
Int. J. Advanced Networking and Applications 1456
Volume:04 Issue:01 Pages: 1456-1461 (2012) ISSN : 0975-0290.

Admission Control Prototype for Real-Time
Databases

Rahul Kumar Mishra1,Dr. Udai Shanker 2

1.Department of Computer Applications, IFTM Campus, Moradabad, UP, India,
2.Department of Computer Sc. & Engineering. M. M. Engineering College, Gorakhpur-273 010,UP

Email: rahulmishraiftm@gmail.com

A B S T R A C T

-
We suggest and measure an admission control prototype for RTDBS, in which a transaction is presented to the
system as a pair of procedures: a primary task, and a recovery block. The performance necessities of the main task
are not known a priori, whereas those of the recovery block are known a priori. Upon the submission of a
transaction, an Admission Control Mechanism is applied to determine whether to admit or reject that transaction.
Once admitted, a transaction is assured to finish executing before its deadline. A transaction is considered to have
finished executing i f exactly one of two things occurs: Either its primary task is completed (successful
commitment), or its recovery block is finished (safe termination). Committed transactions bring a profit to the
system, whereas a terminated transaction brings no profit. The objective of the admission control and scheduling
communications protocol (e.g., concurrency control, I / O scheduling, memory management) employed in the system
is to maximize system profit. We depict a number of admission control strategies and contrast (through simulations)
their relative performance.

Ke y wo rd s : Admission control; real-time databases; concurrency control; scheduling; and resource
management.
-

Date of Submission: May 06, 2012 Date of Acceptance: June 08, 2012
- -
1 I N T R O D U C T I O N

The main dispute demanded in scheduling
transactions in a Real-Time Databases Management
System (RTDBS) is that the resources demanded to
accomplish a transaction are not known a priori. For
example, the set of objects to be read (written) by a
transaction may be dependent on user input (e.g., in
a stock market application) or dependent on sensory
inputs (e.g., in a process control application).
Therefore, the a priori reservation of resources (e.g.,
read/write locks on data objects) to guarantee a
special Worst Case Execution Time (WCET) suits
impossible-and the non-deterministic delays
associated with the on-the-y acquisition of such
resources pose the real challenge of integrating
scheduling and concurrency control techniques.
Current real-time concurrency control mechanisms
decide the above dispute by decompressing the
deadline semantics (thus suggesting best-effort
mechanisms for concurrency control in the presence of
soft and firm, but not hard deadlines), or by limiting
the set of satisfactory transactions to a finite set of
transactions with execution requirements that are
known a priori (thus reducing the concurrency

control problem to that of resource management and
scheduling).1

I n this paper, we suggest and measure, through
simulation experiments, a paradigm that preserves
the hard deadline meaning without accepting
complete a priori knowledge of transaction execution
necessities. Our paradigm allows the system to reject
a transaction that is submitted for performance, or
else admit it and thus assure that one of two
outcomes wi l l occur by the transaction's deadline:
either the transaction wil l successfully commit
through the performance of a primary task, or the
transaction wil l safely finish through the execution
of a recovery block. The system presumes no a priori
knowledge of the execution necessities of the primary
task, but assumes that the WCET and read/write sets
of the recovery block are known. Through the use of
reserve admission control policies, we show that it is
potential for the system to maximize its profit
dynamically.

We begin in section 2 with an overview of our
transaction working model and the different elements
therein. Next, in section 3 we describe the various

Int. J. Advanced Networking and Applications 1457
Volume:04 Issue:01 Pages: 1457-1461 (2012) ISSN : 0975-0290.

Admission Control Strategies to be used in our
simulations. Next, in section 4 we demonstrate and
discuss our simulation baseline model and results.
I n section 5, we brush up previous research work
and highlight our contributions. We resolve in
section 6 with a summary and a description of
succeeding research directions.

2 O r g a n i z a t i o n M o d e l
Each transaction presented to the system consists of
two elements: a primary task, and a recovery block.
The execution necessities for the primary task are
not known a priori, whereas those for the recovery
block are experienced a priori. Figure 1 shows the
various components in our RTDBS.

Figure 1: Major System Components

When a transaction is presented to the system,
an Admission Control Mechanism (ACM) is applied
to decide whether to admit or refuse that transaction.
Once admitted, a transaction is ensured to finish
executing before its deadline. A transaction is
conceived to have finished executing if exactly one
of two things occurs: Either its primary task is
finished, in which case we say that the transaction
has successfully devoted, or its recovery block is
completed, in which case we say that the transaction
has safely terminated. A committed transaction brings
a positive profit to the system, whereas a terminated
transaction brings no profit. The goal of the admission
control and scheduling protocols utilized in the
system is to maximize benefit.

When presented to the system, each

transaction is linked with a deadline and a profit (to
be gained only i f the transaction is devoted by its
deadline.) I n this paper we conceive only hard

deadlines and thus assume that no transaction wi l l
finish (i.e. successfully commit or safely
terminate) past its deadline.2 Also, we presume that
all proceedings bring in equal profit when devoted
on time.

The ACM constitutes of two major elements:
a Concurrency Admission Control Manager (CACM)
and a Workload Admission Control Manager
(WACM). The CACM is responsible ensuring that
admitted transactions do not overburden the system
by demanding a level of concurrency that is not
sustainable. The WACM is responsible for
promising that accepted deals do not overload the
system by demanding computing (e.g., CPU time) that
are not sustainable.

I n this paper we presume that an Optimistic

Concurrency Control Algorithm with forward
establishment (such as OCC-BC [Mena82] or SCC-nS
[Best94]) is used to assure serializability. OCC
techniques are better fitted for systems with
governable utilization [Hari90], which is the case in a
system with admission control like ours.3

We adopt a 2-level priority strategy to schedule

system resources (e.g., CPU). I n particular, all
recovery blocks are accepted to have a higher priority
than primary tasks. Thus, a primary task may be
preempted by a recovery block, whereas a recovery
block cannot be pre-empted.

2 . 1 W o r k l o a d A d m i s s i o n C o n t r o l
M a n a g e r
The source contains a set of transactions which are
generated off-line. Each enters the system at a random
time and is first processed by the ACM. The decision
of whether to admit or reject a trans-action submitted
for execution is based upon a feedback mechanism
that assumes into consideration the current demand on
the resources in the system. This conclusion is
prompted by the overall goal for maximizing profit
by maximizing the number of productive dedications
(when primary tasks finish) and minimizing the
number of safe terminations (when recovery blocks
finish). For example, i f the percentage of the CPU
bandwidth already committed to recovery blocks is
high, then it may be prudent for the WACM to reject
the submitted transaction. Another significant
function of the WACM is the programming of
recovery blocks. A transaction is refused i f its
recovery block cannot be scheduled, even if the
current demand on the resources in the system is
low.

Int. J. Advanced Networking and Applications 1458
Volume:04 Issue:01 Pages: 1458-1461 (2012) ISSN : 0975-0290.

2.2 Concurrency Admission A s s u r e Manager
In order to assure that recovery blocks can execute
unhampered (and thus complete within their WCETs) the
CACM must ensure that the admission of a transaction into
the system does not result in data conflicts between the
recovery block of that transaction and other already
accepted transactions. In a uniprocessor system
employing an OCC algorithm with forward validation,
recovery blocks (which cannot be preempted) are
guaranteed to finish execution without incuring any restart
delays. This is not true in a multiprocessor system, where
product retrieval blocks may be accomplishing
concurrently. In such a system, the CACM assures that
only those recovery blocks that do not conflict with each
other are allowed to overlap when executed.

2.3 Processor Programming A l g o r i t h m
There are two queues handled by the processor scheduler:
the Primary Task Queue (PTQ) and the Recovery Block
Queue (RBQ). Each accepted transaction adds one entry
in each of these queues. A primary task is prepare to
execute as soon as it is enqueued in the PTQ, whereas a
recovery block must wait for its start time, defined by the
ACM. As indicated before, recovery blocks accomplish at
a priority higher than that of the primary tasks. Thus, the
scheduling algorithm will always preempt a primary task
in favor of a recovery block which is prepare to execute.

Since all tasks in the PTQ are ready to execute, a
scheduling algorithm must be used to apportion the CPU
time between these tasks. We use the Earliest Deadline
First algorithm (EDF) [Liu73], which is optimal for a
uniprocessor system with independent, pre-empt tasks
having arbitrary deadlines [Dert74].

2.4 Concurrency A s s u r e Manager
As each transaction completes its execution, either by the
dedication of its primary task or by the safe outcome of its
recovery block, the CCM must ensure that all other active
transactions (i.e. primary tasks admitted to the system)
that have data conflicts with the finished transaction are
handled according to the concurrency control
communications protocol in effect. In the case of OCC-
BC, self-contradictory transactions are restarted whereas
with SCC-nS, we roll-back the deal to a point preceding
the conflicting action. All transactions, whether filled out
or refused, are removed from the system and sent to the
sink which gives statistical information used to evaluate the
system operation.

3 O p t i m i z i n g P r o f i t t h r o u g h
A C M
In order to maximize the value increased the system from
the fortunate commitment of transactions, the ACM must
admit “enough" deals-but not too many-to make use of
the system capacity. Accepting too many transactions

results in the system being overloaded, which results in
having to be content with most deals safely terminating
(i.e. not successfully committing), which minimizes the
profit to the system. We employ the term thrashing to coin
this condition (i.e. the system is busy, yet doing nothing of
value).

As suggested before, the main epitome of whether
transactions are admitted into the system is the
schedulability of recovery blocks. In this section we present
a number of techniques that could be used by the WACM
and contrast their performance.

First-Fi t (FF) Using this proficiency, the recovery
block of a transaction is inserted in the RBQ at the latest
slot that satisfies its WCET. If no slot is big enough to ~t
the recovery block, then the transaction is rejected,
otherwise it is admitted.
Latest-Fit (LF) Using this proficiency, the recovery
block of a transaction is inserted in the RBQ at the latest
slot. I f the slot is not large enough, then the recovery
blocks preceeding that slot are rescheduled to start at
earlier times so as to “make room" for the new recovery
block. If this rescheduling is not possible-because it leads
to a recovery block having to be rescheduled before the
current time-then the transaction is rejected, otherwise it
is admitted.
Latest-Marginal-Fit (LMF) This proficiency is identical
to Latest-Fit, except that the scheduling of a recovery
block-and, if necessary, the ensuing rescheduling of other
recovery blocks4is conditional on whether or not the
percentage of CPU time allotted to recovery blocks4 is
below a preset margin or threshold. I f recovery blocks
scheduled so far utilize CPU bandwidth above that margin,
then the transaction is rejected, otherwise Latest-Fit (as
described before) is attempted.

Latest-Adaptable-Fit (LAF) This proficiency is identical
to Latest-Marginal-Fit, except that the threshold used to
gauge the CPU bandwidth alloted to recovery blocks is
set dynamically, based on measured variables, such as
arrival rate of transactions, distribution of computation
times for successfully committed primary tasks as it
relates to the distribution of computation times for
recovery blocks, probability of conflict over database
objects (e.g., transaction read/write mix).

Both FF and LF go forward to admit
transactions into the system as long as recovery
blocks are schedulable. I n other words, there is no
feedback mechanism that would prevent thrashing.
LMF implements such a mechanism by refraining
from admitting new transactions, once the percentage
of CPU bandwidth allocated to recovery blocks
reaches a preset static threshold. LAF does the same,
but allows that threshold to be determined

Int. J. Advanced Networking and Applications 1459
Volume:04 Issue:01 Pages: 1459-1461 (2012) ISSN : 0975-0290.

dynamically using a table lookup procedure. The
table is computed o~-line (using simulations) to
determine the optimum quiescent value for the
threshold under a host of other parameters.

4 P e r f o r m a n c e E v a l u a t i o n s
We have carried out the above ACM policies for a
uniprocessor system using OCC-BC. I n this section
we show the value of admission control by equating
the performance achievable through FF, LF, LMF,
and LAF. Since we presume that all transactions
bring in equal profit when committed before their
deadlines, we desire to maximize the number of
primary task completions while minimizing the
number of recovery block completions (i.e. primary
task abortions).

We assume a 1000-page memory-resident
database. The main task of each transaction reads 16
pages selected at random with a 25% update
probability. The CPU time needed to process a read or
a write is 5 ms. Thus, in the absence of any data or
resource confl ic t s , the primary task of each
transaction would need a serial execution time of
100 ms CPU time.5 The recovery block of each
transaction follows a normal distribution with a
mean of 25 ms and standard deviation of 12.5 ms.6
Transaction points were related the serial execution
time through a slack factor, such that (deadline time
- arrival time) = S l a c k F a c t o r ~ serial execution
time.

The transaction inter-arrival rate, which is
attracted from an exponential distribution, is varied
from 2 transactions per second up to 20 transactions
per second in increments of 2, which represents a
light-to-medium loaded system. We used two
additional arrival rates of 30 and 40 transactions per
second to experiment with a very heavy loaded
system. Each simulation was run four times, each
time with a different seed, for 500,000 ms. The results
depicted are the average over the four runs.Figure 2
demonstrates the absolute number of successfully devoted
deals, which is a measure of the value-added to (or profit of)
the system, when the FF, LF, LMF (with a 0.167 threshold)
policies are in use. Under light-to-medium loads (arrival
rates < 8 TPS), the performance of FF and that of LF are
identical. Under medium-to-heavy (arrival rates > 8 TPS)
loads FF performs slightly better. This is anticipated due to
LF's tighter packing of recovery blocks via scheduling,
which results in the admission of more transactions, thus
resulting in a more pronounced thrashing behavior. Under
light-to-medium loads, the performance of LMF is slightly
worse than that of FF or LF, but under medium-to-heavy
loads LMF manages to stave off thrashing, thus continuing
the system's profit in check with its capacity.

Figure 2: Performance of FF, LF, and LMF

The value of the threshold to be used in LMF

is key to its operation. As we explained before, the
optimal value for this threshold depends upon many
parameters, most of which cannot be estimated a
priori. One such parameter is the arrival rate of
transactions. To demonstrate this, we ran a set of
experiments using LMF, in which we varied the
value of the threshold and the deal arrival rates.
Specifically, we used threshold values of 0.05, 0.1,
0.125, 0.167, 0.25, 0.5, 0.75, and 1.0 (i.e. accept all,
which reduces LMF to LF), and we used arrival rates
of 4, 6, 8, 10, 12, 16, 20, 30 TPS. Figure 3 shows the
percentage of presented transactions that was
successfully committed by LMF for these threshold
values and arrival rates.

Figure 3: Effect of threshold setting on LMF
performance

Int. J. Advanced Networking and Applications 1460
Volume:04 Issue:01 Pages: 1460-1461 (2012) ISSN : 0975-0290.

Figure 3 demonstrates that for lightly-loaded
systems (arrival rates less than 6 TPS), the
performance is unimodal, thus any threshold less
than 1 is not optimal. This implies that at such low
loads all deals should be accepted, making the
performance of LMF identical to that of LF. For
moderately-loaded and heavily-loaded systems,
Figure 3 suggests that an optimum threshold exists for
each arrival rate. Setting the threshold to that
optimal value yields the highest percentage of
productive commitments, and thus gives the highest
potential profit. The sensitivity of the profit to the
value of that threshold is much more pronounced
under heavy loads (e.g., 12-40 TPS) than it is under
more moderate loads (e.g., 6-10 TPS).

To measure the effect of dynamically altering

the threshold in LAF, we ran a computer simulation
of the system, in which we varied the arrival rate
(while keeping all other parameters unchanged). Our
simulation consisted of 5 straight epochs, each
running for 125 sec, for a total of 625 seconds. The
arrival rate of transactions in these epochs was set to
6, 10, 14, 18, 30 TPS, respectively.

Figure 4 demonstrates the performance of
LAF versus that of LMF for two threshold values:
0.125 and 0.25. For each one of the three
mechanisms, we plotted the mean number of
productive commitments observed over periods of 25
sec, thus yielding five measurements per epoch for
each mechanism (shown in Figure 4 as a scatter
plot). These data points were used to fit a curve to
qualify the public presentation of each mechanism
over the full 625 seconds of simulation. Overall, the
performance of LAF is better than both LMF (@
0.125) and LMF (@ 0.25). As anticipated, when the
system is lightly loaded, the performance of LMF
(@ 0.25) is close to that of LAF, whereas the
performance of LMF (@ 0.125) is meager as a result
of its unduly restrictive admission control. When the
system is heavily loaded, the performance of LMF
(@ 0.125) is close to that of LAF, whereas the
performance of LMF (@ 0.25) is meager as a result
of its excessively lax admission control. When the
system is reasonably loaded, the performance of all
three techniques is indistinguishable.

I n the above experiment, only the arrival rate
of transactions exchanges from one epoch to the
other, and as a result, LAF was allowed for to adapt
its threshold value to a single parameter, namely the
arrival rate of transactions. I n other words, LAF
optimized the value of its threshold along a single
dimension.

I n a typical system, more than one parameter
is likely to change over time. LAF could be well

used in such systems by allowing i t to optimize the
value of its threshold along multiple dimensions. I n
particular, assuming n different dimensions (e.g.,
observed average arrival rate, average slack factor,
average read/write mix, and average recovery block
length, among others), then expending o~-line
simulation experiments (such as the one portrayed in
figure 3), the optimum threshold value for each node
in an n-dimensional mesh could be evaluated for
later use by LAF in a manner similar to that shown
in figure 4. The identification of the reserve
dimensions for this optimization process is an
interesting research problem.

Figure 4: Dynamic Performance of LMF and LAF

5 C o n c l u s i o n s a n d F u t u r e
W o r k
I n this paper, we proposed a new paradigm for the
execution of transactions in a RTDBS. Our paradigm
allows the system to reject a transaction that is
submitted for execution, or else admit it and thus
guarantee that one of two outcomes will occur by the
transaction's deadline: either the transaction wi l l
successfully commit through the execution of a
primary task, or the transaction wil l safely terminate
through the execution of a recovery block. The
system assumes no a priori knowledge of the
execution requirements of the primary task, but
assumes that the WCET and read/write sets of the
recovery block are known. Through the use of
appropriate admission control policies, we show that
it is possible for the system to maximize its profit
dynamically.

Int. J. Advanced Networking and Applications 1461
Volume:04 Issue:01 Pages: 1461-1461 (2012) ISSN : 0975-0290.

I n this paper, we considered only hard-
deadline transactions. This implied that once admit-
ted, a transaction must be successfully committed, or
else safely terminated by its deadline (due to the
prohibitive loss to be incured if that deadline is
missed). I f soft-deadline transactions are to be
managed, then it is possible for the system to finish
(commit/terminate) a transaction past its deadline,
which makes the problem of recovery block
scheduling much harder.

The interaction between concurrency control
and admission control is one of the main themes of
this paper. Yet, many facets of this interaction have
not been addressed. For example, the CCM could use
information provided to the CACM to make better
concurrency control decisions.10 Conversely, the
CACM could use information about the read/write
sets of primary tasks to determine whether or not to
accept a particular recovery block.

I n this paper we singled out concurrency
control and CPU scheduling as representative
activities within a RTDBS. In that respect, we
showed how an admission control strategy could be
composed with these activities to optimize the
system performance dynamically. I n a typical
RTDBS, other activities must be considered as well.
I n particular, the admission control decisions may
depend not only on the CPU capacity and/or on the
CCM capacity to deal with data conflicts , but also
on the capacity of other RTDBS components, such as
the I / O scheduler, memory manager, and index
concurrency control manager. Such a generalized
admission control manager is under development.

R e f e r e n c e s
[Abbo88] Robert Abbott and Hector Garcia-Molina.

“Scheduling real-time transactions." A
CM, SIGMOD Record, 17(1):71{81,
1988.

[Best94] Azer Bestavros and Spyridon Braoudakis.
“Timeliness via speculation for real-time
databases." In Proceedings of RTSS'94:
The 14th IEEE Real- Time System
Symposium, San Juan, Puerto Rico,
December 1994.

[Best95] Azer Bestavros and Spyridon Braoudakis.
“Value-cognizant speculative
concurrency control." I n Proceedings of
VLDB'95: The International Conference
on Very Large Databases, Zurich,
Switzerland, Spetember 1995.

[Biya88] Sara Biyabani, John Stankovic, and Kr i th i
Ramamritham. “The integration of
deadline and criticalness in hard real-
time scheduling." I n Proceedings of the

9th Real- Time Systems Symposium,
December 1988.

[Brao94] Spyridon Braoudakis. Concurrency Control
Protocols for Real-Time Databases. PhD
thesis, Computer Science Department,
Boston University, Boston, MA 02215,
expected June 1994.

[Butt95] G. Buttazzo, M. Spuri, and F. Sensini.
“Value vs. deadline scheduling in
overload conditions." I n Proceedings of
the 16th Real- Time Systems
Symposium, December 1995.

[Chak94] S. Chakravarthy, D. Hong, and T. Johnson.
“Incorporating load factor into the
scheduling of soft real-time
transactions." Technical Report TR94-
024, University of Florida, Department
of Computer and Information Science,
1994.

[Dert74] M. L. Dertouzos. “Control robotics: The
procedural control of physical
processes." I n Proceedings I F I P
Congress, pages 807{813, 1974.

[Goya95] B. Goyal, J. Haritsa, S. Seshadri, and V.
Srinivasan. \Index concurrency control
in firm real-time dbms." I n Proceedings
of the 21st VLDB Conference, pages
146{157, September 1995.

[Hari90] Jayant R. Haritsa, Michael J. Carey, and
Miron Linvy. “On being optimistic
about real-time constraints." I n
Proceedings of the 1990 ACM PODS
Symposium, April 1990.

