

Abstract—This paper presents a supervised clustering algorithm,

namely Grid-Based Supervised Clustering (GBSC), which is able to
identify clusters of any shapes and sizes without presuming any
canonical form for data distribution. The GBSC needs no pre-
specified number of clusters, is insensitive to the order of the input
data objects, and is capable of handling outliers. Built on the
combination of grid-based clustering and density-based clustering,
under the assistance of the downward closure property of density
used in bottom-up subspace clustering, the GBSC can notably reduce
its search space to avoid the memory confinement situation during its
execution. On two-dimension synthetic datasets, the GBSC can
identify clusters with different shapes and sizes correctly. The GBSC
also outperforms other five supervised clustering algorithms when
the experiments are performed on some UCI datasets.

Keywords—supervised clustering, grid-based clustering,
subspace clustering

I. INTRODUCTION

LUSTERING analysis is one of the primary methods to
understand the natural grouping (or structure) of data

objects in a dataset. The main objective of clustering is to
separate data objects into high quality groups (or clusters),
based on similarities among the data objects. Due to the
acknowledgment that no single clustering method can
adequately handle all sorts of cluster structures [1], and that
different clustering approaches often define different
definitions for clusters, it is impossible to define a universal
measure of clustering quality [12].

Traditional clustering is performed in unsupervised learning
manner. No class label attribute of data objects is used to
guide clustering them into groups. Since the problem of
finding the optimal clustering of data objects was proved to be
NP-complete [13], many heuristic methods have been
developed to solve the problem. Ref. [7] categorized
traditional clustering algorithms into partitioning methods,
hierarchical methods, density-based methods, grid-based
methods, and model-based methods.

Unlike the goal of traditional clustering, [23] and [10]
proposed that the goal of supervised clustering was to
identify class-uniform clusters that had high data densities.
According to them, not only data attribute variables, but also a
class variable, take part in grouping or dividing data objects
into clusters in the manner that the class variable is used to

P. Bungkomkhun is a Ph.D student, School of Applied Statistics, National

Institute of Development Administration, Bangkok, Bangkok 10240, Thailand
(e-mail: pornpimolb@ yahoo.com).

S. Auwatanamongkol is with School of Applied Statistics, National
Institute of Development Administration, Bangkok, Bangkok 10240, Thailand
(e-mail: surapong@as.nida.ac.th).

supervise the clustering. At the end, each cluster is assigned
with specific class label corresponding to the majority class of
data objects inside the cluster.

As reviewed by [12], the objective of subspace clustering is
to find clusters in different subspaces of a dataset. Localizing
search space by considering only the relevant dimensions
allows subspace clustering to find clusters that exist not only
in all of the original dimensions of an input dataset, as in
traditional clustering algorithms, but also in various
combinations of relevant dimensions.

This paper proposes grid-based supervised clustering
(GBSC) that performs supervised clustering based on grid-
based clustering method, density-based clustering method, and
bottom-up subspace clustering method. The GBSC algorithm
relies on grid-based clustering method which gradually
divides data space into grid cells in the bottom-up fashion. It
begins with the subspace division based on all one-
dimensional spaces then proceeds by adding dimensions to be
considered for the subspace division one dimension at a time
until all dimensions have been considered. Finally, all
adjacent dense cells whose classes are identical are merged
into the same cluster using density-based clustering
techniques. The paper is organized as followed. Section 2
presents backgrounds and related works in developing the
GBSC algorithm. Section 3 marks on the problem statements
of the GSBC algorithm. The detail of the GBSC algorithm is
described in section 4. Finally in section 5, two sets of
experiments designed to evaluate the effectiveness of GBSC
are presented.

II. BACKGROUNDS AND RELATED WORKS

In this section, essential backgrounds on subspace
clustering and supervised clustering are provided. Reviews on
clustering algorithms relevant to the GBSC algorithm are also
given.

A. Subspace Clustering
Data objects may be related in different ways when

different subsets of dimensions are considered. Thus different
clusters exist when different sets of dimensions of the data
objects are used for clustering [17]. Subspace clustering aims
to reveal clusters lying in various subspaces of the dataset.
Ref. [12] classified subspace clustering algorithms into two
major groups with regard to the search technique employed:
the bottom-up search method and the top-down search
method.

A number of subspace clustering algorithms were
categorized and reviewed in [12]. Among them, the one that
the GBSC algorithm is based upon is CLIQUE [1]. CLIQUE
is one of very first subspace clustering algorithms. It is a grid-

Pornpimol Bungkomkhun and Surapong Auwatanamongkol

Grid-based Supervised Clustering - GBSC

C

World Academy of Science, Engineering and Technology 36 2009

536

based clustering algorithm that provides an efficient approach
for bottom-up subspace clustering. It uses an APRIORI style
technique to find clusters in subspaces, based on the
observation that dense areas in a higher-dimensional space
imply the existence of dense areas in a lower-dimensional
space.

CLIQUE identifies dense clusters in a subspace of
maximum dimensionality by automatically identifying
projections of the data objects onto various subsets of
dimensions where regions of high density with respect to
those objects reside. The algorithm uses a bottom-up approach
in generating grid cells and identifying dense cells. It begins
by finding dense units in all one-dimensional spaces. The
algorithm then proceeds level-by-level, in the manner that the
candidate k-dimensional dense cells can be determined using
already determined (k-1)-dimensional dense cells. Hence, the
set of candidate k-dimensional cells that might possibly be
dense can be found inside dense (k-1)-dimensional cells only.
The algorithm terminates when no more candidates are
discovered. To form clusters, CLIQUE uses a depth-first
search algorithm to find the connected dense cells then creates
cluster descriptions in the form of DNF expression.

B. Supervised Clustering
Supervised clustering aim is to identify clusters that have

high data densities and have minimal impurity, with respect to
majority classes of the clusters. The clustering is performed on
attribute variables under the supervision of a target class
variable. As a consequence, each generated cluster is labeled
with only one specific class that has majority of data objects
inside the cluster. Supervised clustering procedure is
therefore used not only for knowledge discovery, but also for
data classification, as the cluster structure with class
information can be used as a classification function [20].

Ref. [18], [16], and [2] proposed supervised clustering
algorithms based on bottom-up agglomerative approach. The
algorithm proposed in [15] is intended to find clusters that are
homogenous in the target class variable using a probabilistic
approach based on discriminative clustering to minimize
distortion within clusters. Ref. [19] introduced supervised
model-based clustering algorithms that were based on
multivariate Gaussian mixture model which employs EM
algorithm to estimate model parameters.

Ref. [4] proposed that supervised clustering can be
achieved by training a clustering algorithm to produce
desirable clusters. They presented SVM algorithm that learned
an item-pair similarity measure to optimize clustering
performance based on a variety of performance measures. Ref.
[3] introduced supervised K-mean algorithm that combined
Simulated Annealing with K-mean algorithm.

CCAS algorithms were developed for detecting intrusions
into computer network system, through intrusion signature
recognition. The algorithms starts by learning data patterns
based on supervised clustering procedure, and afterwards use
these patterns for data classification. The original version of
CCAS [21] starts with two dummy clusters and allows clusters

of each individual class to spread over the entire data space
regardless of the training sequence of data objects. Ref. [8]
modified the original CCAS with grid-based method to limit
the search space in splitting training data objects into smaller
size clusters. The algorithm begins with dividing data space
into equal size grid cells. It then performs dummy-based
clustering only on data objects lying in the same cell.

Ref. [9] enhanced the robustness of CCAS by strengthening
the algorithm with three post-processing steps: data
redistribution, supervised grouping of clusters, and removal of
outliers. ECCAS [10] enabled CCAS to handle data of mixed
types, by introducing two methods for combining numerical
and nominal variables in calculating distance measure. The
first method combines different distance measures for each
type of variables into a single distance measure ranging
between 0 and 1. The second method is based on conversion
of nominal variables to binary variables, and then treats these
binary variables as numeric variables.

Three representative-based supervised clustering algorithms
were introduced in [23]: Supervised Partitioning Around
Medoids (SPAM), Single Representative Insertion/Deletion
Steepest Decent Hill Climbing with Randomized Start
(SRIDHCR), and Supervised Clustering using Evolutionary
Computing (SCEC). In their paper, a new fitness function
used for measuring the performance of supervised clustering
algorithms was proposed. Instead of relying only on the
tightness of data objects in each cluster, like most of the
traditional clustering algorithms, the three algorithms weights
cluster purity against the number of generated clusters in the
proposed fitness function.

SPAM, aimed to be the variation of PAM (Partitioning
Around Medoids) that uses the proposed fitness function,
starts by randomly selecting a medoid from the most frequent
class data objects as the first representative. The algorithm
then fills up the initial set of representatives with non-
representative objects. The number of representatives is fixed
by a pre-defined figure. SPAM later on repeatedly explores all
possible replacements of a single representative of the most
current solution by a single non-representative, provided that
the new set of representatives induces minimum fitness
function value. The algorithm terminates if none of the
replacements can provide lower fitness function value.

In order to eliminate the limitation of SPAM that the
number of representatives is fixed by a pre-defined parameter,
SRIDHCR algorithm permits either adding or removing any
representatives into or from the current set of cluster
representatives. The algorithm terminates when there is no
significant improvement in the solution quality (measured by
the value of the fitness function).

Besides the above two greedy algorithms, [23] also
proposed an evolutionary computing algorithm called SCEC.
The algorithm evolves a population of solutions, each is a set
of representatives, over a pre-defined number of generations.
The best solution of the last generation is chosen to be the set
of representatives for the clustering. Each solution in the
initial population is randomly created. Populations of the

World Academy of Science, Engineering and Technology 36 2009

537

subsequent generations are generated through three genetic
operators: mutation, crossover, and copy. SCEC uses K-
tournament selection method (with tournament size of K = 2)
in selecting potential solutions to participate in creating new
population. Different adaptive values are used to control the
probabilities of applying each of the three genetic operators to
generate new solutions for the subsequent generations.

Ref. [5], [6] proposed two supervised clustering algorithms
based on prototype-based clustering methodology: Supervised
Growing Neural Gas (SGNG) and Robust Supervised
Growing Neural Gas (RSGNG). The SGNG incorporates
Growing Neural Gas network with various techniques such as
Type Two Learning Vector Quantization (LVQ2), adaptive
learning rates, and cluster repulsion mechanisms. The SGNG
also proposed a new validity based on geometry measurement
paradigm in order to determine the optimal number of
prototypes. Due to drawbacks of the SGNG of being sensitive
to the prototype initialization, the sequence of input data
objects, and the presence of noises, the RSGNG is intended to
be the robust version of SGNG. The RSGNG incorporates
SGNG learning schema with the outlier resistant strategy.
Moreover, to determine the optimal number of prototypes
where data objects may include some outliers, a modified
validity index was proposed. The index is based on MDL() or
Minimum Description Length technique.

III. DEFINITIONS

The definitions of major terms to be used through out this
paper are defined in this section.

A. Data Objects
A data object is considered a data point in a d-dimensional

space. Formally, each data point is a ()1+d -tuple in the

form }Taaa d ,,......,,{ 21 , where ia represents value of the thi

predictor variable (or attribute) and T represents the value of
the target variable (or class label) of the data point [22].

B. Grid Cells
Let dAAA ,.......,, 21 be sets of dimensions (or attributes, or

predictor variables) of any datasets, and let

dAAAA ×××=21 be the d-dimensional data space.

The problem is to divide the data space A into ∏
=

d

i
iP

1
 non-

overlapping hyper-rectangular grid cells, where iP represents

the number of intervals in the thi dimension of d-dimensional
data space. A cell is defined by a set of d-dimensional
hyperplanes, all of which are parallel to ()1−d coordinate

axes.
To accomplish this, the range of the value domain of each

dimension iA is partitioned into iP number of mutually

exclusive equal-size right-opened intervals [)j
i

j
i

j
i hlI ,= ,

iPj ≤≤1 , where j
il and j

ih respectively denotes the start

value and end value of the thj interval in the thi dimension,

and hence each cell is represented in the form
{ }dIIIU ,.....,, 21= [11].

C. Dense Cells
An object { }daaaa ,....., 21= , where ia is the value of the

thi dimension, is said to lie in a cell U only if iii hal <≤

for all iI . Since each cell U is formed upon the intersection

of one interval from each of all attributes, obtained by
partitioning each dimension into iP intervals of equal length,

the volume of all grid cells are equal. As a consequence, the
density of each cell can be measured in term of the number of
data objects lying within the region of the cell. A cell U is
called dense if the density of the majority class data objects in
the cell is at least equal to the density threshold, the only input
parameter for the GBSC algorithm.

D. Clusters
As defined by [1], a cluster is a maximal set of connected

dense cells in d-dimensions. The problem is to separate all
identified dense cells D into kDDD ,.......,, 21 sets, such that all

cells in the set iD are connected, and no two cells ii DU ∈ ,

jj DU ∈ with ji ≠ are connected. Two d-dimensional cells

1U ,
2U are declared connected, either in case they share at

least one common corner point, or their exists another d-
dimensional cell sU to which both

1U and
2U are

connected.
If a running number is assigned to each interval in all

dimensions, starting from 1 to iP , where iP is the number of

intervals in the thi dimension, each cell can be represented in

the form { }djjjj IIIU ,.....,, 21= , where
ijI is the interval

number of the cell j in the thi dimension. Cells

{ }121111 ,.....,, dIIIU = and { }222122 ,.....,, dIIIU = are claimed

connected if all 121 ≤− ii II , where
1iI and

2iI are the interval

numbers of the thi dimension of
1U and

2U respectively.

IV. GRID-BASED SUPERVISED CLUSTERING

The GBSC algorithm is a bottom-up supervised clustering
algorithm relying on the combination of the concepts of grid-
based clustering, density-based clustering, and the downward
closure property of density used in subspace clustering. The
algorithm uses heuristics to partition data spaces into grid
cells, and defines a cluster as a set of adjacent hyper-rectangle
grid cells with the same-class label.

The GBSC algorithm possesses all of the good clustering
properties mentioned in [14]. The algorithm has ability to
produce identical results regardless of the order of data objects
to be processed. It can automatically determine the optimal
number of clusters. Moreover, the GBSC algorithm is resistant
to noises, can handle clusters of arbitrary shapes and sizes

World Academy of Science, Engineering and Technology 36 2009

538

without making any assumption about the distribution of data
objects. Moreover, the GBSC algorithm is strengthened with
the ability to automatically suggest the number of intervals to
be used in partitioning each dimension. .

A. Fitness Function
The objective of supervised clustering is to identify groups

of data objects, that posses low impurities, and at the same
time the clustering wants to keep the number of groups as low
as possible. To accomplish this, [23] proposed the following
fitness function, q(x), as a validity measurement to evaluate
the performance of a supervised clustering algorithm.

 () () () *q x Impurity x Penalty kβ= +

 () min

number of ority objectswhere Impurity x
n

=

 () ,

 0 ,

k c k cPenalty k n
k c

⎧ −
>⎪= ⎨

⎪ ≤⎩

k number of generated clusters
c number of classes
n number of data objects

=
=
=

The proposed fitness function consists of 2 contradictory
parts, Impurity() and Penalty(). Due to the objective of
supervised clustering, the q(x) value must be kept as low as
possible. Further split of data objects into more clusters may
cause a decrease on Impurity() value but an increase in
Penalty() value. The parameter β can be selected between

(0, 5.0] to put a weight on the significance of the Penalty()
part against the Impurity() part, i.e. the higher the β value, the

higher the significance of the penalty part.
Under the thorough consideration that the above fitness

function can certainly lead supervised clustering to yield the
most effective solution, this q(x) function is chosen to be the
fitness function for the GBSC algorithm.

B. GBSC Algorithm
The basic idea of the GBSC algorithm is to create uniform-

size grid cells over the whole data space, and afterwards
define clusters by merging together all adjacent dense cells
with regard to the data objects’ classes. In consequence, the
data objects lying inside the region of such adjacent dense
cells are claimed to be in the same cluster. For the GBSC
algorithm, each dimension is partitioned into same-size
intervals, although the numbers of intervals of different
dimensions are allowed to be different.

The numbers of intervals for each dimension must be
carefully selected so they produce the smallest value of the
fitness function q(x). Such numbers are automatically
determined by the GBSC algorithm using a greedy method.
Fig. 1 shows the framework of the GBSC algorithm.

Fig. 1 The GBSC algorithm Framework

Let noi represent the maximum number of intervals each

attribute is allowed to be divided into. The GBSC comprises
the following three main steps :

1) Dimensions Sequencing

The objective of this step is to find the order of dimensions
for which they are to be processed sequentially in the
subspace clustering. The dimensions are ordered according to
their anticipated potentials in generating clusters of possible
smallest fitness function q(x). The detail of the process in the
step is shown in Fig.2.

Fig. 2 Dimensions Sequencing Step

The first task of this step (line 1-11) is to determine the

smallest q(x) value that each specific dimension could produce
(represented by spec-q(x)) if that dimension is solely used for
the subspace clustering. Let i be an attribute or dimension

number. The thi iteration of the step starts with the calculation

World Academy of Science, Engineering and Technology 36 2009

539

of the range of each interval as the thi attribute’s value
domain is divided into noi intervals (line 2). The data objects
are then partitioned into groups in accordance with these
ranges (line 3). Upon visiting each group (line 4), only data
objects lying in the ranges of the intervals (in other words, 1-
dimensional cells) that are dense (their densities are above the
pre-defined threshold) are investigated (line 5). Since each
dimension is divided into equal-size intervals, all generated
grid cells cover the same amount of spaces, and hence the
density of each cell can be calculated by simply counting the
number of data objects in that cell. Each dense cell is labeled
with the majority class of the objects belonging to that cell,
whereas the minority class objects are counted as impurities
(line 6), and finally all objects lying in the region of the
adjacent cells with same class label are merged into the same
clusters (line 7) forming the intermediate clustering. The
fitness function q(x) of that clustering is afterward computed
(line 8), and compared with the current lowest q(x) of the

thi attribute stored in spec-q(x)[i] (line 9), and the lower one
is kept in spec-q(x)[i] whereas its corresponding noi value is
kept in the spec-interval [i] (line 10).

The last task of the first step is to find the sequence of
dimensions for subspace clustering during the second step.
Using a greedy approach, a dimension which generates
smaller q(x) values when it is solely used for the subspace
clustering should be given higher priority for the subspace
clustering. Hence, to create the sequence, the dimensions
accompanied with their specific noi values are sorted in the d-
node link list in ascending order according to their spec-q(x)
values (line 12).

2) Grid Cells Identifying

 The intention of this step is to find out the delineation of
grid cells that would produce the possible smallest q(x) value
resulting from the mutual performance of all dimensions
working together (represented by mutual-q(x)), within each
noi limitation. The GBSC algorithm creates grid cells in the
bottom-up fashion, by gradually and repeatedly adding
dimensions into the grid space one at a time, in accordance
with the order specified in the d-node link list. Starting from
the dimension whose corresponding number of intervals
renders the smallest q(x) value as the first dimension, the
subsequent dimensions are added into the cells with the grid
length that make the mutual-q(x) of the new clustering less
than or at least equal to the former one.
 After each new dimension is added, the information about
current grid cells including their data objects are written onto
the external storage. The information will be to be used in the
next iteration. This external storage allows the GBSC
algorithm to avoid the memory confinement problem, and
hence enables the algorithm to cope with datasets of any size.

Refer to the fact that the number of generated grid cells can

be computed as ∏
=

d

i
iP

1
, where d represents the number of

dimensions and iP represents the number of intervals in the

thi dimensions of d-dimensional space, the number of created
cells increases dramatically whenever the number of
dimensions increases. In the occasion when the number of
dimensions is rather high, not all grid cells contain data
objects and the number of grid cells containing data objects is
usually tremendously low when compared with the number of
created cells.

Fig. 3 Grid Cells Identifying Algorithm

To reduce the search space, only dense cells in the current-

dimensional-level grid space are kept for the processing of the
subsequent higher dimensional level. This procedure results in
saving a lot of processing time, since majority parts of search
space are discarded and/or marked as outliers. As a
consequence, the GBSC algorithm allows only dense cells in
(i-1) dimension to be candidates into the generation of i-
dimensional cells, based on the perception that only (i-1)-
dimensional cells that are dense can breed dense cells in their
corresponding i-dimensional space. The algorithm elucidating
the processes of this step is shown in Fig.3.

World Academy of Science, Engineering and Technology 36 2009

540

 3) Clusters Formation
To create final clusters, adjacent same-class labeled dense
cells are merged into a same cluster. The input for this step is
a set of dense cell blocks D, each of which consists of cell’s
structure, cell’s class, and data objects belonging to that cell.
Starting from any cell DU ∈ as the first cell in the being
generated cluster

jC , the GBSC algorithm first searches in D

looking for all of U ’s connected cells, DU j ∈ , which are of

the same class as U , appends
jU into

jC , and removes
jU

from D. The algorithm iteratively picks up the subsequent cell
U in

jC , searches in D for all of its connected cells DU j ∈

whose classes are the same as those of cell U, appends
jU

into
jC , and removes

jU from D. The iteration stops when

all dense cells in
jC have been visited.

The process is equivalent to the construction process of
breadth-first-search (BFS) tree. One of the dense cells DU j ∈

can be used as a starting node or root node of the tree. All
nodes in the same tree represent all dense cells that are either
directly or indirectly connected in one way or another to the
root node cell. The GBSC algorithm claims all dense cells
representing nodes in the same BFS search tree are in the
same cluster. With this cluster formation procedure, the GBSC
algorithm can generate clusters of any shapes and sizes
without presuming any specific mathematical form for data
distribution, and can produce identical results regardless of the
order in which input data objects are presented.

V. EXPERIMENTAL RESULTS

Two experiments were performed to evaluate the
effectiveness of the GBSC algorithm. The first experiment
was performed on two-dimension synthetic datasets under the
permission of the author of [5], and the second one was
performed on datasets obtained from University of California
at Irving Machine Learning repository [20].

A. The First Experiments on 2D synthetic datasets
The experiment is intended to affirm the effectiveness of

the GBSC algorithm under various proclaimed situations
through 2-D geometrical presentations. The GBSC algorithm
was performed on four 2-D syntactic datasets [5] representing
4 different scenarios : Test-1 (1,250 records, 2 classes), Test-
2 (1,000 records, 6 classes), Test-3 (4,185 records, 4 classes),
and Test-4 (3,421 records, 4 classes). The results of the
experiments are graphically displayed in Fig. 4. Objects that
are claimed as impurities are encircled with the dark edge.

Fig. 4(a), illustrates the result of applying the GBSC on
Test-1 dataset. It shows two pure cross-board shape clusters: A
and B, one cluster per one individual class. This result
confirms that the GBSC algorithm has ability to identify any
irregular shape clusters. The result on Test-2 dataset is shown
in Fig. 4(b). The GBSC algorithm depicts 14 sparse various
shape and density clusters: A1, A2, A3, B1, B2, C1, C2, C3,

D1, D2, E1, E2, E3, and F, with sparse-and-scattered impurity
objects. There are two clusters which contain only one
objects: A3 and E3, and hence may be counted as outliers.

 (a)

 (b)

 (c)

 (d)

 Fig. 4 Results on four 2-D synthetic datasets

The set of clusters shown in Fig. 4(c) is the result from
running the GBSC algorithm on Test-3 dataset. Fourteen
crowded similar shape, size, and density clusters are
delineated: A1, A2, A3, A4, B1, B2, B3, B4, C1, C2, C3, C4,

World Academy of Science, Engineering and Technology 36 2009

541

D1, and D2 , most of which are overlapped, as can be seen
surrounded by considerable number of impurity objects. The
results on Test-4 datasets is shown in Fig. 4(d). The GBSC
algorithm defines 17 various size and density clusters: A1,
A2, A3, A4, A5, B1, B2, B3, B4, B5, C1, C2, C3, C4, C5, D1,
and D2. Some contain a small number of impurity objects in
various locations. The results from this experiment endorse
the ability of the GBSC in identifying clusters of any shapes
and sizes without presuming any canonical form of data
distribution, as well as the ability in handling outliers.

B. The Second Experiment on UCI datasets
 The objective of this experiment is to evaluate the

performance of the GBSC algorithm in a comparative manner
with some other supervised clustering algorithms. The
experiments were performed on four datasets obtained from
University of California at Irving Machine Learning
repository [20]: Iris-Plans (150 records, 4 attributes, 3
classes), Pimma-Indian Diabetes (768 records, 8 attributes,
2 classes), Vehicle Silhouettes (846 records, 18 attributes, 4
classes), and Image-Segmentation (2100 records, 19
attributes, 7 classes). The results of the best fitness values q(x)
from the experiment are compared with those results from
SPAM, SREDHCR, and SCEC reported in [23], and the best
solutions selected from SGNG and RSGNG in [5].

TABLE I and TABLE II show the experimental results at
β value 0.1 and 0.4 respectively. The results in TABLE I and

TABLE II does show that the GBSC yields the best solutions
(the smallest q(x) value) among the six algorithms in both
values of β . Furthermore, the numbers of clusters generated

by the other five algorithms in the last three datasets are
remarkably higher than those by the GBSC, due to the nature
of representative-based clustering algorithms that incline to
create global-shape clusters. As the conclusion, the GBSC can
cope with datasets of any shapes, and still outperforms on
irregular-shape datasets.

REFERENCES
[1] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, “Automatic

subspace slustering of high dimensional data for data mining
applications,” In Proc. ACM SIGMOD International Conference on
Management of Data, Seattle, Washington, June 1998, pp. 94-105.

[2] J. S. Aguilar, R. Ruiz, J. C. Riquelme, and R. Giraldez, “SNN: A
supervised clustering algorithm,” In Proc. 14th International Conference
on Industrial & Engineering Applications of Artificial Intelligence &
Expert Systems (IEA/AIE 2001)

[3] S. H. Al-Harbi, and V. J. Rayward-Smith, “Adaptive k-means for
supervised clustering,” Applied Intelligence, Volume 24, Number 3, pp.
219-226(8), June 2006.

[4] T. Finley and T. Joachims, “Supervised clustering with support vector
machines,” In Proc. International conference on Machine learning,
Bonn, Germany, August 07 - 11, 2005, pp. 217-224.

[5] A. Jirayusakul, “Supervised growing neural gas algorithm in clustering
analysis,” Ph.D. dissertation, School of Applied Statistics, National
Institute of Development Administration, Thailand, 2007, unpublised.

TABLE II
EXPERIMENTAL RESULTS (ON 4.0=β)

algorithm
of

cluster
cluster purity q(x)

Iris-Plants (150/4/3)

SCEC 3 0.987 0.013
SREDHCR 3 0.987 0.013

SPAM 3 0.973 0.027
SGNG 3 0.986 0.027

RSGNG 3 0.986 0.027
GBSC 3 0.987 0.013

Pima-Indian Diabetes (768/8/2)

SCEC 9 0.819 0.219
SREDHCR 2 0.776 0.224

SPAM 2 0.772 0.227
SGNG 75 0.941 0.182

RSGNG 75 0.911 0.212
GBSC 5 0.905 0.120

Vehicle Silhouettes (846/18/4)

SCEC 61 0.857 0.247
SREDHCR 56 0.835 0.265

SPAM 56 0.754 0.345
SGNG 132 0.946 0.210

RSGNG 132 0.955 0.201
GBSC 4 0.993 0.007

Image-Segmentation (2100/19/7)

SCEC 28 0.969 0.069
SREDHCR 32 0.970 0.074

SPAM 32 0.940 0.103
SGNG 42 0.977 0.085

RSGNG 42 0.969 0.093

GBSC 7 0.956 0.044

TABLE I
EXPERIMENTAL RESULTS (ON 1.0=β)

algorithm
of

cluster
cluster purity q(x)

Iris-Plants (150/4/3)

SCEC 5 0.993 0.018
SREDHCR 3 0.980 0.020

SPAM 3 0.973 0.027
SGNG 5 0.986 0.026

RSGNG 5 0.986 0.026
GBSC 3 0.987 0.013

Pima-Indian Diabetes (768/8/2)

SCEC 64 0.893 0.135
SREDHCR 45 0.859 0.164

SPAM 45 0.822 0.202
SGNG 75 0.941 0.090

RSGNG 75 0.911 0.120
GBSC 30 0.974 0.045

Vehicle Silhouettes (846/18/4)

SCEC 132 0.923 0.116
SREDHCR 65 0.835 0.192

SPAM 65 0.764 0.263
SGNG 132 0.946 0.093

RSGNG 132 0.955 0.084
GBSC 11 0.999 0.010

Image-Segmentation (2100/19/7)

SCEC 60 0.989 0.026
SREDHCR 53 0.980 0.035

SPAM 53 0.944 0.071
SGNG 60 0.977 0.039

RSGNG 60 0.969 0.047

GBSC 20 0.994 0.014

World Academy of Science, Engineering and Technology 36 2009

542

[6] A. Jirayusakul, and S. Auwatanamongkol, “A supervised growing neural
gas algorithm for cluster analysis,” International Journal of Hybrid
Intelligent Systems, Vol. 4, No.2, 2007.

[7] S. B. Kotsiantis and P. E. Pintelas, “Recent Advances in Clustering: A
Brief Survey,” Transactions on Information Science and Applications,
2004,1(1):73-81.

[8] X. Li and N. Ye, “Grid-and Dummy-Cluster-Based Learning of Normal
and Intrusive Clusters of Computer Intrusion Detection,” Journal of
Quality and Reliability Engineering International, Vol. 18, No. 3, pp.
231-242.

[9] X. Li and N. Ye, “A Supervised Clustering Algorithm for Computer
Intrusion Detection,” Knowledge and Information Systems, Vol. 8,
No.4, pp. 498-509.

[10] X. Li and N. Ye, “A Supervised Clustering and Classification Algorithm
for Mining Data With Mixed Variables,” IEEE Transactions on Systems,
Man, and Cybernetics-Part A, Vol. 36, No. 2, pp. 396-406.

[11] N. H. Park and W. S. Lee, “Statistical Grid-based Clustering over Data
Streams,” SIGMODD Record, Vol.33, No.1, March 2004.

[12] L. Parsans, E. Haque, and H. Liu, “Subspace Clustering for High
Dimensional Data: A Review,” ACM SIGKDD Explorations Newsletter,
6(1):90–105, June 2004.

[13] C. M. Procopiuc, 1997, “Clustering Problems and their Applications (a
Survey),” Available: http://www.cs.duke.edu/~magda.

[14] G. Sheikholeslami, S. Chatterjee, and A. Zhang, “WaveCluster: A Multi-
Resolution Clustering Approach for Very Large Spatial Databases,” In
Proc. International Conference on Very Large Databases, New York
City, August 24-27, 1998.

[15] J. Sinkkonen, S. Kaski, and J. Nikkila, “Discriminative Clustering:
Optimal Contingency Tables by Learning Metrics,” In Proc. European
Conference on Machine Learning (ECML’02), Springer-Veriag,
London, pp. 418-430.

[16] N. Slonim and N. Tishby, “Agglomerative Information Bottleneck,” In
Proc. Neural Information Processing Systems, pp. 617–623, 1999.

[17] P-N. Tan, M. Steinbach, and V. Kumar, “Introduction to Data Mining.
Boston: Pearson Education, Inc., pp. 604-608.

[18] N. Tishby, F. C. Pereira, and W. Bialek, “The Information Bottleneck
Method,” In Proceedings of the Allerton Conference on
Communication and Computation, 1999.

[19] Y. Qu and Z. Xu, “Supervised Clustering Analysis for Microarray Data
Based on Multivariate Gauussian Mixture,” Bioinformatics. 20 (Aug) :
1275-1288.

[20] University of California at Irving, Machine Learning Repository.
Available: http:/www.ics.edu/~mlearn/MLRepository.html

[21] N. Ye and X. Li, “A Scalable Clustering Technique for Intrusion
Signature Recognition,” In Proc. The 2001 IEEE Workshop on
Information Assurance and Security United States Military Academy,
West Point, NY, 5-6 June, 2001.

[22] N. Ye and X. Li, 2005, “Method for Classifying Data using Clustering
and Classification Algorithm Supervised,” Available:
http://www.patentstorm.us/patents/6907436/fulltext.html.

[23] N. Zeidat, C. F. Eick, and Z. Zhao, “Supervised Clustering: Algorithms
and Applications,” Available:
http://www2.cs.uh.edu/~ceick/kdd/ZEZ06.pdf.

World Academy of Science, Engineering and Technology 36 2009

543

