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AbstractDynamic slicing is a technique for isolating segments of a program that (potentially)contribute to the value computed at a point of interest. Dynamic slicing for restricted�rst-order imperative languages has been extensively studied in literature. In contrast,little research has been done with regard to the slicing of higher-order programs. Most�rst-order imperative programming languages are statement-based while most higher-orderprogramming languages are expression-based. Unlike �rst-order programs, higher-orderprograms have no simple concept of static control ow: control ow depends on the bind-ing of formal parameters to actuals. Because of these di�erences, formalising a de�nitionof slicing for higher-order programs involves some novel concepts.The aim of the work, presented here, is to extract `executable' slices of higher-orderprograms solely from the execution trace. In the absence of assignments, i.e. in purelyfunctional programs, dynamic slices satisfying very strong criteria can be extracted. This isbecause purely functional languages have a demand-driven evaluation strategy. A realistichigher-order programming language, like Standard ML (SML), uses imperative featureslike assignments and exceptions. We provide algorithms to compute dynamic slices ofprograms containing such features.It is shown that, just like �rst-order programs, higher-order programs can be instru-mented to collect data, regarding its dynamic slice, during execution. We have imple-mented a tool which performs such instrumentation on core SML programs. Experimentsconducted, with the tool, throw light on the utility and limitations of dynamic slicing astechnique for analysing higher-order programs.



Chapter 1
Introduction
A program slice consists of the parts of a program that (potentially) a�ect the valuescomputed at some point of interest, referred to as a slicing criterion. Weiser, in his seminalwork [65, 67]1, was the �rst to give formal de�nitions and algorithms in this area. In [66],he presents a justi�ed claim that programmers mentally compute the slice associated witha break-point, when debugging a program. A �rst-order imperative program, withoutprocedure calls, is essentially a sequence of statements. Slicing, for such programs, involvesisolating a set of statements to be included in the slice. The new program, obtained afterthe deletion of the subset of statements to be excluded, is still an executable program andis a program slice, if it displays the same behavior at the point of interest. This is highlyuseful in debugging: if we are getting a wrong value at a break-point, then, during re-execution, we would like to execute only those statements which contributed to the valuecomputed at the breakpoint. Such an approach can signi�cantly reduce the time requiredto debug a program.The informal de�nition of program slicing talks about isolating parts of a program thatpotentially a�ect the values computed at some point of interest. This isolation, of parts ofa program, may be for a speci�c input to the program, in which case it is called dynamicslicing . On the other hand, we may want to isolate parts of a program which include allparts of a program that potentially a�ect the values computed at some point of interest,over all possible inputs, in which case it is called static slicing .1One of the early presentations [67], contains seriously awed de�nitions. These have been pointed outand corrected in [44]. 1



For example, in Fig 1.1, the program (a) has the program (b) as its executable dynamicslice, if the slicing criterion is the value of x printed out at the end of program (a). Thestatement \x++" is not included in the slice because the incremented value of x producedat the end of the loop is discarded.x = 1 ;y = 2 ;z = 7 ;while (z > 0) doif (z == 6) then y = 3 ;x++ ;z�� ;end ;if (x > 9) then y = 4 ;if (y == 3) then x = 9 else x = x + 10 ;print(x) ;
z = 7 ;while (z > 0) doif (z == 6) then y = 3 ;z�� ;end ;if (y == 3) then x = 9 else ;print(x) ;(a) (b)Figure 1.1In Fig 1.1(a), if the initial value of z is set to 6 instead of 7 then the statement \z-- ; "does not explicitly `contribute' to the value of x printed out at the end of the program: itmerely ensures that the while loop terminates. There are approaches to dynamic slicingthat do not include such statements, e.g [6]. Such slices, of course, are not executableprograms. Agrawal et al,[4, 5], have developed a sophisticated debugging tool, SPYDER,for a small subset of the programming language C, based on this principle.The transition from intuition to a well-formed de�nition, for executable slices ofhigher-order programs, is not so obvious a step. This can be seen from the followingexample: ( (�y: y)(�x: 4) )(20 + 30)Since the term (20 + 30) does not raise an arithmetic exception, it does not `contribute'to the value returned by the original program. Unlike the �rst-order case, simple deletionof the term (20 + 30) does not leave behind a program that returns the same answer.2



Replacement of the subterm (20 + 30) by some constant/canonical integer value worksfor this example. But if a higher-order term does not contribute to the answer then areplacement strategy may not be obvious.let fun F f x y = let val z = f xinif (y=1) then 90 else zendinF (G f1) 2 3 + F (H f2) 0 1end Figure 1.2A higher-order program, written in SML, is presented in Fig 1.2. The variables G,H, f1 and f2 in the program are left unde�ned as they are not relevant to the pointwe want to illustrate. The subterm (H f2) does not contribute to the value returnedby the program as the term (F (H f2) 0 1) evaluates to the constant 90. To de�nean executable dynamic slice for this program, we need to present an altered version ofthe program in which the term (H f2) is either absent or not evaluated. The alterationis de�nitely not as trivial as term deletion or replacement by some canonical term, as(H f2) evaluates to a function of type (int�> int).Another concept which we would like to present informally is that of relevant slicing .This concept was developed by Agrawal et al [7] in the context of incremental regressiontesting. Let us consider a software package that has been developed and subsequentlytested by a large and comprehensive test suite. If the next version of the software packagemade only small and scattered changes to its predecessor then we would like to knowwhether a particular test, in the suite, need not be rerun because the changes made to thesoftware were not relevant to the execution of the test. On a more formal footing, let usconsider the language L presented in Page 8. Let the set of allowable changes to a programbe changes made to expressions e within statements.The relevant slice of a program, with respect to a slicing criterion, not only includes thedynamic slice, with respect to the slicing criterion, but also statements that were executed3



and did not inuence the slicing criterion but could have inuenced it, had they evaluateddi�erently.Consider the programs presented in Fig 1.3.a = 2 ;b = 2 ;if (a > 3) then b = b * 8;if (b < 10) then c = 9 ;else c = 11 ;print(c) ;
b = 2 ;if (b < 10) then c = 9 ;else ;print(c) ;(a) (b)a = 2 ;b = 2 ;if (a > 3) then ;if (b < 10) then c = 9 ;else ;print(c) ; (c)Figure 1.3The program (b) represents the dynamic slice of the program (a), for a slicing criterionrepresented by the output of the program. The program (c) is the relevant slice of (a),with respect to the same slicing criterion: it is the complete execution slice of (a). Thestatement \a = 2 ;" needs to be included in the relevant slice because if it were changedto \a = 4 ;" the output of the program would change to 11. For similar reasons, theconditional \if (a > 3) then ; " must be included in the relevant slice.The computation of relevant slices involves the de�ning and computing of potentialdependencies [7]. This computation involves more than a traversal of the execution traceof a program: a static data-ow analysis for the collecting reaching de�nitions is required.
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1.1 An Outline of Research ResultsThe informal introduction, above, attempted to provide a feel for the fact that dy-namic slicing for statement-based �rst-order languages is a well-understood concept withformal de�nitions, algorithms and correctness proofs. But this is not the case for anexpression-based higher-order language whose operational semantics is presented as a nat-ural semantics [54, 37]. This thesis presents a formal framework in which a dynamic sliceof a higher-order program can be de�ned. This was a non-issue for a �rst-order language,since the deletion of an arbitrary set of statements leaves behind a syntactically correctprogram.We go on to present an algorithm for the computation of a dynamic slice for purelyfunctional programs. The algorithm for the computation of the dynamic slice is presentedas a natural semantics and its correctness is proved. We provide algorithm-independentcharacterisations of the dynamic slice we compute. Once we have an extensional charac-terisation of dynamic slices a natural question to be asked is, can we compute a staticapproximation to it? We provide an answer in the a�rmative through the use of a set-based analysis technique. We discuss how this static analysis may �nd use in the isolationof dead-code in higher-order programs.We next present an algorithm for slicing in a higher-order language, with imperativefeatures: assignments and exceptions. As shown in [40], the computation of executabledynamic slices for �rst-order imperative languages requires a closure operation, over a setof relations de�ned on the execution trace, because of multiple executions of a statementin a while loop. If the operational semantics of a higher-order imperative programminglanguage is presented as a natural semantics then the execution trace of a terminatingcomputation is a proof-tree. This is very di�erent from the case for for a statement-based�rst-order language where the execution trace is a sequence of statements. Multiple execu-tions of a term occurs because of multiple call-sites of a closure. The closure operation tobe performed in this case is much more subtle, particularly in the presence of exceptions.The relation, over which the closure is to be performed, is deeply rooted in semantics ofcontrol-ow in the presence of exceptions and assignments.
5



Apart from simpler correctness proofs, the presentation of the algorithm for the com-putation of dynamic slices, as a natural semantics, has an immediate bene�t: a term canbe instrumented to collect data regarding its dynamic slice. We de�ne a formal translationof a program P into an annotated program P 0 and prove that the execution of P 0 correctlycomputes the dynamic slice of the execution P . We have implemented a translator for thewhole of core SML and perform experiments to investigate the utility and limitations ofslicing techniques for analysing higher-order languages.
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Chapter 2
A Formal Presentation of Slicingfor First-Order ImperativePrograms
The previous chapter attempted to provide an informal and intuitive understanding of theconcepts involved in program slicing, for �rst-order programs, and their possible applica-tions. This chapter presents a formal de�nition of the concepts involved. Since programslicing can be viewed as a source-to-source transformation on programs, a formal de�nitionof slicing must be based on the semantics of the programming language. The semantics of aprogramming language may be denotational [58] or operational [25]. The formal de�nitionspresented in Section 2.1 are based on denotational semantics. A denotational frameworkwas chosen as it allows us to de�ne a broad set of de�nitions very succinctly, independentof the algorithms used to compute the slices, and independent of the presentation style ofthe operational semantics.The de�nitions and algorithms presented in this chapter are essentially a review ofprevious research in this area. They are not meant to be comprehensive, but are meantto show that concepts, developed subsequently, for higher-order programs are a naturalextension of the concepts formulated for �rst-order languages. A very comprehensive surveyof the research in program slicing may be found in [62].The formulation presented in Section 2.1 is from Venkatesh [63]. The programming7



language L, on which analysis is carried out in the following sections, is given by thefollowing grammar: s ::= i := l : ej if l : e then s1 else s2j while l : e do sj s1 ; s2jL is a statement-based language: a program in L is a sequence of statements. Thenon-terminal e denotes expressions, whose syntax is left unspeci�ed. All expressions inthis language are assigned unique labels: subexpressions are not individually labelled. Thestandard semantics of the language is presented in Table 2.1.The semantic function E and the semantic domain value are left unspeci�ed. It isassumed that expressions consist of constant time operations over variables and constants,and that they have no side e�ects. The language is given a strict semantics, i.e. the updatefunction associated with the store is assumed to be strict in all three of its arguments.Domains:� 2 store = id! valueFunctions:E : exp ! store ! valueS : stmt ! store ! storeS[[ i := l : e ]] = ��: �[(E[[ e ]]�)=i]S[[ if l : e then s1 else s2 ]] = ��: E[[ e ]]� ! S[[ s1 ]]� ; S[[ s2 ]]�S[[ while l : e do s ]] = �x(�f:��: E[[ e ]]� ! f(S[[ s ]]�) ; � )S[[ s1 ; s2 ]] = ��: S[[ s2 ]](S[[ s1 ]]�)Table 2.1 : Standard Denotational Semantics of LNotation: �(s) denotes the set of all labels in an L-program s.8



As L is a statement-based language, given any L � �(s), it is possible to inductivelyconstruct a syntactically correct program that includes only those statements, whose labelsare included in the set L, and its control dependencies. For a block-structured languagelike L, if a statement s is immediately contained in a block, de�ned by a control constructlike an if-then-else statement or a while-loop, then s is said to be control-dependent on thecontrol-construct. Such an inductive construction is given, in Table 2.2, by the functionSyn(s ; L).Syn(s ; L) =case s of[[ i := l : e ]] : if l 2 L then s else "[[ if l : e then s1 else s2 ]] :if Syn(s1 ; L) = Syn(s2 ; L) = " and (l 62 L)then "else [[ if l : e then Syn(s1 ; L) else Syn(s2 ; L) ]][[ while l : e do s0 ]] :if Syn(s0 ; L) = " and (l 62 L)then "else [[ while l : e do Syn(s0 ; L) ]][[ s1 ; s2 ]] : [[Syn(s1 ; L);Syn(s2 ; L) ]]Table 2.2 : Syn(s ; L)2.1 A Denotational Formulation of SlicingIn his formulation, Venkatesh uses a single parameter slicing criterion: the value of aspeci�c variable at the end of a computation.De�nition: For any L-program s, a variable v used in s, a set of labels L � �(s) and anyinitial store �0, the L-program Syn(s ; L) is called� A dynamic slice with respect to v ; �0 i� (S[[ s ]]�0)(v) = (S[[Syn(s ; L) ]]�0)(v)� A static slice with respect to v i� (S[[ s ]]�0)(v) = (S[[Syn(s ; L) ]]�0)(v) for all�0 2 store . 9



The above de�nitions of slices deal with syntactically correct programs: they cannotaccommodate slices which are not executable programs. Hence, Venkatesh presents adenotational formulation of the intuitive concept of a statement inuencing the value of avariable, at the end of a computation. He de�nes contamination of an expression and asemantics for propagation of contamination. A statement inuences the value of a variable,at the end of the computation, if its contamination results in the value of the variable beingcontaminated at the end of the computation.To denote contaminated computations, every value becomes a tagged value, t value,tagged with a boolean ag with true indicating contamination. Hence, the store becomesa tagged store, t store � id ! t value. The function Einstr, in Table 2.3, takes in asinput contaminated expressions, c exp � l : (t ; e), where the tag t indicates whether theexpression labelled l has been marked contaminated. A contaminated statement, c stmt,is similar to a stmt, except that expressions in the statement have now been replacedcontaminated expressions, c exp. The function Einstr is derived from the function Eby associating a boolean tag, with the output value, that is a disjunction of the tagsassociated with all the values used by the expression, the tag associated with expressionitself and the additional boolean parameter passed in as argument. The boolean parametertaken in by Einstr and Sinstr essentially indicates whether the value, on which a givenstatement/expression is control dependent, is contaminated. A complete instrumentedsemantics is given in Table 2.3.Given a statement s, Cont(s ; l) is a statement in c stmt, in which every expression,(l0 : e) where l0 6� l, is replaced by (l0 : (false ; e)) and the expression (l : e) is replaced by(l : (true ; e)).De�nition: Let s be an L-program, v a variable in s and �0 be an initial store. LetL � �(s) be the set of labels de�ned by,L = f l j ([Sinstr[[Cont(s ; l) ]] false �i: (�0(i) ; false)] (v)) # 2 = true gThe set L is de�ned to be the dynamic backward closure slice, DBC(s ; v ; �0), of swith respect to the variable v and the initial store �0.A DBC slice includes exactly those statements whose contamination contaminatesthe slicing criterion. A DBC slice is what is computed by the algorithm presented by10



Domains:(� ; �) 2 t value = value � bool� 2 t store = id! t valueFunctions:Einstr : c exp ! bool ! t store ! t valueSinstr : c stmt ! bool ! t store ! t storeSinstr[[ i := l : p ]] = ���: � [(Einstr[[ p ]]��)=i]Sinstr[[ if l : p then s1 else s2 ]] =���: let (� ; �1) = Einstr[[ p ]]��in � ! Sinstr[[ s1 ]]�1� ; Sinstr[[ s2 ]]�1�Sinstr[[ while l : p do s ]] =�x(�f:���: let (� ; �1) = Einstr[[ p ]]��in � ! f �1 (Sinstr[[ s ]]�1�) ; � )Sinstr[[ s1 ; s2 ]] = ���: Sinstr[[ s2 ]]�(Sinstr[[ s1 ]]��)Table 2.3 : Instrumented Semantics of LAgrawal and Horgan in [6]. The important point to be observed is that the execution ofSyn(s ; DBC(s ; v ; �0)) need not return the same answer for the slicing criterion v. In fact,the execution of Syn(s ; DBC(s ; v ; �0)) need not even terminate. For example, in Fig 1.1,if the initial value of z in program (a) were set to 6 then contaminating ``z-- ; '' wouldnot contaminate the value of x. This is because the value of y, which sets the value of x,is set in the �rst pass through the loop. Since ``z-- ; '' is not included in the DBC, itsexecution no longer terminates.A statement gets included in a DBC slice because along one speci�c control ow path itscontamination contaminates the slicing criterion. But, for a given statement s1, includedin a DBC slice, no attempt is made to include all statements, in the program, whose con-tamination contaminates s1. This is the reason DBC(s ; v ; �0) may fail to be equivalentto the original program s, with respect to a variable v and a store �0. Hence, for trans-forming a DBC slice into an executable dynamic slice we need a closure technique. Thistechnique uses the augmented instrumented semantics de�ned in Table 2.4. All semantic11



functions, used in Table 2.4, are assumed to be ?? preserving. Every de�ning clause forthe semantic function S0instr is assumed to have a guard which checks that the argument� does not equal ??. If it does, it immediately returns ??. The semantic function S0instrDomains:(� ; �) 2 t value = value � bool� 2 t store = id! t valueFunctions:S0instr : c stmt ! P(label ) ! bool ! t store?? ! t store??S0instr[[ i := l : p ]] = �L��: let (� ; �1) = Einstr[[ p ]]��in (l 2 L and �1 = true) ! ?? ; � [(� ; �1)=i]S0instr[[ if l : p then s1 else s2 ]] =�L��: let (� ; �1) = Einstr[[ p ]]��in (l 2 L and �1 = true) ! ?? ; ( � ! S0instr[[ s1 ]]L�1� ; S0instr[[ s2 ]]L�1� )S0instr[[ while l : p do s ]] =�x(�f:�L��: let (� ; �1) = Einstr[[ p ]]��in (l 2 L and �1 = true) ! ?? ; ( � ! f(S0instr[[ s ]]�1�) ; � )S0instr[[ s1 ; s2 ]] = �L��: S0instr[[ s2 ]]L� (S0instr[[ s1 ]]L��)Table 2.4 : Augmented Instrumented Semantics of Ltakes in a set of labels L and returns ??, if during the computation of its argument, astatement included in L is executed and returns a contaminated value. Using the semanticfunction S0instr we can isolate the set of statements whose contamination leads to anystatement in DBC(s ; v ; �0) to become contaminated. This set of statements can be usedas an argument to S0instr to obtain a possibly larger set of statements. The iteration canbe continued till we reach a limit. The limiting set of statements is an executable dynamicslice.De�nition: Let s be a program, v a variable used in s and �0 any initial store. Let L bethe limit of the sequence L0 ; L1 ; : : : whereL0 = DBC(s ; v ; �0)Li+1 = f l j S0instr[[Cont(s ; l) ]] Li false (�i: (�0(i) ; false)) = ??g12



The set L is called a dynamic backward executable slice, DBE(s ; v ; �0), of s withrespect to a variable v and the initial store �0.Theorem 2.1.1 For any program s, a variable v used in s and an initial store �0,if s0 � Syn(s ; DBE(s ; v ; �0)) then (S[[ s ]]�0)(v) = (S[[ s0 ]]�0)(v), i.e. DBE(s ; v ; �0) isa dynamic slice with respect to v ; �0.De�nition: Let s be a program, v a variable used in s. Let L � �(s) be a set of labels suchthat L � [DBE(s ; v ; �0) for all �0 2 store . Then L is de�ned to be a static backwardexecutable slice(SBE) of s with respect to the variable v.Theorem 2.1.2 For any program s and a variable v used in s, if s0 � Syn(s ; SBE(s ; v))then (S[[ s ]]�0)(v) = (S[[ s0 ]]�0)(v) for any �0, i.e. SBE(s ; v) is a static slice with respectto v.2.2 Algorithms for Program SlicingThe previous section presented a denotational de�nition of static and dynamic slices. Aninstrumented denotational semantics was supplied to characterise statements, which wereto included in the DBE. The instrumented semantics did not, however, provide for atechnique to compute the DBE of a program s with respect to v ; �0. In this section,we will present the technique developed by Korel and Laski [40], for the computation ofdynamic slices.Given a program s, in the language L, and an initial memory �0,� T denotes the execution trace of s. As s is a program whose top-level expressions arelabelled, an execution trace can be de�ned as the sequence of labels of expressionsthat were executed.� Ti denotes the ith label in the sequence T .� T ji is a sequence obtained by restricting T to its �rst i elements.� �L(T ), where L is a set of labels, denotes the sequence of labels obtained by restrict-ing T to labels from L. 13



� Use(l) denotes the set of variables in the expression labelled l.� If an expression e labelled l is a part of an assignment statement x := l : e thenDef (l) � x.� The Data-Data(DD) Relation, on an execution trace T , is a subset of N � N , suchthat iDD j i� i < j and there exists a variable v such that v � Def (Ti) andv 2 Use(Tj) and for any k ; i < k < j ; v 6� Def (Tk).� The Identity(IR) Relation, on an execution trace T , is a subset of N �N , such thati IR j i� Ti � Tj.� The Test-Control(TC) Relation, on an execution T , is a subset of N �N .For a statement if l : p then s1 else s2 the labels in �(s1) and �(s2) are de�nedto be in the scope of inuence of the label l.For a statement while l : p do s the labels in �(s) are de�ned to be in the scopeof inuence of the label l.i TC j i� Tj is in the scope of inuence of Ti and for all k ; i < k < j ; Tk is the scopeof inuence of Ti.De�nition: Let T be the execution trace of a program s, on input �0. A slicing criterionC is a tuple hq ; V i, where q is a position in the execution trace T and V is a subset of thevariables in s.This is a more re�ned slicing criterion than discussed in the previous section. It has twoparameters instead of one: a position in the execution trace is asked for. Another wayof looking at it is, the previous slicing criterion had the q parameter �xed to the positionbeyond the last label in the execution trace.De�nition: Given a slicing criterion C � hq ; V i, a dynamic slice of s with respect toC, on input �0, is any executable program s0 that is obtained from s by deletion of zeroor more statements from it and when executed on �0, produces an execution trace T 0 forwhich there exists a position q0 such that,1. T 0jq0 � ��(s0)(T jq) 14



2. for all v 2 V , the value of v before the execution of Tq exactly equals the value of vbefore the execution of T 0q0 .3. Tq � Tq0Given the execution trace T of a program s, on input �0 and a slicing criterionC � hq ; V i, the dynamic slice is computed by an iterative process.S0 = Last Def (q ; V ) [ Last Control (q)where Last Def (q ; V ) = fp j Def (Tp) � v 2 V and for any n ; p < n < q ; v 6� Def (Tn)gLast Control (q) = fp j p TC qgSi+1 = Si [ fp j p (DD + IR+ TC) r where r 2 SigThe above iteration converges to a limit S.The dynamic slice of s with respect to C, on input �0, includes exactly the statementslabelled fTp j p 2 Sg.A counterpart of the algorithm, presented above, for static slicing would be an algorithmwhich works for all initial memories. The transition to a static slicing algorithm is verygradual and intuitive. It involves the following steps:� The �rst component of a slicing criterion C � hq ; V i, used in the above algorithm,is a position in the execution trace T . For static slicing, there is no executiontrace available, hence a slicing criterion is given by C � hl ; V i where l is the labelassociated with a statement.� The DD-Relation, de�ned above, relates Last Def (q ; Use(Tq)) to the position q.Analogously, we de�ne a data-dependence relation relating statements, labelled l andm, if l de�nes a variable v ; v 2 Use(m) and there is a path from l to m, in thecontrol-ow graph for s, which does not have a de�nition of v in it. For the languageL, the data-dependence relation is statically computable.� The inverse of the TC-Relation, de�ned above, is actually a function mappinga position, p in T , to another position q. The corresponding mapping on la-bels, from Tp to Tq is invariant over all execution traces and de�nes the in-verse of the control-dependence relation. For the block-structured language L, the15



control-dependence relation is computable by making one pass over the program.� By performing a transitive closure on the relation(data-dependence + control-dependence), the static slice can be computed. A detailedaccount of static slicing may be found in [55].
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Chapter 3
Related Work
As has been mentioned before, there has been very little research in the area of slicing ofhigher-order programs. There have been two prominent approaches.� Field and Tip [22] have a very detailed study of the concept of slicing associatedwith left-linear term rewriting systems(TRS)[38]. As the semantics of a program-ming language can be provided as a TRS [1, 19, 20], the techniques developed, intheir general study of slicing for TRS, can be applied to de�ne and compute slicesassociated with the evaluation of a program[21].� Another approach has been developed by Abadi et al [2] to analyze and cache de-pendencies involved in the evaluation of �-terms.The semantics of SML [48] is de�ned as a natural deduction system and none of theapproaches mentioned above can handle natural deduction systems. Of course, it is possibleto provide translations from one style of presentation of semantics to another [3, 27].But, we would prefer a more direct approach in the computation of dynamic slices forSML-programs. One of the principal reasons for this is that the de�nition of slices isheavily dependent on the style of presentation of the operational semantics since it isan intensional property. Unless, there is a canonical extensional de�nition of slices, e.g.based on denotational semantics of labelled terms, we cannot really be sure whether thetranslation from one style, of presentation of operational semantics, to another results inloss of information with respect to slices. Besides, a SML programmer, used to thinking17



about evaluation in a natural semantics, will have to start thinking about evaluation in adi�erent style, e.g. a rewrite semantics, if he wants use a slice of the computation. Thenext two sections present a brief review of the above approaches.3.1 Slicing in Term Rewriting SystemsFirst, we present a formal de�nition of term rewriting systems. Then, we de�ne thefundamental concept developed by Field and Tip: context-rewriting . Through an example,dynamic slices are then shown to be contexts with a certain set of properties.A signature � is a �nite set of function symbols along with a map arity from this set offunction symbols to the set of natural numbers, such that for any f 2 �, arity(f) standsfor the number of arguments accepted by f .A path is a sequence of positive integers that designates a subtree by encoding awalk from the tree's root. The empty path, ( ) , designates the root of a tree; the path(i1 i2 : : : im) designates the ithm subtree of the subtree indicated by the path (i1 i2 : : : im�1).Roots of subtrees are numbered, starting from the left, beginning with 1. Paths are orderedby the relation, �, which is the pre�x relation. The operation `�' denotes the concatenationof paths.A tree T is a set of paths such that (i) it possesses unique root, for all t 2 T , root(T ) � t(ii) For all p; q; r such that p � q � r, if p; r 2 T then q 2 T .De�nition: Let � be a signature, V be a set of variables, and T be a tree. Let � be atotal mapping from T to (� [ V) and p be a path. Then a pair hp ; �i de�nes a contexti�:(i) For all t 2 T and s 2 � [ V such that �(t) = s, if t � i 2 T then i � arity(s).(ii) If T 6= ; then p = root(T ).Given a context C � hp ; �i, O(C) denotes the domain of �.De�nition: A context C is a subcontext of D, C v D, i� all paths common to boththeir domains are mapped to the same symbol and one of the following holds: (i) C and18



D are non-empty and O(C) � O(D). (ii) C and D are empty and C � D (iii) C is empty,D is not and root(C) = q � i 2 O(D), and q 2 O(D).A path corresponding to a missing child, in a context C, is referred to as a hole occurrence.A context C is a term, if it has no hole occurrences and root(C) = ().For any context C and a path p, p C denotes an isomorphic context rooted at p obtainedby rerooting C.Two contexts C and D are isomorphic, C �= D, if (() C) � (() D).The function vars takes in a term as an argument and returns the set of variables in theterm as the result.C[D] denotes a context that is obtained from C by replacing the subcontext rooted atroot(D) by D.De�nition: A term rewriting system R over a signature � is any set of pairshL ; Ri such that L and R are terms over �, L does not consist of a sole variable, andvars(R) � vars(L).A substitution � is a �nite function from the set of variables to the set of terms.An R-contraction A is a triple hp ; � ; �i, where p is a path, � is rule of R and � is asubstitution.De�nition: A term T0 rewrites to T1 through a R-contraction A � hp ; � � hL ; Ri ; �i,T0 A�! T1, if T0 � T0[�(p L)] and T1 � T0[�(p R)].A reduction � : T0 �!� Tn is a sequence of contractions A1A2 : : :An where:T0 A1�! T1 A2�! T2 : : : Tn�1 An�! TnA context C rewrites to a context C 0, C �!� C 0, if the term T , obtained by instantiatingevery hole occurrence in C with a completely new variable, rewrites to T 0 such that T 0 isobtained from C 0 by some variable instantiation of the hole occurrences in C 0.De�nition: Given a reduction � : T �!� T 0, a slicing criterion associated with thereduction is any subcontext C 0 of the term T 0.19



What follows is an informal de�nition of program slices, to be illustrated by an example.De�nition: Let � : T �!� T 0 be a reduction. A slice with respect to a slicing criterionC 0, is a subcontext C of T with the property that there exists a reduction �0 such that�0 : C �!� D0 for some D0 w E0, E0 �= C 0 and the reduction sequence hC ; �0 ; D0i is aprojection of the original reduction �.Consider the following term rewriting system:R1. F (x ; Gy) ! H(x ; x)R2. H(x ; I(J y ; z)) ! K(x ; y)R3. K(I(x ; L y) ; z) ! yR4. L(x) ! M(x)Consider the reduction � of the term F (I(J(Kx) ; L(Ky)) ; G(Lz)).F (I(J(K x) ; L(K y)) ; G(Lz))R4�! F (I(J(K x) ; L(K y)) ; G(M z))R1�! H(I(J(K z) ; L(K y)) ; I(J(K z) ; L(K y)))R2�! K(I(J(K z) ; L(K y)) ; L(K y))R4�! K(I(J(K z) ; L(K y)) ; M(K y))R3�! K yGiven such a reduction and a slicing criterion (K y) the minimal slice isF (I(J � ; L(K y)) ; G �). The reduction �0 associated with the slice is:F (I(J � ; L(K y)) ; G �)R1�! H(I(J � ; L(K y)) ; I(J � ; L(K y)))R2�! K(I(J � ; L(K y)) ; L(K y))R3�! (K y)The reduction sequence �0 is a projection of the reduction �. Field and Tip display a soundtechnique for the computation of the minimal dynamic slice for left-linear term rewritingsystems. The important point to note about their technique is:20



� If the TRS is non-deterministic and we are using an interpreter with a speci�c strategyto pick up redexes then we cannot apply the same strategy to pick up redexes in theslice and execute the slice to obtain a context containing the slicing criterion. In fact,to execute the slice, we actually need to preserve information about the projectionof the original reduction �.This has both positive and negative aspects. On the negative side, we cannot use thesame interpreter to execute the slice. This is because the use of the rewrite strategyof the standard interpreter may result in divergence of the slice being evaluated. Toexecute the slice, we need another interpreter which takes in a list, of redexes to becontracted, as a parameter. On the positive side, the slices may actually be muchsmaller. This is because the strategy used by the standard interpreter may choose toexecute a speci�c redex whose �nal value is of no consequence to the answer. Onlya termination of reduction on the redex may be relevant. For such a redex, we mayneed to preserve its entire set of dependencies, which may be large. The techniquedeveloped by Field and Tip avoids reducing such redexes.3.2 Analysis and Caching of DependenciesIn [2], Abadi, Lampson and L�evy develop a concept similar to slicing for a completelydi�erent application: caching of the results of very expensive computations in purely func-tional programs. The application towards which their analysis is directed is a con�gurationmanagement language called Vesta [26, 45], which is a purely functional language in whichatomic operations are extremely expensive: compilation of �les, archiving of libraries. Theapplication is best illustrated by the following example:let f x = if isC (x) then Ccompile(x ) else M3compile(x)in f(my �le)The function isC checks whether its argument �le is a C �le. The function Ccompile isa function that calls the C compiler on its argument and the function M3compile is afunction that calls the Modula3 compiler on its argument.If the free variable my �le is a C �le then the above program need not be re-executedif the function M3compile is bound to a di�erent function, M3compilenew , that calls a21



newer version of the Modula3 compiler. To keep re-execution of an altered program toa minimum, we need to isolate the set of subterms which `need' to be evaluated in thecourse of the computation. If changes are made to subterms which were not `needed' thenre-execution is not required.The language addressed by Abadi et al is the pure �-calculus. The technique used tospecify `needed' subterms is that of a �-calculus with holes. A term with holes is called apre�x. Pre�xes and contexts are speci�ed by the following grammar:a ::==j xj �x: aj a1(a2)
C[ ] ::== [ ]j �x:C[ ]j C[ ](a)j a(C[ ])The � reduction rule is given by, (�x: b)a ! bfa=xgThere is also a congruence rule,if a ! b then C[a] ! C[b]Pre�xes have a partial order � de�ned on them. If a pre�x a matches pre�x b, exceptfor the fact that corresponding to certain holes in a we have pre�xes in b, then a � b.Reduction on pre�xes is performed by treating a hole as a free variable.Theorem 3.2.1 (Stability) If a is a term, v is a term in a normal form, and a !� v,then there is a minimum pre�x a0 � a such that a0 !� v.The Stability Theorem is a speci�cation of the minimum slice of a term and it estab-lishes the fact that a minimum slice of a term is a well-de�ned concept. The authors thenprovide a technique for the computation of the minimum pre�x/slice, through the use ofa labelled �-calculus. The set of labelled �-terms aL is given by the following grammar:aL ; bL ::== j x j �x: aL j aL (bL)j l : aL l 2 L22



where L is the set of labels.Reduction in the labelled calculus requires another rule,(l : b)(a) ! l : b(a)Given a term a, let us label every subterm in a by a distinct label to obtain a labelledterm a0. Let a0 !� v0, where v0 is a labelled term in normal form. Let L0 be thelabels syntactically contained in v0. Let G(a) be the pre�x obtained from a by replacingthe subterms, whose labels are not included in L0, by a hole. It is shown, by a Church-Rosser theorem [12], that G is a well-de�ned function on normalising terms. The followingtheorem shows that evaluation in this labelled calculus computes the minimum pre�x of aterm.Theorem 3.2.2 If a is a term, v is a term in normal form, a !� v, and G(a) � bthen b !� v.The above theorem states that for a reduction a !� v we can make a cache entry(G(a) ; v ). Before evaluating a term b, we need to check whether A � b for some cacheentry (A ; v). If so, we return the value v instead of performing the computation.The analysis above was for arbitrary strong reductions. Instead, if we use the evaluationstrategy, call-by-value, then we must take non-termination into account. A subterm whichis not `needed' can no longer be replaced by a hole occurrence. This is because a termwhich matches such a pre�x can have a non-terminating computation, at the positioncorresponding to the hole occurrence. Hence, every subterm that is executed is needed. Arestricted version of the � rule is used:(�x: b) v ! bfv=xgwhere v includes terms of the x ; x (a1) : : : (an) ; or �x: a.Since every subterm that is executed is needed, we the following additional rule:(�x: b) (l : a) ! l : ((�x: b) (a))The results presented by Abadi et al are very similar to our own research for purelyfunctional programs. Our setting is actually much simpler since we use a deterministic23



call-by-value interpreter, in contrast to the general setting of arbitrary reductions. We donot need to prove a Church-Rosser Theorem or a Stability Theorem. Since the analysisis directed towards caching of computation, presence of side-e�ects, like exceptions, as-signments or non-termination, causes a serious interference because of loss of referentialtransparency.A labelled �-calculus with a generalised de�nition of what it means for subterms tobe needed in a computation is given by Gandhe et al [24]. But their de�nitions andcharacterisations are rooted in an undecidable concept: solvability.
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Chapter 4
Syntax and Semantics of LML
The higher-order programming language we are going to use in this proposal is Stan-dard ML(SML). The entire language has a formal de�nition presented by Milner et alin [48]. SML consists of a lower level called the Core language, a middle level concernedwith programming-in-the large called Modules and a very small upper level called Pro-grams. The execution of an SML declaration consists of three separate phases: parsing ,elaboration and evaluation. Speci�cation of parsing involves speci�cation of syntax for thelanguage. Elaboration, the static phase, determines whether the declaration is well-typedand well-formed. Speci�cation of evaluation involves specifying the dynamic semanticsfor the language. With three levels in the structure of the language and three phases inthe execution, the speci�cation of the complete language can be broken into nine separatesections.In this chapter and for most of the proposal we will be concerned with the Core lan-guage. Of the three phases in the execution of a term in the Core language: parsing ,elaboration and evaluation, we will completely skip the elaboration phase. This is becausemost of the techniques developed in this proposal apply equally to both well-typed anduntyped SML programs. For the speci�cation of the dynamic semantics, in the evaluationphase, we will not be using SML syntax: we will be using a skeletal language, LML, whosegrammar we are going to de�ne and which essentially captures most syntactic constructsin Core-SML.
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4.1 Language SyntaxThe skeletal language under consideration, LML, is given by the grammar in Fig 4.1.e ::= xj C(e1 ; : : : ; en)j �x: ej letrec f(x) = e1 in e2j e1e2j Op(e1 ; : : : ; en)j case(e1 ; C(x1 ; : : : ; xn)) e2 ; y ) e3)j ! e1j ref e1j e1 := e2j let exception D in e1j e1 handle (D(x1 ; : : : ; xn)) e2)j raise e1 Figure 4.1The following are important points to be noted about the syntax:� There are no constructor declarations in LML. Constructors have a static semanticsin SML. Hence, issues involving local constructor declarations are relevant mostly tothe elaboration phase of the language.LML expects every occurrence of a constructor to be saturated: every occurrence ofa n-ary constructor must be an application to an n-tuple. This is unlike SML whichallows a constructor to be passed around as a value/parameter. The restriction weplace here is not serious: a simulation is possible.� The grammar does not show the language as having boolean constants, natural num-bers or real numbers. The set of natural numbers will be represented by in�nitelymany distinct nullary constructors. The set of booleans will be represented by twodistinct nullary constructors.The atomic operators Op are assumed to operate on nullary constructors and returnnullary constructors. This accommodates standard arithmetic and boolean operators26



found in SML. It is to be noted that arithmetic operators in SML can raise exceptions.Our approach to constructors and operators cannot accommodate the built-indatatypes like string and atomic string functions like explode and implode. Wecan give these operators a special status, like we give to ref or ! . For the theoreticalsections we have decided to drop this datatype from the language.� SML uses a binding construct let instead of the binding construct letrec used inLML. The let construct plays a very important role in static typing but for theevaluation phase, it is syntactic sugar except for its ability to provide binding forrecursive function declarations. Hence, we use a letrec construct which can only bindfunction declarations.Our language does have a let construct. It is used exclusively for binding exceptionconstructors. Exceptions in SML are generative in nature and hence their declarationis evaluated in the dynamic semantics. Reading the declaration of an exception asan SML declaration suggests that all our exceptions are nullary. But, this is not so:we leave out type declarations, as we are skipping the elaboration phase.� The SML syntax provides us with the ability to explicitly declare mutually recursivefunctions. Our language provides no such facility. As is to be discussed later, thisrestriction results in a considerable simpli�cation in the presentation of the dynamicsemantics and proofs involving the dynamic semantics.� SML allows for nested patterns in case, handle and function arguments. These arenot allowed in LML to make things simple.4.2 Dynamic SemanticsThe speci�cation of the dynamic semantics involves semantic objects called values. Theyare speci�ed by the following grammar:
27



v ::= hE ; �x eij hE ; f ; �x eij C(v1 ; : : : ; vn)j � where � 2 Locj [ � ; (v1 ; v2 ; : : : ; vn) ] where � 2 �The environment E is a �nite function which maps variables to values and, excep-tion constructors to elements from a countably in�nite set �.E ::= [ ]j E[x 7! v]j E[D 7! �]An exception packet is denoted by � [ � ; (v1 ; v2 ; : : : ; vn) ]�.In the space of values, there are two kinds of closures: the standard function closureand the recursive function closure. The standard closure is denoted by hE ; �x ei and therecursive closure is denoted by hE ; f ; �x ei. The SML de�nition [48] does not make adistinction between the two kinds of closures. A closure, in the SML de�nition, has twoenvironments instead of one: an environment for mutually recursive function de�nitionsand an environment for other free variables. In the SML de�nition, whenever a closure isapplied to an argument, the application rule unfolds the environment for mutually recursivefunctions once and adds it to the current environment, for mutually recursive functions.Our approach is to separate closures, for recursive function declarations, from other clo-sures. Thus, in contrast to SML, we have two separate application rules in the dynamicsemantics: one for the application of standard function closures to arguments and the otherfor the application of recursive function closures to arguments. In a recursive function clo-sure, hE ; f ; �x ei, the second component f is the name of the recursive function, whosedeclaration generated this closure. There is a another approach possible. The de�nition ofvalues and environments may be treated as co-inductive de�nitions, instead of inductivede�nitions. This would allow us to de�ne the value of a recursively de�ned function to beits in�nite unfolding. We could then use a single application, Rule 4.4. But then all ourproofs would have to be co-inductions instead of inductions, as in [46].28



The variable � is an element of the set Loc, the set of memory locations. In SML,exceptions are generative: every time an exception declaration is evaluated, the constructorD is mapped to a new unique element from the set �, the set of exception constructorvalues. An exception constructor D applied to a vector of arguments v1 ; v2 ; : : : ; vn returnsa value [ � ; (v1 ; v2 ; : : : ; vn) ], if the current environment maps D to �.There is also a subtle di�erence with SML. All functions and constructors in SML,except obviously the pairing constructor, take in single arguments. We allow all our con-structors, operators and exception constructors to take in multiple arguments.Like the SML de�nition, we present the dynamic semantics of our language usingnatural semantics [54, 37]. The semantics presented below allows us to infer statements ofthe form: S ; Ex ; E ` e ! v ; S0 ; Ex0where S is the initial memory with which the evaluation of the term e begins. Ex � �,denotes a set of elements already used in mappings of exception constructors. E is theinitial environment. The value to which e evaluates to, is denoted by v. The �nal store, atthe end of the computation, is given by S0 and Ex0 � � denotes the set of elements usedin mappings of exception constructors, in the computation.
S0 ; Ex0 ; E[x 7! v] ` x ! v ; S0 ; Ex0 (4.1)S0 ; Ex0 ; E ` �x e ! hE ; �x ei ; S0 ; Ex0 (4.2)S0 ; Ex0 ; E[f 7! hE ; f ; �x e1i] ; ` e2 ! v ; S1 ; Ex1S0 ; Ex ; E ` letrec f(x) = e1 in e2 ! v ; S1 ; Ex1 (4.3)S0 ; Ex0 ; E ` e1 ! hE0 ; �x ei ; S1 ; Ex1S1 ; Ex1 ; E ` e2 ! v2 ; S2 ; Ex2S2 ; Ex2 ; E0[x 7! v2] ` e ! v3 ; S3 ; Ex3S0 ; Ex0 ; E ` e1e2 ! v3 ; S3 ; Ex3 (4.4)
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S0 ; Ex0 ; E ` e1 ! hE0 ; f ; �x ei ; S1 ; Ex1S1 ; Ex1 ; E ` e2 ! v2 ; S2 ; Ex2S2 ; Ex2 ; E0[f 7! hE0 ; f ; �x ei ; x 7! v2] ` e ! v3 ; S3 ; Ex3S0 ; Ex0 ; E ` e1e2 ! v3 ; S3 ; Ex3 (4.5)Si�1 ; Exi�1 ; E ; ` ei ! vi ; Si ; Exi i = 1 : : : nS0 ; Ex0 ; E ` Op(e1 ; : : : ; en) ! Op(v1 ; : : : ; vn) ; Sn ; Exn (4.6)The syntactic operator is denoted by Op. Its semantic counterpart is denoted by Op.Si�1 ; Exi�1 ; E ` ei ! vi ; Si ; Exi i = 1 : : : nS0 ; Ex0 ; E ; S0 ; L0 ` C(e1 ; : : : ; en) ! C(v1 ; : : : ; vn) ; Sn ; Exn (4.7)S0 ; Ex0 ; E ` e1 ! C(v1 ; : : : ; vn) ; S1 ; Ex1S1 ; Ex1 ; E[x1 7! v1 ; : : : ; xn 7! vn] ` e2 ! v ; S2 ; Ex2S0 ; Ex0 ; E ` case(e1 ; C(x1 ; : : : ; xn)) e2 ; y ) e3) ! v ; S2 ; Ex2 (4.8)S0 ; Ex0 ; E ` e1 ! C 0(v1 ; : : : ; vn) ; S1 ; Ex1 C 6= C 0S1 ; Ex1 ; E[y 7! C 0(v1 ; : : : ; vn)] ` e2 ! v ; S2 ; Ex2S0 ; Ex0 ; E ` case(e1 ; C(x1 ; : : : ; xn)) e2 ; y ) e3) ! v ; S2 ; Ex2 (4.9)S0 ; Ex0 ; E ` e ! v ; S1 ; Ex1 � 62 dom(S1)S0 ; Ex0 ; E ` ref e ! � ; S1[� 7! v] ; Ex1 (4.10)S0 ; Ex0 ; E ` e1 ! � ; S1 ; Ex1S1 ; Ex1 ; E ` e2 ! v ; S2 ; Ex2S0 ; Ex0 ; E ` e1 := e2 ! () ; S2[� 7! v] ; S2 ; Ex2 (4.11)S0 ; Ex0 ; E ` e1 ! � ; S1 ; Ex1 where S1(�) = vS0 ; E0 ; E ` ! e1 ! v ; S1 ; Ex1 (4.12)The rules involving exceptions are given below.Si�1 ; Exi�1 ; E[D 7! �] ` ei ! vi ; Si ; Exi i = 1 : : : nS0 ; Ex0 ; E[D 7! �] ` D(e1 ; : : : en) ! [� ; vi] ; Sn ; Exn (4.13)30



S0 ; Ex0 ; E ` e ! [� ; vi] ; S1 ; Ex1S0 ; Ex0 ; E ` raise e ! � [� ; vi]� ; S1 ; Ex1 (4.14)S0 ; Ex0 ; E ` e1 ! v ; S1 ; Ex1S0 ; Ex0 ; E ` e1 handle (D(x1 ; : : : ; xn)) e2) ! v ; S1 ; Ex1 (4.15)S0 ; Ex0 ; E ` e1 ! � [� ; vi]� ; S1 ; Ex1 where E(D) � �0 6= �S0 ; Ex0 ; E ` e1 handle (D(x1 ; : : : ; xn)) e2) ! � [� ; vi]� ; S1 ; Ex1 (4.16)S0 ; Ex0 ; E ` e ! � [� ; vi]� ; S1 ; Ex1S1 ; Ex1 ; E[x1 7! v1 ; : : : ; xn 7! vn] ` e2 ! v ; S2 ; Ex2S0 ; Ex0 ; E ` e handle (D(x1 ; : : : ; xn)) e2) ! v ; S2 ; Ex2where E(D) = � (4.17)
S0 ; Ex0 [ f�g ; E[D 7! �] ` e ! v1 ; S1 ; Ex1 where � 62 Ex0S0 ; Ex0 ; E ` let exception D in e ! v1 ; S1 ; Ex1 (4.18)More clauses need to be added to the rules, presented above, to complete the speci�-cation. A succinct presentation of these additional rules may be given, along the lines of[48], by the introduction of an exception convention.: : : ; E1 ` e1 ! v1 ; : : :: : :: : :: : : ; En ` en ! vn ; Sn ; Exn: : : ; E ; ` e ! vn ; ; Sn ; Exn

: : : ; E1 ` e1 ! v1 ; : : :: : :: : : ; Ek ; ` ek ! � : : :� ; Sk ; Exk: : : ; E ` e ! � : : :� ; Sk ; Exk(a) (b)By this convention, let an evaluation rule be of the form (a), with n antecedents. Thenfor every k; 1 � k � n, such that ek evaluates to an exception packet � : : : � and8j; 1 � j < k; ej evaluates to a value, we add another another rule of the form (b).31



Chapter 5
Slicing Purely FunctionalPrograms
The �rst-order programming language L, discussed in Chapter 2, was a statement-basedlanguage, i.e. a program written in L consisted of a sequence of statements. In con-trast, a higher-order programming language like Standard ML(SML), [51, 48], is anexpression-based language. For such languages, the task of generating executable dynamicslices is far from over, even after the set of subexpressions that `contribute' to the value,returned by a program, have been isolated. This is because the deletion of an arbitrary setof subexpressions no longer leaves behind a legal expression that is executable. Thus theconcepts associated with the slicing of �rst-order programs do not carry over, as is, intothe domain of higher-order programs.Interprocedural slicing of �rst-order programs was �rst investigated by Weiser [67] inhis seminal paper. This analysis was greatly improved by Horwitz et al [31, 32]. Theanalysis developed by Horwitz et al is essentially an evaluation of an attribute grammarconstructed from the procedure call-graph of a program. For a �rst-order program, theprocedure call-graph can be trivially constructed from the parse tree of a program. For ahigher-order program, the procedure call-graph cannot be statically constructed becausewe need to know about the bindings of formal parameters to actual parameters.In this chapter, formal de�nitions of dynamic slices and associated algorithms for theircomputation are presented with respect to the operational semantics for the language.32



Using an operational de�nition for dynamic slices, makes the proof of correctness of thealgorithm, computing dynamic slices, much easier.5.1 Formal De�nition of Dynamic and Relevant SlicesThe concepts associated with the de�nition of program slices for �rst-order programs,under a given operational semantics, have counterparts in the higher-order case:� Corresponding to an execution trace, we have a proof tree of the evaluation of aprogram, under natural semantics.� We prefer to use a �xed slicing criteria: the value returned by the program. This issimilar to the criteria used in the formal de�nitions provided in Section 2.1. After wehave built the required machinery, we will allow for a more general slicing criteria,similar to [67].Typically, a statement in a �rst-order imperative program is referred to by an associatedstatement number. Similarly, a subterm in a higher-order program will be referred to byan associated label. Given a parse tree of a program, an initial assignment of labels tosubexpressions/subtrees can be done with the use of occurrences, as described in [15].De�nition: For every natural number k, let sk be a function that maps any tree,op(t1 ; : : : ; tk ; : : : ; tn) to tk. An occurrence is de�ned as any function obtained bycomposing an arbitrary number of such functions si.All programs considered, hence, will be assumed to have their all subterms labelled.Terms will no longer be considered in isolation of their labels. Henceforth, all terms willbe represented as a label and term separated by a \:" . Computation of the slice of a termis a computation collecting labels. This chapter deals with a purely functional language:a language without exceptions and assignments. The grammar given below de�nes legallabelled terms.
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M ::= l : ee ::= xj C(M1 ; : : : ; Mn)j �x: Mj letrec f(x) =M1 in M2j M1M2j Op(M1 ; : : : ; Mn)j case(M1 ; C(x1 ; : : : ; xn))M2 ; y )M3)Notation: Terms having labelled roots, and all their subterms labelled, will berepresented by variables M ; N ; : : : .Terms not having labelled roots, but having all theirs subterms labelled, will be representedby variables e ; f ; : : : .To ensure that the deletion of an arbitrary subterm leaves behind a legal expression, weintroduce a new constant ?? into the language and de�ne deletion of a subterm by substitu-tion with??. We provide?? with the same operational semantics as a skip instruction/no-opterm. Rules involving the constant ?? are given in Table 5.1. These rules are termed asthe empty rules of the language. E ` l : ?? ! ??E ` M1 ! ?? E ` M2 ! vE ` l : M1M2 ! ??E ` Mi0 ! ?? E ` Mi ! vi ; i 2 f1 : : : ng � fi0gE ` l : Op(M1 ; : : : ; Mn) ! ??E ` M1 ! ??E ` l : case(M1 ; C(x1 ; : : : ; xn))M2 ; y )M3) ! ??Table 5.1 : Empty Rules34



Unless ?? occurs in a position, where the internal structure of the term needs to beexamined, e.g. in the predicate component of an if-then-else, the rules remain the same.Thus ensuring that ?? is a no-op term.Notation: For any label l and terms M and e, M [l=e] denotes the term obtained, fromM , by replacing the subterm labelled l, in M , by the term e.De�nition: Let ` (l0 : e) ! v. The set of labels L � �(l0 : e) de�nes a dynamicslice of (l0 : e), if for L0 � �(l0 : e)�L, ` (l0 : e)[L0=??] ! v[L0=??]A program slice, de�ned in Section 2.1, is a sub-program, of the original program, thatis executable on the standard interpreter. As per the de�nition above, a sliced versionof a higher-order program is no longer legal under the original syntax: it is the originalprogram with a set of subterms replaced by ??. While this breaks away from the traditionalconcept of an executable slice, it is not completely novel. The slice of term, as de�ned byField and Tip [22], is not a term: it is a context. The sliced version of a program is nolonger executable on the standard interpreter. To execute a sliced version of a program,the standard interpreter needs to be augmented with the set of rules associated with ??.Henceforth, whenever we talk about an executable slice, we actually mean executable onthe standard interpreter, augmented by the set of rules for ??. Later on, we will brieydiscuss the construction of slices that can be executed by the standard interpreter.The de�nition of a relevant slice, in Chapter 1, was with respect to a restricted de�nitionof program alteration. As shown in [7], even for simple programs, with such a restrictedde�nition of program alteration, the computation of a relevant slice involves performingdata-ow analysis for reaching de�nitions. Term alteration will be de�ned as a substitutionof a subterm by an arbitrary term, or the deletion of a subterm, i.e. substitution by ??. Thisnecessarily means that the evaluation of an altered term may fail to terminate. Informally,if a subterm does not belong to a relevant slice then any alteration to this subterm doesnot change the value returned by the program. But this assertion is now true modulotermination. If the altered program terminates then it returns the same value as theoriginal program.A nullary constructor is de�ned to be a �rst-order value.35



De�nition: Let ` (l0 : e0) ! v, where v is a �rst-order value. The set of labelsL � �(l0 : e0) de�nes a relevant slice of (l0 : e0), if for any ~l � (�(l0 : e0)�L), and anysubstitution1 [~l=~e], if ` (l0 : e0[~l=~e]) ! v0 then v0 � v.Unlike the de�nition of dynamic slices, the above de�nition of relevant slices is restrictedto programs which return �rst-order values. This is because syntactic identity does not holdwhen closures are returned. But, a program returning a �rst-order value may have sub-terms computing higher-order values. Hence, we necessarily need to talk about higher-ordervalues. In the following sections we are going to develop the machinery to talk abouthigher-order values.5.2 A Natural Semantics for Computation of SlicesTo ensure that a variable, in a �rst-order program, takes on a speci�c value we need toensure that certain assignment statements are executed. To ensure that a speci�c state-ment is executed, we need to ensure that predicates on which it is control dependent [18]evaluate to the same value as in the original execution. For a block-structured �rst-orderprogram, control dependency on a predicate can be trivially identi�ed, while for an arbi-trary �rst-order program post-dominator analysis [43] is required. As shown in [18], controldependency analysis for �rst-order programs can be statically performed. As discussed inSection 2.2, control-dependency information, for a �rst-order program, can be easily com-puted given the execution trace T of a program. Unlike �rst-order programs, control owin a higher-order program depends on the binding of formal higher-order variables to actualfunctions. Thus, to compute control-dependency information from the execution trace, inthis case a proof tree, we need to pass around the information as a parameter. Hence, thesimplest way to specify an algorithm to compute dynamic slices is to provide a modi�edoperational semantics.Specifying Dynamic Slices As a Proof SystemIn [48], Milner et al present the semantics of SML as a natural deduction proof system. InFig 5.2, we use a similar proof system to specify dynamic slices.1The terms substituted for ~l may be ??. (l0 : e[~l=~e]) must be closed.36



If  M ! V ; L then L is a dynamic slice of M . To prove this, we need a strongerinduction hypothesis because of the presence of free variables and environments. Actually,the proof system is a speci�cation of the minimum dynamic slice. It is easy to show this,once the main lemma has been established. The set of labels L, associated with values inthe semantics, does not denote the entire set of dependencies required for the computationof the value. In fact, it is actually a subset of the entire set. This is good enough, in thecase of purely functional programs. But fails in the presence of assignments and exceptions.The set of values V computed by the operational semantics is speci�ed by the grammargiven below. L is a set of labels.V ::= hF ; �xMij hF ; f ; �xMij C((V1 ; L1) ; : : : ; (Vn ; Ln))The environment F is a map, Var ! V � P(L)F ::= [ ]j F [x 7! (V ; L)]De�nition: A substitution function is de�ned on the values computed by the naturalsemantics in Table 5.2(V ; L)[L=??] =if (L \ L) 6= ;then ??else case V ofhF ; �xMi ) hF [L=??] ; �xM [L=??]ihF ; f ; �xMi ) hF [L=??] ; f ; �xM [L=??]iC((V1 ; L1) ; : : : ; (Vn ; Ln)) ) C((V1 ; L1)[L=??] ; : : : ; (Vn ; Ln)[L=??])and (F [x 7! (V;L)]) [L=??] = (F [L=??])[x 7! (V;L)[L=??]]and [ ] [L=??] = [ ]The substitution function attempts to capture the intuition that for a tuple (V ; L),37



F [x 7! (V;L)]  l : x ! V ; L [ flg (5.1)F  l : �xM ! hF ; �xMi ; flg (5.2)F [f 7! (hF ; f ; �xM1i ; flg)]  M2 ! V ; LF  l : letrec f(x) =M1 in M2 ! V ; L [ flg (5.3)F  M1 ! hF1 ; �xMi ; L1 F  M2 ! V2 ; L2F1[x 7! (V2; L2)]  M ! V3 ; L3F  l : M1M2 ! V3 ; L1 [ L3 [ flg (5.4)F  M1 ! hF1 ; f ; �xMi ; L1 F  M2 ! V2 ; L2F1[f 7! (hF1 ; f ; �xMi ; L1) ; x 7! (V2; L2)]  M ! V3 ; L3F  l : M1M2 ! V3 ; L1 [ L3 [ flg (5.5)F  Mi ! Vi ; Li ; i = 1 : : : nF  l : Op(M1 ; : : : ; Mn) ! Op(V1 ; : : : ; Vn) ; flg [Sni=1 Li (5.6)F  Mi ! Vi ; Li ; i = 1 : : : nF  l : C(M1 ; : : : ; Mn) ! C((V1 ; L1) ; : : : ; (Vn ; Ln)) ; flg (5.7)F  M1 ! C((V1 ; L1) ; : : : ; (Vn ; Ln)) ; LF [x1 7! (V1 ; L1) ; : : : ; xn 7! (Vn ; Ln)]  M2 ! V ; L0F  l : case(M1 ; C(x1 ; : : : ; xn))M2 ; y )M3) ! V ; L [ L0 [ flg (5.8)F  M1 ! C 0((V1 ; L1) ; : : : ; (Vn ; Ln)) ; L C 6= C 0F [y 7! C 0((V1 ; L1) ; : : : ; (Vn ; Ln))]  M2 ! V ; L0F  l : case(M1 ; C(x1 ; : : : ; xn))M2 ; y )M3) ! V ; L [ L0 [ flg (5.9)Table 5.2 : Specifying Dynamic Slices for Functional Programs
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the set of labels L contributed towards the computation that led to the value V . Hence, ifany l 2 L is substituted by ?? then the computation terminates returning ??.Rule 5.4 illustrates the way we capture the intuition behind labels `contributing' to-wards a computation. For the evaluation of l : M1M2 the set of labels contributingtowards the evaluation of M1 to a value must be included. The set of labels contributingtowards the evaluation of the argument M2 is not explicitly included, as the argumentto the function may not be explicitly used. Instead the tuple (V2 ; L2) is bound in theenvironment. It may be the case that L2 6� L3 but the tuple (V2 ; L2) is a part of theclosure V3. If this is the case, then the set of labels L2 may subsequently form a part ofthe dynamic slice.Lemma 5.2.1 For any set of labels L, if F  (l : e) ! (V ; L)then F [L=??] ` (l : e)[L=??] ! (V ; L)[L=??].Proof: The proof is constructed by induction on the height of the proof tree. The casesdiscussed in the proof make the assumption that l 62 L. If this were not the case then theaxiom F [L=??]  l : ?? ! ??, provides the requisite proof.Rule(5.4) If l 62 L and L \ L1 = ; then, by induction,F [L=??] ` M1[L=??] ! hF1[L=??] ; �xM [L=??]i.By induction, F [L=??] ` M2[L=??] ! (V2 ; L2)[L=??].F1[L=??][x 7! (V2; L2)[L=??]] ` M [L=??] ! (V3 ; L3)[L=??].Hence, F [L=??] ` (l : M1M2)[L=??] ! (V3 ; L3)[L=??].As (L1 [ flg) \ L = ;, (L1 [ L3 [ flg) \ L = ; i� L3 \ L = ;.Hence, (V3 ; L3)[L=??] = (V3 ; L1 [ L3 [ flg)[L=??].If l 62 L but L \ L1 6= ; then, by induction, F [L=??] ` M1[L=??] ! ??.Hence, F [L=??] ` (l : M1M2)[L=??] ! ??.Rule(5.6) If l 62 L and L \ [ni=1Li = ; then, since operators can only be applied tonullary constructors, by induction, we have, F [L=??] ` Mi[L=??] ! Vi.Hence, F [L=??] ` l : Op(M1 ; : : : ; Mn)[L=??] ! Op(V1 ; : : : ; Vn).If, for some i, L \ Li 6= ; then, by induction, F [L=??] ` Mi[L=??] ! ??.39



Since operators are strict in all their arguments,F [L=??] ` l : Op(M1 ; : : : ; Mn)[L=??] ! ??.Rule(5.8) If l 62 L and L \ L = ; then, by induction,F [L=??] ` M1[L=??] ! C((V1 ; L1)[L=??] ; : : : ; (Vn ; Ln)[L=??]).By induction, we have,F [L=??][x1 7! (V1 ; L1)[L=??] ; : : : ; xn 7! (Vn ; Ln)[L=??]] `M2[L=??] ! (V ; L0)[L=??]As (L [ flg) \ L = ;, (L [ L0 [ flg) \ L = ; i� L0 \ L = ;.Hence, (V ; L0)[L=??] = (V ; L [ L0 [ flg)[L=??].If l 62 L but L \ L 6= ; then, by induction, F [L=??] ` M1[L=??] ! ??.Hence, F [L=??] ` (l : case(M1 ; C(x1 ; : : : ; xn))M2 ; y )M3))[L=??] ! ??. 2Theorem 5.2.1 If ;  M ! (V ; L) then L is the minimum dynamic slice, i.e. forany dynamic slice L0, of the evaluation of M , L � L0.Proof: If L = �(M) � L then L \ L = ;. Thus, by Lemma 5.2.1, we have` M [L=??] ! V [L=??]. Hence, by de�nition, L is a dynamic slice.Let L0 be any dynamic slice. Let L0 = �(M) � L0. By Lemma 5.2.1, for any l0 2 L, ifl0 2 L0 then ` (l : M)[L0=??] ! ??. Hence, for any dynamic slice L0, L � L0. Thus Lde�nes the minimum dynamic slice. 2Relevant Slices and Dynamic Slices co-incideTo prove the co-incidence of dynamic and relevant slices, we need to prove that, if M ! V ; L, where V is a �rst-order value, then for any ~l � (�(M) � L) and any~e, if the evaluation of M [~l=~e] terminates then ` M [~l=~e] ! V . Having shown this, it istrivial to show that this is the minimum relevant slice. This is because for any q 2 L, wealready know that M [q=??] evaluates to ??. 40



Though relevant slices are de�ned for �rst-order programs, we need to talk abouthigher-order values, as the intermediate values computed may be higher-order. In Subsec-tion 5.2, the value computed by a term, after the deletion of a set of subterms, was relatedto the original value by de�ning a substitution function [L=??]. In the context of relevantslices, it is easier to relate the value, computed by the altered term, to the original valueby a formal relation R, instead of a function. This is because the value computed by thealtered term is not known statically. The relation R is de�ned as follows:� (V ; L) R~l:~e v if ~l \ L 6= ;Else, if ~l \ L = ; then,� (hF1 ; �xM1i ; L) R~l:~e hE1 ; �xM2i i� F1 R~l:~e E1 and M1[~l=~e] �M2� (hF1 ; f ; �xM1i ; L) R~l:~e hE1 ; f ; �xM2i i� F1 R~l:~e E1 and M1[~l=~e] �M2� (C((V1 ; L1) ; : : : ; (Vn ; Ln)) ; L) R~l:~e C(v1 ; : : : ; vn) i� (Vi ; Li) R~l:~e vi i = 1 : : : n� F [x 7! (V ; L)] R~l:~e E[x 7! v] i� F R~l:~e E and (V ; L) R~l:~e v� [ ] R~l:~e [ ].Lemma 5.2.2 For any vector of labels ~l, if F  M ! (V ; L) then if (F R~l:~e E) andE ` M [~l=~e] ! v then (V ; L)R~l:~e v.Proof: The proof is by induction on the height of the proof tree. The proof is verysimilar in structure to the proof of Lemma 5.2.1. An outline of the proof, when Rule(5.4)is the last rule used, is given.Rule(5.4) If l 2 ~e then the relation R~l:~e trivially holds.If l 62 ~l but ~l \ L1 6= ; then ~l \ (L1 [ L3 [ flg) 6= ; and hence, the relation R~l:~etrivially holds.If l 62 ~l and ~l \ L1 = ; then, if the computation of M1[~l=~e] terminates, then, byinduction,E ` M1[~l=~e] ! hE1 ; �xM [~l=~e]i where F1 R~l:~e E1.If the computation of M2[~l=~e] terminates, then, by induction, (V2 ; L2)R~l:~e v2.41



Hence, F1[x 7! (V2 ; L2)]R~l:~e E1[x 7! v2].If the computation of M [~l=~e] terminates, i.e E1[x 7! v2] ` M [~l=~e] ! v3then, by induction, (V3 ; L3)R~l:~e v3. Thus, by de�nition, (V3 ; L1 [ L3 [ flg)R~l:~e v3.2Theorem 5.2.2 If  M ! (V ; L) then L is the minimum relevant slice of the�rst-order program M .The theorem is a trivial corollary to the above lemma.5.3 Minimum Dynamic Slices and Call-By-Name EvaluationAs mentioned before, the intuition behind the formal de�nition of dynamic slices was theisolation of subterms which `contribute' to the value computed by a term. For purelyfunctional programs, there is a demand-driven evaluation strategy called the call-by-needlambda-calculus. This evaluation strategy can be implemented by a transition semantics,as in [10], or as a natural deduction proof system, as in [42]. Since such a strategy evaluatesonly what needs to be; the execution trace of such an evaluator should co-incide with theminimum dynamic slice. Indeed, this turns out to be so.The natural semantics for lazy evaluation[42], involves a heap that is mutable. Themutable heap in the semantics, given in [42], is required to model sharing of evaluation:certain subterms are not re-evaluated in the course of the computation. But we are notconcerned as to whether the same subterm gets re-evaluated multiple times. We are in-terested as to whether a subterm needs to get evaluated at least once. The call-by-namelambda calculus[25], is essentially the same as the call-by-need lambda calculus but with-out any sharing of evaluation. Hence, we use a natural semantics for the call-by-namelambda calculus and show that the execution trace associated with a term evaluating un-der this semantics exactly equals the minimum dynamic slice of the term. The proof rulescollecting the execution trace under a call-by-name semantics are given in Table 5.3. If`n M +L w then L represents the execution trace of the evaluation of M .The set of call-by-name values w computed by the operational semantics is speci�edby the grammar given below. 42



w ::= hG ; �xMij hG ; f ; �xMij C(hG1 ; M1i ; : : : ; hGn ; Mni)G ::= [ ]j G[x 7! hG ; Mi]To prove that the minimum dynamic slice co-incides with the execution trace of acall-by-name evaluator, we need to de�ne a relation E between environments in the twosemantics.De�nition:� F0[x 7! (V ; L)] E G0[x 7! hG ; Ni]i� F0 E G0 and G `n N +L w where V Eval w.� hF1 ; �xM1i Eval hG1 ; �xM1i i� F1 E G1.� hF1 ; f ; �xM1i Eval hG1 ; f ; �xM1i i� F1 E G1.� C((V1 ; L1) ; : : : ; (Vn ; Ln)) Eval C(w1 ; : : : wn) i� [(Vi ; Li)] E [hGi ; Mii].Lemma 5.3.1 If F  M ! V ; L and F E G then G `n M +L w where V Eval w.Proof: The proof is by induction on the height of the proof tree. The important caseare given below:Rule(5.1) If [x 7! (V ; L)] E [x 7! hE0 ; Mi] then, by de�nition, E0 `n M +L w,where V Eval w.Rule(5.4) By induction, E `n M1 +L1 hE1 ; �xMi where F1 E E1. Since F E E,by induction, if F  M2 ! (V ; L) then [x 7! (V ; L)] E [x 7! hE ; M2i].Hence, F1[x 7! (V ; L)] E E1[x 7! hE ; M2i].Applying the induction hypothesis, we have, E1[x 7! hF ; M2i] `n M +L3 wwhere V3 Eval w. 43



G0 `n M +L wG[x 7! hG0 ; Mi] `n l : x +L[flg w (5.10)G `n l : �xM +flg hG ; �xMi (5.11)G[f 7! hG ; f ; �xM1i `n M2 +L wG `n l : letrec f(x) =M1 in M2 +L[flg w (5.12)G `n M1 +L1 hG0 ; �xMiG0[x 7! hG ; M2i] `n M +L2 wG `n l : M1M2 +L1[L2[flg w (5.13)G `n M1 +L1 hG1 ; f ; �xMiG1[f 7! hG1 ; f ; �xMi ; x 7! hG ; M2i] `n M +L3 wG `n l : M1M2 +L1[L3[flg w (5.14)G `n Mi +Li wi ; i = 1 : : : nG `n l : Op(M1 ; : : : ; Mn) +flg[Sni=1 Li Op(w1 ; : : : ; wn) (5.15)G `n l : C(M1 ; : : : ; Mn) +flg C(hG1 ; M1i ; : : : ; hGn ; Mni) (5.16)G `n M1 +L C(hG1 ; M1i ; : : : ; hGn ; Mni)G[x1 7! (hG1 ; M1i ; : : : ; xn 7! hGn ; Mni)] `n M2 +L0 wG `n l : case(M1 ; C(x1 ; : : : ; xn))M2 ; y )M3) +L[L0[flg w (5.17)G `n M1 +L C 0(hG1 ; M1i ; : : : ; hGn ; Mni) C 6= C 0G[y 7! C 0(hG1 ; M1i ; : : : ; hGn ; Mni)] `n M2 +L0 wG `n l : case(M1 ; C(x1 ; : : : ; xn))M2 ; y )M3) +L[L0[flg w (5.18)Table 5.3 : Execution Under Call-By-Name Evaluation
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Rule(5.8) By induction, G `n M1 +L C(hG1 ; M1i ; : : : ; hGn ; Mni) where[xi 7! (Vi ; Li)] E [xi 7! hGi ; Mii], i = 1 : : : n. Hence, by induction,G[x1 7! (hG1 ; M1i ; : : : ; xn 7! hGn ; Mni] `n M2 +L0 w where V Eval w. 2Theorem 5.3.1 For any nullary constructor C0, if  M ! C0 ; L then `n M +L C0.
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Chapter 6
Static Analysis for Dynamic Slices
A denotational de�nition of static slices, for �rst-order programs, was presented in Sec-tion 2.1. A program in the language L, used in that section, consisted of a sequence ofstatements with free �rst-order variables. The computation of a static slice of a programp in L, wrt a slicing criterion, was essentially the process of isolation of a subprogram,whose behavior wrt the slicing criterion was identical to the original program, regardless ofthe instantiation of the free �rst-order variables. Since a control-ow graph [8] for a pro-gram in L, with free �rst-order variables, is statically constructible, a static slice (possibly)signi�cantly smaller than the entire program can be computed.If a program written, in our higher-order language, has free higher-order variables thenthe control ow becomes indeterminate. Consider the following program,f (�x : : : )If f is a free variable, instantiable to any arbitrary value, then we have no choice butto include its entire argument in the static slice. It is hopeless to expect anything buta gross over-approximation from any terminating algorithm trying to perform data-owanalysis [60, 61] on a higher-order program with free higher-order variables.Hence, we decided to investigate whether there were terminating algorithms to computeapproximations to the minimum dynamic slice of a closed higher-order functional program.More speci�cally,Question: Is there a terminating algorithm, which given a closed term M as input,46



computes a non-trivial dynamic slice of the term?A trivial dynamic slice of a term M is its entire set of labels, �(M).6.1 Compiler Optimisations based on Analysis of SlicesElimination of dead code is a standard optimisation performed by modern compilers forimperative languages. But compilers for higher-order programming languages perform onlyextremely naive kinds of dead code elimination. The principal bene�t associated with theelimination of dead code in �rst-order imperative programs is the reduction of code size.As is to be illustrated shortly, for languages, with automatic garbage collection, lack ofa good strategy for elimination of dead code may have more serious consequences than alarger code size: it may lead to greater heap space consumption.The term dead code has been loosely used in compiler literature, [8], to refer to twodistinct concepts:1. Code that is never going to be executed : unreachable basic blocks.Consider, for example, the following statement,if (debug) then : : :If a copy propagation algorithm, run on the program, can determine that the agdebug has been set to false then the statements in the then arm of the program arenever going to be executed. Hence, the entire if statement is considered dead code.2. Code that is going to be executed but is not going to make any contribution to the�nal output of the program.Consider, for example, the following basic-block of a control-ow graph,: : :v := e: : :If the variable v is not subsequently used in the basic block and a backward owanalysis can determine that v is not live at the end of this basic block then the above47



assignment can be removed, as dead/useless code, without a�ecting the output ofthe program. This, of course, assumes that the evaluation of e has no side-e�ects.We are now going to examine these concepts with respect to higher-order purelyfunctional programs and two distinct operational semantics, call-by-value [53] andcall-by-need [10, 42].It is shown in Theorem 5.3.1 that the minimum dynamic slice exactly co-incides withthe execution trace of a program evaluating under call-by-need semantics. Hence, deadcode in lazy programs are subterms which are never evaluated, i.e., of the two distinctkinds of dead code elaborated earlier we only have the �rst kind.Consider the program presented in Figure 6.1. Under a lazy semantics, the applicationlet F = �glet App = �F1�f1 F1 f1F1 = �f1�z f1(f1 2)f1 = �y y + 2w = g 1x = g 2in if (w = 2) then (App F1 f1 x) else 3 endsucc = �u u+ 1in F succ end Figure 6.1of F to succ results in creation of thunks for the let-bound variables App; F1; f1; w; x. The`thunk' created for the variable x contains a pointer to the function succ. This thunk isnever going to be evaluated but remains live till almost the end of the computation. Rightafter the evaluation of the expression (w = 2) the function succ is garbage but cannot becollected as such because x is `live' and contains a pointer to it.According to R�ojemo and Runciman [57], the biography of a typical cell in the heapincludes four events: creation, �rst use, last use and destruction. A heap cell is said to bedestroyed when it can be garbage collected. The phases between these events are calledlag, use and drag respectively.lag6created 6�rst useduse 6last useddrag 6destroyed48



A heap cell, such as the thunk for the variable x in Figure 6.1, that is created but neversubsequently used is referred to as being in the void phase. Such cells are retained in theheap , though not actually playing a role in the computation, because they form a partof the live graph. Re�ned garbage collection techniques, as discussed in [49, 23], whichinvolve more than recursively following live pointers, can ascertain some of these thunksto be garbage. Reliance on such techniques makes a program less robust: a program withno space leaks may show one under a di�erent runtime system.A static analysis technique which can isolate subterms which are never going to beevaluated can improve the space-e�ciency of a program executing under any garbagecollector. This is because we can safely replace such subterms by �xed-size constants andstill have the program return a value, identical to the value returned by the unoptimisedprogram but consuming, possibly, much less space. Such a replacement strategy shouldprevent some cells in the void phase from being created at all and should reduce the dragphase of some heap cells. In the example program above, if we do not create the thunk forx we can remove the drag phase of succ.If the above program is evaluated under a call-by-value semantics the variable x is goingto be evaluated but is going to make no contribution to the value returned by the program.Hence, the subterm denoted by the variable x is dead code by the second criterion discussedabove. Under call-by-value, a static analysis technique which replaces such sub-terms withconstants may fail to generate a semantically equivalent program. This is because theoptimised version of the program may terminate where the original program did not. Ifsafety is equated with semantic equivalence then such a transformation is unsafe. From apragmatic point of view, a more liberal de�nition of safety is good enough: if the originalprogram terminates then the transformed program also terminates returning the sameanswer.In [2], Abadi et al develop the concept of dynamic dependency analysis for �-terms.The analysis developed here may be considered the static counterpart of such a dependencyanalysis.An analysis technique which can statically compute a superset of the minimum dynamicslice of a purely functional program can thus be applied to compute a subset of the dead-code in a program. 49



6.2 Relation to Existing WorkEliminating dead code is a standard optimisation in compilers for �rst-order imperativeprogramming languages. The traditional approach, as described in [8], is to �rst performcopy propagation and then eliminate blocks, in the control-ow graph of the program,which are unreachable. A block in the control-ow graph is considered unreachable if anypredicate, on which it is control dependent, can be statically analysed to evaluate to thenegation of the value required to reach the block. The approach mentioned above attemptsto discard blocks in the program which are never going to be executed. Copy-propagation isperformed by forward analysis on the control-ow graph and has a well-de�ned counterpartfor higher-order programs.A more aggressive approach is to perform a live-variable analysis and then eliminatede�nitions for variables that are not live immediately outside the basic block in which theyare de�ned. This approach discards code that would have been executed but would havemade no contribution since the variable is dead after its de�nition. Live variable analysisis performed by backward analysis on the control-ow graph. Backward analysis does notseem to have a clear counterpart for higher-order programs.Hughes [35] developed a technique for backward analysis of �rst-order functional pro-grams, being evaluated in a lazy semantics. Given a closed �rst-order function f , of type�1 � : : : � �n ! �0 and abstract domains A0 ; : : : ; An for types �0 ; : : : ; �n, a backwardanalysis technique returns n functions, fi : A0 ! Ai. By choosing appropriate abstractdomains and interpretations of primitives, a decidable analysis for isolating subterms, thatare never going to be evaluated, can be performed. Hughes uses the term absence anal-ysis for the technique. This technique is syntax-directed and does not seem to extend tohigher-order functional programs because at every function call site, the analysis needs toknow the exact function getting called.Computable backward analysis has been extended to include higher-order functionalprograms in [17]. But [17] reverses abstract interpretation based on Scott-closed/Scott-open powerdomains [25]. The technique of reversing abstract interpretation has not beensuccessfully applied to perform absence analysis.There is an enormous body of research on abstract interpretation and its application50



to strictness analysis, dating back to [50]. The results from that area are not applicable tothe problem we seek to solve. This is because any computable strictness analysis techniquecomputes a strict subset of the set of subterms which make a contribution to the compu-tation. A solution to our problem involves a computation of a superset of such subterms.Besides, as shown in [59], any Mycroft-style strictness analysis completely ignores bindingsof variables to constants.6.3 A Set-Based SemanticsOne of the simplest binding analysis techniques for call-by-value languages is a set-basedanalysis (SBA) technique developed by N. Heintze [30, 29, 28]. The development of aset-based analysis for a given natural semantics proceeds through the following stages:A. Develop a set-based version of the operational semantics. The standard operationalsemantics for the language uses an environment, E : Var ! Val . The set-basedsemantics uses an environment, E : Var ! P(Val ) and evaluates a term into set ofvalues, i.e. a subset of P(Val ).B. De�ne a property safety for set-based environments E . Let ` M ! v, be aterminating computation, in the standard semantics, for a closed term M . Let E beany set-based environment safe wrt M . The safety property guarantees that thereexists a computation E ` M ; V , in the set-based semantics such that v 2 V .C. For any given term M with a terminating computation, there exists a minimumset-based environment Emin that is safe.D. The set-based approximation(sba) of a term is given by,sba(M) def= fv 2 V j Emin ` M ; V gE. De�ne a language of set-constraints and a syntax-directed translation from a closedterm M to a set of constraints, such that a model of this set of constraints is afunction that maps every subterm of M into a set of values that it might evaluateto. 51



It is shown that there is a minimum such model and it maps the term M exactly tothe set sba(M).There is a polynomial time algorithm for the computation of the least model.A natural semantics for the computation of dynamic slices, for purely functional programs,was presented in Table 5.2. Given any program (l : e), if  (l : e) ! (V ; L) thenL � P(Labels) is the minimum dynamic slice for the computation. We do not attempt todevelop a set-based version of this semantics based on the steps elaborated above. Thisis because such a set-based semantics would be returning values which are elements ofP(Val � P(Labels)). Our static analysis technique is built on a set-based semantics whichincorporates the concept of demand into the semantics developed by Heintze.Heintze's set-based analysis is decidable because it completely ignores inter-variabledependencies, and the fact that distinct evaluations of the same function, in distinct en-vironments, return di�erent values. If a speci�c occurrence of a subterm evaluates to acertain value v then, in a model for the set constraints, the subterm is mapped to a set ofvalues containing v. But our natural semantics for the computation of slices throws awaycertain subcomputations because they make no contribution to the value that is returned.Hence, set-based analysis by Heintze, is de�nitely too much of an over-approximation forour purposes. Bindings coming out of subcomputations which make no contribution to the�nal value need to be thrown away. For example, consider the following program:let f = �x: if (x = 1) then 3 else 4in (�y: f 1) (f 2) end (I)The solution to the set-constraint problem, as described in [30], returns the fact thatthe variable x can be bound to the set f1 ; 2g and the set of values, which can be returnedby the program, equals f3 ; 4g.What we are looking for, is an analysis technique which attempts to model the factthat a subterm, whose evaluation makes no contribution to the value returned, need notbe evaluated. In the program (I), the subterm (f 2) does not contribute to the answer.Hence, we would like to have a set-based analysis which returns the variable x as being52



bound to the set f1g, and the set of values which can be returned by the program as f3g.The fundamental premise of our analysis is to completely ignore inter-variable depen-dencies. Hence, even on incorporating the concept of demand, we will conclude that certainsub-terms need to be evaluated even though they actually do not. For example, considerthe program in Figure 6.2. In the call, F (G f1) 2 3 , the value z = f x needs to beevaluated. Since evaluation contexts are completely ignored, the technique assumes thatthe value z = f x needs to be evaluated in the call, F (H f2) 0 1. Hence, the techniquemust infer that the subterm (H f2) needs to be evaluated, even though it is not neededin the computation.let fun F f x y = let val z = f xinif (y=1) then 90 else zendinF (G f1) 2 3 + F (H f2) 0 1end Figure 6.26.3.1 A Set-Based Semantics Incorporating DemandAs mentioned in the section above, the set-based semantics developed in [30] uses a globalset-based environment E : Var ! P(Val), which maps bound variables to a set of values.In addition to a global set-based environment E , we introduce a global boolean environmentF : Var ! (Bool � ft ; fg), which maps bound variables to booleans. The boolean indi-cates whether the variable is going to be bound to a value, which makes a contribution tothe computation. Similarly, for every occurrence of a constructor, we need to know whetherits ith argument makes a contribution to the computation. Hence, we introduce anotherglobal environment, G : Label � Int ! Bool . Here the label argument to G indicates thetextual position of the data constructor.The set-based operational semantics is presented in Table 6.1. For simplicity, all atomicoperators have been left out of the language. We assume that all bound variables aredistinct. 53



E ; F ; G ; b ` M ; f??g (1)E ; F ; G ; t ` M1 ; f??gE ; F ; G ; t ` l : M1M2 ; f??g (2)E ; F ; G ; t ` M1 ; f??gE ; F ; G ; t ` l : case(M1 ; C(x1 ; : : : ; xn))M2 ; y )M3) ; f??g (3)E ; F ; G ; t ` l : x ; E(x) (4)E ; F ; G ; t ` l : �xM ; f�xMg (5)E ; F ; G ; t ` M2 ; VE ; F ; G ; t ` l : letrec f(x) =M1 in M2 ; V (6)E ; F ; G ; t ` M1 ; V1E ; F ; G ; F(x) ` M2 ; V2E ; F ; G ; t ` M ; V3E ; F ; G ; t ` l : M1M2 ; V3where �x:M 2 V1 (7)E ; F ; G ; G[l ; i] ` Mi ; Vi ; i = 1 : : : nE ; F ; G ; t ` l : C(M1 ; : : : ; Mn) ; C[l ; (V1 ; : : : ; Vn)] (8)E ; F ; G ; t ` M1 ; V 0 E ; F ; G ; t ` M2 ; V 00E ; F ; G ; t ` l : case(M1 ; C(x1 ; : : : ; xn))M2 ; y )M3) ; V 00where 9v 2 V 0 s:t: v � C[l0 ; (: : :)] (9)
E ; F ; G ; t ` M1 ; V 0 E ; F ; G ; t ` M3 ; V 00E ; F ; G ; t ` l : case(M1 ; C(x1 ; : : : ; xn))M2 ; y )M3) ; V 00where 9v 2 V 0 s:t: v � C 0[l0 ; (: : :)] and C 0 6� C: (10)Table 6.1 : Set-Based Operational Semantics
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Given a term M , the rules in Table 6.1 can be used to construct a proof ofE ; F ; G ; b ` M ; V , whereb is a boolean indicating whether the value computed at this point contributes to thecomputation. If b = f , i.e., the value to be computed makes no contribution, thenit is not computed: only an instance of rule (1) applies,E ; F ; G ; f ` M ; f??gV is the set of values returned as a result of the computation,V ::= f v1 ; : : : ; vn gv ::= ??j C[l ; (v1 ; : : : ; vn)]j �xMFor every value built by the application of a data constructor, we need to keeptrack of the textual location where it was constructed. Such values are denoted by,C[l ; (v1 ; : : : ; vn)], where l is the textual location where the constructor C is appliedto a tuple of values. The expression C[l; (V1 ; : : : ; Vn)] denotes the set of valuesfC[l ; (v1 ; : : : ; vn) j vi 2 Vi g.Note that the semantics is non-deterministic. This is because of the non-deterministicchoice which needs to be made in rules (7), (9) & (10) and because of the fact thatthe rule, E ; F ; G ; t ` M ; f??gcan be used anywhere in the proof.We now characterise the environments (E ;F ;G) which provide a sound approximationto the value computed by the standard semantics.De�nition: (E ;F ;G) is safe wrt a closed term M0, if every derivation of the formE ; F ; G ; t ` M0 ; V satis�es the following conditions:A. In every use of Rule (4), F(x) = t. 55



B. In every use of Rule (7), V2 � E(x).C. In every use of Rule (9), if C[l0 ; (v1 ; : : : ; vn)] 2 V 0 then 81 � i � n if F(xi)then vi 2 E(xi) and G[l0 ; i].D. In every use of Rule (10), if v 2 V 0 and v 6= C[: : :] then F(y) implies v 2 E(y).E. If M0 contains the term l : letrec f(x) = M1 in M2 then F(f) implies E(f) =f�x:M1g.F. If C[l0 ; : : :] 2 E(x) then l0 : C(: : :) is a subterm of M0.In Table 6.1, the rules (1) ; (2)& (3) are referred to as empty rules. In the absence ofsuch rules, an environment may vacuously satisfy the safety conditions because, under theenvironment, there may be no terminating computation, hence, no complete proofs. Theempty rules are needed to handle an important weakness of natural semantics: the inabilityto model a �nite number of steps in a non-terminating computation. In the presence ofempty rules a `partial' proof, constituting a �nite number of steps in a non-terminatingcomputation, can be completed to form a legal proof.The set-based semantics presented by Heintze in [30] does not have rules which arecounterparts to our empty rules. This is a very serious lapse. Theorems explicitly statedby Heintze [30, page 311], e.g. Soundness and Minimality, are in fact invalid . The followingprogram is a counter-example to his soundness theorem:(�x case(x ; 0) 2 ; y ) 
)) 0Note 
 is a nonterminating program. This is a program whose evaluation under thestandard interpreter returns the value 2. Without the empty rules, an environmentE � [x 7! f1g] is vacuously safe, since it has no terminating computation associated withit. Adding our empty rules, with f??g replaced by the empty set, ;, restores soundness tohis set-based semantics.Lemma 6.3.1 (Minimality)If (E1;F1;G1) and (E2;F2;G2) are safe wrt a closed term M0, then so is(E1 \ E2 ; F1 ^ F2 ; G1 ^ G2). 56



If E1 \ E2 ; F1 ^ F2 ; G1 ^ G2 ; t ` M ; V then9V1 ; V2: Ei ; Fi ; Gi ; t ` M ; Vi where V � Vi.Proof: Safety conditions E & F are dependent solely on the termM and are independentof computations associated with a given static environment. Hence, they are immediatelyvalid in the set-based environment (E1 \ E2 ; F1 ^ F2 ; G1 ^ G2).Given a proof tree of a computation, based on the semantics presented in Table 6.1, itis to be noticed that any time the boolean parameter, to the left of the `, is false the �rstempty rule is used.Given a proof tree for E1 \ E2 ; F1 ^ F2 ; G1 ^ G2 ; t ` M ; V , but for the booleanparameter to the left of ` , identical safe proof-trees can be constructed for the set-basedenvironments Ei ; Fi ; Gi returning values Vi, st V � Vi. 2Corollary 1 Given a closed term M , there exists a minimum set-based environment(Em ; Fm ; Gm) that is safe wrt it.The following two lemmas are used in the proof of the Soundness Theorem for ourset-based semantics.Lemma 6.3.2 For any safe set-based environment (E ; F ; G) wrt M0, if there is a compu-tation E ; F ; G ; t ` M0 ; V0 which contains E ; F ; G ; t ` M ; f??g as a sub-proofthen, for any valid computation E ; F ; G ; t ` M ; V , there is a valid computation,E ; F ; G ; t ` M0 ; V 00 , which contains E ; F ; G ; t ` M ; V as a sub-proof.The above lemma can be easily proved by induction. This is because the set-basedsemantics does not create any bindings: evaluation proceeds under a global environment.It is the only in the rules for function application and case expressions that the valuereturned by the computation is signi�cant: here we need to assume the type correctnessof the program and the set-based environment.Because of the presence of empty rules, the soundness theorem for safe environmentscan no longer be stated in terms of set-theoretic containment. Instead, the value, computedby the standard semantics, is proven to be related to the set of values returned by the set-based semantics by a relation �(E;F ;G) . 57



De�nition: The relation �(E;F ;G) is a relation between a value computed by the stan-dard semantics and a set of values computed by the set-based semantics.� C(v1 ; : : : vn) �(E;F ;G) V if 9C[l ; (v01 ; : : : v0n)] 2 V ,st 8i if G[l ; i] then vi �(E;F ;G) f v0i g.� hE ; �xMi �(E;F ;G) V if (�xM) 2 V and E �(E;F ;G) E .� hE ; f ; �xMi �(E;F ;G) V if (�xM) 2 V ;E(f) = f�xMg and E �(E;F ;G) E .� E �(E;F ;G) E if for each x, if F(x) then E(x) �(E;F ;G) E(x).Given a proof tree P representing a computation in the set-based semantics, let usdelete the boolean tags to the left of all occurrences of ` to obtain a tree structure T .Given the tree structure T , we can reintroduce the boolean tags with their original valuesusing a simple set of rules, obvious from the rule schemas for the set-based semantics, toobtain the proof tree P. We are now going to use such rules to introduce a boolean tag tothe left of ` in a proof in the standard semantics.De�nition: Given a subterm M of a closed term M0, and a safe set-based environment(E ;F ;G) wrt M0, the boolean-annotated proof of E ` M ! v wrt (E ;F ;G),E ; t ` M ! v, is constructed as follows:� Introduce the boolean tag t to the left of `, at the root of the proof tree.� Propagate the boolean tag towards the leaves of the proof-tree, in a manner similarto the technique used in the set-based operational semantics.� The instant the boolean tag becomes f , the proof tree, in the set-based semantics,reaches its leaf. In the case of the annotated proof tree, we simply propagate the ftag all the way to the leaves.Theorem 6.3.1 (Soundness) If (E ; F ; G) is safe wrt a closed term M0 and` M0 ! v0, then 9V0 E ; F ; G ; t ` M0 ; V0; st v0 �(E;F ;G) V0.58



Proof: Because of the presence of a boolean tag to the left of `, in the set-basedsemantics and the fact that safety conditions apply only to complete proofs of M0, theproof of soundness is not a simple structural induction on the proof of evaluation, basedon the standard semantics. The induction hypothesis needs to be more elaborate. Thekey set of conditions to be used in the proof of the Soundness Theorem are those arisingfrom the fact that (E ; F ; G) is safe wrt the term M0. The presence of the boolean tagto the left of `, in the set-based semantics, prevents us from asserting the fact that if(E ; F ; G) is safe wrt a closed term term M0 then (E ; F ; G) is also safe wrt any subtermM of M0.The induction hypothesis:If (a) E ; t ` M ! v is a boolean-annotated proof of E ` M ! v wrt (E ;F ;G);(b) E �(E;F ;G) E ;(c) There is a proof E ; F ; G ; t ` M0 ; V0 which containsE ; F ; G ; t ` M ; f??g as a subproof.Then there exists a proof, E ; F ; G ; t ` M ; V , such that v �(E;F ;G) V .Condition (c) is required because safety conditions apply only to complete proofs of M0.The cases of the induction are discussed below:Rule (Var): Let M � x. This is trivially true if F(x) is true. Since, there is acomputation E ; F ; G ; t ` M0 ; V0 which contains E ; F ; G ; t ` x ; f??gas a subproof, by Lemma 6.3.2, there is a computation E ; F ; G ; t ` M0 ; V0which contains E ; F ; G ; t ` x ; E(x) as a sub-proof. The falsity of F(x)would then show that E ; F ; G is not safe for M0. This is a contradiction.Rule (App): Let M �M1M2 and M1 ! hE1 ; �xM 0i. By assumption, there is a com-putation E ; F ; G ; t ` M0 ; V0 which contains E ; F ; G ; t ` M1M2 ; f??gas a subproof.The subproof E ; F ; G ; t ` M1M2 ; f??g can be replaced by the subproof:E ; F ; G ; t ` M1 ; f??gE ; F ; G ; t ` M1M2 ; f??gHence, by induction, hE1 ; �xM 0i �(E;F ;G) V1, i.e (�xM 0) 2 V1 and E1 �(E;F ;G) E .59



The subproof E ; F ; G ; t ` M1M2 ; f??g can be replaced by the subproof:E ; F ; G ; t ` M1 ; V1E ; F ; G ; F(x) ` M2 ; f??gE ; F ; G ; t ` M 0 ; f??gE ; F ; G ; t ` M1M2 ; f??gHence, if F(x) then, by induction, v2 �(E;F ;G) V2. In the above subproof, ifM2 ; f??g is replaced by a proof of M2 ; V2 then by the safety propertyof (E ; F ; G) wrt M0, we have V2 � E(x), hence, E1[x 7! v2] �(E;F ;G) E . Hence, ifM �M1M2 ! v then v �(E;F ;G) V .If F(x) is false then E1[x 7! v2] �(E;F ;G) E for any value v2. Hence, the proof followstrivially.Rule (Cons): Let M � C(M1 ; : : : ; Mn). By assumption, there is a computationE ; F ; G ; t ` M0 ; V0 which contains E ; F ; G ; t ` C(M1 ; : : : ; Mn) ; f??gas a subproof. By Lemma 6.3.2, this implies that there is a computationE ; F ; G ; t ` M0 ; V 00 which contains E ; F ; G ; t ` Mi ; f??g as a subproof.Hence, for every i such that 1 � i � n, if G[l; i] = t then, by induction, vi �(E;F ;G) Vi.Hence, C(v1 ; : : : ; vn) �(E;F ;G) C[l ; (V1 ; : : : ; Vn)].Rule (Case1): Let M � case(M1 ; C(x1 ; : : : ; xn) ) M2 ; y ) M3). IfM1 ! C(v1 ; : : : ; vn) then, by induction, C(v1 ; : : : ; vn) �(E;F ;G) V 0, i.e.9C[l0 ; (v01 ; : : : ; v0n)] 2 V , for some l0, st if G[l0; i] = t then vi �(E;F ;G) fv0ig.By assumption, E ; F ; G ; t ` M ; f??g is a subproof of some computationE ; F ; G ; t ` M0 ; V0. Hence, the following subcomputation,E ; F ; G ; t ` M1 ; V 0E ; F ; G ; t ` M2 ; f??gE ; F ; G ; t ` case(M1 ; C(x1 ; : : : ; xn))M2 ; y )M3) ; f??gcan be made to be a part of the proof of E ; F ; G ; t ` M0 ; V0. The safetyproperty of (E ; F ; G) wrt M0 implies that if F(xi) then vi 2 E(xi) and G[l0; i] = t.Hence, E[x1 7! v1 ; : : : ; xn 7! vn] �(E;F ;G) E . We can now apply induction, to obtainv00 �(E;F ;G) V 00. 60



Rule (Case2): If M1 ! C 0(v1 ; : : : ; vn) then, by induction,C 0(v1 ; : : : ; vn) �(E;F ;G) V 0, i.e. C 0[l0 ; (v01 ; : : : ; v0n)] 2 V , for some l0.By assumption, E ; F ; G ; t ` M ; f??g is a subproof of some computationE ; F ; G ; t ` M0 ; V0. Hence, the following subcomputation,E ; F ; G ; t ` M1 ; V 0E ; F ; G ; t ` M2 ; f??gE ; F ; G ; t ` case(M1 ; C(x1 ; : : : ; xn))M2 ; y )M3) ; f??gcan be made to be a part of the proof of E ; F ; G ; t ` M0 ; V0.The safety property of (E ; F ; G) wrt M0 implies that if F(y) thenC 0[l0 ; (v1 ; : : : ; vn)] 2 E(y). Hence, E[y 7! C 0(v1 ; : : : ; vn)] �(E;F ;G) E . The result fol-lows by induction. 2De�nition: Given a closed term M0 and a boolean-annotated proof tree P of the form,t ` M0 ! v0,slice(M0 ; P ) = f l j E ; t ` l : e ! v is a subproof of P gGiven a terminating computation and a safe set-based environment (E ;F ;G), the Slic-ing Theorem(Theorem 6.3.2) shows how subterms which make no contribution to thecomputation can be speci�ed. If the value returned by a program is a nullary constructor,then the deletion of subterms, which do not contribute to the computation, causes thesame value to be returned. But if the value returned is not a nullary constructor then weneed to de�ne a formal relation R to specify the value returned on the deletion of subtermswhich do not contribute to the computation. For this theorem, we will assume that a valuebuilt by the application of a data constructor, in the standard interpreter, also includesthe label of the textual location where it was constructed.De�nition: v R(F ;G;L0) v0 is a relation between two values computed by the standardsemantics before and after the deletion of a set of subterms L0.61



� C[l ; (v1 ; : : : vn)]R(F ;G;L0) C[l ; (v01 ; : : : v0n)]if for every G[l ; i] = t, vi R(F ;G;L0) v0i.� hE ; �xMi R(F ;G;L0) hE0 ; �xM 0iif M 0 �M [L0=??] and E R(F ;G;L0) E0.� hE ; f ; �xMi R(F ;G;L0) hE0 ; f ; �xM 0iif M 0 �M [L0=??] and E R(F ;G;L0) E0.� E R(F ;G;L0) E0 if for each x, such that F(x) = t, E(x)R(F ;G;L0) E0(x).Since, the standard natural semantics can only represent terminating computationswe need a lemma to assert that deletion of subterms in a terminating purely functionalprogram creates another terminating program. This is done by de�ning an order on valuesreturned by a program:� ?? � v� C(v1 ; : : : ; : : :) � C(v01 ; : : : ; l0n) if 8i; vi � v0i.� hE ; �xMi � hE0 ; �xM 0i if (E � E0) and M 0[L=??] = M for some set ofsubterms L.� E � E0 if E(x) � E0(x), for every x.Lemma 6.3.3 If E ` M ! v then for E � E0, E0 ` M [L0=??] ! v0, where v � v0.This lemma can be easily proved by induction on the height of the prooftree/computation.Theorem 6.3.2 (Static Slicing Theorem)Let (E ;F ;G) be a safe set-based environment for a closed term M0.Let ` M0 ! v0 be the terminating computation under the standard interpreter.Let P � (t ` M0 ! v0) be the boolean-annotated proof of ` M0 ! v0 wrt (E ;F ;G).Let L0 = slice(M0 ; P ).If L00 = �(M0)�L0 then ` M0[L00=??] ! v00,where v0 R(F ;G;L0) v00 and �(M0) is the set of labels contained in M0.62



Proof: The proof is given by induction on the structure of the proof tree and appli-cations of the Soundness Theorem.We will assume here that the standard interpreter also tags values, built by constructorapplications, with labels of the site in which they were created.Induction Hypothesis:Given a subproof E ; t ` M ! v, if E R(F ;G;L0) E0 then there exists a proofE0 ; t ` M [L0=??] ! v0, where v R(F ;G;L0) v0.Rule(Var): Let M � x be a subterm of M 0. Given a proof t ` M0 ! v0 and aset-based environment, (E ;F ;G), safe wrt M0, we can, by the Soundness theorem,develop a similar set-based proof for M0. By the safety conditions on this set-basedproof, we have that F(x) is true. Hence, by assumption, E(x)R(F ;G;L0) E0(x).Rule(App): Let M � l : (l1 : e1)(l2 : e2). Let E ; t ` l1 : e1 ! hE1 ; �x M1i. Byinduction, E0 ` (l1 : e1)[L0=??] ! hE01 ; �xM1[L0=??]i; whereE1 R(F ;G;L0) E01.If F(x) is true and E ; t ` l2 : e2 ! v2 then, by induction,E0 ` (l2 : e2)[L0=??] ! v02, where v2 R(F ;G;L0) v02.Hence, E[x 7! v2]R(F ;G;L0) E0[x 7! v02]. The result now follows, by induction.If F(x) is false then if the computation of (l2 : e2)[L0=??] terminates the resultfollows immediately by induction.Termination of the computation of (l2 : e2)[L0=??] is a non-issue if l2 2 L. Otherwise,we apply Lemma 6.3.3 to assert the termination of the computation of (l2 : e2)[L0=??].Rule(Cons): If G[l; i] is false then li 2 L, i.e. the lthi subterm has been deleted. Theproof can now be completed by induction.Rule(Case1): Let M � l : case(l1 : e1 ; C(x1 ; : : : ; xn)) l2 : e2 ; y ) l3 : e3). Let(l1 : e1) evaluate to C[l0 ; (v1 ; : : : ; vn)]. Let (l1 e1)[L0=??] evaluate toC[l0 ; (v01 ; : : : ; v0n)]. For any i such that, G(l0 ; i) = t, we have vi R(F ;G;L0) v0i.Since (E ;F ;G) is safe wrt M0, if F(xi) then G(l0 ; i). For any i such that,G[l 0 ; i] = f , we apply Lemma 6.3.3 to assert termination of computation. Hence,E[x1 7! v1 ; : : : xn 7! vn]R(F ;G;L0) E0[x1 7! v01 ; : : : xn 7! v0n]. We can now apply the63



induction hypothesis to obtain the result.The induction for Case 2 can be similarly completed. 2The Soundness Theorem and the Static Slicing Theorem together provide a declara-tive speci�cation of a set of subterms which make no contribution to the computation.Let (E ;F ;G) be a safe set-based environment wrt M0. Let P be the boolean-annotatedproof tree, wrt this set-based environment, of the computation of the standard inter-preter. If a subterm l contributes to the computation then, by the Static Slicing Theorem,l 2 slice(M0 ; P ). The Soundness Theorem states that a proof tree in the standard seman-tics can be played out in the set-based semantics. Hence, the set L(E ;F ;G), de�ned below,contains slice(M0 ; P ). Thus, the complement of L(E ;F ;G) is a subset of the subtermswhich make no contribution to the computation.De�nition: Given a safe set-based environment (E ;F ;G) wrt a closed term M0, the setL(E ;F ;G), contains the subterm l i� there exists a subproof E ; F ; G ; t ` l : e ; V ,of some proof E ; F ; G ; t ` M0 ; V0.It should be noticed that, by the proof of the Minimality Theorem, the func-tion L is monotonic in its argument, i.e. if (E1;F1;G1) � (E2;F2;G2) thenL(E1;F1;G1) � L(E2;F2;G2). Hence, we de�ne the set-based approximation for dead code,sbadeadcode , using the minimum safe set-based environment, as follows,De�nition: sbadeadcode (M0) = �(M0)�L(Em;Fm;Gm) where, (Em;Fm;Gm) is the min-imum safe set-based environment wrt M0.6.4 ConstraintsGiven a terminating computation and a safe set-based environment, the Slicing Theorempresents a way of specifying subterms which make no contribution to the computation. Inthis section, we are going to present an algorithm for computing a safe set-based environ-ment for a closed term.The approach taken is similar to [30]: 64



� De�ne a language for expressing constraints.� Develop a concept of a model for such constraints.� Develop an algorithm for the computation of the minimummodel of such constraints.� Develop an algorithm to infer a collection of constraints from a given program.� Relate the minimum model of the above constraints to the minimum safe set-basedenvironment.6.4.1 The Language of ConstraintsThe set-based semantics de�ned computation wrt global environments:� E : Var! P(Val).� F : Var! Bool.� G : Label � Int! Bool.The environments E ; F ; G are �nite mappings. Ideally, we would like to have constraints,having free variables corresponding to the elements of the domains of these �nite mappings,i.e. variables denoted by Ex ; Fx &Gl;i, such that a solution to these constraints providesus with the environments we seek to compute.The constraints constructed from a program have more free variables. The solution tothe constraints returns environments with the following augmented domains:� E : Var [ Label! P(Val).� F : Var [ Label! Bool.� G : Label � Int! Bool.Hence, we have constraints with variables Ex ; El ; Fx ; Fl&Gl;i. We will use the letterz to generically refer to both variables and labels. To avoid notational clutter, variablesEx &El will simply be referred to as x& l.Constraints are partitioned into set constraints and boolean constraints. This partitionhas been made so that our constraint language is a modular extension of the constraint65



language de�ned in [30]. Such a partition at a syntactic level, however, necessitates someoverlap/recomputation at the semantic/simpli�cation level.Set constraints S, contain free variables x & l which are to be mapped to a subset ofP(Val). Boolean constraints B, contain free variables Fz & Gl;i which are to be mapped toBool . We will use the letter Y to generically refer to boolean variables Fz & Gl;i.The language of atomic set expressions is given by,ae ::= zj �xMj C[l ; (l1 ; : : : ; ln)]The language of set constraints is given by,S ::= z � aej l � Apply(l1 ; l2)j l � Case(l1 ; C(x1 ; : : : ; xn)) l2 ; y ) l3)The language of boolean constraints is given by,B ::= Fzj Gl;ij Fz1 ) Fz2j Fx ) Gl;ij Flj ^Gl;i ) Flij FApply(l1 ; l2)j FCase1(l1 ; C(x1 ; : : : ; xn)) l2 ; y ) l3)j FCase2(l1 ; C(x1 ; : : : ; xn)) l2 ; y ) l3)A collection of constraints (S ; B) has a model (E ;F ;G), if every constraint, underthis model, is satis�ed. The denotation of atomic set expressions and atomic booleanexpressions, under environments (E ;F ;G), is given in Table 6.2. Note that, the denotationof Apply and Case set expressions is de�ned, under a given model, only if the statedside-conditions are satis�ed under the model. If F(l1) = false then both [[ Apply(l1; : : :) ]]and [[ Case(l1; : : :) ]] equal ;. 66



[[ z ]](E;F ;G) = E(z)[[ C[l ; (l1 ; : : : ; ln)] ]](E;F ;G) = f C[l ; (v1 ; : : : ; vn)] j vi 2 E(li) g[[ (�x: l : e) ]](E;F ;G) = f (�x: l : e) g[[ Apply(l1 ; l2) ]](E;F ;G) = f v j (�x: l0 : e0) 2 E(l1) ; F(l1) = t and v 2 E(l0) gprovided, for any (�x: l0 : e0) 2 E(l1); F(x) ^ F(l1) implies E(x) � E(l2)[[ Case(l1 ; C(x1 ; : : : ; xn)) l2 ; y ) l3) ]](E;F ;G) = S1 [ S2where, S1 = f v j v 2 E(l2); if C[: : :] 2 E(l1) and F(l1) = t gprovided, 8i 8C[l0 ; (v1 ; : : : ; vn)] 2 E(l1);F(xi) ^ F(l1) implies vi 2 E(xi)S2 = f v j v 2 E(l3); if C 0[: : :] 2 E(l1) andF(l1) = t gprovided, for any v � C 0[: : :] 2 E(l1);F(y) ^ F(l1) implies v 2 E(y)[[ FApply(l1 ; l2) ]](E;F ;G) = F(l1) and _ f F(x) j �x: (l : e) 2 E(l1) g imply F(l2)and F(l1) implies ^ f F(l) j �x (l : e) 2 E(l1) g[[ FCase1(l1 ; C(x1 ; : : : ; xn)) l2 ; y ) l3) ]](E;F ;G) =(C[l0 ; : : :] 2 E(l1) andF(l1))implies F(l2) and F(xi)) G[l0 ; i][[ FCase2(l1 ; C(x1 ; : : : ; xn)) l2 ; y ) l3) ]](E;F ;G) =(C 0[: : :] 2 E(l1) andF(l1)) implies F(l3):Table 6.2 : Denotation of Atomic Set-Based Expressions
67



input a collection (S ; B) of set and boolean constraints.repeat/* Simpli�cation of Boolean Constraints */if f Y ) Fl ; Y g � Bthen add Fl to B.if f Y1 ^ Y2 ) Fl ; Y1 ; Y2 g � Bthen add Fl to B.if f FApply(l1 ; l2) ; Fl1 g � B and ( l1 � �x (l0 : e0) ) 2 Sthen add f Fl0 ; Fx ) Fl2 g to B.if f FCase1(l1;C(x1 ; : : : ; xn)) l2; y ) l3); Fl1 g � B & ( l1 � C[l0 ; : : :] ) 2 Sthen add Fl2 to B:for every i; add Fxi ) Gl0;i to B:if fFCase2(l1;C(x1 ; : : : ; xn)) l2 ; y ) l3); Fl1 g � B & ( l1 � C 0[l0; : : :] ) 2 Sthen add Fl3 to B./* Simpli�cation of Set Constraints */if f z � l1 ; l1 � ae g � S, where ae is atomic and not a set variable,then add z � ae to S.if f l � Apply(l1 ; l2) ; l1 � �x (l0 : e0) g � S and Fl1 2 Bthen add l � l0 to S:if Fx 2 B then add x � l2 toS:if ( l � Case(l01 ; C(x1 ; : : : ; xn)) l02 ; y ) l03) ) 2 S and Fl01 2 Bthen if ( l01 � C[l0 ; (l1 ; : : : ; ln)] ) 2 Sthen add l � l02 to S:for every i; if Fxi 2 B then add xi � li to S:if (l01 � (X � C 0[: : :])) 2 S then add l � l03 to S:if Fy 2 B then add y � X to S:until No changes in (S ; B).output explicit(S ; B).Table 6.3 : Set Constraint Simpli�cation Algorithm, Simplify
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A minimum model for a collection of constraints is computed by a process of simpli�-cation of the constraints. The algorithm, Simplify , is presented in Table 6.3.Theorem 6.4.1 If (E ;F ;G) is a model of a set of constraints (S ; B) then (E ;F ;G)is also a model of (S 0 ; B0), the set of constraints obtained after applying a single step ofthe simpli�cation algorithm.Proof: The proof is by cases, over the new constraints introduced by the simpli�cationalgorithm. 2De�nition: A set constraint is in explicit form, if it has the form z � ae where ae isan atomic expression that is not a variable.A boolean constraint is in explicit form, if it is a variable.Theorem 6.4.2 Given a set of constraints (S;B), such that Simplify(S;B) = (S;B),explicit(S;B) generates a model (E0 ; F0 ; G0), for (S;B).Proof: For every boolean constraint Gl;i 2 B, we assign G0[l ; i] = t. Similarly, for everyFz 2 B, we assign F0(z) = t. The functions F0;G0 map every other element in their domainto f .Explicit set constraints are of the form: z � �x: M , z � C[l ; (l1 ; : : : ; ln)]. They forma regular tree grammar [36]. Since we want to relate the solution of the constraint set tothe minimum safe set-based environment, we introduce the constraint z � f??g, for everyvariable z. This is because by the empty rules any subterm can evaluate to f??g.There is a least solution to such a collection of explicit constraints. This is computedby constructing an equivalent context-free grammar G with the rules:� Z �! �x: M for the constraint z � �xM .� Z �! C[l ; (L1 ; : : : ; Ln)] for the constraintz � C[l ; (l1 ; : : : ; ln)].� Z �! ?? for every bound variable, every label z.69



The environment E0 can then be constructed by mapping every variable z to the set ofterms which have �nite derivations from the non-terminal Z.To prove that (E0;F0;G0) is indeed a model we need to show that non-explicit con-straints in (S;B) are not violated. Explicit constraints are, by de�nition, satis�ed by thismodel. Once we prove that non-explicit set constraints of the form z1 � z2 are not vio-lated, it is easy to show that the remaining non-explicit set constraints are not violated.If the constraint z1 � z2 is violated, i.e. z1 6� z2, then 9v st v 2 z1 but v 62 z2. Butv 2 z1 only because we have an explicit set-constraint z1 � ae, where v 2 ae . By the rulesof the simpli�cation, we also have an explicit constraint z2 � ae. Hence, violation of anon-explicit constraint of the form z1 � z2 is not possible. Using the fact that this explicitconstraint is not violated we can easily prove that other non-explicit constraints are notviolated. 2Notation: Given a collection of constraints (S;B), let Min(S;B) denote the model of(S;B) built in Theorem 6.4.2.Given a closed term M0, Table 6.4 presents an algorithm for inferring a collectionof constraints, (S;B), which capture the relation between the elements of the domain of(E ;F ;G), a safe set-based environment wrt M0.Theorem 6.4.3 Given a closed term M0, there is an O(n3) algorithm for solving theconstraint set (S;B), such that M0 � (S;B), into an explicit form.Proof: For a term of size n, i.e. a term with n distinct labels, it is easily seen fromthe grammar for the constraints and the structure of the constraints generated by Simplifythat only O(n2) constraints will be generated during the simpli�cation process.The simpli�cation process, in essence, performs a dynamic transitive closure: all the`edges' are not available in the beginning, but generated in the course of the simpli�cation.A non-explicit constraint of the form l � Apply(l1 ; l2) cannot be further simpli�ed till wehave the explicit boolean constraint Fl1 available.70



l : x � ( f l � x g ; fFl ) Fx g ) (1)l1 : e1 � (S1 ; B1 )l : �x (l1 : e1) � ( f l � �x (l1 : e1) g [ S1 ; B1 ) (2)l1 : e1 � (S1 ; B1 ) l2 : e2 � (S2 ; B2 )l : letrec f(x) = (l1 : e1) in l2 : e2 � ( S1 [ S2 [ ff � f�x l1 : e1gg ;B1 [ B2 [ fFl ) Fl2g ) (3)l1 : e1 � (S1 ; B1 ) l2 : e2 � (S2 ; B2 )l : (l1 : e1)(l2 : e2) � ( f l � Apply(l1 ; l2) g [ S1 [ S2 ;fFApply(l1 ; l2) ; Fl ) Fl1 g [ B1 [ B2) (4)li : ei � (Si ; Bi ) i = 1 : : : nl : C(l1 : e1 ; : : : ; ln : en) � ( f l � C[l ; (l1 ; : : : ; ln)] gSni=1 Si ;fFl ^Gl;i ) Fli gSni=1 Bi ) (5)l1 : e1 � (S1 ; B1 ) l2 : e2 � (S2 ; B2 ) l3 : e3 � (S3 ; B3 )l : case(l1 : e1 ; C(x1 ; : : : ; xn)) l2 : e2 ; y ) l3 : e3) �( f l � Case(Y ) g [ S1 [ S2 [ S3 ;fFl ) Fl1 ; FCase1(Y ) ; FCase2(Y ) g [ B1 [ B2 [ B3 )where Y � (l1 ; C(x1 ; : : : ; xn)) l2 ; y ) l3) (6)
Table 6.4 : Construction of Set ConstraintsFor a graph with n vertices, dynamic transitive closure can be implemented by anO(n3) algorithm. 26.4.2 Relating Set Constraints and Set-Based SemanticsIn this subsection we are going to show that sbadeadcode is computable. Weprove that given a closed term M0 � (l0 : e0), st M0 � (S0 ; B0), the setf l j F0(l) = false ; (E0;F0;G0) � Min(S0 ; B0 [ fFl0g)g equals sbadeadcode (M0).This will be proved using the lemmas, Lemma 6.4.1 and Lemma 6.4.2. Lemm 6.4.1proves that any model of the set of constraints (S0 ; B0), where M0 � (S0 ; B0), is a safe71



set-based environment for M 0. Lemma 6.4.2 proves the converse, i.e. given a set-basedenvironment (E ;F ;G) safe wrt M0 we can construct a model for the constraints (S0 ; B0),where M0 � (S0 ; B0).Lemma 6.4.1 Given a closed term M0 � (l0 : e0), st M0 � (S0 ; B0), if (E ;F ;G) is amodel of the set of constraints (S0 ; B0 [ fFl0g), then (EjVar ;FjVar ;G) is safe wrt M0,and f l j F(l) = t g � L(EjVar ;FjVar ;G).Proof: There are two things to prove here. Given the complete collection of proofs,f E ; F ; G ; t ` l0 : e0 ; : : : gFirstly, every such proof is safe and secondly, an occurrence of E ; F ; G ; t ` l : : : : ;implies that F(l) = t.The proof is by induction on the height of the proof tree.Induction Hypothesis: For any valid subproof, E ; F ; G ; t ` l : e ; V , if F(l) = t thenV � E(l) and the subproof satis�es the safety conditions. Also, for every occurrence of,E ; F ; G ; t ` l0 : : : : ; we have F(l0) = t.A single case is elaborated below:Rule 7: Let M1 � (l1 : e1) ; M2 � (l2 : e2) ; M � (l : e).Since the constraint Fl ) Fl1 is valid, we have F(l1) = t. Hence, by induction, forthe proof of M1 ; V1, we have V1 � E(l1) and the fact that the other conditions inthe hypothesis are satis�ed. Thus, �x (l0 : e0) 2 E(l1). By the de�nition of FApply,F(l1) implies F(l0). Hence, F(l0) = t. By induction, for the proof, M ; V3, wehave that V3 � E(l0) and the fact that the rest of the conditions in the hypothesisare satis�ed. Hence, by the de�nition of Apply, V3 � E(l).By the de�nition of FApply, F(l1) ^ F(x) implies F(l2). If F(x) is false then theproof of M2 ; f??g is trivial. If F(x) is true then F(l2) = t. Hence, by induction,the proof of M2 ; V2 is safe and V2 � E(l2). Since (E ;F ;G) is a model, we haveE(x) � E(l2). Hence, E(x) � V2. Thus making the subproof a safe proof. 272



Lemma 6.4.2 Given a closed term M0 � (l0 : e0), st M0 � (S0 ; B0), if (E ;F ;G)is safe wrt M0, then there exists a model (E 0;F 0;G0) for (S ; B [ fFl0g), stL(E ;F ;G) = f l j F 0(l) = t g.Proof: Let E 0jVar = E ; F 0jVar = F and G0 = G.To construct F 0jLabel , we map every label in L(E ;F ;G) to t, and any other label to f .The construction of E 0jLabel is speci�ed as follows:I. For any label l, E 0(l) � f??g.II. For any subterm, (l : x), E 0(l) � E(x).III. For any subterm (l : �xM), E 0(l) � f�xMg.IV. For any subterm l : C(l1 : e1 ; : : : ; ln : en),E 0(l) = fC[l ; (v1 ; : : : ; vn)] j vi 2 E 0(li)g.V. For any label l, E 0(l) contains the union of all values V , such that there is a subproofE ; F ; G ; t ` l : : : : ; V .The last clause speci�es all the relevant bindings. The other clauses are requiredto satisfy unguarded constraints generated for a closed term. Given E , there is a uniqueminimum E 0 satisfying all clauses except (IV). Once such an E 0 is available, we can performa minimum �xed point computation to make it satisfy clause (IV): this does not violateother clauses.To complete the proof we need to show that such a construction builds a model satis-fying the set constraints. This is easily shown using the safety property of the underlyingset-based environment (E ;F ;G). 2Theorem 6.4.4 (Correctness) Given a closed term M0 � (l0 : e0), st M0 � (S0 ; B0),if (E0;F0;G0) � Min(S0 ; B0 [ fFl0g) then the set f l j F0(l) = f g equals sbadeadcode (M0).Proof: Let (E 0m;F 0m;G0m) be the model constructed from the minimum safe set-basedenvironment, (Em;Fm;Gm), by an application of Lemma 6.4.2.73



By construction, L(Em;Fm;Gm) = f l j F 0m(l) = t g.From the construction of the model (E0;F0;G0), as detailed in Theorem 6.4.2, we havef l j F 0m(l) = t g � f l j F0(l) = t g.Hence, by Lemma 6.4.2, L(Em;Fm;Gm) � f l j F0(l) = t g (1)By Lemma 6.4.1, f l j F0(l) = t g � L(E0jVar ;F0jVar ;G).As (Em;Fm;Gm) is the minimum safe set-based environment and the function L is mono-tonic, we haveL(E0jVar ;F0jVar ;G) � L(Em;Fm;Gm).Hence, f l j F0(l) = t g � L(Em;Fm;Gm) (2)Thus, from (1) and (2), we have,f l j F0(l) = t g = L(Em;Fm;Gm). 26.5 ConclusionThis chapter presents a polynomial time algorithm for isolating dead code in higher-orderfunctional programs, i.e. a terminating algorithm for the computation of static slices. Wehave presented a formal proof of the correctness of this algorithm.Analysis concerning demand is essentially a backwards analysis. This work demon-strates that we can still provide an elegant declarative speci�cation of the analysis throughan augmented set-based semantics.The static analysis technique developed here cannot plug space leaks stemming frommemo/hash tables [34] or order of evaluation [9]. But, as shown by the example in theIntroduction, the analysis can prevent creation of certain void cells and can reduce drag.Further work needs to be done to investigate exactly how signi�cant this optimisation canbe. The language Standard ML contains imperative features, exceptions and assignments.As is to be shown in Chapter 7, introduction of imperative features results in loss of twoimportant properties wrt computation of executable slices:74



� Existence of a unique minimum dynamic slice.� Conceptual understanding of the slice computation process as a `naive' backwardpropagation of demand.Because of the loss of these two properties an immediate extension of the technique, de-veloped in this chapter, to a higher-order functional language, with exceptions and assign-ments, does not seem feasible.
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Chapter 7
Slicing Higher-Order Programswith Exceptions and Assignments
7.1 Slicing Programs with AssignmentsThe additional productions in the grammar for terms M, is given byM ::= l : !Mj l : refMj l : M1 :=M2j l : M1 ; M2The statement l : M1 ; M2 is an abbreviation for (�z M2)M1, where z is not a freevariable in M2. The set of values V , now also contains memory locations �.As mentioned before, executable slices are interpreted on an augmented operationalsemantics. Introduction of assignments into the language introduces new operators intothe language. We need to augment the standard operational semantics with additionalrules for the new operators. E ; S ` M ! ?? ; S1E ; S ` l : !M ! ?? ; S176



E ; S ` M1 ! ?? ; S1E ; S1 ` M2 ! v ; S2E ; S ` l : M1 :=M2 ! () ; S2Introduction of assignments complicates the problem of computing the dynamic slice ofa program. This is because assignments inuence the computation through side-e�ects: anassignment returns the value ( ) which is not used any further. As discussed in Chapter 1,relevant slices and dynamic slices do not co-incide anymore. With an informal intuitionabout `contributing' to the answer, the following items illustrate changes brought about inthe computation of dynamic slices by introducing assignments into the language.The speci�cation of dynamic slices involved changing the environment, as a map fromVar ! Val, to a map from Var ! Val � P(Labels). If the domain of memory locationsis given by the set Loc, we would naturally expect changing the store, as a map fromLoc ! Val, in the standard semantics, to a map from Loc ! Val � P(Labels). But thisalone does not do the trick. For an assignment statement, embedded in a subterm, it maybe the case that this containing subterm, by itself, makes no contribution to the valuereturned, but the contained assignment statement does. The strategy used in Table 5.2computes the set of labels, de�ning the dynamic slice, simply from the set of labels collectedin its subcomputations. In the presence of assignments, we need to ensure that a particularassignment/update takes place in the sliced version of the program. This cannot be ensuredmerely by including the label of the particular assignment statement in the dynamic slice.It is necessary to preserve the entire sequence of control dependencies needed to reach thepoint in the evaluation where the assignment takes place. In the program in Fig 7.1, theentire body of the term proj1must be included in the dynamic slice. But a naive extensionof the technique described, for purely functional programs, does not ensure that the labelattached to proj1 enters into the memory location marked by y. Hence, at every point inthe computation, we need to preserve the set of labels to be left intact, to reach that pointin the computation. This set needs to be carried around as an explicit parameter in thenatural semantics.Dynamic slicing, as de�ned in [6], does not generate an executable program while the77



let val x = ref 6val y = ref 9val proj1 = fn x1 => fn x2 => x1()in (fn() => ! y) ( proj1 (fn() => y:= 90) (fn() => x:=60) )end Figure 7.1slicing algorithm de�ned in [40] does. The di�erence between the techniques occurs onlybecause statements, in a while loop, are executed many times. As discussed in Section 2.2,Korel and Laski [40], collapse the dependencies of multiple passes of the same statement,through the use of the relation IR, while Agrawal and Horgan [6], do not. A similarproblem arises when the same function is used in di�erent call-sites.In Fig 7.2, the program (a) has (b) as its executable dynamic slice. Fig 7.2(c) is thesame program as (a), but with f1 and f2 replaced by two di�erent calls to the closure ofthe same function f. In (c), the if statement contributes to the value returned by the call(f x z) but not to the value returned by the call (f z x). The term p:= false does notcontribute to the value returned by either of the calls to f. For purely functional programs,the dynamic slice associated with a closure was the union of the slices associated with eachof the contributing call-sites of the closure. Hence, in the dynamic slice of (c), f should bede�ned as, val f = fn y1 => fn y2 => ( if (! p) then (y1:=100) else ??;! y1 )But this ends up updating the value of z in the call (f z x). Hence, it no longer returnsthe same answer. The �rst call to ! p contributes to the �nal answer but the second callto ! p does not. But if enough labels happen to be preserved to reach the second call to! p, in the sliced program, the dependencies, associated with contents of the location p,must be also be included in the dynamic slice. Hence, p := false must be includedin the dynamic slice, even though it does not explicitly `contribute' at any call-site of thecontaining function. 78



let val x = ref 1val z = ref 2val p = ref trueval f1 = fn() => (if (! p)then (x:=100)else (z:=200);p := false;! x )val f2 = fn() => (if (! p)then (z:=100)else (x:=200);p := false;! z )in f1() + f2()end

let val x = ref ??val z = ref 2val p = ref trueval f1 = fn() => (if (! p)then (x:=100)else ??;! x )val f2 = fn() => (! z )in f1() + f2()end
(a) (b)let val x = ref 1val z = ref 2val p = ref trueval f = fn y1 => fn y2 => ( if (! p) then (y1:=100) else (y2:=200);p := false;! y1 )in (f x z) + (f z x)end (c)Figure 7.2
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The above example is meant to illustrate a characteristic problem of computingsliced versions of programs, with assignments, which are meant to be executable onthe standard/augmented interpreter. The situation being addressed is that of a term,contained in a closure, being executed in two distinct occurrences. One of the occurrencesof the term contributes to the �nal value but the other occurrence does not. In de�nitionsof slicing for term rewriting systems, as formulated in [22], the second occurrence ofthe term, which does not contribute, is not executed but is side-stepped by the use ofthe Resid relation. But if we are using the standard/augmented interpreter we cannotdo this. The problem does not arise in purely functional programs. This is becauseif we do not preserve, the dependencies associated with the second occurrence of theterm, by Lemma 5.2.1, this occurrence will evaluate to ??. As this occurrence does notcontribute, anyway, the rest of the evaluation can proceed as before. But, in the presenceof assignments, if the dependencies associated with the second occurrence of the term arenot preserved then this occurrence may not evaluate to ?? but may evaluate to some othervalue v0. This may happen, for example, if we leave out an update. This di�erent value v0at this point may completely alter the ow of control, resulting in a completely di�erentvalue being computed.Another characteristic feature of the introduction of assignments into the language isthat minimum dynamic slices no longer exist. In Fig 7.3, both the programs, (b) and (c),are minimal dynamic slices of the program (a).It is easy to show that the computation of minimal dynamic slices is no longer decidable.In Fig 7.3(d), the updated value of x depends on the original value of x through somefunction f. But to know that the update of the variable x is superuous, we need toexecute the rest of the program with old value of x : this execution may not terminate.To exclude the update statement from the dynamic slice we would need to know whethertwo di�erent inputs to an arbitrary Turing machine, Turing Machine1, produce the sameanswer: this is an undecidable problem.
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let val x = ref 3in x := 11 ;x := 16 ;(! x) mod 5end
let val x = ref ??in x := 16 ;(! x) mod 5end

let val x = ref ??in x := 11 ;(! x) mod 5end(a) (b) (c)let val x = ref 6inx := f (! x) ;Turing Machine1(!x)end (d)Figure 7.3A Natural Semantics for Computation of SlicesTable 7.1 presents the speci�cation of dynamic slices for higher-order imperative programs.Proofs in this system are of the form, LL ; F ; S ; L0 ` M ! V ; S1 ; L1, whereF represents the initial environment with which the computation of M starts.S represents the initial store with which the computation of the term M starts.V is the value returned by the computation.S1 is the �nal store.L0 is a set of labels representing the control dependencies involved in reaching this par-ticular point in the computation. If any of the labels in L0 is set to ?? then thisparticular point in the computation would never be reached.LL is a partial function, LL : P(Labels)! P(Labels).Let a speci�c occurrence of a subterm (l : !M) `contribute' to the answer. Let therebe a di�erent occurrence of l, in the execution, such that M evaluates to a location81



� and the store at that occurrence of l maps � to (V ; L). If enough labels arepreserved in the slice, so as to reach this occurrence of l, in the execution of thesliced program, then L is included in the dynamic slice, even if this occurrence ofl, hence the contents of �, does not contribute to the answer. The rationale forthis is: In, at least one occurrence of l, the contents associated with the location, Mevaluated to, `contributed' to the answer. If L, from any one of the other occurrencesof l, is not included then it may be that an update associated with the location, Mevaluates to at that particular occurrence, will no longer be executed. Consequently,at that occurrence, the accessed value will be di�erent and control may ow in acompletely di�erent direction: the sliced program may not terminate or the returnedanswer of the entire program may be di�erent. This was shown very clearly in theexample in Fig 7.2.Intuitively, LL stores the following information: For an occurrence of the term(l0 : !M), ifM evaluates to (� ; L1) then LL(L1) contains the label component, of thecontents of the location �. It should be noted that it is easy to synthesize this partialfunction LL, in the course of the computation. For simpler correctness proofs, LL isincluded as a constant partial function in the operational semantics. The operationalsemantics only ensures that, for a given LL, only a subset of evaluations are legal:those that satisfy the side conditions involving LL.L1 is a set of labels synthesized during the computation of M . The dynamic slice of theterm M is obtained by closing the set L1 with respect to the partial function LL.The rationale behind the closure operation is: if L1 preserves enough labels to reacha point, in the computation, that involves memory access, then we must includethe dependencies, of the contents of the location accessed, even though this speci�coccurrence does not explicitly `contribute' to the answer.We now explain the intuition behind the key rules in the semantics provided in Table 7.1Rule(4) If : : :  M1 ! hF 0 ; �xMi ; S1 ; L1then the set of labels which need to be preserved to execute the function body M82



becomes L1. This becomes relevant when we push label sets into the store duringupdate/ initialisation of memory locations.Rule(11) If : : :  M1 ! � ; S1 ; L1 and : : :  M2 ! V ; S2 ; L2then the store that is returned has [� 7! (V ; L1 [ L2)]. This is because if the valueV , obtained by dereferencing the location �, contributes to the answer then we needto ensure that this update occurs in the sliced program: M1 must evaluate to �, M2must evaluate to V and this point in the computation must be reached.Rule(12) If : : :  M1 ! � ; S1 ; L1 and S1(�) = (V ; L2)then we need LL to enforce the constraint that if the set of labels L1 is preservedin the slice, i.e. the term M1 is executed in the sliced version of the program andevaluates to the location �, then the dereferenced value is the same V .As discussed in Chapter 4, recursion is implemented by binding the variable represent-ing the recursive function to the recursive closure at each unfolding of the functionbody. In the semantics presented in Table 7.1, the environment is a mapping fromVar ! Val � P(Labels). Hence, at each unfolding of the recursive function, the functionvariable binding created must have an associated label component. For the Rule 3, thelabel component is L0[flg. For the Rule 5, the label component is L1. These are the labelsets required to create that particular instance of the recursive closure. An important pointto be observed is that at the point of the binding of a recursive closure, the associated labelcomponent exactly equals the parameter, on the left of , representing the set of labelsto be retained intact to reach that point in the computation. Because of this, the labelset associated with binding of a recursive function variable essentially carries superuousinformation. Hence, the label set can be assigned the constant value ;. The two rulesinvolving recursive functions may be replaced by the following rules:LL ; F [f 7! (hF ; f ; �xM1i ; ;)] ; S0 ; L0 [ flg  M2 ! V ; S1 ; L1LL ; F ; S0 ; L0  l : letrec f(x) =M1 in M2 ! V ; S1 ; L1
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LL ; F ; S0 ; L0 [ flg  M1 ! hF 0 ; f ; �xMi ; S1 ; L1LL ; F ; S1 ; L0 [ flg  M2 ! V2 ; S2 ; L2LL ; F 0[f 7! (hF 0 ; f ; �xMi ; ;) ; x 7! (V2 ; L2)] ; S2 ; L1  M ! V3 ; S3 ; L3LL ; F ; S0 ; L0  l : M1M2 ! V3 ; S3 ; L3Proof of CorrectnessDe�nition: For any L � Labels ; F : P(Labels) ! P(Labels), L is closed under F , i.e.L = F�(L), if for any L0 � L, F (L0) � L.The store, at the end of the computation of a sliced term, is very di�erent from thestore, at the end of the computation of the original term. This is because the sliced termhas many missing assignments and many values have ?? scattered within them. To provethe correctness of the executable dynamic slice, we need to relate the memory, at the endof the computation of a term, to the memory, at the end of the computation of the slicedversion of the term. This is done by the relation QL1 .De�nition: For any L1 � Labels ; SQL1 S0 i� dom(S0) � dom(S) and for l 2 dom(S),if S(l) = (V ; L) then either (L1 \ L) 6= ;, or (L1 \ L) = ; and S0(l) = V [L1=??].Given the domain and the contents of a store S, for any S0 such that S QL1 S0, therelationship QL1 speci�es a minimum domain and associated contents for S0.Lemma 7.1.1 Let LL ; F ; S ; L0  (l : e) ! V ; S1 ; L1.If there is a location � s.t. S(�) is not de�ned or S(�) 6� S1(�), and S1(�) = (V ; L)then L0 [ flg � L.Proof: The proof is a simple induction on the height of the proof tree, using the factthat if LL ; E ; S ; L0  (l : e) ! V ; S1 ; L1 then L0 [ flg � L1. 284



LL ; F [x 7! (V ; L)] ; S0 ; L0  l : x ! V ; S ; L0 [ L [ flg (1)LL ; F ; S0 ; L0  l : �xM ! hF ; �xMi ; S ; L0 [ flg (2)LL ; F [f 7! (hF ; f ; �xM1i ; L0 [ flg)] ; S0 ; L0 [ flg  M2 ! V ; S1 ; L1LL ; F ; S0 ; L0  l : letrec f(x) = M1 in M2 ! V ; S1 ; L1 (3)LL ; F ; S0 ; L0 [ flg  M1 ! hF 0 ; �xMi ; S1 ; L1LL ; F ; S1 ; L0 [ flg  M2 ! V2 ; S2 ; L2LL ; F 0[x 7! (V2 ; L2)] ; S2 ; L1  M ! V3 ; S3 ; L3LL ; F ; S0 ; L0  l : M1M2 ! V3 ; S3 ; L3 (4)LL ; F ; S0 ; L0 [ flg  M1 ! hF 0 ; f ; �xMi ; S1 ; L1LL ; F ; S1 ; L0 [ flg  M2 ! V2 ; S2 ; L2LL ; F 0[f 7! (hF 0 ; f ; �xMi ; L1) ; x 7! (V2 ; L2)] ; S2 ; L1  M ! V3 ; S3 ; L3LL ; F ; S0 ; L0  l : M1M2 ! V3 ; S3 ; L3 (5)LL ; F ; Si�1 ; L0 [ flg  Mi ! Vi ; Si ; Li ; i = 1 : : : nLL ; F ; S0 ; L0  l : Op(M1 ; : : : ; Mn) ! Op(V1 ; : : : ; Vn) ; Sn ; Sni=1 Li (6)LL ; F ; Si�1 ; L0 [ flg  Mi ! Vi ; Si ; Li ; i = 1 : : : nLL ; F ; S0 ; L0  l : C(M1 ; : : : ; Mn) ! C((V1 ; L1) ; : : : ; (Vn ; Ln)) ; Sn ; L0 [ flg (7)LL ; F ; S0 ; L0 [ flg  M1 ! C((V1 ; L1) ; : : : ; (Vn ; Ln)) ; S1 ; LLL ; F [x1 7! (V1 ; L1) ; : : : ; xn 7! (Vn ; Ln)] ; S1 ; L  M2 ! V ; S2 ; L0LL ; F ; S0 ; L0  l : case(M1 ; C(x1 ; : : : ; xn))M2 ; y )M3) ! V ; S2 ; L0 (8)LL ; F ; S0 ; L0 [ flg  M1 ! C 0((V1 ; L1) ; : : : ; (Vn ; Ln)) ; S ; L C 6= C 0LL ; F [y 7! C 0((V1 ; L1) ; : : : ; (Vn ; Ln))] ; S ; L  M3 ! V ; S0 ; L0LL ; F ; S0 ; L0  l : case(M1 ; C(x1 ; : : : ; xn) )M2 ; y )M3) ! V ; S0 ; L0 (9)LL ; F ; S0 ; L0 [ flg  M ! V ; S1 ; L1 � 62 dom(S1)LL ; F ; S0 ; L0  l : refM ! � ; S1[� 7! (V ; L1)] ; L0 [ flg (10)LL ; F ; S0 ; L0 [ flg  M1 ! � ; S1 ; L1LL ; F ; S1 ; L0 [ flg  M2 ! V ; S2 ; L2LL ; F ; S0 ; L0  l : M1 := M2 ! () ; S2[� 7! (V ; L1 [ L2)] ; L0 [ flg (11)LL ; F ; S0 ; L0 [ flg  M1 ! � ; S1 ; L1LL ; F ; S0 ; L0  l : !M1 ! V ; S1 ; L1 [ L2where S1(�) = (V ; L2) and L2 � LL(L1) (12)Table 7.1 : Specifying Dynamic Slices for Higher-Order Imperative Programs85



Lemma 7.1.2 If LL ; F ; S0 ; L0  (l : e) ! V ; S1 ; L1 then for any L, s.t.L0 � L and L is closed under LL, if L1 � (Labels �L) and S QL1 S0 thenF [L1=??] ; S0 ` (l : e)[L1=??] ! (V ; L1)[L1=??] ; S01, where S1 QL1 S01.Proof: The proof is by induction on the height of the proof tree. Only the proof for thememory access rule, Rule (12), uses the closure property of L. All the cases considered inthe proof assume that l 2 L. If this wasn't true then l 2 L1 andF [L1=??] ; S0 ` l : ?? ! ?? ; S0. By Lemma 7.1.1, any update/allocation made in theevaluation of (l : e), contains l in its label component. Hence, S1 QL1 S0.Rule(4) As l 62 L1 then L1 \ (L0 [ flg) = ;. If L1 \ L1 = ; then, by induction,F [L1=??] ; S0 ` M1[L1=??] ! hF 0[L1=??] ; �xM [L1=??]i ; S01, where S1 QL1 S01.By induction, F [L1=??] ; S01 ` M2[L1=??] ! (V2 ; L2)[L1=??] ; S02, where S2QL1S02.By assumption L \ L1 = ;. Hence, by induction,F 0[L1=??][x 7! (V2; L2)[L1=??]] ; S02 ` M [L1=??] ! (V3 ; L3)[L1=??] ; S03,where S3 QL1 S03.Hence, F [L1=??] ; S0 ` (l : M1M2)[L1=??] ! (V3 ; L3)[L1=??] ; S03.If L1 \ L1 6= ; then, by induction, F [L1=??] ; S0 ` M1[L1=??] ! ?? ; S01,where S1 QL1 S01.By induction, F [L1=??] ; S01 ` M2[L1=??] ! (V2 ; L2)[L1=??] ; S02, where S2QL1S02.Hence, F [L1=??] ; S0 ` (l : M1M2)[L1=??] ! ?? ; S02. Any updates/allocationsmade in the evaluation of M necessarily introduces L1 into the store. Hence, anylocation, in which S2 and S3 di�er, contains at least L1 in the label component.Since L1 \ L1 6= ; and we are comparing stores modulo QL1 , S3 QL1 S02.Rule(8) As l 62 L1 then L1 \ (L0 [ flg) = ;. If L \ L1 = ; then, by induction,F [L1=??] ; S0 ` M1[L1=??] ! C((V1 ; L1)[L=??] ; : : : ; (Vn ; Ln)[L=??]) ; S01, whereS1 QL1 S01. By assumption, L \ L1 = ;. Hence, by induction,F [L1=??][x1 7! (V1 ; L1)[L=??] ; : : : ; xn 7! (Vn ; Ln)[L=??]] ; S01 `M2[L1=??] ! (V ; L0)[L1=??] ; S02where S2 QL1 S02. 86



If L1 \ L1 6= ; then, by induction, F [L1=??] ; S0 ` M1[L1=??] ! ?? ; S01,where S1 QL1 S01. Any updates/allocations made in the evaluation of M2 necessarilyintroduces L1 into the store. Hence, any location, in which S2 and S1 di�er, containsat least L1 in the label component. Since L1 \ L1 6= ; and we are comparing storesmodulo QL1 , S2 QL1 S01.Rule(10) As l 62 L1, by induction, F [L1=??] ; S0 ` M [L1=??] ! (V ; L1)[L1=??] ; S01,where S1QL1 S01. Hence, S1[� 7! (v ; L1)]QL1 S01[� 7! (V ; L1)[L1=??]]. This uses theassumption that dom(S01) � dom(S1), i.e. if � is a completely new location in theproof of the evaluation of (refM) under S0 then � is also a completely new locationin the proof of the evaluation of (refM)[L1=??] under S0.Rule(11) As l 62 L1, i.e. L1 \ (L0 [ flg) = ; then, by induction,F [L1=??] ; S0 ` M1[L1=??] ! (� ; L1)[L1=??] ; S01, where S1 QL1 S01.F [L1=??] ; S01 ` M2[L1=??] ! (V2 ; L2)[L1=??] ; S02, where S2 QL1 S02.If (L1[L2)\L1 = ; thenM1[L1=??] evaluates to � andM2[L1=??] evaluates V [L1=??].Thus S2[� 7! (V ; L1 [ L2)]QL1 S02[� 7! V [L1=??]].If (L1 [ L2) \ L1 6= ; then the updated version of S2, S2[� 7! (V ; L1 [ L2)], isde�nitely related by QL1 to a version of S02, which possibly di�ers from S20 only inthe location �.Rule(12) If L1 \ L1 = ;, i.e. L1 � L then, by induction,F [L1=??] ; S0 ` M1 ! � ; S01, where S1 QL1 S01.Since L1 � L and L is closed under LL, L2 � LL(L1) � L. Hence, L2 \ L1 = ;.As S1 QL1 S01, � 2 dom(S10) and S01(�) = V [L1=??]. Hence,E[L1=??] ; S0 ` l : !M1 ! V [L1=??] ; S01, where S1 QL1 S01.If l 62 L1 and L1 \ L1 6= ; then, by induction,F [L1=??] ; S0 ` M1 ! ?? ; S01, where S1 QL1 S01.Hence, F [L1=??] ; S0 ` l : !M1 ! ?? ; S01.It is important to notice that the closure of the set L under the function LL ensuresthat if the set L1 is retained, i.e. M1 evaluates to the same location, then the set oflabels, L2, associated with its contents is retained.87



2Theorem 7.1.1 If LL ; ; ; ; ; ;  M ! V ; S ; L then LL�(L) is a dynamic slice.Proof: LL�(L) is a set of labels that is closed under the function LL.Let L1 � �(M)� LL�(L). Since L1 \ L = ;, by Lemma 7.1.2,; ; ; ` M [L1=??] ! V [L1=??] ; S0, where S QL1 S0.Hence, LL�(L) de�nes an executable dynamic slice of the program M . 27.2 Slicing Programs with ExceptionsIn this section, we investigate the slicing of purely functional programs in the presence ofexceptions.The additional productions in the grammar for labelled terms M, is given byM ::= l : ee ::= let exception D in Mj M1 handle l2 : (D(x1 ; : : : ; xn))M2)j raise MSince we denote deletion of a subterm by substitution with ??, the deletion of an exceptionhandler leaves behind a term of the form \l1 : M1 handle l2 : ??". For a simplerpresentation we will assume, when required, that such terms are post-processed to l1 : M1.In SML, exceptions are generative[47] by nature. The set of values V , now also containsexception values of the form [� ; ((V1 ; L1) ; : : : ; (Vn ; Ln))]. Exception values are similar toconstructor values discussed earlier. Unlike ordinary constructors, exception constructorsare assigned a unique value every time the declaration is evaluated.The environment F , in addition to mapping variables to the set of values V , also mapsexception constructors to elements from the set �. The substitution function [L=??] isidentity on exception constructor mappings: [D 7! �][L=??] = [D 7! �].In the presence of exceptions, in the labelled calculus, terms can evaluate to (V ; L) orto an exception packet of the form � [� ; ((V1 ; L1) ; : : : ; (Vn ; Ln))] ; L�.88



Because of the fact that exceptions radically alter the ow of control in a program,it is easy to show that minimum dynamic slices no longer exist and even computation ofminimal dynamic slices is undecidable. The following program is written in an SML-likesyntax:let exception A of intin (fn x => 5) (raise (A 5)) handle (A x) => x endThe program can be sliced to:(fn x => 5)??Or,let exception A of intin ??(raise (A 5)) handle (A x) => x endJust as in the presence of assignments, collecting labels, which directly `contribute' tothe answer, does not generate a dynamic slice. We need to close this collected label setwith respect to a synthesized function.let exception A of intfun F f f0 = f (f0 3) ((f0 4) handle (A x) => x)fun g x y = x + yfun g0 x = x + 3fun h x y = x + 40fun h0 x = if (x=3) then 45 else raise(A 60)in (F g g0) + (F h h0) + (h0 4 handle (A x) => x + 75)end Figure 7.4In the call (F g g0), in the program in Fig 7.4, all subterms in the body of F,except the handle expression, directly `contribute' to the returned answer. The call(h0 4 handle (A x) => x + 75) is added to ensure that the expression (raise(A 60)),in h0, directly contributes to the answer. In the call (F h h0), since h is a function thatonly uses its �rst argument, a strategy that collects labels that only directly `contribute'89



to the answer will fail to collect the label of the handle expression in F. But if the handleexpression in F is not included in the dynamic slice then the call (F h h0) will end upraising an uncaught exception.let exception A of intexception B of intfun F f f0 = f (f0 3) (#2((f0 4),(f0 5)) handle (A x) => x)fun g x y = x + yfun g0 x = if (x=5) then raise(A (x+2)) else x + 3fun h x y = x + 40fun h0 x = if (x=3) then 5 else if (x=4) then raise(A 6) else raise(B 7)in (F g g0) + (F h h0) + (h0 4 + h0 5 handle (A x) => x + 9)end Figure 7.5For the program in Fig 7.5, since (f0 4) is the �rst argument to a second projectionfunction, a strategy which only collects labels which directly `contribute', will not collectits label. But if (f0 4) is not included, in the dynamic slice, then in the call, (F h h0),(h0 5) will be evaluated and will raise an uncaught exception B. In the evaluation of theunsliced program, (h0 5) was not evaluated because (h0 4) raised the exception A.The wisdom gained, from these examples, is the following: whenever any label l, whichevaluates to an exception packet, or any dynamic dependencies of l, are deleted then wemust necessarily delete the labelled term, which contains the handler, that transforms theexception packet, that l evaluates to, into a value. This is because if the exception is neverraised, in the sliced program, then segments of the program may be executed that werenever executed before. Similarly, the deletion of any exception handler, which catches anexception packet, may result in the modi�ed program raising an uncaught exception orexecuting a handler which was not executed before. Hence, deletion of a handler, whichactually catches an exception packet, must involve the deletion of the term in which itis immediately contained. This is essentially a closure condition. As in the case withassignments, this closure condition needs to be introduced because of a function closure90



having multiple contributing call-sites.A Natural Semantics for the Computation of SlicesThe additional set of rules for computing the dynamic slice of a functional program, withexceptions, is given in Table 7.2. The rest of the rules are very similar to those in Table 7.1,except that the partial function LL is replaced by the partial function KK and the store Sis replaced by the parameter Ex. Additionally, there are rules introduced by the exceptionconvention discussed in Chapter 4.KK is a partial function from P(Labels) to P(Labels), storing informationconcerning the closure condition discussed in the introduction. For the terml : M1 handle l2 : (D(x1 ; : : : ; xn))M2), let M1 evaluate to an exception packet, whichis caught by the handler labelled l2. Let L0 be the set of labels of terms to be retainedintact to reach the point in the computation where the evaluation of the term l begins.KK(L0 [ flg) contains the label l2 as well the dynamic dependencies of the exceptionpacket caught. This closure condition forms a part of Rule 5.Note: KK ; F ; Ex ; L0  M ! : : : is considered well-formed if the value of anyexception constructor in F is contained in Ex. Henceforth, we will only be talking aboutwell-formed terms.
Lemma 7.2.1 For any set of labels L, such that L is closed under KK and L0 � L,let L1 � (Labels �L).If Ex0 � Ex and KK ; F ; Ex ; L0  l : e ! V ; Ex1 ; L1 thenF [L1=??] ; Ex0 ` (l : e)[L1=??] ! (V ; L1)[L1=??] ; Ex10, where Ex10 � Ex1.If Ex0 � Ex ; L1 \L0 = ; and KK ; F ; Ex ; L0  l : e !� [� ; (Vi ; Li)] ; L0 � ; Ex1thenF [L1=??] ; Ex0 ` (l : e)[L1=??] !� [� ; (Vi ; Li)[L1=??]]� ; Ex10, where Ex10 � Ex1.Proof: The proof is by induction on the height of the proof tree. The closure propertyof KK is only used for Rule(5): the rule that translates an exception packet to a value.91



KK ; F ; Ex0 ; L0 [ flg  M ! [� ; (Vi ; Li)] ; Ex1 ; LKK ; F ; Ex0 ; L0  l : raiseM !� [� ; (Vi ; Li)] ; L� ; Ex1 (1)KK ; F [D 7! �] ; Exi�1 ; L0 [ flg  Mi ! Vi ; Exi ; Li i = 1 : : : nKK ; F [D 7! �] ; Ex0 ; L0  l : D(M1 ; : : :Mn) ! [� ; (Vi ; Li)] ; Exn ; L0 [ flg (2)KK ; F ; Ex0 ; L0 [ flg  M1 ! V ; Ex1 ; L1KK ; F ; Ex0 ; L0  l : M1 handle l2 : (D(x1 ; : : : ; xn))M2) ! V ; Ex1 ; L1 (3)KK ; F ; Ex0 ; L0 [ flg  M1 !� [� ; (Vi ; Li)] ; L0 � ; Ex1KK ; F ; Ex0 ; L0  l : M1 handle l2 : (D(x1 ; : : : ; xn))M2)!� [� ; (Vi ; Li)] ; L0 � ; Ex1where F (D) � �0 6= � (4)
KK ; F ; Ex0 ; L0 [ flg  M1 !� [� ; (Vi ; Li)] ; L0 � ; Ex1KK ; F [x1 7! (V1 ; L1) ; : : : ; xn 7! (Vn ; Ln)] ; Ex1 ; L0 [ fl2g  M2 ! V ; Ex2 ; LKK ; F ; Ex0 ; L0  l : M1 handle l2 : (D(x1 ; : : : ; xn))M2) ! V ; Ex2 ; Lwhere L0 [ fl2g � KK(L0 [ flg)F (D) = � (5)

KK ; F [D 7! �] ; Ex0 [ f�g ; L0 [ flg  M ! V1 ; Ex1 ; L1 where � 62 ExKK ; F ; Ex0 ; L0  l : let exception D inM ! V1 ; Ex1 ; L1 (6)Table 7.2 : Specifying Dynamic Slices in the Presence of Exceptions
92



Rule(5) There are two cases to consider here:� If L1 \ L = ; then L1 \ L0 = ;. This is because L0 � L. Hence, by induction,F [L1=??] ; Ex0 ` M [L1=??] !� [� ; (Vi ; Li)[L1=??]]� ; Ex10 ,where Ex10 � Ex1.Since l2 2 L, the handler has not been deleted. By induction, the execution ofthe handler returns V [L1=??] ; Ex20 , where Ex20 � Ex2.� L1 \ L 6= ;. If l 2 L1 then, obviously, l evaluates to (?? ; Ex00).If l 62 L1 then l 2 L. As L0 � L and L is closed under KK,L0 [ fl2g � KK(L0 [ flg) � L, i.e (L0 [ fl2g) \ L1 = ;. Hence, by induction,F [L1=??] ; Ex0 ` M [L1=??] !� [� ; (Vi ; Li)[L1=??]]� ; Ex10.As the handler l2 has not been deleted, we have, by induction,F [x1 7! (V1 ; L1)[L1=??] ; : : : ; xn 7! (Vn ; Ln)[L1=??]] ; Ex10 `M2[L1=??] ! ?? ; Ex20These are cases which assume that the evaluation of the handler results in a valueand not an exception packet. On the contrary, if the evaluation of the handler returns� [�2 ; f(v2 ; L2)g] ; L00 � ; Ex20 then L0 [ fl2g � L00. Hence, if L1 \ L00 = ; thenL1 \ (L0 [ fl2g) = ;. We can now apply the induction hypothesis to get the requisiteresult.Let us now look at the function application rule, in the instance in which one of theantecedents evaluates to an exception packet.KK ; F ; Ex0 ; L0 [ flg  M1 ! hF 0 ; �xMi ; Ex1 ; L1KK ; F ; Ex1 ; L0 [ flg  M2 ! V2 ; Ex2 ; L2KK ; F 0[x 7! (V2 ; L2)] ; Ex2 ; L1  M ! V3 ; Ex3 ; L3KK ; F ; Ex0 ; L0  l : M1M2 ! V3 ; Ex3 ; L3If all the antecedents in this rule evaluate to a value instead of an exception packet thenthe proof of correctness is the same as that in the purely functional case.But the term (l : M1M2) may evaluate to an exception packet, � [� ; (v ; L)] ; L0 �.This may happen in one of three possible ways:93



� If KK ; F ; Ex0 ; L0 [ flg  M1 !� [� ; (Vi ; Li)] ; L0 � ; Ex thenKK ; F ; Ex0 ; L0  l :M1M2 !� [� ; (Vi ; Li)] ; L0 � ; Ex.By induction, F [L1=??] ; Ex00 ` M1[L1=??] !� [� ; (Vi ; Li)[L1=??]]� ; Ex0.� If M1 evaluates to a value but,KK ; F ; Ex1 ; L0 [ flg  M2 !� [� ; (Vi ; Li)] ; L0 � ; Ex2,by induction, F [L1=??] ; Ex10  M2[L1=??] !� [� ; (Vi ; Li)[L1=??]]� ; Ex20.� Both the function and the argument evaluate to values but the application maygenerate an exception packet. Since, L1\L3 = ; and L1 � L3, L1\L1 = ;. Hence,by induction, F [L1=??] ; Ex0 ` M1[L1=??] ! hF 0[L1=??] ; �xM [L1=??]i ; Ex10.By induction, F [L1=??] ; Ex10 ` M2[L1=??] ! (V2 ; L2)[L1=??] ; Ex20:Since, KK ; F 0[x 7! (V2 ; L2)] ; Ex2 ; L1  M !� [� ; (V ; L)] ; L3 � ; Ex3,by induction,F 0[L1=??][x 7! (V2 ; L2)[L1=??]] ; Ex20 ; L1 `M [L1=??] !� [� ; (V ; L)[L1=??]] ; Ex30 �2Theorem 7.2.1 If KK ; ; ; ; ; ;  M ! V ; Ex ; Lthen KK�(L) is a dynamic slice of M .If KK ; ; ; ; ; ;  M !� [� ; (Vi ; Li)] ; L� ; Exthen KK�(L) is a dynamic slice of M .Proof: KK�(L) is a set of labels that is closed under the function KK.Let L1 � �(l : M)�KK�(L). Since L1 \ L = ; , by Lemma 7.2.1,; ; ; ` l : M [L1=??] ! V [L1=??] ; Ex0.Hence, KK�(L) de�nes a dynamic slice of the program M .Similarly, if M evaluates to an exception packet, by Lemma 7.2.1,; ; ; ` M [L1=??] !� [� ; (Vi ; Li)[L1=??]]� ; Ex0. 27.3 Integrating Assignments and ExceptionsIt turns out that, from the point of view of slicing, exceptions and assignments are or-thogonal issues. Hence, the speci�cation of slicing, in a language with exceptions, can94



be merged with the speci�cation of slicing, in a language with assignments. The proofof correctness of this merged speci�cation is essentially a merger of the two correctnessproofs. The speci�cation of dynamic slices, in the presence of assignments, uses a globalpartial function LL. The speci�cation, in the presence of exceptions, uses a global partialfunction KK. It can be shown that closing the returned set of labels with respect to thefunctions LL and KK, generates a dynamic slice. We have the following theorems:Lemma 7.3.1 If KK ; LL ; F ; S ; Ex ; L0  M ! V ; S1 ; Ex1 ; L1 thenfor any L, s.t. L0 � L and L is closed under LL and under KK,If L1 � (Labels �L), S QL1 S0 and Ex0 � Ex thenF [L1=??] ; S0 ; Ex0 ` M [L1=??] ! (V ; L1)[L1=??] ; S10 ; Ex10where S1 QL1 S01 ; Ex10 � Ex1If L1 \ L0 = ; and KK ; LL ; F ; S ; Ex ; L0  M !� [� ; (Vi ; Li)] ; L0 � ; S1 ; Ex1then F [L1=??] ; S0 ; Ex0 ` M [L1=??] !� [� ; (Vi ; Li)[L1=??]]� ; S01 ; Ex10where S1 QL1 S01 ; Ex10 � Ex1The above lemma can be proved by using a lemma built from the combination ofLemma 7.1.2 and Lemma 7.2.1.Theorem 7.3.1 If KK ; LL ; ; ; ; ; ; ; ;  M ! V ; S ; Ex ; Lthen (KK t LL)�(L) is a dynamic slice of M .If KK ; LL ; ; ; ; ; ; ; ;  M !� [� ; (Vi ; Li)] ; L� ; S ; Exthen (KK t LL)�(L) is a dynamic slice of M .7.4 Broader Slicing CriteriaIn his seminal paper, Weiser [67], de�nes slicing with respect to a two parameter slicing cri-terion: a set of variables and a statement number. In contrast, Reps and Yang[55], use a sin-gle parameter slicing criterion: the `behavior' of a statement in a program. Venkatesh [63],and Agrawal and Horgan[6], also use a single parameter slicing criterion: the value of avariable at the end of the evaluation of a program. Till date, for higher-order programs,95



we have been using a �xed slicing criteria: the value computed by a program. We nowinvestigate as to how we can move to a two parameter slicing criteria similar to Weiser's.The operational de�nition of a program slice developed by Weiser uses the concept of aprojection on a state trajectory of an evaluation. Such a projection for a slicing criterion,C � hi ; xi, can be generated by a special print statement placed right before statement i,of the program. A print statement in a program can be viewed as dynamic allocation ofdata in a special memory. Data is never accessed from this memory nor is it ever updated.The store S in the speci�cation of dynamic slices, is partitioned into the old store S and thenew special memory, Stream . The proof rules remain the same: rules carry (S ; Stream)instead of S alone. Rules which modi�ed S, now modify the S component. We have a newrule for print statements:LL ; F ; S ; Stream ; L0 [ flg  M1 ! V ; S1 ; Stream1 ; L1LL ; F ; S ; L0  l : printM1 ! () ; S1 ; (V ; L1) :: Stream1 ; L0 [ flgWe will assume that print statements can legally print out only nullary constructors.Note� As Stream is a memory that is never accessed, it is constructed as a list of valuesinstead of a partial map from the set of locations to values. When it is more con-venient to consider Stream as a partial map instead of a list, we will be implicitlydoing so.� It is memory access through the ! operator that generates constraints for the partialfunction LL. Stream is a memory that is never accessed during the execution of aprogram and hence, does not generate any constraints for LL.De�nition: Given a term M , with (l0 : e0) as a subterm and C � hl0 ; xi as a slicingcriterion, let the evaluation of M 0 � M [l0=(l00 : print x); (l01 : e0)] return the stream,Stream1. A set of labels L de�nes the dynamic slice with respect to slicing criterionC, if for L1 � �(l : e)�L, the evaluation of M 0[L1=??] also returns Stream1.If the evaluation of a term returns a stream [(v1 ; L1) ; : : : ; (vn ; Ln)], then by an aug-mented version of Lemma 7.1.2, we can show that the closure of (L1 [ : : : [ Ln) with96



respect to LL is the dynamic slice with respect to the slicing criterion.Theorem 7.4.1 Let Stream1 � [(V1 ; L1) ; : : : ; (Vn ; Ln)] and C � hl0 ; xi.If LL ; ; ; ; ; ; ; ;  M ! V ; S1 ; Stream1 ; L0then LL�(L1 [ : : : [ Ln) de�nes a slice with respect to the slicing criterion C.Proof: Let L = LL�(L1 [ : : : [ Ln) and L1 = �(M)�L.If LL ; ; ; ; ; ; ; ;  M ! V ; S1 ; Stream1 ; Ex1 ; L0then, by Lemma 7.1.2, ` M [L1=??] ! (V ; L0)[L1=??] ; S10 ; Stream10,where S1 QL1 S10 ; Stream1 QL1 Stream10. As L1 \ (L1 [ : : : [ Ln) = ;,dom(Stream1) = dom(Stream10). Since Vi is a �rst-order value, we haveStream10 � [V1 ; : : : ; Vn]. 2It is easy to extend this proof to a language with exceptions.Extensional CharacterisationsWe do not have an algorithm-independent characterisation of the slice we compute. Wewould like to investigate whether we can provide a denotational characterisation or acollecting interpretation on a lazy semantics, along the lines of Hudak and Young [33].
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Chapter 8
Program Instrumentation and anImplementation Overview
The earlier chapters of this thesis presented natural deduction proof systems for the compu-tation of an executable dynamic slice of a higher-order program. A naive but labor-intensiveway of implementing the speci�cation is to write a special interpreter, for labelled SMLprograms, which mimics the computation of the proof system. In this chapter, we showthat it is possible to translate a labelled program into an unlabelled program such thatwhen this code executes on the standard interpreter, for unlabelled programs, it returnsa tuple: the �rst component of the tuple is the value returned, by the execution of thelabelled program, and the second component is the set of labels, to be closed with respectto global functions, to obtain an executable dynamic slice.The aim of the empirical analysis is to obtain an estimate of the size of the dynamicslice of a program, with respect to a particular input, in comparison to the the executionslice of the program. Given an Core-SML program, the strategy used is as follows: we�rst attach unique labels to the node of the parse tree of the program and then translatethis labelled program to an unlabelled program. This unlabelled program is executed onthe standard interpreter and it returns the expected answer as well as the set of labelsrepresenting the dynamic slice.
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8.1 Program InstrumentationIn this section we provide a syntax-directed translation for transforming a labelled programinto an unlabelled SML program. The translator introduces a host of bound variables inthe let-constructs and abstractions. In an actual implementation, these variables are goingto be given uniques names, by the use of some kind of a \gensym" function, within thetranslator. But, for a simple exposition of the translation, a name generator is not usedwhile introducing bound variables: the names of variables are picked from a �xed �niteset.A call to the translation function [[ ]] is of the form [[M ]]L ;R where:� M is a labelled term to be translated.� L is a variable name whose value is a set of labels. The entire set of control depen-dencies, required to reach a program point, is explicitly carried along through thecomputation, in the operational semantics presented in the previous chapters. Thisis represented by the set of labels L, to the left of  in the semantics given inTable 7.1 and Table 7.2. The label set L is essentially an attribute that is inheritedfrom previous terms executed in the computation. The computation and propaga-tion of this label set is handled by passing the name of the variable, containing thecurrent label set, as the second parameter to the translator function. An alternateapproach would be to use a two parameter translator function which translates everyterm into an abstraction which takes in a set of labels as input. But this would createtoo many redexes, at run-time, which could be reduced statically.� The third parameter R to the translator function is a set of variables. This isrequired for handling recursive functions. The semantics for the computationof dynamic slices, as discussed in Chapter 7, has environments which are �nitemaps, Var ! Val � P(Labels). This means that a variable, representing a recursivefunction, should be bound to a tuple whose second component is a label set. Butbindings for recursive functions are created automatically by the compiler fromthe let construct and cannot be simulated using any other mechanism. Hence,a variable representing a recursive function gets bound to an abstraction and99



not to a tuple, consisting of an abstraction and a set of labels, as other functionvariables are. Fortunately, as mentioned in Section 7.1, the label set associated witha recursive closure may be assigned the constant value ;. The strategy used bythe translator function is to pass around the set of variables, which are bound byrecursive function de�nitions and are currently in-scope, as the third parameter. Totranslate [[ l : x ]]L ;R , we �rst check whether x is a variable bound in an in-scoperecursive function de�nition by checking membership in R. If it is, then we knowthat x is an abstraction, not a tuple, and we return (x ; L [ flg). Otherwise x mustbe bound to a tuple (V ; L1) and we return (V ; L1 [ L [ flg).I. [[ l : x ]]L ;R = if (x 2 R)then (x ; L [ flg)else let (v ; L1) = x in (v ; L [ L1 [ flg) ) endII. [[ l : �xM ]]L ;R = let f = �x�L1 [[M ]]L1 ; Rin (f ; L [ flg) endIII. [[ l : letrec f(x) =M1 inM2 ]]L ;R = let f(x) = �L1 [[M1 ]]L1 ; R[ffgL2 = L [ flgin [[M2 ]]L2 ; R[ffg endIV. [[ l : M1M2 ]]L ;R = let L0 = L [ flg(f ; L1) = [[M1 ]]L0 ; RV = [[M2 ]]L0 ; Rin f V L1 endV. [[ l : Op(M1 ; : : : ; Mn) ]]L ;R = let L0 = L [ flgf (Vi ; Li) = [[Mi ]]L0 ; R gin (Op(V1 ; : : : Vn) ; [ni=1Li ) endVI. [[ l : C(M1 ; : : : ; Mn) ]]L ;R = let L1 = L [ flgin (C( [[M1 ]]L1 ; R ; : : : ; [[Mn ]]L1 ; R ) ; L1 ) end100



VII. [[ l : case(M1 ; C(x1 ; : : : ; xn))M2 ; y )M3) ]]L ;R =let L0 = L [ flgin case ( [[M1 ]]L0 ; R ) of (C(x1 ; : : : ; xn) ; L1 ) => [[M2 ]]L1 ; Rj ( y ; L1 ) => [[M3 ]]L1 ; RendVIII. [[ l : refM ]]L ;R = let L0 = L [ flgin ( ref ( [[M ]]L0 ; R ) ; L0 ) endIX. [[ l : !M ]]L ;R = let L0 = L [ flg(ll ; L1) = [[M ]]L0 ; R(V ; L2) = ! ll= Update(MM ; L1 ; L2)in (V ; L1 [ L2) endX. [[ l : M1 :=M2 ]]L ;R = let L0 = L [ flg(ll ; L1) = [[M1 ]]L0 ; R(V ; L2) = [[M2 ]]L0 ; Rin ( ll := (V ; L1 [ L2) ; L0 ) endXI. [[ l : let exception D inM ]]L ;R = let exception DL0 = L [ flgin [[M ]]L0 ; R endXII. [[ l : raiseM ]]L ;R = let L0 = L [ flgin raise SPECIAL E( [[M ]]L0 ; R ) end
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XIII. [[ l : M1 handle l2 : (D(x1 ; : : : xn))M2) ]]L ;R =let L0 = L [ flgin [[M1 ]]L0 ; R handle SPECIAL E(D(x1 ; : : : xn) ; L1) =>let L2 = L1 [ fl2gy = [[M2 ]]L2 ; R= Update(MM ; L0 ; L2)in y endendAs discussed in Chapter 7, the semantics for the computation of dynamic slices, inthe presence of imperative features, uses global constant partial functions, LL and KK.The translated version of the labelled program synthesizes these functions in the courseof the computation. Instead of having subcomputations returning their own synthesizedfragments of LL and KK and taking their join, we introduce a single global variable MMwhich is updated in the course of the computation. At the end of the computation, the setof labels returned need to be closed with respect to this global function. The constructionof the partial function MM uses a function Update with the following semantics:Update(MM ; M ; M 0) = 8><>: MM :=MM t (M 7!M 0) if M 62 dom(MM)MM :=MM t (M 7!MM(M) [M 0) otherwiseIn the instrumented code for (l : raise (l1 : M1)), (l1 : M1) evaluates to a tupleconsisting of a value of exception type and a set of labels. But the term labelled l needsto raise an exception. Hence, all raise expressions raise the same exception SPECIAL Eapplied to the instrumented argument. By pattern matching on the argument, to theexception constructor SPECIAL E, handlers can �nd out the actual raised exception. Ifthere is a match with the exception constructor, in the argument to SPECIAL E, the handlerbegins to execute. If the set of labels is given the ML type Set of Labels then theexception constructor SPECIAL E is declared as follows,exception SPECIAL E of exn * Set of Labels;102



where exn is the type for exceptions in SML.In Rule XIII: the translation for terms containing exception handlers, it is importantto note that an update to the global function MM is logged only if M2, the body of theexception handler, evaluates to a value and not an exception packet.An issue concerning exceptions has been side-stepped in the translation process.Atomic operations on �rst-order constants, represented by Op, can raise exceptionsin SML/NJ. Division by zero raises the exception Div. Addition and Multiplicationcan raise the exception Overflow. Operations on real numbers can raise the excep-tion BadReal. All these exceptions must be caught and translated to the exceptionSPECIAL E of exn * Set of Labels. Hence, for every atomic operation, we need to de-�ne a handler that catches all possible exceptions, that can be raised by the operation,and re-raises these as the exception SPECIAL E along with the label set of dependencies.8.1.1 Correctness of Program InstrumentationTo compute the dynamic slice of a labelled term M , it is �rst translated to an unlabelledterm M1 using the translator function.Let M1 � let L = ;in [[M ]]L ; ; endThe following sequence of statements are then executed on the SML interpreter:> val MM = ref ; ;> exception SPECIAL E of exn � Set of Labels ;> val (v ; L) =M1 ;After this computation, the set L is closed with respect to the functionMM to obtain thedynamic slice.The correctness of the instrumentation is stated by Theorem 8.1.1. For simplicity,we assume that there are no recursive functions. Recursive functions do not add to thetechnical complexity of the proof: we only need a stronger hypothesis to ensure that anyclosure, associated with a recursive function, is included in the the set R, which is used inthe instrumentation function [[ ]]L ;R. 103



We need to de�ne a relation A, relating values in the semantics for dynamic slicing, asspeci�ed in Table 7.1, with values in the standard semantics, as generated by the annotatedversion of the program.� (hF ; �xMi ; L0) A (hE ; �x�L [[M ]]L ; ;i ; L0) if F A E.� (C(V1 ; : : : ; Vn) ; L0) A (C(U1 ; : : : ; Un) ; L0) if 8i; Vi A Ui.� F [x 7! (V ; L)] A E[x 7! (U ; L)] if (F A E) and (V ; L) A (U ; L).� [ ] A E : This relation is present to accommodate for the fact that the annotatedprogram has extra bound variables for Label sets.� The relation A, for environments, is similarly extended to relate stores.The natural semantics for the computation of dynamic slices, as presented in Table 7.1,uses a constant relation LL for capturing control dependencies arising out of assignmentsand exceptions. The annotated program constructs this relation, during evaluation, usinga reference variable MM. It is easy to show that at any point in the computation, the valueof MM is consistent with LL, i.e. if LL(L1) = L2 then !MM(L1) � L2. Since, at the endof the computation MM satis�es every constraint which LL does and is also consistent withit, !MM can be taken to a possible value of LL.Theorem 8.1.1 Given a labelled term (l : e), ifF A E , S0 A R0 and LL ; F ; S0 ; L0  (l : e) ! V ; S1 ; L1 thenE[K0 7! L0] ; R0 ` [[ (l : e) ]]K0 ; ; ! (U ; L1) ; R1,where (V ; L) A (U ; L) and S1 A R1.Proof: The proof is constructed by induction on the height of the proof-tree, basedon the semantics in Table 7.1. The simplicity of the proof arises from the fact that theslice, constructed in Table 7.1, is essentially the computation of a synthesized attribute ofthe proof tree representing the standard semantics. The annotated version of the programsimply introduces code to compute this synthesized attribute during the evaluation of theprogram.Here, we go through one important case:104



Rule (App):LL ; F ; S0 ; L0 [ flg  M1 ! hF 0 ; �xMi ; S1 ; L1LL ; F ; S1 ; L0 [ flg  M2 ! V2 ; S2 ; L2LL ; F 0[x 7! (V2 ; L2)] ; S2 ; L1  M ! V3 ; S3 ; L3LL ; F ; S0 ; L0  l : M1M2 ! V3 ; S3 ; L3The annotation version of the term M1M2, [[ l : M1M2 ]]K0 ; ;, islet K1 = K0 [ flg(f ; K2) = [[M1 ]]K1 ; ;V = [[M2 ]]K1 ; ;in f V K2 endBy induction, we have,E[K0 7! L0 ; K1 7! L0 [ flg] ; R0 ` [[M1 ]]K1 ; ; ! (hE0 ; �x �K[[M ]]K ; ;i ; L1) ; R1where F 0 A E0 and S1 A R1.E[K0 7! L0 ; K1 7! L0 [ flg] ; R1 ` [[M2 ]]K1 ; ; ! (U2 ; L2) ; R2where (V2 ; L2) A (U2 ; L2) and S2 A R2.Hence, E0[x 7! (U2 ; L2) ; K 7! L1 ` [[M ]]K ; ; ! (U3 ; L3)] ; R3where (V3 ; L3) A (U3 ; L3) and S3 A R3. 28.2 Implementation DetailsWe have implemented, in SML'93, a program which takes in a core SML program andreturns an annotated version of the program. We have also implemented a support programto calculate the execution trace of a program. The implementation is built using the parser,elaborator and other libraries from the ML Kit [13].
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8.2.1 The Interface of the Annotating ProgramOur implementation provides a single function,type L = Set of Labels Staticfinal answer: string list -> L * L * LThe argument to the function is a list of strings, with the following elements:| Element 1: The name of the �le in which the program to be annotated resides.| Element 2: The name of the �le in which the annotated program is to be dumped.| Element 3: The name of the �le in which program execution statistics and slice sizeinformation is to be saved.| Element 4[Optional]: The name of the �le in which a listing of node labels, whichform a part of the execution slice but not a part of the dynamic slice, is to be preserved.The value returned by the function call is a triple of label sets: the �rst component isthe set forming the dynamic slice, the second component is the set forming the executionslice and the third is the set consisting of the entire set of labels in the program.Given a function call, final answer ["p.sml","p.annotated", "p.log","p.diff"] ,we now present details regarding the structure of the input and output �les.The Structure of the Input FileAssumptions regarding the input �le "p.sml" are detailed below:� The program contained in "p.sml" should be a core SML program. The annotatedversion of "p.sml" is saved in the �le "p.annotated". The �le "p.annotated"contains a valid SML program that type checks. Hence, we need a translation fordatatype declarations and explicit types present in the input program:[[ b ]] =) b � Set of Labels; where b is a basic type or a datatype/abstype.[[ �1 ! �2 ]] =) ([[ �1 ]]! Set of Labels! [[ �2 ]]) � Set of Labels[[ �1 � �2 ]] =) ([[ �1 ]] � [[ �2 ]]) � Set of LabelsAfter the parsing of the program in "p.sml" is complete, every node in the parsetree has an associated label which is a 4-tuple of integers: the �rst two integers give106



the line number and the column number, in the input �le, where the node begins andthe next two integers give the line number and column number where the node ends.The type Set of Labels Static is the abstract type for such a set, whose elementsare of the type int*int*int*int. Since sets of labels are constructed at run-time,e�ciency is of utmost importance. Hence, a 4-tuple representing the label of a nodeis mapped to an integer. The type Set of Labels is the abstract type for such a setof integers.� It is assumed that the program contained in "p.sml" does not contain eqtype vari-ables and that the equality operator operator is restricted to terms of basic types.SML provides for a built-in polymorphic equality operator. We cannot generate anannotated version of this operator because there is no source-level implementation ofthis operator. Nor is putting some kind of a wrapper around the available equalityoperator a viable strategy. This is because a pair (1 ; 2), in the annotated program,evaluates to a value (((1 ; L1) ; (2 ; L2)) ; L0). As per the semantics of the originalprogram, this pair, in the annotated program, should be considered to be equal toany other annotated pair value of the form (((1 ; L01) ; (2 ; L02)) ; L00).� For a program returning a value v, of a basic type 'b, the annotated program returnsa value (v ; L) where the set L, after closing it with respect to relevant relations, isthe executable dynamic slice for the computation of the answer. But, for a programreturning a value, of a non-basic type, the annotated program returns a value ofmuch more complicated internal structure.Let the program in the input �le be returning a list [1,2]. The datatype list, inthe annotated program, is given by the following declaration:datatype 'a list = nil| :: of (('a*Set of Labels)*('a list*Set of Labels))*Set of LabelsThe program-user may desire to perform a slice computation to isolate the setof labels which were `needed' in the computation of every element of the list orthe set of labels which were `needed' in the computation of a speci�c elementof the list. To provide the user the ability to specify a slicing criterion, in amost general way, we require the input program to terminate with a function107



val w = 8 + 9val x = 10val z = (fn y => y) wval ANSWER = fn f => f (makestring z)Figure 8.1 : The sample program p.smlANSWER: (string -> unit) -> unit.val ANSWER = fn f => : : :We would like the user to treat the argument function f just like the standard outputfunction (IO.outputc std out), in SML/NJ, and apply this function f to everyvalue, of basic type, whose dynamic dependencies he is interested in. The ANSWERfunction, for a program returning a list of integers l, where the user is interested inthe dependencies of every element of the list would run like this,val l = ...val ANSWER = fn f => let fun F [] = ()| F (x::l) = f (makestring x) ; F lin (F l) endIn the annotated version of the program, we have an additional line in the program,where ANSWER is applied to another function which collects the dependencies of eachof the values to which it is applied and returns the complete set of dependencies, asthe slice.The Structure of the Annotated ProgramWe will now illustrate the general structure of annotated programs. Consider, the SMLprogram given in Figure 8.1. The annotated version of this program is given in Figure 8.2.The important points to note about the annotated program are:108



local open Pervasives inval EMPTY = Set_of_Labels.emptyval ID = (fn z => z)val INSERT = Set_of_Labels.insertand UNION = Set_of_Labels.unionand SINGLETON = Set_of_Labels.singletonval AUGMENT = (fn {1 = z10, 2 = z11} => (fn z12 =>{1= z10 , 2= UNION z11 z12 } ))and AUGMENT_ONE = (fn {1 = z10, 2 = z11} => (fn z12 =>{1= z10 , 2= INSERT z12 z11 } ))val w = Pervasives.plus_opt2_int 8 9 (INSERT 3 (INSERT 2 (INSERT 1 EMPTY)))val x = {1= 10, 2= (INSERT 4 EMPTY) }val z = (fn y => fn z13 => AUGMENT y (INSERT 5 z13))(AUGMENT w (INSERT 6 EMPTY) )(INSERT 7 EMPTY)val ANSWER ={1= (fn f =>(fn z14 =>(let val {1 = z15, 2 = z16} = finz15 (Pervasives.makestring_arg_int (AUGMENT z (INSERT 8 EMPTY)) 9)(INSERT 10 (UNION z14 z16))end))) ,2= (INSERT 11 EMPTY) }val {1 = z17, 2 = z18} = ANSWERval _ = z17 {1= Pervasives.output , 2= EMPTY} z18end Figure 8.2 : An annotated program generated by the implementation109



� The SML De�nition [48] de�nes the semantics of programs based on an initial en-vironment called the Initial Dynamic Basis. Annotated versions of the functions,de�ned in this basis, are placed in the module Pervasives. It is locally opened forthe execution of each annotated program.� The �nal expression evaluated in the annotated program is the application of theannotated version of the function ANSWER to the function (Pervasives.output).The function (Pervasives.output) stores the dependencies of every value, to whichit is applied, in a global store from where it can be extracted when needed.� The translation function on programs [[ ]] is designed to include, in the slice, the labelof every program node which contributes to the value returned. As an optimisation,the actual implementation no longer includes every such node label: only the labelswhich form the leaves of the parse tree are included in the slice. At the end of thecomputation the set of labels is closed to include the non-leaf labels into the set.� The program in Figure 8.2 has had some cosmetic changes made to it to make itmore readable:{ The variable names INSERT , AUGMENT , EMPTY have been introduced in theprogram to enhance readability. In reality, the translator makes a pass over theprogram to isolate the largest variable name, based on lexical ordering. Everyvariable introduced by the translator is then formed by concatenating an integerto this string. The variables z13 , z14 are examples of this.{ SML allows a program to de�ne in�x operators. The �xity information is neededand used only in the parse phase of the language implementation. Our translatorneeds to output a valid SML program that will pass through the parser. Thismeans that we would need to preserve the �xity information of operators beyondthe parse phase of the input program. We have decided not to do so. Instead,every variable v, in the input program, is replaced by (op v) in the outputprogram. This ensures that output program parses, irrespective of the �xity ofthe operators. 110



� SML does not allow a program to de�ne overloaded functions. But certain pre-de�nedoverloaded operators are allowed as long as their exact type can be determined fromthe context of their use. But, we cannot use the annotated versions of these over-loaded operators in an overloaded fashion. Hence, we need to preserve the typeof every occurrence of an overloaded variable from the elaboration phase and thensubstitute an annotated version of the appropriate type.This is seen in the case of the operator + , or the function makestring in Figure 8.2.The annotated program has the operator + from the original program replacedby (Pervasives.plus opt2 int). This function is an optimised annotated integeraddition operator.The Structure of the Log FileWhen the example annotated program in Figure 8.2 is executed by our implementationit generates a log �le which contains execution statistics for the input and the annotatedprograms. The contents of the log in Figure 8.3 are mostly self-explanatory. The linescontaining the size of the dynamic slice and the execution slice contain two entries re-spectively. As mentioned, in the previous subsection, the label collection strategy, in theimplementation, only collects labels at the leaves of the parse tree. The �rst entry in theline gives the size of the slice, assuming such a label collection strategy. The second entryin the line gives the size of the set formed by upward closure of the slice on the parse tree.The line keyed by Fraction gives the corresponding ratios of the sizes of the dynamic sliceto the execution slice.A careful study of the log �le will reveal a slight inconsistency, though. Every nodeof the input program in Figure 8.1 is executed. Hence, the second entry in the executionslice line should exactly equal the size of the input program, as stated in the �rst lineof the log. This is seen not to be the case: the counts di�er by 1. The reason for thissmall di�erence is the internal representation of expressions in SML, which are functionapplications. SML provides the programmer an ability to specify the �xity of functionoperators. For example,
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p.sml:Input Program Size(in Nodes): 35Annotated Program Size(in Nodes): 195Time to Annotate Input: 0.040000Execution Time of Input Program: 0.050000Execution Time of Annotated Program: 0.160000Dynamic Slice Size(in Nodes): 10 30Execution Slice Size(in Nodes): 11 34Fraction: 90.9090909090909% 88.2352941176471%Figure 8.3 : A log �le generated by the implementationfun xor (x,y) = (x orelse y) andalso not(x andalso y)infix xorval e = true xor falseA parser for SML, after in�x resolution, would internally represent the expression fore as (op xor)f1=true,2=falseg. Notice, that all the nodes in the parse tree of thisexpression cannot be mapped to unique positions in the input �le. Hence, there willbe some discrepancy between a program counting the number of nodes in the parse treeand another counting the number of nodes by the number of distinct textual locations.Besides, the example of in�x function operators, discussed above, SML provides a wholeset of derived forms [48] which are pre-processed into other language constructs of the core.A derived form which arises frequently is illustrated below,val w = {a= 20, b = 90}val x = (#a w)SML translates the expression (#a w) into (fn fa=x,...g => x) w. Once again, we havea parse tree whose nodes which cannot be mapped to unique textual locations in the input�le.This discrepancy is not very serious from our point of view. We are predominantlyinterested in isolating nodes which make no contribution to the values speci�ed in theslicing criterion. This isolation can be adequately done wth a set composed of leaves ofthe parse tree. Besides, for most of the program analysed by the author, the di�erence in112



the value of the ratios is also very small.The Structure of the Di� FileThe di� �le generated by a call to the function final answer gives the labels of leaf-nodesof the parse-tree, of the input �le, which form a part of the execution slice but are not apart of the dynamic slice, based on the slicing criterion de�ned in the input �le. In theexample program, in Figure 8.1, the value x is not required in the computation of the �nalvalue of z. Hence, the di� �le contains the entry (3; 8; 3; 10). This entry states that thethird line of the input �le between columns 8 and 10 makes no contribution to the answer.This is the label for the value 10 on the third line. An upward closure of this label wouldinclude the entire declaration val x = 10.8.2.2 Annotating PatternsThe skeletal language LML, in Figure 4.1, used throughout this thesis, has a very primitivecase statement, as compared to SML. SML allows arbitrarily nested patterns, wild cardsfor patterns and pattern rows. Let us review the rules for computation of slices for thecase statement. E ` M1 ! ??E ` l : case(M1 ; C(x1 ; : : : ; xn))M2 ; y )M3) ! ??LL ; F ; S0 ; L0 [ flg  M1 ! C((V1 ; L1) ; : : : ; (Vn ; Ln)) ; S1 ; LLL ; F [x1 7! (V1 ; L1) ; : : : ; xn 7! (Vn ; Ln)] ; S1 ; L  M2 ! V ; S2 ; L0LL ; F ; S0 ; L0  l : case(M1 ; C(x1 ; : : : ; xn))M2 ; y )M3) ! V ; S2 ; L0LL ; F ; S0 ; L0 [ flg  M1 ! C 0((V1 ; L1) ; : : : ; (Vn ; Ln)) ; S1 ; L C 6= C 0LL ; F [y 7! C 0((V1 ; L1) ; : : : ; (Vn ; Ln))] ; S1 ; L  M3 ! V ; S2 ; L0LL ; F ; S0 ; L0  l : case(M1 ; C(x1 ; : : : ; xn))M2 ; y )M3) ! V ; S2 ; L0Let a simple pattern be de�ned as a variable or a constructor applied to a tuple ofvariables. For a language, with simple patterns, M2 and M3, the expressions beneath thepatterns, need to be evaluated under the set L, the dependency of the value to which M1113



evaluates. Hence, we have the following the annotation for a case statement,[[ l : case(M1 ; C(x1 ; : : : ; xn))M2 ; y )M3) ]]L ;R =let L0 = L [ flgin case ( [[M1 ]]L0 ; R ) of (C(x1 ; : : : ; xn) ; L1 ) => [[M2 ]]L1 ; Rj ( y ; L1 ) => [[M3 ]]L1 ; RendFor the purely functional part of LML, we have a theorem, Theorem 5.3.1, whichstates that the dynamic slice of the program exactly co-incides with the execution traceof a call-by-name/lazy evaluator. In trying to move from a language with simple patternsto a language with complex patterns this is the property we will seek to maintain. Thecall-by-name evaluation semantics, given in Table 5.3, need not make any assumptionsabout the order of evaluation in patterns because all patterns are simple. When complexpatterns are introduced into the language, the call-by-name evaluator needs to specify theorder of evaluation in patterns. Let us look at a sample program,case x ofA( B x , C y ) => f(x, y)| A( x , y ) => g(x, y)| _ => 20Given this program, a call-by-name evaluator will �rst evaluate x to A(w1 ; w2). Now,the evaluator needs to decide which of the closures, w1 or w2, is to be evaluated �rstand matched against the corresponding pattern. Call-by-name evaluators, with di�er-ent choices, are semantically di�erent. The strategy we have opted for is the tradi-tional one: from left to right. Once the order of evaluation of subpatterns, for thecall-by-name evaluator, has been decided we can compile complex patterns into simplepatterns and use the annotation technique used before. The question, which might beraised here is, what so sacrosanct about Theorem 5.3.1? The answer is, it captures in-tuition. If x is bound to the value A(B 8, D 9), in the annotated program it will bebound to some value (A( ((B (8,L4), L2) , (D (9,L5), L3)) , L1) , L0). Eventhough the value of x matches only the second pattern, this does not mean that the114



computation g(x, y) is dependent only on (union L0 L1). It is dependent also onthe fact that the �rst pattern failed to match. Hence, assuming left to right patternmatching within sub-patterns, the computation g(x,y) should be considered dependenton (union (L0 (union L1 (union L2 L3)))).Since the translation to simple patterns is done only to obtain the set of dependencieswith which to compute the body of the case statement, we break up the case statement, inthe annotated program, into two parts. The �rst part, works on simple patterns and returnsthe set of dependencies required for the pattern match. The second part annotates theexpression associated with each rule, in the case statement, assuming it depends on the setof labels returned from the �rst part. The algorithm, used in the implementation, for thecompilation of complex patterns to simple patterns, has been take from Augustsson [11].This is briey elaborated in Table 8.1. The compilation of a list of complex patterns,[p1 ; : : : pn], begins with a call to,let val Id = fn x => xval L = emptysetin C[[ (x ; 8>>><>>>: [p1]: : :[pn] 9>>>=>>>;) ]]L;Id endIn a call to C[[ ]]L;f , L is the name of the variable which stores the set of labels needed in thematching till now and f is a call-back function which starts pattern matching along anotherpath, if the match fails along this particular path. The cases elaborated in Table 8.1 areexplained below:I. This stands for a successful termination of matching, at run time. We simply returnthe set of labels collected in the course of the match.II. This case is actually an instance of case (3). When the head of all pattern lists, tobe matched, are variables, we proceed to match the tail of all the pattern lists.III. This is most general case: the head of a pattern list may either be a variable or aconstructor. In this case, the list of pattern lists is partitioned into sublists which115



consist of pattern lists whose heads are exclusively variables or exclusively construc-tors. Table 8.1 shows the list of pattern lists getting partitioned into three sublists.We then de�ne two new default functions. One de�ning the path to follow if nopattern list in the �rst sublist matches and the other de�ning the path to follow ifno pattern list in the second sublist matches.The head of every pattern list, in the �rst sublist, is a constructor. Within this sublist,we bring adjacent to each other pattern lists with the same constructor at their head.For example, for every pattern list Pi, within the sublist, with the constructor C1at the head, we strip o� the constructor and cons its arguments to the tail of thepattern list, to form a new pattern list Pi0 . Then we de�ne a new simple patternfor the constructor C1, as a part of a case statement, collect its dependencies andrecursively match for the list of pattern lists fPi0 g. It is important to note that boththe default function and L have now changed. The collection of dependencies forunary and n-ary constructors are di�erent. Hence, we illustrate the case for both.If the partition of pattern lists returns only one sublist, i.e. the head of every patternlist begins with a constructor, then we will have no new default function to de�ne.All default function calls will use the input default function.The description in Table 8.1 is very high-level and abbreviated. The actual implemen-tation handles a lot of instances as special cases to prevent an explosion in code size.It should be noticed that the label collection strategy is an implementation of strictpattern matching [52]. We explain the concept through an example,datatype TT = A of intval f = fn (A x) => 9val z = f (A 2)Slicing this program for the value of z returns the fact only the value 2 is superuous. But,intuitively, since the pattern (A x) is an exhaustive pattern of type TT and x is not usedin the body of the function, the entire expression (A 2) should be considered superuous.A lazy evaluator which does not evaluate its argument to match against a single pattern,that is exhaustive, is said to implement lazy pattern matching. Currently our decision toimplement strict pattern matching is mainly for simplicity of implementation.116



I. C[[ ( [ ] ; f g ) ]]L ; f = LII. C[[ ( [x1 ; x2 : : : xn] ; 8>><>>: [v1; p12; : : : p1n][v2; p22; : : : p2n]: : :[vm; pm2; : : : pmn] 9>>=>>; ) ]]L ; f =C[[ ( [x2 ; : : : xn] ; 8>><>>: [p12 ; : : : p1n][p22 ; : : : p2n]: : :[pm2 ; : : : pmn] 9>>=>>; ) ]]L ; f
III. C[[ ( [x1 ; x2 : : : xn] ; 8>>>>>>>>>><>>>>>>>>>>:

[C1(q11; : : : ; q1n1); p12; : : : p1n][C2 q21; p22; : : : p2n]: : :[vl; pl;2; : : : pl;n]: : :[vk�1; pk�1;2; : : : pk�1;n][Ck(qk1; : : : ; qknk); pk2; : : : pkn]: : :
9>>>>>>>>>>=>>>>>>>>>>; ) ]]L ; f =

let fun h L = C[[ ([x1 ; x2 : : : xn];� [Ck(qk1; : : : ; qknk); pk2; : : : pkn]: : : � ) ]]L ; ffun g L = C[[ ( [x2 ; : : : ; xn] ; 8<: [pl;2; : : : pl;n]: : :[pk�1;2; : : : pk�1;n] 9=; ) ]]L ;hincase x1 of(C1((y1 ; : : : ; y1n1) ; L0) ; L1) => let val L2 = union L (union L0 L1 )inC[[ ( [y1 ; : : : ; y1n1 ; x2 : : : xn];� [q11; : : : ; q1n1; p12; : : : p1n]: : : � ) ]]L2 ; g end| (C2 y1 ; L0) => let val L1 = union L L0in C[[ ( [y1 ; x2 : : : xn] ; � [q21; p22; : : : p2n]: : : � ) ]]L1 ; g end| : : :| ( ; L0) => let val L = union L L0in (g L) endendTable 8.1 : Compiling Complex Patterns to Simple Patterns
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8.2.3 Optimising the Program SlicerThe naive program annotator function, [[ ]], as described in the beginning of this chapter,provides for poor runtime performance. The predominant reason for the high executiontime of the annotated program is the large number of set unions and insertions beingperformed in the course of the computation. The entire suite of implemented optimisationsis directed towards reducing the number of set unions and insertions being performed bythe annotated program. We have already mentioned one important optimisation in theprevious subsection: of the label insertions, introduced by the annotator function, the onlyones that are retained are those which involve insertions of labels that are leaves of theparse tree. Insertion of a non-leaf label is superuous: it can be included in the slice atthe end of the computation, using the order of labels de�ned by the parse tree.Function ApplicationAtomic Operators, particularly arithmetic operators, occur very frequently in pro-grams. Hence, it is extremely important to weed out any superuous computationin the annotated version of these operators. Consider, the integer addition operator(op +): int*int -> int. The type of the annotated operator [[ int*int -> int ]]equals ((int*L) * (int*L))*L -> L -> int*L where L = Set of Labels. Hence, theimmediate annotated version of this operator is,val plus_int0 = fn(((x1:int,L1),(x2,L2)),L3) => fn L0 =>(x1 + x2, union L0 (union L1 (union L2 L3)))But the operator + is rarely, if ever, applied to a term that is not an explicit pair. Integerexpressions like (op +) (f x y) rarely occur and the function plus int0 is needed onlyfor handling such expressions. Whenever the operator + is applied to an explicit pair, itmay be that either one or both components of the pair are integer constants or neitherare. Based on these possibilities, we de�ne four additional di�erent integer operators:val plus_int1 = fn x1:int => fn (x2,L2) => fn L3 => (x1 + x2, (union L2 L3))val plus_int2 = fn(x1:int,L1) => fn x2 => fn L3 => (x1 + x2, (union L1 L3))118



val plus_int3 = fn x1:int => fn x2 => fn L => (x1 + x2, L)val plus_int4 = fn(x1:int,L1) => fn (x2,L2) => fn L3 =>(x1 + x2, union L1 (union L2 L3))All these operators perform lesser number of set unions than the operator plus int0.It should be noticed that all these operator have di�erent types. Whenever the operator +appears in an input program, the implementation �nds out which version to use andannotates the arguments accordingly. A similar optimisation could be performed for allbinary functions which do not escape the scope of their declarations. For such functions, ifwe know all the call-sites, we can keep around multiple annotated versions of the function,using whichever one is appropriate.In general, given a function taking in an argument of type �1 � �2, its annotated versiontakes in an argument of type ([[ �1 ]] � [[ �2 ]]) � Set of Labels. The annotation for an explicitpair l : (M1 ; M2), is given by [[ l : (M1 ; M2 ]]L � ( ([[M1 ]]L[flg ; [[M2 ]]L[flg) ; L [ flg ).Hence, the annotated version of the term l0 :M0 (l : (M1 ; M2)), is given by,[[ l0 :M0 (l : (M1 ; M2)) ]]L0 � let L1 = L [ fl0g(f; L2) = [[M0 ]]L1v = ( ([[M1 ]]L1[flg ; [[M2 ]]L1[flg) ; L1 [ flg )in f v L2 endIt is to be noticed that the label set component of the value v is already used in theannotation of the components of the pair. Except for the label l, the label set componentof v is also contained in the set of labels passed as an argument to the function f . Hence, wecan change the annotation of the pair to v = ( ([[M1 ]]L1[flg ; [[M2 ]]L1[flg) ; flg ). Reducingthe size of the label set component signi�cantly reduces the cost of a set union.A similar optimisation can be done when a function is applied to a variable. Thestandard annotation for l0 :M0 (l : x) is given by,
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[[ l0 :M0 (l : x) ]]L0 � let L1 = L [ fl0g(f; L2) = [[M0 ]]L1(v; L3) = xx = (v; L3 [ L1 [ flg)in f xL2 endClearly, the augmentation of the set component of x by L1 is redundant. This is becausewithin the body of f , x will be evaluated under L2, which contains L1. Hence, we needonly have x = (v; L3 [ flg). In general, function applications to values can accommodatethis kind of optimisation.A function of type (�1 ! �2) get translated to a function of type([[ �1 ]]! Set of Labels! [[ �2 ]]) � Set of Labels. For functions values which have singlecall-sites, which are known, the standard annotation does a lot of superuous computation.The standard annotation for l0 : (l : �xM)M1 would be given by,[[ l0 : (l : �xM)M1 ]]L � let L0 = L [ f l0 g(f ; L1) = (�x�L1 [[M ]]L1 ; L0 [ f l g)V = [[M1 ]]L0in f V L1 endOur implementation, which also collects labels only at the leaf of the parse tree, wouldannotate this as, [[ l0 : (l : �xM)M1 ]]L � (�x [[M ]]L) [[M1 ]]LThis is correct only because the function is a value and its call-site is known.The List LibraryLists are the most frequently used datatypes in SML and it is of utmost importance tooptimize the annotated version of list functions. The datatype list, in the annotatedprogram, is given by the following declaration:datatype 'a list = nil| :: of (('a*Set of Labels)*('a list*Set of Labels))*Set of LabelsA value of type int list, in the source program, becomes a value of type[[ int list ]] � Set of Labels in the annotated program, where [[ int list ]] is an instance120



of the annotated datatype declaration for list. Just as for arithmetic operators beingapplied to tuples, every application of the cons constructor is optmised to make sure thatno redundant information is computed.Operations on lists, or for that matter, any recursive datatype, generate an enormityof set operations. The reason for this can be illustrated through an example. Supposewe want to pull out the tenth element of a list starting from the head. Since we haveto walk down from the head of the list to the tenth element, this operation depends onthe dependencies of all operations required to construct the list upto that point. Hence,operations involving traversal of recursive data structures usually require the unioning ofall label sets required for the construction of the structure itself.Let us look at a simple implementation of the append function for lists,fun (a::rest) @ tl = a :: (rest @ tl)| nil @ tl = tlLet us now take a look at a readable bare bones representation of the annotated versionof the above program. We will use the constructor name CONS instead of :: because wehave stripped o� irrelevant information. We will be using a curried form to avoid clutter.fun Append (CONS(a,rest),L1) tl L0 = let val L = union L0 L1in (CONS(a, Append rest tl L),L) end| Append (NIL,L1) (tl as (ll,L2)) L0 = let val L = union L0 (union L1 L2)in (ll,L) endLooking at this program, we see that we are constructing the union of the sets of depen-dencies required to reach every point in the �rst list and are placing this union in thecorresponding position in the appended list. This is a lot of computation. To optimise theannotated version of append we use two critical pieces of information about the semanticsof SML:� The only way to access the nth element of a list is to destructure it through a sequenceof n pattern matches. There is no way to preserve a pointer to the nth element anduse it to access the value. 121



� The append function does not produce any side-e�ects and cannot generate anyexceptions.The two observations above tell us that we need not construct and carry around the setof dependencies required to reach a point in the list. This is because the append functionreturns no new values and raises no exceptions: it merely returns an augmented list. Abare bones presentation of the optimized version is as follows,fun Append_Opt (CONS(a,rest),L1) tl L0 =let fun Append (CONS(a,rest),L1) tl = (CONS(a, Append rest tl), L1)| Append (nil,L1) (tl as (ll,L2)) = (ll, union L1 L2)in (CONS(a, Append rest tl), union L0 L1) end| Append_Opt (NIL,L1) (tl as (ll,L2)) L0 = let val L = union L0 (union L1 L2)in (ll,L) endThis function performs exactly two set unions irrespective of the length of the �rst list:one at the beginning and one at the end of the �rst list. What is important to keep inmind, is the fact that the optimisation is correct only because the language is functionaland there are no side-e�ects, within append.The list function reverse is yet another function which produces no side-e�ects and isguaranteed not to raise an exception. Here is the standard implementation of reverse:fun reverse l = let fun rev nil l = l| rev (a::rest) l = rev rest (a::l)in (rev l nil) endA bare bones annotated version of rev would run as follows,fun rev (nil,L1) (l,L2) L0 = (l, union L0 (union L1 L2))| rev (CONS(a,rest),L1) l L0 = let val L = union L0 L1in rev rest (CONS(a,l),L) L endNotice that the set of labels attached to the head of the reversed list is the union ofthe set of labels, attached to each point of the original list, and it contains the set of labelsattached to any point in the reversed list. Since we cannot access a point in a list without122



going through the head we may actually assign the set of labels attached to any pointin the interior of the list to be the emptyset. An optimized version of rev would run asfollows,fun rev_opt (nil,L1) (l,L2) L0 = (l, union L0 (union L1 L2))| rev_opt (CONS(a,rest),L1) l L0 = rev rest (CONS(a,l),empty) (union L0 L1)8.3 Applying Slicing to aid Program Development and De-buggingIn this subsection we decided to apply slicing techniques to aid us in debugging and testingof a small application we wrote ourselves. The application chosen is a small toy interpreterfor the �-calculus. We chose this program because applications, like compilers, are typicalexamples where slicing can be of great use. If a program, which is a function from a basetype to a base type, has a succinct algebraic speci�cation, then the dynamic slice, of thevalue returned, is usually very close to the execution slice. For such programs, a di�erence,in the size of the dynamic slice and the execution slice, can usually be attributed to dead-code/superuous computation in the program. For example, a program to compute thedeterminant of a matrix or a program performing a decomposition of a matrix should haveits executable dynamic slice exactly co-inciding with its execution slice, unless encodinghas been sloppy. Applications, like compilers, are general purpose programs meant totranslate an arbitrary input from a given grammar. Hence, for a speci�c input, a lot ofintermediate values make no contributions to the value output by the program.We decided to implement the SECD machine [41] for the evaluation of terms in thesimple �-calculus with product types, constants of integer and boolean types and a collec-tion of primitive operations on base types. The structure of the program is briey outlinedhere:� We de�ne a datatype term which speci�es the structure of �-terms input to theprogram.� We de�ne a function generate code which takes in value, of type term, and trans-lates it into a sequence of instructions for the SECD machine. It checks that there123



are no free variables in the input and removes bound variables by replacing themwith corresponding de Bruijn [25] indices.� The function SECDEval is the implementation of the SECD machine: it takes in thesequence of instructions supplied by generate code and returns a value.After completing the encoding of the application, we ran it on the term,(fn x => x) (4 + 8)The program returns by raising an exception, indicating that it cannot �nd the bindingfor the variable at run time. We apply the following slicing criterion on the program,val ANSWER = fn f => (pretty_print(SECDEval([],[],(generate_code 1 [] tt),EMPTY)) f )handle _ => f "Uncaught Exception"The term tt is bound is to the input term given above and pretty print is a functionfor printing out values computed by the SECD machine. The log �le of the slice compu-tation is given in Figure 8.4. If the dynamic slice uses any data constructor then it alsoincludes the corresponding datatype declarations. If we throw out the datatype declara-tions from both the execution and the dynamic slice then the size of the dynamic slice isfound to be even more smaller than the size of the execution slice.FinalExperiments/SECD/secd.sml:Input Program Size(in Nodes): 1726Annotated Program Size(in Nodes): 9636Time to Annotate Input: 5.670000Execution Time of Input Program: 0.760000Execution Time of Annotated Program: 8.690000Dynamic Slice Size(in Nodes): 129 407Execution Slice Size(in Nodes): 160 446Fraction: 80.625% 91.2556053811659%Figure 8.4 The log �le for the execution of secd.smlA study of the diff �le allows us to zoom onto the location of the error immediately.In our initial implementation, we were not setting the value of the de Bruijn index for the124



variable x properly: we were starting our counts from 1 instead of 0. The diff �le pointsout that the following segments of the computation made no contribution to the raising ofthe exception:� Generation of the code for the argument to the function and generation of the codefor the function itself. Of course, the code for the body of the function forms a partof the dynamic slice.� Evaluation of the argument, the evaluation of the function to a closure and the savingof the program state prior to the making of the function call are shown to make nocontribution.Typically, the testing of an interpreter is done by elaborating the actions which theinterpreter performs for di�erent program states. Then we use di�erent input programswhich reach each of those program states and observe the output. Let the interpreterbe structured such that the actions performed by the interpreter for di�erent programstates are represented by di�erent functions. A strategy which attempts to evaluate thecoverage of a test suite by checkmarking the collection of such functions, which get executedin the testing process, is not adequate. This is because the execution of many of thefunctions return data structures as values and unless these values are used in the subsequentcomputation the function cannot be considered to have been tested. This is illustrated byperforming a dynamic slice computation on the same input, (fn x => x) (4 + 8), after�xing the bug. The dynamic slice of the program is found to be 89:13% of the executionslice. Important points about nodes present in the execution slice but not in the dynamicslice are:� The code constructing the closure for a function is found to make no contributionto the computation. This is as it should be: the function (fn x => x) has no freevariables.� Right before executing the body of a function, in a function call, the interpretersaves the current stack and the current environment. After the evaluating the bodyof the function it restores the stack and the environment. But for the input programgiven to the interpreter, in our experiment, there is no computation to be performed125



after returning from the function call. Hence, our slicing technique tells us that thecontents of stack and the environment, saved and restored, make no contribution tothe computation. Thus, we have not tested the correctness of the implementation ofthe save and restore routines. Looking at it from another perspective, the dynamicslice points out that the saving and restoration of the local stack and environment,when there is no subsequent computation to be performed after the return fromthe current function call, is redundant. We must restructure our implementationto ensure that this redundant computation is not done: we need to eliminate tailrecursion.We now apply our interpreter to a term whose evaluation involves a non-trivial closureconstruction and computation after the return from a function call. The term input to theinterpreter is,(fn F => F (fn x => 3*x)) (fn f => fn x => x * (f (f x))) 4The dynamic slice for the computation of this term is now 98:18% of the executionslice.8.4 Slicing SML/NJ Compiler BenchmarksSML/NJ uses a set of benchmark programs for studying the performance of the compiler.We will apply our program slicer on some of these programs to study the feasibility of ourtechnique. A very through experimental analysis of dynamic slicing of C programs hasbeen carried out in [64]. An important criteria used for selecting test cases in [64], whichwe will also be using, isTo keep trace sizes reasonable, it was also necessary to select test cases thatexercised a large number of di�erent parts of the program while avoiding unusu-ally long repeated executions of the expressions that contributed no additionalinformation to the construction of slices.Since functional programs allocate large amount of data dynamically the memory require-ments for the execution of the annotated program is a particularly acute problem.126



As mentioned previously, our implementation of the program slicer is two steps shortof the whole of SML,� Semantics for the slicing of modules and functors. The programs from the SML/NJcompiler benchmark, investigated here, do not involve serious application of func-tors. But most of these programs are broken into modules, scattered across di�erent�les. It took very little e�ort to concatenate �les together and generate a core SMLprogram for the trials.� Annotating polymorphic equality. Quite a few of the programs, investigated, hadpolymorphic functions with equality types. Since our program slicer can handleequality only on basic types, we needed to instantiate such polymorphic functionswith monomorphic types and provide for equality functions on non-basic datatypes.Quite surprisingly, in all of the cases we handled, we merely needed to write a coupleof equality functions, usually for list, and instantiate the polymorphic function toa couple of datatypes.8.4.1 The Boyer-Moore Theorem ProverThis is a small program implementing proof search techniques, for propositional logic,developed by Boyer and Moore [16]. A brief outline of the structure of the program isgiven below:� A datatype term is de�ned: it is either a variable or a proposition built out ofpropositional connectives and the if-then-else function.� Various functions for manipulation of terms are implemented:{ An equality function on terms and term lists.{ An environment, binding variables to terms, and associated functions for themanipulation of environments.{ A substitution function for replacing variables with terms.{ A uni�cation function on terms.127



� The theorem prover has a main function, tautp, which returns true for provabletautologies. The theorem prover works by term rewriting. Using the axioms forthe propositional connectives, it completely rewrites the term into a propositionbuilt solely out of the if-then-else function, variables and the constants "true" and"false". This term is then simpli�ed, using an axiom for the if-then-else function,to ensure that the �rst argument to the if-then-else function is always a variable ora constant. Such a term is now interpreted in the obvious way: if the �rst argumentto the if-then-else function evaluates to "true" we evaluate the second argument orif it evaluates to "false" we evaluate the third argument. If it evaluates to neither"true" nor "false" the law of `excluded middle' is applied.� The slicing criterion is given by,val ANSWER = fn f => if tautp (apply subst subst term1)then f "Proved!" else f "Cannot prove!"where,{ The variable term1 is set to the formula (A) B) ^ (B ) C)) (A) C).{ The function call (apply subst subst term1) applies substitutions to removefunction symbols from term1.The log �le generated by the execution of the annotated version of the program is givenin Figure 8.5. Important points about the nodes present in the execution slice but not inFinalExperiments/boyer/Boyer.sml:Input Program Size(in Nodes): 1817Annotated Program Size(in Nodes): 10508Time to Annotate Input: 6.620000Execution Time of Input Program: 0.830000Execution Time of Annotated Program: 21.280000Dynamic Slice Size(in Nodes): 433 833Execution Slice Size(in Nodes): 527 923Fraction: 82.1631878557875% 90.249187432286%Figure 8.5 The log �le for the execution of Boyer.smlthe dynamic slice are: 128



� The main function tautp applies the rewriting rules, de�ned by the axioms, to trans-form the input term into a proposition built solely out of the if-then-else function,variables and constants. The program stores the axioms in an associative list consist-ing of connective name and axiom list pairs. Hence, connective-axiom list pairs whichwere not used in the rewriting of the input term are not contained in the dynamicslice but contained in the execution slice. This is because they were executed duringthe construction of the associative list.An axiom for a connective consists of a pair of terms: the second component givesthe term the �rst component rewrites to. Hence, if the �rst component of the axiomis present in the dynamic slice, but not the second component, we know that theprogram attempted to use this axiom, for rewriting, but the uni�cation failed.� Whenever the program attempts to apply a substitution function to a variable but�nds that the variable name is not present in the domain of the substitution functionit raises the exception, failure "unbound". The slicing program discovers that thestring argument to the exception constructor is never used subsequently.8.4.2 Knuth-Bendix CompletionGiven a signature1 �0, and a collection of equations E, on terms over �0, the terms over�0 can be partitioned by the smallest congruence relation built by extending the relationde�ned by E. The word problem is the problem of deciding whether two words belong tothe same congruence class, i.e are they provably equal, equationally? The Knuth-BendixCompletion [39] procedure provides a solution to a subclass of the word problem. The ideaof the solution runs as follows: if the equations can be oriented to form rewrite rules, in aterminating rewriting system, then two terms can be shown to be equal if they reduce tothe same normal form. This strategy is valid only if every term rewrites to a unique normalform. The completion algorithm provides a technique to generate new equations/rewriterules to make the system conuent, while preserving the associated equational theory.The main function of the program, kb completion, can be briey outlined as follows:� For every pair of rewrite rules, R1 ! S1 and R2 ! S2, kb completion collects the1Refer to Section 3.1 for formal de�nitions on term rewriting systems129



associated list of critical pairs.Let R1 � R11R12R13, where R12 is a non-variable subterm.Let � be the most general uni�er [56] for R12 and R2, i.e. �(R12) � �(R2).�(R11S2R13) and �S1 are de�ned to be critical pairs.�R1 � �(R11R12R13)�(R11S2R13) �S1HHHHHHj�������? ?�S3 S4�The function kb completion then attempts to normalise both the terms in the criticalpair to normal forms, in the leftmost outermost style. If the normal forms S3 and S4are not identical then a new rewrite rule needs to be constructed from the pair. Theorientation of the rewrite rule is based on a weight function, on terms, which is takenin by kb completion as input. The new rewrite rule, involving S3 and S4, is orientedfrom the heavier to the lighter, in weight. If the weights of S3 and S4 are identical,but the terms are not, it adds (S3 ; S4) to a list of term pairs called failures.� Whenever it adds a new rewrite rule, the entire new set of rewrite rules E is checkedto make sure that it contains only irreducible terms. For any rewrite rule R! S,it �nds normal forms R0 and S0, such that R �! R0 and S �! S0 with respect torewrite rules E � f(R ! S)g. If the normal forms R0 and S0 are not identical thenit introduces, into E � f(R ! S)g, the rewrite rule, involving R0 and S0, orientedfrom the heavier to the lighter, in weight. If the weights of R0 and S0 are identical,but the terms are not, it it adds (R0 ; S0) to a list of term pairs called failures.� Whenever it adds a new rewrite rule, it checks whether any term pair, (R ; S),in the list failures can now be normalised, with the new set of rewrite rules, to(R0 ; S0), where R �! R0 and S �! S0. The following are the possible cases, regard-ing R0 and S0,{ R0 and S0 are identical terms. The pair (R ; S) is removed from failure and therest of failure is processed. 130



{ R0 and S0 are not identical, but have the same weight. The pair (R0 ; S0)is introduced into failure, in the place of (R ; S), and the rest of the list isprocessed.{ R0 and S0 are not identical but have di�erent weights. The appropriately ori-ented rewrite rule is added to the existing set of rewrite rules and the rest offailure is processed.The experiment we choose to conduct is to feed the program with the set of rewriterules 2 given in (a), below. The program completes these rules to output the rewrite rulesgiven in (b), below.(Bx) � (Cy) ! ExB(Cx) ! DxBx ! Dx (Dx) � (Cy) ! ExD(Cx) ! DxE(Cx) ! ExBx ! Dx(a) Rewrite Rules Input (b) Rewrite Rules OutputThe slicing criterion in the input program is,val ANSWER = fn f => pretty rules (kb complete greater [] Group rules) fwhere, greater is the order function on terms, based on a weight function, andGroup rules is bound to the set of rewrite rules in (a).In this experiment we are interested in the dependency associated with every rewriterule output by the program. Hence, we call the pretty print function pretty rules withthe argument f, where f is the parameter of the ANSWER function. Since the input ruleshave been chosen to exercise the major cases of the function, we are interested in programcoverage: sections of the program executed but making no contribution to the �nal answer.Such sections, though executed, can be claimed to have been left untested by the inputdata.The log �le generated by the execution of the annotated version of the program is givenin Figure 8.6.2The set of rewrite rules are chosen to be small but at the same time structured to ensure that the �rsttwo cases of the algorithm are exercised 131



FinalExperiments/knuth-bendix/knuth-bendix.sml:Input Program Size(in Nodes): 4113Annotated Program Size(in Nodes): 23594Time to Annotate Input: 26.650000Execution Time of Input Program: 2.720000Execution Time of Annotated Program: 39.290000Dynamic Slice Size(in Nodes): 737 1764Execution Slice Size(in Nodes): 769 1800Fraction: 95.8387516254876% 98.0%Figure 8.6 The log �le for the execution of knuth-bendix.smlThe dynamic slice, in this experiment, is almost identical to the execution slice andprovides little useful information over what is available from the execution slice. A studyof the code reveals why. Most of the code is tail recursive and a lot of it is structured asfollows:� Try to perform an action, e.g. unify, match, rewrite, substitute. The actions returnvalues if they succeed and raise exceptions if they fail.� If successful then use the returned value in the subsequent computation.� If failed then try performing another action.In programs, with such structure, the dependencies associated with the performing of theaction get passed on to the rest of the program, irrespective of whether the action succeededor failed: if the action succeeded the value is used in the subsequent computation and ifthe action failed the rest of computation is control dependent on the action. For programs,with such structure, useful information can be obtained through slicing techniques only ifwe can achieve a partition between `data' and `control' dependencies. We investigate thisin the next subsection.Slices can serve as a guide to program comprehension and an aide to optimising pro-grams. We will illustrate this with an example from our experiment. Terms, in thisprogram, can either be variables or operators applied to a list of terms. They are given bythe following datatype declaration,datatype term = Var of int | Term of string * term list132



The standard way of de�ning the location of a subterm within a term is with a list of in-tegers3. For example, in Term("*", [ (Var 3),Term("sin",[(Var 4)])]) the locationof (Var 4) would be given by the list [2,1]. In Figure 8.7 we present the code, from theprogram, for the replacement of a subterm of a term M, at the location u, with anotherterm N. The dynamic slice, from our experiment, points out that in the application of f toh, in the body of the function change rec, the argument h is not used in the computation,but the value returned (f h :: t) is. Studying the code shows that this is always going to bethe case whenever u is of length 1. This suggests that instead of going through superuousfunction applications, for a very commonly occurring case, we should add an additionalpattern to the function reprec to handle the case of the argument u having length 1, i.e.of the form (n::nil).fun change f =let fun change rec (h::t) n = if n=1 then f h ::telse h :: change rec t (n-1)| change rec = failwith "change"in change recendfun replace M u N =let fun reprec (_, []) = N| reprec (Term(oper,sons), (n::u)) =Term(oper, change (fn P => reprec(P,u)) sons n)| reprec _ = failwith "replace"in reprec(M,u)end Figure 8.7Explicit Control DependencyWe decided to investigate as to what would be the dynamic slice of each of the four rewriterules, output by the program, considered individually. To do this, we change the slicingcriterion, at the end of the program, to the one given below. The variable i is assigned a3Refer to Section 3.1 for a more formal exposition
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value in [0 : : : 3] depending on the rewrite rule we are slicing for.val Complete rules = kb complete greater [] Group rulesval ANSWER = fn f => pretty rule f (nth (Complete rules , i) )We found that the dynamic slices associated with each of the four slicing criteria wereidentical. This is because the program ensures that, at every stage in the computation,the output list of rewrite rules consists only of irreducible terms: every rewrite rule, in theoutput list, is not reducible with respect to the other rewrite rules in the list. Hence, everyrewrite rule is dependent on the dependency of every other rule. Hence, the computationof an executable dynamic slice is incapable of providing us with the following information:Given a rewrite rule, in the output list, what is the set of rewrite rules, in the input list,from which it is derived.As explained, in the previous paragraph, every rewrite rule, in the output list, is depen-dent on every other rule in the output list. But this dependency is a `control' dependency:once a rewrite rule is created a �lter function, returning a boolean value, decides whetherit can be retained in the list. The program is �lled with examples of this kind of `control'dependency.In a higher-order programming language `control' dependencies cannot be explicitlydistinguished from `data' dependencies. This is because instead of choosing a speci�cpath of computation based on an if-then-else/case expression, we can have a computationreturn a projection function which is applied to a pair of expressions. As shown in [12],we can de�ne the entire set of recursively enumerable functions, on Church numerals inpure lambda calculus. Thus, instead of attempting to formulate concepts of `data' and`control' dependencies for higher-order programs, we decided to apply the concept of controldependency used in �rst-order programs. Formal de�nitions of control dependency, in �rst-order programs with arbitrary gotos, can be formulated [18] in terms of post-dominatorson the control ow graph. But in a simple �rst-order program, whenever a speci�c pathof computation is chosen, based on the value of an expression as in an if-then-else/casestatement, subsequent computations, within scope, are be said to be control dependent onthe dependencies of the value of this expression. For higher-order programs, we will referto this kind of a dependency as an explicit control dependency . We will not formulate this134



concept rigorously: we simply want to look into what happens to slices, in our experiment,if we throw out explicit control dependencies. What we mean here is that, whenever wehave function arguments which are patterns, such that the body of the function does notexplicitly use the value of the input argument, then the dependency of the input argumentis discarded. The if-then-else/case expressions in SML are derived forms of functions withpatterns. Consider the set of functions shown below,( fn true => M1 | false => M2 )( fn (true,L1) => fn L0 => [[ M1 ]]L0[ L1 | (false,L1) => fn L0 => [[ M2 ]]L0[ L1 )( fn (true, ) => fn L0 => [[ M1 ]]L0 | (false, ) => fn L0 => [[ M1 ]]L0 )The �rst function is a standard if-then-else expression in SML. The second functionis its standard annotation. It is to be noticed that the value returned by this functiondepends on the dependency of the boolean value. The third function is the annotation weare going to use for our investigation in this subsection: it ignores the dependency of theboolean value.We extend this idea to all patterns: unless the function body explicitly uses a valuefrom the pattern, the pattern will be considered to be a path selector and its dependencieswill be ignored. The details of this extension are given in Table 8.2. The following twofunction are de�ned in Table 8.2,� P[[ ]], which takes in a pattern and a list of dependencies and returns an annotatedpattern and a list of variables and their associated list of dependencies.� PE [[ ]], which takes in a pair consisting of a pattern and an expression as argument.It annotates the pattern using P[[ ]] and then augments each variable by the list ofits dependencies, as returned by the function call to P[[ ]]. It then annotates theexpression using L0, completely ignoring the dependencies of the pattern.Patterns are no longer compiled to simple patterns to capture the complete set ofdependencies required to match a speci�c pattern out of a list of patterns. Unless theexpression uses a variable from the pattern the dependencies associated with the patternare discarded. Even when the expression uses a variable from the pattern the only set ofdependencies included are those in the path from the root of the pattern tree to that speci�c135



variable at the leaf. Exception handlers, which are also composed of pattern-expressionpairs, are also annotated similarly.We implemented this annotation for patterns and sliced the Knuth-Bendix Completionprogram, with the input from the previous experiment, and a slicing criteria composedonly of the rewrite rule D(Cx) ! Dx. The rewrite rule (Bx) � (Cy) ! Ex, present inthe input, is now no longer a part of the slice. The aim of the e�ort was to see whetherwe could partition dependencies into data and control dependencies, in the way Koreland Laski [40] did for �rst-order imperative programs, and see whether we could capturedata dependencies between the input and the output. This seems to be possible. Butwe have not developed any theory nor any extensional characterisation of the slice we arecomputing. Hence, we leave this merely as an observation, for now, and a topic to bepursued, for the future.This subsection discussed a re�nement of the standard executable dynamic slice inwhich we ignore all explicit control dependencies. A strategy in which we allow the user tospecify which of the case expressions, in the program, should ignore explicit control depen-dencies might have some applications. A standard rewrite rule which causes completionsystems to fail is the commutative rule: mboxx�y ! y �x. Adding this rewrite rule to theset of input rules causes the completion program to exit with an exception. Computingthe standard dynamic slice does not, as discussed, capture a strict subset of the input rulesresponsible for causing the exception. Ignoring all explicit control dependencies providesno information either since the program exited with an exception.8.5 Fundamental Limitations and ProposalsOn average, the annotated version of a program takes a factor of 15 more time to executethan the unannotated version. We feel a suite of optimisations of the standard of theSML/NJ compiler [9] would be be able to reduce the time to a more realistic factor of 10.We consider a factor of 10 to be realistic because a study on the dynamic slicing of Cprograms in [64] shows an average overhead of around 7.5. Programs in C have a staticcontrol ow graph and have a lot of data statically allocated. Unlike C programs, the coredata structures of SML programs are recursive datatypes. Recursive datatypes consist of136



P[[ ]]l = ( ; [ ] )P[[x ]]l = (x ; [(x ; l)] )P[[C0 ]]l = ( (C0 ; ) ; [ ] )P[[C(P1 ; : : : Pn) ]]l = let (P1; l1) = P[[P1 ]]L::l: : :(Pn; ln) = P[[Pn ]]L::lin ( (C(P1 ; : : : ; Pn ) ; L ) ; l1@ : : : ln ) endPE [[ (P ; M ) ]] =let (P ; l ) = P[[P ]][ ][ (x1 ; [L11 ; : : : ; L1n1] ) ; (x2 ; [L21 ; : : : ; L2n2] ) ; : : : ] = lin (P ; fn L0 =>let fun Augment (x,L0) L1 = (x , union L0 L1)val x1 = Augment x1 (union L0 (union L11...L1n1))val x2 = Augment x2 (union L0 (union L21...L2n2))...in [[M ]]L0 end)endTable 8.2 : Compiling Patterns to Ignore Explicit Control Dependenciesdynamically allocated memory which are linked through pointers. Hence, accessing thetailend of such structures is dependent on very large sets.There are two important areas where optimisations will provide a signi�cant boost tothe performance of the annotated program:� Optimisation of the annotation of functions and function calls. At the end of thesection, discussing the implemented optimisations associated with function applica-tions, we showed how to optimise function calls, of the form (fn x => ...)M, toeliminate a lot of superuous computation at run time. Most SML programs are�lled with expressions of the form,let fun f x = ...in ... (f M) ... endIf the only occurrences of f, in the scope of this declaration, are function ap-plications to arguments then the optimisation implemented for calls for the form137



(fn x => ...)M can also be applied here. Another frequently occurring expressionis of the form, let fun f x1 ... xn = ...in ... (f M1 ... Mn) ... endIf the only occurrences of f, in the scope of this declaration, are function applicationsto n arguments then the function f can be transformed to an uncurried form taking ina single argument which is an n-tuple. We can then apply the optimisation discussedfor the previous case. The savings associated with uncurrying will be huge. Thisis because for every application in the source program we have two applications inthe annotated program: one involving argument and the other involving the set ofdependencies associated with the call-site.� Optimisation of the annotation of patterns. The translation of complex patternsto simple patterns, de�ned in Table 8.1, is a naive syntax-directed approach. Ourimplementation gives a special treatment to patterns of the type boolean and otherdatatypes with only nullary constructor. But a lot more could be done here, especiallyregarding the handling of patterns which are exhaustive.Let g be the annotated version, of a SML function f, that is generated by our program.If f is small enough, with no more than simple patterns, we can, with some e�ort, write byhand a SML function h that performs the same computation as g. Since we, as individuals,have an understanding of the denotation of f and the concept of slicing the hand-writtenfunction h will probably be more e�cient than the function g, which is generated througha syntax-directed approach. Whenever a recursive datatype is de�ned, in a program, theprogrammer also de�nes a small set of simple functions for traversal and manipulationof these data structures. Such functions, particularly the ones for the traversal of thedata structure, usually end up becoming the most used functions in the program. Hence,allowing the user to provide functions to supplant annotated versions, generated from thesource program, might be a good idea. The bene�ts can be very positive as has beendiscussed in the case of functions for manipulations of lists. These functions have beenhand written and not generated from a source program. There is, of course, the obviousdown side: the user supplied function may be semantically incorrect.138



Large linked structures arise very frequently in SML programs. Consider, for example,the Boyer-Moore theorem proving(BMTP) program investigated as a part of the casestudy. The program operates by rewriting an input proposition into a simple if-then-elseexpression. All propositions are represented as tree structures. The rewrite rules aresuch that it causes a proposition, with a couple of nested implications in its antecedent,to blow up into an expression, which is exponential in the size of its input. Similarly,the Knuth-Bendix completion(KBC) program when attempting to complete a set of 3rewrite rules, de�ning the axioms for groups [39], generates 41 rules in the intermediatecomputation. If each unit of data in the memory is now tagged, by the set of its dynamicdependencies, we have just increased our memory usage by a big factor. This points outthat the primary limitation of slicing techniques is space. The annotated version of aprogram, which is big in size and also dynamically allocates huge amounts of data, veryquickly runs out of memory. The annotated versions of both BMTP and KBC, for thekind of inputs discussed in this paragraph, quickly stagnate in their computation for lackof memory: we have 800Kb of data getting paged in and out every second.The question is, what are the possible solutions to this problem? The most pragmaticsolution is to make a careful decision about the labels which are to be collected in course ofthe computation. Currently, every node in the parse tree is assigned a unique label and thecomputation of the dynamic slice collects labels at the leaves of the parse tree. Dependingon the application, we have a few options as to the labelling technique to use:� A debugging application might �nd it su�cient to isolate the lines in the programwhich made a contribution to the value computed at a breakpoint. Hence, all nodesin the parse tree coming from the same line can be assigned the same label. For theKBC program, it cuts down the number of labels, at the leaf, by almost a factor of 10.� A program developer might only be interested in detailed information about certainsections of the program. Every node in the parse tree, belonging to those sections,needs to be assigned a unique label. The structure of labels for the rest of the programis left dependent on the granularity of information we desire. All nodes in the rest ofthe program may assigned be the same label or we may, for instance, assign uniquelabels to functions and have all nodes within a function have the same label as the139



function.The parse tree of KBC has 4113 nodes and has 984 leaves. Thus the size of a set ofdependencies that can potentially be associated with any unit of data, in this program, is984. This number is way too big, especially, for a program dynamically allocating hugeamounts of data. If the size of the set of labels to be manipulated can be traded forthe amount of detail, using the techniques discussed above, to a couple of hundred then,using a bit-mapped representation for sets, we can limit the space usage of the annotatedprogram to be no more than a factor of 5 of the space usage of the source.8.6 ConclusionWe performed a limited number of experiments, involving the dynamic slicing of SMLprograms, using the tool we developed. This experience has provided us with a feel for thekind of higher-order programs where slicing can be very helpful and the kind of programswhere slicing is of little use.Typically programs performing numerical computations will have dynamic slices whichare very close, in size, to the execution slice. Programs, like compiler benchmarks, arenot very strongly data driven computations. What we mean is that program fragmentsexecuted for di�erent inputs are almost identical: the number of iterations made are usuallydi�erent. Sorting is a typical example of such a program. Dynamic slicing of such programsrarely generates any useful information over what is available from the execution slice.A program whose computation is strongly data driven, i.e. control ow is very largelydependent on the value of the input data, usually has dynamic slices which are muchsmaller when compared to the execution slice. An interpreter for a programming languageis a typical example of this. A slicing technique provides us with the ability to investigatewhich of the values constructed, at run-time, get used in the subsequent computation.This is particularly relevant for values of non-basic types because not all the componentsof a such value make a contribution to the �nal answer. This is the kind of informationwhich is unavailable from execution slices but a great help in investigating coverage. Thisis also the kind of information that points out optimisations which can be put in place toeliminate redundant computation in special cases.140



Chapter 9
Conclusion
In this chapter we summarize the central ideas of the thesis and discuss the viability ofdynamic slicing as a program analysis technique and as a development and debugging aidfor software written in higher-order languages. We outline the current status of this workand highlight some of the important areas of future work.Dynamic Slicing of �rst-order programs has been around as a semi-formal concept sinceWeiser's seminal work [65] in his thesis in 1979. A formal de�nition of dynamic slices for�rst-order programs, based on denotational semantics, was formulated as late as 1991 byVenkatesh [63]. Our contribution lies in the presentation of a formal de�nition for programslices, of higher-order programs, based on operational semantics. We have formulated analgorithm, for the computation of dynamic slices, as a natural deduction semantics. Thisapproach to the formulation of an algorithm, for the computation of slices, provides us withthe ability to state a succinct correctness theorem and present a proof thereof. For purelyfunctional programs, we show that minimum dynamic slices exist and co-incide with theset of terms that get executed under a lazy/call-by-name evaluator.We discover that, with respect to the computation of executable dynamic slices, themove from purely functional programs to programs with imperative features, like assign-ments and exceptions, is a non-trivial jump. For higher-order imperative programs min-imum dynamic slices no longer exist. The intuitive extension of the natural deductionsemantics for the computation of dynamic slices, of purely functional programs, fall short
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of computing an executable dynamic slice. We show that augmenting the natural deduc-tion semantics, with a closure relation, is capable of computing executable dynamic slicesfor programs with both assignments and exceptions.Computation of static approximations to executable dynamic slices is a technique toanalyse a program for dead code. This is because it captures the two loosely-couplednotions constituting the concept of dead code: code that is never going to be executedand code that is going to be executed but will make no contribution to the �nal an-swer. For purely functional programs, we have developed the concept of a demand-drivenset-based analysis. We provide a set-based semantics, for purely functional programs,that incorporates the concept of demand. This semantics helps us provide an extensionalcharacterisation and a correctness proof of the algorithm for the computation of a staticapproximation to the dynamic slice of a program. Our research into set-based analysis hasuncovered some foundational aws in the previous research in this area [14].Our formulation of the algorithm for program slicing, as a natural deduction seman-tics, provides us with another important bene�t: a simple and correct implementation.Given a program, whose dynamic slice needs to be computed, we generate an annotatedversion of the program which collects the relevant information during its execution. Weprovide a simple correctness proof of the program annotation technique. We have built animplementation that can annotate any core SML program which does not perform equalityoperations on non-basic types.We performed three small case studies to investigate the utility and limitations of slicingtechniques in higher-order languages. While reading the conclusions in this paragraph it isbe kept in mind that our slicing criterion was always the value returned by the computationand never any intermediate value in a computation. For such slicing criteria, we feel thatslicing techniques are particularly useful for investigating coverage of test suites. Wheneveran application constructs values of non-basic types, at run time, dynamic slicing can tellus which components of the value make a contribution to the subsequent computation.For the kind of slicing criteria mentioned, dynamic slices are around 80% of the size ofthe corresponding execution slice. In programs written in heavily imperative fashion,particularly, with lots of exceptions, the dynamic slice is very close to the execution sliceand usually provides little relevant information over what is available from the execution142



slice. In a lot of instances a study of the dynamic slice provides us with suggestions torestructure the program to get rid of redundant computations.The fundamental limitation of slicing techniques developed in this thesis appears tobe space. Every value in a computation is tagged by the set of its dependencies. Hence,programs which dynamically allocate large amounts of data quickly run out of memory. Wehave some proposals for trading space usage with the granularity of information obtainedfrom a slice computation. Further research needs to be done to �nd out whether theseproposals substantially reduce memory usuage.The most immediate line of research which needs to be pursued is the extension ofslicing techniques to modules and functors. Researchers, investigating slicing of �rst-order programs, have pointed out the utility of slicing techniques in comprehension anddevelopment of large software systems. The code for large software systems, implemented inSML, is usually heavily functorised. Formulating the concepts and algorithms for dynamicslicing, in the presence of modules and functors, would allow us to investigate productionquality software like the SML/NJ compiler. A brute force extension, into the realm offunctors, which deals only with value bindings and completely ignores computation ontypes, performed during a functor application, is immediately feasible. But an executabledynamic slice, which type checks and takes into account the generative nature of datatypedeclarations, in functor applications, will need substantial e�ort.Another line of research which holds great prospects is the incorporation of our programslicer into a debugger. This would be along the lines of the SPYDER tool [4]. Whenevera program stops at a given break point we should be able to query the dynamic sliceassociated with the value of any variable in scope. Issues associated with the realisingof this goal are more technical than foundational. Currently, if we place a breakpoint,in the corresponding position, in the annotated program and apply the current value ofthe closure function, at the breakpoint, to any value we can obtain its dynamic slice.The technical complexity is about textual mappings between the source program and itsannotated version and the handling of exceptions.A major challenge, which lies ahead of us, is the generation of annotated programswhich perform extremely limited number of set unions. Isolating more and more specialcases and treating them separately will substantially decrease execution time. Semantic143



analysis which can isolate functions which do not escape their scope, or expressions whoseevaluations do not raise exceptions or involve assignments, can also help reduce executiontime signi�cantly. Currently our strategy has been to tag every value with its dependency.It is worth exploring how much of this information can be reconstructed at the end of thecomputation with information dumped into at �les at strategic points in the execution.The core of this thesis has been dedicated to laying the foundations of the conceptsand algorithms associated with the dynamic slicing of higher-order programs. We havean implementation to show that the concepts developed here are feasible and useful. Webelieve that following up the research avenues indicated here would lead to a very practicaland useful tool for analysing higher-order programs.
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