
 

 

  
Abstract—This paper presents a supervised clustering algorithm, 

namely Grid-Based Supervised Clustering (GBSC), which is able to 
identify clusters of any shapes and sizes without presuming any 
canonical form for data distribution. The GBSC needs no pre-
specified number of clusters, is insensitive to the order of the input 
data objects, and is capable of handling outliers.  Built on the 
combination of grid-based clustering and density-based clustering, 
under the assistance of the downward closure property of density 
used in bottom-up subspace clustering, the GBSC can notably reduce 
its search space to avoid the memory confinement situation during its 
execution. On two-dimension synthetic datasets, the GBSC can 
identify clusters with different shapes and sizes correctly. The GBSC 
also outperforms other five supervised clustering algorithms when 
the experiments are performed on some UCI datasets. 
 

Keywords—supervised clustering, grid-based clustering, 
subspace clustering    

I. INTRODUCTION 

LUSTERING analysis is one of the primary methods to 
understand the natural grouping (or structure) of data 

objects in a dataset. The main objective of clustering is to 
separate data objects into high quality groups (or clusters), 
based on similarities among the data objects.  Due to the 
acknowledgment that no single clustering method can 
adequately handle all sorts of cluster structures [1], and that 
different clustering approaches often define different 
definitions for clusters, it is impossible to define a universal 
measure of clustering quality [12].      

Traditional clustering is performed in unsupervised learning 
manner.  No class label attribute of data objects is used to 
guide clustering them into groups.  Since the problem of 
finding the optimal clustering of data objects was proved to be 
NP-complete [13], many heuristic methods have been 
developed to solve the problem. Ref. [7] categorized 
traditional clustering algorithms into partitioning methods, 
hierarchical methods, density-based methods, grid-based 
methods, and model-based methods. 

Unlike the goal of traditional clustering, [23] and [10] 
proposed that the goal of supervised clustering was to 
identify class-uniform clusters that had high data densities.   
According to them, not only data attribute variables, but also a 
class variable, take part in grouping or dividing data objects 
into clusters in the manner that the class variable is used to 
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supervise the clustering.  At the end, each cluster is assigned 
with specific class label corresponding to the majority class of 
data objects inside the cluster. 

As reviewed by [12], the objective of subspace clustering is 
to find clusters in different subspaces of a dataset.  Localizing  
search space by considering only the relevant dimensions 
allows subspace clustering to find clusters that exist not only 
in all of the original dimensions of an input dataset, as in 
traditional clustering algorithms, but also in various 
combinations of relevant dimensions.  

This paper proposes grid-based supervised clustering 
(GBSC) that performs supervised clustering based on grid-
based clustering method, density-based clustering method, and 
bottom-up subspace clustering method. The GBSC algorithm 
relies on grid-based clustering method which gradually 
divides data space into grid cells in the bottom-up fashion. It 
begins with the subspace division based on all one-
dimensional spaces then proceeds by adding dimensions to be 
considered for the subspace division one dimension at a time 
until all dimensions have been considered.  Finally, all 
adjacent dense cells whose classes are identical are merged 
into the same cluster using density-based clustering 
techniques. The paper is organized as followed. Section 2 
presents backgrounds and related works in developing the 
GBSC algorithm.  Section 3 marks on the problem statements 
of the GSBC algorithm. The detail of the GBSC algorithm is 
described in section 4. Finally in section 5, two sets of 
experiments designed to evaluate the effectiveness of GBSC 
are presented.  

II. BACKGROUNDS AND RELATED WORKS 

In this section, essential backgrounds on subspace 
clustering and supervised clustering are provided.  Reviews on 
clustering algorithms relevant to the GBSC algorithm are also 
given. 

A. Subspace Clustering 
Data objects may be related in different ways when 

different subsets of dimensions are considered. Thus different 
clusters exist when different sets of dimensions of the data 
objects are used for clustering [17]. Subspace clustering aims 
to reveal clusters lying in various subspaces of the dataset. 
Ref. [12] classified subspace clustering algorithms into two 
major groups with regard to the search technique employed:  
the bottom-up search method and the top-down search 
method. 

A number of subspace clustering algorithms were 
categorized and reviewed in [12]. Among them, the one that 
the GBSC algorithm is based upon is CLIQUE [1]. CLIQUE 
is one of very first subspace clustering algorithms.  It is a grid-
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based clustering algorithm that provides an efficient approach 
for bottom-up subspace clustering. It uses an APRIORI style 
technique to find clusters in subspaces, based on the 
observation that dense areas in a higher-dimensional space 
imply the existence of dense areas in a lower-dimensional 
space. 

CLIQUE identifies dense clusters in a subspace of 
maximum dimensionality by automatically identifying 
projections of the data objects onto various subsets of 
dimensions where regions of high density with respect to 
those objects reside. The algorithm uses a bottom-up approach 
in generating grid cells and identifying dense cells. It begins   
by finding dense units in all one-dimensional spaces. The 
algorithm then proceeds level-by-level, in the manner that the 
candidate k-dimensional dense cells can be determined using 
already determined (k-1)-dimensional dense cells. Hence, the 
set of candidate k-dimensional cells that might possibly be 
dense can be found inside dense (k-1)-dimensional cells only.  
The algorithm terminates when no more candidates are 
discovered. To form clusters, CLIQUE uses a depth-first 
search algorithm to find the connected dense cells then creates 
cluster descriptions in the form of  DNF expression. 

B. Supervised Clustering 
Supervised clustering aim is to identify clusters that have 

high data densities and have minimal impurity, with respect to 
majority classes of the clusters. The clustering is performed on 
attribute variables under the supervision of a target class 
variable. As a consequence, each generated cluster is labeled 
with only one specific class that has majority of data objects 
inside the cluster.  Supervised clustering procedure is 
therefore used not only for knowledge discovery, but also for 
data classification, as the cluster structure with class 
information can be used as a classification function [20].   

Ref. [18], [16], and [2] proposed supervised clustering 
algorithms based on bottom-up agglomerative approach. The 
algorithm proposed in [15] is intended to find clusters that are 
homogenous in the target class variable using a probabilistic 
approach based on discriminative clustering to minimize 
distortion within clusters. Ref. [19] introduced supervised 
model-based clustering algorithms that were based on 
multivariate Gaussian mixture model which employs EM 
algorithm to estimate model parameters.  

Ref. [4] proposed that supervised clustering can be 
achieved by training a clustering algorithm to produce 
desirable clusters. They presented SVM algorithm that learned 
an item-pair similarity measure to optimize clustering 
performance based on a variety of performance measures. Ref. 
[3] introduced supervised K-mean algorithm that combined 
Simulated Annealing with K-mean algorithm. 

CCAS algorithms were developed for detecting intrusions 
into computer network system, through intrusion signature 
recognition.  The algorithms starts by learning data patterns 
based on supervised clustering procedure, and afterwards use 
these patterns for data classification. The original version of 
CCAS [21] starts with two dummy clusters and allows clusters 

of each individual class to spread over the entire data space 
regardless of the training sequence of data objects.  Ref. [8] 
modified the original CCAS with grid-based method to limit 
the search space in splitting training data objects into smaller 
size clusters.   The algorithm begins with dividing data space 
into equal size grid cells.  It then performs dummy-based 
clustering only on data objects lying in the same cell.  

Ref. [9] enhanced the robustness of CCAS by strengthening 
the algorithm with three post-processing steps: data 
redistribution, supervised grouping of clusters, and removal of 
outliers.  ECCAS [10] enabled CCAS to handle data of mixed 
types, by introducing two methods for combining numerical 
and nominal variables in calculating distance measure.  The 
first method combines different distance measures for each 
type of variables into a single distance measure ranging 
between 0 and 1.  The second method is based on conversion 
of nominal variables to binary variables, and then treats these 
binary variables as numeric variables.  

Three representative-based supervised clustering algorithms 
were introduced in [23]: Supervised Partitioning Around 
Medoids (SPAM), Single Representative Insertion/Deletion 
Steepest Decent Hill Climbing with Randomized Start 
(SRIDHCR), and Supervised Clustering using Evolutionary 
Computing (SCEC).  In their paper, a new fitness function 
used for measuring the performance of supervised clustering 
algorithms was proposed.  Instead of relying only on the 
tightness of data objects in each cluster, like most of the 
traditional clustering algorithms, the three algorithms weights 
cluster purity against the number of generated clusters in the 
proposed fitness function.  

SPAM, aimed to be the variation of PAM (Partitioning 
Around Medoids) that uses the proposed fitness function, 
starts by randomly selecting a medoid from the most frequent 
class data objects as the first representative. The algorithm 
then fills up the initial set of representatives with non-
representative objects. The number of representatives is fixed 
by a pre-defined figure. SPAM later on repeatedly explores all 
possible replacements of a single representative of the most 
current solution by a single non-representative, provided that 
the new set of representatives induces minimum fitness 
function value. The algorithm terminates if none of the 
replacements can provide lower fitness function value.  

In order to eliminate the limitation of SPAM that the 
number of representatives is fixed by a pre-defined parameter, 
SRIDHCR algorithm permits either adding or removing any 
representatives into or from the current set of cluster 
representatives. The algorithm terminates when there is no 
significant improvement in the solution quality (measured by 
the value of the fitness function).  

Besides the above two greedy algorithms, [23] also 
proposed an evolutionary computing algorithm called SCEC.  
The algorithm evolves a population of solutions, each is a set 
of representatives, over a pre-defined number of generations. 
The best solution of the last generation is chosen to be the set 
of representatives for the clustering. Each solution in the 
initial population is randomly created. Populations of the 
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subsequent generations are generated through three genetic 
operators: mutation, crossover, and copy.  SCEC uses K-
tournament selection method (with tournament size of  K = 2) 
in selecting potential solutions to participate in creating  new 
population. Different adaptive values are used to control the 
probabilities of applying each of the three genetic operators to 
generate new solutions for the subsequent generations.  

Ref. [5], [6] proposed two supervised clustering algorithms 
based on prototype-based clustering methodology: Supervised 
Growing Neural Gas (SGNG) and Robust Supervised 
Growing Neural Gas (RSGNG). The SGNG incorporates 
Growing Neural Gas network with various techniques such as 
Type Two Learning Vector Quantization (LVQ2), adaptive 
learning rates, and cluster repulsion mechanisms. The SGNG 
also proposed a new validity based on geometry measurement 
paradigm in order to determine the optimal number of 
prototypes. Due to drawbacks of the SGNG of being sensitive 
to the prototype initialization, the sequence of input data 
objects, and the presence of noises, the RSGNG is intended to 
be the robust version of SGNG.  The RSGNG incorporates 
SGNG learning schema with the outlier resistant strategy.  
Moreover, to determine the optimal number of prototypes 
where data objects may include some outliers, a modified 
validity index was proposed. The index is based on MDL() or 
Minimum Description Length technique. 

III. DEFINITIONS 

The definitions of major terms to be used through out this 
paper are defined in this section. 

A. Data Objects 
A data object is considered a data point in a d-dimensional 

space.  Formally, each data point is a ( )1+d -tuple in the 

form }Taaa d ,,......,,{ 21 , where ia  represents value of the thi  

predictor variable (or attribute)  and  T  represents the value of 
the target variable (or class label) of the data point [22]. 

B. Grid Cells 
Let dAAA ,.......,, 21  be sets of dimensions (or attributes, or 

predictor variables) of any datasets, and let  

dAAAA ×××= ........21  be the d-dimensional data space.  

The problem is to divide the data space A  into ∏
=

d

i
iP

1
 non-

overlapping hyper-rectangular grid cells, where iP   represents 

the number of intervals in the thi dimension of d-dimensional 
data space.  A cell is defined by a set of d-dimensional 
hyperplanes, all of which are parallel to ( )1−d   coordinate 

axes.  
To accomplish this, the range of the value domain of each 

dimension iA   is partitioned into iP number of mutually 

exclusive equal-size right-opened intervals [ )j
i

j
i

j
i hlI ,= , 

iPj ≤≤1  , where  j
il  and  j

ih  respectively denotes the start 

value and end value of the thj  interval in the thi  dimension, 

and hence each cell is represented in the form   
{ }dIIIU ,.....,, 21=  [11].  

C. Dense Cells 
An object { }daaaa ,....., 21= ,  where ia  is the value of the 

thi  dimension, is said to lie in a cell  U  only if  iii hal <≤   

for all  iI .  Since each cell  U  is formed upon the intersection 

of one interval from each of all attributes, obtained by 
partitioning each dimension into iP  intervals of equal length, 

the volume of all grid cells are equal. As a consequence, the 
density of each cell can be measured in term of the number of 
data objects lying within the region of the cell.  A cell  U  is 
called dense if the density of the majority class data objects in 
the cell is at least equal to the density threshold, the only input 
parameter for the GBSC algorithm. 

D. Clusters 
As defined by [1], a cluster is a maximal set of connected 

dense cells in d-dimensions. The problem is to separate all 
identified dense cells D  into kDDD ,.......,, 21  sets, such that all 

cells in the set iD  are connected, and no two cells ii DU ∈ , 

jj DU ∈  with ji ≠  are connected.  Two d-dimensional cells 

1U , 
2U  are declared connected, either in case they share at 

least one common corner point, or  their exists another d-
dimensional cell  sU  to which both  

1U  and  
2U   are 

connected.   
If a running number is assigned to each interval in all 

dimensions, starting from 1 to iP , where iP  is the number of 

intervals in the thi  dimension, each cell can be represented in 

the form { }djjjj IIIU ,.....,, 21= , where 
ijI is the interval 

number of the cell j  in the thi  dimension. Cells  

{ }121111 ,.....,, dIIIU =   and  { }222122 ,.....,, dIIIU =   are claimed 

connected if all 121 ≤− ii II , where 
1iI  and 

2iI  are the interval 

numbers  of the thi  dimension of  
1U  and  

2U   respectively.  

IV. GRID-BASED SUPERVISED CLUSTERING 

The GBSC algorithm is a bottom-up supervised clustering 
algorithm relying on the combination of the concepts of grid-
based clustering, density-based clustering, and the downward 
closure property of density used in subspace clustering.  The 
algorithm uses heuristics to partition data spaces into grid 
cells, and defines a cluster as a set of adjacent hyper-rectangle 
grid cells with the same-class label. 

The GBSC algorithm possesses all of the good clustering 
properties mentioned in [14]. The algorithm has ability to 
produce identical results regardless of the order of data objects 
to be processed. It can automatically determine the optimal 
number of clusters. Moreover, the GBSC algorithm is resistant 
to noises, can handle clusters of arbitrary shapes and sizes 
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without making any assumption about the distribution of data 
objects.  Moreover, the GBSC algorithm is strengthened with 
the ability to automatically suggest the number of intervals to 
be used in partitioning each dimension. . 

A. Fitness Function 
The objective of supervised clustering is to identify groups 

of data objects, that posses low impurities, and at the same 
time the clustering wants to keep the number of  groups as low 
as possible.  To accomplish this, [23] proposed the following 
fitness function, q(x), as a validity measurement to evaluate 
the performance of a supervised clustering algorithm. 

            ( ) ( ) ( )    *q x Impurity x Penalty kβ= +   

    ( )   min  
     

number of ority objectswhere Impurity x
n

=                

                  ( )  ,     
    

      0    ,     

k c k cPenalty k n
k c

⎧ −
>⎪= ⎨

⎪ ≤⎩

                       

                        

     

    

     

k number of generated clusters
c number of classes
n number of data objects

=
=
=

 

The proposed fitness function consists of 2 contradictory 
parts, Impurity() and Penalty().  Due to the objective of 
supervised clustering, the q(x) value must be kept as low as 
possible.  Further split of data objects into more clusters may 
cause a decrease on Impurity() value but an increase in 
Penalty() value.  The parameter β   can be selected between 

(0, 5.0] to put a weight on the significance of the Penalty() 
part against the Impurity() part, i.e. the higher the β  value, the 

higher the significance of the penalty part. 
Under the thorough consideration that the above fitness 

function can certainly lead supervised clustering to yield the 
most effective solution, this q(x) function is chosen to be the 
fitness function for the GBSC algorithm.    

B. GBSC Algorithm 
The basic idea of the GBSC algorithm is to create uniform-

size grid cells over the whole data space, and afterwards 
define clusters by merging together all adjacent dense cells 
with regard to the data objects’ classes.  In consequence, the 
data objects lying inside the region of such adjacent dense 
cells are claimed to be in the same cluster.  For the GBSC 
algorithm, each dimension is partitioned into same-size 
intervals, although the numbers of intervals of different 
dimensions are allowed to be different.  

The numbers of intervals for each dimension must be 
carefully selected so they  produce the smallest value of the 
fitness function q(x). Such numbers are automatically 
determined by the GBSC algorithm using a greedy method. 
Fig. 1 shows the framework of the GBSC algorithm. 

        
Fig. 1 The GBSC algorithm Framework 

 
Let noi represent the maximum number of intervals each 

attribute is allowed to be divided into. The GBSC comprises 
the following three main steps :  

 
1) Dimensions Sequencing 

The objective of this step is to find the order of dimensions 
for which they are to be processed sequentially in the 
subspace clustering. The dimensions are ordered according to 
their anticipated potentials in generating clusters of possible 
smallest fitness function q(x).  The detail of the process in the 
step is shown in Fig.2. 

 

   
Fig. 2 Dimensions Sequencing Step 

 
The first task of this step (line 1-11) is to determine the 

smallest q(x) value that each specific dimension could produce 
(represented by spec-q(x)) if that dimension is solely used for 
the subspace clustering. Let i be an attribute or dimension 

number. The thi iteration of the step starts with the calculation 
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of  the range of each interval as the thi  attribute’s value 
domain is divided into noi intervals (line 2).  The data objects 
are then partitioned into groups in accordance with these 
ranges (line 3).   Upon visiting each group (line 4), only data 
objects lying in the ranges of the intervals (in other words, 1-
dimensional cells) that are dense (their densities are above the 
pre-defined threshold) are investigated (line 5). Since each 
dimension is divided into equal-size intervals, all generated 
grid cells cover the same amount of spaces, and hence the 
density of each cell can be calculated by simply counting the 
number of data objects in that cell. Each dense cell is labeled 
with the majority class of the objects belonging to that cell, 
whereas the minority class objects are counted as impurities 
(line 6), and finally all objects lying in the region of the 
adjacent cells with same class label are merged into the same 
clusters (line 7) forming the intermediate clustering. The 
fitness function q(x) of that clustering is afterward computed 
(line 8), and compared with the current lowest q(x) of the 

thi attribute stored in spec-q(x)[i] (line 9), and the lower one 
is kept in spec-q(x)[i] whereas its corresponding noi value is 
kept in the spec-interval [i] (line 10).   

The last task of the first step is to find the sequence of  
dimensions for subspace clustering  during the second step.  
Using a greedy approach, a dimension which generates 
smaller q(x) values when it is solely used for the subspace 
clustering should be given higher priority for the subspace 
clustering.  Hence,  to create the sequence, the dimensions 
accompanied with their specific noi values are sorted in the d-
node link list in ascending order according to their  spec-q(x) 
values (line 12).   

 
2) Grid Cells Identifying 

 The intention of this step is to find out the delineation of 
grid cells that would produce the possible smallest q(x) value 
resulting from the mutual performance of all dimensions 
working together (represented by mutual-q(x)), within each 
noi limitation. The GBSC algorithm creates grid cells in the 
bottom-up fashion, by gradually and repeatedly adding 
dimensions into the grid space one at a time, in accordance 
with the order specified in the d-node link list. Starting from 
the dimension whose corresponding number of intervals 
renders the smallest q(x) value as the first dimension, the 
subsequent dimensions are added into the cells with the grid 
length that make the mutual-q(x) of the new clustering less 
than or at least equal to the former one. 
 After each new dimension is added, the information about 
current grid cells including their data objects are written onto 
the external storage. The information will be  to be used in the 
next iteration.  This external storage allows the GBSC 
algorithm to avoid the memory confinement problem, and 
hence enables the algorithm to cope with datasets of any size.    

Refer to the fact that the number of generated grid cells can 

be computed as ∏
=

d

i
iP

1
, where d represents the number of 

dimensions and iP   represents the number of intervals in the 

thi dimensions of d-dimensional space, the number of created 
cells increases dramatically whenever the number of 
dimensions increases. In the occasion when the number of 
dimensions is rather high, not all grid cells contain data 
objects and the number of grid cells containing data objects is 
usually tremendously low when compared with the number of 
created cells.  

 

 
Fig. 3 Grid Cells Identifying Algorithm 

 
To reduce the search space, only dense cells in the current-

dimensional-level grid space are kept for the processing of the 
subsequent higher dimensional level. This procedure results in 
saving a lot of processing time, since majority parts of search 
space are discarded and/or marked as outliers. As a 
consequence, the GBSC algorithm allows only dense cells in 
(i-1) dimension to be candidates into the generation of  i-
dimensional cells, based on the perception that only (i-1)-
dimensional cells that are dense can breed dense cells in their 
corresponding i-dimensional space. The algorithm elucidating 
the processes of this step is shown in Fig.3. 
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   3)  Clusters Formation 
To create final clusters, adjacent same-class labeled dense 
cells are merged into a same cluster. The input for this step is 
a set of dense cell blocks D, each of which consists of cell’s 
structure, cell’s class, and data objects belonging to that cell.  
Starting from any cell DU ∈  as the first cell in the being 
generated cluster 

jC ,  the GBSC algorithm first searches in D 

looking for all of U ’s connected cells, DU j ∈ , which are of 

the same class as U ,  appends 
jU  into 

jC , and removes 
jU  

from D.  The algorithm iteratively picks up the subsequent cell 
U  in 

jC , searches in D for all of its connected cells DU j ∈  

whose classes are the same as those of cell U, appends 
jU  

into 
jC , and removes 

jU   from D.  The iteration stops when 

all dense cells in 
jC  have been visited. 

The process is equivalent to the construction process of  
breadth-first-search (BFS) tree. One of the dense cells DU j ∈   

can be used as a starting node or  root node of the tree.  All 
nodes in the same tree represent all dense cells that are either 
directly or indirectly connected in one way or another to the 
root node cell.  The GBSC algorithm claims all dense cells 
representing nodes in the same BFS search tree are in the 
same cluster. With this cluster formation procedure, the GBSC 
algorithm can generate clusters of any shapes and sizes 
without presuming any specific mathematical form for data 
distribution, and can produce identical results regardless of the 
order in which input data objects are presented. 

V. EXPERIMENTAL RESULTS 

Two experiments were performed to evaluate the 
effectiveness of the GBSC algorithm. The first experiment 
was performed on two-dimension synthetic datasets under the 
permission of the author of [5], and the second one was 
performed on datasets obtained from University of California 
at Irving Machine Learning repository [20].   

A. The First Experiments on 2D synthetic datasets 
The experiment is intended to affirm the effectiveness of 

the GBSC algorithm under various proclaimed situations 
through 2-D geometrical presentations.  The GBSC algorithm 
was performed on four 2-D syntactic datasets [5] representing 
4 different scenarios :  Test-1 (1,250 records, 2 classes),  Test-
2 (1,000 records, 6 classes),  Test-3 (4,185 records, 4 classes),  
and  Test-4 (3,421 records, 4 classes).  The results of the 
experiments are graphically displayed in Fig. 4. Objects that 
are claimed as impurities are encircled with the dark edge. 

Fig. 4(a), illustrates the result of applying the GBSC on 
Test-1 dataset. It shows two pure cross-board shape clusters: A 
and B, one cluster per one individual class. This result 
confirms that the GBSC algorithm has ability to identify any 
irregular shape clusters.  The result on Test-2 dataset is shown 
in Fig. 4(b). The GBSC algorithm depicts 14 sparse various 
shape and density clusters:  A1, A2, A3, B1, B2, C1, C2, C3, 

D1, D2, E1, E2, E3, and F, with sparse-and-scattered impurity 
objects.  There are two clusters which contain only one 
objects:  A3 and E3, and hence may be counted as outliers.   

 

                         
                                               (a) 

                     
                   (b)   

                         
                                              (c) 

                      
                       (d) 
 
                     Fig. 4  Results on four 2-D synthetic datasets 
 

The set of clusters shown in Fig. 4(c) is the result from 
running the GBSC algorithm on Test-3 dataset.  Fourteen 
crowded similar shape, size, and density clusters are 
delineated: A1, A2, A3, A4, B1, B2, B3, B4, C1, C2, C3, C4, 
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D1, and D2 , most of which are overlapped, as can be seen 
surrounded by considerable number of impurity objects.  The 
results on Test-4 datasets is shown in Fig. 4(d). The GBSC 
algorithm defines 17 various size and density clusters:  A1, 
A2, A3, A4, A5, B1, B2, B3, B4, B5, C1, C2, C3, C4, C5, D1, 
and D2. Some contain a small number of impurity objects in 
various locations.  The results from this experiment endorse 
the ability of the GBSC in identifying clusters of any shapes 
and sizes without presuming any canonical form of data 
distribution, as well as the ability in handling outliers. 

 

B. The Second Experiment on UCI datasets 
 The objective of this experiment is to evaluate the 

performance of the GBSC algorithm in a comparative manner 
with some  other supervised clustering algorithms. The 
experiments were performed on four datasets obtained from   
University of California at Irving Machine Learning 
repository [20]: Iris-Plans (150 records, 4 attributes, 3 
classes),  Pimma-Indian Diabetes (768 records,  8 attributes,  
2 classes), Vehicle Silhouettes (846 records, 18 attributes, 4 
classes),  and  Image-Segmentation (2100 records, 19 
attributes, 7 classes). The results of the best fitness values q(x) 
from the experiment are compared with those results from 
SPAM, SREDHCR, and  SCEC reported  in [23], and the best 
solutions selected from SGNG and  RSGNG  in  [5].  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE I and TABLE II show the experimental results at 
β  value 0.1 and 0.4 respectively. The results in TABLE I and 

TABLE II does show that the GBSC yields the best solutions 
(the smallest q(x) value) among the six algorithms in both 
values of β . Furthermore, the numbers of clusters generated 

by the other five algorithms in the last three datasets are 
remarkably higher than those by the GBSC, due to the nature 
of representative-based clustering algorithms that incline to 
create global-shape clusters. As the conclusion, the GBSC can 
cope with datasets of any shapes, and still outperforms on 
irregular-shape datasets.      
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