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Part II: P -Complete Problems � 47Part II: P -Complete and Open ProblemsA List of P-Complete ProblemsThis section contains a list of P -complete problems. For each entry we give a description ofthe problem and its input, references to source papers showing the problem P -complete, ahint illustrating the main idea of the completeness reduction, and mention related versionsof the problem.Problems marked by (*) are P -hard but are not known to be in P . Other problems arein P , although we usually omit the proofs that they are.Many of the problems given here were originally shown P -complete with respect to logspace reduction. Any log space computation is immediately in NC 2 by Borodin's simula-tion [Bor77]. Thus any problem log space complete for P is also �NC2m complete for P . Inmost cases the same reduction can be done in NC 1, i.e. the problem is �NC1m complete forP . We have noted some exceptions to this below, but have not been exhaustive.The problems are divided into the following categories: circuit complexity, graph the-ory, search, combinatorial optimization and ow, local optimality, logic, formal languages,algebraic, geometry, real analysis, and miscellaneous.A.1 Circuit ComplexityThe circuit value problem (CVP) plays the same role in P -completeness theory that satis�-ability does in NP -completeness theory. In this section we give many variants of CVP thatare P -complete and are particularly useful for proving other problems are P -complete. SeeSection 5 of this paper for more details.A.1.1 Circuit Value Problem (CVP)Given: An encoding � of a Boolean circuit � plus inputs x1; : : : ; xn.Problem: Does � on input x1; : : : ; xn output 1?Reference: [Lad75]Hint: A proof is given in Section 5 of this paper.Remarks: For the two input basis of Boolean functions, it is known that CVP is P -complete except when the basis consists solely of or, consists solely of and, or consists ofany or all of the following: xor, equivalence, and not [GP86, Par87].A.1.2 Topologically Ordered Circuit Value Problem (TopCVP)Given: An encoding � of a Boolean circuit � plus inputs x1; : : : ; xn, with the additionalassumption that the vertices in the circuit are numbered and listed in topological order.



48 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)Problem: Does � on input x1; : : : ; xn output 1?Reference: Folklore.Hint: A proof is given in Theorem 5.3. Also see the remarks following the proof ofTheorem 5.7.Remarks: All of the reductions in Sections 5 and A.1 preserve topological ordering, so therestrictions of all of these variants of the Circuit Value Problem to topologically orderedinstances remain P -complete.A.1.3 Monotone Circuit Value Problem (MCVP)Given: An encoding � of a monotone Boolean circuit �, that is one constructed solely ofand and or gates, plus inputs x1; : : : ; xn.Problem: Does � on input x1; : : : ; xn output 1?Reference: [Gol77]Hint: Reduce CVP to MCVP. A proof is given in Section 5.2.A.1.4 Alternating Monotone Fanout 2 CVP (AM2CVP)Given: An encoding � of a monotone Boolean circuit �, plus inputs x1; : : : ; xn. On anypath from an input to an output the gates are required to alternate between or and andgates. Inputs are required to be connected only to or gates, and outputs must come directlyfrom or gates. The circuit is restricted to have fanout exactly two for inputs and internalgates, and to have a distinguished or gate as output.Problem: Does � on input x1; : : : ; xn output 1?Reference: Folklore.Hint: A proof is given in Section 5.2.Remarks: [GSS82] gave a completeness proof for monotone, fanout 2 CVP.A.1.5 NAND Circuit Value Problem (NANDCVP)Given: An encoding � of a Boolean circuit � constructed only of nand gates, plus inputsx1; : : : ; xn. The circuit is restricted to have fanout two for inputs and nand gates.Problem: Does � on inputs x1; : : : ; xn output 1?Reference: Folklore.Hint: Reduction of AM2CVP to NANDCVP. A proof is given in Section 5.2.Remarks: Any complete basis of gates su�ces, by the obvious simulation of nand gatesin the other basis. For example, nor gates form a complete basis. NOR CVP is de�nedanalogously to NANDCVP. See Post [Pos41] for a characterization of complete bases. Seethe remarks for Problem A.1.1 for other bases, not necessarily complete, for which theassociated circuit value problem is still complete.A.1.6 Synchronous Alternating Monotone Fanout 2 CVP (SAM2CVP)Given: An encoding � of a monotone Boolean circuit �, plus inputs x1; : : : ; xn. In additionto the restrictions of Problem A.1.4, this version requires the circuit to be synchronous. That



Part II: P -Complete Problems � 49is, each level in the circuit can receive its inputs only from gates on the preceding level.Problem: Does � on input x1; : : : ; xn output 1?Reference: [GHR91]Hint: A proof is given in Section 5.2. The reduction is from AM2CVP.A.1.7 Planar Circuit Value Problem (PCVP)Given: An encoding of a planar Boolean circuit �, that is one whose graph can be drawnin the plane with no edges crossing, plus inputs x1; : : : ; xn.Problem: Does � on input x1; : : : ; xn output 1?Reference: [Gol77, McC81]Hint: Reduce CVP to PCVP. Lay out the circuit and use cross-over circuits to replacecrossing lines with a planar subcircuit. A planar xor circuit can be built from two each^;_;: gates; a planar cross-over circuit can be built from three planar xor circuits. Anm gate CVP instance is embedded in an m�m grid as follows. Gate i will be in cell (i; i),with its value sent along a wire in the ith row both to the left and to the right. Gate i'sinputs are delivered to it through two wires in the ith column, with data owing down thewires from above and up from below. Let gate i's inputs be the outputs of gates j and k,and suppose j happens to be less than i. In cell (j; i) (which happens to be above (i; i)) atthe point where j's horizontal (rightgoing) output wire crosses i's �rst (vertical, downgoing)input wire, insert a two input, two output planar subcircuit that discards the value enteringfrom above and passes the value entering from the left both to the right and down. Theinput to i from k is treated similarly, with the obvious changes of orientation if k > i. Atall other wire crossings, insert a copy of the planar crossover circuit. Note that given i andj, the wiring of cell (i; j) is easily determined based on whether i < j; i = j, i is an inputto j, etc. Hence the reduction can be performed in NC 1, (even if the original circuit is nottopologically sorted.)Remarks: It is easy to see that monotone planar crossover networks do not exist, so thereduction above cannot be done in the monotone case. In fact, the monotone version ofPCVP is in LOGCFL � NC 2 [DC80, DC89, Gol80] when all inputs appear on one face ofthe planar embedding. The more general problem where inputs may appear anywhere isalso known to be in NC [Kos90, DK91].A.1.8 Arithmetic Circuit Value Problem (*) (ArithCVP)Given: An encoding of an arithmetic circuit � with dyadic operations +;�; � and inputsx1; : : : ; xn from a ring.Problem: Does � on input x1; : : : ; xn output 1?Reference: [Ven83]Hint: Reduce NANDCVP to ArithCVP as follows: true! 1, false! 0, and :(u^v)!1� u � v, where 0 denotes the additive identity and 1 denotes the multiplicative identity ofthe ring.Remarks: The problem is not necessarily in FP for in�nite rings like Z or Q, sinceintermediate values need not be of polynomial length. It will be in FP for any �nite ring,and remains P -hard in any ring. It is also P -complete to decide whether all gates in an



50 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)arithmetic circuit over Z have \small" values, say values of a magnitude 2nk for someconstant k. Is in NC for circuits of degree 2logO(1) , where the degree of a node is 1 forinputs, and d1+d2 (max(d1; d2)) when the node is product (respectively, sum) of the valuescomputed by two nodes of degree d1 and d2 [VSBR83, MRK88].A.1.9 Min-Plus Circuit Value Problem (MinPlusCVP)Given: An encoding of a (min;+) circuit � and rational inputs x1; : : : ; xn.Problem: Does � on input x1; : : : ; xn output a non-zero value?Reference: [Ven83]Hint: Reduce MCVP to MinPlusCVP as follows: true! 1, false! 0, u^v ! min(u; v),and u _ v ! min(1; u+ v).Remarks: The above reduction works in any ordered semi-group with additive identity 0and an element 1 such that 1 + 1 � 1 > 0. If there is a non-zero element 1 such that suchthat 1 + 1 = 0 (e.g., in Z2) then reduce NANDCVP via :(u ^ v) ! 1 + min(u; v). In awell-ordered semigroup where 0 is the minimum element, one or the other of these casesholds. If the semigroup is in�nite, the problem may not be in P .A.1.10 Inverting an NC 0 Permutation (*) (InvNC0Perm)Given: An n-input, n-output NC 0 circuit computing a bijective function f : f0; 1gn !f0; 1gn and y 2 f0; 1gn.Problem: Is the last bit of f�1(y) equal to 1?Reference: [H�as87, Section 2.5], [H�as88]Hint:Remarks: Not known to be in P in general, although the family of permutations used toshow P -hardness is polynomial time invertible.A.2 Graph TheoryA.2.1 Lexicographically First Maximal Independent Set (LFMIS)Given: An undirected graph G with an ordering on the vertices and a designated vertex v.Problem: Is vertex v in the lexicographically �rst maximal independent set of G?Reference: [Coo85]Hint: A proof is given in Section 6.3.1.Remarks: This is an instance of Problem A.2.13. LFMIS is P -complete for bipartite orplanar graphs restricted to degree at most 3 [Miy89]. Karp observed that the completenessof LFMIS implies that determining the ith node chosen by any deterministic sequentialalgorithm for either LFMIS or LFMC (Problem A.2.2) is also complete [Kar84]. Computingor approximating the size of the lexicographically �rst maximal independent set is also P -complete; see Section 6.2. Karp and Wigderson gave the �rst NC algorithm for �nding amaximal independent set [KW85], subsequently improved by Luby [Lub86], by Alon, Babaiand Itai [ABI86], and by Goldberg and Spencer [GS89]. These algorithms do not computethe lexicographically �rst maximal independent set.



Part II: P -Complete Problems � 51A.2.2 Lexicographically First Maximal Clique (LFMC)Given: An undirected graph G with an ordering on the vertices and a designated vertex v.Problem: Is vertex v in the lexicographically �rst maximal clique of G?Reference: [Coo85]Hint: Finding a maximal clique is equivalent to �nding a maximal independent set in thecomplement graph of G (Problem A.2.1).A.2.3 Alternating Graph Accessibility Problem (AGAP)Given: A directed graph G = (V;E), a partition V = A[B of the vertices, and designatedvertices s and t.Problem: Is apath(s; t) true, where apath is de�ned as follows. Vertices in A are \uni-versal," those in B are \existential." Such a graph is called an alternating graph or anANDnOR graph. Then apath(x; y) holds if and only if1. x = y, or2. x is existential and there is a z with (x; z) 2 E and apath(z; y), or3. x is universal and for all z with (x; z) 2 E, apath(z; y) holds.Reference: [CKS81, Imm81, Imm83]Hint: Reduce AM2CVP (Problem A.1.4) to AGAP. Create two existential nodes 0 and 1.Put edge (xi; 0) into E if input xi is 0, and edge (xi; 1) into E if input xi is 1. and gates areuniversal nodes and or gates are existential nodes. Inputs to a gate correspond to childrenin the alternating graph. For output z, apath(z; 1) holds if and only if the output z is 1.Remarks: The original proof simulated an alternating Turing machine (ATM) directly toshow that AGAP was complete for ATM log space [Imm81]. Since ASPACE(logn) = P[CKS81], this showed AGAP was P -complete too. When this problem is generalized to hi-erarchical graphs it remains in P , provided the graph is \breadth-�rst ordered;" see [LW87].The proof sketched above also shows that the problem remains P -complete when the parti-tion (A;B) induces a bipartite graph. When restricted to only existential nodes, the prob-lem is equivalent to the \directed graph accessibility problem," variously called \GAP" and\STCON," and known to be complete for NL [Sav70]. Peterson (personal communication,198x) shows that the undirected version of AGAP is also P -complete. When restrictedto undirected graphs with only existential nodes, this problem is equivalent to the \undi-rected graph accessibility problem," called \UGAP" or \USTCON," which is known to becomplete for the special case of nondeterministic log space known as symmetric log space(SL) [LP82].A.2.4 Hierarchical Graph Accessibility Problem (HGAP)Given: A hierarchical graph G = (V;E) and two designated vertices s and t. A hierarchicalgraph � = (G1; : : : ; Gk) consists of k subcells Gi, 1 � i � k. Each subcell is a graph that



52 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)contains three types of vertices called pins, inner vertices, and nonterminals. The pins arethe vertices through which the subcell can be connected to from the outside. The innervertices cannot be connected to from the outside. The nonterminals stand for previouslyde�ned subcells. A nonterminal inside Gi has a name and a type. The name is a uniquenumber or string. The type is a number from 1; : : : ; i� 1. A nonterminal v of type j standsfor a copy of subcell Gj . The neighbors of v are in a one-to-one correspondence with thepins of Gj via a mapping that is speci�ed as part of �.Problem: Is there a path between s and t in the expansion graph of G? An expansiongraph is a hierarchical graph expanded. The graph is expanded by expanding cell Gk recur-sively. To expand subcell Gi expand its subcells G1; : : : ; Gi�1 recursively and replace eachnonterminal of v of type j with a copy of the expansion of subcell Gj .Reference: [LW87]Hint: The reduction is from the alternating graph accessibility problem, Problem A.2.3.Remarks: Hierarchical versions of the following problems are also P -complete: graphaccessibility in undirected graphs, determining whether a directed graph contains a cycle,and determining whether a given graph is bipartite [LW87]. There are several other veryrestricted versions of hierarchical graph problems that are P -complete [LW87].A.2.5 Restricted Chromatic Alternating Graph Accessibility Problem (RCA-GAP)Given: An alternating graph G = (V;E), two natural numbers k and m (where k � m �log jV j), a coloring c : E ! f1; : : : ; mg, and two vertices s and t. (Note that the coloring isan unrestricted assignment of colors to the edges. It may assign the same color to severaledges incident to a common vertex. See Problem A.2.3 for the de�nition of an alternatinggraph.)Problem: Are there k di�erent colors i1; : : : ; ik 2 f1; : : : ; mg such that apath(s; t) holds inthe subgraph of G induced by the edges with colors i1; : : : ; ik. (See Problem A.2.3 for thede�nition of apath.Reference: [LW87]Hint: There is a trivial reduction from the alternating graph accessibility problem, ProblemA.2.3. Membership of RCAGAP in P follows from membership of AGAP in P , since thereare at most 2k � jV j possible sets of colors to try.Remarks: The problem remains P -complete if the vertices are restricted to being breadth�rst ordered [LW87]. When generalized to hierarchical graphs, the problem becomes NP -complete [LW87].A.2.6 Lexicographically First �+ 1 Vertex Coloring (LFDVC)Given: A graph G = (V;E) with � equal to the maximum degree of any vertex in V , andan ordering v1; : : : ; vn on the vertices of V , a designated color c, and a vertex v.Problem: Is vertex v colored with color c in the lexicographically least coloring of thevertices of G? The coloring uses at most � + 1 colors. If ci is the color of vi, whereci 2 f1; : : : ;�+ 1g, then each coloring corresponds to a (�+ 1)-ary number, and the leastcoloring is well-de�ned.



Part II: P -Complete Problems � 53Reference: [Lub84]Hint: Computing the lexicographically least coloring is easily done in polynomial time byexamining each vertex in order and coloring it with the smallest available color. To showcompleteness, reduce NANDCVP to LFDVC. The coloring will correspond to evaluatingthe circuit in topological order. Let v1; : : : ; vn be the gates of a circuit � and assume withoutloss of generality that the gates are numbered in topological order. Each gate in the circuitwill be represented by four vertices in G, with the order on the vertices induced from theorder of the gates. Consider a nand gate, vi  :(vj ; vk). Introduce three new vertices,v0i; v0j ; v0k where v0j ; v0k appear after vj ; vk, and v0i appears after all these but before vi in thetopological ordering. The gate is then represented by the edges (vj ; v0j), (vk; v0k), (v0j ; v0i),(v0k; v0i), and (v0i; vi). One �nal �x is necessary. To keep the degree down to 3, a fanout treemay be required on the output of each gate. The resulting graph can be colored with only3 colors in the order fT; F;Xg (even though 4 might be necessary for a di�erent ordering).Remarks: The problem of �� 1 coloring is NP -complete [GJ79]. For graphs that are notan odd cycle or complete, a � coloring can be found in polynomial time (Brook's theorem,see [BM76]). However, this is not necessarily the lexicographically �rst. The � + 1 vertexcoloring is NC 1 reducible to �nding a maximal independent set [Lub84], but the maximalindependent set algorithm [KW85] does not produce the lexicographically �rst maximalindependent set. It is possible to color a graph with � colors in NC [KN88, HS87, BK86],although the coloring produced is not the lexicographically �rst. There is an NC algorithmfor 5 coloring planar graphs [Nao87].A.2.7 High Degree Subgraph (HDS)Given: A graph G = (V;E) and an integer k.Problem: Does G contain a vertex induced subgraph with minimum degree at least k?Reference: [AM84a]Hint: Reduce AM2CVP to HDS. The proof illustrated here is for k = 3, although it canbe generalized to any �xed k � 3. A true input k1 connected to gate i is representedby a gadget with �ve vertices k1; v1; v2; v3, and k01. The edges in the gadget are (v1; k1),(v1; k01), (v1; v2), (v2; k01), (v2; v3), (v3; k1), (v3; k01), and k01 is connected to a vertex in thegadget for gate i as described below. A false input is represented by a single vertex. Anand gate i with inputs l1 and l2, and outputs l01 and l02 is represented by a fourteen vertexgadget. The gadget is composed of two of the gadgets used to represent true inputs andan additional four vertices. l01 and l02 label the vertices corresponding to k01 in the trueinput gadget. w1 and w2 label the positions corresponding to k1 in their respective copyof the true input gadget. The four additional vertices are labeled l1; l2; w3, and w4. l1; l2,and w3 are connected into a three clique. w4 is connected to w1; w2, and w3. Inputs to gatei are connected to l1 and l2, and the outputs l01 and l02 are connected to the appropriateinput positions of other gates. The representation of an or gate is very similar to the andgadget, omitting w3 and connecting l1; l2 directly to w4. Finally, there is a binary tree thathas as its leaves the vertices corresponding to the k1's of the true inputs and has the vertexcorresponding to the output vertex of the circuit as its root. The computation of a HDS ofdegree 3 proceeds on this new graph so that HDS is nonempty if and only if the output ofthe circuit is true.



54 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)Remarks: Although not stated as a \lexicographically �rst" problem, the HDS in a graphis unique, hence this is another instance of Problem A.2.13. There is an NC algorithmcomputing a HDS for k = 2. Let K(G) denote the largest k such that there is an inducedsubgraph of G with minimum degree k. For �xed 0 � c � 1, consider �nding an approxima-tion d such that K(G) � d � cK(G). For any c < 1=2 there is an NC algorithm for �ndingd, and for any c > 1=2 the problem of �nding d is P -complete [AM84a]. A \complemen-tary" low degree subgraph problem has also been studied and for several natural decisionproblems it is NP -complete [Gre89]. Decision problems based on ordered vertex removalrelating to subgraph computations are also P -complete [Gre89]. A special case of HDS isthe Color Index Problem [VS88]: given an undirected graph G = (V;E), is the color indexof G less than or equal to four? The color index is the maximum over all subgraphs H ,of G, of the minimum degree of H . Asking if the color index is � 4 is the complement toasking if there are any high degree subgraphs of order 5. The original reduction is fromthe ordered low degree vertex removal problem, Problem A.2.10. See remarks for ProblemA.2.6.A.2.8 High Connectivity Subgraph (HCS)Given: A graph G = (V;E) and an integer k.Problem: Does G contain a vertex induced subgraph of vertex (edge) connectivity atleast k?Reference: [KSS89, Ser90]Hint: The reduction is from MCVP and is similar to that used to prove Problem A.2.7,the high degree subgraph problem, is P -complete.Remarks: Approximation algorithms for this problem exhibit a threshold type behavior.Below a certain value on the absolute performance ratio the problem remains P -complete for�xed k, and above that ratio there are NC algorithms to approximate the problem [SS89].Speci�cally, let o be the maximum size of a k vertex-connected induced subgraph of G.Then for 0 � c � 1=4 it is possible to �nd, in NC , a vertex induced subgraph of size � co,but for 1=4 < c � 1 this not possible unless NC = P . For edge-connectivity, the thresholdis c = 1=2.A.2.9 Ordered High Degree Vertex Removal (OHDVR)Given: An undirected graph G = (V;E) with a numbering on the vertices in V and twodesignated vertices u and v.Problem: Is there an elimination order on V , v1; : : : ; vn, satisfying the properties that uis eliminated before v and for 1 � i � n, vi is the lowest numbered vertex of maximumdegree in the (i � 1)-st remaining subgraph of G? An elimination order is a sequence ofvertices ordered as they and their corresponding edges are to be deleted from the graph.Reference: [Gre89]Hint: The reduction is from NAND CVP with fanin and fanout restrictions to 2. Thecircuit is transformed directly into a graph. The vertices in the graph are ordered so thatgates evaluating to false in the circuit are deleted �rst in the instance of OHDVR. Aspecial vertex of degree four is added and its removal order is compared with that of the



Part II: P -Complete Problems � 55vertex corresponding to the output gate of the circuit.A.2.10 Ordered Low Degree Vertex Removal (OLDVR)Given: An undirected graph G = (V;E) with a numbering on the vertices in V and twodesignated vertices u and v.Problem: Is there an elimination order on V , v1; : : : ; vn, satisfying the properties that u iseliminated before v and for 1 � i � n, vi is the lowest numbered vertex of minimum degreein the (i� 1)-st remaining subgraph of G?Reference: [VS88, Gre89]Hint: This is the complementary problem to Problem A.2.9. The problem de�ned in [VS88]is more restricted than the one presented here. Their graphs are also required to have theproperty that u appears before v in some minimum elimination sequence if and only if uappears before v in all minimum degree elimination sequences.A.2.11 Ordered Vertices Remaining (OVR)Given: An undirected graph G = (V;E) with a numbering on the vertices in V , a desig-nated vertex u, and an integer k.Problem: Is there an elimination order on V , v1; : : : ; vn, satisfying the properties thatu = vj for some j < (n � k) and for 1 � i � n, vi is the lowest numbered vertex of maxi-mum degree in the (i� 1)-st remaining subgraph of G?Reference: [Gre89]Hint: The reduction is from Problem A.2.9.Remarks: The ordered low degree subgraph membership problem is also P -complete [Gre89]. The problem here is to determine whether a designated vertex is ina remaining subgraph when all vertices in that remaining subgraph have small degree.A.2.12 Nearest Neighbor Traveling Salesman Heuristic (NNTSH)Given: A distance matrix D with entries (dij) and two distinguished vertices s and l.Problem: Does the nearest neighbor tour starting at s visit l as the last vertex before com-pleting the tour at s? The nearest neighbor tour is a greedy heuristic that always choosesthe nearest unvisited vertex as the next vertex on the tour.Reference: [KLS89]Hint: Reduce NNTSH to NAND CVP. Without loss of generality, assume the gates arenumbered in topological order. Gate k with inputs i1 and i2, and outputs o1 and o2 isreplaced by the gadget described below. The gadget has vertices A; i1; i01; i2; i02; o01; o1; o2; o02,and B. Let the triple (x; y; z) mean the distance between x and y is d. The triplesin the gadget are (A;B; 3k + 2); (A; i1; 3k); (A; i2; 3k + 1); (i1; i01; 0); (i2; i02; 0); (i01; o01; 3k +1); (i02; o01; 3k); (o01; o1; 0); (o1; o2; 3k); (o2; o02; 0), and (o02; B; 3k). Vertex B of gate k is con-nected to vertex A of gate k + 1. The distances between vertices that have been left un-speci�ed are assumed to be very large. The edges between \i" vertices and those between\o" vertices represent inputs and outputs respectively. An edge included (not included) inthe tour represents a true (false) value. true circuit inputs are \chained" together and



56 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)the tour begins at the �rst true input. By inserting a new node C before vertex B inthe last gadget, and connecting B and C to the �rst true input in the input chain, thetour constructed by the NNTSH is such that B (C) is visited last if and only if the circuitevaluates to true (false).Remarks: The nearest merger, nearest insertion, cheapest insertion, and farthest inser-tion heuristics are all P -complete [KLS89]. The double minimum spanning tree and nearestaddition heuristics are in NC [KLS89].A.2.13 Lexicographically First Maximal Subgraph for � (LFMS(�))Given: A graph G = (V;E) with an ordering on V , a designated vertex v, and a polyno-mial time testable, nontrivial, hereditary property �. A property is nontrivial if there arein�nitely many graphs that satisfy the property and at least one graph that doesn't. Aproperty � is hereditary on induced subgraphs if whenever G satis�es � so do all vertexinduced subgraphs.Problem: Is v in the lexicographically �rst maximal subgraph H of G that satis�es �?Reference: [Miy89]Hint: Given a property � that is nontrivial and hereditary, Ramsey's theorem implies thateither � is satis�ed by all cliques or by all independent sets of vertices. This observationcombined with the facts that the lexicographically �rst maximal clique problem, ProblemA.2.2, and the lexicographically �rst maximal independent set problem are P -complete areused to show LFMS(�) is P -complete.Remarks: The following are examples of properties that meet the criteria stated in theproblem: bipartite, chordal, clique, comparability graph, edge graph, forest, independentset, outerplanar, and planar. Not all problems computing a lexicographically �rst solutionare P -complete. For example, the lexicographically �rst topological order problem is com-plete for NLOG [Sho89] and the lexicographic low degree subgraph membership problem isNP -complete [Gre89].A.2.14 Minimum Feedback Vertex Set (MFVS)Given: A directed graph G = (V;E) that is cyclically reducible (de�ned below) and adesignated vertex v.Problem: Is v contained in the minimum feedback set of G that is computed by thealgorithm given in [WLS85]?Reference: [BDAP88]Hint: We review some terminology [WLS85]. A node z of G is deadlocked if there is adirected path in G from z to a node y that lies on a directed cycle. The associated graphof node x with respect to G, A(G,x), consists of node x and all nodes of G that are notdeadlocked if x is removed from G. A directed graph is cyclically reducible if and only ifthere exists a sequence of nodes (y1; : : : ; yk) such that each of the graphs A(Gi�1; yi) iscyclic, where G0 = G and Gi = Gi�1 �A(Gi; yi), for 1 � i � k.A set is called a feedback vertex set if it contains at least one vertex from every cy-cle [Kar72]. It is minimum if no other feedback vertex set has fewer elements. Wang,Lloyd, and So�a gave a polynomial time algorithm for computing feedback sets in cyclically



Part II: P -Complete Problems � 57reducible graphs [WLS85]. Thus, MFVSP is in P . The reduction is from MCVP. Let(g1; : : : ; gk) denote an instance � of MCVP including inputs, where gk is the output gate.From � a graph G is constructed as follows:1. associate nodes g0i and gi00 with each gi,2. for each input gi, if gi is true (false) add a loop edge to g0i (gi00),3. for each and gate g with inputs i and j add edges (g0; i00), (i00; j 00), (j 00; g0), (g00; i0),(i0; g00), (g00; j 0), and (j 0; g00) to G,4. for each or gate g with inputs i and j add edges (g00; i0), (i0; j 0), (j 0; g00), (g0; i00), (i00; g0),(g0; j 00), and (j 00; g0) to G,5. add edges (gk0; gk00) and (gk00 ; gk0).It is easy to see that G is cyclically reducible. Set v = g0k to complete the reduction.Remarks: The question of whether a graph has a feedback vertex set of size k is NP -complete [Kar72]. Bovet, De Agostino, and Petreshci give an algorithm for �nding a mini-mum feedback set that requires O(k log2 n) time and O(n4) processors on a CREW-PRAM,where k denotes the size of the minimum feedback set. Greenlaw proved that a related prob-lem, the lexicographically �rst maximal acyclic subgraph problem, is P -complete [Gre90].Ramachandran proved that �nding a minimum weight feedback vertex set in a reducibleow graph with arbitrary weights is P -complete [Ram88]. She also proved the followingfour problems are NC equivalent: �nding a minimum feedback arc set in an unweightedreducible ow graph, �nding a minimum weight feedback arc set in a reducible ow graphwith unary weights on the arcs, �nding a minimum weight feedback vertex set in a reducibleow graph with unary weights on the vertices, and �nding a minimum cut in a ow networkwith unary capacities [Ram88].A.2.15 Edge Maximal Acyclic Subgraph (EMAS)Given: A directed graph G = (V;E) with an ordering on the edges and a designatededge e.Problem: Is e contained in the edge maximal acyclic subgraph?Reference: [Gre90]Hint: The edge maximal acyclic subgraph is de�ned to be the subgraph computed by analgorithm that builds up the subgraph by processing edges in order. It adds an edge to thesubgraph if its inclusion does not introduce a cycle. The reduction is from NOR CVP. Agadget is designed that replaces each gate in the circuit. A gadget for gate g with inputs i1,i2 and outputs o1, o2 has three nodes g(top), g(mid), and g(bot). The edges in the gadgetare (g(top),i1(mid)), (g(top),i2(mid)), (g(mid),i1(bot)), (g(mid),i2(bot)), (g(bot),o2(top)),(g(top),g(mid)), (g(mid),g(bot)), (g(bot),o1(top)), and (g(bot),g(top)). The �rst �ve edgesare upwarding pointing edges and are ordered �rst. The last four edges are ordered withinthe gadget as listed. true input i to gate g is represented by a node with an edge to g(top).false input i to gate g is represented by two nodes forming a cycle with g(top). The edges



58 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)are ordered so that the edge leading into g(top) is not put in the set the algorithm con-structs. The edges of the output gate are \grounded." One of the edges leaving gout(bot)is used as the designated edge e.Remarks: The decision problem \Is the edge maximal subgraph of size k?" is also P -complete [Gre90]. The feedback arc set problem [Kar72] is an equivalent formulation of themaximum acyclic subgraph problem. Approximation algorithms for this problem are im-portant because there are very few classes of graphs for which the problem is known to be inP [BS90]. Greenlaw proves decision problems based on several other natural approximationalgorithms are P -complete [Gre90]. He also gives two approximation algorithms that arein NC . Berger has an NC approximation algorithm that, assuming the input graph doesnot contain two-cycles, generates a subgraph containing more than half the arcs [Ber91].Ramachandran proved that �nding a minimum weight feedback arc set in a reducible owgraph with arbitrary weights on the arcs in P -complete [Ram88].A.2.16 General Graph Closure (GGC)Given: An undirected graph G = (V;E), a subset E 0 � V � V with E 0 \ E = �, and adesignated edge e = (u; v) 2 E 0.Problem: Is e in the general closure G(G;E 0) of G? That is, the graph obtained from Gby repeatedly joining non-adjacent pairs of vertices u and v whose degree sum is at leastjV j and such that (u; v) 2 E 0. The edges in E 0 are called admissible edges.Reference: [Khu89]Hint: An O(n3) algorithm solving the problem is given in [Khu89]. The reduction isfrom MCVP, Problem A.1.3. The idea is to replace gates in the circuit by gadgets. Wewill describe only the gadgets for inputs and and gates. The gadgets for or gates aresimilar. A true (false) value is associated with the output vertex of a gadget if its degreehas increased by the addition of an admissible edge (remained the same). The gadget isconstructed so that \values" do not propagate back up through the circuit. N will denotethe total number of vertices contained in all the gadgets. An additional N vertices areadded and connected so as to double the degrees of the vertices in the construction of thegraph containing gadgets. The total degree of the graph constructed is 2N . A true inputis represented by two vertices with an admissible edge between them and the degree ofeach vertex is N . A false input is represented similarly except on the output side thevertex has degree N � 1. The gadget representing an and gate �k consists of thirteenvertices. We describe the upper left part, which consists of �ve vertices, �rst. We'll callthe vertices 1, 2, 3, 4, and 5. Vertex 1 has a connection from one of �k's inputs. Vertices1 and 5 have degree N � 1 and vertices 2, 3, and 4 have degree N . The admissible edgesare (1; 2); (1; 3); (1; 4); (2; 5); (3; 5), and (4; 5). The upper right part of the gadget is similarwith vertices 6-10 playing the roles of 1-5. Vertices 5 and 10 are connected to vertex 11via admissible edges. Vertex 11 has degree N � 2. Vertex 11 is connected to the outputsof the gadget. These are vertices 12 and 13. They both are of degree N . The gadgets areconnected in the obvious manner. The circuit evaluates to true if and only if the admissibleedge (11; 13) of the gadget corresponding to the output gate is added to G.Remarks: The complexity of the general graph closure problem in which E 0 = V �V �Eis open, see Problem B.2.3.



Part II: P -Complete Problems � 59A.3 Search ProblemsA.3.1 Lexicographically First Maximal Path (LFMP)Given: A graph G = (V;E) with a numbering on the vertices and two designated verticess and t.Problem: Is vertex t on the lexicographically �rst maximal path in G beginning at s? Amaximal path is a path that cannot be extended because any attempt at extending it willresult in an encounter with a node that is already on the path. The lexicographically �rstmaximal path is the maximal path that would appear �rst in the \alphabetical" listing ofall paths from s, where the alphabetizing is done with respect to the vertex numbers.Reference: [AM87b]Hint: The reduction is from a version of CVP consisting of not and or gates. The keyidea is the construction of a subgraph called a latch. A latch consists of six nodes connectedin a rectangular fashion. The latches are hooked together and labeled in a clever manner.A latch that has been traversed (not traversed) in the construction of the lexicographically�rst maximal path indicates a true (false) value for the corresponding gate. Vertex t isa special vertex in a latch corresponding to the output gate.Remarks: LFMP remains P -complete when restricted to planar graphs with maximumdegree three. If the maximum degree of any vertex in G is at most �, then there is analgorithm that can �nd a maximal path in O(� log3 n) time using n2 processors [AM87b].There is also an NC algorithm for �nding a maximal path in planar graphs [AM87b]. Thecomplexity of the general problem of �nding a maximal path is open [AM87b], althoughknown to be in RNC [And87].A.3.2 Lexicographically First Depth First Search Ordering (LFDFS)Given: A graph G = (V;E) with �xed ordered adjacency lists, and two designated verticesu and v.Problem: Is vertex u visited before vertex v in the depth �rst search of G induced by theorder of the adjacency lists?Reference: [Rei85]Hint: Follows easily from Problem A.3.1, since the leftmost path in the lexicographically�rst depth �rst search tree is the lexicographically �rst maximal path [And85]. Reif[Rei85] gives a direct reduction from NOR CVP to DFS, taking advantage of the �xedorder by which the adjacency lists are examined. We present the directed case fromwhich the undirected case is easily derived. Without loss of generality, assume gatesare numbered in topological order. The gadget described below replaces nor gate ihaving inputs i1 and i2, and outputs to gates j1 and j2. The gadget has 8 verticesenter(i); in(i; i1); in(i; i2); s(i); out(i; 1); out(i; 2); t(i), and exit(i). Let the triple (x; y; z)denote a directed edge (x; y) with y appearing zth on x's adjacency list. The gadgethas triples (enter(i); in(i; i1); 1), (in(i; i1); in(i; i2); 2), (in(i; i2); s(i); 2), (s(i); out(i; 1); 1),(out(i; 1); s(i); 1), (out(i; 1); in(j1; i); 2), (out(i; 2); out(i; 1); 1),(out(i; 2); in(j2; i); 2), (t(i); out(i; 2); 1), (enter(i); t(i); 2), (t(i); exit(i); 2), (s(i); exit(i); 2),and (exit(i); enter(i + 1); 1). Additionally, (in(j1; i); out(i; 2); 1) and (in(j2; i); t(i); 1) aretriples connected to the gadget. true inputs are \chained" together. The lexicographic



60 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)DFS of the graph constructed visits vertex s(n), where n corresponds to the output gate,before (after) t(n) if and only if the circuit evaluates to true (false).Remarks: The directed case can be easily reduced to the undirected case. The reduc-tion is dependent on the adjacency lists �xing the order in which the adjacent nodesare examined. The problem remains open if this constraint is relaxed. For example,the problem remains open for graphs presented with all adjacency lists sorted in orderof increasing vertex number. The problem remains P -complete if the input is speci�edby a �xed vertex numbering [And85, Gre88b]. Anderson showed that computing just the�rst branch of the lexicographically �rst DFS tree, called the lexicographically �rst max-imal path, is P -complete [And85] (see Problem A.3.1). Computing the LFDFS tree inplanar graphs is P -complete as well [And85]. In RNC , it is possible to �nd some depth-�rst vertex numbering and the depth-�rst spanning tree corresponding to it; see ProblemB.5.1 [AA88, AAK90]. Computing a depth-�rst vertex numbering for planar graphs is inNC [Smi86, HY87]. Computing the lexicographically �rst depth-�rst numbering for DAGsis in NC [Grear, dlTK88, dlTK89]. Determining whether a directed spanning tree of ageneral graph has a valid DFS numbering is in NC [SV85].A.3.3 Breadth-Depth Search (BDS)Given: A graph G = (V;E) with a numbering on the vertices and two designated verticesu and v.Problem: Is vertex u visited before vertex v in the breadth-depth �rst search [HS84] of Ginduced by the vertex numbering? A breadth-depth �rst search starts at a node s and visitsall children of s pushing them on a stack as the search proceeds. After all of s's childrenhave been visited, the search continues with the node on the top of the stack playing therole of s.Reference: [Gre88b, Grear]Hint: The proof sketched below is due to Anderson [And88]. Reduce LFDFS to BDS.Insert a new vertex between every pair of connected nodes in the original graph. Supposein the original graph corresponding to the circuit that vertex ui has children v1; : : : ; vk andthat these vertices are visited in this order by the greedy DFS algorithm. Let c1; : : : ; ck bethe nodes inserted by the reduction between (ui and v1), : : :, (ui and vk) respectively. Theci's are assigned numbers so that in increasing order they are listed as ck; : : : ; c1. The vertexnumbers assigned to these nodes are speci�ed to \reverse" the breadth-depth search in thenew levels. In this way the DFS order of the original graph can be maintained. Vertex u isvisited before vertex v in an instance of LFDFS if and only if the vertex corresponding tou is visited before the vertex corresponding to v in the constructed instance of BDS.A.3.4 Stack Breadth First Search (SBFS)Given: A graph G = (V;E) with a numbering on the vertices and two designated verticesu and v.Problem: Is vertex u visited before vertex v in the stack breadth �rst search of G inducedby the vertex numbering? A stack breadth �rst search is a breadth �rst search that isimplemented on a stack. The nodes most recently visited on a new level are searched from



Part II: P -Complete Problems � 61�rst at the next level.Reference: [Gre88b, Grear]Hint: The reduction is from SAM2CVP to SBFS. Sort the inputs nodes and assign falseinputs lower numbers than true inputs. In increasing order let f1; : : : ; fk; t1; : : : ; tm denotethe ordering induced by this numbering. A new vertex e1 is introduced and given a numberbetween fk and t1. For each gate a vertex is introduced and its connections in the circuitare maintained in the graph being constructed. A start vertex s is added and connected toall inputs. Additionally, a new chain of vertices starting from s is added. The vertices inthis chain are s; e1; e2; : : : ; eD, where D denotes the depth of the circuit. The search orderspeci�ed by stack breadth �rst search is such that vertex el for l odd (even) correspondingto an or (and) level in the instance of SAM2CVP is visited before vertex v if and only ifthe gate corresponding to vertex v evaluates to false (true) in the circuit.Remarks: The lexicographic breadth �rst search problem, which has a natural implemen-tation on a queue, is de�ned as follows: given a graph G with �xed ordered adjacency listsis vertex u visited before vertex v in the breadth �rst search of G induced by the order ofthe adjacency lists. This problem is in NC [Gre88b, dlTK88, dlTK89].A.3.5 Alternating Breadth First Search (ABFS)Given: A graph G = (V;E) with E partitioned into two setsM and U , a designated vertexv, and a designated start vertex s.Problem: Does vertex v get visited along an edge from the set M during an alternatingbreadth �rst search of G? An alternating breadth �rst search, which has applications insome matching algorithms, is a breadth �rst search in which only edges in the set U (M)can be followed in going from even (odd) to odd (even) levels.Reference: [And85, And88]Hint: Anderson's proof was from a version of CVP composed of or and not gates. Thereduction we present is from NAND CVP. Let t1; : : : ; tk denote true inputs, f1; : : : ; fldenote false inputs, and g1; : : : ; gm denote nand gates. A new vertex s is created fromwhere the search will originate. For each ti, 1 � i � k, two new vertices t0i and t00i areintroduced, for each fi, 1 � i � l, a new vertex f 0i is introduced, and for each gi, 1 � i � m,a vertex vi is introduced. f 0i is connected to s by an edge in U and to vj , where j is suchthat f 0i was input to gate gj , by an edge in M . t00i is connected to s by an edge in U , t00i isconnected to t0i by an edge in M , and t0i is connected to vj , where j is such that t0i was inputto gate gj . If gate gi has outputs to gates gj and gh, then (vi; vj) and (vi; vh) are edges inM . For each of these gates receiving inputs from gi there are two additional vertices. Forgj they are called vij and v0ij . (vi; vij) is an edge in U , (vij ; v0ij) is in M , and (v0ij ; vj) is inU . For gate gh similar vertices and edges are added. The circuit evaluates to true (false)if and only if the vertex corresponding to the output gate of the circuit is visited along anedge in M (U).Remarks: The matching constructed by the search is not necessarily maximal. The prob-lem of �nding a maximum matching is in RNC [MVV87]. The problem of �nding a perfectmatching is also in RNC [KUW85, MVV87].



62 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)A.4 Combinatorial Optimization and Flow ProblemsA.4.1 Linear Inequalities (LI)Given: An integer n � d matrix A and an integer n� 1 vector b.Problem: Is there a rational d � 1 vector x > 0 such that Ax � b? (It is not required to�nd such an x.)Reference: [Coo82, Val82a, Kha79]Hint: LI is in P by [Kha79]. The following reduction of CVP to LI is due to [Coo82].1. If input xi is true (false) it is represented by the equation xi = 1 (xi = 0).2. A not gate with input u and output w, computing w  :u is represented by theinequalities w = 1� u and 0 � w � 1.3. An and gate with inputs u; v computing w u^ v is represented by the inequalities0 � w � 1, w � u, w � v, and u+ v � 1 � w.4. An or gate is represented by the inequalities 0 � w � 1, u � w, v � w, and w � u+v.Note for any gate, if the inputs are 0 or 1 the output will be 0 or 1. To determine theoutput z of the circuit, add the inequalities required to force z = 1. If the system has asolution then the output is true and otherwise the output is false.A.4.2 Linear Equalities (LE)Given: An integer n � d matrix A and an integer n� 1 vector b.Problem: Is there a rational d� 1 vector x > 0 such that Ax = b?Reference: [Coo82, Val82a, Kha79]Hint: LE is NC 1 reducible to LI since Ax � b and �Ax � �b if and only if Ax = b. ThusLE is in P. For completeness an instance of LI can be reduced to LE as follows: for eachinequality in LI there is a corresponding equality in LE with an additional \slack" variablethat is used to make the inequality into an equality.Remarks: If LE is restricted so the coe�cients of A and b are either �1; 0; or 1 then LEis still P -complete. This follows from the reduction given by Itai [Ita78]. The restrictedversion of LE is denoted [�1,1] LE.A.4.3 Linear Programming (*) (LP)Given: An integer n�d matrix A, an integer n�1 vector b, and an integer 1�d vector c.Problem: Find a rational d� 1 vector x such that Ax � b and cx is maximized.Reference: [DLR79, Kha79, DR80, Val82a]Hint: LP is not in P , but is in FP by [Kha79]. Reduce LI to LP by picking any cost vectorc, say c = ~0, and checking whether the resulting linear program is feasible.Remarks: The original reduction in [DLR79] is from HORN, Problem A.6.2, to LP.In [DR80], LP and LI are shown to be log space equivalent by reducing LP to LI usingrational binary search [Pap78, Rei78] to �nd the value of the maximum and an x that



Part II: P -Complete Problems � 63yields it. However, it is not clear how to perform this reduction in NC 1. Since LP andLI are complete via NC 1 reductions though, there must be a NC 1 reduction between thetwo problems. Although we know that LP and LI are NC 1 equivalent, the NC 1 reductionbetween them is not an obvious one. It is also P -hard to approximate cx to within any con-stant fraction, even given a feasible solution x0. (Anne Condon, personal communication,April 1991; reduction is from Problem A.8.2.)A.4.4 Maximum Flow (MaxFlow)Given: A directed graph G with each edge labeled with a capacity ci � 0 two distinguishedvertices, source s and sink t, and a value f .Problem: Is there a feasible ow of value k, i.e. is the value of the maximum ow into thesink � f?Reference: [GSS82, LW87]Hint: The �rst P -completeness proof for a decision problem derived from maximum owwas for the problem of determining whether the ow is odd or even [GSS82]. We give thisreduction. (The proof given in [LW87] for the more natural threshold problem stated aboveis similar.) The reduction is from AM2CVP (Problem A.1.4) to MaxFlow. Gates vi andconnections eij of � are associated with nodes v0i and edges e0ij of G. G has additional nodess; t and an overow edge for each v0i. Each edge eij of � has a capacity and a ow associatedwith it. This capacity is 2i, and the ow is 2i if gate vi is true and 0 otherwise. A node v0iwith inputs v0j and v0k has a maximum possible inow of 2j +2k, and outow to other gatesof d2i (d is the outdegree of vi). The remaining ow is absorbed by the overow edge fromv0i with capacity 2j + 2k � d2i. This overow edge is directed toward t in case vi is an andgate and toward s in case vi is an or gate. Thus the nodes must be topologically orderedwith the output �rst and the inputs last, and the output gate must be an or gate. Notethat all edge capacities are even except the one from v0 to t. Thus the maximum ow forG is odd if and only if � outputs true.Remarks: This reduction produces exponential edge capacities in G. In a network withedge capacities expressed in unary, computing the magnitude of the maximum ow is inRNC 2 [Fea84] and a method for �nding the ow in RNC is also known [KUW86]. If thenetwork is restricted to being acyclic MaxFlow remains P -complete [Ram87]. Flows inplanar networks can be computed in NC [JV82]. Two commodity ow (2CF) is de�nedlike MaxFlow except there are two sources and two sinks, and there are two separate owsfunctions for the commodities. Since MaxFlow is a special case of 2CF and 2CF is in P byresults of Itai [Ita78] and Khachian [Kha79], it follows that 2CF is P -complete. Itai de�nedseveral other variants of 2CF that are also P -complete. They are de�ned below. (l; u)-2CFis a case of 2CF in which there are lower and upper bounds on the capacity of each edge.Selective (l; u)-2CF is de�ned to be a 2CF with lower and upper bounds on the sum ofthe two ows on each edge. Stein and Wein [SW91] show that, althought there is an RNCalgorithm to approximate maximum ow, approximating the minimum cost maximum owis P -complete.



64 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)A.4.5 Homologous Flow (HF)Given: A directed graph G with each edge (v; w) labeled with a lower and upper boundon ow capacity l(v; w); u(v;w)� 0 and two distinguished vertices, source s and sink t.Problem: Is there a feasible ow in the network? A feasible ow is one in which the owassigned to each arc falls within the lower and upper bounds for the arc. A homologousow is a ow in which pairs of edges are required to have the same ow.Reference: [Ita78]Hint: It follows that HF is in P by the results of Itai [Ita78] and Khachian [Kha79]. Wedescribe the reduction given by Itai [Ita78] and note that it is a log space reduction. Thereduction is from [�1,1] LE. Let Pmj=1 aijxj = bi, for i = 1; : : : ; n be an instance of [�1,1]LE. For � 2 f�1; 0; 1g, let J i� = fj j aij = �g. Another formulation of the originalequations is Pj2Ji1 xj � Pj2Ji�1 xj = bi, for i = 1; : : : ; n. There are n sections in the ownetwork constructed and each one has m + 5 vertices fvi1; : : : ; vim; yi; zi; J i�1; J i0; J i1g. For� = �1; 0; 1, if j 2 J i0 then add (vij ; J i�) as a nonrestricted edge, one with lower bound 0and upper bound 1, to the network. Add (J i1; zi) with lower and upper capacities equalto bi. (J i1; yi) and (J i�1; yi) are homologous nonrestricted edges. (J i1; zi) and (J i1; yi) arenonrestricted edges. An additional node z0 is added as a source and zn is the sink. Foreach j, (z0; v1j ); (z1; v2j ); : : : ; (zn�1; vnj ) are pairwise nonrestricted homologous edges. Let fdenote the ow, given a solution x to the equations a feasible ow is xj = f(z0; v1j ) = � � � =f(zn�1; vn�1j ) and given a feasible ow it is easy to construct solution x.A.4.6 Lexicographically First Blocking Flow (LFBF)Given: A directed acyclic graph G = (V;E) represented by �xed ordered adjacency listswith each edge labeled with a capacity ci � 0 and two distinguished vertices, source s andsink t.Problem: Is the value of the lexicographically �rst blocking ow odd? A blocking ow is aow in which every path from s to t has a saturated edge | an edge whose ow is equal toits capacity. The lexicographically �rst blocking ow is the ow resulting from the standardsequential depth �rst search blocking ow algorithm.Reference: [AM87a]Hint: The reduction given in Problem A.4.4 can be easily modi�ed to show this problemis P -complete.Remarks: The problem of �nding the lexicographically �rst blocking ow in a 3 layerednetwork is also P -complete. A 3 layered network is one in which all source to sink pathshave length 3. Cheriyan and Maheshwari also give an RNC algorithm for �nding a blockingow in a 3 layered network [CM89].A.4.7 First Fit Decreasing Bin Packing (FFDBP)Given: A list of n items v1; : : : ; vn, where each vi is rational number between 0 and 1, andtwo distinguished indices i and b.Problem: Is the ith item packed into the bth bin by the �rst �t decreasing bin packingheuristic?



Part II: P -Complete Problems � 65Reference: [AMW89]Hint: Reduce AM2CVP (Problem A.1.4) to FFDBP. Without loss of generality, we canassume the gates �1; : : : ; �n are numbered in topological order. The reduction transforms thesequence �1; : : : ; �n into a list of items and bins. Let �i = 1� i=(n+1) and � = 1=(5(n+1)),and Ti (Fi) denote any item of size �i (�i � 2�). We describe how to construct the list ofitems and bins. For and gate �i with outputs to gates �j and �k construct bins of size�i; 2�i � 4�; �i + �j � 3�, and �i + �k � 4� and items of size �i; �i; �i � 2�; �i � 2�; �i � 3�,and �i � 4�. For an or gate �i with outputs to gates �j and �k construct bins of size2�i�4�; �i; �i+�j �3�, and �i+�k�4� and the same items as for the and gate. The outputgate �n is treated specially and has bins of size �n and �n, and items of size �n; �n; �n � 2�,and �n � 2�. For gates receiving a constant circuit input, a Ti (Fi) is removed if the gatereceives a false (true) input. The lists of bins are concatenated in the order of theircorresponding gate numbers and similarly for the items. To get unit size bins let u1; : : : ; uqbe the non-increasing list of item sizes and let b1; : : : ; br be the list of variable bin sizes asconstructed above. Let B = maxi bi and C = (2r+1)B. For 1 � i � 2r, set vi = C� iB�b,if i � r and C � ib, otherwise. Packing these 2r items into r bins of size C has the a�ect ofleaving bi space in the ith bin. By concatenating the \u" and \v" item lists and normalizingthe bin sizes, a �rst �t decreasing bin packing of the items will place the item correspondingto the second Tn in �n's list into the last bin if and only if the circuit evaluates to true.Remarks: The problem remains P -complete even if unary representations are used forthe numbers involved. This is one of the �rst such problem where large numbers do notappear to be required for P -completeness (in contrast see MaxFlow, Problem A.4.4). Theproblem of determining if I is the packing produced by the best �t decreasing algorithm isalso P -complete [AMW89]. In [AMW89] there is an NC algorithm that produces a packingwithin 11=9 of optimal. This is the same performance as for �rst �t decreasing.A.4.8 General List Scheduling (GLS)Given: An ordered list of n jobs fJ1; : : : ; Jng, a positive integer execution time T (Ji) foreach job, and a non-preemptive schedule L. The jobs are to be scheduled on two identicalprocessors.Problem: Is the �nal o�set produced by the list scheduling algorithm non-zero? The �nalo�set is the di�erence in the total execution time of the two processors.Reference: [HM87]Hint: Reduce NOR CVP to GLS. Without loss of generality, assume the gates in theinstance of NOR CVP are numbered in reverse topological order. The input wires to gate iare numbered 42i and 42i+1. The output wire of gate 1, the overall circuit output, is labeled4. Let Vi be the sum of the labels on the output wires of gate i. For gate i, 17 jobs areintroduced with the following execution times | 1 job at 2 � 42i+1, 14 jobs at 42i=2, and 2jobs at (42i + Vi)=2. The initial job has execution time equal to the sum of the labels of alltrue input wires. The remaining jobs are listed in descending order of gate number. The�nal o�set will be 4 (0) if and only if the output gate i is true (false).Remarks: The problem is in NC if the job times are small, that is nO(1). NC algorithms forscheduling problems with either intree or outtree precedence constraints are known [HM86,HM87].



66 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)A.5 Local OptimalityA.5.1 MAXFLIP Veri�cation (MAXFLIPV)Given: An encoding of a Boolean circuit � constructed of and, or, and not gates, plusinputs x = x1; : : : ; xn. The circuit's m output values y = y1; : : : ; ym.Problem: Is the circuit's output a local maximum among the neighbors of x when y isviewed as a binary number? The neighbors of x are vectors of length n whose Hammingdistance di�ers from x by 1. That is, they can be obtained from x by ipping one bit.Reference: [JPY88]Hint: The problem is easily seen to be in P . The reduction is from the MCVP, ProblemA.1.3. Let � denote an instance of MCVP with input x1; : : : ; xn. Construct an instance ofMAXFLIP as follows. The new circuit is the same as � except for a modi�cation to theinput. Add a \latch" input that is and'd with each of �'s inputs before they are fed intolater gates of �. Set the latch input to value 0. The output of the circuit constructed willbe 0. The input x1; : : : ; xn; 0 will be locally optimal if and only if the output is 0 when thelatch input is 1. This is true if and only if the output of � on its input is 0.Remarks: The complementary problem, called the FLIP veri�cation problem, in whichthe output is minimized is also P -complete [JPY88]. The general problems MAXFLIP andFLIP are PLS -complete [JPY88]. PLS stands for polynomially local search.A.5.2 Local Optimality Kernighan-Lin Veri�cation (LOKLV)Given: A graph G = (V;E) with weights w(e) on the edges and a partition of V into twoequal size subsets A and B.Problem: Is the cost of the partition, c(A;B), a local optimum among the neighbors of thepartition? The cost of the partition is de�ned to be the sum of the costs of all edges goingbetween the sets A and B. We follow the presentation in [JPY88] to de�ne the neighbors.A swap of partition (A;B) is a partition (C;D) such that (C;D) is obtained from (A;B)by swapping one element of A with an element of B. The swap (C;D) is a greedy swap ifc(C;D)� c(A;B) is minimized over all swaps of (A;B). If (C;D) is the lexicographicallysmallest over all greedy swaps, then (C;D) is said to be the lexicographically greedy swapof (A;B). A sequence of partitions (Ai; Bi), each obtained by a swap from the precedingpartition, is monotonic if the di�erences Ai�A0 and Bi�B0 are monotonically increasing.A partition (C;D) is a neighbor of (A;B) if it occurs in the unique maximal monotonicsequence of lexicographic greedy swaps starting with (A;B).Reference: [JPY88]Hint: The reduction is from MAXFLIPV, Problem A.5.1.Remarks: A problem called the weak local optimum for Kernighan-Lin veri�cation problemin which the neighborhoods are larger is also P -complete [JPY88]. The general versions ofthese problems, local optimality Kernighan-Lin and weak local optimality Kernighan-Linare both PLS -complete [JPY88].A.5.3 Unweighted, Not-All-Equal Clauses, 3SAT/FLIP (U3NSATFLIP)Given: A Boolean formula F in CNF with 3 literals per clause and a truth assignment s.



Part II: P -Complete Problems � 67Each clause has a weight of 1. The clauses are not-all-equals clauses with positive literals.A truth assignment \satis�es" a clause C under the not-all-equals criterion if it is such thatC has at least one true and one false literal.Problem: Is the assignment s the maximum cost assignment of F over all neighbors ofs? The cost of the assignment is the sum of the weights of the clauses it satis�es. Theneighbors of s are assignments that di�er from s in one bit position.Reference: [PSY90, SY]Hint: The reduction is from NOR CVP.Remarks: The weighted version of the problem is PLS -complete [PSY90].A.5.4 Unweighted MAXCUT/SWAP (UMS)Given: A graph G = (V;E) with weights of size 1 on the edges and a subset S � V .Problem: Is S the maximum cost subset of nodes, where the cost is the sum of the weightsof the edges leaving nodes in S, over all neighbors of S? A neighbor of S is a set of size jSjwhose symmetric di�erence with S contains one node.Reference: [PSY90, SY]Hint: The reduction is from U3NSATFLIP, Problem A.5.3.Remarks: The weighted version of the problem is PLS -complete [PSY90].A.5.5 Unweighted 2SAT/FLIP (U2SATFLIP)Given: A Boolean formula F in CNF with 2 literals per clause and a truth assignment s.Each clause has a weight of 1.Problem: Is the assignment s the maximum cost assignment of F over all neighbors of s?The cost of the assignment is the sum of the weights of the clauses it satis�es. The neighborsof s are assignments that di�er from s in one bit position.Reference: [PSY90, SY]Hint: The reduction is from UMS, Problem A.5.4.Remarks: The weighted version of the problem is PLS -complete [PSY90].A.5.6 Unweighted SWAP (USWAP)Given: A graph G = (V;E) with 2n nodes and a set S of n nodes.Problem: Is S the minimum cost set of n nodes, where the cost is the sum of the weightsof the edges leaving S, over all neighbors of S? A neighbor of S is a set of n nodes whosesymmetric di�erence with S consists of two nodes.Reference: [PSY90, SY]Hint: The reduction is from UMS, Problem A.5.4.Remarks: The weighted version of the problem is PLS -complete [PSY90].A.5.7 Unweighted STABLE NET (USN)Given: A graph G = (V;E) whose edges all have weights of �1 and an assignment B oflabels xi 2 f�1;+1g to each node i.



68 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)Problem: Does the assignment B yield maximum cost; Pi;j xixj over all i; j; over allneighbors of B? A neighbor of B is an assignment of labels that di�ers from B on only onenode.Reference: [PSY90, SY]Hint: The reduction is from UMS, Problem A.5.4.Remarks: The weighted version of the problem is PLS -complete [PSY90].A.6 LogicA.6.1 Unit Resolution (UNIT)Given: A Boolean formula F in conjunctive normal form.Problem: Can the empty clause 2 be deduced from F by unit resolution? A unit is aclause with only one term. For example, the unit resolvent of F = A _ B1 _ � � � _ Bm andthe unit G = :A is B1 _ � � � _Bm.Reference: [JL76]Hint: Jones and Laaser provide a poly-time algorithm for unit resolution [JL76]. To showBfollows from the assumption A1^� � �^Am, negateB, add it to the set of clauses and derive theempty clause. Reduce CVP to UNIT as described below. A gate in the circuit vk  vi ^ vjis represented by the clauses of vk , vi^vj , that is, (:vk _vi)^ (:vk_vj)^ (vk_:vi_:vj).Similarly, vk  vi _ vj is represented by the clauses of vk , vi _ vj and vk  :vi isrepresented by the clauses of vk , :vi.Remarks: Under the appropriate de�nitions, it is known that approximating this problemis also P -complete [SS89].A.6.2 Horn Unit Resolution (HORN)Given: A Horn formula F , that is, a conjunctive normal form (CNF) formula with eachclause a disjunction of literals having at most one positive literal per clause.Problem: Can the empty clause 2 be deduced from F by unit resolution?Reference: [DLR79, JL76]Hint: Reduce an arbitrary Turing machine to a CNF formula as in [Coo71b]. All of theclauses are Horn clauses. Most clauses are of the form :P ai�1;t _ :P bi;t _ :P ci+1;t _ P f(a;b;c)i;t+1 ,where Pi; ta is true if at time t tape cell i contains symbol a (or symbol (a; s) if the tapehead is over the cell and the Turing machine is in state s). The function f(a; b; c) dependson the Turing machine. For cells i � 1; i; i+ 1 containing symbols a; b; c the value of cell iat the next time step is f(a; b; c). Alternatively, reduce CVP to HORN as for UNIT. Theclauses for vk  vi ^ vj and for vk  :vi are already in Horn form. For vk  vi _ vj theclauses of vk , vi _ vj are not in Horn form, but replacing the or by an and gate andassociated not gates using DeMorgan's laws results in a set of Horn clauses.A.6.3 Propositional Horn Clause Satis�ability (PHCS)Given: A set S of Horn clauses in the propositional calculus.Problem: Is S satis�able?



Part II: P -Complete Problems � 69Reference: [Pla84, Kas86]Hint: The reduction is straightforward from the alternating graph accessibility problem,Problem A.2.3.Remarks: The problem remains P -complete when there are at most 3 literals perclause [Pla84]. Plaisted has shown that two problems involving proofs of restricted depthare also P -complete. They are the two literal Horn clause unique matching problem andthe three literal Horn clause problem [Pla84].A.6.4 Relaxed Consistent Labeling (RCL)Given: A relaxed consistent labeling problem G consisting of a set of variables V =fv1; : : : ; vng and a set of labels L = fL1; : : : ; Lng, where Li consists of the possible labelsfor vi. A binary predicate P , where Pij(x; y) = 1 if and only if the assignment of label xto vi is compatible with the assignment of label y to vj . A designated variable P0 and adesignated label f .Problem: Is there a valid assignment of the label f to P0 in G?Reference: [Kas86, GHR91]Hint: The original reduction is from the propositional Horn clause satis�ability problem,Problem A.6.3 [Kas86]. The reduction we sketch is from NAND CVP. A variable is intro-duced for each circuit input. The variable must have label 1 (0) if the circuit input is true(false). We view each nand gate as being represented by three variables. Consider nandgate k with inputs i and j, and outputs s and t. The variables for k will be denoted k, Lk ,and Rk. The possible labels for a nand gate (variable k) are 0, 1, T , T 0, and F . T andT 0 are used to denote true values, and F is used to denote a false value. The possiblelabels for variables Lk and Rk are 0 and 1. The constraints for variable k with its inputsare as follows: Pik(0; 1) = 1, Pik(1; T ) = 1, Pik(0; T 0) = 1, Pik(1; F ) = 1, Pjk(0; 1) = 1,Pjk(0; T ) = 1, Pjk(1; T 0) = 1, and Pjk(1; F ) = 1. The constraints on Lk and Rk are thesame. When k has any label l from f1; T; T 0g, then PkLk (l; 1) = 1. When k has a label l fromf0; Fg, then PkLk(l; 0) = 1. All other possible labelings are not allowed. The constraintsinvolving nand gate s (t) use Lk (Rk). Notice since inputs have only one possible label,they must be assigned this label. The remainder of the labeling is done so that the circuitgets evaluated in a topological manner. Let o denoted the number of the output gate of thenand circuit instance. There is a valid assignment of label 1 to node Lo if and only if theoutput of gate o is true.Remarks: The general consistent labeling problem is NP -complete.A.6.5 Generability (GEN)Given: A �nite set W , a binary operation � on W (presented as a table), a subset V � W ,and w 2 W .Problem: Is w contained in the smallest subset of W that contains V and is closed underthe operation �?Reference: [JL76]Hint: The reduction is from unit resolution, Problem A.6.1. De�ne a � b to be the unitresolution of clauses a and b. Let W be all the subclauses of a formula F in an instance of



70 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)UNIT, and V be all of its clauses. Let w be the empty clause.Remarks: If � is associative, GEN is complete for NSPACE(logn). The problem remainsin P even with more than one operation. Under the appropriate de�nitions, it is knownthat approximating this problem is also P -complete [SS89].A.6.6 Path Systems (PATH)Given: A path system P = (X;R; S; T ) where S � X , T � X , and R � X �X �X .Problem: Is there an admissible node in S? A node x is admissible if and only if x 2 T ,or there exists admissible y; z 2 X such that (x; y; z) 2 R.Reference: [Coo74, JL76]Hint: Reduce GEN to PATH by de�ning (x; y; z) 2 R if and only if x = y � z.Remarks: This is the �rst problem shown to be log space complete for P . The originalproof by Cook does a direct simulation of a Turing machine [Coo74]. Under the appropriatede�nitions, it is known that approximating this problem is also P -complete [SS89].A.6.7 Uni�cation (UNIF)Given: Two symbolic terms s and t. Each term is composed of variables and functionsymbols. A substitution for x in a term u is the replacement of all occurrences of a variablex in u by another term v.Problem: Is there a series of substitutions � that unify s and t? That is, gives �(s) = �(t).The two terms are called uni�able if such a � exists.Reference: [DKM84, Yas84, DKS88]Hint: The reduction given in [DKM84] is from MCVP. The reductions given in [DKS88]are from NAND CVP.Remarks: Unrestricted uni�cation is also P -complete [DKM84]. Unrestricted uni�cationis where we allow substitutions to map variables to in�nite terms. It is convenient torepresent terms as labeled directed acyclic graphs. A term is linear if no variable appearsmore than once in the term. The following two restricted versions of uni�cation are alsoboth P -complete: (a) both terms are linear, are represented by trees, and have all functionsymbols with arity less than or equal to two; (b) both terms are represented by trees, novariable appears in both terms, each variable appears at most twice in some term, and allfunction symbols have arity less than or equal to two [DKS88]. A restricted problem calledterm matching can be solved on a CREW-PRAM in randomized time O(log2 n) usingM(n)processors, where M(n) denotes the complexity of an n�n matrix multiplication [DKS88].A term s matches a term t if there exists a substitution � with �(s) = t. Vitter and Simonsgivepn time parallel algorithms for uni�cation and some other P -complete problems [VS86].A.6.8 Logical Query Program (LQP)Given: An extended logic program P , and a ground clause C of the formp(�x) :| q1(�y1); : : : ; qk(�yk). A ground clause is one in which all arguments (e.g., �x and �yiabove) are constants. An extended logic program is a basic logic program plus an extensionaldata base instance. A basic logic program is a �nite set of rules. A rule is a disjunction



Part II: P -Complete Problems � 71of literals having exactly one positive literal, called the head. The negative literals in theclause are called subgoals. The set of predicate symbols that appear only in subgoals iscalled the Extensional Database, or EDB. An EDB fact is an EDB predicate with constantsas arguments. An EDB instance is a �nite set of EDB facts. C is a theorem of P if thehead of C is derivable from its subgoals in P .Problem: Is C a theorem of P?Reference: [UVG88]Hint: Reduce PATH, Problem A.6.6, to LPQ. Let (X;R; S; T ) be an instance of PATH.Without loss of generality, assume S = fsg. Let t(Y ) be an EDB relation specifying thatnode Y is in T . Let r(U; V;W ) be an EDB relation specifying that the triple of nodes(U; V;W ) is in R. The basic logic program consists of the two rules a(Y ) :| t(Y ) anda(Y ) :| r(Y; V;W ); a(V ); a(W ). The relation a models \admissibility" in the path system,so a(s) is a theorem of P if and only if s is admissible in the path system.Remarks: Remains P -complete even for very restricted programs. In NC for programswith the \polynomial fringe property." See [UVG88] for details. See also [AP87] for relatedresults.A.7 Formal LanguagesA.7.1 Context-Free Grammar Membership (CFGmem)Given: A context-free grammar G = (N; T; P; S) and a string x 2 T �.Problem: Is x 2 L(G)?Reference: [JL76]Hint: Reduce GEN to CFGmem. Let (W; �; V;w) be an instance of GEN. Construct thegrammar G = (W; fag; P; w), where P = fx! yz j y � z = xg [ fx! � j x 2 V g. It followsthat � 2 L(G) if and only if w is generated by V .Remarks: Goldschlager remarks it is the presence of �-productions in the input grammarthat make the membership question di�cult [Gol81]. Lewis, Stearns, and Hartmanis' log2 nspace algorithm [LSH65] and Ruzzo's AC 1 (hence NC2) algorithm [Ruz80] for generalcontext free language recognition can both be modi�ed to work with an �-free grammargiven as part of the input.A.7.2 Context-Free Grammar Empty (CFGempty)Given: A context-free grammar G = (N; T; P; S).Problem: Is L(G) is empty?Reference: [JL76, Gol81]Hint: The reduction given in Problem A.7.1 su�ces. The following reduction of MCVPto CFGempty (due to Martin Tompa, private communication) is also of interest. Given acircuit � construct the grammar G = (N; T; P; S) such that N = fi j vi is a vertex in �g,T = fag, and S = n, where vn is the output of �. Let �(g) denote the value of gate g. Theproductions in P are of the following form:1. For input vi, i! a if �(vi) is true,



72 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)2. i! jk if vi  vj ^ vk,3. i! j j k if vi  vj _ vk.Then �(vi) is true if and only if i)� , where  2 fag�.Remarks: Note, this reduction and the one for CFGinf, have no �-productions yet remaincomplete. The original proof of Jones and Laaser reduced GEN to CFGempty. Their proofused the reduction for CFGmem and instead checked if L(G) is empty [JL76].A.7.3 Context-Free Grammar In�nite (CFGinf)Given: A context-free grammar G = (N; T; P; S).Problem: Is L(G) is in�nite?Reference: [Gol81, JL76]Hint: Use a grammar similar to G in the proof for CFGempty, Problem A.7.2, exceptproduction i ! a is replaced by i ! x, and the productions x ! a and x ! ax are alsoadded.A.7.4 Context-Free Grammar �-Membership (CFG�mem)Given: A context-free grammar G = (N; T; P; S).Problem: Is � 2 L(G)?Reference: [Gol81, JL76]Hint: Use a grammar similar to G in the proof for CFGempty, Problem A.7.2, exceptproduction i! a is replaced by i! �.A.7.5 Straight-Line Program Membership (SLPmem)Given: A straight-line program over alphabet �, j�j � 1, with operations taken from� = � [ ff�g;�;[; �g, and a string x.Problem: Is x a member of the set constructed by the program?Reference: [Goo83]Hint: By noting there is a log space alternating Turing machine that \parses" x relativeto the program, the problem is easily seen to be in P . Reduce MCVP to SLPmem by thefollowing: true ! f�g, false ! �, ^ ! �, and _ ! [.Remarks: The original reduction was from GEN. Remains in P if \ is allowed. The anal-ogous membership question for regular languages presented as regular expressions (NFAs)is complete for NSPACE(logn).A.7.6 Straight-Line Program Nonempty (SLPnonempty)Given: A straight-line program over alphabet �, j�j � 1, with operations taken from� = � [ ff�g;�;[; �g, and a string x.Problem: Is the set constructed by the program non-empty?Reference: [Goo83]



Part II: P -Complete Problems � 73Hint: Reduce SLPmem to SLPnonempty. Change non-empty constants to f�g, and testmembership of �.Remarks: With \ added, SLPnonempty becomes complete for nondeterministic exponen-tial time [Goo83].A.7.7 Labeled GAP (LGAP)Given: A �xed context free language L over alphabet �, a directed graph G = (V;E) withedges labeled by strings in ��, and two vertices s and t.Problem: Is there a path from s to t such that the concatenation of its edge labels isin L?Reference: [Ruz79, GHR91]Hint: Reduce the 2-way DPDA acceptance problem, Problem A.7.8 to LGAP. Let M =(Q;�0;�; �; q0; Z0) be a 2-way DPDA [HU79] and let x 2 �0 be an input string. Withoutloss of generality, the PDA has a unique �nal con�guration qf and accepts with empty stackwith its head at the right end of the input. Let � = � [ fZ j Z 2 �g. Let V be the setcontaining the special vertex s, together with all \surface con�gurations" of the PDA, i.e.Q � f1; : : : ; jxjg. There is an edge from hp; ii to hq; ji labeled � 2 �� if and only if whenreading xi the PDA has a move from p to q that moves its input head j � i 2 f�1; 0; 1gcells to the right, pops Z 2 �, and pushes � 2 ��, where � = Z�. Additionally, thereis an edge from the special vertex s to the initial surface con�guration hq0; 1i, labeled Z0(the initial stack symbol). The designated vertex t is hqf ; jxji. Finally, L = L(G), whereG : fS ! aSaS j a 2 �g [ fS ! �g, i.e., the semi-Dyck language Dj�j on j�j letters [Har79,Section 10.4].Remarks: Remains P -complete when L is D2. An equivalent statement is that it is P -complete to decide, given a deterministic �nite state automatonM , whetherD2\L(M) = �.If G is acyclic then the problem is complete for SAC1 = LOGCFL [Ruz79].A.7.8 Two-Way DPDA Acceptance (2DPDA)Given: A two-way deterministic pushdown automatonM and a string x.Problem: Is x accepted by M?Reference: [Coo71a, Gal74, Gal77, Lad75]Hint: See, e.g., [HU79] for a de�nition of 2DPDAs. Cook [Coo71a] gives a direct simulationof a polynomial time Turing machine by a logarithmic space auxiliary pushdown automaton.Galil [Gal74, Gal77] shows existence of a P -complete language accepted by a 2DPDA, ine�ect showing that the logarithmic space worktape isn't crucial to Cook's simulation. (Seealso [Sud78] for a general reduction of auxiliary PDAs to ordinary PDAs.) Ladner [Lad75]gives a much more direct proof by observing that a suitably encoded version of CVP issolvable by a 2DPDA, basically by doing a depth �rst search of the circuit, using the stackfor backtracking.Remarks: Remains in P when generalized to nondeterministic and/or logarithmic spaceauxiliary PDAs [Coo71a]. When restricted to polynomial time PDAs, or one-way PDAs,even with a logarithmic space worktape, the problem is in NC ; speci�cally it is completefor LOGDCFL in the deterministic case, and for LOGCFL = SAC1 in the nondeterministic



74 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)case.A.8 Algebraic ProblemsA.8.1 Finite Horizon Markov Decision Process (FHMDP)Given: A nonstationary Markov decision process M = (S; c; p) and an integer T . Beforede�ning the problem, we present some background on Markov decision processes. The term�nite horizon refers to the time bound T . S is a �nite set of states and contains a desig-nated initial state s0. Let st denote the current state of the system for each time t = 1; 2; : : :Associated with each state s 2 S is a �nite set of decisions Ds. A cost of c(s; i; t) is incurredat time t by making decision i 2 Dst . The next state s0 has probability distribution givenby p(s; s0; i; t). If c and p are independent of t then the process is said to be stationary. Apolicy � is a mapping that assigns to each time step t and each state s a decision �(s; t). Apolicy is stationary if � is independent of time, and can then be suplied as an input.Problem: Is the expectation of the cost, PTt=0 c(st; �(st; t); t), equal to 0?Reference: [PT87]Hint: There is a polynomial time algorithm for the problem that uses dynamic program-ming. The reduction is from the monotone circuit value problem, Problem A.1.3. Letc = ((ai; bi; ci); i = 1; : : : ; k) denote an encoding of MCVP, where ai denotes gate type, andbi and ci denote the numbers of gate i's inputs. A stationary Markov process M = (S; c; p)is constructed from the circuit instance as follows. S has one state qi for each i, 1 � i � k.There is an additional state in S called q. If (ai; bi; ci) corresponds to a circuit input, thenthe corresponding state qi has a single decision 0 with p(qi; q; 0) = 1, and cost c(qi; 0) = 1(0) if ai is a false (true) input. All other costs of this process are 0. There is one decision0 for state q and p(q; q; 0) = 1. If ai is an or gate then there are two decisions 0 and 1from state qi. The associated probabilities are p(qi; qbi ; 0) = 1 and p(qi; qci ; 1) = 1. Theassociated costs are both 0. If ai is an and gate then there are two decisions 0 and 1 fromstate qi. p(qi; qbi; 0) = 1=2 and p(qi; qci ; 1) = 1=2, with associated costs 0. The initial stateis k corresponding to the output gate of the circuit; the time horizon T is k. It is easy toverify that the expected cost of the process is 0 if and only if the circuit evaluates to true.Remarks: The reduction shows that the �nite horizon stationary version of the problem isP -hard. This problem is not known to be in P . The deterministic version of the FHMDP,which requires that p has only values 0 or 1, is in NC [PT87]. Note, this last result holdsfor both the stationary and nonstationary versions of the problem.A.8.2 Discounted Markov Decision Process (DMDP)Given: A stationary Markov decision process M = (S; c; p) and a real number � 2 (0; 1).See Problem A.8.1 for de�nitions. This problem is in�nite horizon, that is, there is no timebound.Problem: Is the expectation of the cost, P1t=0 c(st; �(st; t))�t, equal to 0?Reference: [PT87]Hint: The problem can be phrased as a linear programming problem and solved in poly-nomial time. The same construction as used in Problem A.8.1 can be used to show this



Part II: P -Complete Problems � 75problem is P -complete.Remarks: The in�nite horizon, discounted, deterministic problem is in NC [PT87]. Thedeterministic problem requires that p has values only 0 or 1.A.8.3 Average Cost Markov Decision Process (ACMDP)Given: A stationary Markov decision process M = (S; c; p). See Problem A.8.1 for de�ni-tions. This problem is in�nite horizon, that is, there is no time bound.Problem: Is the limT!1 �PTi=0 c(st; �(st; t))=T� = 0?Reference: [PT87]Hint: The problem can be phrased as a linear programming problem and solved in poly-nomial time. The reduction is from a synchronous variant of MCVP, Problem A.1.6. Theconstruction is a modi�cation to that given in Problem A.8.1. Instead of having statescorresponding to circuit inputs going to a new state q, they have transitions to the initialstate. The limit is 0 if and only if the circuit instance evaluates to true.Remarks: The in�nite horizon, average cost, deterministic problem is in NC [PT87]. Thedeterministic problem requires that p has values only 0 or 1.A.8.4 Gaussian Elimination with Partial Pivoting (GEPP)Given: An n � n matrix A with entries over the reals or rationals and an integer l.Problem: Is the pivot value for the lth column positive when Gaussian elimination withpartial pivoting is performed on A? Partial pivoting is a technique used to obtain numericalstability in which rows of the matrix are exchanged so that the largest value in a givencolumn can be used to perform the elimination.Reference: [Vav89]Hint: The standard Gaussian elimination algorithm requires O(n3) operations. Since thesize of the numbers involved can be bounded by a polynomial in n (see [Vav89]), the problemis in P . To show completeness reduce NAND CVP to GEPP. Without loss of generality,assume the inputs and gates of the circuit are numbered in topological order from 1 to G,where G numbers the output gate. A 2G� 2G matrix A = (ai;j) is constructed from theinstance of CVP. The entries of A are described below. A true circuit input i contributesentry �3:9 in position a2i�1;i and entry 0 in position a2i;i. For false input i or nand gatei, A has entry �3:9 in position a2i�1;i and 4:0 in position a2i;i. If gate i is an input to gatek, then A has entry 0 in position a2k�1;i and entry 1 in position a2k;i. For 1 � i � G, Ahas entry a2i;G+i = 1. All unspeci�ed matrix entries have value 0. The pivot value usedin eliminating column G is positive (negative) if and only if the circuit evaluates to false(true).Remarks: The reduction does not rely on large numbers, and therefore it shows that theproblem is strongly P -complete. Another decision problem that is strongly complete forP based on Gaussian elimination with partial pivoting is as follows: given matrix A, andintegers i and j, is the pivot used to eliminate the jth column taken from the initial ithrow? Vavasis also shows that Gaussian elimination with complete pivoting is P -complete.In complete pivoting both rows and columns are interchanged so that the largest remaining



76 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)matrix entry can be used as a pivot. The reduction for complete pivoting does not showthe problem is strongly P -complete. This question is open.A.8.5 Iterated Mod (IM)Given: Integers a; b1; : : : ; bn.Problem: Is ((� � �((a mod b1) mod b2) � � �) mod bn) = 0?Reference: [KR89]Hint: Reduce NAND CVP to IM. Without loss of generality, assume the gates are num-bered in reverse topological order from G down to 1, where the output gate is numbered1. Let y1; : : : ; yr denote the inputs and Yl 2 f0; 1g denote the value of input yl. The inputwires to gate g are numbered 2g and 2g � 1. Let a be a bit vector of length 2G+ 1 whosejth bit is Yl if edge j is incident from input yl, and 1 otherwise. Let Og represent the set ofout-edge labels from gate g. For 1 � g � G, we construct moduli b1; : : : ; b2G as follows:b2g = 22g + 22g�1 + Xj2Og 2j and b2g�1 = 22g�1:The output gate in the NAND CVP instance has value 0 if and only if((� � �((a mod b1) mod b2) � � �) mod b2G) = 0:Remarks: The polynomial iterated mod problem is the problem in whicha(x); b1(x); : : : ; bn(x) are univariate polynomials over a �eld F and the question is to deter-mine if ((� � �((a(x) mod b1(x)) mod b2(x)) � � �) mod bn(x)) = 0:This problem is in NC [KR89]. The proof technique used to show IM is P -complete canbe modi�ed to show the superincreasing knapsack problem is also P -complete [KR89]. Thesuperincreasing knapsack problem is de�ned analogously to the knapsack problem [GJ79]with weights w1; : : : ; wn, except for 2 � i � n, wi >Pi�1j=1 wj .A.8.6 Generalized Word Problem (GWP)Given: Let S be a �nite set and F be the free group generated by S. Let S = fs; s�1js 2 Sg,where s�1 denotes the inverse of s. Let S� denote the set of all �nite words over S. LetU = fu1; : : : ; umg � S�, where m 2 N and let x 2 S�.Problem: Is x 2 hUi? That is, is x in the subgroup of F generated by U?Reference: [AM84b, Ste89]Hint: Stewart reported an error in the result contained in [AM84b]. The reductionin [AM84b] is a generic one from a normal form Turing machine. However, it reduces a Tur-ing machine computation to a version of GWP where S is a countably in�nite set [Ste89].Stewart shows using the Nielsen reduction algorithm that this problem is still in P . Stew-art calls this P -complete problem the generalized word problem for countably-generated freegroups (GWPC). He shows that GWPC is log space reducible to GWP thus proving GWPis P -complete as well [Ste89].



Part II: P -Complete Problems � 77Remarks: For a natural number k, GWPC(k) and GWPC(� k) are the generalizedword problems for �nitely-generated subgroups of countably-generated free groups where allwords involved are of length exactly k and at most k respectively. Stewart shows GWPC(k)and GWPC(�k) are P -complete for k > 2 [Ste90]. When k = 2 the problems are completefor symmetric log space (SL). The word problem for a free group is to decide whether xequals the empty word in F . This problem is solvable in deterministic log space [LZ77].A.8.7 Subgroup Containment (SC)Given: Let S be a �nite set and F be the free group generated by S. Let S = fs; s�1js 2 Sg,where s�1 denotes the inverse of s. Let S� denote the set of all �nite words over S. LetU = fu1; : : : ; umg; V = fv1; : : : ; vpg � S�, where m; p 2 N .Problem: Is the group generated by U a subgroup of the group generated by V ?Reference: [AM84b]Hint: A variant of the Nielsen reduction algorithm can be used to show the problem is inP . The reduction is from the generalized word problem, Problem A.8.6. Observe that forany x 2 S� and U � S�, x 2 hUi if and only if hxi is a subgroup of hUi.Remarks: Since hUi is a subgroup of hV i if and only if hU [ V i is normal in hV i, itfollows that the normal subgroup problem, which is also in P , is P -complete. The problemof determining whether hUi is normal in hU; xi is also P -complete [AM84b].A.8.8 Subgroup Equality (SE)Given: Let S be a �nite set and F be the free group generated by S. Let S = fs; s�1js 2 Sg,where s�1 denotes the inverse of s. Let S� denote the set of all �nite words over S. LetU = fu1; : : : ; umg; V = fv1; : : : ; vpg � S�, where m; p 2 N .Problem: Is hUi = hV i?Reference: [AM84b]Hint: A variant of the Nielsen reduction algorithm can be used to show the problem is inP . The reduction is from the subgroup containment problem, Problem A.8.7. Observe hUiis a subgroup of hV i if and only if hU [ V i = hV i.A.8.9 Subgroup Finite Index (SFI)Given: Let S be a �nite set and F be the free group generated by S. Let S = fs; s�1js 2 Sg,where s�1 denotes the inverse of s. Let S� denote the set of all �nite words over S. LetU = fu1; : : : ; umg; V = fv1; : : : ; vpg � S�, where m; p 2 N .Problem: Is hUi a subgroup of hV i with �nite index in hV i? The index of U in V is thenumber of distinct right cosets of U in V .Reference: [AM84b]Hint: A variant of the Nielsen reduction algorithm can be used to show the problem is inP . The reduction is from the subgroup containment problem, Problem A.8.7. Note, hUi isa subgroup of hV i if and only if hU [ V i has �nite index in hV i. Let x 2 S�. The problemof determining whether hUi has �nite index in hU; xi is also P -complete [AM84b].



78 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)A.8.10 Group Independence (GI)Given: Let S be a �nite set and F be the free group generated by S. Let S = fs; s�1js 2 Sg,where s�1 denotes the inverse of s. Let S� denote the set of all �nite words over S. LetU = fu1; : : : ; umg � S�, where m 2 N .Problem: Is U independent? That is, does each x 2 hUi have a unique freely reduciblerepresentation. A word w is freely reducible if it contains no segment of the form ss�1 ors�1s.Reference: [AM84b]Hint: A variant of the Nielsen reduction algorithm can be used to show the problem is inP . The reduction is from an arbitrary polynomial time Turing machine [AM84b].A.8.11 Group Rank (GR)Given: Let S be a �nite set and F be the free group generated by S. Let S = fs; s�1js 2 Sg,where s�1 denotes the inverse of s. Let S� denote the set of all �nite words over S. Letk 2 N . Let U = fu1; : : : ; umg � S�, where m 2 N .Problem: Does hUi have rank k? The rank is the number of elements in a minimalgenerating set.Reference: [AM84b]Hint: A variant of the Nielsen reduction algorithm can be used to show the problem is inP . The reduction is from the group independence problem, Problem A.8.10. Observe U isindependent if and only if hUi has rank the number of elements in U .A.8.12 Group Isomorphism (SI)Given: Let S be a �nite set and F be the free group generated by S. Let S = fs; s�1js 2 Sg,where s�1 denotes the inverse of s. Let S� denote the set of all �nite words over S. LetU = fu1; : : : ; umg; V = fv1; : : : ; vpg � S�, where m; p 2 N .Problem: Is hUi isomorphic to hV i?Reference: [AM84b]Hint: A variant of the Nielsen reduction algorithm can be used to show the problem is in P .The reduction is from the group independence problem, Problem A.8.10. U is independentif and only if hUi and hfs1; : : : ; sjU jgi are isomorphic.A.8.13 Group Induced Isomorphism (GII)Given: Let S be a �nite set and F be the free group generated by S. Let S = fs; s�1js 2 Sg,where s�1 denotes the inverse of s. Let S� denote the set of all �nite words over S. LetU = fu1; : : : ; umg; V = fv1; : : : ; vpg � S�, where m = p 2 N .Problem: Does the mapping � de�ned by �(ui) = vi for i = 1; : : : ; m, induce an isomor-phism from hUi to hV i?Reference: [AM84b]Hint: A variant of the Nielsen reduction algorithm can be used to show the problem is in P .The reduction is from the group independence problem, Problem A.8.10. U is independentif and only if � as de�ned above induces an isomorphism from hUi to hfs1; : : : ; sjU jgi.



Part II: P -Complete Problems � 79A.8.14 Intersection of Cosets (IC)Given: Let S be a �nite set and F be the free group generated by S. Let S = fs; s�1js 2 Sg,where s�1 denotes the inverse of s. Let S� denote the set of all �nite words over S. Letx; y 2 S�. Let U = fu1; : : : ; umg; V = fv1; : : : ; vpg � S�, where m = p 2 N .Problem: Is hUix\ yhV i non-empty?Reference: [AM84c]Hint: A polynomial time algorithm for the problem is given in [AM84c]. The reduction isfrom an arbitrary polynomial time Turing machine [AM84c].Remarks: The intersection of right cosets problem and the intersection of left cosetsproblem are subproblems of the intersection of cosets problems and they are both P -completeas well. For example, the right coset problem is P -complete since hUix\hV iy is non-emptyif and only if hUixy�1 \ ehV i is non-empty, where e denotes the empty word.A.8.15 Intersection of Subgroups (IS)Given: Let S be a �nite set and F be the free group generated by S. Let S = fs; s�1js 2 Sg,where s�1 denotes the inverse of s. Let S� denote the set of all �nite words over S. Let edenote the empty word. Let U = fu1; : : : ; umg; V = fv1; : : : ; vpg � S�, where m = p 2 N .Problem: Is hUi \ hV i 6= hei?Reference: [AM84c]Hint: A polynomial time algorithm for the problem is given in [AM84c]. The reduction isstraightforward from the intersection of right cosets problem, see Problem A.8.14.A.8.16 Group Coset Equality (GCE)Given: Let S be a �nite set and F be the free group generated by S. Let S = fs; s�1js 2 Sg,where s�1 denotes the inverse of s. Let S� denote the set of all �nite words over S. Letx; y 2 S�. Let U = fu1; : : : ; umg; V = fv1; : : : ; vpg � S�, where m = p 2 N .Problem: Is hUix = yhV i?Reference: [AM84c]Hint: A polynomial time algorithm for the problem is given in [AM84c]. The reduction isfrom Problem A.8.15.Remarks: The following three decision problems are also P -complete: equality of rightcosets | Does hUix = hV iy?, equivalence of cosets | Are there x; y such that hUix =yhV i?, and equivalence of right cosets | Are there x; y such that hUix = hV iy? [AM84c].A.8.17 Conjugate Subgroups (CS)Given: Let S be a �nite set and F be the free group generated by S. Let S = fs; s�1js 2 Sg,where s�1 denotes the inverse of s. Let S� denote the set of all �nite words over S. LetU = fu1; : : : ; umg; V = fv1; : : : ; vpg � S�, where m = p 2 N .Problem: Is there an x 2 S� such that x�1hUix = hV i?Reference: [AM84c]Hint: A polynomial time algorithm for the problem is given in [AM84c]. The reduction is



80 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)from the equivalence of right cosets problem, see Problem A.8.16.Remarks: The problem of determining whether x�1hUix is a subgroup of hV i is alsoP -complete [AM84c].A.8.18 Uniform Word Problem for Finitely Presented Algebras (UWPFPA)Given: A �nitely presented algebra A = (M;A;�) and a pair of terms x; y. M is a �nite setof symbols and A :M ! N de�nes the arity of each symbol. N represents the non-negativeintegers. M is partitioned into two sets: G = fa 2 M j A(a) = 0g consists of generatorsymbols and O = fa 2 M j A(a) > 0g consists of operator symbols. The set of terms overM is the smallest subset of M� such that:1. all elements of G are terms,2. if � is m-ary and x1; : : :xm are terms, then �(x1; : : : ; xm) is a term.Let � denote the set of terms. � is a set of unordered pairs of terms called axioms. � is thesmallest congruence relation on � satisfying the axioms of �.Problem: Is x � y?Reference: [Koz77]Hint: A polynomial time algorithm for the problem is given in [Koz77]. The reductionis from the monotone circuit value problem, Problem A.1.3. Let B be an instance MCVPrepresented as a list of assignments to variables C1; : : : ; Cn of the form Ci = 0; Ci = 1; Ci =Cj _ Ck, or Ci = Cj ^ Ck, where i > j; k. B is in MCVP provided value(Cn) = 1, where ndenotes the output gate of the circuit. The reduction is as follows: G = fC1; : : : ; Cn; 0; 1g,O = f_;^g, � = B [ f0 _ 0 � 0; 0_ 1 � 1; 1_ 0 � 1; 1_ 1 � 1; 0^ 0 � 0; 0^ 1 � 0; 1^ 0 �0; 1^ 1 � 1g. B is in MCVP if and only if Cn � 1.A.8.19 Triviality Problem for Finitely Presented Algebras (TPFPA)Given: A �nitely presented algebra A = (M;A;�). See Problem A.8.18 for de�nitions.Problem: Is A trivial? That is, does it contain only one element.Reference: [Koz77]Hint: A polynomial time algorithm for the problem is given in [Koz77]. The reductionis from MCVP. Construct � as done in the proof hint for Problem A.8.18. Let �0 =� [ fCn � 0g. Using notation from Problem A.8.18, it follows that B is an instance ofMCVP if and only if Cn � 1, that is, if and only if 1 ��0 0 that is, if and only if �= ��0 istrivial.A.8.20 Finitely Generated Subalgebra (FGS)Given: A �nitely presented algebra A = (M;A;�) and terms x1; : : : ; xn; y. Let [x] =fy 2 � j x � yg. See Problem A.8.18 for de�nitions.Problem: Is [y] contained in the subalgebra generated by [x1]; : : : ; [xn]?Reference: [Koz77]



Part II: P -Complete Problems � 81Hint: A polynomial time algorithm for the problem is given in [Koz77]. This problem is ageneral formulation of GEN, Problem A.6.5, and so it follows that it is also P -complete.A.8.21 Finiteness Problem for Finitely Presented Algebras (FPFPA)Given: A �nitely presented algebra A = (M;A;�). See Problem A.8.18 for de�nitions.Problem: Is A �nite?Reference: [Koz77]Hint: A polynomial time algorithm for the problem is given in [Koz77]. The reduc-tion is from MCVP and is similar to that used in Problem A.8.19. The algebra con-structed in that proof is modi�ed as follows: add another generator b to G, and the axiomsfb^ b � 0; b ^ 0 � 0; 0 ^ b � 0; b_ b � 0; b _ 0 � 0; 0 _ b � 0g to �0 to obtain �00. �00 is�nite if �0 is trivial and otherwise it is in�nite.A.8.22 Uniform Word Problem for Lattices (UWPL)Given: Let E be a set of equations and e1 = e2 an equation. We present some preliminaryde�nitions before de�ning the problem. A lattice is a set L with two binary operationsf+; �g that satis�es the lattice axioms. Let x; y; z 2 L. The lattice axioms are as follows:1. associativity: (x � y) � z = x � (y � z), (x+ y) + z = x+ (y + z),2. commutativity: x � y = y � x, x+ y = y + x,3. idempotence: x � x = x, x + x = x, and4. absorption: x+ (x � y) = x, x � (x+ y) = x.Let U be a countably in�nite set of symbols. The set of terms over U , W (U), is de�nedinductively as follows:1. If � is in U , then � is in W (U).2. If p; q are in W (U), then (p+ q), (p � q) are in W (U).Let e1 and e2 be terms over U . An equation is a formula of the form e1 = e2. A valuationfor a given lattice L is a mapping � : U ! L. The valuation is extended to W (U) byde�ning �(p + q) = �(p) + �(q), and �(p � q) = �(p) � �(q). A lattice satis�es an equatione1 = e2 under a valuation �, denoted L j=� e1 = e2, if and only if �(e1) = �(e2). A latticeL satis�es a set of equations E, denoted L j=� E, if and only if L satis�es every member ofE under �. E implies e1 = e2, denoted E j= e1 = e2, if and only if for every lattice L andvaluation � such that L j=� E, it follows that L j=� e1 = e2.Problem: Does E j= e1 = e2?Reference: [Cos88]Hint: A polynomial time algorithm for the problem is given in [Cos88]. The reductionis from the implication problem for propositional Horn clauses [JL76]. See Problems A.6.1and A.6.2. Let � be a set of propositional formulas of the form xi^xj ) xk, where x1; x2; : : :



82 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)are propositional variables. Let � be the formula x1 ^ x2 ) x3. The problem is to test if �implies �. Let � represent the formula xj ^xj ) xk . In the instance of UWPL we constructthe equation �� as follows �i � �j � �k = �i � �k. Let E� = f�� j � 2 �g. It follows that �implies � if and only if E� j= �� .Remarks: The problem remains P -complete if we use inequalities instead of equations.Furthermore, the problem remains P -complete when E = � and the terms are representedby dags instead of trees. However, if E = � and the terms are represented as trees theproblem is in DLOG [Cos88]. This problem is called the identity problem for lattices.A.8.23 Generator Problem for Lattices (GPL)Given: Let L be a lattice. Let E be a set of equations and e; g1; : : : ; gn be terms overU . Let � : U ! L be a valuation (see Problem A.8.22). We present some preliminaryde�nitions �rst. Let X � L. The sublattice generated by X is the smallest subset of L thatcontains X and is closed under the operations of L. e is generated by g1; : : : ; gn in L under�, denoted L j=� gen(e; g1; : : : ; gn), if and only if �(e) is in the sublattice of L generatedby the set f�(gi) j i = 1; : : : ; ng. E implies that e is generated by g1; : : : ; gn, denoted E j=gen(g1; : : : ; gn), if and only if for every lattice L and valuation � such that L j=� E, itfollows that L j=� gen(e; g1; : : : ; gn).Problem: Does E j= gen(e; g1; : : : ; gn)?Reference: [Cos88]Hint: A polynomial time algorithm for the problem is given in [Cos88]. The reduction is acontinuation of the reduction used in Problem A.8.22. Since E� j= �� if and only if E� j=gen(�1 � �2 � �3; �1; �2), it follows that GPL is also P -complete.Remarks: The problem remains P -complete when E = � and the terms are representedby dags instead of trees. However, if E = � and the terms are represented as trees theproblem is in DLOG [Cos88]. This problem is called the generator problem for free lattices.A.8.24 Boolean Recurrence Equation (BRE)Given: (M;B; F; j), where M is an m� n Boolean matrix, B is an n� n Boolean matrix,F is an n� 1 Boolean vector, and j is an integer in the range 0 to n.Problem: Is the �rst entry ofM �Yj a 1? Yj is de�ned recursively as Y0 = F , Yk = B �Yk�1for k � 1.Reference: [BBMS88]Hint: The reduction is from an alternating Turing machine that uses O(logn) space.Remarks: If 0 � j � logk n, then the problem is complete for AC k [BBMS88]. That is, theclass of problems accepted by alternating Turing machines in O(logn) space and O(logk n)alternations.A.9 GeometryA.9.1 Plane Sweep Triangulation (PST)Given: An n vertex polygon P that may contain holes, and a designated vertex u.



Part II: P -Complete Problems � 83Problem: Is a vertical edge connecting to u in the plane sweep triangulation of P? Theplane sweep triangulation is the triangulation produced by sweeping from top to bottom ahorizontal line L. When L encounters a vertex v of P , each diagonal from v to another vertexin P , which does not cross a previously drawn diagonal, is added to the triangulation.Reference: [ACG90]Hint: It is easy to see the plane sweep triangulation algorithm runs in polynomial time.The reduction is from a variant of planar CVP, Problem A.1.7. The new version of PCVPconsists of not gates of fanout 1, or gates of fanout 1, routing gates, and fanout gatesthat take one value and produce two copies of it. This instance of PCVP is required to belaid out on a planar grid in a special manner with alternating layers of routing and logic.The reduction involves constructing \geometric" gadgets for routing (left and right shiftsin the grid), \vertical" wires, fanout 1 or gates, and not gates. The presence (absence) ofa vertical edge in the triangulation denotes a true (false) value. The vertex u is a special\target" vertex in the output gate of the circuit. A vertical line is connected to u in thetriangulation if and only if the circuit evaluates to true.Remarks: The problem of �nding some arbitrary triangulation is in NC [Goo89]. Ifthe polygon P is not allowed to have holes then the complexity of the problem is open.In [ACG90] they conjecture that this restricted version is in NC .A.9.2 3-Oriented Weighted Planar Partitioning (3OWPP)Given: A set of non-intersecting line segments s1; : : : ; sn in the plane, a set of associatedinteger weights w1; : : : ; wn, and two designated segments r and t. The segments are 3-oriented meaning that there are only three di�erent possible slopes for the segments.Problem: Do segments r and t \touch" in the partitioning of the plane constructed byextending segments in the order of their weights? Segments are extended until they reachanother segment or a previous segment extension.Reference: [ACG90]Hint: It is easy to see that the process of extending the segments can be performed inpolynomial time. The reduction is from the same version of PCVP as used in ProblemA.9.1. The gates of the instance of PCVP are numbered in topological order. Gadgets areconstructed for routing and for logic. There are gadgets for right and left shifts, fanoutgates, or gates, not gates, and true inputs. true values in the circuit are transmitted asvertical extensions of segments. The most interesting gadget is the one for the not gate andwe describe this. The gadgets for the other constructs all involve only two di�erent slopedsegments, whereas to simulate not gates three di�erent slopes are required. The instance ofPCVP was laid out on a grid so we consider a not gate numbered i that receives its input onchannel j and has its output on channel k. A blocking segment is one that is used to preventthe extension of another line segment and whose weight is very large. These segments don'tplay an active role in simulating the gate. The not gadget consists of six blocking segmentsand three additional segments | called \one," \two," and \three" indicating their relativeweights. That is, segment one is processed �rst within the gadget followed by two and thenthree. Segment two is a horizontal segment whose potential extension spans channels j andk, and is blocked on both ends. Two lies directly to the left of channel j. Segment threeis a vertical segment on channel k blocked \above" segment two but with the possibility of



84 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)being extended downward across two's extension. Channel j, the input to not gate i, isblocked above segment two. Segment one has a slope of �1 and its potential extension isblocked at both ends. Segment one lies completely to the left of channel j. Its rightwardextension would cross channel j as well as segment two's extension. We now describe howthis gadget simulates a not gate. If the input to gate i is true (false) then the verticalsegment on channel j has (has not) been extended to where it is blocked. This prevents(allows) segment one from being extended across segment two. Thus, segment two can be(cannot be) extended towards the right across channel k. This prevents (allows) segmentthree from being extended across segment two's extension indicating a false (true) valuefor the output of the gate. The assignments of weights and the construction of all gadgetscan be accomplished in log space. Segment r is the vertical segment corresponding to theoutput wire of the circuit. Segment t is a special output \pad." r will touch t when extendedif and only if the circuit evaluates to true.Remarks: The complexity of the 2-oriented version of the problem is open [ACG90].In [ACG90] they remark that the problem has been reduced to an instance of MCVP thathas a very restricted topology, although not planar. Thus, it is open whether or not thisversion of the problem is in NC .A.9.3 Visibility Layers (VL)Given: A set of n non-intersecting line segments in the plane and a designated segment s.Problem: Is the label assigned to segment s by the visibility layering process congruentto one mod three? The visibility layering process is repeatedly to compute and delete theupper envelope of the remaining set of segments and label those segments with the currentdepth. The upper envelope consists of those segments visible from the point (0;+1). Asegment is visible from a point p if a ray cast from p can hit the segment before hitting anyother segment.Reference: [ACG90, Her90]Hint: The visibility layering process is polynomial time [Her90]. The reduction presentedin [Her90] is from the monotone CVP. We sketch this reduction. The gates in the instance ofCVP are assumed to be numbered in topological order. A grid is constructed that consistsof V + 1 rows and E columns, where V (E) is the number of nodes (edges) in the dagcorresponding to the circuit. Gadgets are constructed for the and and or gates. Gadgetsconsist of horizontal line segments of varying lengths. The gadget for and gate k withinputs i and j (i < j), and outputs l and m (l < m) consists of three horizontal segmentssituated in row k of the grid. One segment spans column i, one segment spans column j, andanother segment spans from column i through column m. The gadget for or gate k withinputs i and j (i < j), and outputs l and m (l < m) consists of three horizontal segmentssituated in row k of the grid. One segment spans column j, one segment spans columns ithrough j, and another segment spans columns j through m. If an input associated with agiven column is true (false) then a horizontal segment is put (is not put) in to span thatcolumn in row 0. \Deepeners," which are horizontal line segments spanning single columnsof the grid, are used to make sure gate input values arrive at the \right time" and also tomake sure that once a gate has been evaluated its outputs a�ect only the desired gates.The output of the circuit is true if and only if a s has a label whose value is congruent to



Part II: P -Complete Problems � 85one mod three.Remarks: The reduction given in [ACG90] is similar and is also from a variant of MCVP.The main di�erence is in the way fanout is treated. The version of MCVP used in [ACG90]consists of crossing fanout gates, single output and gates, and single output or gates. Aninstance consists of alternate routing and logic layers. Gadgets are constructed for the threetypes of gates and a similar decision problem to the one in [Her90] is posed to determinethe output of the circuit. If the length of all segments is required to be the same then thecomplexity of the problem is not known [ACG90]. In [ACG90] they conjecture that thisversion of the problem is in NC .A.10 Real AnalysisA.10.1 Real Analogue to CVP (RealCVP)Given: A feasible real function V de�ned on (�1;+1). A real function f is feasible if,given a su�ciently accurate �xed-point binary approximation to x 2 [�2n; 2n], a �xed-pointbinary approximation to f(x) with absolute error < 2�n, can be computed in time nO(1).(Su�ciently accurate means that the error in approximating the input x is < 2�nO(1) . This�xes the number of input bits, the continuity of f limits its range, and thus �xes the numberof output bits, both are polynomial in n.)Problem: Compute V (x) with absolute error < 2�n.Reference: [Hoo91] [Hoo90]Hint: The function V computes the continuous analog of the circuit value function bymapping circuit descriptions, along with their possible inputs, onto the real line. To evalu-ate the circuit � on input x, treat the encoding � as an integer, and the bits x as an n-bit�xed-point binary fraction, and add the two. The value of V (�:x) is then a rational numberthat encodes the values of the gates of � on the input x. To make V continuous betweenthese evaluation points, V is simply linearly interpolated.Remarks: The same function yields a family of P -complete polynomials fpng computableby feasible-size-magnitude circuits. A +,�,� arithmetic circuit family is feasible-size-magnitude if the nth member is polynomial size and its output over the interval [�2n;+2n]can be computed without generating any intermediate values with magnitude exceeding2nO(1) .A.10.2 Fixed Points of Contraction Mappings (FPCM)Given: An NC real function C that behaves as a contractor on some interval I (withinteger endpoints) contained in (�1;+1). The end points of I are speci�ed as integers.A real function f is in NC if an approximation to f(x) with absolute error < 2�n, forx 2 [�2n;+2n], can be computed in NC (with the same input/output conventions as forRealCVP).Problem: Compute the �xed point of C in I with absolute error < 2�n.Reference: [Hoo91]Hint: Same basic technique of RealCVP, but the function C evaluates the circuit level bylevel, thus converging to a �xed point which encodes the �nal state of the circuit. Finding



86 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)the �xed point is in P since each iteration of the contraction mapping reduces the width ofthe interval by some constant factor.Remarks: This provides an argument that fast numerical methods based on �xed pointsprobably have to use contraction maps with better than linear rates of convergence, suchas Newton's method.A.10.3 Inverting a One-to-One Real Functions (IOORF)Given: An NC real function f on [0; 1], that is increasing, and has the property thatf(0) < 0 < f(1). Thus there is a unique root x0 such that f(x0) = 0. A real function f isin NC if an approximation to f(x) with error < 2�n, for x 2 [�2n;+2n], can be computedin NC .Problem: Compute x0 with error < 2�n.Reference: [Ko90]Hint: Map intermediate con�gurations of a log space DTM onto the real line.Remarks: This problem was expressed originally in terms of log space computability andreductions | if f is log space computable then f�1(0) is not log space computable unlessDLOG = P . The problem remains hard even if f is required to be di�erentiable.A.11 MiscellaneousA.11.1 General Deadlock Detection (GDD)Given: A multigraph D = (V;E) with V = � [ �, where � = fp1; : : : ; png is the set ofprocess nodes and � = fr1; : : : ; rmg is the set of resource nodes ; and a set T = ft1; : : : ; tmg,where ti denotes the number of units of ri. The bipartite multigraph D represents the stateof the system. The edges in V are of the form (pi; rj) denoting a request of process pi forresource rj or of the form (rj ; pi) denoting an allocation of resource rj to process pi.Problem: Is D a deadlock state? A deadlock state is one in which there is a non-trivialsubset of the processes that cannot change state and will never change state in the future.Reference: [Spi87]Hint: The reduction is from MCVP. Let � = (�1; : : : ; �n) denote an instance of MCVP.There will be one process pi associated with each �i and one additional special process p0.The representation of gates is as follows:1. If �i is an input with a false (true) value then the edge (pi; rfi) ((rti; pi)) is in D.2. Suppose �i1 = �i2 = �j and �k, where j; k < i1; i2 (the and gate has fanout 2). Thenedges (pi1 ; ri1j), (pi1 ; ri1k), (ri1j ; pj), and (ri1k; pk) are added to D for �i1 , and edges(pi2 ; ri2j), (pi2 ; ri2k), (ri2j ; pj), and (ri2k ; pk) are added to D for �i2 .3. Suppose �i1 = �i2 = �j or �k, where j; k < i1; i2 (the or gate has fanout 2).Then edges (pi1 ; ri1jk), (ri1jk ; pj), and (ri1jk ; pk) are added to D for �i1 , and edges(pi2 ; ri2jk), (ri2jk ; pj), and (ri2jk ; pk) are added to D for �i2 .



Part II: P -Complete Problems � 87Edges are also added for the special process p0 as follows: for 1 � i � n add (rfi; p0)and (p0; rti), and for 1 � j; k � n� 1 add (p0; rnj) and (p0; rnjk). The graph D is not in adeadlock state if and only if �n is true.Remarks: Notice, in the reduction the maximum number of units of any resource is two.The problem is in NC if ti = 1 for all i [Spi87]. That is, if there is only one unit of eachresource. If the system states are expedient, the resource allocator satis�es them as soon aspossible, and at most one request can be connected to any process at a given time then theproblem is in NC [Spi87].A.11.2 Two Player Game (GAME)Given: A two player game G = (P1; P2;W0; s;M) de�ned by P1 \ P2 = �;W0 � P1 [ P2,s 2 P1, and M � P1 � P2 [ P2 � P1. Pi is the set of positions in which it is player i's turnto move. W0 is the set of immediate winning positions (de�ned below) for player one, ands is the starting position. M is the set of allowable moves; if (p; q) 2 M and p 2 P1 (orP2) then player one (or two) may move from position p to position q in a single step. Aposition x is winning for player one if and only if x 2 W0, or x 2 P1 and (x; y) 2 M forsome winning position y, or x 2 P2 and y is winning for every move (x; y) in M .Problem: Is s a winning position for the �rst player?Reference: [JL76]Hint: Reduce AM2CVP to GAME. or gates in the circuit correspond to winning positionsfor player one, and gates to winning positions for player two. W0 is the set of all inputshaving value true and s is the output. s is winning if and only if the output of the circuitis true.Remarks: The original reduction by Jones and Laaser was from GEN to GAME [JL76].Given W; �; V , and w construct the game G = (W;W �W;V; w;M), where the allowablemoves are given byM = f(p; (q; r)) j q � r = pg [ f((p; q); p) j p; q 2 Wg [ f((p; q); q) j p; q 2 Wg.Player one attempts to prove that a node p is generated by V . They do this by exhibitingtwo elements q and r, also claimed to be generated by V , such that p = q � r. Player twoattempts to exhibit an element of the pair that is not generated by V . Since GAME is aninstance of AND/OR graph solvability it follows that determining whether an AND/ORgraph has a solution is also P -complete [Kas86].A.11.3 Cat & Mouse (CM)Given: A directed graph G = (V;E) with three distinguished nodes c, m, and g.Problem: Does the mouse have a winning strategy in the game? The game is played asfollows. The cat starts on node c, the mouse on node m and g represents the goal node.The cat and mouse alternate moves with the mouse moving �rst. Each move consists offollowing a directed edge in the graph. Either player has the option to pass by remainingon the same node. The cat is not allowed to occupy the goal node. The mouse wins if itreaches the goal node without being caught. The cat wins if the mouse and cat occupy the



88 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)same node.Reference: [CS76a, Sto84]Hint: The reduction is from a log space alternating Turing machine M . Assume that Mstarts in an existential con�guration I , has a unique accepting con�guration A that is exis-tential, and each existential (universal) con�guration has exactly two immediate successors,both of which are universal (existential). A directed graph is constructed with the numberof nodes in the graph proportional to the number of con�gurations ofM . We illustrate onlyhow existential con�gurations can be simulated and do not account for the cat or mousebeing able to pass on a move. There are two copies of each con�guration C, denoted Cand C0, in the graph we construct. The graph has additional nodes as well. Consider anexistential con�guration X ofM with its two succeeding universal con�gurations Y and Z.Assume that the cat is on X , the mouse is on X 0 and it is the mouse's turn to move. Xis directly connected to Y and Z, whereas X 0 is connected to two intermediate nodes Y1and Y2. Y1 (Z1) is connected to Y 0 (Z 0) and Y2 (Z2). Both Y2 and Z2 are connected to g.The mouse simulates an existential move of M by moving to either Y1 of Z1. If the mousemoves to Y1 (Z1) then the cat must move to Y (Z). Otherwise, the mouse's next move canbe to Y2 (Z2) and from there onto g uncontested. From Y1 (Z1) the mouse must move toY 0 (Z 0) and an universal move is ready to be simulated. The simulation of universal movesis fairly similar with the cat moving �rst. The game starts with the cat on I and the mouseon I 0. There is an edge from A0 to g. M will accept its input if and only if the mouse hasa winning strategy.A.11.4 Longcake (LONGCAKE)Given: Two players H and V , a token, and an m � n Boolean matrix M . We describehow the game is played. Initially, the token is on placed on position m11 of M , it is H 'sturn to move, and the current submatrix is M . The term current submatrix denotes theportion of M that the game is currently being played on. H 's turn consists of moving thetoken horizontally within the current submatrix to some entry mij = 1. At this point,either all columns to the left of j or all columns to the right of j are removed from thecurrent submatrix, depending on which causes fewer columns to be removed. Notice, thetoken occupies a corner of the current submatrix again. V 's turn is similar except V movesvertically and rows are removed. The �rst player with no moves left loses.Problem: Does H have a winning strategy on M?Reference: [CT90]Hint: The reduction is performed in two stages. First, MCVP is reduced to an acyclicversion of Schaefer's Geography game [Sch78] called ACYCLICGEO. This proves thatACYCLICGEO is P -complete. Second, ACYCLICGEO is reduced to LONGCAKE.Remarks: The game SHORTCAKE is the same as LONGCAKE except the larger portionof the current submatrix is thrown away. SHORTCAKE is complete for AC 1 [CT90]. An-other variant of these games called SEMICAKE is complete for LOGCFL = SAC1 [CT90].



Part II: Open Problems � 89B Open ProblemsThis section contains a list of open problems. The goal is to �nd an NC algorithm or a P -completeness proof for the problem. Many of these open questions are stated as computationproblems to be as general as possible. The problems listed are divided into the followingcategories: algebraic problems, graph theoretic problems, and miscellaneous problems.B.1 Algebraic ProblemsB.1.1 Integer Greatest Common Divisor (IntegerGCD)Given: Two n-bit positive integers a and b.Problem: Compute gcd(a; b).Reference: [Gat84]Remarks: For nth degree polynomials p; q 2 Q[x], computing gcd(p; q) is in NC 2 via anNC 1 reduction to determinant [CS76b, BCP83]. IntegerGCD is NC 1 reducible to shortvectors dimension 2 (Problem B.1.7) [Gat84].B.1.2 Extended Euclidean Algorithm (ExtendedGCD)Given: Two n-bit positive integers a and b.Problem: Compute integers s and t such that as+ bt = gcd(a; b).Reference: [BGH82]Remarks: The analogous problem for nth degree polynomials is in NC [BGH82].B.1.3 Relative Primeness (RelPrime)Given: Two n-bit positive integers a and b.Problem: Are a and b relatively prime?Reference: [Tom83]Remarks: Is a special case of IntegerGCD, Problem B.1.1.B.1.4 Modular Inversion (ModInverse)Given: An n-bit prime p and an n-bit positive integer a, such that p does not divide a.Problem: Compute b such that ab mod p = 1.Reference: [Tom83]Remarks: ModInverse is reducible to ExtendedGCD (compute s; t such that as + pt =gcd(a; p) = 1), and also to ModPower, even restricted to prime moduli (compute ap�2 mod pand apply Fermat's Little Theorem).B.1.5 Modular Powering (ModPower)Given: Positive n-bit integers a, b, and c.Problem: Compute ab mod c.



90 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)Reference: [Coo85]Remarks: The complexity of the problem is open even for �nding a single bit of thedesired output. The problem is in NC for \smooth" c, that is, for c having only smallprime factors [Gat87]. In the interesting special case when c is a prime (the antithesisof smooth) the problem is open. ModInverse, Problem B.1.4 is reducible to this restricedcase. The analogous problems when a and c are nth degree polynomials over a �nite �eldof small characteristic, modular polynomial exponentiation and polynomial exponentiation,are in NC 2 [FT88]. They are open for �nite �elds having large (superpolynomial) charac-teristic. Note that ModPower can be reduced to the polynomial version with exponentialcharacteristic, simply by considering degree 0 polynomials.B.1.6 Short Vectors (SV)Given: Input vectors a1; : : : ; an 2 Zn that are linearly independent over Q.Problem: Find a nonzero vector x in the Z-module (or \lattice") M =P aiZ � Zn suchthat kxk � 2(n�1)=2kyk for all y 2M � n~0o, where kyk = �P y2i �1=2 is the L2 norm.Reference: [Gat84]Remarks: Lenstra, Lenstra, and Lov�asz [LLL82] show that the problem is in P . Inte-gerGCD, Problem B.1.1, is NC 1 reducible to SV [Gat84].B.1.7 Short Vectors Dimension 2 (SV2)Given: Input vectors a1; a2 2 Z2 that are linearly independent over Q, and an arbitrarynumber c � 1.Problem: Find a nonzero vector x such that kxk � ckyk for all y 2M � n~0o.Reference: [Gat84]Remarks: IntegerGCD, Problem B.1.1, is NC 1 reducible to SV2 [Gat84].B.1.8 Sylow Subgroups (SylowSub)Given: A group G.Problem: Find the Sylow subgroups of G.Reference: [BSL87]Remarks: The problem is known to be in P [Kan85], however, the NC question is openeven for solvable groups [BSL87]. For a permutation group G, testing membership in G,�nding the order of G, �nding the center of G, and �nding a composition series of G are allknown to be in NC [BSL87]. Babai, Seres, and Luks present several other open questionsinvolving group theory [BSL87].B.1.9 Two Variable Linear Programming (TVLP)Given: A linear system of inequalities Ax � b over the rationals, where each row of A hasat most two nonzero elements.Problem: Find a feasible solution if one exists.Reference: [LMR86]



Part II: Open Problems � 91Remarks: There is a known poly-log algorithm that uses nlogk n processors on a CREW-PRAM [LMR86].B.1.10 Univariate Polynomial Factorization over Q (UPFQ)Given: An nth degree polynomial p 2 Q[x].Problem: Compute the factorization of p over Q.Reference: [Gat84]Remarks: UPFQ is NC 1 reducible to short vectors (Problem B.1.6) [Gat84].B.2 Graph Theory ProblemsB.2.1 Edge-Weighted Matching (EWM)Given: A graph G with positive integer weights on its edges.Problem: Find a matching of maximum weight.Reference: [KUW86]Remarks: EWM is in RNC (but not known to be in NC ) if all weights are polynomiallybounded [KUW86]. LFMM, Problem B.4.2 (and hence all of CC ), is NC reducible toEWM, by assigning weight 2rank(e) to edge e.B.2.2 Bounded Degree Graph Isomorphism (BDGI)Given: Two graphs G and H . The vertices in G and H have maximum degree at most k,a constant independent of the sizes of G and H .Problem: Are G and H isomorphic?Remarks: Luks showed the problem is in P [FHL80]. Without the degree bound, theproblem is in NP but not known to be in P , nor is it known to be either P -hard or NP -complete.B.2.3 Graph Closure (GC)Given: An undirected graph G = (V;E) and a designated edge e = (u; v).Problem: Is e in the closure of G? That is, the graph obtained from G by repeatedlyjoining non-adjacent pairs of vertices u and v whose degree sum is at least jV j.Reference: [Khu89]Remarks: With the following modi�cation, the problem becomes P -complete (ProblemA.2.16): add a set of designated edges E 0 such that only vertices whose degree sum is atleast jV j and whose corresponding edge is in E 0 may be added to the closure [Khu89].B.2.4 Restricted Lexicographically First Independent Set (RLFMIS)Given: A planar, bipartite graph G with a numbering on the vertices.Problem: Find the lexicographically �rst maximal independent set.Reference: [Miy89]



92 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)Remarks: See Problem A.2.1. Finding the lexicographically �rst maximal subgraphof maximum degree one in planar, bipartite graphs of degree at most three is P -complete [Miy89].B.2.5 Maximal Path (MP)Given: A graph G with a numbering on the vertices and a designated vertex r.Problem: Find amaximal path originating from r. That is, a path that cannot be extendedwithout encountering a node already on the path.Reference: [AM87b]Remarks: The lexicographically �rst maximal path problem, Problem A.3.1, is P -completeeven when restricted to planar graphs with maximum degree three. If the maximum degreeof any vertex in G is at most � then there is an algorithm that can �nd a maximal path inO(� log3 n) time using n2 processors [AM87b]. There is also an NC algorithm for �ndinga maximal path in planar graphs [AM87b].B.2.6 Maximal Independent Set Hypergraph (MISH)Given: A �nite collection C = fC1; : : : ; Cng of �nite sets.Problem: Find a subcollection D = D1; : : : ; Dk of pairwise disjoint members of C suchthat for every set S 2 C �D there is a T 2 D, such that S \ T 6= �.Reference: [BL90, KR90]Remarks: If C is a collection of two element sets (\dimension 2") then the problembecomes the maximal independent set problem, which is known to be in NC (see ProblemA.2.1). Beame and Luby give an RNC algorithm for dimension O(1), as well as an algorithmfor the general problem that is conjectured to be RNC .B.3 Geometric ProblemsB.3.1 2-Oriented Weighted Planar Partitioning (2OWPP)Given: A set of non-intersecting segments s1; : : : ; sn in the plane, a set of associated inte-ger weights w1; : : : ; wn, and two designated segments r and t. The segments are 2-orientedmeaning that there are only two di�erent possible slopes for the segments.Problem: Do segments r and t \touch" in the partitioning of the plane constructed byextending segments in the order of their weights? Segments are extended until they reachanother segment or a previous segment extension.Reference: [ACG90]Remarks: The 3-oriented version, Problem A.9.2, in which three di�erent slopes are al-lowed, is P -complete [ACG90].B.3.2 Limited Reection Ray Tracing (LRRT)Given: A set of n at mirrors of lengths l1; : : : ; ln; their placements at rational points in theplane; a source point S; the trajectory of a single beam emitted from S; and a designated



Part II: Open Problems � 93mirror M .Problem: Determine ifM is hit by the beam within n reections. At the mirrors the angleof incident of the beam equals the angle of reection.Reference: [GHR91]Remarks: The general ray tracing problem is to determine if a mirror is ever hit by thebeam. When the mirrors are points, that is have no length, the general problem is inNC [dlTG90]. In two or more dimensions, the general problem is in PSPACE . In threedimensions, with mirrors placed at rational points, the general problem is PSPACE -hard.The general problem is open for all mirrors of a �xed size as well. See [RTY90] for a detaileddiscussion.B.3.3 Restricted Plane Sweep Triangulation (SWEEP)Given: An n vertex polygon P without holes.Problem: Find the triangulation computed by the plane sweep triangulation algorithm.Reference: [ACG90]Remarks: The problem of �nding some arbitrary triangulation is in NC [Goo89]. If thepolygon is allowed to have holes then the problem is P -complete [ACG90]. See ProblemA.9.1B.3.4 Successive Convex Hulls (SCH)Given: A set S of n points in dimension d and a designated point p.Problem: Determine if p is in the ith remaining convex hull that is formed by repeatedly�nding and removing convex hulls from S.Reference: [Cha85, Ata87, Cha89]Remarks: The problem is open for two dimensions and up.B.3.5 Unit Length Visibility Layers (ULVL)Given: A set of n unit length, horizontal, non-intersecting line segments in the plane, adesignated segment s, and an integer d.Problem: Is the label assigned to segment s by the visibility layering process d? Thevisibility layering process is repeatedly to compute and delete the upper envelope of theremaining set of segments and label those segments with the current depth. The upperenvelope consists of those segments visible from the point (0;+1).Reference: [ACG90]Remarks: The problem is P -complete if the restriction on unit lengths is removed [ACG90].See Problem A.9.3.B.4 CC ProblemsSeveral reseachers independently suggested looking at the complexity of the ComparatorCircuit Value Problem, or CCVP (Problem B.4.1). CC is the class of problems reducibleto CCVP (Mayr and Subramanian [MS89]). Problems in this section are all equivalent to,



94 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)i.e. NC interreducible with, CCVP. While the evidence is less compelling than that forRNC problems (Section B.5), it is generally considered unlikely that these problems areP -complete, because of the lack of fanout in comparator circuits. On the other hand, no fastparallel algorithms are known for them, with the partial exception ofpn logO(1)n algorithmsfor CCVP and some related problems. (Such algorithms were independently discovered byD. Soroker, unpublished, and by Mayr and Subramanian [MS89]. Richard Anderson, alsounpublished, has improved the algorithms so as to use only pn processors. Mayr andSubramanian note that these algorithms are P -complete, in the sense of Section ??.) It isknown that NL � CC � P [MS89].Most of the results described in this subsection come from [MS89]. See also [Sub90,Sub89, Fed89].B.4.1 Comparator Circuit Value Problem (CCVP)Given: An encoding � of a circuit � composed of comparator gates plus inputs x1; : : : ; xn.A comparator gate outputs the minimum of its two inputs on its �rst output wire andoutputs the maximum of its two inputs on its second output wire. The gate is furtherrestricted so that each output has fanout at most one.Problem: Does � on input x1; : : : ; xn output 1?Reference: [Coo, MS89]Remarks: Cook shows that CCVP is NC equivalent to computing the lexicographically�rst maximal matching in a bipartite graph. Mayr and Subramanian [MS89] show that thisproblem is NC equivalent to stable marriage (Problem B.4.3).B.4.2 Lexicographically First Maximal Matching (LFMM)Given: A graph G with an ordering on its edges.Problem: Find the lexicographically �rst maximal matching.Reference: [Coo, MS89]Remarks: LFMM is NC equivalent to Comparator CVP (Problem B.4.1) [MS89]. Thisproblem resembles the lexicographically �rst maximal independent set problem, ProblemA.2.1, known to be P -complete. A P -completeness proof for LFMM would imply thatedge-weighted matching (Problem B.2.1) is also P -complete.B.4.3 Stable Marriage (SM)Given: For each member of a community of n men and n women, a ranking of the oppositesex according to their preference for a marriage partner.Problem: Find n marriages such that the set of marriages is stable. The set is unstableif a man and woman exist who are not married to each other but prefer each other to theiractual mates.Reference: [MS89]Remarks: See, e.g., [Gib85] for background on the Stable Marriage problem. SM isNC equivalent to Comparator CVP (Problem B.4.1) [MS89]. Several variations on StableMarriage are also known to be equivalent to CCVP; see [MS89].



Part II: Open Problems � 95B.5 RNC ProblemsThe problems in this subsection are all known to be in RNC or FRNC , but not known tobe in NC . A proof that any of them is P -complete would be almost as unexpected as aproof that NC = P . See Section 7.6 for more discussion.B.5.1 Directed or Undirected Depth First Search (DFS)Given: A graph G and a vertex s.Problem: Construct the depth �rst search numbering of G starting from vertex s.Reference: [AA88, AAK90]Remarks: RNC algorithms are now known for both the undirected [AA88] and di-rected [AAK90] cases, subsuming earlier RNC results for planar graphs [Smi86]. For DAGs,DFS is in NC [Gre88a].B.5.2 0-1 Maximum Flow (0-1 MaxFlow)Given: Directed graph G with each edge labeled in unary with a capacity ci � 0 and twodistinguished vertices, source s and sink t.Problem: Find a maximum ow.Reference: [Fea84, KUW86]Remarks: [Fea84] shows the problem of �nding the value of the maximum ow to bein RNC . [KUW86] show how to construct a maximum ow, also in RNC . Both problemsremain in RNC when capacities are polynomially bounded, but are P -complete when ca-pacities are arbitrary (Problem A.4.4). Venkateswaran [Ven90] shows that 0-1 MaxFlow ishard for AC 1.B.5.3 MaximumMatching (MM)Given: A graph G.Problem: Find a maximum matching of G. A matching is a subset of the edges of G suchthat no two edges of the subset are adjacent in G. A matching is a maximum matching ifno matching of larger cardinality exists.Reference: [Fea84, KUW86, MVV87]Remarks: Feather [Fea84] shows that the problem of �nding the size of maximummatchingis in RNC . Karp, Upfal, and Wigderson [KUW86] gave the �rst RNC algorithm for �ndingthe maximum matching. A more e�cient algorithm was given by Mulmuley, Vazirani,and Vazirani [MVV87]. Karlo� shows how any RNC algorithm for matching can be madeerrorless [Kar86]. Maximum edge-weighted matching for unary edge weights and maximumvertex-weighted matching for binary vertex weights are also known to be in RNC [KUW86,MVV87].B.5.4 Perfect Matching Existence (PME)Given: A graph G.



96 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)Problem: Does G have a perfect matching? A perfect matching is a matching where eachvertex is incident to one edge in the matching.Reference: [KUW86, MVV87]Remarks: See remarks for Problem B.5.3. PME seems to be the simplest of the matchingproblems not known to be in NC .



Part II: Open Problems � 97C Undigested PapersListed below are a few papers we are aware of, but have not yet added to the main problemlists. They will appear in the �nal version.[KKS91, KS88]References[BGS90] J. L. Balc�azar, J. Gabarr�o, and M. Santha. Deciding bisimilarity is P-complete.Technical Report LSI-90-25, Universitat Polit�ecnica de Catalunya, 1990.[Den84] L. Denenberg. Computational Complexity of Logical Problems. PhD thesis, Har-vard University, 1984.[DL84] L. Denenberg and H. R. Lewis. The complexity of the satis�ablility problem forKorn formulas. Theoretical Computer Science, 30(3):319{341, 1984.[God87] G. Godbeer. The computational complexity of the stable con�guration problemfor connectionist models. Master's thesis, University of Toronto, 1987.[GR88] A. M. Gibbons and W. Rytter. E�cient Parallel Algorithms. Cambridge Univer-sity Press, Cambridge, UK, 1988.[Lin91] Y. Lin. Parallel Computational Methods in Integer Linear Programming. PhDthesis, The City University of New York, 1991.[Lip87] J. Lipscomb. On the computational complexity of �nding a connectionist model'sstable state vectors. Master's thesis, University of Toronto, 1987.[LKPar] Y. Lin-Kriz and V. Pan. On the parallel complexity of integer linear programming,GCD and the iterated mod function. In Proceedings of the Third Annual ACM-SIAM Symposium on Discrete Algorithms, to appear.[SH90] R. Sarnath and X. He. A P-complete graph partition problem. Theoretical Com-puter Science, 76:343{351, 1990.[Ste91a] I.A. Stewart. On a greedy heuristic for �nding small dominating sets. Technicalreport, University of Newcastle upon Tyne, 1991. Submitted for publication.[Ste91b] I.A. Stewart. On two approximation algorithms for the clique problem. Technicalreport, University of Newcastle upon Tyne, 1991.



98 � A Compendium of Problems Complete for P (Preliminary: RCS Revision: 1.46)References[AA88] A. Aggarwal and R. Anderson. A random NC algorithm for depth �rst search.Combinatorica, 8(1):1{12, 1988.[AAK90] A. Aggarwal, R. Anderson, and M. Kao. Parallel depth-�rst search in generaldirected graphs. SIAM Journal on Computing, 19(2):397{409, 1990.[ABI86] N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel algorithmfor the maximal independent set problem. Journal of Algorithms, 7:567{583,1986.[ACG90] M. J. Atallah, P. Callahan, and M. T. Goodrich. P-complete geometric prob-lems. In Proceedings of the 1990 ACM Symposium on Parallel Algorithms andArchitectures, pages 317{326, Crete, Greece, July 1990.[AHU74] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis ofComputer Algorithms. Addison-Wesley, 1974.[All89] Eric W. Allender. P-uniform circuit complexity. Journal of the ACM,36(4):912{928, October 1989.[AM84a] R. J. Anderson and E. Mayr. Parallelism and greedy algorithms. TechnicalReport STAN-CS-84-1003, Computer Science Department, Stanford University,April 1984.[AM84b] J. Avenhaus and K. Madlener. The Nielsen reduction and P -complete problemsin free groups. Theoretical Computer Science, 32(1,2):61{76, 1984.[AM84c] J. Avenhaus and K. Madlener. On the complexity of intersection and conjugacyin free groups. Theoretical Computer Science, 32(3):279{295, 1984.[AM87a] R. Anderson and E. Mayr. Parallelism and greedy algorithms. In Advances inComputing Research, volume 4, pages 17{38. JAI Press, 1987. Also StanfordTechnical Report STAN-CS-84-1003, 1984.[AM87b] R. Anderson and E. Mayr. Parallelism and the maximal path problem. Infor-mation Processing Letters, 24(2):121{126, 1987.[AMW89] R. Anderson, E. Mayr, and M. Warmuth. Parallel approximation algorithmsfor bin packing. Information and Computation, 82(3):262{277, 1989.[And85] R. J. Anderson. The Complexity of Parallel Algorithms. PhD thesis, StanfordUniversity, 1985. Stanford Computer Science Department TR STAN-CS-86-1092.[And87] R. J. Anderson. A parallel algorithm for the maximal path problem. Combina-torica, 7(4):315{326, 1987.
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