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is a useful object for post-optimality analysis. The known polynomial-time algorithmsfor linear programminggenerate optimal solutions which are not necessarily basic. Givenany primal-optimal solution (not necessarily basic), it is easy to �nd a primal-optimal ba-sis. Analogously, given any dual-optimal solution, it is easy to �nd a dual-optimal basis.However, none of the two bases found in this way is guaranteed to be an optimal basis.In fact, the dual solution associated with a primal-optimal basis and the primal solutionassociated with a dual-optimal basis may both be infeasible in their respective problems.Furthermore, if the problem is put into the combined primal-dual form, a primal-optimalbasis of the combined form yields a primal-optimal basis and a dual-optimal one for theoriginal problem, but these two bases may be distinct.Since no polynomial-time variant of the simplex method is known, this raises thequestion whether an optimal basis can be found in polynomial time in terms of the inputsize of a problem with rational data. We answer this question in the a�rmative. Actu-ally, we prove a stronger result using the concept of strongly polynomial time complexity.For simplicity, we say that an algorithm for linear programmingruns in strongly polyno-mial time if it performs no more than p(m;n) arithmetic operations and comparisons.(When applied to problems with rational data, the strongly polynomial algorithms ofthis paper involve only numbers of polynomial size.) It is not known whether there existsa strongly polynomial algorithm for the general linear programming problem. Since thisquestion is open and seems di�cult, we consider here a related problem concerning basicsolutions. We prove the following two complementary theorems which shed some light2



on the complexity of �nding optimal bases:Theorem 0.1. If there exists a strongly polynomial time algorithm that �nds an optimalbasis, given an optimal solution for either the primal or the dual, then there exists astrongly polynomial algorithm for the general linear programming problem.Theorem 0.2. There exists a strongly polynomial time algorithm that �nds an optimalbasis, given optimal solutions for both the primal and the dual.We give the necessary de�nitions and the proofs in Section 1.1. The resultsConsider the linear programming problemin standard form(P ) Maximize cTxsubject to Ax = bx � 0where the rows of A 2 Rm�n are assumed to be linearly independent. The dual problemis:(D) Minimize bTysubject to ATy � cA basis is a nonsingular submatrix B 2 Rm�m of A. A basis B is called primal-optimal ifB�1b is an optimal solution for (P ) (variables not corresponding to columns of B are set3



to zero). Denote, as usual, by cB the restriction of c to the components correspondingto the columns of B. A basis B is called dual-optimal if (BT )�1cB is an optimal solutionfor (D). We call B optimal if it is both primal- and dual-optimal. It is well-known, inview of the duality theorem, that an optimal basis is characterized by the inequalitiesB�1b � 0and cTBB�1A � cT :We are interested here in the complexity of �nding an optimal basis. It follows fromthe theory of the simplex method that such a basis exists if the problem has an optimalsolution.The proof of Theorem 0.1 uses Theorem 0.2, and hence we �rst prove the latter.Proof of Theorem 0.2: Suppose x and y are given optimal solutions for (P ) and(D), respectively. Let X denote the submatrix of A consisting of the columns Aj suchthat xj > 0. By the complementary slackness condition,yTX = cTX;where cX denotes the restriction of c to the coordinates corresponding to X. If thecolumns of X are linearly dependent, we can �nd a vector z 6= 0 such that Xz = 0, andhence cTXz = 0. It follows that for some scalar t, the vector x0, de�ned by x0j = xj + tzjfor j in X and x0j = 0 otherwise, is an optimal solution with a smaller set of positive4



coordinates. Such a vector x0 can obviously be found in strongly polynomial time .Successive applications of this principle �nally yield an optimal solution x0 where theset X 0 of columns Aj such that x0j > 0 is linearly independent. If X 0 has m columnsthen we have found an optimal basis. Otherwise, we expand the set X as follows.First, consider the submatrix Y of A consisting of the columns Aj such that yTAj = cj.If Y contains any column which is independent of the columns in X 0, then add thiscolumn to X 0. Repeat this step until all the columns of Y are linearly dependent onthe columns of the resulting set X 0. (This procedure can be easily implemented byGaussian eliminations.) If at this point the matrix X 0 still consists of less than mcolumns then we expand further as follows.We now wish to move to a point y0 with one additional independent column in theset Y . By assumption, the rows of A are linearly independent and hence there existsa column Aj which is linearly independent of the columns in X 0. Thus, this column isnot in Y and hence yTAj > cj . We now solve the set of equations:zTX 0 = 0zTAj = 1 :A solution exists since the Aj together with the columns of X 0 constitute a linearlyindependent set. Now, consider vectors of the form y� tz, where t is any scalar. First,5



since every column of Y is now a linear combination of the columns of X 0, we have(y � tz)TY = cTY :Moreover, consider the numbert0 = min(yTAk � ckzTAk : zTAk > 0) :Notice that t0 is well-de�ned since zTAj = 1. The vector y0 = y � t0z is also a dual-optimal solution as can be veri�ed from the above. The set Y 0 of columns Ak suchthat y0TAk = ck now contains at least one column which is linearly independent ofthe columns of X 0. We now add such columns to X 0, one at a time, making sure thatX 0 remains linearly independent. We then �nd another vector z, and this process isrepeated until X 0 contains m linearly independent columns. Note that throughout thisprocess we maintain optimal solutions x0 and y0 such that for every column Ak not inX 0, we have x0k = 0, and the set Y 0 contains X 0. Thus, at the end X 0 is an optimalbasis. The whole process does not take more than n \pivot" steps since columns whichleave the set X prior to the generation of the �rst set X 0 never come back, and the setX 0 only increases. Thus, the whole algorithm runs in strongly polynomial time .We note that if the given optimal solutions are vertices of the respective polyhedrathen the optimal basis found by the above procedure yields the same pair of solutions.For the proof of Theorem 0.1 we �rst state the subject problems:Problem 1.1. Given A; b; c, �nd an optimal basis or conclude that no such basis exists.6



Problem 1.2. Given A; b; c, such that (P ) and (D) are known to have optimal solutions,�nd an optimal basis.Problem 1.3. Given A; b; c and an optimal solution x of (P ), �nd an optimal basis.The proof of Theorem 0.1 follows from the following reductions:Proposition 1.4. If there exists a strongly polynomial time algorithm for Problem 1.3then there exists one for Problem 1.2.Proof: We reduce Problem 1.2 to Problem 1.3. Given A; b; c, such that (P ) and(D) have optimal solutions, consider the following problem where (P ) and (D) arecombined, and y is replaced by z � w:(PD) Maximize cTx �bTz +bTwsubject to Ax = b�ATz +ATw +v = �cx; z; w; v � 0 :By the duality theorem, (PD) has an optimal solution and the optimal value is 0.Consider the following problem with an additional variable �:(PD0) Maximize cTx �bTz +bTwsubject to Ax �b� = 0�ATz +ATw +v +c� = 0x; z; w; v; � � 0 :The dual of (PD0) amounts to the following system of inequalities:(DP 0) cTu �bTy � 0ATy � c�Au � �bAu � bu � 0:7



Since (DP 0) is feasible, it follows that the optimal value of (PD0) is also 0. Thus, wehave a trivial optimal solution for (PD0), namely, set x, z, w, v and � to zero. Now,by assumption, an optimal basis for (PD0) can be found in strongly polynomial time .Given an optimal basis, we can compute optimal solutions for both (PD0) and (DP 0).We are interested in the latter. Let (y; u) be such an optimal solution for (DP 0).Obviously, u is an optimal solution for (P ) and y is an optimal solution for (D). ByTheorem 0.2, we can now �nd an optimal basis for (P ) in strongly polynomial time .Proposition 1.5. If there exists a strongly polynomial time algorithm for Problem 1.2then there exists one for Problem 1.1.Proof: Suppose there exists a strongly polynomial time algorithm for Problem 1.2.Given A; b; c, consider the following problem:(S) Maximize cTx �bTy ��subject to Ax +b� = bATy +c� � ccTx �bTy � 0x; � � 0The problem (S) can obviously be put into the standard form of (P ). Now, (S) isfeasible (set x and y to zero and � = 1). Moreover, the value of the objective functionon the feasible domain of (S) is bounded by 0. Thus, (S) has an optimal solution whichby assumption can be found in strongly polynomial time . The x part and the y partof such a solution are optimal solutions for (P ) and (D), respectively, if and only if8



� = 0. If � = 0, then by Theorem 0.2 an optimal basis for (P ) can be found in stronglypolynomial time .2. ConclusionAn algorithm for �nding an optimal basis has to work on the problem from two \sides":the primal and the dual. If an algorithm concentrates on the primal side or simplydiscards all the information obtained throughout its execution and reports only a primal-optimal solution, then �nding a dual-optimal solution given a primal-optimal one maybe as hard as solving the problem from the beginning. This observation is importantfor the implementation of interior point algorithms. If an algorithm does not generatevalues for the dual variables then in the worst case it may be hard to �nd a dual-optimalsolution. If the algorithm generates both primal and dual values then it is relatively easyto �nd an optimal basis.Finally, we note that the e�ciency of the algorithm given in the proof of Theorem 0.2is very closely related to the amount of degeneracy in the problem. The more degeneratethe problem is, more steps might be needed to construct an optimal basis from a pair ofoptimal solutions for the primal and the dual problems. We also note that the work ofour algorithms can be carried out in a tableau form just like the simplex method.9
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