DYNAMIC SLICING IN HIGHER-ORDER
PROGRAMMING LANGUAGES

A Dissertation
by
SANDIP K. BISWAS
Department of CIS
University of Pennsylvania
Philadelphia, PA 19104

sbiswas@saul.cis.upenn.edu

Dissertation Supervisor:

Carl A. Gunter, University of Pennsylvania

Dissertation Committee:
John Field, IBM T.J. Watson Research Center
Insup Lee, University of Pennsylvania
Dale Miller, University of Pennsylvania

Scott Nettles, University of Pennsylvania

Contents

1 Introduction

1.1 An Outline of Research Results

2 A Formal Presentation of Slicing for First-Order Imperative Programs
2.1 A Denotational Formulation of Slicing

2.2 Algorithms for Program Slicing

3 Related Work

4 Syntax and Semantics of LML
4.1 Language Syntax e e

4.2 Dynamic Semantics Lo

5 Slicing Purely Functional Programs
5.1 Formal Definition of Dynamic and Relevant Slices
5.2 A Natural Semantics for Computation of Slices

5.3 Minimum Dynamic Slices and Call-By-Name Evaluation

6 Static Analysis for Dynamic Slices
6.1 Compiler Optimisations based on Analysis of Slices
6.2 Relation to Existing Work oo o000
6.3 A Set-Based Semantics L

6.3.1 A Set-Based Semantics Incorporating Demand

17
18
21

25
26
27

32
33
36
42

6.4 Constralnts e e e 64

6.4.1 The Language of Constraints 65

6.4.2 Relating Set Constraints and Set-Based Semantics 71

6.5 Conclusion 74

7 Slicing Higher-Order Programs with Exceptions and Assignments 76
7.1 Slicing Programs with Assignments 76
7.2 Slicing Programs with Exceptions 88
7.3 Integrating Assignments and Exceptions oL 94
7.4 Broader Slicing Criteria oo 95

8 Program Instrumentation and an Implementation Overview 98
8.1 Program Instrumentation 00000000 L. 99
8.1.1 Correctness of Program Instrumentation 103

8.2 Implementation Details 105
8.2.1 The Interface of the Annotating Program 106

8.2.2 Annotating Patterns 113

8.2.3 Optimising the Program Slicer 118

8.3 Applying Slicing to aid Program Development and Debugging 123
8.4 Slicing SML/NJ Compiler Benchmarks 126
8.4.1 The Boyer-Moore Theorem Prover 127

8.4.2 Knuth-Bendix Completion 129

8.5 Fundamental Limitations and Proposals 136
8.6 Conclusion e 140

9 Conclusion 141

List of Tables

2.1
2.2
2.3
24

5.1
5.2
9.3

6.1
6.2
6.3
6.4

7.1
7.2

8.1
8.2

: Standard Denotational Semantics of L oo 8
DSyn(s, L) oo o e 9
: Instrumented Semanticsof L Lo 11
. Augmented Instrumented Semanticsof L 0oL 12
: Empty Rules o 34
: Specifying Dynamic Slices for Functional Programs 38
: Execution Under Call-By-Name Evaluation 44
: Set-Based Operational Semantics o0 54
: Denotation of Atomic Set-Based Expressions 67
: Set Constraint Simplification Algorithm, Simplify 68
: Construction of Set Constraints 71
: Specifying Dynamic Slices for Higher-Order Imperative Programs 85
: Specifying Dynamic Slices in the Presence of Exceptions 92
: Compiling Complex Patterns to Simple Patterns 117
: Compiling Patterns to Ignore Explicit Control Dependencies. 137

Abstract

Dynamic slicing is a technique for isolating segments of a program that (potentially)
contribute to the value computed at a point of interest. Dynamic slicing for restricted
first-order imperative languages has been extensively studied in literature. In contrast,
little research has been done with regard to the slicing of higher-order programs. Most
first-order imperative programming languages are statement-based while most higher-order
programming languages are expression-based. Unlike first-order programs, higher-order
programs have no simple concept of static control flow: control flow depends on the bind-
ing of formal parameters to actuals. Because of these differences, formalising a definition
of slicing for higher-order programs involves some novel concepts.

The aim of the work, presented here, is to extract ‘executable’ slices of higher-order
programs solely from the execution trace. In the absence of assignments, i.e. in purely
functional programs, dynamic slices satisfying very strong criteria can be extracted. This is
because purely functional languages have a demand-driven evaluation strategy. A realistic
higher-order programming language, like Standard ML (SML), uses imperative features
like assignments and exceptions. We provide algorithms to compute dynamic slices of
programs containing such features.

It is shown that, just like first-order programs, higher-order programs can be instru-
mented to collect data, regarding its dynamic slice, during execution. We have imple-
mented a tool which performs such instrumentation on core SML programs. Experiments
conducted, with the tool, throw light on the utility and limitations of dynamic slicing as

technique for analysing higher-order programs.

Chapter 1

Introduction

A program slice consists of the parts of a program that (potentially) affect the values
computed at some point of interest, referred to as a slicing criterion. Weiser, in his seminal
work [65, 67]', was the first to give formal definitions and algorithms in this area. In [66],
he presents a justified claim that programmers mentally compute the slice associated with
a break-point, when debugging a program. A first-order imperative program, without
procedure calls, is essentially a sequence of statements. Slicing, for such programs, involves
isolating a set of statements to be included in the slice. The new program, obtained after
the deletion of the subset of statements to be excluded, is still an executable program and
is a program slice, if it displays the same behavior at the point of interest. This is highly
useful in debugging: if we are getting a wrong value at a break-point, then, during re-
execution, we would like to execute only those statements which contributed to the value
computed at the breakpoint. Such an approach can significantly reduce the time required
to debug a program.

The informal definition of program slicing talks about isolating parts of a program that
potentially affect the values computed at some point of interest. This isolation, of parts of
a program, may be for a specific input to the program, in which case it is called dynamic
slicing. On the other hand, we may want to isolate parts of a program which include all
parts of a program that potentially affect the values computed at some point of interest,

over all possible inputs, in which case it is called static slicing.

"One of the early presentations [67], contains seriously flawed definitions. These have been pointed out
and corrected in [44].

For example, in Fig 1.1, the program (a) has the program (b) as its ezecutable dynamic
slice, if the slicing criterion is the value of z printed out at the end of program (a). The
statement “x++” is not included in the slice because the incremented value of z produced

at the end of the loop is discarded.

x=1;

y=2;

z2=17; z2=17;

while (z > 0) do while (z > 0) do

if (z==06) theny =3 if (z==06) theny =3 ;
X+ ; zZ——;

Z——; end ;

end ; if (y ==3) thenx =9 else ;
if (x >9) theny =4 ; print(x) ;

if (y==3) thenx=9elsex=x+10;

print(x) ;

(a) (b)
Figure 1.1

In Fig 1.1(a), if the initial value of z is set to 6 instead of 7 then the statement “z-- ; 7
does not explicitly ‘contribute’ to the value of printed out at the end of the program: it
merely ensures that the while loop terminates. There are approaches to dynamic slicing
that do not include such statements, e.g [6]. Such slices, of course, are not executable
programs. Agrawal et al,[4, 5], have developed a sophisticated debugging tool, SPYDER,
for a small subset of the programming language C, based on this principle.

The transition from intuition to a well-formed definition, for executable slices of
higher-order programs, is not so obvious a step. This can be seen from the following

example:

((Ay.y)(Az. 4))(20 + 30)

Since the term (20 + 30) does not raise an arithmetic exception, it does not ‘contribute’
to the value returned by the original program. Unlike the first-order case, simple deletion

of the term (20 4+ 30) does not leave behind a program that returns the same answer.

Replacement of the subterm (20 + 30) by some constant/canonical integer value works
for this example. But if a higher-order term does not contribute to the answer then a

replacement strategy may not be obvious.

let fun F f xy = let val z = f x

in
if (y=1) then 90 else z
end

in

F (Gf1) 23 +F (Hf2) 01

end

Figure 1.2

A higher-order program, written in SML, is presented in Fig 1.2. The variables G,
H, f1 and £2 in the program are left undefined as they are not relevant to the point
we want to illustrate. The subterm (H £2) does not contribute to the value returned
by the program as the term (F (H £2) 0 1) evaluates to the constant 90. To define
an executable dynamic slice for this program, we need to present an altered version of
the program in which the term (H £2) is either absent or not evaluated. The alteration
is definitely not as trivial as term deletion or replacement by some canonical term, as

(H £2) evaluates to a function of type (int —> int).

Another concept which we would like to present informally is that of relevant slicing.
This concept was developed by Agrawal et al [7] in the context of incremental regression
testing. Let us consider a software package that has been developed and subsequently
tested by a large and comprehensive test suite. If the next version of the software package
made only small and scattered changes to its predecessor then we would like to know
whether a particular test, in the suite, need not be rerun because the changes made to the
software were not relevant to the execution of the test. On a more formal footing, let us
consider the language L presented in Page 8. Let the set of allowable changes to a program
be changes made to expressions e within statements.

The relevant slice of a program, with respect to a slicing criterion, not only includes the

dynamic slice, with respect to the slicing criterion, but also statements that were executed

and did not influence the slicing criterion but could have influenced it, had they evaluated
differently.

Consider the programs presented in Fig 1.3.

a=2;

b=2; b=2;

if (a > 3) then b = b * 8; if (b < 10) then c = 9 ;

if (b < 10) then c = 9 ; else ;
else ¢ = 11 ; print(c) ;

print(c) ;
(a) (b)

a=2;

b=2;

if (a > 3) then ;

if (b < 10) then c = 9 ;
else ;

print(c) ;

()
Figure 1.3

The program (b) represents the dynamic slice of the program (a), for a slicing criterion
represented by the output of the program. The program (c¢) is the relevant slice of (a),

with respect to the same slicing criterion: it is the complete execution slice of (a). The

statement “a = 2 ;” needs to be included in the relevant slice because if it were changed
to “a = 4 ;” the output of the program would change to 11. For similar reasons, the
conditional “if (a > 3) then ; ” must be included in the relevant slice.

The computation of relevant slices involves the defining and computing of potential
dependencies [7]. This computation involves more than a traversal of the execution trace

of a program: a static data-flow analysis for the collecting reaching definitions is required.

1.1 An Outline of Research Results

The informal introduction, above, attempted to provide a feel for the fact that dy-
namic slicing for statement-based first-order languages is a well-understood concept with
formal definitions, algorithms and correctness proofs. But this is not the case for an
expression-based higher-order language whose operational semantics is presented as a nat-
ural semantics [54, 37]. This thesis presents a formal framework in which a dynamic slice
of a higher-order program can be defined. This was a non-issue for a first-order language,
since the deletion of an arbitrary set of statements leaves behind a syntactically correct
program.

We go on to present an algorithm for the computation of a dynamic slice for purely
functional programs. The algorithm for the computation of the dynamic slice is presented
as a natural semantics and its correctness is proved. We provide algorithm-independent
characterisations of the dynamic slice we compute. Once we have an extensional charac-
terisation of dynamic slices a natural question to be asked is, can we compute a static
approximation to it? We provide an answer in the affirmative through the use of a set-
based analysis technique. We discuss how this static analysis may find use in the isolation
of dead-code in higher-order programs.

We next present an algorithm for slicing in a higher-order language, with imperative
features: assignments and exceptions. As shown in [40], the computation of executable
dynamic slices for first-order imperative languages requires a closure operation, over a set
of relations defined on the execution trace, because of multiple executions of a statement
in a while loop. If the operational semantics of a higher-order imperative programming
language is presented as a natural semantics then the execution trace of a terminating
computation is a proof-tree. This is very different from the case for for a statement-based
first-order language where the execution trace is a sequence of statements. Multiple execu-
tions of a term occurs because of multiple call-sites of a closure. The closure operation to
be performed in this case is much more subtle, particularly in the presence of exceptions.
The relation, over which the closure is to be performed, is deeply rooted in semantics of

control-flow in the presence of exceptions and assignments.

Apart from simpler correctness proofs, the presentation of the algorithm for the com-
putation of dynamic slices, as a natural semantics, has an immediate benefit: a term can
be instrumented to collect data regarding its dynamic slice. We define a formal translation
of a program P into an annotated program P’ and prove that the execution of P’ correctly
computes the dynamic slice of the execution P. We have implemented a translator for the
whole of core SML and perform experiments to investigate the utility and limitations of

slicing techniques for analysing higher-order languages.

Chapter 2

A Formal Presentation of Slicing
for First-Order Imperative

Programs

The previous chapter attempted to provide an informal and intuitive understanding of the
concepts involved in program slicing, for first-order programs, and their possible applica-
tions. This chapter presents a formal definition of the concepts involved. Since program
slicing can be viewed as a source-to-source transformation on programs, a formal definition
of slicing must be based on the semantics of the programming language. The semantics of a
programming language may be denotational [58] or operational [25]. The formal definitions
presented in Section 2.1 are based on denotational semantics. A denotational framework
was chosen as it allows us to define a broad set of definitions very succinctly, independent
of the algorithms used to compute the slices, and independent of the presentation style of
the operational semantics.

The definitions and algorithms presented in this chapter are essentially a review of
previous research in this area. They are not meant to be comprehensive, but are meant
to show that concepts, developed subsequently, for higher-order programs are a natural
extension of the concepts formulated for first-order languages. A very comprehensive survey
of the research in program slicing may be found in [62].

The formulation presented in Section 2.1 is from Venkatesh [63]. The programming

language L, on which analysis is carried out in the following sections, is given by the

following grammar:

| if [: e then s; else s9

| while/: e do s

| S1 5 82
|
L is a statement-based language: a program in L is a sequence of statements. The
non-terminal e denotes expressions, whose syntax is left unspecified. All expressions in
this language are assigned unique labels: subexpressions are not individually labelled. The
standard semantics of the language is presented in Table 2.1.
The semantic function E and the semantic domain value are left unspecified. It is
assumed that expressions consist of constant time operations over variables and constants,
and that they have no side effects. The language is given a strict semantics, i.e. the update

function associated with the store is assumed to be strict in all three of its arguments.

Domains:

o € store = id — value

Functions:
E : exp — store — wvalue

S : stmt — store — store

S[i:=1:¢e] = Xo.o[(E[e]o)/i]

S[if [: e then s; else so | = Ao. E[e]o — S[s1]o, S[s2]o
S[while [: e do s] =fix(Af.Ao. E[e]o — f(S[s]o), o)
S[s1; s2] = Ao. S[s2](S[s1]o)

Table 2.1: Standard Denotational Semantics of L

Notation: A(s) denotes the set of all labels in an L-program s.

As L is a statement-based language, given any L C A(s), it is possible to inductively
construct a syntactically correct program that includes only those statements, whose labels
are included in the set L, and its control dependencies. For a block-structured language
like L, if a statement s is immediately contained in a block, defined by a control construct
like an if-then-else statement or a while-loop, then s is said to be control-dependent on the
control-construct. Such an inductive construction is given, in Table 2.2, by the function

Syn(s, L).

Syn(s, L) =
case s of
[i:=1:e]:if €L then s else ¢
[if [: e then s; else s9] :
if Syn(s;, L) = Syn(se, L) =¢ and (I € L)
then ¢
else [if [: e then Syn(si, L) else Syn(sy, L)]
[while l: e do '] :
if Syn(s', L)=¢ and (I ¢ L)
then ¢
else [whilel: e do Syn(s', L)]
[s15s2]:[Syn(si, L); Syn(s2, L)]

Table 2.2: Syn(s, L)

2.1 A Denotational Formulation of Slicing

In his formulation, Venkatesh uses a single parameter slicing criterion: the value of a

specific variable at the end of a computation.

Definition: For any L-program s, a variable v used in s, a set of labels L C A(s) and any

initial store og, the L-program Syn(s, L) is called
e A dynamic slice with respect to v, og iff (S[s]og)(v) = (S[Syn(s, L)]oo)(v)

e A static slice with respect to v iff (S[s]oo)(v) = (S[Syn(s, L)]oo)(v) for all

oy € store.

The above definitions of slices deal with syntactically correct programs: they cannot
accommodate slices which are not executable programs. Hence, Venkatesh presents a
denotational formulation of the intuitive concept of a statement influencing the value of a
variable, at the end of a computation. He defines contamination of an expression and a
semantics for propagation of contamination. A statement influences the value of a variable,
at the end of the computation, if its contamination results in the value of the variable being
contaminated at the end of the computation.

To denote contaminated computations, every value becomes a tagged value, t_value,
tagged with a boolean flag with {rue indicating contamination. Hence, the store becomes

a tagged store, t_store = id — t_value. The function E; in Table 2.3, takes in as

mstr
input contaminated expressions, c_exp =1 : (t, e), where the tag ¢ indicates whether the
expression labelled [has been marked contaminated. A contaminated statement, c_stmit,
is similar to a stmt, except that expressions in the statement have now been replaced

contaminated expressions, c_exp. The function E; is derived from the function E

nstr
by associating a boolean tag, with the output value, that is a disjunction of the tags
associated with all the values used by the expression, the tag associated with expression

itself and the additional boolean parameter passed in as argument. The boolean parameter

and S;

taken in by E instr

instr essentially indicates whether the value, on which a given
statement /expression is control dependent, is contaminated. A complete instrumented
semantics is given in Table 2.3.

Given a statement s, Cont(s,[) is a statement in c_stmt, in which every expression,

(I" : e) where I" £ 1, is replaced by (I' : (false, €)) and the expression (I : €) is replaced by
(I: (true, e)).

Definition: Let s be an L-program, v a variable in s and og be an initial store. Let

L C A(s) be the set of labels defined by,

L ={1]([Sipstrl Cont(s,)] false Xi. (o¢(3) , false)] (v)) | 2 = true }

The set L is defined to be the dynamic backward closure slice, DBC(s, v, 0y), of s

with respect to the variable v and the initial store oy.

A DBC slice includes exactly those statements whose contamination contaminates

the slicing criterion. A DBC slice is what is computed by the algorithm presented by

10

Domains:
(v, B) € t_value = value x bool

T € t_store = id — t_value

Functions:
Einstr 1 c_exp — bool — t_store — t_value
Sinstr 1 c_stmt — bool — t_store — t_store
Sinstr[:=1: p] = AB7. T[(Ejpei,[p187)/i]
Sinstr[1f [: p then 51 else s3] =

ABT. let (v, 1) = Eypeir[p 187

n v — Sinstrﬂsl 167, Sinstrﬂsﬂ]ﬂﬂ

Sinstr[[While [:pdo 3]] =

fix(Af.ABT. let (v, B1) = Ejpetr I 167
in v = fB (Sinstrﬂsﬂﬁﬂ—)) T)

Sinstrﬂsli 321] = >‘/37' Sinstrﬂs2ﬂﬁ(sinstr[[31]]/37)

Table 2.3 : Instrumented Semantics of L

Agrawal and Horgan in [6]. The important point to be observed is that the execution of
Syn(s, DBC(s, v, 0g)) need not return the same answer for the slicing criterion v. In fact,
the execution of Syn(s, DBC(s, v, 0y)) need not even terminate. For example, in Fig 1.1,
if the initial value of z in program (a) were set to 6 then contaminating ¢ ‘z-- ; ’? would
not contaminate the value of . This is because the value of y, which sets the value of x,
is set in the first pass through the loop. Since ‘ ‘z-- ; ?’’ is not included in the DBC, its
execution no longer terminates.

A statement gets included in a DBC slice because along one specific control flow path its
contamination contaminates the slicing criterion. But, for a given statement si, included
in a DBC slice, no attempt is made to include all statements, in the program, whose con-
tamination contaminates s;. This is the reason DBC(s, v, 0g) may fail to be equivalent
to the original program s, with respect to a variable v and a store oy. Hence, for trans-

forming a DBC slice into an executable dynamic slice we need a closure technique. This

technique uses the augmented instrumented semantics defined in Table 2.4. All semantic

11

functions, used in Table 2.4, are assumed to be — preserving. Every defining clause for

the semantic function S'; is assumed to have a guard which checks that the argument

instr
B does not equal —. If it does, it immediately returns —. The semantic function Slinstr
Domains:
(v, B) € t_value = value x bool
T € t_store = id — t_value
Functions:
S’instr : c_stmt — P(label) — bool — t_store — t_store
S'insteli:=1: p] = ALB7T. let (v, 1) = Ejygt, 2167
in (Il € Land 81 = true) — — , 7[(v, (1)/i]
S'instrl[if [: p then s; else sy =
ALBT. let (v, Bi) = BEijpet [0 18T
in (I € Land 8y = true) — —, (v = S'pstrls1 1LOIT , S5pstrl 2 1LOIT)

S'instr[while I: pdo s] =

fix(A\fALBT. let (v, B1) = Ejpet [167
in (I € Land 81 = true) — —, (v — f(S8iustel8]1617) . 7)

S,instr[[s1 P s2] = ALPT. Slinstr[[s2 [Lp (Slinstr[[sl [LBT)

Table 2.4: Augmented Instrumented Semantics of L

takes in a set of labels L and returns —, if during the computation of its argument, a
statement included in L is executed and returns a contaminated value. Using the semantic

function S’

instr We can isolate the set of statements whose contamination leads to any

statement in DBC(s, v, 0g) to become contaminated. This set of statements can be used
as an argument to S';4¢, to obtain a possibly larger set of statements. The iteration can
be continued till we reach a limit. The limiting set of statements is an executable dynamic

slice.

Definition: Let s be a program, v a variable used in s and oy any initial store. Let L be

the limit of the sequence Ly, Ly, ... where
Ly = DBC(s, v, op)

Lijyr = {1] Sipstrl Cont(s, 1)] L; false (Xi. (09(3) , false)) = —}

12

The set L is called a dynamic backward executable slice, DBE(s, v, 0g), of s with

respect to a variable v and the initial store og.

Theorem 2.1.1 For any program s, a variable v used in s and an initial store oy,
if s'=Syn(s, DBE(s, v, 0q)) then (S[s]oo)(v) = (S[s"]oo)(v), i.e. DBE(s, v, 0q) is

a dynamic slice with respect to v, og.

Definition: Let s be a program, v a variable used in s. Let L C A(s) be a set of labels such
that L O UDBE(s, v, 0g) for all oy € store. Then L is defined to be a static backward

executable slice(SBE) of s with respect to the variable v.

Theorem 2.1.2 For any program s and a variable v used in s, if s’ = Syn(s, SBE(s, v))
then (S[s]oo)(v) = (S[s']Joo)(v) for any oy, i.e. SBE(s, v) is a static slice with respect

to v.

2.2 Algorithms for Program Slicing

The previous section presented a denotational definition of static and dynamic slices. An
instrumented denotational semantics was supplied to characterise statements, which were
to included in the DBE. The instrumented semantics did not, however, provide for a
technique to compute the DBE of a program s with respect to v, 0g. In this section,
we will present the technique developed by Korel and Laski [40], for the computation of
dynamic slices.

Given a program s, in the language L, and an initial memory oy,

e T denotes the execution trace of s. As s is a program whose top-level expressions are
labelled, an execution trace can be defined as the sequence of labels of expressions

that were executed.
e 7; denotes the i" label in the sequence 7.
e T|; is a sequence obtained by restricting 7 to its first i elements.

e II,(7), where L is a set of labels, denotes the sequence of labels obtained by restrict-
ing T to labels from L.

13

e Use(l) denotes the set of variables in the expression labelled /.

e If an expression ¢ labelled [is a part of an assignment statement z:=1[: e then

Def(l) = z.

e The Data-Data(DD) Relation, on an execution trace T, is a subset of N x N, such
that i DD j iff ¢ < j and there exists a variable v such that v = Def(7;) and
v € Use(T;) and for any &k, 4 < k < j, v # Def(Ti).

e The Identity(IR) Relation, on an execution trace T, is a subset of N x N, such that
IRy iff T,=T;.

e The Test-Control(TC) Relation, on an execution T, is a subset of N x N.

For a statement if [: p then s; else sy the labels in A(sy) and A(s9) are defined

to be in the scope of influence of the label .

For a statement whilel: p do s the labels in A(s) are defined to be in the scope

of influence of the label [.

i TC j iff T; is in the scope of influence of 7; and for all k, i < k < j, T} is the scope

of influence of 7;.

Definition: Let T be the execution trace of a program s, on input oy. A slicing criterion
C is a tuple (¢, V'), where ¢ is a position in the execution trace 7 and V is a subset of the

variables in s.

This is a more refined slicing criterion than discussed in the previous section. It has two
parameters instead of one: a position in the execution trace is asked for. Another way
of looking at it is, the previous slicing criterion had the ¢ parameter fixed to the position

beyond the last label in the execution trace.

Definition: Given a slicing criterion C' = (¢, V'), a dynamic slice of s with respect to
C, on input oy, is any executable program s’ that is obtained from s by deletion of zero
or more statements from it and when executed on og, produces an execution trace 7" for

which there exists a position ¢’ such that,
L Ty = HA(s’)(T‘q)

14

2. for all v € V, the value of v before the execution of 7, exactly equals the value of v

before the execution of 7:1’,.
3. 7:1 = 7:]/

Given the execution trace 7 of a program s, on input oy and a slicing criterion

C = (q, V), the dynamic slice is computed by an iterative process.
So = Last_Def(q, V) U Last_Control(q)
where Last_Def(q, V) ={p | Def(T,) =v €V and for any n, p <n < gq, v # Def(Tn)}

Last_Control(q) = {p | pTC q}

Sivi = SiU{p|p(DD+IR+TC)r wherer € S;}

The above iteration converges to a limit S.

The dynamic slice of s with respect to C, on input g, includes exactly the statements

labelled {7, | p € S}.

A counterpart of the algorithm, presented above, for static slicing would be an algorithm
which works for all initial memories. The transition to a static slicing algorithm is very

gradual and intuitive. It involves the following steps:

e The first component of a slicing criterion C = (g, V'), used in the above algorithm,
is a position in the execution trace 7. For static slicing, there is no execution
trace available, hence a slicing criterion is given by C = (I, V') where [is the label

assoclated with a statement.

e The DD-Relation, defined above, relates Last_Def(q, Use(T,;)) to the position q.
Analogously, we define a data-dependence relation relating statements, labelled [and
m, if | defines a variable v, v € Use(m) and there is a path from [to m, in the
control-flow graph for s, which does not have a definition of v in it. For the language

L, the data-dependence relation is statically computable.

e The inverse of the TC-Relation, defined above, is actually a function mapping
a position, p in 7, to another position q. The corresponding mapping on la-
bels, from 7, to 7, is invariant over all execution traces and defines the in-

verse of the control-dependence relation. For the block-structured language L, the

15

control-dependence relation is computable by making one pass over the program.

e By performing a transitive closure on the relation
(data-dependence + control-dependence), the static slice can be computed. A detailed

account of static slicing may be found in [55].

16

Chapter 3

Related Work

As has been mentioned before, there has been very little research in the area of slicing of

higher-order programs. There have been two prominent approaches.

e Field and Tip [22] have a very detailed study of the concept of slicing associated
with left-linear term rewriting systems(TRS)[38]. As the semantics of a program-
ming language can be provided as a TRS [1, 19, 20], the techniques developed, in
their general study of slicing for TRS, can be applied to define and compute slices

associated with the evaluation of a program[21].

e Another approach has been developed by Abadi et al [2] to analyze and cache de-

pendencies involved in the evaluation of A-terms.

The semantics of SML [48] is defined as a natural deduction system and none of the
approaches mentioned above can handle natural deduction systems. Of course, it is possible
to provide translations from one style of presentation of semantics to another [3, 27].
But, we would prefer a more direct approach in the computation of dynamic slices for
SML-programs. One of the principal reasons for this is that the definition of slices is
heavily dependent on the style of presentation of the operational semantics since it is
an intensional property. Unless, there is a canonical extensional definition of slices, e.g.
based on denotational semantics of labelled terms, we cannot really be sure whether the
translation from one style, of presentation of operational semantics, to another results in

loss of information with respect to slices. Besides, a SML programmer, used to thinking

17

about evaluation in a natural semantics, will have to start thinking about evaluation in a
different style, e.g. a rewrite semantics, if he wants use a slice of the computation. The

next two sections present a brief review of the above approaches.

3.1 Slicing in Term Rewriting Systems

First, we present a formal definition of term rewriting systems. Then, we define the
fundamental concept developed by Field and Tip: context-rewriting. Through an example,
dynamic slices are then shown to be contezrts with a certain set of properties.

A signature X is a finite set of function symbols along with a map arity from this set of
function symbols to the set of natural numbers, such that for any f € X, arity(f) stands
for the number of arguments accepted by f.

A path is a sequence of positive integers that designates a subtree by encoding a
walk from the tree’s root. The empty path, () , designates the root of a tree; the path
(i1 ... im) designates the i/ subtree of the subtree indicated by the path (iydg ... ip_1).
Roots of subtrees are numbered, starting from the left, beginning with 1. Paths are ordered
by the relation, <, which is the prefix relation. The operation ‘-’ denotes the concatenation
of paths.

A tree T is a set of paths such that (i) it possesses unique root, for all ¢t € T, root(T) <t
(ii) For all p, q,r such that p < ¢ <r, if p,r € T then q € T..

Definition: Let X be a signature, V be a set of variables, and 7" be a tree. Let u be a
total mapping from T to (X U V) and p be a path. Then a pair (p, u) defines a context
iff:

(i) For all t € T and s € X UV such that u(t) = s, if t- i € T then i < arity(s).

(ii) If T # (then p = root(T).
Given a context C = (p, p), O(C) denotes the domain of y.

Definition: A context C is a subcontext of D, C' C D, iff all paths common to both

their domains are mapped to the same symbol and one of the following holds: (i) C and

18

D are non-empty and O(C) C O(D). (ii) C and D are empty and C' = D (iii) C is empty,
D is not and root(C) = q-i € O(D), and ¢ € O(D).

A path corresponding to a missing child, in a context C, is referred to as a hole occurrence.

A context C'is a term, if it has no hole occurrences and root(C) = ().

For any context C' and a path p, p < C denotes an isomorphic context rooted at p obtained

by rerooting C.
Two contexts C' and D are isomorphic, C = D, if (() « C) = (() + D).

The function vars takes in a term as an argument and returns the set of variables in the

term as the result.
C[D] denotes a context that is obtained from C by replacing the subcontext rooted at

root(D) by D.

Definition: A term rewriting system R over a signature Y is any set of pairs
(L, R) such that L and R are terms over X, L does not consist of a sole variable, and

vars(R) C vars(L).

A substitution o is a finite function from the set of variables to the set of terms.

An R-contraction A is a triple (p, o, o), where p is a path, « is rule of R and o is a

substitution.

Definition: A term 7j rewrites to 7} through a R-contraction A = (p, a = (L, R), o),
To 25 11, if Ty = Tolo(p « L)] and T1 = Tylo(p < R)].
A reduction p : Ty —* T, is a sequence of contractions A1 Ay ... A, where:

A A: An
To —1>T1 —2>TQ...Tn,1 =T,

A context C rewrites to a context C', C —* C’, if the term T, obtained by instantiating
every hole occurrence in C with a completely new variable, rewrites to 7" such that 7" is

obtained from C' by some variable instantiation of the hole occurrences in C".

Definition: Given a reduction p : T —* T', a slicing criterion associated with the

reduction is any subcontext C’ of the term T".

19

What follows is an informal definition of program slices, to be illustrated by an example.

Definition: Let p: T —* T’ be a reduction. A slice with respect to a slicing criterion
C', is a subcontext C of T with the property that there exists a reduction p' such that
p': C —* D' for some D' J E', E' = C' and the reduction sequence (C, p', D') is a

projection of the original reduction p.
Consider the following term rewriting system:
R,. F(z,Gy) — H(z,)

Ry. H(z,I(Jy,z) — K(z,y)

Rs. K(I(z,Ly),z) =y

Ry. L(z) — M(x)

Consider the reduction p of the term F(I(J(Kz), L(Ky)) , G(L2)).
FUI(J(Kz), L(Ky)), G(Lz))

FUI(J(Kz), L(Ky)), G(M z))

H(I(J(K z), L(Ky)) , I(J(Kz), L(Ky)))

K(I(J(K z), L(Ky)) , L(Ky))

K(I(J(K z), L(Ky)), M(Ky))

IR R RN

Ky
Given such a reduction and a slicing criterion (K y) the minimal slice is

F(I(Je, L(Ky)), Ge). The reduction p' associated with the slice is:
F(I(Je, L(Ky)), Ge)

H(I(Je, L(Ky)), I(Je, L(Ky)))

K(I(Je, L(Ky)), L(Ky))

(Ky)

The reduction sequence p' is a projection of the reduction p. Field and Tip display a sound

IEEE

technique for the computation of the minimal dynamic slice for left-linear term rewriting

systems. The important point to note about their technique is:

20

e Ifthe TRS is non-deterministic and we are using an interpreter with a specific strategy
to pick up redexes then we cannot apply the same strategy to pick up redexes in the
slice and execute the slice to obtain a context containing the slicing criterion. In fact,
to execute the slice, we actually need to preserve information about the projection

of the original reduction p.

This has both positive and negative aspects. On the negative side, we cannot use the
same interpreter to execute the slice. This is because the use of the rewrite strategy
of the standard interpreter may result in divergence of the slice being evaluated. To
execute the slice, we need another interpreter which takes in a list, of redexes to be
contracted, as a parameter. On the positive side, the slices may actually be much
smaller. This is because the strategy used by the standard interpreter may choose to
execute a specific redex whose final value is of no consequence to the answer. Only
a termination of reduction on the redex may be relevant. For such a redex, we may
need to preserve its entire set of dependencies, which may be large. The technique

developed by Field and Tip avoids reducing such redexes.

3.2 Analysis and Caching of Dependencies

In [2], Abadi, Lampson and Lévy develop a concept similar to slicing for a completely
different application: caching of the results of very expensive computations in purely func-
tional programs. The application towards which their analysis is directed is a configuration
management language called Vesta [26, 45], which is a purely functional language in which
atomic operations are extremely expensive: compilation of files, archiving of libraries. The
application is best illustrated by the following example:

let f o =if isC(x) then Ccompile(z) else M3compile(x)

in f(my_file)
The function isC checks whether its argument file is a C file. The function Cecompile is
a function that calls the C compiler on its argument and the function M3compile is a
function that calls the Modula3 compiler on its argument.

If the free variable my_file is a C file then the above program need not be re-executed

if the function M3compile is bound to a different function, M3compile that calls a

new?

21

newer version of the Modulad compiler. To keep re-execution of an altered program to
a minimum, we need to isolate the set of subterms which ‘need’ to be evaluated in the
course of the computation. If changes are made to subterms which were not ‘needed’ then
re-execution is not required.

The language addressed by Abadi et al is the pure A-calculus. The technique used to
specify ‘needed’ subterms is that of a A-calculus with holes. A term with holes is called a

prefix. Prefixes and contexts are specified by the following grammar:

a n== _ Cl] === []
2 e[
| Az.a | Cll(a)
| ai(a2) | a(Cl))

The B reduction rule is given by,
(Az.b)a — bla/z}
There is also a congruence rule,
if @ — bthen Cla] — CIb]

Prefixes have a partial order < defined on them. If a prefix a matches prefix b, except
for the fact that corresponding to certain holes in ¢ we have prefixes in b, then a < b.

Reduction on prefixes is performed by treating a hole _ as a free variable.

Theorem 3.2.1 (Stability) If a is a term, v is a term in a normal form, and a —* v,

then there is a minimum prefix ag = a such that ag —* v.

The Stability Theorem is a specification of the minimum slice of a term and it estab-
lishes the fact that a minimum slice of a term is a well-defined concept. The authors then
provide a technique for the computation of the minimum prefix/slice, through the use of

a labelled A-calculus. The set of labelled A-terms ay, is given by the following grammar:

ar,, by, == _| z | Az.ar, | ar (br)

| l:a;, leL

22

where L is the set of labels.

Reduction in the labelled calculus requires another rule,

Given a term a, let us label every subterm in a by a distinct label to obtain a labelled
term a'. Let a' —* o', where v’ is a labelled term in normal form. Let Ly be the
labels syntactically contained in v'. Let G(a) be the prefix obtained from a by replacing
the subterms, whose labels are not included in Ly, by a hole. It is shown, by a Church-
Rosser theorem [12], that G is a well-defined function on normalising terms. The following
theorem shows that evaluation in this labelled calculus computes the minimum prefix of a

term.

Theorem 3.2.2 If a is a term, v is a term in normal form, a —* v, and G(a) <b

then b —* wv.

The above theorem states that for a reduction ¢ —* v we can make a cache entry
(G(a), v). Before evaluating a term b, we need to check whether A < b for some cache
entry (A, v). If so, we return the value v instead of performing the computation.

The analysis above was for arbitrary strong reductions. Instead, if we use the evaluation
strategy, call-by-value, then we must take non-termination into account. A subterm which
is not ‘needed’ can no longer be replaced by a hole occurrence. This is because a term
which matches such a prefix can have a non-terminating computation, at the position
corresponding to the hole occurrence. Hence, every subterm that is executed is needed. A

restricted version of the § rule is used:
(Az.b)v — b{v/z}

where v includes terms of the z, x (a1) ... (ay,), or Az.a.

Since every subterm that is executed is needed, we the following additional rule:
Az.b)(l:a) — 1: ((Ax.b)(a))

The results presented by Abadi et al are very similar to our own research for purely

functional programs. Our setting is actually much simpler since we use a deterministic

23

call-by-value interpreter, in contrast to the general setting of arbitrary reductions. We do
not need to prove a Church-Rosser Theorem or a Stability Theorem. Since the analysis
is directed towards caching of computation, presence of side-effects, like exceptions, as-
signments or non-termination, causes a serious interference because of loss of referential
transparency.

A labelled A-calculus with a generalised definition of what it means for subterms to
be needed in a computation is given by Gandhe et al [24]. But their definitions and

characterisations are rooted in an undecidable concept: solvability.

24

Chapter 4

Syntax and Semantics of LML

The higher-order programming language we are going to use in this proposal is Stan-
dard ML(SML). The entire language has a formal definition presented by Milner et al
in [48]. SML consists of a lower level called the Core language, a middle level concerned
with programming-in-the large called Modules and a very small upper level called Pro-
grams. The execution of an SML declaration consists of three separate phases: parsing,
elaboration and evaluation. Specification of parsing involves specification of syntax for the
language. Elaboration, the static phase, determines whether the declaration is well-typed
and well-formed. Specification of evaluation involves specifying the dynamic semantics
for the language. With three levels in the structure of the language and three phases in
the execution, the specification of the complete language can be broken into nine separate
sections.

In this chapter and for most of the proposal we will be concerned with the Core lan-
guage. Of the three phases in the execution of a term in the Core language: parsing,
elaboration and evaluation, we will completely skip the elaboration phase. This is because
most of the techniques developed in this proposal apply equally to both well-typed and
untyped SML programs. For the specification of the dynamic semantics, in the evaluation
phase, we will not be using SML syntax: we will be using a skeletal language, LML, whose
grammar we are going to define and which essentially captures most syntactic constructs

in Core-SML.

25

4.1 Language Syntax
The skeletal language under consideration, LML, is given by the grammar in Fig 4.1.

e = x
Cler, ..., en)

Ax. e

letrec f(z) = e in e9

€1€2

Op(er, ..., epn)

case(e;, C(z1, ..., Ty) = €2,y = €3)
ey

refe;

e1:=e3

let exception D in e

er1 handle (D(z1, ..., z,) = €2)

raise e

Figure 4.1

The following are important points to be noted about the syntax:

e There are no constructor declarations in LML. Constructors have a static semantics

in SML. Hence, issues involving local constructor declarations are relevant mostly to

the elaboration phase of the language.

LML expects every occurrence of a constructor to be saturated: every occurrence of

a n-ary constructor must be an application to an n-tuple. This is unlike SML which

allows a constructor to be passed around as a value/parameter. The restriction we

place here is not serious: a simulation is possible.

e The grammar does not show the language as having boolean constants, natural num-

bers or real numbers. The set of natural numbers will be represented by infinitely

many distinct nullary constructors. The set of booleans will be represented by two

distinct nullary constructors.

The atomic operators Op are assumed to operate on nullary constructors and return

nullary constructors. This accommodates standard arithmetic and boolean operators

26

found in SML. It is to be noted that arithmetic operators in SML can raise exceptions.

Our approach to constructors and operators cannot accommodate the built-in
datatypes like string and atomic string functions like explode and implode. We
can give these operators a special status, like we give to ref or !. For the theoretical

sections we have decided to drop this datatype from the language.

e SML uses a binding construct let instead of the binding construct letrec used in
LML. The let construct plays a very important role in static typing but for the
evaluation phase, it is syntactic sugar except for its ability to provide binding for
recursive function declarations. Hence, we use a letrec construct which can only bind

function declarations.

Our language does have a let construct. It is used exclusively for binding exception
constructors. Exceptions in SML are generative in nature and hence their declaration
is evaluated in the dynamic semantics. Reading the declaration of an exception as
an SML declaration suggests that all our exceptions are nullary. But, this is not so:

we leave out type declarations, as we are skipping the elaboration phase.

e The SML syntax provides us with the ability to explicitly declare mutually recursive
functions. Our language provides no such facility. As is to be discussed later, this
restriction results in a considerable simplification in the presentation of the dynamic

semantics and proofs involving the dynamic semantics.

e SML allows for nested patterns in case, handle and function arguments. These are

not allowed in LML to make things simple.

4.2 Dynamic Semantics

The specification of the dynamic semantics involves semantic objects called values. They

are specified by the following grammar:

27

v u= (F, A\xe)
(B)
| Clur, ..., vp)
| B where 8 € Loc
| [0, (w1,v2,...,v,)] whered €A

The environment FE is a finite function which maps variables to values and, excep-

tion constructors to elements from a countably infinite set A.

E = []
| Elz — v]
| E[D]
An exception packet is denoted by < [d, (vi, va, ..., vy)] >.

In the space of values, there are two kinds of closures: the standard function closure
and the recursive function closure. The standard closure is denoted by (E, Az e) and the
recursive closure is denoted by (E, f, Az e). The SML definition [48] does not make a
distinction between the two kinds of closures. A closure, in the SML definition, has two
environments instead of one: an environment for mutually recursive function definitions
and an environment for other free variables. In the SML definition, whenever a closure is
applied to an argument, the application rule unfolds the environment for mutually recursive
functions once and adds it to the current environment, for mutually recursive functions.
Our approach is to separate closures, for recursive function declarations, from other clo-
sures. Thus, in contrast to SML, we have two separate application rules in the dynamic
semantics: one for the application of standard function closures to arguments and the other
for the application of recursive function closures to arguments. In a recursive function clo-
sure, (F, f, Az e), the second component f is the name of the recursive function, whose
declaration generated this closure. There is a another approach possible. The definition of
values and environments may be treated as co-inductive definitions, instead of inductive
definitions. This would allow us to define the value of a recursively defined function to be
its infinite unfolding. We could then use a single application, Rule 4.4. But then all our

proofs would have to be co-inductions instead of inductions, as in [46].

28

The variable 3 is an element of the set Loc, the set of memory locations. In SML,
exceptions are generative: every time an exception declaration is evaluated, the constructor
D is mapped to a new unique element from the set A, the set of exception constructor
values. An exception constructor D applied to a vector of arguments vy, vg, ..., v, returns
a value [d, (v1, va, ..., v,)], if the current environment maps D to 6.

There is also a subtle difference with SML. All functions and constructors in SML,
except obviously the pairing constructor, take in single arguments. We allow all our con-
structors, operators and exception constructors to take in multiple arguments.

Like the SML definition, we present the dynamic semantics of our language using
natural semantics [54, 37]. The semantics presented below allows us to infer statements of

the form:

S, Ex,EFe — v,S8, Ed

where S is the initial memory with which the evaluation of the term e begins. Ex C A,
denotes a set of elements already used in mappings of exception constructors. FE is the
initial environment. The value to which e evaluates to, is denoted by v. The final store, at
the end of the computation, is given by S’ and Ez’ C A denotes the set of elements used

in mappings of exception constructors, in the computation.

So, Exo, E[x—v] F z — v, Sy, Exg (4.1)
So, Exo, E - Axe — (E, xe), Sy, Fxg (4.2)
Sg,E$0,E[f'—><E,f,)\.’E61H, Fe— v,5, Fx (43)
So, Ex, E b letrec f(z) =e; ines — v, Sy, Exy ’
S(),E.’I,‘(),E Fe — <El,)\.’I,‘€>,Sl,E.’I,‘1
Sl,E.’I,‘l,EI— ey — 1)2,SQ,E.’IJQ
Sy, Exg, E'lz — v9] - e — w3, S3, Ex3
(4.4)

S[],E.’IJ[],E F ejeg — 1)3,53,E.’I,‘3

29

Sy, Fxo, F F e; — <E’,f,)\$€>,51,E{E1
Sl,E:vl,E F ey — ’UQ,SQ,E.’EQ

Sy, Exo, E'[f = (E', f, Aze), z—v] - e = w3, S3, Ex3

(4.5)
SQ,E{E(), E + er1ea — U3, S3, E.’E3

Si 1, Fx; 1, E, Fe — v;,S;,Fx; i=1...n
So, Exog, E F Opler,...,ey,) — Op(vr,...,v,), Sy, Bz

(4.6)
The syntactic operator is denoted by Op. Its semantic counterpart is denoted by Op.

Sifl,E!IJZ',l,E Foe — 1)i,S¢,E.’IJ¢ 1=1...n

4.7
So, Bxog, E, Sy, Lo v Cler, ..., en) = Cvr, ..., v), Sy, Exy (47)
Sy, Fxo, F F e; — C(’l)l,...,’l)n),sl,Eftl
Si, Exy,Elz1 = v, ..., cp— v, F ea = v, Sy, Exo
4.8
So, Exg, E + case(er, C(z1, ..., Tp) = e, y=e3) = v, Sy, Exg (48)
Sy, Fxog, F F e —>C’(vl,...,vn),Sl,E:v1 C#C’
S1, Ex1, Ely— C'(v1,...,v,)] F ea = v, Sy, Exy
4.9
So, Exg, E + case(er, C(x1,...,%,) = €3,y =e€3) — v, Sy, Exy (4.9)
Sy, Fxg, F F e = v, 5, Ex; ﬁgdom(Sl)
(4.10)
So, Exzg, E + refe — (3, S1[B— v], Ex;
S(),E.’I,’(),E + ey — ﬂaSIaExl
Sl,E.’I,‘l,E F ey — 1),SQ,E.’I,'2
(4.11)
S(),E.’I,‘(),E F €] =€y — (),SQ[,@'—)U],SQ,E.’L‘Q
So,EI(),E Fe — ﬁ,Sl,E':vl where Sl(ﬂ):v
(4.12)
S(],E(),E I—!el — 1),Sl,E.’I,‘1
The rules involving exceptions are given below.
Si,l,Emi,l,E[D»—)é]I—e¢—>1)¢,Si,Em¢ 1=1...n
(4.13)

So, Exg, E[D— 0] F D(er,...ep) — [0,7], Sn, Exy,

30

Sy, Fro, F F e — [(5,’1)_2'],51,E.’E1

So, Fxg, E F raisee — < [0, 7>, S1, Ex;

S(),E.’I,‘(),E F e — 1),51,E.’IJ1

So, Exg, E + e handle (D(z1, ..., z,) =€) — v, S, Bxy

So, Exg, E F eg - < [0,7]>,S1, Ex; where E(D) = § #§

So, Exg, E + ephandle (D(z1, ..., 7,) = €3) — < [§, 0] >, 51, Exy

So, Exo, E F e = <[, 0] >, 51, Eny

Si, Bxy, Elx1— v, ..., zp—= v, F e — v, Sy, Bz

So, Exg, E + ehandle (D(zy, ..., z,) =€) — v, Sy, Exy

where FE(D) =0

So, BExgU{d}, E[D— 4] F e — vy, S1, Ex; where § &€ Ex

Sy, Fxg, F F let exceptionDine — vy, S7, Fz;

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

More clauses need to be added to the rules, presented above, to complete the specifi-

cation. A succinct presentation of these additional rules may be given, along the lines of

[48], by the introduction of an ezception convention.

...,El F el — Ui, ...

...,El F ey — Vi, ...

s By, b e =<0, Sy, Exy,

., By, F e, = v,, Sy, Ex,

o, E,Fe = v, S, EFzx,

(@) (b)

L, EFe o<...>», 8, Exy

By this convention, let an evaluation rule be of the form (a), with n antecedents. Then

for every k,1 < k < n, such that e, evaluates to an exception packet < ...

Vj, 1 < j <k, e; evaluates to a value, we add another another rule of the form (b).

31

> and

Chapter 5

Slicing Purely Functional

Programs

The first-order programming language L, discussed in Chapter 2, was a statement-based
language, i.e. a program written in L consisted of a sequence of statements. In con-
trast, a higher-order programming language like Standard ML(SML), [51, 48], is an
expression-based language. For such languages, the task of generating executable dynamic
slices is far from over, even after the set of subexpressions that ‘contribute’ to the value,
returned by a program, have been isolated. This is because the deletion of an arbitrary set
of subexpressions no longer leaves behind a legal expression that is executable. Thus the
concepts associated with the slicing of first-order programs do not carry over, as is, into
the domain of higher-order programs.

Interprocedural slicing of first-order programs was first investigated by Weiser [67] in
his seminal paper. This analysis was greatly improved by Horwitz et al [31, 32]. The
analysis developed by Horwitz et al is essentially an evaluation of an attribute grammar
constructed from the procedure call-graph of a program. For a first-order program, the
procedure call-graph can be trivially constructed from the parse tree of a program. For a
higher-order program, the procedure call-graph cannot be statically constructed because
we need to know about the bindings of formal parameters to actual parameters.

In this chapter, formal definitions of dynamic slices and associated algorithms for their

computation are presented with respect to the operational semantics for the language.

32

Using an operational definition for dynamic slices, makes the proof of correctness of the

algorithm, computing dynamic slices, much easier.

5.1 Formal Definition of Dynamic and Relevant Slices

The concepts associated with the definition of program slices for first-order programs,

under a given operational semantics, have counterparts in the higher-order case:

e Corresponding to an execution trace, we have a proof tree of the evaluation of a

program, under natural semantics.

e We prefer to use a fized slicing criteria: the value returned by the program. This is
similar to the criteria used in the formal definitions provided in Section 2.1. After we
have built the required machinery, we will allow for a more general slicing criteria,

similar to [67].

Typically, a statement in a first-order imperative program is referred to by an associated
statement number. Similarly, a subterm in a higher-order program will be referred to by
an associated label. Given a parse tree of a program, an initial assignment of labels to

subexpressions/subtrees can be done with the use of occurrences, as described in [15].

Definition: For every natural number k, let s; be a function that maps any tree,
op(ti, ..., tg, ..., ty) to tx. An occurrence is defined as any function obtained by

composing an arbitrary number of such functions s;.

All programs considered, hence, will be assumed to have their all subterms labelled.
Terms will no longer be considered in isolation of their labels. Henceforth, all terms will

W,

be represented as a label and term separated by a . Computation of the slice of a term
is a computation collecting labels. This chapter deals with a purely functional language:
a language without exceptions and assignments. The grammar given below defines legal

labelled terms.

33

e u= x
| C(My, ..., M)
| . M

| letrec f(x) = M; in My

| My M,
| Op(MlaaMn)
| case(My, C(z1, ..., zp) = My, y = Ms)

Notation: Terms having labelled roots, and all their subterms labelled, will be

represented by variables M, N,

Terms not having labelled roots, but having all theirs subterms labelled, will be represented

by variables e, f,

To ensure that the deletion of an arbitrary subterm leaves behind a legal expression, we

introduce a new constant — into the language and define deletion of a subterm by substitu-

tion with —. We provide — with the same operational semantics as a skip instruction/no-op

term. Rules involving the constant — are given in Table 5.1. These rules are termed as

the empty rules of the language.

Erl:— o —

E+F M - — EF My - v
El—llMlMQ—)*

El—MZ'O—>— EI—MZ%’UZ,ZE{ln}—{Zo}
ErIl:OpM, ..., M) - —
EFM — —
EF1:case(My, C(zy, ... ,xn) = My, y= M3) = —

Table 5.1: Empty Rules

34

Unless — occurs in a position, where the internal structure of the term needs to be
examined, e.g. in the predicate component of an if-then-else, the rules remain the same.

Thus ensuring that — is a no-op term.

Notation: For any label | and terms M and e, M|[l/e] denotes the term obtained, from

M, by replacing the subterm labelled [, in M, by the term e.

Definition: Let + (lp : e) — wv. The set of labels £ C A(lp : e) defines a dynamic
slice of (Ip : e), if for L'=A(lg: e) — L, F(lo: e)[L'/—] — v[L']—]

A program slice, defined in Section 2.1, is a sub-program, of the original program, that
is executable on the standard interpreter. As per the definition above, a sliced version
of a higher-order program is no longer legal under the original syntax: it is the original
program with a set of subterms replaced by —. While this breaks away from the traditional
concept of an executable slice, it is not completely novel. The slice of term, as defined by
Field and Tip [22], is not a term: it is a context. The sliced version of a program is no
longer executable on the standard interpreter. To execute a sliced version of a program,
the standard interpreter needs to be augmented with the set of rules associated with —.
Henceforth, whenever we talk about an executable slice, we actually mean executable on
the standard interpreter, augmented by the set of rules for —. Later on, we will briefly
discuss the construction of slices that can be executed by the standard interpreter.

The definition of a relevant slice, in Chapter 1, was with respect to a restricted definition
of program alteration. As shown in [7], even for simple programs, with such a restricted
definition of program alteration, the computation of a relevant slice involves performing
data-flow analysis for reaching definitions. Term alteration will be defined as a substitution
of a subterm by an arbitrary term, or the deletion of a subterm, i.e. substitution by —. This
necessarily means that the evaluation of an altered term may fail to terminate. Informally,
if a subterm does not belong to a relevant slice then any alteration to this subterm does
not change the value returned by the program. But this assertion is now true modulo
termination. If the altered program terminates then it returns the same value as the
original program.

A nullary constructor is defined to be a first-order value.

35

Definition: Let + (Ip : ey) — v, where v is a first-order value. The set of labels
L C A(ly : ey) defines a relevant slice of (Iy : eg), if for any I C (A(ly : o) — £), and any

substitution! [[/€], if F (o : egl/€]) — o' then o' =wv.

Unlike the definition of dynamic slices, the above definition of relevant slices is restricted
to programs which return first-order values. This is because syntactic identity does not hold
when closures are returned. But, a program returning a first-order value may have sub-
terms computing higher-order values. Hence, we necessarily need to talk about higher-order
values. In the following sections we are going to develop the machinery to talk about

higher-order values.

5.2 A Natural Semantics for Computation of Slices

To ensure that a variable, in a first-order program, takes on a specific value we need to
ensure that certain assignment statements are executed. To ensure that a specific state-
ment is executed, we need to ensure that predicates on which it is control dependent [18]
evaluate to the same value as in the original execution. For a block-structured first-order
program, control dependency on a predicate can be trivially identified, while for an arbi-
trary first-order program post-dominator analysis [43] is required. As shown in [18], control
dependency analysis for first-order programs can be statically performed. As discussed in
Section 2.2, control-dependency information, for a first-order program, can be easily com-
puted given the execution trace T of a program. Unlike first-order programs, control flow
in a higher-order program depends on the binding of formal higher-order variables to actual
functions. Thus, to compute control-dependency information from the execution trace, in
this case a proof tree, we need to pass around the information as a parameter. Hence, the
simplest way to specify an algorithm to compute dynamic slices is to provide a modified

operational semantics.

Specifying Dynamic Slices As a Proof System

In [48], Milner et al present the semantics of SML as a natural deduction proof system. In

Fig 5.2, we use a similar proof system to specify dynamic slices.

'The terms substituted for I may be L. (Io : e[i/é]) must be closed.

36

If IF M — V,L then L is a dynamic slice of M. To prove this, we need a stronger
induction hypothesis because of the presence of free variables and environments. Actually,
the proof system is a specification of the minimum dynamic slice. It is easy to show this,
once the main lemma has been established. The set of labels L, associated with values in
the semantics, does not denote the entire set of dependencies required for the computation
of the value. In fact, it is actually a subset of the entire set. This is good enough, in the
case of purely functional programs. But fails in the presence of assignments and exceptions.

The set of values V' computed by the operational semantics is specified by the grammar

given below. L is a set of labels.
V. u= (F, M)
| (F, Az M)

| C((Vi, L), ..., (Va, Lyn))

The environment F' is a map, Var — V « P(L)

Definition: A substitution function is defined on the values computed by the natural

semantics in Table 5.2
(V, L)[L/—] =
if (LNL)#D
then —
else case V of
(F, XxM) = (F[L/—], \x M[L]/—])

C((Vi, L1), .oy (Va, Ln)) = C((V1, L)[L/=], ..., (Va, La)[£/=])
and (Flz = (V. L)) [£/=] = (F[L/=])]z — (V. L)[L/=]]
and [][£/—] = []

The substitution function attempts to capture the intuition that for a tuple (V', L),

37

Flz— (V,L)]IFl: 2 — V LU{l} (5.1)

Flkl: xM — (F, e M), {I} (5.2)
F Ik 1: letrec f(z) = My in My — V', LU{l} '
F||—M1—)<F1,)\.’I,‘M>,L1 FH—MQ—)VQ,LQ
Filz — (Vo,Lo)] F M — V3, L3
5.4
F”‘l:M]M2—>V3,L]UL3U{l} ()
FIk M — (F,f,dM),Li FIF M — Vo, Ly
Bi[f = (Fi, f. Az M), L), 2 (Va, Lo)] IF M — V3, Ly
9.9
F”‘l:M]M2—>V3,L]UL3U{l} ()
FIFM — Vi, Li,i=1...n 56)
FIF1l:OpMi,..., M) — Op(Vi,..., Vo), {I}UU;, L '
Fl M, = Vi, Li,i=1...n 5
Fl-l: CMy,...,M,) = C((Vi, L), ..., (Va, Ln)), {l} '
FIrM — C(Vi,L),...,(Va, L), L
Flor— Vi, L), ... ,zn—= (Vo, Ly)] IF My — V| L' 58
F IF1l:case(M;,C(zy, ..., zn) = My, y=M3) - V,LUL U{l} (5.8)
FIkM = C(Vi,L), ..., Vi, L)), L C#C'
Fly—C'((Vi,L1), ..., (Va, Lyp))] F My — V, L' (5.9)

F I 1: case(My, C(zy, ..., 2zy) = My, y=M3) — V,LUL U{l}

Table 5.2: Specifying Dynamic Slices for Functional Programs

38

the set of labels L contributed towards the computation that led to the value V. Hence, if
any [€ L is substituted by — then the computation terminates returning —.

Rule 5.4 illustrates the way we capture the intuition behind labels ‘contributing’ to-
wards a computation. For the evaluation of [: M;Ms the set of labels contributing
towards the evaluation of M; to a value must be included. The set of labels contributing
towards the evaluation of the argument M, is not explicitly included, as the argument
to the function may not be explicitly used. Instead the tuple (Va, Ly) is bound in the
environment. It may be the case that Ly ¢ L3 but the tuple (V4, Lo) is a part of the
closure V3. If this is the case, then the set of labels Ly may subsequently form a part of

the dynamic slice.

Lemma 5.2.1 For any set of labels L, if F I+ (I:e) — (V, L)
then F[L/—] F (L:e)L/—] — (V, L)[L/—].

Proof: The proof is constructed by induction on the height of the proof tree. The cases
discussed in the proof make the assumption that [& L. If this were not the case then the

axiom F[L/—] IF |: — — —, provides the requisite proof.

Rule(5.4) If 1¢ L and £NL; =0 then, by induction,
FIL/—]F Mi[L/—] = (Fi[L/—], Az M[L/—]).
By induction, F[L/—] b My[L/—] — (Va, La)[L/—].
B[L)][z — (Va, Lo)[L/—]] = M[L/—] — (V3, L3)[L/—].
Hence, F[L/—] = (I: MiMs)[L/—] — (V3, L3)[L/—].
As (Lyu{i)NL=0, (LiULsu{i})NnL=0 iff LyNnL=10.
Hence, (Vs, L3)[L/—] = (V3, L1 U Lz U{I})[L/—].
If I ¢ £ but £LN Ly # 0 then, by induction, F[£/—] F M[L/—] — —.

Hence, F[C/—] F (I: MiM)[L/—] — —.

Rule(5.6) If | ¢ L and LNU} ,L; =0 then, since operators can only be applied to
nullary constructors, by induction, we have, F[L/—] F M;[L/—] — V;.
Hence, FIL/—] F 1: Op(My, ..., My)[L/—] — Op(Vi, ..., Vy).

If, for some i, LN L; #0 then, by induction, F[L/—] - M;[L/—] — —.

39

Since operators are strict in all their arguments,
F[L/—]F1l: Op(My, ..., M,)[L/—] — —.
Rule(5.8) If I ¢ L and £LNL =10 then, by induction,
FIL/=]F M[L]=] = C((Vi, L)[L/=], ..., (Va, Ln)[L/=]).
By induction, we have,
FL)/=]lzy = Vi, L)L/ =], .o 2n = (Vi Lo)[L/—]]
Mo[L/—] — (V, L')[L/—]
As (LU{H)NL=0, (LULU{H)NL=0 iff L'NnL=0.
Hence, (V, L"[L/—]=(V, LUL ' U{l})[L/—].
If 1 ¢ £ but £N L # § then, by induction, F[£/—] + M[L/—] — —.

Hence, F[L/—] F (I : case(My, C(z1, ..., zp) = Mo, y= M3))[L/—] — —.

|

Theorem 5.2.1 If § I+ M — (V, L) then L is the minimum dynamic slice, i.e. for
any dynamic slice L', of the evaluation of M, L. C L.

Proof: If £L=A(M)— L then £NL ={. Thus, by Lemma 5.2.1, we have
F M[L/—] — VI[L/—]. Hence, by definition, L is a dynamic slice.

Let L' be any dynamic slice. Let £ = A(M) — L'. By Lemma 5.2.1, for any [y € L, if
lp € L' then F (I: M)[L'/—] — —. Hence, for any dynamic slice L', L C L'. Thus L

defines the minimum dynamic slice.

Relevant Slices and Dynamic Slices co-incide

To prove the co-incidence of dynamic and relevant slices, we need to prove that, if
I M — V,L, where V is a first-order value, then for any [C (A(M) — L) and any
g, if the evaluation of M[[/¢] terminates then + M][I/&] — V. Having shown this, it is
trivial to show that this is the minimum relevant slice. This is because for any q € L, we

already know that M|[q/—] evaluates to —.

40

Though relevant slices are defined for first-order programs, we need to talk about
higher-order values, as the intermediate values computed may be higher-order. In Subsec-
tion 5.2, the value computed by a term, after the deletion of a set of subterms, was related
to the original value by defining a substitution function [£/—]. In the context of relevant
slices, it is easier to relate the value, computed by the altered term, to the original value
by a formal relation R, instead of a function. This is because the value computed by the

altered term is not known statically. The relation R is defined as follows:
o (V.L) Rpyv if INL#0

Else, if INL=10 then,

(<F1,)\.’I,‘M1>, L) Rl_?é' (El,)\’I‘MQ) iff F1 Rl_?é' E1 and Ml[f/é] = M2

(<F1, f,)\.’IJM1>, L) Rl_;é' <E1, f,)\’I‘MQ) iff F1 Rl_?é' E1 and Ml[f/é] = M2

(C((Vl,Ll),...,(Vn,Ln)),L)REé,C(Ul,...,1)n) iff (‘/iaLi)R[;e*Ui 1=1...n

o Flz— (V,L)] Ry, Elz = v] if FR;,Eand (V,L)Rp,v

Lemma 5.2.2 For any vector of labels [, if F IF M — (V, L) then if (FRp,E) and
E = M[IJé] — v then (V,L)Rj,v.

Proof: The proof is by induction on the height of the proof tree. The proof is very
similar in structure to the proof of Lemma 5.2.1. An outline of the proof, when Rule(5.4)

is the last rule used, is given.

Rule(5.4) 1If | € € then the relation R; . trivially holds.
If I¢lbutlNL #0 then N (L ULsU{l}) # 0 and hence, the relation R
trivially holds.
If [¢ land INL; =0 then, if the computation of Ml[f/é} terminates, then, by
induction,
E - M[l/é] — (Ey, Az M[I/&]) where Fi Ry E.

If the computation of M;[[/&] terminates, then, by induction, (Vo , L) R;502-

41

Hence, Fi[z — (Va, L2)] Ry Er[z = va].
If the computation of M|[/¢] terminates, i.e Ei[z — vo] b M[l/e] — vs
then, by induction, (V3, L3) R}, v3. Thus, by definition, (V3, L1 U L3 U {l}) R;, vs.

a

Theorem 5.2.2 If I+ M — (V,L) then L is the minimum relevant slice of the

first-order program M.

The theorem is a trivial corollary to the above lemma.

5.3 Minimum Dynamic Slices and Call-By-Name Evaluation

As mentioned before, the intuition behind the formal definition of dynamic slices was the
isolation of subterms which ‘contribute’ to the value computed by a term. For purely
functional programs, there is a demand-driven evaluation strategy called the call-by-need
lambda-calculus. This evaluation strategy can be implemented by a transition semantics,
as in [10], or as a natural deduction proof system, as in [42]. Since such a strategy evaluates
only what needs to be; the execution trace of such an evaluator should co-incide with the
minimum dynamic slice. Indeed, this turns out to be so.

The natural semantics for lazy evaluation[42], involves a heap that is mutable. The
mutable heap in the semantics, given in [42], is required to model sharing of evaluation:
certain subterms are not re-evaluated in the course of the computation. But we are not
concerned as to whether the same subterm gets re-evaluated multiple times. We are in-
terested as to whether a subterm needs to get evaluated at least once. The call-by-name
lambda calculus[25], is essentially the same as the call-by-need lambda calculus but with-
out any sharing of evaluation. Hence, we use a natural semantics for the call-by-name
lambda calculus and show that the execution trace associated with a term evaluating un-
der this semantics exactly equals the minimum dynamic slice of the term. The proof rules
collecting the execution trace under a call-by-name semantics are given in Table 5.3. If
F, M |75 w then L represents the execution trace of the evaluation of M.

The set of call-by-name values w computed by the operational semantics is specified

by the grammar given below.

42

w == (G, \x M)
| (G, [, Az M)
| C({G1, M), ..., (Gn. My))
G =[]
| Glo— (G, M)
To prove that the minimum dynamic slice co-incides with the execution trace of a

call-by-name evaluator, we need to define a relation £ between environments in the two

semantics.

Definition:

o Fylz = (V, L)] € Golz = (G, N)]

it Fp &Gy and G F, N | w where V &£,, w.
o (F1, Ax M) Evy (G, Mx M) iff Fy € G.
o (F1, f, e My) Evy (G, f, Az My) iff Fy € Gy.
« C((Vi, L)ooy (Vs L)) Evt Clwr, o) G [(Vi, L)) € [(Gr. My)].
Lemma 5.3.1 If FIF M — V., L and F &G then G+, M | w where V Eyq w.

Proof: The proof is by induction on the height of the proof tree. The important case

are given below:

Rule(5.1) If [z — (V, L)€ [z — (E', M)] then, by definition, E' -, M | w,

where V &, w.

Rule(5.4) By induction, £ +, My |5, (E1, Az M) where Fy £ E;. Since F & E,
by induction, if F' I My — (V, L) then [z — (V,L)] € [z — (E, Ma)].
Hence, Fi[z— (V, L)] € Ei[z — (E, My)].
Applying the induction hypothesis, we have, Ei[z — (F', Ma)] b, M {1, w

where V3 E,u w.

43

G bt M | w
Glz = (G'", M) bp 12z Yoy w

Ghrnpl:dzM Yy (G, Az M)

G[f — <G, f,)\’I‘M1> F. Ms UL w
G by 12 letrec f(x) = My in My |y w

G |_n M1 uL1 <GI,)\’I‘M)
Gz — (G, M) Fn M |, w
G |_n [: M1M2 ‘U’LlULQU{l} w

G tn My I, (G1, f, Xz M)
Gi[f = (G1, f, e M), 2~ (G, Ma)] b, M p, w
G Fnl: MiMy Ur,un,uqy w
GbrFy, My U, wi,i=1...n
GFnl: Op(My, ..., M,) Yiyour, L Op(wy, ..., wy)

G l_n L: C(MluuMTl) ‘U{l} C(<G17M1>7"') <Gn7Mn>)

G oy My |, C(Gy, My), ..., (G, My))
G[:U1 '_>(<G17M1>7 7$n'_><GnuMn>)} Fn Mo U w

G l_n l: case(M1 s C(.’E] S .’En) = MQ, Yy = M3) U’LUL’U{I} w

Gl_n M] U’L Cl(<G17M1>7--'7<Gn7MTl>) 0740/
G[yHC’«G]) M1>7 RIS (Gn7 Mn))] l_n M2 U'L’ w

G b L ocase(My, C(z1, ..., 2n) = My, y = M3) Jrupopy w

Table 5.3: Execution Under Call-By-Name Evaluation

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

44

Rule(5.8) By induction, G +, M; |, C(G1, My), ..., (Gn, My)) where
[x; = (Vi, Li)] € [zi — (G, M;)], i =1...n. Hence, by induction,
G[*Tl = (G, My), o = (G, Mn)] Fn My Jpr w where V &y w.

a

Theorem 5.3.1 For any nullary constructor Cy, if W M — Cy, L then F, M |1 Cy.

45

Chapter 6

Static Analysis for Dynamic Slices

A denotational definition of static slices, for first-order programs, was presented in Sec-
tion 2.1. A program in the language L, used in that section, consisted of a sequence of
statements with free first-order variables. The computation of a static slice of a program
p in L, wrt a slicing criterion, was essentially the process of isolation of a subprogram,
whose behavior wrt the slicing criterion was identical to the original program, regardless of
the instantiation of the free first-order variables. Since a control-flow graph [8] for a pro-
gram in L, with free first-order variables, is statically constructible, a static slice (possibly)
significantly smaller than the entire program can be computed.

If a program written, in our higher-order language, has free higher-order variables then

the control flow becomes indeterminate. Consider the following program,

If f is a free variable, instantiable to any arbitrary value, then we have no choice but
to include its entire argument in the static slice. It is hopeless to expect anything but
a gross over-approximation from any terminating algorithm trying to perform data-flow
analysis [60, 61] on a higher-order program with free higher-order variables.

Hence, we decided to investigate whether there were terminating algorithms to compute
approximations to the minimum dynamic slice of a closed higher-order functional program.

More specifically,

Question: Is there a terminating algorithm, which given a closed term M as input,

46

computes a non-trivial dynamic slice of the term?

A trivial dynamic slice of a term M is its entire set of labels, A(M).

6.1 Compiler Optimisations based on Analysis of Slices

Elimination of dead code is a standard optimisation performed by modern compilers for
imperative languages. But compilers for higher-order programming languages perform only
extremely naive kinds of dead code elimination. The principal benefit associated with the
elimination of dead code in first-order imperative programs is the reduction of code size.
As is to be illustrated shortly, for languages, with automatic garbage collection, lack of
a good strategy for elimination of dead code may have more serious consequences than a
larger code size: it may lead to greater heap space consumption.

The term dead code has been loosely used in compiler literature, [8], to refer to two

distinct concepts:

1. Code that is never going to be executed: unreachable basic blocks.

Consider, for example, the following statement,
if (debug) then ...

If a copy propagation algorithm, run on the program, can determine that the flag
debug has been set to false then the statements in the then arm of the program are

never going to be executed. Hence, the entire if statement is considered dead code.

2. Code that is going to be executed but is not going to make any contribution to the

final output of the program.

Consider, for example, the following basic-block of a control-flow graph,

If the variable v is not subsequently used in the basic block and a backward flow

analysis can determine that v is not live at the end of this basic block then the above

47

assignment can be removed, as dead/useless code, without affecting the output of

the program. This, of course, assumes that the evaluation of e has no side-effects.

We are now going to examine these concepts with respect to higher-order purely
functional programs and two distinct operational semantics, call-by-value [53] and
call-by-need [10, 42].

It is shown in Theorem 5.3.1 that the minimum dynamic slice exactly co-incides with
the execution trace of a program evaluating under call-by-need semantics. Hence, dead
code in lazy programs are subterms which are never evaluated, i.e., of the two distinct
kinds of dead code elaborated earlier we only have the first kind.

Consider the program presented in Figure 6.1. Under a lazy semantics, the application

let FF=M\g
let App = A1 \f1 F1 fi
Fy = Mfixz f1(f1 2)

fir=2yy+2
w=gl
T =g?2

in if (w=2) then (App Fi fiz) else 3 end
succ = Auu+1

in F succ end

Figure 6.1

of F' to succ results in creation of thunks for the let-bound variables App, Fi, f1,w,z. The
‘thunk’ created for the variable x contains a pointer to the function succ. This thunk is
never going to be evaluated but remains live till almost the end of the computation. Right
after the evaluation of the expression (w = 2) the function succ is garbage but cannot be
collected as such because z is ‘live’ and contains a pointer to it.

According to Réjemo and Runciman [57], the biography of a typical cell in the heap
includes four events: creation, first use, last use and destruction. A heap cell is said to be
destroyed when it can be garbage collected. The phases between these events are called

lag, use and drag respectively.

| lag | use | drag |

Tcreated Tﬁrst used Tlast used Tdestroyed

48

A heap cell, such as the thunk for the variable z in Figure 6.1, that is created but never
subsequently used is referred to as being in the void phase. Such cells are retained in the
heap , though not actually playing a role in the computation, because they form a part
of the live graph. Refined garbage collection techniques, as discussed in [49, 23], which
involve more than recursively following live pointers, can ascertain some of these thunks
to be garbage. Reliance on such techniques makes a program less robust: a program with
no space leaks may show one under a different runtime system.

A static analysis technique which can isolate subterms which are never going to be
evaluated can improve the space-efficiency of a program executing under any garbage
collector. This is because we can safely replace such subterms by fixed-size constants and
still have the program return a value, identical to the value returned by the unoptimised
program but consuming, possibly, much less space. Such a replacement strategy should
prevent some cells in the void phase from being created at all and should reduce the drag
phase of some heap cells. In the example program above, if we do not create the thunk for
z we can remove the drag phase of succ.

If the above program is evaluated under a call-by-value semantics the variable z is going
to be evaluated but is going to make no contribution to the value returned by the program.
Hence, the subterm denoted by the variable x is dead code by the second criterion discussed
above. Under call-by-value, a static analysis technique which replaces such sub-terms with
constants may fail to generate a semantically equivalent program. This is because the
optimised version of the program may terminate where the original program did not. If
safety is equated with semantic equivalence then such a transformation is unsafe. From a
pragmatic point of view, a more liberal definition of safety is good enough: if the original
program terminates then the transformed program also terminates returning the same
answer.

In [2], Abadi et al develop the concept of dynamic dependency analysis for A-terms.
The analysis developed here may be considered the static counterpart of such a dependency
analysis.

An analysis technique which can statically compute a superset of the minimum dynamic
slice of a purely functional program can thus be applied to compute a subset of the dead-

code in a program.

49

6.2 Relation to Existing Work

Eliminating dead code is a standard optimisation in compilers for first-order imperative
programming languages. The traditional approach, as described in [8], is to first perform
copy propagation and then eliminate blocks, in the control-flow graph of the program,
which are unreachable. A block in the control-flow graph is considered unreachable if any
predicate, on which it is control dependent, can be statically analysed to evaluate to the
negation of the value required to reach the block. The approach mentioned above attempts
to discard blocks in the program which are never going to be executed. Copy-propagation is
performed by forward analysis on the control-flow graph and has a well-defined counterpart
for higher-order programs.

A more aggressive approach is to perform a live-variable analysis and then eliminate
definitions for variables that are not live immediately outside the basic block in which they
are defined. This approach discards code that would have been executed but would have
made no contribution since the variable is dead after its definition. Live variable analysis
is performed by backward analysis on the control-flow graph. Backward analysis does not
seem to have a clear counterpart for higher-order programs.

Hughes [35] developed a technique for backward analysis of first-order functional pro-
grams, being evaluated in a lazy semantics. Given a closed first-order function f, of type
Ty % ...% T, — 79 and abstract domains Ay, ..., A, for types 7¢, ..., 7, a backward
analysis technique returns n functions, f; : Ag — A;. By choosing appropriate abstract
domains and interpretations of primitives, a decidable analysis for isolating subterms, that
are never going to be evaluated, can be performed. Hughes uses the term absence anal-
ysis for the technique. This technique is syntax-directed and does not seem to extend to
higher-order functional programs because at every function call site, the analysis needs to
know the exact function getting called.

Computable backward analysis has been extended to include higher-order functional
programs in [17]. But [17] reverses abstract interpretation based on Scott-closed/Scott-
open powerdomains [25]. The technique of reversing abstract interpretation has not been
successfully applied to perform absence analysis.

There is an enormous body of research on abstract interpretation and its application

50

to strictness analysis, dating back to [50]. The results from that area are not applicable to

the problem we seek to solve. This is because any computable strictness analysis technique

computes a strict subset of the set of subterms which make a contribution to the compu-

tation. A solution to our problem involves a computation of a superset of such subterms.

Besides, as shown in [59], any Mycroft-style strictness analysis completely ignores bindings

of variables to constants.

6.3 A Set-Based Semantics

One of the simplest binding analysis techniques for call-by-value languages is a set-based

analysis (SBA) technique developed by N. Heintze [30, 29, 28]. The development of a

set-based analysis for a given natural semantics proceeds through the following stages:

A.

Develop a set-based version of the operational semantics. The standard operational
semantics for the language uses an environment, £ : Var — Val. The set-based
semantics uses an environment, £ : Var — P(Val) and evaluates a term into set of

values, i.e. a subset of P(Val).

. Define a property safety for set-based environments £. Let - M — wv, be a

terminating computation, in the standard semantics, for a closed term M. Let £ be
any set-based environment safe wrt M. The safety property guarantees that there

exists a computation &€ - M ~» V in the set-based semantics such that v € V.

. For any given term M with a terminating computation, there exists a minimum

set-based environment &,,;, that is safe.

. The set-based approximation(sba) of a term is given by,

sba(M) d:ef{v eV | Enpin F M~ V}

. Define a language of set-constraints and a syntax-directed translation from a closed

term M to a set of constraints, such that a model of this set of constraints is a
function that maps every subterm of M into a set of values that it might evaluate

to.

o1

It is shown that there is a minimum such model and it maps the term M exactly to

the set sba(M).

There is a polynomial time algorithm for the computation of the least model.

A natural semantics for the computation of dynamic slices, for purely functional programs,
was presented in Table 5.2. Given any program ([: e), if I+ (I : e) — (V,L) then
L C P(Labels) is the minimum dynamic slice for the computation. We do not attempt to
develop a set-based version of this semantics based on the steps elaborated above. This
is because such a set-based semantics would be returning values which are elements of
P(Val x P(Labels)). Our static analysis technique is built on a set-based semantics which
incorporates the concept of demand into the semantics developed by Heintze.

Heintze’s set-based analysis is decidable because it completely ignores inter-variable
dependencies, and the fact that distinct evaluations of the same function, in distinct en-
vironments, return different values. If a specific occurrence of a subterm evaluates to a
certain value v then, in a model for the set constraints, the subterm is mapped to a set of
values containing v. But our natural semantics for the computation of slices throws away
certain subcomputations because they make no contribution to the value that is returned.
Hence, set-based analysis by Heintze, is definitely too much of an over-approximation for
our purposes. Bindings coming out of subcomputations which make no contribution to the

final value need to be thrown away. For example, consider the following program:

let f=Az.if (z =1) then 3 else 4

in (A\y. f1)(f2) end

The solution to the set-constraint problem, as described in [30], returns the fact that

()

the variable z can be bound to the set {1, 2} and the set of values, which can be returned
by the program, equals {3, 4}.

What we are looking for, is an analysis technique which attempts to model the fact
that a subterm, whose evaluation makes no contribution to the value returned, need not
be evaluated. In the program (I), the subterm (f2) does not contribute to the answer.

Hence, we would like to have a set-based analysis which returns the variable x as being

52

bound to the set {1}, and the set of values which can be returned by the program as {3}.

The fundamental premise of our analysis is to completely ignore inter-variable depen-
dencies. Hence, even on incorporating the concept of demand, we will conclude that certain
sub-terms need to be evaluated even though they actually do not. For example, consider
the program in Figure 6.2. In the call, F (G £1) 2 3 | the value z = £ x needs to be
evaluated. Since evaluation contexts are completely ignored, the technique assumes that
the value z = £ x needs to be evaluated in the call, F (H £2) 0 1. Hence, the technique
must infer that the subterm (H £2) needs to be evaluated, even though it is not needed

in the computation.

let fun F f x y = let val z = f x

in
if (y=1) then 90 else z
end

in

F (Gf1) 23 +F (Hf2) 01

end

Figure 6.2

6.3.1 A Set-Based Semantics Incorporating Demand

As mentioned in the section above, the set-based semantics developed in [30] uses a global
set-based environment & : Var — P(Val), which maps bound variables to a set of values.
In addition to a global set-based environment £, we introduce a global boolean environment
F : Var — (Bool = {t, f}), which maps bound variables to booleans. The boolean indi-
cates whether the variable is going to be bound to a value, which makes a contribution to
the computation. Similarly, for every occurrence of a constructor, we need to know whether
its 4*» argument makes a contribution to the computation. Hence, we introduce another
global environment, G : Label * Int — Bool. Here the label argument to G indicates the
textual position of the data constructor.

The set-based operational semantics is presented in Table 6.1. For simplicity, all atomic
operators have been left out of the language. We assume that all bound variables are

distinct.

93

E,F,G.bF M ~ {—}

,]-',g,tl—le\»{—}
5, ,g,fFl:MlMQ’v){*}

E,F, G, tF My ~ {—}

E,F,G,tkH1:case(My,C(xy, ... ,%5) = My, y= M3) ~ {—}
E.F, Gtk 1:xz~ Ex)
E.F.G.tF l: e M ~ {\z M)

E.F,G,t+ My ~V
E,F,G,tF 1: letrec f(x) = My in My ~ V

E,F,G,tF My ~ W
E,F,G,. Flz) F My ~ Vs
EF,.G,tE M ~ V3
E.F,G,tH1: MMy ~ V3
where \e. M € V;

EF,G,G[l,il F My ~ Vi,i=1...n
E,F,G,tH1: C(My, ..., M) ~ C[l, Vi, ..., V)]

E,F, Gt My ~ V' E F, G, tF My ~ V"'

E,F,G,tF1l:case(My, C(z1, ..., 2n) = My, y= M3) ~ V"
where v € V' s.t. v = Cllg, (...)]

EF, Gt My ~ V' E F, G, tF Mg~ V"

E,F,G,t+ 1:case(My, Clxy, ..., %) => My, y= M3) ~ V"
where v € V' st. v=C"[lp, (...)] and C" £ C.

Table 6.1: Set-Based Operational Semantics

(10)

o4

Given a term M, the rules in Table 6.1 can be used to construct a proof of

E.F,G,bF M ~ V, where

b is a boolean indicating whether the value computed at this point contributes to the
computation. If b= f, i.e., the value to be computed makes no contribution, then

it is not computed: only an instance of rule (1) applies,

5,‘7:',g,f|_M’\/>{—}

V' is the set of values returned as a result of the computation,

Vo u= v, ...,o}

v -
Ol (s)
\ Az M

For every value built by the application of a data constructor, we need to keep

track of the textual location where it was constructed. Such values are denoted by,

C[l, (v1, ..., vy)], where [is the textual location where the constructor C' is applied
to a tuple of values. The expression C[l,(Vi, ..., V,)] denotes the set of values
{C[l, (UIa tre s vn) ‘ v; € ‘/l}

Note that the semantics is non-deterministic. This is because of the non-deterministic
choice which needs to be made in rules (7), (9) & (10) and because of the fact that
the rule,

E,F, G, t M~ {—}
can be used anywhere in the proof.

We now characterise the environments (£,F,G) which provide a sound approximation

to the value computed by the standard semantics.

Definition: (£,F,G) is safe wrt a closed term M, if every derivation of the form

E,F,G,t F My ~ V satisties the following conditions:

A. In every use of Rule (4), F(z) = t.

95

B. In every use of Rule (7), Vo C &(z).

C. In every use of Rule (9), if Cllp, (v1,...,v,)] € V' then V1 < i <n if F(z;)
then v; € £(z;) and Glly, i].

D. In every use of Rule (10), if v € V' and v # C[...] then F(y) implies v € E(y).

E. If My contains the term [: letrec f(z) = My in My then F(f) implies E(f) =

F. If Clly,...]€&(x) then [y: C(...) is a subterm of M.

In Table 6.1, the rules (1), (2) & (3) are referred to as empty rules. In the absence of
such rules, an environment may vacuously satisfy the safety conditions because, under the
environment, there may be no terminating computation, hence, no complete proofs. The
empty rules are needed to handle an important weakness of natural semantics: the inability
to model a finite number of steps in a non-terminating computation. In the presence of
empty rules a ‘partial’ proof, constituting a finite number of steps in a non-terminating
computation, can be completed to form a legal proof.

The set-based semantics presented by Heintze in [30] does not have rules which are
counterparts to our empty rules. This is a very serious lapse. Theorems explicitly stated
by Heintze [30, page 311], e.g. Soundness and Minimality, are in fact invalid. The following

program is a counter-example to his soundness theorem:
(Az case(z,0=2,y=Q)) 0

Note €2 is a nonterminating program. This is a program whose evaluation under the
standard interpreter returns the value 2. Without the empty rules, an environment
€ =[x+ {1}] is vacuously safe, since it has no terminating computation associated with
it. Adding our empty rules, with {—} replaced by the empty set, (), restores soundness to

his set-based semantics.

Lemma 6.3.1 (Minimality)
If (&1,F1,G1) and (E2,F2,Go9) are safe wrt a closed term My, then so is
(E1N&, Fi NFa, Gi A Ga).

o6

If E6N&, FANFo,Gi NGy, t = M ~ V then
Vi, Vo, &, Fi,Gi,tE M ~ V; where V CV,.

Proof: Safety conditions E & F are dependent solely on the term M and are independent
of computations associated with a given static environment. Hence, they are immediately
valid in the set-based environment (€1 N Ey, Fi A Fa, G1 A Ga).

Given a proof tree of a computation, based on the semantics presented in Table 6.1, it
is to be noticed that any time the boolean parameter, to the left of the F, is false the first
empty rule is used.

Given a proof tree for £1NE, F1ANFa, G AGy,t = M ~» V., but for the boolean
parameter to the left of -, identical safe proof-trees can be constructed for the set-based
environments &;, F;, G; returning values V;, st V C V,.

a

Corollary 1 Given a closed term M, there exists a minimum set-based environment

(Em s Fm s Gm) that is safe wrt it.

The following two lemmas are used in the proof of the Soundness Theorem for our

set-based semantics.

Lemma 6.3.2 For any safe set-based environment (€, F, G) wrt My, if there is a compu-
tation E,F,G,t b My ~ Vy which contains E, F, G, t & M ~ {—} as a sub-proof
then, for any wvalid computation €, F.G,t = M ~» V, there is a valid computation,
E,F,G,tF My~ Vj, which contains €, F,G,t = M ~ V as a sub-proof.

The above lemma can be easily proved by induction. This is because the set-based
semantics does not create any bindings: evaluation proceeds under a global environment.
It is the only in the rules for function application and case expressions that the value
returned by the computation is significant: here we need to assume the type correctness
of the program and the set-based environment.

Because of the presence of empty rules, the soundness theorem for safe environments
can no longer be stated in terms of set-theoretic containment. Instead, the value, computed
by the standard semantics, is proven to be related to the set of values returned by the set-

based semantics by a relation €¢ 7 g .

o7

Definition: The relation € rg) is a relation between a value computed by the stan-

dard semantics and a set of values computed by the set-based semantics.

o C(vi,...on)eergV if AC[, (v),...v)] €V,
st Vi if G[l,] then v; eg 7. gy{v; }-

L] (E,)\,’E M> E(gyf,g)v lf ()\LUM) EV and Ee(f,}-,g)g'

° (E, I,)\LUM)E(&]:yg)V if ()\LEM) eV,
E(f):{)\’ll’ M} and EE(gy}',g) E

o Begrg € if foreach z, if F(z) then E(z)ee rg)E(z).

Given a proof tree P representing a computation in the set-based semantics, let us
delete the boolean tags to the left of all occurrences of F to obtain a tree structure 7.
Given the tree structure 7, we can reintroduce the boolean tags with their original values
using a simple set of rules, obvious from the rule schemas for the set-based semantics, to
obtain the proof tree P. We are now going to use such rules to introduce a boolean tag to

the left of + in a proof in the standard semantics.

Definition: Given a subterm M of a closed term My, and a safe set-based environment
(€,F,G) wrt M, the boolean-annotated proof of £ - M — v wrt (£, F,G),

E,t+ M — v, is constructed as follows:
— Introduce the boolean tag ¢ to the left of ., at the root of the proof tree.

— Propagate the boolean tag towards the leaves of the proof-tree, in a manner similar

to the technique used in the set-based operational semantics.

— The instant the boolean tag becomes f, the proof tree, in the set-based semantics,
reaches its leaf. In the case of the annotated proof tree, we simply propagate the f

tag all the way to the leaves.

Theorem 6.3.1 (Soundness) If (£,F,G) is safe wrt a closed term M, and
F My — wvg, then IV E,F,G,t = My ~ Vg, st €e,7.g) Vo

o8

Proof: Because of the presence of a boolean tag to the left of F, in the set-based
semantics and the fact that safety conditions apply only to complete proofs of M, the
proof of soundness is not a simple structural induction on the proof of evaluation, based
on the standard semantics. The induction hypothesis needs to be more elaborate. The
key set of conditions to be used in the proof of the Soundness Theorem are those arising
from the fact that (£, F, G) is safe wrt the term M. The presence of the boolean tag
to the left of F, in the set-based semantics, prevents us from asserting the fact that if
(€, F, G) is safe wrt a closed term term My then (£, F, G) is also safe wrt any subterm
M of M.

The induction hypothesis:
If (a) EF,tF M — v isa boolean-annotated proof of E - M — v wrt (£,F,G),
(b) Eeerg)f,
(¢) Thereis aproof £, F,G,t F My ~ Vy which contains
E,F,G,t+ M ~ {—} as a subproof.
Then there exists a proof, £, F,G,1 = M ~ V, such that veg rg V.
Condition (c) is required because safety conditions apply only to complete proofs of M.

The cases of the induction are discussed below:

Rule (Var): Let M = z. This is trivially true if F(z) is true. Since, there is a
computation £, F,G,t F My ~ Vy which contains £, F,G,t + x ~ {—}
as a subproof, by Lemma 6.3.2, there is a computation &, F, G, t F My ~ Vy
which contains £, F,G,t F z ~ &(zr) as a sub-proof. The falsity of F(z)

would then show that &£, F, G is not safe for My. This is a contradiction.

Rule (App): Let M = MyMs and M; — (E;, Az M'). By assumption, there is a com-
putation £, F,G,t + My ~ Vi which contains £, F,G,t - MMy ~ {—}
as a subproof.

The subproof £, F,G,t + M;My ~ {—} can be replaced by the subproof:

S,]-",g,tl—Ml«»{—}
E,]:,g,tl—MlMQ’\» {*}

Hence, by induction, (E1, Az M')eg 5 g)Vi,ie (AzM') € Vi and Eieg rg) €.

99

The subproof £, F,G,t - MiMy; ~ {—} can be replaced by the subproof:

E.F, Gt M ~ Vy
E,F, G, Flz) F My ~ {—}
E,F, Gt M ~ {—}
E,F,G,t+ MMy ~ {—}

Hence, if F(z) then, by induction, v €, F.g) V2. In the above subproof, if
My ~ {—} is replaced by a proof of My ~» V5 then by the safety property
of (£,F,G) wrt My, we have Vo C &(z), hence, Filx — va]€s 7g)E. Hence, if
M =M M; — v then vegrg V.

If F(x) isfalse then B[z v3]eg 5g)E for any value v2. Hence, the proof follows

trivially.
Rule (Cons): Let M = C(M;, ..., M,). By assumption, there is a computation
E,F,G,t+ My~ Vy which contains &, F,G,t+ C(My, ..., M, ~ {—}

as a subproof. By Lemma 6.3.2, this implies that there is a computation
E,F,G,t+ My~ Vy which contains £, F, G, t + M; ~ {—} as a subproof.

Hence, for every i such that 1 <i <n, if G[l,i] =t then, by induction, v; e 7) Vi.

Hence, C(’Ul Y oeee ’Un) 6(57]:’(_;) C[l, (V1 Yoy Vn)]

Rule (Casel): Let M = case(M;,C(z1,...,2,) = My,y = Ms). If
My = C(vy, ..., vy) then, by induction, Clur, .., on)eerg V', e
FCN, (vy, ..., vp)] €V, for some I, st if G[I',i] =t then wv;ee £ g){vi}-

By assumption, £, F,G,t v M ~ {—} is a subproof of some computation

E,F,G,t F My ~ Vy. Hence, the following subcomputation,

E.F. G tF M ~ V'
S,T,Q,tl— MQ’\» {*}
E,F,G.tF case(My, C(xy, ... ,2n) = My, y= Ms3) ~ {—}

can be made to be a part of the proof of £.F,G,t - My ~ Vy. The safety
property of (£, F, G) wrt My implies that if F(z;) then v; € £(x;) and G[I',i] = t.
Hence, E[z1 — vy, ..., Tp — U] €, 7,g) €. We can now apply induction, to obtain

1)” E(g’y:’g) V”.

60

Rule (Case2): If M; — C'(v1, ..., v,) then, by induction,
C'(vr, ...y vn) e rg)V'sie C'II", (vy, ..., vy,)] €V, for some ['.
By assumption, £, F,G,t - M ~ {—} is a subproof of some computation

E,F,G,t v My ~ Vy. Hence, the following subcomputation,

E,F, G, t = M ~ V'
E,F,G, t+ My ~ {—}
E,F,G,tF case(My, C(zy, ..., xy) = My, y= M3) ~ {—}

can be made to be a part of the proofof £, F, G, t - My ~ V.

The safety property of (£,F,G) wrt My implies that if F(y) then
C'l", (i, ..., vn)] € E(y). Hence, Ely = C'(v1, ..., vn)] € 7,6) €. The result fol-

lows by induction.

Definition: Given a closed term M, and a boolean-annotated proof tree P of the form,

t F My — wvg,
slice(My, P)={l| E,tF l: e — v isasubproof of P}

Given a terminating computation and a safe set-based environment (€, F,G), the Slic-
ing Theorem(Theorem 6.3.2) shows how subterms which make no contribution to the
computation can be specified. If the value returned by a program is a nullary constructor,
then the deletion of subterms, which do not contribute to the computation, causes the
same value to be returned. But if the value returned is not a nullary constructor then we
need to define a formal relation R to specify the value returned on the deletion of subterms
which do not contribute to the computation. For this theorem, we will assume that a value
built by the application of a data constructor, in the standard interpreter, also includes

the label of the textual location where it was constructed.

Definition: v Rz g o) v’ is a relation between two values computed by the standard

semantics before and after the deletion of a set of subterms £'.

61

o Cll, (v, ...vn)] Ripg,cry Cll, (v, . 0p)]
if for every G[l, i] =t, v; Rir g, c1) v;-

L] (E, AT M> R(f,g,ﬂ’) (El, AT Ml>
if M’ = M[El/*] and F R(]:,g,ﬁl) E’.
L] (E, f, AL M) R(f’g’ﬁl) <El, f, AT M’)
if MI = M[E’/—] and F R(}-’g’ﬁl) El.
o f R(].‘,Q’,EI) El if for each x, such that f(x) = t, E(SC) R(]:,g,ﬂ’) E’(,’L‘)
Since, the standard natural semantics can only represent terminating computations
we need a lemma to assert that deletion of subterms in a terminating purely functional

program creates another terminating program. This is done by defining an order on values

returned by a program:
e — < w
e C(vr,...,...) < Cvy,..., 0 if Vi, v; <ol

e (E,) eM) < (E',XxM'")if (E <FE') and M'[L/—] = M for some set of

subterms L.
e £ < E' if E(z) < E'(x), for every x.
Lemma 6.3.3 If E+ M — v then for E>E', E' - M[L'/—] — v, wherev >’

This lemma can be easily proved by induction on the height of the proof

tree/computation.

Theorem 6.3.2 (Static Slicing Theorem)

Let (£,F,G) be a safe set-based environment for a closed term M.

Let + My — wvg be the terminating computation under the standard interpreter.

Let P=(t F My — wvy) be the boolean-annotated proof of + My — vo wrt (€,F,G).
Let Lo = slice(My, P).

If L{=A(My)—Ly then + My[Ly/—] — vy,

where vg R(f’g’[:l) vy and A(My) is the set of labels contained in M.

62

Proof: The proof is given by induction on the structure of the proof tree and appli-
cations of the Soundness Theorem.
We will assume here that the standard interpreter also tags values, built by constructor

applications, with labels of the site in which they were created.
Induction Hypothesis:

Given a subproof E,t - M — v, it ERrgr E’ then there exists a proof
E' t = M[L'/—] — o, where v R(x g 1y v'.

Rule(Var): Let M = z be a subterm of M_0. Given a proof ¢t - My — vy and a
set-based environment, (€, F,G), safe wrt My, we can, by the Soundness theorem,
develop a similar set-based proof for M. By the safety conditions on this set-based

proof, we have that F(r) is true. Hence, by assumption, E(z) Rz g) E' ().

Rule(App): Let M =1: (I1: e1)(ly: ex). Let E,t F I1: e; — (Fy1, Ax My). By
induction, E' & (I;: e1)[L'/—] = (B}, Az My[L'/—]), where Ey Rz g) E}.
If F(z) is true and E,tF ly: e — vy then, by induction,
E'"F (l2: e2)[L'/—] — vy, where wva R(rg r) vy
Hence, B[z~ vo] R(F g oy E'lx = vy]. The result now follows, by induction.
If F(z) is false then if the computation of (I3 : e3)[L£'/—] terminates the result

follows immediately by induction.
Termination of the computation of (I3 : e9)[L'/—] is a non-issue if I, € L. Otherwise,

we apply Lemma 6.3.3 to assert the termination of the computation of (I3 : e9)[L'/—].

Rule(Cons): If G[l,i] is false then [; € £, i.e. the I/ subterm has been deleted. The

proof can now be completed by induction.

Rule(Casel): Let M =1: case(ly: e1,C(x1, ..., 2n) =1la: e9,y=1I3: e3). Let
(Iy : e1) evaluate to Cllg, (v1, ..., va)] Let (Ih e1)[L'/—] evaluate to
Cllo, (vy, ..., vy)]. For any i such that, G(lp, i) = t, we have v; Rz g rr) v;-

Since (€,F,G) is safe wrt My, if F(z;) then G(lyp,i). For any i such that,
Gll.0, 1] = f, we apply Lemma 6.3.3 to assert termination of computation. Hence,

Elz1 = w1, ... mp = 0a] Ripg, ey Bz = vy, ...y = vy]. We can now apply the

63

induction hypothesis to obtain the result.

The induction for Case 2 can be similarly completed.

O

The Soundness Theorem and the Static Slicing Theorem together provide a declara-
tive specification of a set of subterms which make no contribution to the computation.
Let (£,F,G) be a safe set-based environment wrt M. Let P be the boolean-annotated
proof tree, wrt this set-based environment, of the computation of the standard inter-
preter. If a subterm [contributes to the computation then, by the Static Slicing Theorem,
[€ slice(My, P). The Soundness Theorem states that a proof tree in the standard seman-
tics can be played out in the set-based semantics. Hence, the set L£(E,F,G), defined below,
contains slice(My, P). Thus, the complement of £(E,F,G) is a subset of the subterms

which make no contribution to the computation.

Definition: Given a safe set-based environment (£,F,G) wrt a closed term M, the set
L(E,F,G), contains the subterm [iff there exists a subproof £, F .G, t F l: e ~ V,
of some proof £, F,G,t F My ~ V.

It should be noticed that, by the proof of the Minimality Theorem, the func-
tion L is monotonic in its argument, i.e. if (&1,F1,G1) > (E2,F2,G2) then

L(E1,F1,G1) D L(E9, Fa,Go). Hence, we define the set-based approximation for dead code,

$ba geadeode s 1SINE the minimum safe set-based environment, as follows,

Definition: sba jeggcode (Mo) = A(My) — L(Ems Finy Gn) where, (Epn, Fin, Gry) is the min-

imum safe set-based environment wrt M.

6.4 Constraints

Given a terminating computation and a safe set-based environment, the Slicing Theorem
presents a way of specifying subterms which make no contribution to the computation. In
this section, we are going to present an algorithm for computing a safe set-based environ-
ment for a closed term.

The approach taken is similar to [30]:

64

e Define a language for expressing constraints.
e Develop a concept of a model for such constraints.
e Develop an algorithm for the computation of the minimum model of such constraints.
e Develop an algorithm to infer a collection of constraints from a given program.
e Relate the minimum model of the above constraints to the minimum safe set-based
environment.
6.4.1 The Language of Constraints
The set-based semantics defined computation wrt global environments:
o &: Var — P(Val).
e F: Var — Bool.
e G : Label x Int — Bool.

The environments £, F, G are finite mappings. Ideally, we would like to have constraints,
having free variables corresponding to the elements of the domains of these finite mappings,
i.e. variables denoted by E,, F, & G ;, such that a solution to these constraints provides
us with the environments we seek to compute.

The constraints constructed from a program have more free variables. The solution to

the constraints returns environments with the following augmented domains:
e &: VarU Label — P(Val).
o F: VarU Label — Bool.
o G : Label x Int — Bool.

Hence, we have constraints with variables E,, E;, F, , F; & G;. We will use the letter
z to generically refer to both variables and labels. To avoid notational clutter, variables
E, & E; will simply be referred to as z & [.

Constraints are partitioned into set constraints and boolean constraints. This partition

has been made so that our constraint language is a modular extension of the constraint

65

language defined in [30]. Such a partition at a syntactic level, however, necessitates some
overlap/recomputation at the semantic/simplification level.

Set constraints S, contain free variables x & [which are to be mapped to a subset of
P(Val). Boolean constraints B, contain free variables F, & G, ; which are to be mapped to

Bool. We will use the letter Y to generically refer to boolean variables F, & G; ;.

The language of atomic set expressions is given by,
ae =z

A M

‘ C[lv(llaaln)]
The language of set constraints is given by,
S = zDae
| 12 Apply(ly, I2)
| lQCase(ll,C(:vl,...,xn):lg,y:lg)

The language of boolean constraints is given by,

B = F,
| G
| F. = B
| Fp= G
| F, NG = F,
| FApply(l1, l2)
| FCasel(ly, C(z1, ..., zn) =12, y=13)
| FCase2(ly, C(z1, ..., zy) =1lo, y=13)

A collection of constraints (S, B) has a model (£,F,G), if every constraint, under
this model, is satisfied. The denotation of atomic set expressions and atomic boolean
expressions, under environments (€, F,G), is given in Table 6.2. Note that, the denotation
of Apply and Case set expressions is defined, under a given model, only if the stated
side-conditions are satisfied under the model. If F(l;) = false then both [Apply(l1,...)]
and [Case(ly,...)] equal 0.

66

[2],7g) = E(2)
[CIL, (rs s W)l lerg) = {CIL, (v1s oo 00)] | vi €E) }
[Az.l:e)]erg = {(Az.l:e)}

[Apply(l1, i2) Jierg) = {v| (Az.lo: eq) €E(l), F(l1) =tandwv € E(ly) }
provided, for any (Az. ly: eg) € E(I1), F(z) A F(l1) implies E(x) 2 E(l2)
[Case(ly, C(xy, ..., xy) =12,y =I3)]](57]:,(}) = S1US,
where, S = {wv|ve&(ly), fC[..]€&()and F(ly) =t}
provided, ViVC[ly, (v1, ..., v,)] € E(l1),
F(xi) AN F(l1) implies v; € E(x;)
Se = {wvlve&(ly), fC...] €&(l)and F(l1) =1t }
provided, for any v = C'[...] € (1),
F(y) A F(ly) implies v € E(y)
[FApply(l1, 12) l(e,.70) = F(hi)and V{ F(z) | Az. (I: e) € E(l1) } imply F(l2)
and F(l;) implies A{ F(I) | Xz (I: e) € E(l1) }
[FCasel(ly, C(z1, ..., zn) = o, y = 13) |(e,70) =
(Clly, -..] € E(ly) and F(l1))implies F(ly) and F(x;) = Glly, i]

[FCase2(ly, C(z1, ..., zn) = b2, y = I3) J(e,70) =
(C,[.] € 5(11) and f(ll)) implies f(lg)

Table 6.2: Denotation of Atomic Set-Based Expressions

67

input a collection (S, B) of set and boolean constraints.

repeat

/* Simplification of Boolean Constraints */

if {Y=F,Y}CB

then add F; to B.

if {YiAYs=F,Y,Y,}CB

then add F; to B.

if {FApply(l1,102), F;, }CB and (l1 2 Xz (lp: e)) €S

then add { #}, , Fy = F, } to B.

if {FCasel(l1,C(z1,...,zn)=>1l,y=>13),F, }CB & (L 2C[lp,...])eS

then add Fj, to B.
for every i, add F,, = G;,; to B.

it {FCase2(l1,C(x1, ..., zn) =lo,y=13),F, } CB & (i 2C'[lp,...]) €S

then add Fj, to B.

/* Simplification of Set Constraints * |
if {22101, 11 Dae} CS, where ae is atomic and not a set variable,

then add z D ae to S.

if {l 2 Apply(ll y]2) s ll 2 AL (lo
then add Dl to S.

if F, € B then add z D I toS.
s an) =y, y=13)) € Sand Fy € B

;In)]) €S

cey) }CSand Fy, € B

if (12 Case(l], C(z1, ...
then if (15 D Cllo, (I1, ...

add I D15 to S.

for every 4, if F;;, € B then add z; D [; to S.

if I52(X=C"..]))eS then addl DI} toS.
if , € Bthenaddy 2 X to S.

then

until No changes in (S, B).

output ezplicit(S, B).
Table 6.3: Set Constraint Simplification Algorithm, Simplify

68

A minimum model for a collection of constraints is computed by a process of simplifi-

cation of the constraints. The algorithm, Simplify, is presented in Table 6.3.

Theorem 6.4.1 If (£,F,G) is a model of a set of constraints (S, B) then (E,F,G)
is also a model of (S', B'), the set of constraints obtained after applying a single step of

the simplification algorithm.

Proof: The proof is by cases, over the new constraints introduced by the simplification

algorithm.

Definition: A set constraint is in explicit form, if it has the form z D ae where ae is
an atomic expression that is not a variable.

A boolean constraint is in explicit form, if it is a variable.

Theorem 6.4.2 Given a set of constraints (S,B), such that Simplify(S,B) = (S, B),
explicit(S, B) generates a model (Ey, Fo, Go), for (S, B).

Proof: For every boolean constraint G ; € B, we assign Go[l, i| = ¢. Similarly, for every
F, € B, we assign Fy(z) = t. The functions Fy, Gy map every other element in their domain
to f.

Explicit set constraints are of the form: z D Az. M, 2 D C[l, (I, ..., Ip)]. They form
a regular tree grammar [36]. Since we want to relate the solution of the constraint set to
the minimum safe set-based environment, we introduce the constraint z O {—}, for every
variable z. This is because by the empty rules any subterm can evaluate to {—}.

There is a least solution to such a collection of explicit constraints. This is computed

by constructing an equivalent context-free grammar G with the rules:
e / — Mx. M for the constraint z O Az M.

e 7/ — C[l, (L1, ..., Ly)] for the constraint
z 2 C[l, (lla U ln)]

e Z — — for every bound variable, every label z.

69

The environment &; can then be constructed by mapping every variable z to the set of
terms which have finite derivations from the non-terminal Z.

To prove that (&y, Fo,Goy) is indeed a model we need to show that non-explicit con-
straints in (S, B) are not violated. Explicit constraints are, by definition, satisfied by this
model. Once we prove that non-explicit set constraints of the form z; C zy are not vio-
lated, it is easy to show that the remaining non-explicit set constraints are not violated.
If the constraint z; C 29 is violated, i.e. 2z € zo, then Jv st v € 2z but v € z9. But
v € z1 only because we have an explicit set-constraint z; D ae, where v € ae. By the rules
of the simplification, we also have an explicit constraint zo O ae. Hence, violation of a
non-explicit constraint of the form z; C 25 is not possible. Using the fact that this explicit
constraint is not violated we can easily prove that other non-explicit constraints are not
violated.

O

Notation: Given a collection of constraints (S, B), let Min(S,B) denote the model of
(S, B) built in Theorem 6.4.2.

Given a closed term Mj, Table 6.4 presents an algorithm for inferring a collection
of constraints, (S, B), which capture the relation between the elements of the domain of

(€,F,G), a safe set-based environment wrt M.

Theorem 6.4.3 Given a closed term My, there is an O(n®) algorithm for solving the

constraint set (S,B), such that My > (S, B), into an explicit form.

Proof: For a term of size n, i.e. a term with n distinct labels, it is easily seen from
the grammar for the constraints and the structure of the constraints generated by Simplify
that only O(n?) constraints will be generated during the simplification process.

The simplification process, in essence, performs a dynamic transitive closure: all the
‘edges’ are not available in the beginning, but generated in the course of the simplification.
A non-explicit constraint of the form [O Apply(l;, l3) cannot be further simplified till we

have the explicit boolean constraint Fj, available.

70

l:x > ({{IDz},{F=F,}) (1)

11:61 > (S],B])

2
l:dx(lhie) > ({IDXx(ly:er)}USH, By) (2)
llzelb(Sl,Bl) l2:€2[>(82,82) (3)
[:letrec f(x)=(Li:e1)inlo: e > (SIUSU{f D{ zli: er1}},
BlUBQU{Fl:>Fl2})
l1:6’1[>(81,81) l2:€2[>(82,82) (4)
I:(ly:ep)(la: ea) > ({12 Apply(l1,1l2) } USTUS,,
{FApply(l1, I2), Fy = Fj, } U B1 U By)
lizeiD(Si,Bi) 1=1...n (5)
l: C(ll €1,y eveylp: en) > ({]20[1, (11, ’]Tl)}}U?:l SZ',
{F NG = R, UL, Bi)
112619(81,81) l2:6’2[>(82,82) l3:€3l>(83,83) (6)

[:case(ly : e1,Clxy, ... ,xn)=1la: ea,y=1I3: e3) >
({lQCase(Y)}USlLJSQUSg,
{F, = F),, FCasel(Y), FCase2(Y) } U By U By U Bs)

where Y = (1, C(z1, ..., zn) = lo, y = I3)

Table 6.4: Construction of Set Constraints

For a graph with n vertices, dynamic transitive closure can be implemented by an

O(n?) algorithm.

6.4.2 Relating Set Constraints and Set-Based Semantics

In this subsection we are going to show that s$bagjeqgeode 1S computable. We
prove that given a closed term My = (lp: ep), st My > (Sg, By), the set
{1| Fo(l) = false, (&, Fo,Go) = Min(So, Bo U{F),})} equals sbageadcode (Mo)-

This will be proved using the lemmas, Lemma 6.4.1 and Lemma 6.4.2. Lemm 6.4.1

proves that any model of the set of constraints (Sy, By), where My > (S, By), is a safe

71

set-based environment for M _0. Lemma 6.4.2 proves the converse, i.e. given a set-based
environment (£, F,G) safe wrt My we can construct a model for the constraints (Sy, By),

where M, > (Sg, Bo).

Lemma 6.4.1 Given a closed term My = (ly : eg), st Myr> (So, Bo), if (E,F,G) isa
model of the set of constraints (So, Bo U{Fi,}), then (E|var,F|var,G) is safe wrt My,
and {l ‘ f(l) = t} D) £(€|Var,]-"|v,",g).

Proof: There are two things to prove here. Given the complete collection of proofs,
{5,]-',g,t F l[]i ey }

Firstly, every such proof is safe and secondly, an occurrence of £, F, G, ¢t + [: ...
implies that F(I) = t.
The proof is by induction on the height of the proof tree.

Induction Hypothesis: For any valid subproof, £, F, G, t - 1: e ~ V, if F(I) =t then
V C &(1) and the subproof satisfies the safety conditions. Also, for every occurrence of,
E,F,G,t=1': ..., wehave F(I')=t.

A single case is elaborated below:

Rule 7: Let My =(l1: e1), Ma=(la: e2), M= (l: e).

Since the constraint F; = Fj, is valid, we have F(l;) = ¢. Hence, by induction, for
the proof of My ~» Vi, we have V3 C £(l1) and the fact that the other conditions in
the hypothesis are satisfied. Thus, Az (Ip : eg) € £(l1). By the definition of FApply,
F(l1) implies F(ly). Hence, F(lp) = t. By induction, for the proof, M ~» V3, we
have that V3 C £(ly) and the fact that the rest of the conditions in the hypothesis
are satisfied. Hence, by the definition of Apply, V3 C £(1).

By the definition of FApply, F(I1) A F(x) implies F(l2). If F(z) is false then the
proof of My ~» {—} is trivial. If F(z) is true then F(l2) = ¢. Hence, by induction,
the proof of My ~» Vj is safe and Vo C £(ly). Since (€,F,G) is a model, we have
E(x) D &(ly). Hence, £(x) D V4. Thus making the subproof a safe proof.

72

Lemma 6.4.2 Given a closed term My = (lo: eg), st My> (So, Bo), if (£,F,G)
is safe wrt My, then there exists a model (' F',G") for (S, B U {F,}), st
LEF.G)={1l]|F1) =t}

Proof: Let &'|var =&, F'|var = F and G’ = G.
To construct F'|pqpe1, we map every label in £(€,F,G) to t, and any other label to f.

The construction of &'|4pe 1s specified as follows:
I. For any label I, &'(l) 2 {—}.

II. For any subterm, (I : z), &£'(l) D &(x).

ITI. For any subterm (I : Az M), &'(l) D {\x M}.

IV. For any subterm [: C(l1: ey, ..., I, ey),
E0) = {ClL, (or ..., va)] | v € E0)).

V. For any label I, £'(l) contains the union of all values V', such that there is a subproof

E,F.G,tkH1L: ...~ V.

The last clause specifies all the relevant bindings. The other clauses are required
to satisfy unguarded constraints generated for a closed term. Given £, there is a unique
minimum &’ satisfying all clauses except (IV). Once such an £’ is available, we can perform
a minimum fixed point computation to make it satisfy clause (IV): this does not violate
other clauses.

To complete the proof we need to show that such a construction builds a model satis-
fying the set constraints. This is easily shown using the safety property of the underlying
set-based environment (£, F,G).

a

Theorem 6.4.4 (Correctness) Given a closed term My = (lo : eg), st My > (So, Bo),
if (€0, Fo,Go) = Min(Sy, By U{F},}) then the set {1 | Fo(l) = f} equals sbageqdcode (Mo).

Proof: Let (&),,F),,G..) be the model constructed from the minimum safe set-based

environment, (&,,, Fin, Gm), by an application of Lemma 6.4.2.

73

By construction, L(Epm, Fm, Gm) = {1 | F,(I) =t }.

From the construction of the model (&g, Fy, Go), as detailed in Theorem 6.4.2, we have
{11 F,) =t} 2{1]Fol) =1}
Hence, by Lemma 6.4.2, L(Epm, Fm,Gm) 2 {1 | Fo(l) =1t} (1)

By Lemma 6.4.1, {1 | Fo(l) =t } 2 L(&o|var» Folvar, G)-

As (&€, Fin, Gm) is the minimum safe set-based environment and the function £ is mono-
tonic, we have

L(E|var: Folvar,G) 2 L(Emy Fm,Gm)-

Hence, {I | Fo(l) =t} D L(EmyFm,Gm) (2)

Thus, from (1) and (2), we have,
{11 Foll) =1} = L(Em, Fims Gm)-

6.5 Conclusion

This chapter presents a polynomial time algorithm for isolating dead code in higher-order
functional programs, i.e. a terminating algorithm for the computation of static slices. We
have presented a formal proof of the correctness of this algorithm.

Analysis concerning demand is essentially a backwards analysis. This work demon-
strates that we can still provide an elegant declarative specification of the analysis through
an augmented set-based semantics.

The static analysis technique developed here cannot plug space leaks stemming from
memo/hash tables [34] or order of evaluation [9]. But, as shown by the example in the
Introduction, the analysis can prevent creation of certain void cells and can reduce drag.
Further work needs to be done to investigate exactly how significant this optimisation can
be.

The language Standard ML contains imperative features, exceptions and assignments.
As is to be shown in Chapter 7, introduction of imperative features results in loss of two

important properties wrt computation of executable slices:

74

e Existence of a unique minimum dynamic slice.

e Conceptual understanding of the slice computation process as a ‘naive’ backward

propagation of demand.

Because of the loss of these two properties an immediate extension of the technique, de-
veloped in this chapter, to a higher-order functional language, with exceptions and assign-

ments, does not seem feasible.

75

Chapter 7

Slicing Higher-Order Programs

with Exceptions and Assignments

7.1 Slicing Programs with Assignments

The additional productions in the grammar for terms M, is given by

M = 1:IM
| 1:refM
| 1: My := M
| 1 M M,

The statement [: M;; My is an abbreviation for (Az My)M,;, where z is not a free

variable in Ms. The set of values V', now also contains memory locations .

As mentioned before, executable slices are interpreted on an augmented operational
semantics. Introduction of assignments into the language introduces new operators into
the language. We need to augment the standard operational semantics with additional

rules for the new operators.

E,SFM = —, 5

E,SFIIM - —, 5

76

E,SFM —» —, 5
E,Sll—MQ—)U,SQ
E,Sl—liMlleQ—)(),SQ

Introduction of assignments complicates the problem of computing the dynamic slice of
a program. This is because assignments influence the computation through side-effects: an
assignment returns the value () which is not used any further. As discussed in Chapter 1,
relevant slices and dynamic slices do not co-incide anymore. With an informal intuition
about ‘contributing’ to the answer, the following items illustrate changes brought about in
the computation of dynamic slices by introducing assignments into the language.

The specification of dynamic slices involved changing the environment, as a map from
Var — Val, to a map from Var — Val x P(Labels). If the domain of memory locations
is given by the set Loc, we would naturally expect changing the store, as a map from
Loc — Val, in the standard semantics, to a map from Loc — Val x P(Labels). But this
alone does not do the trick. For an assignment statement, embedded in a subterm, it may
be the case that this containing subterm, by itself, makes no contribution to the value
returned, but the contained assignment statement does. The strategy used in Table 5.2
computes the set of labels, defining the dynamic slice, simply from the set of labels collected
in its subcomputations. In the presence of assignments, we need to ensure that a particular
assignment /update takes place in the sliced version of the program. This cannot be ensured
merely by including the label of the particular assignment statement in the dynamic slice.
It is necessary to preserve the entire sequence of control dependencies needed to reach the
point in the evaluation where the assignment takes place. In the program in Fig 7.1, the
entire body of the term proj1 must be included in the dynamic slice. But a naive extension
of the technique described, for purely functional programs, does not ensure that the label
attached to proj1 enters into the memory location marked by y. Hence, at every point in
the computation, we need to preserve the set of labels to be left intact, to reach that point
in the computation. This set needs to be carried around as an explicit parameter in the
natural semantics.

Dynamic slicing, as defined in [6], does not generate an executable program while the

7

let valx =ref6

val y = ref 9

val projl = fn x1 => fn x2 => x1()
in

(fn() =>"'y) (projl (fn() => y:= 90) (fn() => x:=60))
end

Figure 7.1

slicing algorithm defined in [40] does. The difference between the techniques occurs only
because statements, in a while loop, are executed many times. As discussed in Section 2.2,
Korel and Laski [40], collapse the dependencies of multiple passes of the same statement,
through the use of the relation IR, while Agrawal and Horgan [6], do not. A similar
problem arises when the same function is used in different call-sites.

In Fig 7.2, the program (a) has (b) as its executable dynamic slice. Fig 7.2(c) is the
same program as (a), but with £1 and £2 replaced by two different calls to the closure of
the same function £. In (c), the if statement contributes to the value returned by the call
(f x z) but not to the value returned by the call (f z x). The term p:= false does not
contribute to the value returned by either of the calls to £. For purely functional programs,
the dynamic slice associated with a closure was the union of the slices associated with each
of the contributing call-sites of the closure. Hence, in the dynamic slice of (c), £ should be

defined as,

valf =fnyl =>fmy2=> (if(!p) then (y1:=100) else —;
'yl)

But this ends up updating the value of z in the call (f z x). Hence, it no longer returns
the same answer. The first call to ! p contributes to the final answer but the second call
to ! p does not. But if enough labels happen to be preserved to reach the second call to
! p, in the sliced program, the dependencies, associated with contents of the location p,
must be also be included in the dynamic slice. Hence, p := false must be included
in the dynamic slice, even though it does not ezplicitly ‘contribute’ at any call-site of the

containing function.

78

let wvalx= refl

val z = ref 2
val p = ref true let valx = ref —
val f1l = fn() => (if (! p) val z = ref 2
then (x:=100) val p = ref true
else (z:=200); .
b = false; val fl = fn() => (if (!p)
Ix) then (x:=100)
val f2 = fn() => (if (!p) else —;
then (z:=100) I'x)
else (x:=200); val f2 = fn() => ('7)
p := false; in
17) f1() + f2()
in end
fi() + 12()
end
(a) (b)

let valx =refl
val z = ref 2
val p = ref true

val f = fn yl => fny2 => (if (!p) then (y1:=100) else (y2:=200);

p := false;
lyl)
in
(fxz) + (fzx)
end
()
Figure 7.2

79

The above example is meant to illustrate a characteristic problem of computing
sliced versions of programs, with assignments, which are meant to be executable on
the standard/augmented interpreter. The situation being addressed is that of a term,
contained in a closure, being executed in two distinct occurrences. One of the occurrences
of the term contributes to the final value but the other occurrence does not. In definitions
of slicing for term rewriting systems, as formulated in [22], the second occurrence of
the term, which does not contribute, is not executed but is side-stepped by the use of
the Resid relation. But if we are using the standard/augmented interpreter we cannot
do this. The problem does not arise in purely functional programs. This is because
if we do not preserve, the dependencies associated with the second occurrence of the
term, by Lemma 5.2.1, this occurrence will evaluate to —. As this occurrence does not
contribute, anyway, the rest of the evaluation can proceed as before. But, in the presence
of assignments, if the dependencies associated with the second occurrence of the term are
not preserved then this occurrence may not evaluate to — but may evaluate to some other
value v'. This may happen, for example, if we leave out an update. This different value v’
at this point may completely alter the flow of control, resulting in a completely different

value being computed.

Another characteristic feature of the introduction of assignments into the language is
that minimum dynamic slices no longer exist. In Fig 7.3, both the programs, (b) and (c),
are minimal dynamic slices of the program (a).

It is easy to show that the computation of minimal dynamic slices is no longer decidable.
In Fig 7.3(d), the updated value of x depends on the original value of x through some
function £f. But to know that the update of the variable x is superfluous, we need to
execute the rest of the program with old value of x : this execution may not terminate.
To exclude the update statement from the dynamic slice we would need to know whether
two different inputs to an arbitrary Turing machine, Turing Machinel, produce the same

answer: this is an undecidable problem.

80

let wvalx = ref3

. let val x = ref — let val x = ref —
in
in in
x:= 11 ;
16 x =16 ; x:=11;
x:= 16 ;
(1) mod 5 x) mod 5 I'x) mod 5
Ix) mo
a end end
en

let val x = ref 6
in
x:=f(x);
Turing_Machinel (!x)

end
(d)

Figure 7.3

A Natural Semantics for Computation of Slices

Table 7.1 presents the specification of dynamic slices for higher-order imperative programs.

Proofs in this system are of the form, LL, F,S, Lo v M — V Sy, Ly, where

F' represents the initial environment with which the computation of M starts.
S represents the initial store with which the computation of the term M starts.
V' is the value returned by the computation.

Sy is the final store.

Ly is a set of labels representing the control dependencies involved in reaching this par-
ticular point in the computation. If any of the labels in Lg is set to — then this

particular point in the computation would never be reached.

LL is a partial function, LL : P(Labels) — P(Labels).

Let a specific occurrence of a subterm (I : ! M) ‘contribute’ to the answer. Let there

be a different occurrence of [, in the execution, such that M evaluates to a location

81

(B and the store at that occurrence of [maps to (V, L). If enough labels are
preserved in the slice, so as to reach this occurrence of [, in the execution of the
sliced program, then L is included in the dynamic slice, even if this occurrence of
[, hence the contents of 3, does not contribute to the answer. The rationale for
this is: In, at least one occurrence of [, the contents associated with the location, M
evaluated to, ‘contributed’ to the answer. If L, from any one of the other occurrences
of [, is not included then it may be that an update associated with the location, M
evaluates to at that particular occurrence, will no longer be executed. Consequently,
at that occurrence, the accessed value will be different and control may flow in a
completely different direction: the sliced program may not terminate or the returned
answer of the entire program may be different. This was shown very clearly in the

example in Fig 7.2.

Intuitively, LL stores the following information: For an occurrence of the term
(lp : ' M), if M evaluates to (3, L) then LL(Ly) contains the label component, of the
contents of the location 8. It should be noted that it is easy to synthesize this partial
function LL, in the course of the computation. For simpler correctness proofs, LL is
included as a constant partial function in the operational semantics. The operational
semantics only ensures that, for a given LL, only a subset of evaluations are legal:

those that satisfy the side conditions involving LL.

Ly is a set of labels synthesized during the computation of M. The dynamic slice of the
term M is obtained by closing the set L, with respect to the partial function LL.
The rationale behind the closure operation is: if L preserves enough labels to reach
a point, in the computation, that involves memory access, then we must include
the dependencies, of the contents of the location accessed, even though this specific

occurrence does not explicitly ‘contribute’ to the answer.

We now explain the intuition behind the key rules in the semantics provided in Table 7.1

Rule(4) It ...k M, — (F’,)\LEM),Sl,Ll

then the set of labels which need to be preserved to execute the function body M

82

becomes L;. This becomes relevant when we push label sets into the store during

update/ initialisation of memory locations.

Rule(11) If ... I My — 3,5, L; and ... IF My — V Sy, Ly
then the store that is returned has [— (V', L U Lg)]. This is because if the value
V', obtained by dereferencing the location 3, contributes to the answer then we need
to ensure that this update occurs in the sliced program: M; must evaluate to 3, Mo

must evaluate to V' and this point in the computation must be reached.

Rule(12) If ... IF My — (,51, L1 and S(8) =(V, Ly)
then we need LL to enforce the constraint that if the set of labels Lq is preserved
in the slice, i.e. the term M is executed in the sliced version of the program and

evaluates to the location 3, then the dereferenced value is the same V.

As discussed in Chapter 4, recursion is implemented by binding the variable represent-
ing the recursive function to the recursive closure at each unfolding of the function
body. In the semantics presented in Table 7.1, the environment is a mapping from
Var — Val x P(Labels). Hence, at each unfolding of the recursive function, the function
variable binding created must have an associated label component. For the Rule 3, the
label component is LyU{l}. For the Rule 5, the label component is L;. These are the label
sets required to create that particular instance of the recursive closure. An important point
to be observed is that at the point of the binding of a recursive closure, the associated label
component exactly equals the parameter, on the left of I, representing the set of labels
to be retained intact to reach that point in the computation. Because of this, the label
set associated with binding of a recursive function variable essentially carries superfluous
information. Hence, the label set can be assigned the constant value (). The two rules

involving recursive functions may be replaced by the following rules:

LL, F[f = ((F, f, xMy),0)], So, Lou{l} F My — V, S, Ly
LL,F,Sy, Ly IF [: letrec f(x) = My in My — V, S, L4

83

LL,F,S[],L[]U{[} - M; — <F',f,)\.’1,‘M>,51,L1
LL,F,Sl,L[]U{l} - My — VQ,SQ,LQ

LL, F'[f = ((F', f, X M), 0), x = (Va, Ly)], So, Iy F M — V3, S3, L3

LL,F,Sy, Ly - 1: MMy — V3,85, L3

Proof of Correctness

Definition: For any L C Labels, F : P(Labels) — P(Labels), L is closed under F, i.e.
L =F*(L), if for any Ly C L, F(Lg) C L.

The store, at the end of the computation of a sliced term, is very different from the
store, at the end of the computation of the original term. This is because the sliced term
has many missing assignments and many values have — scattered within them. To prove
the correctness of the executable dynamic slice, we need to relate the memory, at the end
of the computation of a term, to the memory, at the end of the computation of the sliced

version of the term. This is done by the relation Qf, .

Definition: For any £1 C Labels, S Qr, S" iff dom(S’) C dom(S) and for I € dom(S),
if S(I) = (V, L) then either (L1 NL)# 0, or (L4 NL)=0 and S'(I) =V[Li/—].

Given the domain and the contents of a store S, for any S’ such that S Q, S’, the

relationship Qf, specifies a minimum domain and associated contents for S’.

Lemma 7.1.1 Let LL,F,S, Ly Ik (l:e) = V,S8, L.
If there is a location (8 s.t. S(B) is not defined or S(B) Z S1(6), and S1(B) = (V, L)
then LoU{l} C L.

Proof: The proof is a simple induction on the height of the proof tree, using the fact
that if LL, E, S, Ly Ik (I: e) — V,S1, Ly then LyU{l} C L.

84

LL,Flz (V,L)],S,LoFl: 2 > V,S, LguLU{l}
LL,F, Sy, Lo IF 1: A\aM — (F,\xM), S, Lyu {i}

LL,F[f’_)(<F7f7AwM]>,L0U{l})]7SO,LOU{l} I+ M2_> stlzL]
LL,F,Sy, Ly IF 1: letrec f(z) =M, in My — V| Sy, L4

LL.F.Sy, LoU{l} IF My — (F', e M), S, Ly
LL,F,Sl,LUU{l} I+ MQ—)VQ,Sz,LQ
LL,F’[TII'—)(VQ,LQ)],Sz,Ll I M — Vg,Sg,Lg

LL,F,S(],LU - 1: M1M2 — Vg,Sg,Lg

LL,F,Sy, LoU{l} Ik My — (F', f, Az M), Sy, Ly
LL,F,S ,LoU{l} v My — Vo, Sy, Ly
LL,F'[f—~ (F', f,A\xM), L),z (Va, Ls)], Sa, Ly I+ M — V3, Ss, L3
LL,F,Sy, Lo IF I: MiMy — V3, Ss, Ly

LL,F,S1,11L0U{I} I+ M7 — ‘/7/57,L11121TI/

LL7F7S(]7L0 L Op(Mlaan) - Op(Vla"'7Vn)7Sn7U?:]Li
LL,F,SZ,]LOU{Z} - M; — V;SZ7LZZ:1’I7,
LL,F,SU,L(] I 1: C(Ml,an) — C((Vl,Ll),,(Vn,Ln));Sn,LOU{I}
LL,F,Sy, LoU{l} IF My — C((Vi,L1), ..., (Va, Ly)), S1, L
LL,Flzy—» Vi,Ly), ...,z Vo, L,)],S1,L IF My - V Sy, L'
LL,F,Sy, Lo IF 1: case(M;y,C(x1, ..., %) => Mo, y= M3) - V, Sy, L'
LL.F,Sy, LyU{l} IF My = C'((Vi,L1), ..., (Va,Lyn),S,L C#C
LL,Fly—~C'((Vi,L1), ..., (Va,Lpn)],S,L v Ms - V S, L
LL,F,Sy, Lo Ik l:case(My,C(x1,...,25) => My, y= M3) - V S L

LL,F,Sy, LoU{l} F M = V, S, L B¢dom(S;)
LL,F,Sy, Lo IF l: vefM — B, S[8 (V, L1)], Ly U{l}
LL,F,Sy, LoU{l} Ik My = 3,81, Ly
LL,F,S, Lou{l} F My - V, Sy, Ly
LL,F,Sy, Lo IF l: My:=M, — (), S2[8— (V, L ULy, Lo U {l}

LL.F,Sy, LoU{l} Ik My — 3,5, L
LL,F,Sy, Lo IF [:1M; - V, S, L,UL,
where Sl (ﬂ) = (V, L2) and L2 g LL(Ll)

Table 7.1: Specifying Dynamic Slices for Higher-Order Imperative Programs

85

Lemma 7.1.2 If LL,F, Sy, Lo IF (I: e) - V, Sy, Ly then for any L, s.t.
Ly C L and L is closed under LL, if L1 = (Labels — L) and S Qr, S' then
F[Li/—], 8" F (1:e)[Li/—] = (V, L1)[L:/—], Sy, where S1 Qr, S;.

Proof: The proof is by induction on the height of the proof tree. Only the proof for the
memory access rule, Rule (12), uses the closure property of £. All the cases considered in
the proof assume that [€ £. If this wasn’t true then [€ £y and

F[£y/—], 8+ 1: — — — .8 By Lemma 7.1.1, any update/allocation made in the

evaluation of (I : e), contains [in its label component. Hence, S; Q,, S'.

Rule(4) As I ¢ Ly then L1 N (LoU{l})=0. If £y NL; =0 then, by induction,
FlLy/—], S+ My[Ly/—] — (F'[Ci/—], Aa M[L:/—]), S}, where S; Qf, S7.
By induction, F[Ly/—], S} F My[L1/—] — (Va, L9)[L1/—], S}, where S30Q,, S).
By assumption £ N L; = (). Hence, by induction,

FILy = (Va, Lo)[£1/ 1], S5 = ML/ —] — (Vs L3)[L1/—], S5,
where S3 Qf, S5.
Hence, F[L1/—], 8" & (1 MiMb)[Li/—] — (V3, L3)[L1/—], Ss.

If £, N Ly # 0 then, by induction, F[Ly/—], S v Mi[L:/—] — —, 57,

where S1 Qf, S).
By induction, F[L1/—], S] F Ma[L1/—] — (Va, Lo)[L1/—], S, where S3Q,, S.
Hence, F[L1/—], S" F (I: MiMs)[L:/—] — —, S. Any updates/allocations
made in the evaluation of M necessarily introduces L; into the store. Hence, any
location, in which S and Sy differ, contains at least L; in the label component.

Since £1 N Ly # (0 and we are comparing stores modulo Q, , S5 Qf, S5.

Rule(8) As 1 ¢ Ly then LN (Lo U{l}) =0. If LNL; =0 then, by induction,
F[L./—], S F M[Li/—] = C((Vi, L1)[L/—=], ..., (Vu, Ly)[L/—]), S}, where
S1 Qr, Si. By assumption, £ N L; = (. Hence, by induction,

FIL/=)[zr = Vi, L)L/, ooy @ = Vi, La)[L/=]), S} F
My[Ly/=] = (V, L) [L1/=], Sy

where Sy Qf, 5.

86

If £NL; #0 then, by induction, F[Ly/—],S" + M[L:/—] — —, 8],
where Sy Qf, S7. Any updates/allocations made in the evaluation of My necessarily
introduces L; into the store. Hence, any location, in which Sy and S, differ, contains
at least L in the label component. Since £ N Ly # () and we are comparing stores

modulo Qz, , S O, S!.

Rule(10) As [& Ly, by induction, F[L/—],S" = M[L,/—] — (V, Ly)[L:/—], S},
where S7 Qr, S7. Hence, $1[8 — (v, L1)] Qr, Si[B— (V, L1)[L1/—]]. This uses the
assumption that dom(S}) C dom(S), i.e. if 8 is a completely new location in the
proof of the evaluation of (ref M) under Sy then 3 is also a completely new location

in the proof of the evaluation of (ref M)[L;/—] under S’.

Rule(11) Asl ¢ Ly, i.e. L1 N (LoU{l}) = 0 then, by induction,
F[Ly/—], S+ Mi[L1/—] = (B, L1)[L1/—], S}, where S1 Qf, S].
FlLi/—], 81 b Ma[Ly/—] — (Va, Lo)[L1/—], Sj, where Sy Qg, S5.
If (LyUL2)NLy = O then M;[L1/—] evaluates to § and My[L,/—] evaluates V[L;/—].
Thus So[B— (V, L1 U Ly)] Qr, S8 — VI[L1/—]].
If (L1 U Ly) N Ly # 0 then the updated version of Sy, S»[8 — (V, L1 U Ly)], is
definitely related by Qf, to a version of S}, which possibly differs from Sy only in

the location S.

Rule(12) If £yN Ly =0, i.e. Ly C L then, by induction,
F[‘Cl/*}, S+ M1 — ,3, S’lﬂ where Sl le Si
Since Ly C £ and L is closed under LL, Ly C LL(Ly) C L. Hence, Ly N Ly = (.
As Sy Qr, 81, B € dom(S,') and Sj(B) = V[L1/—]. Hence,
E[El/*], Sl 'M1 — V[‘Cl/*}, Si, where Sl QLI S’l
Ifl ¢ £y and £, N Ly # 0 then, by induction,
F[‘Cl/*}, S+ M1 - —, S{, where Sl QLI S’l
Hence, F[L1/—], S F 1:I1M; — —, 5.
It is important to notice that the closure of the set £ under the function LL ensures

that if the set Lq is retained, i.e. M; evaluates to the same location, then the set of

labels, Lo, associated with its contents is retained.

87

Theorem 7.1.1 If LL, 0,0, 0+ M — VS, L then LL*(L) is a dynamic slice.

Proof: LL*(L) is a set of labels that is closed under the function LL.
Let £, = A(M) — LL*(L). Since £; N L =, by Lemma 7.1.2,
0,0 F M[Ly/—] = V[L:i/—], S, where S Qf, S'.

Hence, LL*(L) defines an executable dynamic slice of the program M.

7.2 Slicing Programs with Exceptions

In this section, we investigate the slicing of purely functional programs in the presence of
exceptions.

The additional productions in the grammar for labelled terms M, is given by

M == l:e

e == let exception D in M
| Mj handlely : (D(zq, ..., 2,) = M>)
| raise M

Since we denote deletion of a subterm by substitution with —, the deletion of an exception
handler leaves behind a term of the form “l; : M; handle Iy : —”. For a simpler
presentation we will assume, when required, that such terms are post-processed to 1y : Mj.

In SML, exceptions are generative[47] by nature. The set of values V', now also contains
exception values of the form [§, ((Vi, L1), ..., (Va, Lyn))]. Exception values are similar to
constructor values discussed earlier. Unlike ordinary constructors, exception constructors
are assigned a unique value every time the declaration is evaluated.

The environment F', in addition to mapping variables to the set of values V', also maps
exception constructors to elements from the set A. The substitution function [£/—] is
identity on exception constructor mappings: [D — §][L/—] = [D — 4.

In the presence of exceptions, in the labelled calculus, terms can evaluate to (V, L) or

to an exception packet of the form < [0, (Vi, L1), ..., (Va, Lyn))], L >.

88

Because of the fact that exceptions radically alter the flow of control in a program,
it is easy to show that minimum dynamic slices no longer exist and even computation of
minimal dynamic slices is undecidable. The following program is written in an SML-like

syntax:
let exception A of int

in (fn x => 5) (raise (A 5)) handle (A x) => x end

The program can be sliced to:
(fn x => 5)—

Or,
let exception A of int

in —(raise (A 5)) handle (A x) => x end

Just as in the presence of assignments, collecting labels, which directly ‘contribute’ to
the answer, does not generate a dynamic slice. We need to close this collected label set

with respect to a synthesized function.

let exception A of int
fun F ff =f (' 3) ((f 4) handle (A x) => x)
fungxy=x+y
fung x =x + 3
fun hx y = x + 40
fun h' x = if (x=3) then 45 else raise(A 60)
in
(Fgg')+ (Fhh') + (h' 4 handle (A x) => x + 75)

end

Figure 7.4

In the call (F g g'), in the program in Fig 7.4, all subterms in the body of F,
except the handle expression, directly ‘contribute’ to the returned answer. The call
(h' 4 handle (A x) => x + 75) is added to ensure that the expression (raise(A 60)),
in b/, directly contributes to the answer. In the call (F h h'), since h is a function that

only uses its first argument, a strategy that collects labels that only directly ‘contribute’

89

to the answer will fail to collect the label of the handle expression in F. But if the handle
expression in F is not included in the dynamic slice then the call (F h h') will end up

raising an uncaught exception.

let exception A of int

exception B of int

fun F £ = f (f 3) (#2((f 4),(f 5)) handle (A x) => x)

fungxy=x+y

fun g’ x = if (x=5) then raise(A (x+2)) else x + 3

funhxy =x+ 40

fun h' x = if (x=3) then 5 else if (x=4) then raise(A 6) else raise(B 7)
in

(Fegg)+ (Fhh) + (W 4+ 15 handle (A x) => x + 9)

end
Figure 7.5

For the program in Fig 7.5, since (f' 4) is the first argument to a second projection
function, a strategy which only collects labels which directly ‘contribute’, will not collect
its label. But if (f' 4) is not included, in the dynamic slice, then in the call, (F h h'),
(' 5) will be evaluated and will raise an uncaught exception B. In the evaluation of the
unsliced program, (h' 5) was not evaluated because (h’' 4) raised the exception A.

The wisdom gained, from these examples, is the following: whenever any label [, which
evaluates to an exception packet, or any dynamic dependencies of [, are deleted then we
must necessarily delete the labelled term, which contains the handler, that transforms the
exception packet, that [evaluates to, into a value. This is because if the exception is never
raised, in the sliced program, then segments of the program may be executed that were
never executed before. Similarly, the deletion of any exception handler, which catches an
exception packet, may result in the modified program raising an uncaught exception or
executing a handler which was not executed before. Hence, deletion of a handler, which
actually catches an exception packet, must involve the deletion of the term in which it
is immediately contained. This is essentially a closure condition. As in the case with

assignments, this closure condition needs to be introduced because of a function closure

90

having multiple contributing call-sites.

A Natural Semantics for the Computation of Slices

The additional set of rules for computing the dynamic slice of a functional program, with
exceptions, is given in Table 7.2. The rest of the rules are very similar to those in Table 7.1,
except that the partial function LL is replaced by the partial function K K and the store S
is replaced by the parameter Fz. Additionally, there are rules introduced by the exception
convention discussed in Chapter 4.

KK is a partial function from 7P(Labels) to P(Labels), storing information
concerning the closure condition discussed in the introduction. For the term
[: M handlely : (D(xy, ..., x,) = My), let M; evaluate to an exception packet, which
is caught by the handler labelled l5. Let Ly be the set of labels of terms to be retained
intact to reach the point in the computation where the evaluation of the term [begins.
KK(Lg U {l}) contains the label [y as well the dynamic dependencies of the exception

packet caught. This closure condition forms a part of Rule 5.

Note: KK, F,FEx,Ly IF M — ... is considered well-formed if the value of any
exception constructor in F' is contained in EFz. Henceforth, we will only be talking about

well-formed terms.

Lemma 7.2.1 For any set of labels L, such that L is closed under KK and Ly C L,
let L1 = (Labels — L).

If BEv' CEx and KK, F,Ex,Lyl-1l:e - V,Ex;, Ly then
FlLi)—], Ea' v (I:e)L1/—] — (V, L1)[L1/—], Ez1', where Ex,' C Ex.

If Ex' CEx, LtNL'=0 and KK, F,Ex,Lylrl:e -k [0, (V;, L;)], L' >, Exy
then
FILi/—], Ex' = (I:e)L1/—] =< [, (Vi, Li)[L1/—]] >, Ex:', where Ex,' C Ex.
Proof: The proofis by induction on the height of the proof tree. The closure property

of KK is only used for Rule(5): the rule that translates an exception packet to a value.

91

KK ,F,Exo, Lou{l} v M — [§, (V;, L))], Ex,, L

1
KK, F,Exy, Ly Ik l: raise M - < [0, (Vi, L;)], L>, Ex; 1)
KK,F[DD—)(s],ETZ,l,LoU{]} I MZ—)‘/;,ETZ,LZ 1=1...n (2)
KK ,F[Dw~], Exg, Ly I+ 1: D(My,...M,) — [0, (Vi, L;)], Ex,, Ly U{l}
KK ,F,Exy, LooU{l} W My — V, Exy, Ly 3)
KK, F,Exq, Ly IF I: Myhandlels: (D(z1, ..., z,) = My) — V|, Exy, Ly
KK ,F,Exy, LoU{l} I M —)<<[(S,(W,L¢)],LI>>,E.’I,‘1
4
KK,F,E.’I,‘(),LO Il—l:MlhandleZQ: (D(’I‘l,,’l‘n):>M2) ()
_><<[57(V;7L1)}7Ll>>7E*T1
where F(D) = §' #§
KK, F,Exy, LoU{l} W My -< [0, (Vi, L;)], L' >, Ex;
KK, Flzi1—= Vi, L), ..., 20— Vo, Ly)], Exy, L'U{ls} F My — V, Ezy, L (5)
KK, F,Exy, Ly IF I : Myhandlely : (D(zq,...,2,) = My) — V|, Exg, L
where L' U{la} C KK (Lo U{l})
F(D) =96
KK, F[Dw~], Exo U{0}, Lou{l} W M — Vi, Ezy, Ly where § € Ex (6)

KK, F, Exy, Ly IF [: let exceptionDin M — Vi, Exy, Iy

Table 7.2: Specifying Dynamic Slices in the Presence of Exceptions

92

Rule(5) There are two cases to consider here:

e If L;NL =0 then £; N L' = . This is because L' C L. Hence, by induction,
FlLy/—], B’ b MIL /=] — < [, i, L /—]) > B!
where Ez,' C Ex;.
Since ls € L, the handler has not been deleted. By induction, the execution of

the handler returns V[£,/—], Exo' , where Exy' C Exy.

e LiNL#(. If I € Ly then, obviously, | evaluates to (—, Exzg').
Ifl ¢ Ly then | € L. As Lg C L and L is closed under KK,
L'U{ly} CKK(LyU{l}) C L,ie (L'U{ly})N Ly = 0. Hence, by induction,

F[El/*] s E.’I,‘I F M[ﬁl/*] - < [5, (Vvl s Lz)[ﬁl/*]] >>, E.’I,‘ll.
As the handler [has not been deleted, we have, by induction,
F[Il — (Vl, Ll)[ﬁl/—], e, Ty (Vn, Ln)[ﬁl/_]]a Exll F
MQ[El/_] - —, E.TQI
These are cases which assume that the evaluation of the handler results in a value
and not an exception packet. On the contrary, if the evaluation of the handler returns
< [0z, {(v2, Lo)}], L' >, Exy' then L' U{ly} C L". Hence, if £;NL" =0 then

L1 N (L' U{ly}) = 0. We can now apply the induction hypothesis to get the requisite

result.

Let us now look at the function application rule, in the instance in which one of the
antecedents evaluates to an exception packet.
KK, F,Exy, Lou{l} I+ My — (F', Xx M), Exy, L4
KK, F, E.’I,‘l,LoU{l} - My — Vo, Exo, Lo

KK, F'lz— (Va, Ly)], Ezo, L1 = M — Vi, Exs, L3

KK,F,E.’I,‘(),L[] =1 MlMQ — ‘/;;,E.’I,‘;;,Lg

If all the antecedents in this rule evaluate to a value instead of an exception packet then
the proof of correctness is the same as that in the purely functional case.
But the term (I : My Ms) may evaluate to an exception packet, < [§, (v, L)], L' >.

This may happen in one of three possible ways:

93

e If KK, F,Exy, Lou{l} I+ My —»<[d, (Vi, L;)], L' >, Ex then
KK,F,Exy, Ly Ik 1: MMy - <[5, (V;, L;)], L' >, Ex.

By induction, F[L1/—], BExy' = Mi[L1/—] = < [§, (Vi, L;)[L1/—]] >, Ex'.

e If My evaluates to a value but,

KK.F,Ex,,LoU{l} IF My <[5, (V;, Li)], L' >, Exs,

by induction, F[Ly/—], Ezi' I My[Li/—] = < [0, (Vi, L;)[L1/—]] >, Ezs'.

e Both the function and the argument evaluate to values but the application may
generate an exception packet. Since, £;NL3 =0 and L; C L3, £;NL; = (. Hence,
by induction, F[L/—], Exg = My[Li/—] — (F'[L1/—], dx M[Ly/—]), Exy'.

By induction, F[L1/—], Ezi' & My[L1/—] — (Va, La)[L1/—], Ex'.
Since, KK , F'[z — (Va, L9)], Exo, L1 I+ M =< [0, (V, L)], L3y >, Exs,

by induction,
F’[El/*][’l‘ —> (V2 5 Lg)[ﬁl/*” 5 E.’IJQ’, L1 |— M[El/*] —<K [(5, (V, L)[Ll/*ﬂ s E’I“;’ >

a

Theorem 7.2.1 If KK, 0,0,0 - M — V,Ez, L
then KK*(L) is a dynamic slice of M.

If KK, 0,0,0F M -<[0, Vi, L;)], L>, Ex
then KK*(L) is a dynamic slice of M.

Proof: KK*(L) is a set of labels that is closed under the function K K.
Let £ =A(l: M)~ KK*(L). Since L1 N L =0, by Lemma 7.2.1,

0.0 +1: M[Ly/—] — V[L1/—], Ex'.
Hence, K K*(L) defines a dynamic slice of the program M.

Similarly, if M evaluates to an exception packet, by Lemma 7.2.1,

(ZJ,@ t M[‘cl/*} - < [67 (Vza Ll)[‘cl/*“ >>7 E.’I}'. t

7.3 Integrating Assignments and Exceptions

It turns out that, from the point of view of slicing, exceptions and assignments are or-

thogonal issues. Hence, the specification of slicing, in a language with exceptions, can

94

be merged with the specification of slicing, in a language with assignments. The proof
of correctness of this merged specification is essentially a merger of the two correctness
proofs. The specification of dynamic slices, in the presence of assignments, uses a global
partial function LL. The specification, in the presence of exceptions, uses a global partial
function K K. It can be shown that closing the returned set of labels with respect to the

functions LL and K K, generates a dynamic slice. We have the following theorems:

Lemma 7.3.1 If KK, LL,F,S,FEz, Ly v M — V, S, Exy, L1 then
for any L, s.t. Lo C L and L is closed under LL and under KK,

If £y = (Labels — L), S Qr, S" and Ex' C Ex then
F[‘Cl/*], Sl, E.’I,‘I F M[ﬁl/*] — (V, Ll)[ﬁl/—], Sl’, E.’L‘l'

where S1 O, S'l, Ez C Ex;

If£oNL =0 and KK,LL,F,S,Ex,Lo v M —» <[5, V;, L)), L' >, S1, Ex

then F[L1/—], S", Ex' - M[Ly/—] =< [, (Vi, L;i)[L:/—]] >, S}, Ezy'
where Sy Qr, S1, Exi' C Exy

The above lemma can be proved by using a lemma built from the combination of

Lemma 7.1.2 and Lemma 7.2.1.

Theorem 7.3.1 If KK, LL,0,0,0,0 I+ M - V,S, Ex, L
then (KK U LL)*(L) is a dynamic slice of M.

If KK,LL,0,0,0,0 v M -<[6,(Vi,L;)], L>,S, Ex
then (KK U LL)*(L) is a dynamic slice of M.

7.4 Broader Slicing Criteria

In his seminal paper, Weiser [67], defines slicing with respect to a two parameter slicing cri-
terion: a set of variables and a statement number. In contrast, Reps and Yang[55], use a sin-
gle parameter slicing criterion: the ‘behavior’ of a statement in a program. Venkatesh [63],
and Agrawal and Horgan[6], also use a single parameter slicing criterion: the value of a

variable at the end of the evaluation of a program. Till date, for higher-order programs,

95

we have been using a fixed slicing criteria: the value computed by a program. We now
investigate as to how we can move to a two parameter slicing criteria similar to Weiser’s.

The operational definition of a program slice developed by Weiser uses the concept of a
projection on a state trajectory of an evaluation. Such a projection for a slicing criterion,
C = (i, x), can be generated by a special print statement placed right before statement 7,
of the program. A print statement in a program can be viewed as dynamic allocation of
data in a special memory. Data is never accessed from this memory nor is it ever updated.
The store S in the specification of dynamic slices, is partitioned into the old store S and the
new special memory, Stream. The proof rules remain the same: rules carry (S, Stream)
instead of S alone. Rules which modified S, now modify the S component. We have a new

rule for print statements:

LL,F,S, Stream, Lo U{l} F My — VS, Stream, L,

LL,F,S,Lylrl:printM; — (), S, (V, L) :: Streamy, Ly U {l}

We will assume that print statements can legally print out only nullary constructors.

Note

e As Stream is a memory that is never accessed, it is constructed as a list of values
instead of a partial map from the set of locations to values. When it is more con-
venient to consider Stream as a partial map instead of a list, we will be implicitly

doing so.

e [t is memory access through the ! operator that generates constraints for the partial
function LL. Stream is a memory that is never accessed during the execution of a

program and hence, does not generate any constraints for LL.

Definition: Given a term M, with (Ip : ep) as a subterm and C = (ly, z) as a slicing
criterion, let the evaluation of M’ = M]ly/(loo : print z); (lp1 : eg)] return the stream,
Stream+. A set of labels £ defines the dynamic slice with respect to slicing criterion

C, if for L1 = A(l : e) — L, the evaluation of M'[L;/—] also returns Stream.

If the evaluation of a term returns a stream [(vi, L1), ..., (vn, Ly)], then by an aug-

mented version of Lemma 7.1.2, we can show that the closure of (L; U...U L,) with

96

respect to LL is the dynamic slice with respect to the slicing criterion.

Theorem 7.4.1 Let Streami =[(Vi, L1), ..., (Vu, Ly)] and C = {(ly, x).

If LL,0,0,0,0IF M — V. S8y, Streamy, Ly
then LL*(LyU...ULy) defines a slice with respect to the slicing criterion C.

Proof: Let L=LL*(L;U...UL,) and £y =A(M)— L.
If LL,0,0,0,0 % M — V,S1, Stream1, Ex1, Lg
then, by Lemma 7.1.2, - M[Ly/—] — (V, Lo)[£1/—], S1’, Streamy’,
where S; Qp, S1', Streamy Qp, Stream;'. As LN (LyU...UL,) =0,
dom(Stream) = dom(Stream,'). Since V; is a first-order value, we have

Stream' = [Vy, ..., V,l.

It is easy to extend this proof to a language with exceptions.

Extensional Characterisations

We do not have an algorithm-independent characterisation of the slice we compute. We
would like to investigate whether we can provide a denotational characterisation or a

collecting interpretation on a lazy semantics, along the lines of Hudak and Young [33].

97

Chapter 8

Program Instrumentation and an

Implementation Overview

The earlier chapters of this thesis presented natural deduction proof systems for the compu-
tation of an executable dynamic slice of a higher-order program. A naive but labor-intensive
way of implementing the specification is to write a special interpreter, for labelled SML
programs, which mimics the computation of the proof system. In this chapter, we show
that it is possible to translate a labelled program into an unlabelled program such that
when this code executes on the standard interpreter, for unlabelled programs, it returns
a tuple: the first component of the tuple is the value returned, by the execution of the
labelled program, and the second component is the set of labels, to be closed with respect
to global functions, to obtain an executable dynamic slice.

The aim of the empirical analysis is to obtain an estimate of the size of the dynamic
slice of a program, with respect to a particular input, in comparison to the the execution
slice of the program. Given an Core-SML program, the strategy used is as follows: we
first attach unique labels to the node of the parse tree of the program and then translate
this labelled program to an unlabelled program. This unlabelled program is executed on
the standard interpreter and it returns the expected answer as well as the set of labels

representing the dynamic slice.

98

8.1 Program Instrumentation

In this section we provide a syntax-directed translation for transforming a labelled program
into an unlabelled SML program. The translator introduces a host of bound variables in
the let-constructs and abstractions. In an actual implementation, these variables are going
to be given uniques names, by the use of some kind of a “gensym” function, within the
translator. But, for a simple exposition of the translation, a name generator is not used
while introducing bound variables: the names of variables are picked from a fixed finite
set.

A call to the translation function [] is of the form [M |7, r where:
e M is a labelled term to be translated.

e [is a variable name whose value is a set of labels. The entire set of control depen-
dencies, required to reach a program point, is explicitly carried along through the
computation, in the operational semantics presented in the previous chapters. This
is represented by the set of labels L, to the left of |- in the semantics given in
Table 7.1 and Table 7.2. The label set L is essentially an attribute that is inherited
from previous terms executed in the computation. The computation and propaga-
tion of this label set is handled by passing the name of the variable, containing the
current label set, as the second parameter to the translator function. An alternate
approach would be to use a two parameter translator function which translates every
term into an abstraction which takes in a set of labels as input. But this would create

too many redexes, at run-time, which could be reduced statically.

e The third parameter R to the translator function is a set of variables. This is
required for handling recursive functions. The semantics for the computation
of dynamic slices, as discussed in Chapter 7, has environments which are finite
maps, Var — Val x P(Labels). This means that a variable, representing a recursive
function, should be bound to a tuple whose second component is a label set. But
bindings for recursive functions are created automatically by the compiler from
the let construct and cannot be simulated using any other mechanism. Hence,

a variable representing a recursive function gets bound to an abstraction and

99

II.

I11.

IV.

VL

not to a tuple, consisting of an abstraction and a set of labels, as other function
variables are. Fortunately, as mentioned in Section 7.1, the label set associated with
a recursive closure may be assigned the constant value (). The strategy used by
the translator function is to pass around the set of variables, which are bound by
recursive function definitions and are currently in-scope, as the third parameter. To
translate [: z]7 g , we first check whether z is a variable bound in an in-scope
recursive function definition by checking membership in R. If it is, then we know
that = is an abstraction, not a tuple, and we return (z, L U {l}). Otherwise z must

be bound to a tuple (V', L) and we return (V' , Ly U L U {l}).

[l:z]r,r = if (z€R)

then (x, LU{l})

else let (v, 1) =z in (v, LUL; U{l})) end
[[l:)\xM]]LyR = letf:)\:v)\Ll [[M]]Ll,R

in (f, LU{l}) end
[1: letrec f(z) = Myin Ma] r = let f(z) = AL [M1]L, rugpy
Ly=LuU{l}
in [[MQ]]LZ,RU{f} end

[[l: MlMQ]]L’R = let LOZLU{l}

(f, L) =[Mi]r,,r

V=[M]r,,r
in fV L end
[[Z:Op(Ml,...,Mn)]]L,R = letL[]:LU{l}

{Vi, Li) =[Mi]re,r}

in (Op(Vi,...Vp), Ul 1L;) end

[[ZZC(Ml,...,Mn)]]L’R = letleLU{l}

in(C([[Ml]]LI,R, ey HMn]]Ll,R)aLl) end

100

VII. [i: case(My,C(z1, ..., 2n) = My, y= M), r =
let Lo = LU {1}
in case ([Mi]r,,r)of (Clz1, ..., 2n), L) =>[M]r, &
(y, L1) =>[Ms]5, r

end

VIII. [[l refM]]LyR = let LOZLU{Z}

in (ref([M]r,,r), Lo) end

IX. [I:'M]L r = let Lo=LU{l}
(I, L) =[M]wy.
(V, Ly) =1
_=Update(MM , Ly, Lo)

in (V, L ULy) end

X. [[l:Ml ::MQHL’R = letLU:LU{l}
(I, L) =[Mi]y, r
(V, Lo) = [Ma]y, r

in (Il:=(V,L1ULy), Ly) end

XI. [l: let exception D in M [, p = let exception D
Ly =LU{l}

in [[M]]LO,R end

XII. [i:raise M|, r = let Lo=LU{l}

in raise SPECIAL_E([M]z, r) end

101

XIII. [i: Mjhandlely : (D(zy, ...2,) = M), r =
let Lo = L U {1}
in [M;]r,, r handle SPECIAL_E(D(z,...z,), L1) =>
let Lo = L1 U {l5}
y=[Mz]r, r
_=Update(MM , Ly, Ly)
in y end

end

As discussed in Chapter 7, the semantics for the computation of dynamic slices, in
the presence of imperative features, uses global constant partial functions, LL and KK.
The translated version of the labelled program synthesizes these functions in the course
of the computation. Instead of having subcomputations returning their own synthesized
fragments of LL and K K and taking their join, we introduce a single global variable M M
which is updated in the course of the computation. At the end of the computation, the set
of labels returned need to be closed with respect to this global function. The construction

of the partial function M M uses a function Update with the following semantics:

MM :=MMU (M — M) if M ¢ dom(M M)
Update(MM , M, M') =

MM := MM (M~ MM(M)JUM') otherwise

In the instrumented code for (I : raise(l; : My)), (I : M) evaluates to a tuple

consisting of a value of exception type and a set of labels. But the term labelled [needs
to raise an exception. Hence, all raise expressions raise the same exception SPECIAL_E
applied to the instrumented argument. By pattern matching on the argument, to the
exception constructor SPECIAL_E, handlers can find out the actual raised exception. If
there is a match with the exception constructor, in the argument to SPECIAL_E, the handler
begins to execute. If the set of labels is given the ML type Set_of Labels then the
exception constructor SPECIAL E is declared as follows,

exception SPECIALE of exn * Set_of _Labels;

102

where exn is the type for exceptions in SML.

In Rule XIII: the translation for terms containing exception handlers, it is important
to note that an update to the global function M M is logged only if My, the body of the
exception handler, evaluates to a value and not an exception packet.

An issue concerning exceptions has been side-stepped in the translation process.
Atomic operations on first-order constants, represented by Op, can raise exceptions
in SML/NJ. Division by zero raises the exception Div. Addition and Multiplication
can raise the exception Overflow. Operations on real numbers can raise the excep-
tion BadReal. All these exceptions must be caught and translated to the exception
SPECIAL E of exn * Set_of _Labels. Hence, for every atomic operation, we need to de-
fine a handler that catches all possible exceptions, that can be raised by the operation,

and re-raises these as the exception SPECIAL_E along with the label set of dependencies.

8.1.1 Correctness of Program Instrumentation

To compute the dynamic slice of a labelled term M, it is first translated to an unlabelled

term M; using the translator function.
Let M = let L=10
in [M], g end

The following sequence of statements are then executed on the SML interpreter:

> val MM = ref () ;

> exception SPECIAL_FE of exn x Set_of _Labels ;

> wval (v, L) = M ;
After this computation, the set L is closed with respect to the function M M to obtain the

dynamic slice.

The correctness of the instrumentation is stated by Theorem 8.1.1. For simplicity,
we assume that there are no recursive functions. Recursive functions do not add to the
technical complexity of the proof: we only need a stronger hypothesis to ensure that any
closure, associated with a recursive function, is included in the the set R, which is used in

the instrumentation function [|z, .

103

We need to define a relation A, relating values in the semantics for dynamic slicing, as
specified in Table 7.1, with values in the standard semantics, as generated by the annotated

version of the program.
o ((F, Az M), L) A((E, \eAL[My, g), Lo) if FAE.
o (C(Vi,..., Vo), Ly) A(C(UY, ..., Up), Lo) if Vi, V; AU,
o« Flz — (V,L)| AE[z — (U, L) if (FAE)and (V,L) AU, L).

e [| A E : This relation is present to accommodate for the fact that the annotated

program has extra bound variables for Label sets.

The relation A, for environments, is similarly extended to relate stores.

The natural semantics for the computation of dynamic slices, as presented in Table 7.1,
uses a constant relation LL for capturing control dependencies arising out of assignments
and exceptions. The annotated program constructs this relation, during evaluation, using
a reference variable MM. It is easy to show that at any point in the computation, the value
of MM is consistent with LL, i.e. if LL(Ly) = Ly then IMM(L;) C L. Since, at the end
of the computation MM satisfies every constraint which LI does and is also consistent with

it, 'MM can be taken to a possible value of LL.

Theorem 8.1.1 Given a labelled term (I : e), if

FAE , Sy ARy and LL,F,Sy, Lo IF (I: ¢) =V, S, L1 then
E[Kow Lo}, Ro = [(l: e)]k, 0 — (U, L1), Ry,

where (V, L) A(U,L) and S; AR;.

Proof: The proof is constructed by induction on the height of the proof-tree, based
on the semantics in Table 7.1. The simplicity of the proof arises from the fact that the
slice, constructed in Table 7.1, is essentially the computation of a synthesized attribute of
the proof tree representing the standard semantics. The annotated version of the program
simply introduces code to compute this synthesized attribute during the evaluation of the
program.

Here, we go through one important case:

104

Rule (App):
LL,F,S[],L[]U{[} - M, — (FI,)\.’IJM>,51,L1

LL,F,S ,LoU{l} IF My — V5,83, Lo

LL, F'lz — (Vo, Ly)], So, L1 I M — V3, 83, L3

LL,F,S(),LO =1: MMy — V3,S3,L3

The annotation version of the term My My, [1: My My]k, g, is
let Ky = KqgU{l}
(f, K2) = [Mi]x, 0
V=[M]g, 0
in fV Ky end
By induction, we have,
E[Ky— Ly, Ky = LoU{l}], Ry & [Mi]g, o — ((E", M AK[M]k), L), R
where F' AE' and S; A R;.
E[Ky— Ly, Ky — LouU{l}], Ry + HMQ]]KI,Q — (Us, Ly), Ry
where (V4, Lo) A (Uy, Lg) and Sy A Rs.

Hence, E’[’I‘ — (UQ, Lg), K- L1 F HM]]K,(Z) — (Ufg, Lfg)], R3
where (Vg, Lg) A (U3, Lg) and 53 A R3.

8.2 Implementation Details

We have implemented, in SML’93, a program which takes in a core SML program and
returns an annotated version of the program. We have also implemented a support program
to calculate the execution trace of a program. The implementation is built using the parser,

elaborator and other libraries from the ML Kit [13].

105

8.2.1 The Interface of the Annotating Program

Our implementation provides a single function,
type L = Set_of_Labels_Static
final answer: string list -> L * L * L
The argument to the function is a list of strings, with the following elements:
Element 1: The name of the file in which the program to be annotated resides.
— Element 2: The name of the file in which the annotated program is to be dumped.

Element 3: The name of the file in which program execution statistics and slice size

information is to be saved.

— Element 4[Optional]: The name of the file in which a listing of node labels, which

form a part of the execution slice but not a part of the dynamic slice, is to be preserved.

The value returned by the function call is a triple of label sets: the first component is
the set forming the dynamic slice, the second component is the set forming the execution
slice and the third is the set consisting of the entire set of labels in the program.

Given a function call, final answer ["p.sml","p.annotated", "p.log","p.diff"] ,

we now present details regarding the structure of the input and output files.

The Structure of the Input File
Assumptions regarding the input file "p.sml" are detailed below:

e The program contained in "p.sml" should be a core SML program. The annotated
version of "p.sml" is saved in the file '"p.annotated". The file "p.annotated"
contains a valid SML program that type checks. Hence, we need a translation for
datatype declarations and explicit types present in the input program:

[b] —> b+ Set_of Labels, where b is a basic type or a datatype/abstype.
[r1 =] = ([7n1] — Set_of_Labels — [72]) * Set_of Labels
[r1*m] = ([r1]*[m2]) * Set_of Labels

After the parsing of the program in "p.sml" is complete, every node in the parse

tree has an associated label which is a 4-tuple of integers: the first two integers give

106

the line number and the column number, in the input file, where the node begins and
the next two integers give the line number and column number where the node ends.
The type Set_of _Labels_Static is the abstract type for such a set, whose elements
are of the type int*int*int*int. Since sets of labels are constructed at run-time,
efficiency is of utmost importance. Hence, a 4-tuple representing the label of a node
is mapped to an integer. The type Set_of Labels is the abstract type for such a set

of integers.

It is assumed that the program contained in "p.sml" does not contain eqtype vari-
ables and that the equality operator operator is restricted to terms of basic types.
SML provides for a built-in polymorphic equality operator. We cannot generate an
annotated version of this operator because there is no source-level implementation of
this operator. Nor is putting some kind of a wrapper around the available equality
operator a viable strategy. This is because a pair (1, 2), in the annotated program,
evaluates to a value (((1, L1), (2, L9)), Lg). As per the semantics of the original
program, this pair, in the annotated program, should be considered to be equal to

any other annotated pair value of the form (((1, L), (2, L)), Lp).

For a program returning a value v, of a basic type b, the annotated program returns
a value (v, L) where the set L, after closing it with respect to relevant relations, is
the executable dynamic slice for the computation of the answer. But, for a program
returning a value, of a non-basic type, the annotated program returns a value of

much more complicated internal structure.

Let the program in the input file be returning a list [1,2]. The datatype list, in
the annotated program, is given by the following declaration:
datatype ’a list = nil

| :: of ((’a*Set_of Labels)*(’a list*Set_of Labels))*Set_of Labels
The program-user may desire to perform a slice computation to isolate the set
of labels which were ‘needed’ in the computation of every element of the list or
the set of labels which were ‘needed’ in the computation of a specific element
of the list. To provide the user the ability to specify a slicing criterion, in a

most general way, we require the input program to terminate with a function

107

val w = 8 + 9
val x = 10
val z = (fny => y) w

val ANSWER = fn f => f (makestring =z)

Figure 8.1: The sample program p.sml
ANSWER: (string -> unit) -> unit.
val ANSWER = fn f =>

We would like the user to treat the argument function f just like the standard output
function (I0.outputc std_out), in SML/NJ, and apply this function f to every
value, of basic type, whose dynamic dependencies he is interested in. The ANSWER
function, for a program returning a list of integers 1, where the user is interested in

the dependencies of every element of the list would run like this,

val 1 =
val ANSWER = fn f => 1let fun F [] = (O
| F (x::1) = f (makestring x) ; F 1

in (F 1) end

In the annotated version of the program, we have an additional line in the program,
where ANSWER is applied to another function which collects the dependencies of each
of the values to which it is applied and returns the complete set of dependencies, as

the slice.

The Structure of the Annotated Program

We will now illustrate the general structure of annotated programs. Consider, the SML
program given in Figure 8.1. The annotated version of this program is given in Figure 8.2.

The important points to note about the annotated program are:

108

local open Pervasives in
val EMPTY = Set_of_Labels.empty
val ID = (fn z => z)

val INSERT

Set_of_Labels.insert

and UNION = Set_of_Labels.union
and SINGLETON = Set_of_Labels.singleton

val AUGMENT = (fn {1 = z10, 2 = z11} => (fn z12 =>
{1= z10 , 2= UNION zl11 z12 }))

and AUGMENT_ONE = (fn {1 = z10, 2 = z11} => (fn z12 =>
{1= z10 , 2= INSERT z12 z11 }))

val w = Pervasives.plus_opt2_int 8 9 (INSERT 3 (INSERT 2 (INSERT 1 EMPTY)))
val x = {1= 10, 2= (INSERT 4 EMPTY) }
val z = (fn y => fn z13 => AUGMENT y (INSERT 5 z13))
(AUGMENT w (INSERT 6 EMPTY))
(INSERT 7 EMPTY)
val ANSWER =
{1= (£fn £ =>
(fn z14 =>
(let val {1 = z15, 2 = z16} = f
in

z15 (Pervasives.makestring_arg_int (AUGMENT z (INSERT 8 EMPTY)) 9)
(INSERT 10 (UNION z14 z16))
end))) ,
2= (INSERT 11 EMPTY) }
val {1 = z17, 2 = z18} = ANSWER
val _ = z17 {1= Pervasives.output , 2= EMPTY} z18

end

Figure 8.2: An annotated program generated by the implementation

109

e The SML Definition [48] defines the semantics of programs based on an initial en-
vironment called the Initial Dynamic Basis. Annotated versions of the functions,
defined in this basis, are placed in the module Pervasives. It is locally opened for

the execution of each annotated program.

e The final expression evaluated in the annotated program is the application of the
annotated version of the function ANSWER to the function (Pervasives.output).
The function (Pervasives.output) stores the dependencies of every value, to which

it is applied, in a global store from where it can be extracted when needed.

e The translation function on programs [] is designed to include, in the slice, the label
of every program node which contributes to the value returned. As an optimisation,
the actual implementation no longer includes every such node label: only the labels
which form the leaves of the parse tree are included in the slice. At the end of the

computation the set of labels is closed to include the non-leaf labels into the set.

e The program in Figure 8.2 has had some cosmetic changes made to it to make it

more readable:

— The variable names INSERT , AUGMENT , EMPTY have been introduced in the
program to enhance readability. In reality, the translator makes a pass over the
program to isolate the largest variable name, based on lexical ordering. Every
variable introduced by the translator is then formed by concatenating an integer

to this string. The variables z13 , z14 are examples of this.

— SML allows a program to define infix operators. The fixity information is needed
and used only in the parse phase of the language implementation. Qur translator
needs to output a valid SML program that will pass through the parser. This
means that we would need to preserve the fixity information of operators beyond
the parse phase of the input program. We have decided not to do so. Instead,
every variable v, in the input program, is replaced by (op v) in the output
program. This ensures that output program parses, irrespective of the fixity of

the operators.

110

e SML does not allow a program to define overloaded functions. But certain pre-defined
overloaded operators are allowed as long as their exact type can be determined from
the context of their use. But, we cannot use the annotated versions of these over-
loaded operators in an overloaded fashion. Hence, we need to preserve the type
of every occurrence of an overloaded variable from the elaboration phase and then

substitute an annotated version of the appropriate type.

This is seen in the case of the operator + | or the function makestring in Figure 8.2.
The annotated program has the operator + from the original program replaced
by (Pervasives.plus_opt2_int). This function is an optimised annotated integer

addition operator.

The Structure of the Log File

When the example annotated program in Figure 8.2 is executed by our implementation
it generates a log file which contains execution statistics for the input and the annotated
programs. The contents of the log in Figure 8.3 are mostly self-explanatory. The lines
containing the size of the dynamic slice and the execution slice contain two entries re-
spectively. As mentioned, in the previous subsection, the label collection strategy, in the
implementation, only collects labels at the leaves of the parse tree. The first entry in the
line gives the size of the slice, assuming such a label collection strategy. The second entry
in the line gives the size of the set formed by upward closure of the slice on the parse tree.
The line keyed by Fraction gives the corresponding ratios of the sizes of the dynamic slice
to the execution slice.

A careful study of the log file will reveal a slight inconsistency, though. Every node
of the input program in Figure 8.1 is executed. Hence, the second entry in the execution
slice line should exactly equal the size of the input program, as stated in the first line
of the log. This is seen not to be the case: the counts differ by 1. The reason for this
small difference is the internal representation of expressions in SML, which are function
applications. SML provides the programmer an ability to specify the fixity of function

operators. For example,

111

p.sml:

Input Program Size(in Nodes): 35

Annotated Program Size(in Nodes): 195

Time to Annotate Input: 0.040000

Execution Time of Input Program: 0.050000

Execution Time of Annotated Program: 0.160000

Dynamic Slice Size(in Nodes): 10 30

Execution Slice Size(in Nodes): 11 34

Fraction: 90.9090909090909% 88.2352941176471Y,

Figure 8.3: A log file generated by the implementation

fun xor (x,y) = (x orelse y) andalso not(x andalso y)
infix xor

val e = true xor false

A parser for SML, after infix resolution, would internally represent the expression for
e as (op xor){l=true,2=false}. Notice, that all the nodes in the parse tree of this
expression cannot be mapped to unique positions in the input file. Hence, there will
be some discrepancy between a program counting the number of nodes in the parse tree
and another counting the number of nodes by the number of distinct textual locations.
Besides, the example of infix function operators, discussed above, SML provides a whole
set of derived forms [48] which are pre-processed into other language constructs of the core.

A derived form which arises frequently is illustrated below,

val w = {a= 20, b = 90}
val x = (#a w)
SML translates the expression (#a w) into (fn {a=x,...} => x) w. Once again, we have

a parse tree whose nodes which cannot be mapped to unique textual locations in the input
file.

This discrepancy is not very serious from our point of view. We are predominantly
interested in isolating nodes which make no contribution to the values specified in the
slicing criterion. This isolation can be adequately done wth a set composed of leaves of

the parse tree. Besides, for most of the program analysed by the author, the difference in

112

the value of the ratios is also very small.

The Structure of the Diff File

The diff file generated by a call to the function final _answer gives the labels of leaf-nodes
of the parse-tree, of the input file, which form a part of the execution slice but are not a
part of the dynamic slice, based on the slicing criterion defined in the input file. In the
example program, in Figure 8.1, the value x is not required in the computation of the final
value of z. Hence, the diff file contains the entry (3,8,3,10). This entry states that the
third line of the input file between columns 8 and 10 makes no contribution to the answer.
This is the label for the value 10 on the third line. An upward closure of this label would

include the entire declaration val x = 10.

8.2.2 Annotating Patterns

The skeletal language LML, in Figure 4.1, used throughout this thesis, has a very primitive
case statement, as compared to SML. SML allows arbitrarily nested patterns, wild cards
for patterns and pattern rows. Let us review the rules for computation of slices for the

case statement.

E+ M — —

EF1: CaSG(Ml,C(.’El,...,.’En)=>M2,y=>M3) - —
LL,F,SO,LOU{l} I M, — C((‘/l,Ll),...,(Vn,Ln)),Sl,L
LL,F[ZEli—)(Vl,Ll),...,an(Vn,Ln)],Sl,L I- My — V,SQ,L,
LL,F,Sy, Ly Ik 1:case(My,C(xz1,...,20) = My, y= M3) — V, Sy, L'
LL,F,Sy, Lou{i} I+ My - C'((V1,L1), ..., (Va, Lp)), S1, L C#C'
LL,Fly—C'((Vi,L1), ..., Vo, Ly))],S1,LIF M3y — V, Sy, L'
LL,F,Sy, Ly IF l: case(M;y, C(xz1,...,2,) = My, y= M3) — V Sy, L'

Let a simple pattern be defined as a variable or a constructor applied to a tuple of
variables. For a language, with simple patterns, My and M3, the expressions beneath the

patterns, need to be evaluated under the set L, the dependency of the value to which M;

113

evaluates. Hence, we have the following the annotation for a case statement,

[1: case(My, C(z1, ..., 2n) = My, y= M), r =
let Ly = LU {i}

in case ([[Ml]]hg,R) of (C(.’El, ,.’En), Ll) => [I:MQ]]LI’R

| (y, L1) =>[Ms]L, .r

end

For the purely functional part of LML, we have a theorem, Theorem 5.3.1, which
states that the dynamic slice of the program exactly co-incides with the execution trace
of a call-by-name/lazy evaluator. In trying to move from a language with simple patterns
to a language with complex patterns this is the property we will seek to maintain. The
call-by-name evaluation semantics, given in Table 5.3, need not make any assumptions
about the order of evaluation in patterns because all patterns are simple. When complex
patterns are introduced into the language, the call-by-name evaluator needs to specify the

order of evaluation in patterns. Let us look at a sample program,

case x of

ACBx , Cy) =>f(x, y)
| ACx , vy) = glx, y)

| _ => 20

Given this program, a call-by-name evaluator will first evaluate x to A(w;, wy). Now,
the evaluator needs to decide which of the closures, w; or ws, is to be evaluated first
and matched against the corresponding pattern. Call-by-name evaluators, with differ-
ent choices, are semantically different. The strategy we have opted for is the tradi-
tional one: from left to right. Once the order of evaluation of subpatterns, for the
call-by-name evaluator, has been decided we can compile complex patterns into simple
patterns and use the annotation technique used before. The question, which might be
raised here is, what so sacrosanct about Theorem 5.3.17 The answer is, it captures in-
tuition. If x is bound to the value A(B 8, D 9), in the annotated program it will be
bound to some value (AC ((B (8,L4), L2) , (D (9,L5), L3)) , L1) , LO). Even

though the value of x matches only the second pattern, this does not mean that the

114

computation g(x, y) is dependent only on (union LO L1). It is dependent also on
the fact that the first pattern failed to match. Hence, assuming left to right pattern
matching within sub-patterns, the computation g(x,y) should be considered dependent
on (union (LO (union L1 (union L2 L3)))).

Since the translation to simple patterns is done only to obtain the set of dependencies
with which to compute the body of the case statement, we break up the case statement, in
the annotated program, into two parts. The first part, works on simple patterns and returns
the set of dependencies required for the pattern match. The second part annotates the
expression associated with each rule, in the case statement, assuming it depends on the set
of labels returned from the first part. The algorithm, used in the implementation, for the
compilation of complex patterns to simple patterns, has been take from Augustsson [11].
This is briefly elaborated in Table 8.1. The compilation of a list of complex patterns,

[P1, --.Pn], begins with a call to,

let val Id = fn 2 =>x
val L = emptyset

[p1]

in C[(z,q ... ¢)]r,a end
[Pn]

Inacallto C[], s, L is the name of the variable which stores the set of labels needed in the
matching till now and f is a call-back function which starts pattern matching along another
path, if the match fails along this particular path. The cases elaborated in Table 8.1 are

explained below:

I. This stands for a successful termination of matching, at run time. We simply return

the set of labels collected in the course of the match.

IT. This case is actually an instance of case (3). When the head of all pattern lists, to

be matched, are variables, we proceed to match the tail of all the pattern lists.

ITI. This is most general case: the head of a pattern list may either be a variable or a

constructor. In this case, the list of pattern lists is partitioned into sublists which

115

consist of pattern lists whose heads are exclusively variables or exclusively construc-
tors. Table 8.1 shows the list of pattern lists getting partitioned into three sublists.
We then define two new default functions. One defining the path to follow if no
pattern list in the first sublist matches and the other defining the path to follow if

no pattern list in the second sublist matches.

The head of every pattern list, in the first sublist, is a constructor. Within this sublist,
we bring adjacent to each other pattern lists with the same constructor at their head.
For example, for every pattern list P;, within the sublist, with the constructor C
at the head, we strip off the constructor and cons its arguments to the tail of the
pattern list, to form a new pattern list Py. Then we define a new simple pattern
for the constructor Cp, as a part of a case statement, collect its dependencies and
recursively match for the list of pattern lists { Py }. It is important to note that both
the default function and L have now changed. The collection of dependencies for

unary and n-ary constructors are different. Hence, we illustrate the case for both.

If the partition of pattern lists returns only one sublist, i.e. the head of every pattern
list begins with a constructor, then we will have no new default function to define.

All default function calls will use the input default function.

The description in Table 8.1 is very high-level and abbreviated. The actual implemen-
tation handles a lot of instances as special cases to prevent an explosion in code size.
It should be noticed that the label collection strategy is an implementation of strict

pattern matching [52]. We explain the concept through an example,

datatype TT = A of int
val f = fn (A x) => 9

val z = f (A 2)

Slicing this program for the value of z returns the fact only the value 2 is superfluous. But,
intuitively, since the pattern (A x) is an exhaustive pattern of type TT and x is not used
in the body of the function, the entire expression (A 2) should be considered superfluous.
A lazy evaluator which does not evaluate its argument to match against a single pattern,
that is exhaustive, is said to implement lazy pattern matching. Currently our decision to

implement strict pattern matching is mainly for simplicity of implementation.

116

LCl(l,{De.r = L

[017p12,---p1n}
V2, seee
IL C[([z1, 72...2n], [v2:P22: - - P2l Je,r =

[Umapm% .. -pmn}
[1012, ---Pln]
C[([z2, ... 2], ‘[1"2-2"“7”2”] NP

[pm27 ---pmn]
([Ci(qi1s---,qin1)s P12, - - Pin])
[02 421, P22, - - -pzn]
VP12, - - -
L C[([z1, z2... 2], [t P2 - Pl Vo, =

[Uk—1,Pk—1,2; - - - Pk—1,n]
[Cr(qr1s- - -+ Qrng) Pk2s - - - Pien]
L.)

let funhL — C[[(['I;l,'I;Q'I;nL{ [Ck(lev---7ank)=pk27---pkn] })]]L,f

(P12, - - Pin
fung L=C[([z2, ..., zp], { ... \AFAYS

[Pk—1,25- - Pk—1n]
in
case x; of
(Ci((y1, -+, yin1), Lo), L1) => let val Ly = union L (union Ly L)

incuuy],._.,ym,xz...xn],{ [@11: -+ int,Pizs - pin] })h,gend
| (Coyr, Lg) => let val L; = union L L
in C[[([y1 7 $2---:rn], { [Q21,P22,...p2n} })ﬂLl,g end

| (., Lp) => let val L =union L Ly
in (g L) end
end

Table 8.1: Compiling Complex Patterns to Simple Patterns

117

8.2.3 Optimising the Program Slicer

The naive program annotator function, [], as described in the beginning of this chapter,
provides for poor runtime performance. The predominant reason for the high execution
time of the annotated program is the large number of set unions and insertions being
performed in the course of the computation. The entire suite of implemented optimisations
is directed towards reducing the number of set unions and insertions being performed by
the annotated program. We have already mentioned one important optimisation in the
previous subsection: of the label insertions, introduced by the annotator function, the only
ones that are retained are those which involve insertions of labels that are leaves of the
parse tree. Insertion of a non-leaf label is superfluous: it can be included in the slice at

the end of the computation, using the order of labels defined by the parse tree.

Function Application

Atomic Operators, particularly arithmetic operators, occur very frequently in pro-
grams. Hence, it is extremely important to weed out any superfluous computation
in the annotated version of these operators. Consider, the integer addition operator
(op #): int*int -> int. The type of the annotated operator [int*int -> int|
equals ((int*L) * (int*L))*L -> L -> int*L where L = Set_of Labels. Hence, the

immediate annotated version of this operator is,

val plus_int0 = fn(((x1:int,L1),(x2,L2)),L3) => fn LO =>

(x1 + x2, union LO (union L1 (union L2 L3)))

But the operator + is rarely, if ever, applied to a term that is not an explicit pair. Integer
expressions like (op +) (f x y) rarely occur and the function plus_int0 is needed only
for handling such expressions. Whenever the operator + is applied to an explicit pair, it
may be that either one or both components of the pair are integer constants or neither

are. Based on these possibilities, we define four additional different integer operators:

val plus_intl = fn x1:int => fn (x2,L2) => fn L3 => (x1 + x2, (union L2 L3))

val plus_int2 fn(x1l:int,L1) => fn x2 => fn L3 => (x1 + x2, (union L1 L3))

118

val plus_int3 fn x1:int => fn x2 => fn L => (x1 + x2, L)

val plus_int4 = fn(x1l:int,L1) => fn (x2,L2) => fn L3 =>

(x1 + x2, union L1 (union L2 L3))

All these operators perform lesser number of set unions than the operator plus_int0.
It should be noticed that all these operator have different types. Whenever the operator +
appears in an input program, the implementation finds out which version to use and
annotates the arguments accordingly. A similar optimisation could be performed for all
binary functions which do not escape the scope of their declarations. For such functions, if
we know all the call-sites, we can keep around multiple annotated versions of the function,
using whichever one is appropriate.

In general, given a function taking in an argument of type 7 % 79, its annotated version
takes in an argument of type ([71] * [72]) * Set_of_Labels. The annotation for an explicit
pair [: (M, My), is given by [1:(My, Ma]r = (([M1]ogy, [Ma]oogpy), LU{l}).
Hence, the annotated version of the term [y : My (I : (M, , My)), is given by,

[lo: My (l: (M, Ma))]r, = let Ly =LU{lp}

(f, L2) = [Mo]L,

v=(([M]r,ouy, [M2]lr,0py)s L1 U{l})

in fovlLyend

It is to be noticed that the label set component of the value v is already used in the
annotation of the components of the pair. Except for the label [, the label set component
of v is also contained in the set of labels passed as an argument to the function f. Hence, we
can change the annotation of the pair to v = (([M1]z,uqy, [M2]r,u3), {1}). Reducing
the size of the label set component significantly reduces the cost of a set union.

A similar optimisation can be done when a function is applied to a variable. The

standard annotation for [y : My (I : z) is given by,

119

[lo: My(l:2)]r, = let Ly =LU{ly}

(f, L2) = [Mo]z,

(v,L3) ==

x = (v,Lg ULy U{l})

in faxlLgend
Clearly, the augmentation of the set component of z by L; is redundant. This is because
within the body of f, x will be evaluated under Lo, which contains L;. Hence, we need
only have z = (v, L3 U {l}). In general, function applications to values can accommodate
this kind of optimisation.
A function of type (11 — 72) get translated to a function of type

([71] — Set_of _Labels — [79]) * Set_of Labels. For functions values which have single
call-sites, which are known, the standard annotation does a lot of superfluous computation.

The standard annotation for [y : (I : Az M) M; would be given by,

[lo:(: \e M)M]; = let Lo=LU{l}
(f, L) = Az ALy [M]1,, LoU{l})
vV =[M]r,
in fV L, end

Our implementation, which also collects labels only at the leaf of the parse tree, would

annotate this as,

[lo:(: MM, = Aa[M]L) [M]

This is correct only because the function is a value and its call-site is known.

The List Library

Lists are the most frequently used datatypes in SML and it is of utmost importance to
optimize the annotated version of list functions. The datatype list, in the annotated
program, is given by the following declaration:
datatype ’a list = nil
| :: of ((’axSet_of Labels)*(’a list*Set_of Labels))*Set _of Labels
A value of type int list, in the source program, becomes a value of type

[int list | * Set_of Labels in the annotated program, where [int list] is an instance

120

of the annotated datatype declaration for list. Just as for arithmetic operators being
applied to tuples, every application of the cons constructor is optmised to make sure that
no redundant information is computed.

Operations on lists, or for that matter, any recursive datatype, generate an enormity
of set operations. The reason for this can be illustrated through an example. Suppose
we want to pull out the tenth element of a list starting from the head. Since we have
to walk down from the head of the list to the tenth element, this operation depends on
the dependencies of all operations required to construct the list upto that point. Hence,
operations involving traversal of recursive data structures usually require the unioning of
all label sets required for the construction of the structure itself.

Let us look at a simple implementation of the append function for lists,

fun (a::rest) @ tl = a :: (rest @ tl)

| nil @ t1 = tl

Let us now take a look at a readable bare bones representation of the annotated version
of the above program. We will use the constructor name CONS instead of :: because we

have stripped off irrelevant information. We will be using a curried form to avoid clutter.

fun Append (CONS(a,rest),Ll1) tl LO = let val L = union LO L1
in (CONS(a, Append rest tl L),L) end
| Append (NIL,L1) (t1 as (11,L2)) LO = let val L = union LO (union L1 L2)

in (11,L) end

Looking at this program, we see that we are constructing the union of the sets of depen-
dencies required to reach every point in the first list and are placing this union in the
corresponding position in the appended list. This is a lot of computation. To optimise the
annotated version of append we use two critical pieces of information about the semantics

of SML:

e The only way to access the nth element of a list is to destructure it through a sequence
of n pattern matches. There is no way to preserve a pointer to the nth element and

use it to access the value.

121

e The append function does not produce any side-effects and cannot generate any

exceptions.

The two observations above tell us that we need not construct and carry around the set
of dependencies required to reach a point in the list. This is because the append function
returns no new values and raises no exceptions: it merely returns an augmented list. A

bare bones presentation of the optimized version is as follows,

fun Append_Opt (CONS(a,rest),L1) tl LO =
let fun Append (CONS(a,rest),L1) tl1 = (CONS(a, Append rest tl), L1)
| Append (nil,L1) (t1 as (11,L2)) = (11, union L1 L2)
in (CONS(a, Append rest tl), union LO L1) end
| Append_Opt (NIL,L1) (tl as (11,L2)) LO = let val L = union LO (union L1 L2)

in (11,L) end

This function performs exactly two set unions irrespective of the length of the first list:
one at the beginning and one at the end of the first list. What is important to keep in
mind, is the fact that the optimisation is correct only because the language is functional
and there are no side-effects, within append.

The list function reverse is yet another function which produces no side-effects and is

guaranteed not to raise an exception. Here is the standard implementation of reverse:

fun reverse 1 = let fun revnil 1 =1
| rev (a::rest) 1 = rev rest (a::1)

in (rev 1 nil) end
A bare bones annotated version of rev would run as follows,

fun rev (nil,L1) (1,L2) LO = (1, union LO (union L1 L2))
| rev (CONS(a,rest),L1) 1 LO = let val L = union LO L1

in rev rest (CONS(a,l),L) L end

Notice that the set of labels attached to the head of the reversed list is the union of
the set of labels, attached to each point of the original list, and it contains the set of labels

attached to any point in the reversed list. Since we cannot access a point in a list without

122

going through the head we may actually assign the set of labels attached to any point
in the interior of the list to be the emptyset. An optimized version of rev would run as

follows,

fun rev_opt (nil,L1) (1,L2) LO = (1, union LO (union L1 L2))

| rev_opt (CONS(a,rest),Ll) 1 LO = rev rest (CONS(a,l),empty) (union LO L1)

8.3 Applying Slicing to aid Program Development and De-
bugging

In this subsection we decided to apply slicing techniques to aid us in debugging and testing
of a small application we wrote ourselves. The application chosen is a small toy interpreter
for the A-calculus. We chose this program because applications, like compilers, are typical
examples where slicing can be of great use. If a program, which is a function from a base
type to a base type, has a succinct algebraic specification, then the dynamic slice, of the
value returned, is usually very close to the execution slice. For such programs, a difference,
in the size of the dynamic slice and the execution slice, can usually be attributed to dead-
code/superfluous computation in the program. For example, a program to compute the
determinant of a matrix or a program performing a decomposition of a matrix should have
its executable dynamic slice exactly co-inciding with its execution slice, unless encoding
has been sloppy. Applications, like compilers, are general purpose programs meant to
translate an arbitrary input from a given grammar. Hence, for a specific input, a lot of
intermediate values make no contributions to the value output by the program.

We decided to implement the SECD machine [41] for the evaluation of terms in the
simple A-calculus with product types, constants of integer and boolean types and a collec-
tion of primitive operations on base types. The structure of the program is briefly outlined

here:

e We define a datatype term which specifies the structure of A-terms input to the

program.

e We define a function generate_code which takes in value, of type term, and trans-

lates it into a sequence of instructions for the SECD machine. It checks that there

123

are no free variables in the input and removes bound variables by replacing them

with corresponding de Bruijn [25] indices.

e The function SECDEval is the implementation of the SECD machine: it takes in the

sequence of instructions supplied by generate_code and returns a value.
After completing the encoding of the application, we ran it on the term,
(fn x => x) (4 + 8)

The program returns by raising an exception, indicating that it cannot find the binding

for the variable at run time. We apply the following slicing criterion on the program,

val ANSWER = fn f => (pretty_print
(SECDEval([l,[], (generate_code 1 []1 tt),EMPTY)) f)

handle _ => f "Uncaught Exception"

The term tt is bound is to the input term given above and pretty_print is a function
for printing out values computed by the SECD machine. The log file of the slice compu-
tation is given in Figure 8.4. If the dynamic slice uses any data constructor then it also
includes the corresponding datatype declarations. If we throw out the datatype declara-
tions from both the execution and the dynamic slice then the size of the dynamic slice is

found to be even more smaller than the size of the execution slice.

FinalExperiments/SECD/secd.sml:

Input Program Size(in Nodes): 1726

Annotated Program Size(in Nodes): 9636

Time to Annotate Input: 5.670000

Execution Time of Input Program: 0.760000

Execution Time of Annotated Program: 8.690000

Dynamic Slice Size(in Nodes): 129 407

Execution Slice Size(in Nodes): 160 446

Fraction: 80.625% 91.2556053811659Y%

Figure 8.4 The log file for the execution of secd.sml

A study of the diff file allows us to zoom onto the location of the error immediately.

In our initial implementation, we were not setting the value of the de Bruijn index for the

124

variable x properly: we were starting our counts from 1 instead of 0. The diff file points
out that the following segments of the computation made no contribution to the raising of

the exception:

e Generation of the code for the argument to the function and generation of the code
for the function itself. Of course, the code for the body of the function forms a part

of the dynamic slice.

e Evaluation of the argument, the evaluation of the function to a closure and the saving
of the program state prior to the making of the function call are shown to make no

contribution.

Typically, the testing of an interpreter is done by elaborating the actions which the
interpreter performs for different program states. Then we use different input programs
which reach each of those program states and observe the output. Let the interpreter
be structured such that the actions performed by the interpreter for different program
states are represented by different functions. A strategy which attempts to evaluate the
coverage of a test suite by checkmarking the collection of such functions, which get executed
in the testing process, is not adequate. This is because the execution of many of the
functions return data structures as values and unless these values are used in the subsequent
computation the function cannot be considered to have been tested. This is illustrated by
performing a dynamic slice computation on the same input, (fn x => x) (4 + 8), after
fixing the bug. The dynamic slice of the program is found to be 89.13% of the execution
slice. Important points about nodes present in the execution slice but not in the dynamic

slice are:

e The code constructing the closure for a function is found to make no contribution
to the computation. This is as it should be: the function (fn x => x) has no free

variables.

e Right before executing the body of a function, in a function call, the interpreter
saves the current stack and the current environment. After the evaluating the body
of the function it restores the stack and the environment. But for the input program

given to the interpreter, in our experiment, there is no computation to be performed

125

after returning from the function call. Hence, our slicing technique tells us that the
contents of stack and the environment, saved and restored, make no contribution to
the computation. Thus, we have not tested the correctness of the implementation of
the save and restore routines. Looking at it from another perspective, the dynamic
slice points out that the saving and restoration of the local stack and environment,
when there is no subsequent computation to be performed after the return from
the current function call, is redundant. We must restructure our implementation
to ensure that this redundant computation is not done: we need to eliminate tasl

TECUTSION.

We now apply our interpreter to a term whose evaluation involves a non-trivial closure
construction and computation after the return from a function call. The term input to the

interpreter is,
(fn F => F (fn x => 3*x)) (fn f => fn x => x * (f (f x))) 4

The dynamic slice for the computation of this term is now 98.18% of the execution

slice.

8.4 Slicing SML/NJ Compiler Benchmarks

SML/NJ uses a set of benchmark programs for studying the performance of the compiler.
We will apply our program slicer on some of these programs to study the feasibility of our
technique. A very through experimental analysis of dynamic slicing of C programs has
been carried out in [64]. An important criteria used for selecting test cases in [64], which

we will also be using, is

To keep trace sizes reasonable, it was also necessary to select test cases that
exercised a large number of different parts of the program while avoiding unusu-
ally long repeated executions of the expressions that contributed no additional

information to the construction of slices.

Since functional programs allocate large amount of data dynamically the memory require-

ments for the execution of the annotated program is a particularly acute problem.

126

As mentioned previously, our implementation of the program slicer is two steps short

of the whole of SML,

8.4.1

Semantics for the slicing of modules and functors. The programs from the SML/NJ
compiler benchmark, investigated here, do not involve serious application of func-
tors. But most of these programs are broken into modules, scattered across different
files. It took very little effort to concatenate files together and generate a core SML

program for the trials.

Annotating polymorphic equality. Quite a few of the programs, investigated, had
polymorphic functions with equality types. Since our program slicer can handle
equality only on basic types, we needed to instantiate such polymorphic functions
with monomorphic types and provide for equality functions on non-basic datatypes.
Quite surprisingly, in all of the cases we handled, we merely needed to write a couple
of equality functions, usually for 1ist, and instantiate the polymorphic function to

a couple of datatypes.

The Boyer-Moore Theorem Prover

This is a small program implementing proof search techniques, for propositional logic,

developed by Boyer and Moore [16]. A brief outline of the structure of the program is

given

below:

A datatype term is defined: it is either a variable or a proposition built out of

propositional connectives and the if-then-else function.
Various functions for manipulation of terms are implemented:

— An equality function on terms and term lists.

An environment, binding variables to terms, and associated functions for the

manipulation of environments.

A substitution function for replacing variables with terms.

— A unification function on terms.

127

e The theorem prover has a main function, tautp, which returns true for provable
tautologies. The theorem prover works by term rewriting. Using the axioms for
the propositional connectives, it completely rewrites the term into a proposition
built solely out of the if-then-else function, variables and the constants "true" and
"false". This term is then simplified, using an axiom for the if-then-else function,
to ensure that the first argument to the if-then-else function is always a variable or
a constant. Such a term is now interpreted in the obvious way: if the first argument
to the if-then-else function evaluates to "true" we evaluate the second argument or
if it evaluates to "false" we evaluate the third argument. If it evaluates to neither

"true'" nor "false" the law of ‘excluded middle’ is applied.
e The slicing criterion is given by,

val ANSWER = fn f => if tautp (apply-subst subst terml)
then f "Proved!" else f "Cannot prove!"
where,
— The variable terml is set to the formula (A= B)A (B=C) = (A= C).
— The function call (apply_subst subst terml) applies substitutions to remove

function symbols from termi.

The log file generated by the execution of the annotated version of the program is given

in Figure 8.5. Important points about the nodes present in the execution slice but not in

FinalExperiments/boyer/Boyer.sml:

Input Program Size(in Nodes): 1817

Annotated Program Size(in Nodes): 10508

Time to Annotate Input: 6.620000

Execution Time of Input Program: 0.830000

Execution Time of Annotated Program: 21.280000

Dynamic Slice Size(in Nodes): 433 833

Execution Slice Size(in Nodes): 527 923

Fraction: 82.1631878557875% 90.2491874322867

Figure 8.5 The log file for the execution of Boyer.sml

the dynamic slice are:

128

e The main function tautp applies the rewriting rules, defined by the axioms, to trans-
form the input term into a proposition built solely out of the if-then-else function,
variables and constants. The program stores the axioms in an associative list consist-
ing of connective name and axiom list pairs. Hence, connective-axiom list pairs which
were not used in the rewriting of the input term are not contained in the dynamic
slice but contained in the execution slice. This is because they were executed during

the construction of the associative list.

An axiom for a connective consists of a pair of terms: the second component gives
the term the first component rewrites to. Hence, if the first component of the axiom
is present in the dynamic slice, but not the second component, we know that the

program attempted to use this axiom, for rewriting, but the unification failed.

e Whenever the program attempts to apply a substitution function to a variable but
finds that the variable name is not present in the domain of the substitution function
it raises the exception, failure "unbound". The slicing program discovers that the

string argument to the exception constructor is never used subsequently.

8.4.2 Knuth-Bendix Completion

Given a signature! Y, and a collection of equations E, on terms over Y, the terms over
Y9 can be partitioned by the smallest congruence relation built by extending the relation
defined by E. The word problem is the problem of deciding whether two words belong to
the same congruence class, i.e are they provably equal, equationally? The Knuth-Bendix
Completion [39] procedure provides a solution to a subclass of the word problem. The idea
of the solution runs as follows: if the equations can be oriented to form rewrite rules, in a
terminating rewriting system, then two terms can be shown to be equal if they reduce to
the same normal form. This strategy is valid only if every term rewrites to a unique normal
form. The completion algorithm provides a technique to generate new equations/rewrite
rules to make the system confluent, while preserving the associated equational theory.

The main function of the program, kb_completion, can be briefly outlined as follows:

e For every pair of rewrite rules, Ry — S; and Ry — S5, kb_completion collects the

'Refer to Section 3.1 for formal definitions on term rewriting systems

129

associated list of critical pairs.
Let Ry = R11R19R13, where R;5 is a non-variable subterm.
Let o be the most general unifier [56] for Rio and Ry, i.e. 0(R12) = o(Rz2).

0(R11S2R13) and ¢S are defined to be critical pairs.

oRy = o(Ri1Ri2R13)

o(R11S2Rq3) oS
A A
Sg S4

The function kb_completion then attempts to normalise both the terms in the critical
pair to normal forms, in the leftmost outermost style. If the normal forms S3 and Sy
are not identical then a new rewrite rule needs to be constructed from the pair. The
orientation of the rewrite rule is based on a weight function, on terms, which is taken
in by kb_completion as input. The new rewrite rule, involving S3 and Sy, is oriented
from the heavier to the lighter, in weight. If the weights of S5 and Sy are identical,

but the terms are not, it adds (S3, S4) to a list of term pairs called failures.

Whenever it adds a new rewrite rule, the entire new set of rewrite rules F is checked
to make sure that it contains only irreducible terms. For any rewrite rule R — S,
it finds normal forms Ry and Sy, such that R 5 Ry and S 5 S, with respect to
rewrite rules £ — {(R — S)}. If the normal forms Ry and S; are not identical then
it introduces, into E — {(R — S)}, the rewrite rule, involving Ry and Sy, oriented
from the heavier to the lighter, in weight. If the weights of Ry and Sy are identical,

but the terms are not, it it adds (Rg, Sp) to a list of term pairs called failures.

Whenever it adds a new rewrite rule, it checks whether any term pair, (R, S),
in the list failures can now be normalised, with the new set of rewrite rules, to
(Ro, Sp), where R 5 Ry and S 5 Sy. The following are the possible cases, regard-

ing Ry and Sy,

— Ry and Sy are identical terms. The pair (R, S) is removed from failure and the

rest of failure is processed.

130

— Ry and Sy are not identical, but have the same weight. The pair (R, Sp)
is introduced into failure, in the place of (R, S), and the rest of the list is

processed.

— Ry and Sy are not identical but have different weights. The appropriately ori-
ented rewrite rule is added to the existing set of rewrite rules and the rest of

failure is processed.

The experiment we choose to conduct is to feed the program with the set of rewrite
rules 2 given in (a), below. The program completes these rules to output the rewrite rules
given in (b), below.

D(Cz) — Dz
B(Cxz) — Dx
E(Cz) — Ex
Bx — Dz
Bx — Dz
(a) Rewrite Rules Input (b) Rewrite Rules Output

The slicing criterion in the input program is,
val ANSWER = fn f => pretty_rules (kb_complete greater [] Group_rules) f

where, greater is the order function on terms, based on a weight function, and
Group_rules is bound to the set of rewrite rules in (a).

In this experiment we are interested in the dependency associated with every rewrite
rule output by the program. Hence, we call the pretty print function pretty_rules with
the argument f, where f is the parameter of the ANSWER function. Since the input rules
have been chosen to exercise the major cases of the function, we are interested in program
coverage: sections of the program executed but making no contribution to the final answer.
Such sections, though executed, can be claimed to have been left untested by the input
data.

The log file generated by the execution of the annotated version of the program is given

in Figure 8.6.

2The set of rewrite rules are chosen to be small but at the same time structured to ensure that the first
two cases of the algorithm are exercised

131

FinalExperiments/knuth-bendix/knuth-bendix.sml:

Input Program Size(in Nodes): 4113

Annotated Program Size(in Nodes): 23594

Time to Annotate Input: 26.650000

Execution Time of Input Program: 2.720000

Execution Time of Annotated Program: 39.290000

Dynamic Slice Size(in Nodes): 737 1764

Execution Slice Size(in Nodes): 769 1800

Fraction: 95.8387516254876% 98.0%

Figure 8.6 The log file for the execution of knuth-bendix.sml

The dynamic slice, in this experiment, is almost identical to the execution slice and
provides little useful information over what is available from the execution slice. A study
of the code reveals why. Most of the code is tail recursive and a lot of it is structured as
follows:

e Try to perform an action, e.g. unify, match, rewrite, substitute. The actions return

values if they succeed and raise exceptions if they fail.
e If successful then use the returned value in the subsequent computation.
e If failed then try performing another action.

In programs, with such structure, the dependencies associated with the performing of the
action get passed on to the rest of the program, irrespective of whether the action succeeded
or failed: if the action succeeded the value is used in the subsequent computation and if
the action failed the rest of computation is control dependent on the action. For programs,
with such structure, useful information can be obtained through slicing techniques only if
we can achieve a partition between ‘data’ and ‘control’ dependencies. We investigate this
in the next subsection.

Slices can serve as a guide to program comprehension and an aide to optimising pro-
grams. We will illustrate this with an example from our experiment. Terms, in this
program, can either be variables or operators applied to a list of terms. They are given by

the following datatype declaration,

datatype term = Var of int | Term of string * term list

132

The standard way of defining the location of a subterm within a term is with a list of in-
tegers®. For example, in Term("*", [(Var 3),Term("sin",[(Var 4)1)1) the location
of (Var 4) would be given by the list [2,1]. In Figure 8.7 we present the code, from the
program, for the replacement of a subterm of a term M, at the location u, with another
term N. The dynamic slice, from our experiment, points out that in the application of f to
h, in the body of the function change rec, the argument h is not used in the computation,
but the value returned (f h :: t) is. Studying the code shows that this is always going to be
the case whenever u is of length 1. This suggests that instead of going through superfluous
function applications, for a very commonly occurring case, we should add an additional
pattern to the function reprec to handle the case of the argument u having length 1, i.e.

of the form (n::nil).

fun change f =
let fun change rec (h::t) n = if n=1 then f 1t
else h :: changerec t (n-1)
| change rec _ _ = failwith "change"
in change_rec
end

fun replace M u N =
let fun reprec (_, [1) =N
| reprec (Term(oper,sons), (n::u)) =
Term(oper, change (fn P => reprec(P,u)) sons n)
| reprec _ = failwith "replace"
in reprec(M,u)
end

Figure 8.7

Explicit Control Dependency

We decided to investigate as to what would be the dynamic slice of each of the four rewrite
rules, output by the program, considered individually. To do this, we change the slicing

criterion, at the end of the program, to the one given below. The variable i is assigned a

3Refer to Section 3.1 for a more formal exposition

133

value in [0 ... 3] depending on the rewrite rule we are slicing for.

val Complete rules = kb_complete greater [] Group_rules

val ANSWER = fn f => pretty_rule f (nth (Complete rules , i))

We found that the dynamic slices associated with each of the four slicing criteria were
identical. This is because the program ensures that, at every stage in the computation,
the output list of rewrite rules consists only of irreducible terms: every rewrite rule, in the
output list, is not reducible with respect to the other rewrite rules in the list. Hence, every
rewrite rule is dependent on the dependency of every other rule. Hence, the computation
of an executable dynamic slice is incapable of providing us with the following information:
Given a rewrite rule, in the output list, what is the set of rewrite rules, in the input list,
from which it is derived.

As explained, in the previous paragraph, every rewrite rule, in the output list, is depen-
dent on every other rule in the output list. But this dependency is a ‘control’ dependency:
once a rewrite rule is created a filter function, returning a boolean value, decides whether
it can be retained in the list. The program is filled with examples of this kind of ‘control’
dependency.

In a higher-order programming language ‘control’ dependencies cannot be explicitly
distinguished from ‘data’ dependencies. This is because instead of choosing a specific
path of computation based on an if-then-else/case expression, we can have a computation
return a projection function which is applied to a pair of expressions. As shown in [12],
we can define the entire set of recursively enumerable functions, on Church numerals in
pure lambda calculus. Thus, instead of attempting to formulate concepts of ‘data’ and
‘control” dependencies for higher-order programs, we decided to apply the concept of control
dependency used in first-order programs. Formal definitions of control dependency, in first-
order programs with arbitrary gotos, can be formulated [18] in terms of post-dominators
on the control flow graph. But in a simple first-order program, whenever a specific path
of computation is chosen, based on the value of an expression as in an if-then-else/case
statement, subsequent computations, within scope, are be said to be control dependent on
the dependencies of the value of this expression. For higher-order programs, we will refer

to this kind of a dependency as an explicit control dependency. We will not formulate this

134

concept rigorously: we simply want to look into what happens to slices, in our experiment,
if we throw out explicit control dependencies. What we mean here is that, whenever we
have function arguments which are patterns, such that the body of the function does not
explicitly use the value of the input argument, then the dependency of the input argument
is discarded. The if-then-else/case expressions in SML are derived forms of functions with

patterns. Consider the set of functions shown below,

(fn true => M1 | false => M2)
(fn (true,L1) => fn LO => [M1]our1 | (false,L1) => fn LO => [M2]rour1)

(fn (true,_) => fn LO => [[M]-]]LO | (false,_) => fn LO => [[Mi]]]__o)

The first function is a standard if-then-else expression in SML. The second function
is its standard annotation. It is to be noticed that the value returned by this function
depends on the dependency of the boolean value. The third function is the annotation we
are going to use for our investigation in this subsection: it ignores the dependency of the
boolean value.

We extend this idea to all patterns: unless the function body explicitly uses a value
from the pattern, the pattern will be considered to be a path selector and its dependencies
will be ignored. The details of this extension are given in Table 8.2. The following two
function are defined in Table 8.2,

e P[], which takes in a pattern and a list of dependencies and returns an annotated

pattern and a list of variables and their associated list of dependencies.

e PE[], which takes in a pair consisting of a pattern and an expression as argument.
It annotates the pattern using P[] and then augments each variable by the list of
its dependencies, as returned by the function call to P[]. It then annotates the

expression using L0, completely ignoring the dependencies of the pattern.

Patterns are no longer compiled to simple patterns to capture the complete set of
dependencies required to match a specific pattern out of a list of patterns. Unless the
expression uses a variable from the pattern the dependencies associated with the pattern
are discarded. Even when the expression uses a variable from the pattern the only set of

dependencies included are those in the path from the root of the pattern tree to that specific

135

variable at the leaf. Exception handlers, which are also composed of pattern-expression
pairs, are also annotated similarly.

We implemented this annotation for patterns and sliced the Knuth-Bendix Completion
program, with the input from the previous experiment, and a slicing criteria composed
only of the rewrite rule D(Cz) — Dz. The rewrite rule (Bz) x (Cy) — FEx, present in
the input, is now no longer a part of the slice. The aim of the effort was to see whether
we could partition dependencies into data and control dependencies, in the way Korel
and Laski [40] did for first-order imperative programs, and see whether we could capture
data dependencies between the input and the output. This seems to be possible. But
we have not developed any theory nor any extensional characterisation of the slice we are
computing. Hence, we leave this merely as an observation, for now, and a topic to be
pursued, for the future.

This subsection discussed a refinement of the standard executable dynamic slice in
which we ignore all explicit control dependencies. A strategy in which we allow the user to
specify which of the case expressions, in the program, should ignore explicit control depen-
dencies might have some applications. A standard rewrite rule which causes completion
systems to fail is the commutative rule: mboxz xy — y*z. Adding this rewrite rule to the
set of input rules causes the completion program to exit with an exception. Computing
the standard dynamic slice does not, as discussed, capture a strict subset of the input rules
responsible for causing the exception. Ignoring all explicit control dependencies provides

no information either since the program exited with an exception.

8.5 Fundamental Limitations and Proposals

On average, the annotated version of a program takes a factor of 15 more time to execute
than the unannotated version. We feel a suite of optimisations of the standard of the
SML/NJ compiler [9] would be be able to reduce the time to a more realistic factor of 10.
We consider a factor of 10 to be realistic because a study on the dynamic slicing of C
programs in [64] shows an average overhead of around 7.5. Programs in C have a static
control flow graph and have a lot of data statically allocated. Unlike C programs, the core

data structures of SML programs are recursive datatypes. Recursive datatypes consist of

136

o = (z, [(=,1])
ol = ((Co,), (1)
C(Pl, Pn)]]l = et (Pl,ll) = P[[Pl]]L::l

(Pn7 ln) = P[[Pn]]L::l

in ((C(Py,...,P,), L), LhQ...1,)end
PE[(P, M)] =
let (P,l) = ,P[[P]]H
[(z1, [L11, ..., L1nl]), (22, [L21, ..., L2n2]),...] =1
P, fn LO =>
let fun Augment (x,L0) L1 = (x , union LO L1)
val x1 = Augment x1 (union LO (union L11...L1inl))
val x2 = Augment x2 (union LO (union L21...L2n2))
in [M]Lo end
)
end

Table 8.2: Compiling Patterns to Ignore Explicit Control Dependencies

dynamically allocated memory which are linked through pointers. Hence, accessing the
tailend of such structures is dependent on very large sets.
There are two important areas where optimisations will provide a significant boost to

the performance of the annotated program:

e Optimisation of the annotation of functions and function calls. At the end of the
section, discussing the implemented optimisations associated with function applica-
tions, we showed how to optimise function calls, of the form (fn x => ...)M, to
eliminate a lot of superfluous computation at run time. Most SML programs are

filled with expressions of the form,

let fun £f x = ...

in ... (f M) ... end

If the only occurrences of £, in the scope of this declaration, are function ap-

plications to arguments then the optimisation implemented for calls for the form

137

(fn x => ...)M can also be applied here. Another frequently occurring expression

is of the form,

let fun f x1 ... xn = ...

in ... (fML ... Mn) ... end
If the only occurrences of £, in the scope of this declaration, are function applications
to n arguments then the function f can be transformed to an uncurried form taking in
a single argument which is an n-tuple. We can then apply the optimisation discussed
for the previous case. The savings associated with uncurrying will be huge. This
is because for every application in the source program we have two applications in
the annotated program: one involving argument and the other involving the set of

dependencies associated with the call-site.

e Optimisation of the annotation of patterns. The translation of complex patterns
to simple patterns, defined in Table 8.1, is a naive syntax-directed approach. Our
implementation gives a special treatment to patterns of the type boolean and other
datatypes with only nullary constructor. But a lot more could be done here, especially

regarding the handling of patterns which are exhaustive.

Let g be the annotated version, of a SML function £, that is generated by our program.
If £ is small enough, with no more than simple patterns, we can, with some effort, write by
hand a SML function h that performs the same computation as g. Since we, as individuals,
have an understanding of the denotation of £ and the concept of slicing the hand-written
function h will probably be more efficient than the function g, which is generated through
a syntax-directed approach. Whenever a recursive datatype is defined, in a program, the
programmer also defines a small set of simple functions for traversal and manipulation
of these data structures. Such functions, particularly the ones for the traversal of the
data structure, usually end up becoming the most used functions in the program. Hence,
allowing the user to provide functions to supplant annotated versions, generated from the
source program, might be a good idea. The benefits can be very positive as has been
discussed in the case of functions for manipulations of lists. These functions have been
hand written and not generated from a source program. There is, of course, the obvious

down side: the user supplied function may be semantically incorrect.

138

Large linked structures arise very frequently in SML programs. Consider, for example,
the Boyer-Moore theorem proving(BMTP) program investigated as a part of the case
study. The program operates by rewriting an input proposition into a simple if-then-else
expression. All propositions are represented as tree structures. The rewrite rules are
such that it causes a proposition, with a couple of nested implications in its antecedent,
to blow up into an expression, which is exponential in the size of its input. Similarly,
the Knuth-Bendix completion(KBC) program when attempting to complete a set of 3
rewrite rules, defining the axioms for groups [39], generates 41 rules in the intermediate
computation. If each unit of data in the memory is now tagged, by the set of its dynamic
dependencies, we have just increased our memory usage by a big factor. This points out
that the primary limitation of slicing techniques is space. The annotated version of a
program, which is big in size and also dynamically allocates huge amounts of data, very
quickly runs out of memory. The annotated versions of both BMTP and KBC, for the
kind of inputs discussed in this paragraph, quickly stagnate in their computation for lack
of memory: we have 800Kb of data getting paged in and out every second.

The question is, what are the possible solutions to this problem? The most pragmatic
solution is to make a careful decision about the labels which are to be collected in course of
the computation. Currently, every node in the parse tree is assigned a unique label and the
computation of the dynamic slice collects labels at the leaves of the parse tree. Depending

on the application, we have a few options as to the labelling technique to use:

e A debugging application might find it sufficient to isolate the lines in the program
which made a contribution to the value computed at a breakpoint. Hence, all nodes
in the parse tree coming from the same line can be assigned the same label. For the

KBC program, it cuts down the number of labels, at the leaf, by almost a factor of 10.

e A program developer might only be interested in detailed information about certain
sections of the program. Every node in the parse tree, belonging to those sections,
needs to be assigned a unique label. The structure of labels for the rest of the program
is left dependent on the granularity of information we desire. All nodes in the rest of
the program may assigned be the same label or we may, for instance, assign unique

labels to functions and have all nodes within a function have the same label as the

139

function.

The parse tree of KBC has 4113 nodes and has 984 leaves. Thus the size of a set of
dependencies that can potentially be associated with any unit of data, in this program, is
984. This number is way too big, especially, for a program dynamically allocating huge
amounts of data. If the size of the set of labels to be manipulated can be traded for
the amount of detail, using the techniques discussed above, to a couple of hundred then,
using a bit-mapped representation for sets, we can limit the space usage of the annotated

program to be no more than a factor of 5 of the space usage of the source.

8.6 Conclusion

We performed a limited number of experiments, involving the dynamic slicing of SML
programs, using the tool we developed. This experience has provided us with a feel for the
kind of higher-order programs where slicing can be very helpful and the kind of programs
where slicing is of little use.

Typically programs performing numerical computations will have dynamic slices which
are very close, in size, to the execution slice. Programs, like compiler benchmarks, are
not very strongly data driven computations. What we mean is that program fragments
executed for different inputs are almost identical: the number of iterations made are usually
different. Sorting is a typical example of such a program. Dynamic slicing of such programs
rarely generates any useful information over what is available from the execution slice.

A program whose computation is strongly data driven, i.e. control flow is very largely
dependent on the value of the input data, usually has dynamic slices which are much
smaller when compared to the execution slice. An interpreter for a programming language
is a typical example of this. A slicing technique provides us with the ability to investigate
which of the values constructed, at run-time, get used in the subsequent computation.
This is particularly relevant for values of non-basic types because not all the components
of a such value make a contribution to the final answer. This is the kind of information
which is unavailable from execution slices but a great help in investigating coverage. This
is also the kind of information that points out optimisations which can be put in place to

eliminate redundant computation in special cases.

140

Chapter 9

Conclusion

In this chapter we summarize the central ideas of the thesis and discuss the viability of
dynamic slicing as a program analysis technique and as a development and debugging aid
for software written in higher-order languages. We outline the current status of this work
and highlight some of the important areas of future work.

Dynamic Slicing of first-order programs has been around as a semi-formal concept since
Weiser’s seminal work [65] in his thesis in 1979. A formal definition of dynamic slices for
first-order programs, based on denotational semantics, was formulated as late as 1991 by
Venkatesh [63]. Our contribution lies in the presentation of a formal definition for program
slices, of higher-order programs, based on operational semantics. We have formulated an
algorithm, for the computation of dynamic slices, as a natural deduction semantics. This
approach to the formulation of an algorithm, for the computation of slices, provides us with
the ability to state a succinct correctness theorem and present a proof thereof. For purely
functional programs, we show that minimum dynamic slices exist and co-incide with the
set of terms that get executed under a lazy/call-by-name evaluator.

We discover that, with respect to the computation of executable dynamic slices, the
move from purely functional programs to programs with imperative features, like assign-
ments and exceptions, is a non-trivial jump. For higher-order imperative programs min-
imum dynamic slices no longer exist. The intuitive extension of the natural deduction

semantics for the computation of dynamic slices, of purely functional programs, fall short

141

of computing an executable dynamic slice. We show that augmenting the natural deduc-
tion semantics, with a closure relation, is capable of computing executable dynamic slices
for programs with both assignments and exceptions.

Computation of static approximations to executable dynamic slices is a technique to
analyse a program for dead code. This is because it captures the two loosely-coupled
notions constituting the concept of dead code: code that is never going to be executed
and code that is going to be executed but will make no contribution to the final an-
swer. For purely functional programs, we have developed the concept of a demand-driven
set-based analysis. We provide a set-based semantics, for purely functional programs,
that incorporates the concept of demand. This semantics helps us provide an extensional
characterisation and a correctness proof of the algorithm for the computation of a static
approximation to the dynamic slice of a program. Our research into set-based analysis has
uncovered some foundational flaws in the previous research in this area [14].

Our formulation of the algorithm for program slicing, as a natural deduction seman-
tics, provides us with another important benefit: a simple and correct implementation.
Given a program, whose dynamic slice needs to be computed, we generate an annotated
version of the program which collects the relevant information during its execution. We
provide a simple correctness proof of the program annotation technique. We have built an
implementation that can annotate any core SML program which does not perform equality
operations on non-basic types.

We performed three small case studies to investigate the utility and limitations of slicing
techniques in higher-order languages. While reading the conclusions in this paragraph it is
be kept in mind that our slicing criterion was always the value returned by the computation
and never any intermediate value in a computation. For such slicing criteria, we feel that
slicing techniques are particularly useful for investigating coverage of test suites. Whenever
an application constructs values of non-basic types, at run time, dynamic slicing can tell
us which components of the value make a contribution to the subsequent computation.
For the kind of slicing criteria mentioned, dynamic slices are around 80% of the size of
the corresponding execution slice. In programs written in heavily imperative fashion,
particularly, with lots of exceptions, the dynamic slice is very close to the execution slice

and usually provides little relevant information over what is available from the execution

142

slice. In a lot of instances a study of the dynamic slice provides us with suggestions to
restructure the program to get rid of redundant computations.

The fundamental limitation of slicing techniques developed in this thesis appears to
be space. Every value in a computation is tagged by the set of its dependencies. Hence,
programs which dynamically allocate large amounts of data quickly run out of memory. We
have some proposals for trading space usage with the granularity of information obtained
from a slice computation. Further research needs to be done to find out whether these
proposals substantially reduce memory usuage.

The most immediate line of research which needs to be pursued is the extension of
slicing techniques to modules and functors. Researchers, investigating slicing of first-
order programs, have pointed out the utility of slicing techniques in comprehension and
development of large software systems. The code for large software systems, implemented in
SML, is usually heavily functorised. Formulating the concepts and algorithms for dynamic
slicing, in the presence of modules and functors, would allow us to investigate production
quality software like the SML/NJ compiler. A brute force extension, into the realm of
functors, which deals only with value bindings and completely ignores computation on
types, performed during a functor application, is immediately feasible. But an executable
dynamic slice, which type checks and takes into account the generative nature of datatype
declarations, in functor applications, will need substantial effort.

Another line of research which holds great prospects is the incorporation of our program
slicer into a debugger. This would be along the lines of the SPYDER tool [4]. Whenever
a program stops at a given break point we should be able to query the dynamic slice
associated with the value of any variable in scope. Issues associated with the realising
of this goal are more technical than foundational. Currently, if we place a breakpoint,
in the corresponding position, in the annotated program and apply the current value of
the closure function, at the breakpoint, to any value we can obtain its dynamic slice.
The technical complexity is about textual mappings between the source program and its
annotated version and the handling of exceptions.

A major challenge, which lies ahead of us, is the generation of annotated programs
which perform extremely limited number of set unions. Isolating more and more special

cases and treating them separately will substantially decrease execution time. Semantic

143

analysis which can isolate functions which do not escape their scope, or expressions whose
evaluations do not raise exceptions or involve assignments, can also help reduce execution
time significantly. Currently our strategy has been to tag every value with its dependency.
It is worth exploring how much of this information can be reconstructed at the end of the
computation with information dumped into flat files at strategic points in the execution.
The core of this thesis has been dedicated to laying the foundations of the concepts
and algorithms associated with the dynamic slicing of higher-order programs. We have
an implementation to show that the concepts developed here are feasible and useful. We
believe that following up the research avenues indicated here would lead to a very practical

and useful tool for analysing higher-order programs.

144

Bibliography

1]

[9]

M. Abadi, L. Cardelli, P.-L.. Curien, and J.-J. Lévy. Explicit substitutions. Journal
of Functional Programming, 1(4):375-416, 1991.

M. Abadi, B. Lampson, and J.-J. Lévy. Analysis and caching of dependencies. In
Proceedings of the 1996 ACM SIGPLAN International Conference on Functional Pro-

gramming, pages 83 92, 1996.

L. Aceto, B. Bloom, and F. Vaandrager. Turning SOS rules into equations. In Pro-

ceedings of the IEEE Symposium on Logic in Computer Science, 1992.

H. Agrawal, R. DeMillo, and E. Spafford. Debugging with dynamic slicing and back-
tracking. Software-Practice and Experience, 23(6):589-616, 1993.

H Agrawal, R A DeMillo, and E H Spafford. An Execution Backtracking Approach
to Program Debugging. IEEE Software, pages 21 26, 1991.

H Agrawal and J R Horgan. Dynamic program slicing. In Proceedings of the ACM
SIGPLAN 90 Conference on Programming Language Design and Implementation,
pages 246 256. ACM, 1990.

H Agrawal, J R Horgan, E W Krauser, and S A London. Incremental regression
testing. In Conference on Software Maintenance, pages 348 357. Computer Society
Press of the IEEE, 1993.

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, 1985.

A. Appel. Compiling with Continuations. Cambridge University Press, 1992.

145

[10]

[11]

[12]

[13]

[18]

[19]

[20]

Z.M. Ariola, M. Felleisen, J. Maraist, M. Odersky, and P. Wadler. A Call-By-Need
Lambda Calculus. In P. Lee, editor, Conference Record of the Twenty-Second An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 233 246. ACM, 1995.

L. Augustsson. A compiler for lazy ML. In Symposium on LISP and Functional
Programming, pages 218-227. ACM, 1984.

H. Barendregt. The Lambda Calculus: Its Syntaz and Semantics, volume 103 of

Studies in Logic and the Foundations of Mathematics. Elsevier, revised edition, 1984.

Lars Birkedal, Nick Rothwell, Mads Tofte, and David N. Turner. The ML Kit (Ver-
sion 1). Technical Report 93/14, Department of Computer Science, University of

Copenhagen, Universitetsparken 1, DK-2100 Copenhagen, 1993.

S. Biswas. A demand-driven set-based analysis. In Principles of Programming Lan-

guages. ACM, 1997.

G. Boudol. Computational semantics of term rewriting systems. In M. Nivat and J. C.

Reynolds, editors, Algebraic Methods in Semantics. Cambridge University Press, 1985.
R.S. Boyer and J.S. Moore. A Computational Logic. Academic Press, 1979.

T. Chuang and B. Goldberg. Backward Analysis for Higher Order Functions Using
Inverse Images. Technical Report 620, Department of Computer Science, New York

University, 1991.

J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependance graph and
its use in optimization. ACM Transactions on Programming Language and Systems,

9(3):319-349, 1987.

J. Field. On laziness and optimality in lambda interpreters: Tools for specification and
analysis. In Conference Record of the Seventeenth Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, pages 1-15. ACM, 1990.

J. Field. A simple rewriting semantics for realistic imperative programs and its ap-

plications to program analysis. In Proceedings of the ACM SIGPLAN Workshop on

146

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

Partial Evaluation and Semantics-Based Program Manipulation, pages 98 107, 1992.
Published as Yale University Technical Report YALEU/DCS/RR-909.

J. Field, G. Ramalingam, and F. Tip. Parametric program slicing. In Conference
Record of the 22nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, pages 379 392. ACM, 1995.

J. Field and F. Tip. Dynamic dependence in term rewriting systems and its application
to program slicing. Research report, IBM T.J. Watson Research Center, 1995. To

appear.

P. Fradet. Collecting More Garbage. In ACM Conference on LISP and Functional

Programming, pages 24 33, 1994.

M. Gandhe, G. Venkatesh, and A. Sanyal. Labeled A-Calculus and a Generalised
Notion of Strictness. In Asian Computing Science Conference, Lecture Notes in Com-

puter Science. Springer-Verlag, 1995.

C. A. Gunter. Semantics of Programming Languages: Structures and Techniques.

Foundations of Computing. The MIT Press, 1992.

C. Hanna and R. Levin. The Vesta Language for configuration management. Technical

Report 107, Digital Equipment Corporation, Systems Research Center, 1993.

J. Hannan and D. Miller. From operational semantics to abstract machines. Mathe-

matical Structures in Computer Science, 2(4):415 459, 1992.

N. Heintze. Set Based Program Analysis. PhD thesis, School of Computer Science,
Carnegie Mellon University, 1992.

N. Heintze. Set Based Analysis of Arithmetic. Technical Report CMU-CS-93-221,

School of Computer Science, Carnegie Mellon University, 1993.

N. Heintze. Set Based Analysis of ML, Programs. In Lisp and Functional Programming,
pages 306 317. ACM, 1994.

147

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs.
In Proceedings of the ACM SIGPLAN 88 Conference on Programming Language De-
sign and Implementation, pages 35-46. ACM, 1988.

S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs.

ACM Transactions on Programming Language and Systems, 12(1):26 90, 1990.

P. Hudak and J. Young. Collecting interpretations of expressions. ACM Transactions

on Programming Languages and Systems, 13:269 290, 1991.

J. Hughes. Lazy Memo functions. In J. Jouannaud, editor, Proceedings of the
Conference on Functional Programming and Computer Architecture, pages 129-146.

Springer-Verlag LNCS, 1985.

J. Hughes. Compile time Analysis of Functional Programs. In D. Turner, editor,

Research Topics in Functional Programming, pages 117 153. Addison Wesley, 1990.

N. Jones and S. Muchnik. Flow analysis and optimization of LISP-like structures. In

Principles of Programming Languages, pages 244-256. ACM, 1979.

G. Kahn. Natural semantics. In Proceedings of the Symposium on Theoretical Aspects

of Computer Science, pages 22-39. Springer-Verlag, 1987.

J. Klop. Term rewriting systems. In S. Abramsky, D. M. Gabbay, and T. S. E.
Maibaum, editors, Handbook of Logic in Theoretical Computer Science, pages 1 116.
Oxford University Press, 1992.

D.E. Knuth and P.B. Bendix. Simple Word Prolems in Universal Algebra. In J. Leech,
editor, Computational Problems in Abstract Algebra, pages 263—297. Pergamon Press,
1970.

B. Korel and J. Laski. Dynamic program slicing. Information Processing Letters,

29:155 163, 1988.

P. Landin. The mechanical evaluation of expressions. Comput. J., 6:308 320, 1964.

148

[42]

[43]

[44]

[45]

J. Launchbury. A natural semantics for lazy evaluation. In S. L. Graham, editor,
Conference Record of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, pages 144-154. ACM, 1993.

T. Lengauer and R. Tarjan. A fast algorithm for finding dominators in a flowgraph.

ACM Transactions on Programming Languages and Systems, 1(1):121 141, 1979.

H.K.N Leung and H.K. Reghbati. Comments on program slicing. IEEE Transactions
on Software Engineering, SE-13(12):1370 1371, 1987.

R. Levin and P. McJones. The Vesta approach to precise configuration of large soft-
ware systems. Technical Report 105, Digital Equipment Corporation, Systems Re-
search Center, 1993.

R. Milner and M. Tofte. Co induction in relational semantics. Theoretical Computer

Science, 87:209 220, 1991.
R. Milner and M. Tofte. Commentary on Standard ML. The MIT Press, 1991.

R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. The MIT Press,
1990.

G. Morrisett, M. Felleisen, and R. Harper. Abstract models of memory management.
In Proceedings of the 7th International Conference on Functional Languages and Pro-

gram Architecture, pages 66 77, 1995.

A. Mycroft. The Theory and Practice of Transforming Call-by-need into Call-by-value.
In International Symposium on Programming. Springer-Verlag LNCS, 1980.

L. C. Paulson. ML for the Working Programmer. Cambridge University Press, 1991.

S. L. Peyton Jones. The Implementation of Functional Programming Languages.

Prentice-Hall, 1987.

G. D. Plotkin. Call-by-name, call-by-value and the lambda calculus. Theoretical
Computer Science, 1:125-159, 1975.

149

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

G. D. Plotkin. A structural approach to operational semantics. Technical Report

FN-19, Computer Science Department, Aarhus University, Denmark, 1981.

T. Reps and W. Yang. The semantics of program slicing. Technical Report 777,
University of Wisconsin, 1988.

J. A. Robinson. A machine oriented logic based on the resolution principle. Journal

of the ACM, 12:23 41, 1965.

N. Rgjemo and C. Runciman. Lag, drag, void and use heap profiling and space-
efficient compilation revisited. In Proceedings of the 1996 ACM SIGPLAN Interna-

tional Conference on Functional Programming, pages 34-41, 1996.

D. Schmidt. Denotational Semantics: A Methodology for Language Development.
Allyn and Bacon, 1986.

R.C. Sekar, P. Mishra, and I.V. Ramakrishnan. On the Power and Limitation of
Strictness Analysis based on Abstract Interpretation. In Conference Record of the
18th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 37-48. ACM, 1991.

O. Shivers. Control flow analysis in scheme. In Conference on Programming Language

Design and Implementation. ACM, 1988.

O. Shivers. Control Flow Analysis of Higher-Order Languages. PhD thesis, School of

Computer Science, Carnegie Mellon University, 1991.

F. Tip. A survey of program slicing techniques. Research Report CS-R9438, Centrum
voor Wiskunde en Informatica (CWI), 1994.

G. A. Venkatesh. The semantic approach to program slicing. In B. Ryder, editor,
Proceedings of the ACM SIGPLAN °91 Conference on Programming Language Design
and Implementation, pages 107 119. ACM, 1991.

G. A. Venkatesh. Experimental results from dynamic slicing of C programs. ACM

Transactions on Programming Languages and Systems, 17(2):197-216, 1995.

150

[65] M. Weiser. Program Slices: Formal, psychological, and practical investigations of

an automatic program abstraction method. PhD thesis, University of Michigan, Ann

Arbor, MI, 1979.

[66] M. Weiser. Programmers use slices when debugging. Communications of the ACM,

25:446 452, 1982.

[67] M. Weiser. Program slicing. IEEE Transactions on Software Engineering, SE-
10(4):352 357, 1984.

151

