The interpretation is designed to be small and
easily understood, rather than efficient. For this
reason, the language does not support user declared
types for terms, which, though possible, would ob-
scure the implementation. As a consequence, the
direct implementation of many terms, e.g. of truth-
values and pairs, have assigned types which are
more general than desired. To overcome this, I
have introduced some additional constants where
enforced typing seems desirable. For example, bot0
instantiates bot to take arguments of type 0 =
Pol[l] instead of the more general Pol[X]. Simi-
larly, to limit the degree of polynomials we instan-
tiate con to conE : Y —=Pol[X,Y].

8 Further and Related Work

The development of shape polymorphism, and poly-
nomial types is in its infancy. To take but one
example, mutually recursive types will require a
slightly more sophisticated type system. For exam-
ple, rose trees with nodes of type A (trees whose
nodes have an arbitrary, but finite, number of bran-
ches) are given by the initial algebra

uX. AxInd [1, X]

Here the bound variable is not an indeterminate,
so that explicit bounds appear to be required.

In theory, all the operations of interest on in-
ductive types are available, once folding has been
captured. In practice, things are complicated by
the presence of additional parameters. For exam-
ple, mapping must be extended from the indeter-
minates to the cofficients of polynomials and in-
ductive types, which will require links between the
data and the functions to be applied. This in turn
suggests that polynomial types be ordered, so that
the addition of new coefficients increases the size of
the type.

Similar considerations can be expected when
generalising other standard list combinators, such
as scan, zip and filter to novel situations. Best
would be to find the means of describing these
as syntactic sugar, but even if possible, this will
require further generalisations of forms.

While discussing P2, Mark Jones pointed out
that Gofer can use the type class of functors to
support a high-level algorithm for £old, whose type
is

fold : functor f =>

(f x > x) > fix £ > x
where fix f denotes the initial algebra (e.g. an
inductive type) for the functor £.

9 Conclusions

Although it has been common knowledge that in-
ductive types are built from polynomials, this fact

has not, till now, been used to reveal the under-
lying shape of polynomial and inductive types in
a systematic fashion. P2 shows that polynomials
support a uniform algorithm for folding over induc-
tive types, and a type system that recognises this
by giving £1d a single type.

This work shows that shape polymorphism can
be implemented. When developed further, and in-
corporated into other languages, 1t promises to elim-
inate much redundant coding in functional pro-
grams.

References

[1] R. Bird and P. Wadler. Introduction to Func-
tional Programming. International Series in
Computer Science. Prentice Hall, 1988.

[2] J.R.B. Cockett and T. Fukushima. About
charity. Technical Report 92/480/18, Uni-
versity of Calgary, 1992.

[3] J-Y. Girard, Y. Lafont, and P. Taylor. Proofs
and Types. Tracts in Theoretical Computer
Science. CUP, 1989.

[4] et al Goguen, J.A. Initial algebra semantics
and continuous algebras. Journal of the Asso-
ctation for Computing Machinery, 24:68-95,
1977.

[5] P. Hudak and all. Report on the programming
language haskell: a non-strict, purely func-
tional language. Technical report, University
of Glasgow, 1992. Version 1.2.

[6] C.B. Jay. Shapely types: Exploiting parseabil-
ity. Science of Computer Programmang, 1995.

[7] C.B. Jay and J.R.B. Cockett. Shapely types
and shape polymorphism. In Proceedings of
the European Symposium on Programming,
Edinburgh, 1994, Lecture Notes in Computer
Science. Springer Verlag, 1994.

[8] M. Jones. The implementation of the gofer
functional programming system. Technical
Report YALEU /DCS/RR-1030, Yale Univer-
sity, 1994.

[9] E. Meijer, M. Fokkinga, and R. Paterson.
Functional programming with bananas, lenses,
envelopes and barbed wire. In Procceding of
the 5th ACM Conference on Functional Pro-
gramming and Compter Architecture, 1991.

[10] R. Milner and M. Tofte. Commentary on
Standard ML. MIT Press, 1991.



5.1 Evaluation

The rewriting rules are given by the usual F-reduc-
tion and let rule of the A-calculus

ela/x]
ela/x] .

together with some d-rules; associated with the
constants:

(Ax.e)a =

let x=a in e =

cas f g (cone) = ge
cas f g (var pe) = fpe
pmp f (con e) = con e
pmp £ (var p e) = var (pmp £ p) (f e)
) =

f1d £ (rec p f (pmp (fld f) p)

Of course, evaluation preserves type inference,
i.e. if we can infer that e : A and e=-e’ then we
can infer that e’ : A. Also, evaluation is type-free,
1.e. 18 independent of the choice of type for a term.

6 Interpretation into System F

System F is a type system generated by function
types, and universal quantification by type vari-
ables [3]. Tt is powerful enough to define the induc-
tive types, but the arbitrary nesting of quantifiers
complicates type-checking enormously.

In this section the typable terms of P2 will be
translated into terms of F in a way that preserves
non-trivial reductions (i.e. reductions of at least
one step). Then the Church-Rosser property and
strong normalisation for P2 will follow from that
of F.

The only potential source of difficulty is the in-
terpretation of form variables. Perhaps they could
be mapped to type variables, but various problems
arise with substitutions. Rather than attempt to
unravel this knot, observe that every typable term
of P2 has a type in which there are no form vari-
ables, obtained by substituting the empty form for
them. Now the translation is trivial.

The types without form variables can be inter-
preted into system F by a function [| —|] as follows.
Atomic types, type variables and function types are
all interpreted as themselves. The polynomial type
Pol[X, Ag, A1, ..., Ay] is interpreted as in (3) by

(o AP XAD) ) + [AD < [[X T+ [[Ao]]

Inductive types are handled just as in F. That 1s,
if the interpretation of Pol(X : F') is P then the
inductive type Ind F' is interpreted by

IX.(P—X)—X .

Universal quantification Y.X of polytypes is trans-
lated by I1X. We will suppress the translation
brackets [| — |] as much as possible from now on.

Now the terms of P2 can be interpreted by
terms of F in a manner that preserves typing, and
maps reductions of P2 to non-trivial reductions of

F.

Lemma 6.1 If ' - e : A then there is a proof in
which the only substitutions that occur are applied
to the types of combinators and variables.

Proof By induction on the length of the infer-
ence. O

Since the type inference rules of P2 (other than
those for the combinators) are also rules of F it
follows that we need only provide translations for
the combinators.

Let
P = Pol[X, A, A1, ..., A,]
QQ = Pol[X,A,..., A
R = Pol[Y Ag, Ay,..., A,]
I = 1Ind[4g,As,..., A
S = Pol[l, Ay, Ay, ..., 4]

where X 1s a type which may or may not be a
variable.
The translation of con : Ag—P is the left inclu-
sion ¢ 1 Ag—Ap + (@x X). Similarly,

var +— ApAr.i(p, )
cas +—r /\fQ_>X_>Y./\gA”_>Y./\pP.pY g
f1d — AP XNS X f
where f’ is the uncurried form of f. The transla-
tion of pmp : (X—=Y)—P—R is pm n where
AgX%YApPp
AgX Y ApP pid ((pmn g)xg)

pm0 =
om (0 + 1)

and (fxg){(a,b) = (f a,g b). Finally, if rec has
target type [ then its translation is

AP AXAFETX f(pm n (£1d f) p)

The proof that the translation preserves reduc-
tion is routine, since all the d-reductions are mapped
to B-reductions. Hence, we have:

Theorem 6.2
Reduction in P2 1s confluent and strongly normal-
151ng.

7 Implementation

The implementation of P2 is intended to demon-
strate the viability of the ideas in this paper, and
provide a vehicle for their further exploration. An
interpreter for P2 has been constructed in Gofer
(Jones, [8]) though any functional language would
have sufficed, since no special use has been made
of 1ts type classes. The code is available by anony-

mous ftp from ftp.socs.uts.edu.au in the directory
users/cbj/P2.



of] = []
ol 7] 2A
o(T:K) = (7):(cK).

Form substitutions allow the length of a form to
change, so that terms whose natural type is a poly-
nomial of low degree can be treated as having a
type of high degree.

This novelty is not as radical as it may appear,
since it vanishes when the polynomials are con-
verted to the sums of products. For example, if
T =Pol[X, A, B] then two applications of (3) show
that

Pol[X,Y,T] = (Pol[X, A, B|xX)+Y

Pol[X,Y, A, B] .

1

Hence, substituting T for Z in Pol[X Y, Z] is the
same (up to isomorphism) as substituting [A, B] for
Z in the form. Notice that this equivalence only
works when the form variable ends the list.

Substitution on polytypes behaves in the usual
way, by not interacting with bound variables; i.e.
there is no substitution for bound variables, nor is
variable capture allowed.

Composition of substitutions p followed by o is
denoted by o % p. Clearly, the identity substitution
maps type variables to themselves, and maps a
form variable Z to [Z]. The notation o[T/X] is
used to express the update of o where the type
(respectively, form) variable X is mapped to the
type (respectively, form) T

4.2 Unification

Unification follows the usual pattern. Fail indi-
cates that unification has failed. First strip off
bound variables, taking care not to accidentally
create new type identifications, and then apply the
following algorithm.

U(1,1) = id
UX,T) = id[T/X]
UT,X) = UX,T)
U(Pol K,Pol L) = V(K, L)
U(Ind K,Ind L) = V(K L)
U(A—B,C—D) = o2+ 0y where

T2 Iu(O'lB,O'lD)
g1 :L{(C’,A)

Fail (otherwise) .

U(A B) =

For U(X,T) it is assumed that X is not free in T
unless 7' = X . Unification on forms is the symmet-
ric operation given by

V(L) = 4
V(2L = id[]/4]

V(K] =
V(K,[Z]) =
V(T : K, T : K')

Fail (otherwise)
id[K/Z]

V(eK,cK') x o
where o = U(T,T") .

Theorem 4.1 (Most General Unifiers)

If there is a substitution p that unifies two types
A and B then p factors through U(A, B).

Proof Without loss of generality, A and B are
monotypes. The proof is by a standard induction
over both the types and the forms. a

5 Terms

A context T' is a list of term variables with given
polytypes. The constant terms and their associated
types (in any context) are given by

I |

bot Pol[X]=Y

con Y—Pol[X,Y, 7]

var Pol[X, 7] > X—Pol[X,Y, 7]

cas (Pol[X, 7|2 X—>T)—=(Y->T)—
Pol[X,Y, Z] =T

pmp (X—=Y)—>PollX, Z]—=PollY, 7]

rec Pol[Ind[Z], Z]—=Ind[7]

fld (Pol[X, Z]=>X)—Ind[7]—=X .

The type inference rules for variables, let, func-
tions and their application are given by

TFx A% AT

'te :A I''x :AbFe :B
'let x=e in & : B
I'x :AFe : B

I'tAxe : A—=B
I'tf:A=>B TI'te: A
I'HFfe:B

Finally, there are the rules relating to polytypes
and substitutions. Substitutions act on all the types
in a context I'. Here the variable X may be a type
or form variable.

I'te : A
I'te :VXA

IF'Fe : VXA
I'te : A[T/X]

I'te : T
ocl'te 0T

X not free in I'

Type assignment proceeds as usual, with uni-
fication used to handle application, and polytypes
used for let constructs.



3 Inductives

Polynomial types can be used to express domain
equations for inductive types. For example, the
usual equation N = 1+ N for the natural numbers
becomes

N = Pol[N,1,1].

Similarly, lists of type A and binary trees with
leaves of type A and nodes of type B are given
by

h
1

Pol[L, 1, A]
Pol[T, A,0, B] .

If PX = Pol[X, Ay, A1, As, ..., A,] is a polyno-
mial functor then its initial algebra is the nductive
type

I = Ind[Ao,Al,Az, . An]

which satisfies the domain equation
I POl[I,AQ,Al,AQ, .. An] .
This isomorphism justifies the constructor

rec : Pol[Ind[Z], Z7]—=Ind[7] (4)

where 7 1s a form variable. It combines with the
pol notation to give

ind es = rec(pol es).

For example, the constructors for the type of
lists L = Ind[l, A] are given by

nil = ind[]

cons h t = indh,t].

Similarly, the constructors for a binary tree T" =
Ind[A, 0, B] are

leaf a =

node(b,t1,t2) =

ind[a]
ind[b, t1,t2].

The meaning of initiality is that for type T" with
a P-action

f :Pol[T, Z]>T

there is a (unique) algebra homomorphism
£1d £ : Ind[Z]—>T
whose evaluation is given by
£f1d f (ind es) =f (pmp (f1d f) (pol es)) .

That 1s, £1d £ applies itself to all sub-terms of
indeterminate type, and then applies f.

Returning to our example of lists, if
f = cases[c,g]: Pol [C, 1, A]=C

makes C' an algebra for PX = Pol[X, 1, A] then
f1d f : L—C maps lists of A’s to C' in the usual
way:

fld £ nil = ¢!
£1d £ (ind[h,t]) = £ (polfh,fld £ t]) .

Abstracting over £ in (5) shows that
£1d : (Pol[T, Z]|=T)—1Ind[7]>T

where Z 1s a form variable. Hence, £1d has a
single type, expressed in terms of polynomial and
inductive types, and form variables, whose nature
we must now consider in a little more detail.

4 The Type System
The (mono-)types are given by

T =
K =

1| X | T=T | Pol K
1Z|T:K .

Ind K

These types are: terminal (or unit), variable, func-
tion, polynomial, and inductive. Other base types
could be added, too. K is a form. It consists of a
list of types which may or not be ended by a form
variable Z. By convention, X and Y will denote
type variables, and Z will denote a form variable,
unless otherwise stated.

The polytypes include the monotypes and are
closed under universal quantification by both type
and form variables: if 7" is a polytype then so 1s

vX T

where X is either a type or a form variable. Poly-
types are required for the typing of let expresions,
where each occurence of a single term may be re-
quired to have a different (monotype) instantiation
of its polytype.

4.1 Substitutions

A type substitution ¢ is a pair (o1, 02) of functions
which map type variables to types and form vari-
ables to forms. Substitution acts on monotypes and
forms as follows:

oC = C

cX = o X
o(T=T") = (cT)—=(cT")
o(Pol K) = Pol (¢K)
o(Ind K) = 1Ind (cK)

and



A0—|—A1—|——|—An IPOl[l,AQ,Al,...,An]

and the initial type is the sum of nothing given by
0 =Pol[l].

Similarly, the type of booleans is given by 2 =
1+ 1="Pol[l,1,1].

Binary products can be represented by the lin-
ear polynomial

Ax B = Pol[A,0, B] .

Note that, unlike the sums, the n-fold product can-
not be described directly, but must be given by
repeatedly forming binary products. This might
be overcome by allowing multinomial types, which
may have several indeterminates.

Polynomials can be described recursively using

monomials. That is, Pol[X, Ag, Ay, ..., A,] can be
constructed as
POl[X,Al,...,An]XX+A0 (3)

which suggests the two constructors of polynomial
type: con, for constant polynomials, and; var, for
varying polynomials. We can type them by

con Y—Pol[X,Y, 7]

var Pol[X, 7] > X—Pol[X,Y, 7] .

where Z is a form variable.

For example, the left injection of a : A into the
coproduct A+ B can be given as con a. The right
injection of b : B is then var (con b) ! where
I': 1 is the canonical term of unit type. Specialising
to A =B =1 yields

true = con !

false = var (con!)!.

Although 0 is an empty type (which denotes the
initial object), it does have a canonical function
bot : 0—=Y into any other type Y.

Given a term ek : Ay for k < n and terms ei : X
for 1 < ¢ < k then we can construct a term of type

Pol[X, Ao, A1, ..., Ay] “of degree k” by

pol [e0,el,...,ek] =
var(...(var(con e0) el)...) ek

That is, pol (e :es) =pol2 e es where

pol2 p[] = p

pol2 p (e:es) = pol2 (var p e) es.

The corresponding selector cas for polynomials
performs a case analysis in the obvious way. Its

type is

(PollX, Z]>X—T)—(Y —-T)—-Pol[X,Y, Z]->T

and its evaluation rules are:

(cas £ g) (var pe) = fpe

(cas f g)(con e) = ge.

The extension to multiple cases is handled as
follows. Given fs = [£0,£1,...,fn] where fk is a
function of type

fk A= X—>X ... =5XT (k copies of X)
for 0 < k < n then cases fs has type

POl[X,AQ,Al, .. ,An]—>T .

More precisely, cases 1s defined by

cases [] = bot

cases (f :fs) = cas (cases fs) f.

The use of bot for the empty list places an upper
bound on the degree of the terms to which the case
analysis applies. For the recursion, observe that

cases[f1,...,fn] has type
Pol[X, Ay,..., Ay ] = (X—=T)

since each £k has had its position in the list reduced
by one. This is just right for typing

cas (cases[f1,...,fn]) fO .

Anyway, it follows that

cases fs (pol [e0,el,...,ek]) =>
fk €0 el ... ek .

Similarly, if £k : Az—7T for 0 < k < n then we
can construct the usual case analysis on the sum of
the Ag by ignoring the copies of 1 that arise.

bot
cas (fst.(scs fs)) £

scs [] =
scs (f:fs) =
where £st x y = x. In particular, the conditional
cond : Pol[A,0,2]—A is given by
cond b £ g = cases[bot,bot,scs[pi2, pi3]]

where pi2 x y z = yand pi3 x y z = z.
Our final polynomial combinator maps functions
over the indeterminates of polynomials. It has type

pmp : (X—=Y)—Pol[X, Z]—=Pol[Y, 7]
with evaluation given by

pmp £ (var p e) = var (pmp f p) (f e)

pmp f (con e) = con e.

The recursion in the evaluation shows why pmp
cannot be defined in terms of cas. It follows from
the definition that

pmp g (pol [e0,el,...,en]) =
pol [e0,g el,...,g en]



In this paper, folding over arbitrary inductive
types will be characterised by its own combinator,
with its own type, and a single evaluation mecha-
nism. Thus, the uniform description of the induc-
tive types is reflected in a uniform description of
their algorithms.

To see how this is done, we must reformulate
the problem. The pattern-matching approach to
lsum and tsum is required to explain where the
recursion is to occur, either on the tail of the list,
or the left and right sub-trees. In other words, if
we can locate the “recursive sub-expressions” then
we can describe fold £ by the following high-level
algorithm:

Apply fold £ to all the recursive sub-
expressions and then apply f.

Hence the task is to construct a type system which
supports the location of the recursive sub-express-
ions.

A clue to the solution is provided by the shapely
types (Jay and Cockett, [7] and Jay, [6]). They
support the separation of data (e.g. the values at
the leaves of a tree) from shape (e.g. the underly-
ing, unlabelled tree), which can then be manipu-
lated separately. For example, an operation whose
shape 1s fixed but allows the data to vary is data
polymorphic, of the kind found in most functional
programming languages. Conversely, if the data is
fixed but the shape may vary then it is shape poly-
morphic, a new kind of polymorphism which we are
currently investigating. The canonical example of a
shape polymorphic function is map, which applies a
function to each datum, but leaves the shape fixed.

This clue is not quite enough to solve the prob-
lem, however, since this absolute separation of data
from shape does not match the recursive approach
to folding. The two views are combined in the poly-
nomial types, since they express their shapeliness in
a suitably recursive fashion.

Polynomial types are isomorphic to types built
from products and sums. For example,

POl[X,AQ,Al,Az] = Ao —|—A1><X —|—A2><X2 .

They are more expressive, however, since the abil-
ity to distinguish the indeterminate type from the
coefficient types provides just the desired shape in-
formation: recursion occurs at the indeterminate

types.
For example, (1) and (2) can be recast as

L =
T =

Pol[L, 1, 4]
Pol[T, A,0,1] .

Thus each polynomial yields a polynomaal functor

PX = POl[X,Ao,Al,AQ,...,An] .

whose corresponding initial algebra is the inductive
type

Ind[Ao,Al,Az, . ,An]

sometimes denoted pX.PX. In this case there is
no need to specify the bound variable X since it is
always the indeterminate of the polynomial.

The use of a term of polynomial type supports
a single, general algorithm for evaluating fold f.
The list of coefficients of the polynomial, its form,
carries both the data (the actual types of the co-
efficients) and the shape (the length of the list).
By introducing form variables, folding can be rep-
resented by a constant term or combinator f1d,
instead of a term constructor. That 1s, £1d is not
merely data polymorphic but is shape polymorphic,
too.

In this paper, a language P2 of polynomial types
and terms is introduced, together with type infer-
ence, unification and assignment algorithms. Eval-
uation is shown to be Church-Rosser and strongly
normalising.

Polynomial and inductive types are introduced
in Sections 2 and 3. The formal system of types and
terms is given in Sections 4 and 5. In Section 6 the
terms are interpreted within System F, from which
the Church-Rosser property and strong normalisa-
tion follow. The paper concludes with comments
on implementation, further work, related work and
conclusions in Sections 7-9.

I would like to thank the members of the Shape
project and the referees for their comments.

2 Polynomials

A polynomial type

POl[X,Ao,Al,AQ, . ,An]
is built from a form [X, Ag, A1, As, ..., A,] whose
indeterminate is the type X and whose coefficient
of degree k 1s the type Aj. There are also form
variables Z used to represent lists of unknown co-
efficients. They will be addressed in detail in Sec-
tion 4.

In a system which supports product and sum
types the polynomial above may be interpreted by
the type

Ag+ A1 x X + Asx X2 4+ .. 4+ A, x X" .

Notice, however, that the distinction between inde-
terminates and coefficients has been lost.

Here, we take the polynomial types, and a unit
(or terminal) type 1 to be primitive and construct
other types from them. Sums are represented by

A+ B =Pol[l, A, B].

More generally, finite sums are given by



Polynomial Polymorphism

C. Barry Jay

School of Computing Sciences
University of Technology, Sydney
Sydney
Australia
cbj@socs.uts.edu.au.

Abstract

Inductive types, such as lists and trees, have a uni-
form semantic description, both of the types them-
selves and the folding algorithms that construct ho-
momorphisms out of them. Though implementa-
tions have been able to give a uniform description
of the types, this has not been true of folding, since
there has not been a uniform mechanism for finding
the sub-expressions (the sub-lists or sub-trees, etc.)
to which recursion applies.

Polynomaial types overcome this problem by dis-
tinguishing the indeterminate of the polynomial (on
which the recursion occurs) from its coefficients.
Further, this uniformity s recognised by the type
system, which is able to treat £1d as a (shape)
polymorphic constant of the A-calculus.

These ideas have been tmplemented in a lan-
quage P2.

Key words types, polynomials, polymorphism,
folding, shape, P2.

1 Introduction

The use of initial algebras to describe inductive
data types, such as lists and trees, produces a uni-
form method for describing a large class of types
(ADJ, [4]) and specifying their programs (e.g. Mei-
jer et al, [9]). Till now, however, this uniformity
has not extended to the algorithms used for imple-
mentation.

In languages such as ML [10] and Haskell [5],
many algorithms are defined by pattern-matching.
For example, summation of a list of integers is given

by

lsum [] = O
lsum (h::t) = h+ (lsum t)

while summation over a binary tree of integers is
given by

tsum(leaf(n))
tsum(node(t1,t2)) =

n

(tsumtl) + (tsum t2) .

That is, while these languages support polymor-
phism in the choice of data, operations must be
separately defined for each choice of shape (lists,
trees, etc.).

Semantically, inductive data types can be treated
as initial algebra solutions I't of domain equations
X = FX. An algebra for F' is a type B with an
F-action f : FB—B. For each such there is a
unique algebra homomorphism (or catamorphism)
fold f: =B,

For example, lists of A’s and binary trees with
leaves of type A are solutions of the equations

1+ AxL (1)
A+T? (2)

L
T =

1

that are initial algebras for the functors GX =
14+ AxX and HX = A 4+ X? respectively. An
algebra B for the list functor F' is given by some
f (1 4+ AxB)—=B or, equivalently by a chosen
element b : B and an A-action a : A—~B—B. For
example, 1sum = fold g where g is given by 0 and
+.

Likewise, an algebra B for the tree functor H is
given by a function A—B and a binary operation
B—B—B. For example tsum = fold h where A is
given by the identity and +.

The Bird-Meertens formalism (Bird and Wadler,
[1]) supports a fold over lists called foldr whose
type is

(A-»B—B)—>B—[A]—=B .
so that 1sum = foldr 4 0. Similar combinators
could be introduced for other inductive types, each
with their own evaluation mechanism, but their
underlying unity would not be revealed this way.

The language Charity (Cockett and Fukushima,
[2]) takes a different approach to the problem. There
fold applies to arbitrary inductive types, but is
treated as a term constructor, rather than as a term
in its own right. That is, an algorithm for fold g
is inferred from that of g. Thus, the use of folding
has been simplified by automating its construction,
but the algorithm itself is still dependent on that
for g.



