JOURNAL OF FORMALIZED MATHEMATICS
Volume 4, Released 1992, Published 2000
Inst. of Computer Science, University of Biatystok

A Mathematical Model of CPU

Yatsuka Nakamura Andrzej Trybulec
Shinshu University Warsaw University
Nagano Biatystok

Summary. This paper is based on a previous work of the first author [15] in
which a mathematical model of the computer has been presented. The model deals
with random access memory, such as RASP of C. C. Elgot and A. Robinson [13],
however, it allows for a more realistic modeling of real computers. This new model
of computers has been named by the author (Y. Nakamura, [15]) Architecture Model
for Instructions (AMI). It is more developed than previous models, both in the de-
scription of hardware (e.g., the concept of the program counter, the structure of
memory) as well as in the description of instructions (instruction codes, addresses).
The structure of AMI over an arbitrary collection of mathematical domains N con-
sists of:

- a non-empty set of objects,

- the instruction counter,

- a non-empty set of objects called instruction locations,
- a non-empty set of instruction codes,

- an instruction code for halting,

- a set of instructions that are ordered pairs with the first element being an in-
struction code and the second a finite sequence in which members are either
objects of the AMI or elements of one of the domains included in N,

- a function that assigns to every object of AMI its kind that is either an instruction
or an instruction location or an element of N,

- a function that assigns to every instruction its execution that is again a function
mapping states of AMI into the set of states.

By a state of AMI we mean a function that assigns to every object of AMI an element
of the same kind. In this paper we develop the theory of AMI. Some properties of
AMI are introduced ensuring it to have some properties of real computers:

- a von Neumann AMI, in which only addresses to instruction locations are stored
in the program counter,

- data oriented, those in which instructions cannot be stored in data locations,

- halting, in which the execution of the halt instruction is the identity mapping of
the states of an AMI,

- steady programmed, the condition in which the contents of the instruction loca-
tions do not change during execution,

- definite, a property in which only instructions may be stored in instruction loca-
tions.

We present an example of AMI called a Small Concrete Model which has been
constructed in [15]. The Small Concrete Model has only one kind of data: integers
and a set of instructions, small but sufficient to cope with integers.

MML Identifier: AMI_1.

1 ® Association of Mizar Users

A MATHEMATICAL MODEL OF CPU 2

WWW: http://mizar.org/JFM/Vol4/ami_1.html

The articles 18], [22], [8], [14), [2], [23], [3], [21], [6], [17], [12], [20], 1], [9], [19], [16], [10},
[3], [11], [4], and [7] provide the notation and terminology for this paper.

1. PRELIMINARIES

The following three propositions are true:
(1) N#£Z.
(2) For all sets a, b holds 1 # (a, b).
(3) For all sets a, b holds 2 # {(a, b).

Let X be a set. One can verify that XX is non empty.
We now state two propositions:

(4) For all sets a, b, ¢, d and for every function g such that dom g = {a,b} and g(a) = ¢
and g(b) = d holds g = [a — ¢,b — d].

(5) For all sets a, b, ¢, d such that a # b holds [[[a — {c},b — {d}] = {[a —
e, br— d]}.

Let I; be a set. We say that I; has non empty elements if and only if:

Let us mention that there exists a set which is non empty and has non empty elements.

Let A be a non empty set. One can check that {A} has non empty elements. Let B be
a non empty set. Note that {A, B} has non empty elements.

Let A, B be sets with non empty elements. Note that A U B has non empty elements.

2. (GENERAL CONCEPTS

In the sequel N denotes a set with non empty elements.

Let N be a set. We introduce AMI’s over N which are systems

(objects, an instruction counter, instruction locations, instruction codes, instructions,
a object kind, a execution),
where the objects constitute a non empty set, the instruction counter is an element of
the objects, the instruction locations constitute a non empty subset of the objects, the
instruction codes constitute a non empty set, the instructions constitute a non empty subset
of [the instruction codes, (|J N U the objects)*], the object kind is a function from the
objects into N U{the instructions, the instruction locations }, and the execution is a function
from the instructions into (] the object kind)IIthe object kind

Let N be a set and let S be an AMI over N. An object of S is an element of the objects
of S. An instruction-location of S is an element of the instruction locations of S.

Let N be a set and let S be an AMI over N.

(Def. 2) An element of the instructions of S is said to be an instruction of S.
The functor ICg yields an object of S and is defined by:
(Def. 3) ICg = the instruction counter of S.

Let N be a set, let S be an AMI over N, and let o be an object of S. The functor
ObjectKind(o) yielding an element of N U {the instructions of S, the instruction locations
of S } is defined by:

A MATHEMATICAL MODEL OF CPU 3

(Def. 4) ObjectKind(o) = (the object kind of S)(o).

Let A, B be sets and let f be a function from A into B. Note that [] f is functional.

Let A be a set, let B be a set with non empty elements, and let f be a function from A
into B. Observe that [] f is non empty.

Let P be a functional set. Note that every element of P is function-like and relation-like.

Let N be a set and let S be an AMI over N. A state of S is an element of [] (the object
kind of 5).

Let N be a set with non empty elements, let S be an AMI over N, let I be an instruction
of S, and let s be a state of S. The functor Exec(I, s) yields a state of S and is defined as
follows:

(Def. 5) Exec(I, s) = (the execution of S)(I)(s).

Let N be a set. The functor AMI; yielding a strict AMI over N is defined by the
conditions (Def. 6).

(Def. 6) The objects of (AMI;) = {0,1} and the instruction counter of (AMI;) = 0 and
the instruction locations of (AMI;) = {1} and the instruction codes of (AMIL)
= {0} and the instructions of (AMI;) = {{0, £€)} and the object kind of (AMI,)
= [0 — {1},1 — {(0,¢)}] and the execution of (AMI;) = {(0,e)} —

ldH[Ob—){l},lkﬁ{(O, N

Let us consider N, let S be an AMI over N, and let I be an instruction of S. We say
that I is halting if and only if:

(Def. 7) For every state s of S holds Exec(I,s) = s.
Let us consider N and let S be an AMI over N. We say that S is halting if and only if:

(Def. 8) There exists an instruction I of S such that I is halting and for every instruction
J of S such that J is halting holds I = J.

One can prove the following proposition
(6) AMLI, is halting.

Let us consider N. Note that AMI, is halting.

Let us consider N. Note that there exists an AMI over N which is halting.

Let us consider N and let S be a halting AMI over N. The functor haltg yields an
instruction of S and is defined by:

(Def. 9) There exists an instruction I of S such that I is halting and haltg = I.

Let us consider N and let S be a halting AMI over N. Note that haltg is halting.
Let N be a set and let I; be an AMI over N. We say that I; is von Neumann if and
only if:

(Def. 10) ObjectKind(IC(;,)) = the instruction locations of I;.

Let N be a set and let I; be an AMI over N. We say that [; is data-oriented if and
only if:

(Def. 11) (The object kind of I;) ! ({the instructions of I; }) C the instruction locations of
L.

Let N be a set with non empty elements and let I; be an AMI over N. We say that Iy
is steady-programmed if and only if:

(Def. 12) For every state s of I; and for every instruction ¢ of I; and for every instruction-
location [of I; holds (Exec(z, s))(l) = s(l).

A MATHEMATICAL MODEL OF CPU 4

Let N be a set and let I; be an AMI over N. We say that I; is definite if and only if:
(Def. 13) For every instruction-location [of I; holds ObjectKind(l) = the instructions of I.

In the sequel F is a set.
The following propositions are true:

7

AMI, is von Neumann.

AMI, is data-oriented.

(
8
(

(10) AML, is steady-programmed.

)
)
9) For all states s1, so of AMI; holds s; = sa.
)
) AMI; is definite.

(11

Let F be a set. Observe that AMI; is data-oriented.

Let F be a set. One can check that AMI; is von Neumann and definite.

Let N be a set with non empty elements. Note that AMI; is steady-programmed.

Let F be a set. One can check that there exists an AMI over E which is data-oriented
and strict.

Let M be a set. Note that there exists an AMI over M which is von Neumann, data-
oriented, definite, and strict.

Let us consider N. Observe that there exists an AMI over N which is von Neumann,
data-oriented, halting, steady-programmed, definite, and strict.

Let N be a set with non empty elements, let S be a von Neumann AMI over N, and let
s be a state of S. The functor IC; yielding an instruction-location of S is defined by:

(Def. 14) IC, = s(ICg).

3. PRELIMINARIES

We adopt the following convention: z, y, z, A, B, C denote sets, f, g, h denote functions,
and ¢, j, k denote natural numbers.
One can prove the following propositions:

(12) A misses B\ C iff B misses A\ C.

(13) For every function f holds 71 (dom f x rng f)°f = dom f.

(14) If f ~ g and (z, y) € f and (=, z) € g, then y = 2.

(15) Suppose for every x such that z € A holds z is a function and for all functions f,

g such that f € A and g € A holds f ~ g. Then |J A4 is a function.
If dom f C AU B, then fTA+-f|B = f.
dom f C dom(f+-g) and dom g C dom(f+-g).

For all sets z1, 22, y1, y2 holds [z1 — y1, 22 — y2] = (z1-—y1)+-(22——y2).

For all sets a, b, ¢ holds [a — b,a — ¢] = a——c.

(16)

(17)

(18)

(19) For all z, y holds z+—y = {(z, y)}.

(20)

(21) For every function f holds dom f is finite iff f is finite.
(22)

If z € [] f, then z is a function.

A MATHEMATICAL MODEL OF CPU 5

4. SUPERPRODUCTS

Let f be a function. The functor [] f yields a set and is defined by:

(Def. 15) =z €[] f iff there exists g such that z = g and dom g C dom f and for every z such
that z € dom g holds g(z) € f(z).

Let f be a function. One can check that] f is functional and non empty.
One can prove the following propositions:

(23) x €[] f iff there exists g such that z = g and dom g C dom f and for every z such
that z € dom g holds g(z) € f(z).

(24) If domg C dom f and for every z such that z € domg holds g(z) € f(z), then

gell 1.

(25) If g €] f, then domg C dom f and for every z such that z € domg holds
9(z) € f(z).

(26) Oell f

@7 IIfCII /.

(28) If z € I] f, then z is a partial function from dom f to |Jrng f.

(29) Ifge]]fand he]] f, then g+-h €[] f.

(30) If[]f # 0, then g € [] f iff there exists h such that A € [] f and g < h.

(31) I f Cdom f=Jrngf.

(32) If fCg, then JT f C]] g.

(33)] O={0O}.

(34) A-B=][(A— B).

(35) For all non empty sets A, B and for every function f from A into B holds [[f =

[T (f1{z; = ranges over elements of A: f(z) # 0}).

(36) Ifz €domf andy € f(z), then 2=y € [f.

(37) II f ={O} iff for every z such that z € dom f holds f(z) = 0.

(38) If A CTJ f and for all functions hj, ha such that hy € A and hy € A holds hy = ho,
then A €[] /.

(39) Ifgmhandge]] fand he][] f, then gUh €] f.

(40) IfgChand he]] f,thenge]] f.

(41) Ifge]l f, then glA €] f.

(42) Ifg €I f, then g[A € [T (f14).

(43) Ifh €[] (f+-g), then there exist functions f’, g’ such that f' € [[fandg' €[] ¢

and h = f'+-¢'.

(44) For all functions f', g’ such that dom g misses dom f' \ dom g’ and f' € [[f and
9" €] g holds f'+-¢' € [T (f+-9)-

(45) For all functions f’, ¢’ such that dom f' misses domg \ domg’ and f' € [[f and
g €] g holds f'+-¢' € [T (f+-9).

(46) Ifge]l fand he]] f, then g+-h €] f.

(47) For all sets z1, 2, Y1, y2 such that z; € dom f and y; € f(z1) and z5 € dom f and
y2 € f(z2) holds [z1 —> y1, 22 —> 2] € [] /-

A MATHEMATICAL MODEL OF CPU 6

5. (GENERAL THEORY

Let us consider N, let S be a von Neumann definite AMI over N, and let s be a state of S.
The functor Curlnstr(s) yields an instruction of S and is defined by:

(Def. 16) Curlnstr(s) = s(IC;).

Let us consider N, let S be a von Neumann definite AMI over N, and let s be a state
of S. The functor Following(s) yields a state of S and is defined as follows:

(Def. 17) Following(s) = Exec(Curlnstr(s), s).

Let us consider N, let S be a von Neumann definite AMI over N, and let s be a state
of S. The functor Computation(s) yielding a function from N into [] (the object kind of S)
is defined by:

(Def. 18) (Computation(s))(0) = s and for every i holds (Computation(s))(i + 1) =
Following((Computation(s))(3)).

Let us consider N, let S be an AMI over N, let f be a function from N into [] (the
object kind of S), and let us consider k. Then f(k) is a state of S.

Let us consider N, let S be a halting von Neumann definite AMI over N, and let I; be
a state of S. We say that [is halting if and only if:

(Def. 19) There exists k such that Curlnstr((Computation(/;))(k)) = haltg.
Let N be a set and let I; be an AMI over N. We say that I; is realistic if and only if:
(Def. 20) The instructions of I; # the instruction locations of I;.

Next we state the proposition

(48) Let S be a von Neumann definite AMI over E. Suppose S is realistic. Then it is
not true that there exists an instruction-location [of S such that ICg = 1.

In the sequel S is a von Neumann definite AMI over N and s is a state of S.
Next we state four propositions:

(49) (Computation(s))(0) = s.

(50) (Computation(s))(k + 1) = Following((Computation(s))(k)).

(51) For every k holds (Computation(s))(:+k) = (Computation((Computation(s))())) (k).
(52) Suppose i < j. Let given N, S be a halting von Neumann definite AMI over

N, and s be a state of S. If Curlnstr((Computation(s))(i)) = haltg, then
(Computation(s))(j) = (Computation(s))(i).

Let us consider N, let S be a halting von Neumann definite AMI over N, and let s be
a state of S. Let us assume that s is halting. The functor Result(s) yields a state of .S and
is defined by:

(Def. 21) There exists k such that Result(s) = (Computation(s))(k) and CurInstr(Result(s)) =
halts.

One can prove the following proposition

(53) Let S be a steady-programmed von Neumann definite AMI over N, s be a state of
S, and i be an instruction-location of S. Then s(i) = (Following(s))(z).

Let us consider NV, let S be a definite AMI over N, let s be a state of S, and let [be an
instruction-location of S. Then s(I) is an instruction of S.
The following propositions are true:

A MATHEMATICAL MODEL OF CPU 7

(54) Let S be a steady-programmed von Neumann definite AMI over N, s be a state of
S, i be an instruction-location of S, and given k. Then s(i) = (Computation(s))(k)(z).

(55) Let S be a steady-programmed von Neumann definite AMI over N and s be a state
of §. Then (Computation(s))(k+1) = Exec(s(IC(computation(s))(k))> (Computation(s))(k)).

(56) Let S be a steady-programmed von Neumann halting definite AMI over N, s be
a state of S, and given k. If s(IC(computation(s))(k)) = halts, then Result(s) =
(Computation(s)) (k).

(57) Let S be a steady-programmed von Neumann halting definite AMI over N and s
be a state of S. If there exists k such that s(IC(computation(s))(k)) = halts, then for
every ¢ holds Result(s) = Result((Computation(s))(4)).

Let us consider N, let S be an AMI over N, and let o be an object of S. Note that
ObjectKind (o) is non empty.

6. FINITE SUBSTATES

Let N be a set and let S be an AMI over N. The functor FinPartSt(S) yields a subset of
IT (the object kind of S) and is defined by:

(Def. 22) FinPartSt(S) = {p; p ranges over elements of [] (the object kind of S): p is finite}.

Let N be a set and let S be an AMI over N. An element of [] (the object kind of S)
is said to be a finite partial state of S if:

(Def. 23) Tt is finite.

Let us consider N, let S be a von Neumann definite AMI over N, and let I; be a finite
partial state of S. We say that I; is autonomic if and only if:

(Def. 24) For all states sy, sa of S such that I; C s; and I; C sy and for every ¢ holds

(Computation(sy))(i)| dom I; = (Computation(ss))()[dom 7.

Let us consider N, let S be a halting von Neumann definite AMI over N, and let I; be
a finite partial state of S. We say that I; is halting if and only if:

(Def. 25) For every state s of S such that I; C s holds s is halting.

Let us consider N and let I; be a von Neumann definite AMI over N. We say that Iy
is programmable if and only if:

(Def. 26) There exists a finite partial state of I; which is non empty and autonomic.

We now state two propositions:

(58) Let S be a von Neumann definite AMI over N, A, B be sets, and 1, [be objects
of S. Suppose ObjectKind(l;) = A and ObjectKind(lz) = B. Let a be an element of
A and b be an element of B. Then [l; — a,lo — b] is a finite partial state of S.

(59) Let S be a von Neumann definite AMI over N, A be a set, and /; be an object of
S. Suppose ObjectKind(l;) = A. Let a be an element of A. Then l;+——a is a finite
partial state of S.

Let us consider N, let S be a von Neumann definite AMI over N, let [; be an object of
S, and let a be an element of ObjectKind(l;). Then [;——a is a finite partial state of S.

Let us consider N, let S be a von Neumann definite AMI over N, let [1, [be objects of
S, let a be an element of ObjectKind(l1), and let b be an element of ObjectKind(l2). Then
[l1 — a,lo — b] is a finite partial state of S.

Next we state two propositions:

A MATHEMATICAL MODEL OF CPU 8

(60) AML, is realistic.
(61) AML, is programmable.

Let us consider E. One can check that AMI; is realistic.

Let us consider N. Note that AMI; is programmable.

Let us consider E. Note that there exists an AMI over E which is data-oriented, realistic,
and strict.

Let M be a set. Note that there exists an AMI over M which is data-oriented, realistic,
strict, von Neumann, and definite.

Let us consider N. Note that there exists a von Neumann definite AMI over N which
is data-oriented, halting, steady-programmed, realistic, programmable, and strict.

Next we state two propositions:

(62) Let S be an AMI over N, s be a state of S, and p be a finite partial state of S.
Then s|dom p is a finite partial state of S.

(63) For every set N and for every AMI S over N holds 0 is a finite partial state of S.

Let us consider N and let S be a programmable von Neumann definite AMI over N. One
can check that there exists a finite partial state of S which is non empty and autonomic.

Let N be a set, let S be an AMI over N, and let f, g be finite partial states of S. Then
f+-g is a finite partial state of S.

7. PREPROGRAMS
The following four propositions are true:

(64) Let S be a halting realistic von Neumann definite AMI over N, I3 be an instruction-
location of S, and ! be an element of ObjectKind(ICg). Suppose I = l3. Let h be
an element of ObjectKind(l3). If h = haltg, then for every state s of S such that
[ICs — I,l3 — h] C s holds CurInstr(s) = haltg.

(65) Let S be a halting realistic von Neumann definite AMI over N, [3 be an instruction-
location of S, and ! be an element of ObjectKind(ICg). Suppose [= [3. Let h be an
element of ObjectKind(ls). If A = haltg, then [ICs — I,l35 — h] is halting.

(66) Let S be a realistic halting von Neumann definite AMI over N, [3 be an instruction-
location of S, and ! be an element of ObjectKind(ICg). Suppose [= l3. Let h
be an element of ObjectKind(l3). Suppose h = halts. Let s be a state of S. If
[ICs — I,l3 — h] C s, then for every 7 holds (Computation(s))(i) = s.

(67) Let S be a realistic halting von Neumann definite AMI over N, [3 be an instruction-
location of S, and | be an element of ObjectKind(ICg). Suppose [= l3. Let h be an
element of ObjectKind(l3). If h = haltg, then [ICg — I,l3 — h] is autonomic.

Let us consider N and let S be a realistic halting von Neumann definite AMI over N.
Observe that there exists a finite partial state of S which is autonomic and halting.

Let us consider NV and let S be a realistic halting von Neumann definite AMI over N.
A pre-program of S is an autonomic halting finite partial state of S.

Let us consider N, let S be a realistic halting von Neumann definite AMI over N, and
let s be a finite partial state of S. Let us assume that s is a pre-program of S. The functor
Result(s) yielding a finite partial state of S is defined by:

(Def. 27) For every state s’ of S such that s C s’ holds Result(s) = Result(s’)| dom s.

A MATHEMATICAL MODEL OF CPU 9

8. COMPUTABILITY

Let us consider N, let S be a realistic halting von Neumann definite AMI over N, let p be
a finite partial state of S, and let F' be a function. We say that p computes F' if and only
if the condition (Def. 28) is satisfied.

(Def. 28) Let x be a set. Suppose z € dom F. Then there exists a finite partial state s of S
such that z = s and p+-s is a pre-program of S and F'(s) C Result(p+-s).

Next we state three propositions:

(68) Let S be a realistic halting von Neumann definite AMI over N and p be a finite
partial state of S. Then p computes [J.

(69) Let S be a realistic halting von Neumann definite AMI over N and p be a finite par-
tial state of S. Then p is a pre-program of S if and only if p computes f——Result(p).

(70) Let S be a realistic halting von Neumann definite AMI over N and p be a finite
partial state of S. Then p is a pre-program of S if and only if p computes §——@.

Let us consider N, let S be a realistic halting von Neumann definite AMI over N, and let
I, be a partial function from FinPartSt(S) to FinPartSt(S). We say that I; is computable
if and only if:

(Def. 29) There exists a finite partial state p of S such that p computes I;.

We now state three propositions:

(71) Let S be a realistic halting von Neumann definite AMI over N and F' be a partial
function from FinPartSt(S) to FinPartSt(S). If F =, then F' is computable.

(72) Let S be a realistic halting von Neumann definite AMI over N and F' be a partial
function from FinPartSt(S) to FinPartSt(S). If F = §——0, then F is computable.

(73) Let S be a realistic halting von Neumann definite AMI over N, p be a pre-
program of S, and F be a partial function from FinPartSt(S) to FinPartSt(S). If
F = (——Result(p), then F is computable.

Let us consider N, let S be a realistic halting von Neumann definite AMI over N, and
let F' be a partial function from FinPartSt(S) to FinPartSt(S). Let us assume that F is
computable. A finite partial state of S is said to be a program of F' if:

(Def. 30) It computes F.

Next we state four propositions:

(74) Let S be a realistic halting von Neumann definite AMI over N and F' be a partial
function from FinPartSt(S) to FinPartSt(S). If F = [J, then every finite partial state
of S is a program of F.

(75) Let S be a realistic halting von Neumann definite AMI over N and F' be a partial
function from FinPartSt(S) to FinPartSt(S). If F = §——0, then every pre-program
of S is a program of F.

(76) Let S be a realistic halting von Neumann definite AMI over N, p be a pre-
program of S, and F' be a partial function from FinPartSt(S) to FinPartSt(S). If
F = (——Result(p), then p is a program of F.

(77) For every halting AMI S over N holds haltg is halting.

[10]

(1]

(12]

(13]

(14]

[15]

16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

A MATHEMATICAL MODEL OF CPU 10

REFERENCES

Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics,
1, 1989. http://mizar.org/JFM/Voll/nat_1.html.

Grzegorz Bancerek. Konig’s theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/
Vol2/card_3.html.

Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Journal
of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finseq_1.html.

Czestaw Bylinski. Basic functions and operations on functions. Journal of Formalized Mathematics, 1, 1989.
http://mizar.org/JFM/Voll/funct_3.html.

Czestaw Byliniski. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http:
//mizar.org/JFM/Voll/funct_1.html.

Czestaw Byliniski. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http:
//mizar.org/JFM/Voll/funct_2.html.

Czestaw Byliniski. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/
Voll/partfuni.html.

Czestaw Byliriski. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http:
//mizar.org/JFM/Voll/zfmisc_1.html.

Crzestaw Bylinski. A classical first order language. Journal of Formalized Mathematics, 2, 1990. http:
//mizar.org/JFM/Vol2/cqc_lang.html.

Czestaw Byliniski. The modification of a function by a function and the iteration of the composition of a
function. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html.

Czestaw Byliniski. Products and coproducts in categories. Journal of Formalized Mathematics, 4, 1992.
http://mizar.org/JFM/Vol4/cat_3.html.

Agata Darmochwal. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/
finset_1.html.

C.C. Elgot and A. Robinson. Random access stored-program machines, an approach to programming lan-
guages. J.A.C.M., 11(4):365-399, Oct 1964.

Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989.
http://mizar.org/JFM/Voll/real_1.html.

Yatsuka Nakamura. On a mathematical model of cpu and algorithm. Technical report, Shinshu University,
Aug 1991.

Andrzej Trybulec. Binary operations applied to functions. Journal of Formalized Mathematics, 1, 1989.
http://mizar.org/JFM/Voll/funcop_1.html.

Andrzej Trybulec. Domains and their Cartesian products. Journal of Formalized Mathematics, 1, 1989.
http://mizar.org/JFM/Voll/domain_1.html.

Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989.
http://mizar.org/JFM/Axiomatics/tarski.html.

Andrzej Trybulec. Function domains and Fraenkel operator. Journal of Formalized Mathematics, 2, 1990.
http://mizar.org/JFM/Vol2/fraenkel.html.

Michat J. Trybulec. Integers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/int_
1.html.

Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/
JFM/Voll/subset_1.html.

Zinaida Trybulec and Halina éwigczkowska. Boolean properties of sets. Journal of Formalized Mathematics,
1, 1989. http://mizar.org/JFM/Voll/boole.html.

Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989.
http://mizar.org/JFM/Voll/relat_1.html.

Received October 14, 1992

Published October 17, 2000

