
The interpretation is designed to be small andeasily understood, rather than e�cient. For thisreason, the language does not support user declaredtypes for terms, which, though possible, would ob-scure the implementation. As a consequence, thedirect implementation of many terms, e.g. of truth-values and pairs, have assigned types which aremore general than desired. To overcome this, Ihave introduced some additional constants whereenforced typing seems desirable. For example, bot0instantiates bot to take arguments of type 0 =Pol[1] instead of the more general Pol[X]. Simi-larly, to limit the degree of polynomials we instan-tiate con to conE : Y!Pol[X;Y ].8 Further and Related WorkThe development of shape polymorphism, and poly-nomial types is in its infancy. To take but oneexample, mutually recursive types will require aslightly more sophisticated type system. For exam-ple, rose trees with nodes of type A (trees whosenodes have an arbitrary, but �nite, number of bran-ches) are given by the initial algebra�X:A�Ind [1; X]Here the bound variable is not an indeterminate,so that explicit bounds appear to be required.In theory, all the operations of interest on in-ductive types are available, once folding has beencaptured. In practice, things are complicated bythe presence of additional parameters. For exam-ple, mapping must be extended from the indeter-minates to the co�cients of polynomials and in-ductive types, which will require links between thedata and the functions to be applied. This in turnsuggests that polynomial types be ordered, so thatthe addition of new coe�cients increases the size ofthe type.Similar considerations can be expected whengeneralising other standard list combinators, suchas scan, zip and filter to novel situations. Bestwould be to �nd the means of describing theseas syntactic sugar, but even if possible, this willrequire further generalisations of forms.While discussing P2, Mark Jones pointed outthat Gofer can use the type class of functors tosupport a high-level algorithm for fold, whose typeisfold : functor f =>(f x -> x) -> fix f -> xwhere fix f denotes the initial algebra (e.g. aninductive type) for the functor f.9 ConclusionsAlthough it has been common knowledge that in-ductive types are built from polynomials, this fact

has not, till now, been used to reveal the under-lying shape of polynomial and inductive types ina systematic fashion. P2 shows that polynomialssupport a uniform algorithm for folding over induc-tive types, and a type system that recognises thisby giving fld a single type.This work shows that shape polymorphism canbe implemented. When developed further, and in-corporated into other languages, it promises to elim-inate much redundant coding in functional pro-grams.References[1] R. Bird and P. Wadler. Introduction to Func-tional Programming. International Series inComputer Science. Prentice Hall, 1988.[2] J.R.B. Cockett and T. Fukushima. Aboutcharity. Technical Report 92/480/18, Uni-versity of Calgary, 1992.[3] J-Y. Girard, Y. Lafont, and P. Taylor. Proofsand Types. Tracts in Theoretical ComputerScience. CUP, 1989.[4] et al Goguen, J.A. Initial algebra semanticsand continuous algebras. Journal of the Asso-ciation for Computing Machinery, 24:68{95,1977.[5] P. Hudak and all. Report on the programminglanguage haskell: a non-strict, purely func-tional language. Technical report, Universityof Glasgow, 1992. Version 1.2.[6] C.B. Jay. Shapely types: Exploiting parseabil-ity. Science of Computer Programming, 1995.[7] C.B. Jay and J.R.B. Cockett. Shapely typesand shape polymorphism. In Proceedings ofthe European Symposium on Programming,Edinburgh, 1994, Lecture Notes in ComputerScience. Springer Verlag, 1994.[8] M. Jones. The implementation of the goferfunctional programming system. TechnicalReport YALEU /DCS/RR-1030, Yale Univer-sity, 1994.[9] E. Meijer, M. Fokkinga, and R. Paterson.Functional programmingwith bananas, lenses,envelopes and barbed wire. In Procceding ofthe 5th ACM Conference on Functional Pro-gramming and Compter Architecture, 1991.[10] R. Milner and M. Tofte. Commentary onStandard ML. MIT Press, 1991.



5.1 EvaluationThe rewriting rules are given by the usual �-reduc-tion and let rule of the �-calculus(�x:e)a ) e[a=x]let x = a in e ) e[a=x] :together with some �-rules, associated with theconstants:cas f g (con e) ) g ecas f g (var p e) ) f p epmp f (con e) ) con epmp f (var p e) ) var (pmp f p) (f e)fld f (rec p) ) f (pmp (fld f) p)Of course, evaluation preserves type inference,i.e. if we can infer that e : A and e)e0 then wecan infer that e0 : A. Also, evaluation is type-free,i.e. is independent of the choice of type for a term.6 Interpretation into System FSystem F is a type system generated by functiontypes, and universal quanti�cation by type vari-ables [3]. It is powerful enough to de�ne the induc-tive types, but the arbitrary nesting of quanti�erscomplicates type-checking enormously.In this section the typable terms of P2 will betranslated into terms of F in a way that preservesnon-trivial reductions (i.e. reductions of at leastone step). Then the Church-Rosser property andstrong normalisation for P2 will follow from thatof F.The only potential source of di�culty is the in-terpretation of form variables. Perhaps they couldbe mapped to type variables, but various problemsarise with substitutions. Rather than attempt tounravel this knot, observe that every typable termof P2 has a type in which there are no form vari-ables, obtained by substituting the empty form forthem. Now the translation is trivial.The types without form variables can be inter-preted into system F by a function [j�j] as follows.Atomic types, type variables and function types areall interpreted as themselves. The polynomial typePol[X;A0; A1; : : : ; An] is interpreted as in (3) by((: : : ([jAnj]�[jXj]) : : :) + [jA1j])�[jXj] + [jA0j]Inductive types are handled just as in F. That is,if the interpretation of Pol(X : F ) is P then theinductive type Ind F is interpreted by�X:(P!X)!X :Universal quanti�cation 8X of polytypes is trans-lated by �X. We will suppress the translationbrackets [j � j] as much as possible from now on.

Now the terms of P2 can be interpreted byterms of F in a manner that preserves typing, andmaps reductions of P2 to non-trivial reductions ofF.Lemma 6.1 If � ` e : A then there is a proof inwhich the only substitutions that occur are appliedto the types of combinators and variables.Proof By induction on the length of the infer-ence. 2Since the type inference rules of P2 (other thanthose for the combinators) are also rules of F itfollows that we need only provide translations forthe combinators.Let P = Pol[X;A0; A1; : : : ; An]Q = Pol[X;A1; : : : ; An]R = Pol[Y;A0; A1; : : : ; An]I = Ind[A0; A1; : : : ; An]S = Pol[I; A0; A1; : : : ; An]where X is a type which may or may not be avariable.The translation of con : A0!P is the left inclu-sion �1 : A0!A0 + (Q�X). Similarly,var 7! �p:�x:�2hp; xicas 7! �fQ!X!Y :�gA0!Y :�pP :p Y f 0 gfld 7! �fP!X :�zI :z X fwhere f 0 is the uncurried form of f . The transla-tion of pmp : (X!Y )!P!R is pm n wherepm 0 = �gX!Y :�pP :ppm (n + 1) = �gX!Y :�pP :p id ((pm n g)�g)and (f�g)ha; bi = hf a; g bi. Finally, if rec hastarget type I then its translation is�pR:�X:�fP!X :f(pm n (fld f) p)The proof that the translation preserves reduc-tion is routine, since all the �-reductions are mappedto �-reductions. Hence, we have:Theorem 6.2Reduction in P2 is conuent and strongly normal-ising.7 ImplementationThe implementation of P2 is intended to demon-strate the viability of the ideas in this paper, andprovide a vehicle for their further exploration. Aninterpreter for P2 has been constructed in Gofer(Jones, [8]) though any functional language wouldhave su�ced, since no special use has been madeof its type classes. The code is available by anony-mous ftp from ftp.socs.uts.edu.au in the directoryusers/cbj/P2.



�[ ] = [ ]�[Z] = �2Z�(T : K) = (�1T ) : (�K) :Form substitutions allow the length of a form tochange, so that terms whose natural type is a poly-nomial of low degree can be treated as having atype of high degree.This novelty is not as radical as it may appear,since it vanishes when the polynomials are con-verted to the sums of products. For example, ifT = Pol[X;A;B] then two applications of (3) showthat Pol[X;Y; T ] �= (Pol[X;A;B]�X) + Y�= Pol[X;Y;A;B] :Hence, substituting T for Z in Pol[X;Y; Z] is thesame (up to isomorphism) as substituting [A;B] forZ in the form. Notice that this equivalence onlyworks when the form variable ends the list.Substitution on polytypes behaves in the usualway, by not interacting with bound variables, i.e.there is no substitution for bound variables, nor isvariable capture allowed.Composition of substitutions � followed by � isdenoted by � � �. Clearly, the identity substitutionmaps type variables to themselves, and maps aform variable Z to [Z]. The notation �[T=X] isused to express the update of � where the type(respectively, form) variable X is mapped to thetype (respectively, form) T .4.2 Uni�cationUni�cation follows the usual pattern. Fail indi-cates that uni�cation has failed. First strip o�bound variables, taking care not to accidentallycreate new type identi�cations, and then apply thefollowing algorithm.U(1; 1) = idU(X;T ) = id[T=X]U(T;X) = U(X;T )U(Pol K; Pol L) = V(K;L)U(Ind K; Ind L) = V(K;L)U(A!B;C!D) = �2 � �1 where�2 = U(�1B; �1D)�1 = U(C;A)U(A;B) = Fail (otherwise) :For U(X;T ) it is assumed that X is not free in Tunless T = X. Uni�cation on forms is the symmet-ric operation given byV([ ]; [ ]) = idV([Z]; [ ]) = id[[ ]=Z]

V(K; [ ]) = Fail (otherwise)V(K; [Z]) = id[K=Z]V(T : K;T 0 : K 0) = V(�K; �K 0) � �where � = U(T; T 0) :Theorem 4.1 (Most General Uni�ers)If there is a substitution � that uni�es two typesA and B then � factors through U(A;B).Proof Without loss of generality, A and B aremonotypes. The proof is by a standard inductionover both the types and the forms. 25 TermsA context � is a list of term variables with givenpolytypes. The constant terms and their associatedtypes (in any context) are given by! : 1bot : Pol[X]!Ycon : Y!Pol[X;Y; Z]var : Pol[X;Z]!X!Pol[X;Y; Z]cas : (Pol[X;Z]!X!T )!(Y!T )!Pol[X;Y; Z]!Tpmp : (X!Y )!Pol[X;Z]!Pol[Y; Z]rec : Pol[Ind[Z]; Z]!Ind[Z]fld : (Pol[X;Z]!X)!Ind[Z]!X :The type inference rules for variables, let, func-tions and their application are given by� ` x : A x : A in �� ` e : A �; x : A ` e0 : B� ` let x = e in e0 : B�; x : A ` e : B� ` �x:e : A!B� ` f : A!B � ` e : A� ` f e : BFinally, there are the rules relating to polytypesand substitutions. Substitutions act on all the typesin a context �. Here the variable X may be a typeor form variable. � ` e : A� ` e : 8XA X not free in �� ` e : 8XA� ` e : A[T=X]� ` e : T�� ` e : �TType assignment proceeds as usual, with uni-�cation used to handle application, and polytypesused for let constructs.



3 InductivesPolynomial types can be used to express domainequations for inductive types. For example, theusual equation N �= 1+N for the natural numbersbecomes N �= Pol[N; 1; 1] :Similarly, lists of type A and binary trees withleaves of type A and nodes of type B are givenby L �= Pol[L; 1; A]T �= Pol[T;A; 0; B] :If PX = Pol[X;A0; A1; A2; : : : ; An] is a polyno-mial functor then its initial algebra is the inductivetype I = Ind[A0; A1; A2; : : :An]which satis�es the domain equationI �= Pol[I; A0; A1; A2; : : :An] :This isomorphism justi�es the constructorrec : Pol[Ind[Z]; Z]!Ind[Z] (4)where Z is a form variable. It combines with thepol notation to giveind es = rec(pol es) :For example, the constructors for the type oflists L = Ind[1; A] are given bynil = ind[!]cons h t = ind[h; t] :Similarly, the constructors for a binary tree T =Ind[A; 0; B] areleaf a = ind[a]node(b; t1; t2) = ind[b; t1; t2] :The meaning of initiality is that for type T witha P -action f : Pol[T; Z]!Tthere is a (unique) algebra homomorphismfld f : Ind[Z]!Twhose evaluation is given byfld f (ind es) = f (pmp (fld f) (pol es)) :That is, fld f applies itself to all sub-terms ofindeterminate type, and then applies f.

Returning to our example of lists, iff = cases[c; g] : Pol [C; 1; A]!Cmakes C an algebra for PX = Pol[X; 1; A] thenfld f : L!C maps lists of A's to C in the usualway: fld f nil ) c !fld f (ind[h; t]) ) f (pol[h; fld f t]) :Abstracting over f in (5) shows thatfld : (Pol[T; Z]!T )!Ind[Z]!Twhere Z is a form variable. Hence, fld has asingle type, expressed in terms of polynomial andinductive types, and form variables, whose naturewe must now consider in a little more detail.4 The Type SystemThe (mono-)types are given byT := 1 j X j T!T j Pol K j Ind KK := [ ] j Z j T : K :These types are: terminal (or unit), variable, func-tion, polynomial, and inductive. Other base typescould be added, too. K is a form. It consists of alist of types which may or not be ended by a formvariable Z. By convention, X and Y will denotetype variables, and Z will denote a form variable,unless otherwise stated.The polytypes include the monotypes and areclosed under universal quanti�cation by both typeand form variables: if T is a polytype then so is8X Twhere X is either a type or a form variable. Poly-types are required for the typing of let expresions,where each occurence of a single term may be re-quired to have a di�erent (monotype) instantiationof its polytype.4.1 SubstitutionsA type substitution � is a pair (�1; �2) of functionswhich map type variables to types and form vari-ables to forms. Substitution acts on monotypes andforms as follows: �C = C�X = �1X�(T!T 0) = (�T )!(�T 0)�(Pol K) = Pol (�K)�(Ind K) = Ind (�K)and



A0 + A1 + : : :+An = Pol[1; A0; A1; : : : ; An]and the initial type is the sum of nothing given by0 = Pol[1] :Similarly, the type of booleans is given by 2 =1 + 1 = Pol[1; 1; 1].Binary products can be represented by the lin-ear polynomialA�B = Pol[A; 0; B] :Note that, unlike the sums, the n-fold product can-not be described directly, but must be given byrepeatedly forming binary products. This mightbe overcome by allowing multinomial types, whichmay have several indeterminates.Polynomials can be described recursively usingmonomials. That is, Pol[X;A0; A1; : : : ; An] can beconstructed asPol[X;A1; : : : ; An]�X +A0 (3)which suggests the two constructors of polynomialtype: con, for constant polynomials, and; var, forvarying polynomials. We can type them bycon : Y!Pol[X;Y; Z]var : Pol[X;Z]!X!Pol[X;Y; Z] :where Z is a form variable.For example, the left injection of a : A into thecoproduct A+B can be given as con a. The rightinjection of b : B is then var (con b) ! where! : 1 is the canonical term of unit type. Specialisingto A = B = 1 yieldstrue = con !false = var (con !) ! :Although 0 is an empty type (which denotes theinitial object), it does have a canonical functionbot : 0!Y into any other type Y .Given a term ek : Ak for k � n and terms ei : Xfor 1 � i � k then we can construct a term of typePol[X;A0; A1; : : : ; An] \of degree k" bypol [e0,e1,...,ek] =var(...(var(con e0) e1)...) ekThat is, pol (e : es) = pol2 e es wherepol2 p [ ] = ppol2 p (e : es) = pol2 (var p e) es :The corresponding selector cas for polynomialsperforms a case analysis in the obvious way. Itstype is(Pol[X;Z]!X!T )!(Y!T )!Pol[X;Y; Z]!T

and its evaluation rules are:(cas f g) (var p e) ) f p e(cas f g)(con e) ) g e :The extension to multiple cases is handled asfollows. Given fs = [f0; f1; :::; fn] where fk is afunction of typefk : Ak!X!X : : :!X!T (k copies of X)for 0 � k � n then cases fs has typePol[X;A0; A1; : : : ; An]!T :More precisely, cases is de�ned bycases [ ] = botcases (f : fs) = cas (cases fs) f :The use of bot for the empty list places an upperbound on the degree of the terms to which the caseanalysis applies. For the recursion, observe thatcases[f1; : : :; fn] has typePol[X;A1; : : : ; An]!(X!T )since each fk has had its position in the list reducedby one. This is just right for typingcas (cases[f1; : : :; fn]) f0 :Anyway, it follows thatcases fs (pol [e0,e1,...,ek]) =>fk e0 e1 ... ek .Similarly, if fk : Ak!T for 0 � k � n then wecan construct the usual case analysis on the sum ofthe Ak by ignoring the copies of 1 that arise.scs [ ] = botscs (f : fs) = cas (fst:(scs fs)) fwhere fst x y = x. In particular, the conditionalcond : Pol[A; 0; 2]!A is given bycond b f g = cases[bot; bot; scs[pi2; pi3]]where pi2 x y z = y and pi3 x y z = z.Our �nal polynomial combinatormaps functionsover the indeterminates of polynomials. It has typepmp : (X!Y )!Pol[X;Z]!Pol[Y; Z]with evaluation given bypmp f (var p e) ) var (pmp f p) (f e)pmp f (con e) ) con e :The recursion in the evaluation shows why pmpcannot be de�ned in terms of cas. It follows fromthe de�nition thatpmp g (pol [e0,e1,...,en]) =pol [e0,g e1,...,g en]



In this paper, folding over arbitrary inductivetypes will be characterised by its own combinator,with its own type, and a single evaluation mecha-nism. Thus, the uniform description of the induc-tive types is reected in a uniform description oftheir algorithms.To see how this is done, we must reformulatethe problem. The pattern-matching approach tolsum and tsum is required to explain where therecursion is to occur, either on the tail of the list,or the left and right sub-trees. In other words, ifwe can locate the \recursive sub-expressions" thenwe can describe fold f by the following high-levelalgorithm:Apply fold f to all the recursive sub-expressions and then apply f.Hence the task is to construct a type system whichsupports the location of the recursive sub-express-ions.A clue to the solution is provided by the shapelytypes (Jay and Cockett, [7] and Jay, [6]). Theysupport the separation of data (e.g. the values atthe leaves of a tree) from shape (e.g. the underly-ing, unlabelled tree), which can then be manipu-lated separately. For example, an operation whoseshape is �xed but allows the data to vary is datapolymorphic, of the kind found in most functionalprogramming languages. Conversely, if the data is�xed but the shape may vary then it is shape poly-morphic, a new kind of polymorphismwhich we arecurrently investigating. The canonical example of ashape polymorphic function is map, which applies afunction to each datum, but leaves the shape �xed.This clue is not quite enough to solve the prob-lem, however, since this absolute separation of datafrom shape does not match the recursive approachto folding. The two views are combined in the poly-nomial types, since they express their shapeliness ina suitably recursive fashion.Polynomial types are isomorphic to types builtfrom products and sums. For example,Pol[X;A0; A1; A2] �= A0 + A1�X +A2�X2 :They are more expressive, however, since the abil-ity to distinguish the indeterminate type from thecoe�cient types provides just the desired shape in-formation: recursion occurs at the indeterminatetypes.For example, (1) and (2) can be recast asL �= Pol[L; 1; A]T �= Pol[T;A; 0; 1] :Thus each polynomial yields a polynomial functorPX = Pol[X;A0; A1; A2; : : : ; An] :

whose corresponding initial algebra is the inductivetype Ind[A0; A1; A2; : : : ; An]sometimes denoted �X:PX. In this case there isno need to specify the bound variable X since it isalways the indeterminate of the polynomial.The use of a term of polynomial type supportsa single, general algorithm for evaluating fold f.The list of coe�cients of the polynomial, its form,carries both the data (the actual types of the co-e�cients) and the shape (the length of the list).By introducing form variables, folding can be rep-resented by a constant term or combinator fld,instead of a term constructor. That is, fld is notmerely data polymorphic but is shape polymorphic,too.In this paper, a languageP2 of polynomial typesand terms is introduced, together with type infer-ence, uni�cation and assignment algorithms. Eval-uation is shown to be Church-Rosser and stronglynormalising.Polynomial and inductive types are introducedin Sections 2 and 3. The formal system of types andterms is given in Sections 4 and 5. In Section 6 theterms are interpreted within System F, from whichthe Church-Rosser property and strong normalisa-tion follow. The paper concludes with commentson implementation, further work, related work andconclusions in Sections 7{9.I would like to thank the members of the Shapeproject and the referees for their comments.2 PolynomialsA polynomial typePol[X;A0; A1; A2; : : : ; An]is built from a form [X;A0; A1; A2; : : : ; An] whoseindeterminate is the type X and whose coe�cientof degree k is the type Ak. There are also formvariables Z used to represent lists of unknown co-e�cients. They will be addressed in detail in Sec-tion 4.In a system which supports product and sumtypes the polynomial above may be interpreted bythe typeA0 +A1�X + A2�X2 + : : :+ An�Xn :Notice, however, that the distinction between inde-terminates and coe�cients has been lost.Here, we take the polynomial types, and a unit(or terminal) type 1 to be primitive and constructother types from them. Sums are represented byA+B = Pol[1; A;B] :More generally, �nite sums are given by



Polynomial PolymorphismC. Barry JaySchool of Computing SciencesUniversity of Technology, SydneySydneyAustraliacbj@socs.uts.edu.au.AbstractInductive types, such as lists and trees, have a uni-form semantic description, both of the types them-selves and the folding algorithms that construct ho-momorphisms out of them. Though implementa-tions have been able to give a uniform descriptionof the types, this has not been true of folding, sincethere has not been a uniform mechanism for �ndingthe sub-expressions (the sub-lists or sub-trees, etc.)to which recursion applies.Polynomial types overcome this problem by dis-tinguishing the indeterminate of the polynomial (onwhich the recursion occurs) from its coe�cients.Further, this uniformity is recognised by the typesystem, which is able to treat fld as a (shape)polymorphic constant of the �-calculus.These ideas have been implemented in a lan-guage P2.Key words types, polynomials, polymorphism,folding, shape, P2.1 IntroductionThe use of initial algebras to describe inductivedata types, such as lists and trees, produces a uni-form method for describing a large class of types(ADJ, [4]) and specifying their programs (e.g. Mei-jer et al, [9]). Till now, however, this uniformityhas not extended to the algorithms used for imple-mentation.In languages such as ML [10] and Haskell [5],many algorithms are de�ned by pattern-matching.For example, summation of a list of integers is givenby lsum [ ] = 0lsum (h :: t) = h+ (lsum t)while summation over a binary tree of integers isgiven bytsum(leaf(n)) = ntsum(node(t1; t2)) = (tsumt1) + (tsum t2) :

That is, while these languages support polymor-phism in the choice of data, operations must beseparately de�ned for each choice of shape (lists,trees, etc.).Semantically, inductive data types can be treatedas initial algebra solutions F y of domain equationsX �= FX. An algebra for F is a type B with anF -action f : FB!B. For each such there is aunique algebra homomorphism (or catamorphism)fold f : F y!B.For example, lists of A's and binary trees withleaves of type A are solutions of the equationsL �= 1 + A�L (1)T �= A + T 2 (2)that are initial algebras for the functors GX =1 + A�X and HX = A + X2 respectively. Analgebra B for the list functor F is given by somef : (1 + A�B)!B or, equivalently by a chosenelement b : B and an A-action a : A!B!B. Forexample, lsum = fold g where g is given by 0 and+. Likewise, an algebra B for the tree functor H isgiven by a function A!B and a binary operationB!B!B. For example tsum = fold h where h isgiven by the identity and +.The Bird-Meertens formalism(Bird andWadler,[1]) supports a fold over lists called foldr whosetype is (A!B!B)!B![A]!B :so that lsum = foldr + 0. Similar combinatorscould be introduced for other inductive types, eachwith their own evaluation mechanism, but theirunderlying unity would not be revealed this way.The languageCharity (Cockett and Fukushima,[2]) takes a di�erent approach to the problem. Therefold applies to arbitrary inductive types, but istreated as a term constructor, rather than as a termin its own right. That is, an algorithm for fold gis inferred from that of g. Thus, the use of foldinghas been simpli�ed by automating its construction,but the algorithm itself is still dependent on thatfor g.


