic.Let us consider N and let S be a realistic halting von Neumann de�nite AMI over N .Observe that there exists a �nite partial state of S which is autonomic and halting.Let us consider N and let S be a realistic halting von Neumann de�nite AMI over N .A pre-program of S is an autonomic halting �nite partial state of S.Let us consider N , let S be a realistic halting von Neumann de�nite AMI over N , andlet s be a �nite partial state of S. Let us assume that s is a pre-program of S. The functorResult(s) yielding a �nite partial state of S is de�ned by:(Def. 27) For every state s0 of S such that s � s0 holds Result(s) = Result(s0)↾dom s:

a mathematical model of cpu 98. ComputabilityLet us consider N , let S be a realistic halting von Neumann de�nite AMI over N , let p bea �nite partial state of S, and let F be a function. We say that p computes F if and onlyif the condition (Def. 28) is satis�ed.(Def. 28) Let x be a set. Suppose x 2 domF: Then there exists a �nite partial state s of Ssuch that x = s and p+�s is a pre-program of S and F (s) � Result(p+�s):Next we state three propositions:(68) Let S be a realistic halting von Neumann de�nite AMI over N and p be a �nitepartial state of S. Then p computes �.(69) Let S be a realistic halting von Neumann de�nite AMI over N and p be a �nite par-tial state of S. Then p is a pre-program of S if and only if p computes ;7�!. Result(p):(70) Let S be a realistic halting von Neumann de�nite AMI over N and p be a �nitepartial state of S. Then p is a pre-program of S if and only if p computes ;7�!. ;:Let us considerN , let S be a realistic halting von Neumann de�nite AMI overN , and letI1 be a partial function from FinPartSt(S) to FinPartSt(S). We say that I1 is computableif and only if:(Def. 29) There exists a �nite partial state p of S such that p computes I1.We now state three propositions:(71) Let S be a realistic halting von Neumann de�nite AMI over N and F be a partialfunction from FinPartSt(S) to FinPartSt(S). If F = �; then F is computable.(72) Let S be a realistic halting von Neumann de�nite AMI over N and F be a partialfunction from FinPartSt(S) to FinPartSt(S). If F = ;7�!. ;; then F is computable.(73) Let S be a realistic halting von Neumann de�nite AMI over N , p be a pre-program of S, and F be a partial function from FinPartSt(S) to FinPartSt(S). IfF = ;7�!. Result(p); then F is computable.Let us consider N , let S be a realistic halting von Neumann de�nite AMI over N , andlet F be a partial function from FinPartSt(S) to FinPartSt(S). Let us assume that F iscomputable. A �nite partial state of S is said to be a program of F if:(Def. 30) It computes F .Next we state four propositions:(74) Let S be a realistic halting von Neumann de�nite AMI over N and F be a partialfunction from FinPartSt(S) to FinPartSt(S). If F = �; then every �nite partial stateof S is a program of F .(75) Let S be a realistic halting von Neumann de�nite AMI over N and F be a partialfunction from FinPartSt(S) to FinPartSt(S). If F = ;7�!. ;; then every pre-programof S is a program of F .(76) Let S be a realistic halting von Neumann de�nite AMI over N , p be a pre-program of S, and F be a partial function from FinPartSt(S) to FinPartSt(S). IfF = ;7�!. Result(p); then p is a program of F .(77) For every halting AMI S over N holds haltS is halting.

a mathematical model of cpu 10References[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics,1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.[2] Grzegorz Bancerek. K�onig's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/card_3.html.[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and �nite sequences. Journalof Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html.[4] Czes law Byli�nski. Basic functions and operations on functions. Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/funct_3.html.[5] Czes law Byli�nski. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.[6] Czes law Byli�nski. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.[7] Czes law Byli�nski. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.[8] Czes law Byli�nski. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_1.html.[9] Czes law Byli�nski. A classical �rst order language. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/cqc_lang.html.[10] Czes law Byli�nski. The modi�cation of a function by a function and the iteration of the composition of afunction. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html.[11] Czes law Byli�nski. Products and coproducts in categories. Journal of Formalized Mathematics, 4, 1992.http://mizar.org/JFM/Vol4/cat_3.html.[12] Agata Darmochwa l. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html.[13] C.C. Elgot and A. Robinson. Random access stored-program machines, an approach to programming lan-guages. J.A.C.M., 11(4):365{399, Oct 1964.[14] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/real_1.html.[15] Yatsuka Nakamura. On a mathematical model of cpu and algorithm. Technical report, Shinshu University,Aug 1991.[16] Andrzej Trybulec. Binary operations applied to functions. Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/funcop_1.html.[17] Andrzej Trybulec. Domains and their Cartesian products. Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/domain_1.html.[18] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989.http://mizar.org/JFM/Axiomatics/tarski.html.[19] Andrzej Trybulec. Function domains and Fr�nkel operator. Journal of Formalized Mathematics, 2, 1990.http://mizar.org/JFM/Vol2/fraenkel.html.[20] Micha l J. Trybulec. Integers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/int_1.html.[21] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.[22] Zinaida Trybulec and Halina �Swi�eczkowska. Boolean properties of sets. Journal of Formalized Mathematics,1, 1989. http://mizar.org/JFM/Vol1/boole.html.[23] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/relat_1.html.Received October 14, 1992Published October 17, 2000

