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We suggest and measure an admission control prototype for RTDBS, in which a transaction is presented to the 
system as a pair of procedures: a primary task, and a recovery block. The performance necessities of the main task 
are not known a priori, whereas those of the recovery block are known a priori. Upon the submission of a 
transaction, an Admission Control Mechanism is applied to determine whether to admit or reject that transaction. 
Once admitted, a transaction is assured to finish executing before its deadline. A transaction is considered to have 
finished executing i f  exactly one of two things occurs: Either its primary task is completed (successful 
commitment), or its recovery block is finished (safe termination). Committed transactions bring a profit to the 
system, whereas a terminated transaction brings no profit. The objective of the admission control and scheduling 
communications protocol (e.g., concurrency control, I / O  scheduling, memory management) employed in the system 
is to maximize system profit. We depict a number of admission control strategies and contrast (through simulations) 
their relative performance. 
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1  I N T R O D U C T I O N  

The main dispute demanded in scheduling 
transactions in a Real-Time Databases Management 
System (RTDBS) is that the resources demanded to 
accomplish a transaction are not known a priori. For 
example, the set of objects to be read (written) by a 
transaction may be dependent on user input (e.g., in 
a stock market application) or dependent on sensory 
inputs (e.g., in a process control application). 
Therefore, the a priori reservation of resources (e.g., 
read/write locks on data objects) to guarantee a 
special Worst Case Execution Time (WCET) suits 
impossible-and the non-deterministic delays 
associated with the on-the-y acquisition of such 
resources pose the real challenge of integrating 
scheduling and concurrency control techniques. 
Current real-time concurrency control mechanisms 
decide the above dispute by decompressing the 
deadline semantics (thus suggesting best-effort 
mechanisms for concurrency control in the presence of 
soft and firm, but not hard deadlines), or by limiting 
the set of satisfactory transactions to a finite set of 
transactions with execution requirements that are 
known a priori (thus reducing the concurrency 

control problem to that of resource management and 
scheduling).1 

 
I n  this paper, we suggest and measure, through 
simulation experiments, a paradigm that preserves 
the hard deadline meaning without accepting 
complete a priori knowledge of transaction execution 
necessities. Our paradigm allows the system to reject 
a transaction that is submitted for performance, or 
else admit it and thus assure that one of two 
outcomes wi l l  occur by the transaction's deadline: 
either the transaction wil l  successfully commit 
through the performance of a primary task, or the 
transaction wil l  safely finish through the execution 
of a recovery block. The system presumes no a priori 
knowledge of the execution necessities of the primary 
task, but assumes that the WCET and read/write sets 
of the recovery block are known. Through the use of 
reserve admission control policies, we show that it is 
potential for the system to maximize its profit 
dynamically. 
 
We begin in section 2 with an overview of our 
transaction working model and the different elements 
therein. Next, in section 3 we describe the various 
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Admission Control Strategies to be used in our 
simulations. Next, in section 4 we demonstrate and 
discuss our simulation baseline model and results. 
I n  section 5, we brush up previous research work 
and highlight our contributions. We resolve in 
section 6 with a summary and a description of 
succeeding research directions. 
 

2  O r g a n i z a t i o n  M o d e l  
Each transaction presented to the system consists of 
two elements: a primary task, and a recovery block. 
The execution necessities for the primary task are 
not known a priori, whereas those for the recovery 
block are experienced a priori. Figure 1 shows the 
various components in our RTDBS.  

 
Figure 1: Major System Components 

When a transaction is presented to the system, 
an Admission Control Mechanism (ACM) is applied 
to decide whether to admit or refuse that transaction. 
Once admitted, a transaction is ensured to finish 
executing before its deadline. A transaction is 
conceived to have finished executing if exactly one 
of two things occurs: Either its primary task is 
finished, in which case we say that the transaction 
has successfully devoted, or its recovery block is 
completed, in which case we say that the transaction 
has safely terminated. A committed transaction brings 
a positive profit to the system, whereas a terminated 
transaction brings no profit. The goal of the admission 
control and scheduling protocols utilized in the 
system is to maximize benefit. 

 
When presented to the system, each 

transaction is linked with a deadline and a profit (to 
be gained only i f  the transaction is devoted by its 
deadline.) I n  this paper we conceive only hard 

deadlines and thus assume that no transaction wi l l  
finish (i.e. successfully commit or safely 
terminate) past its deadline.2 Also, we presume that 
all proceedings bring in equal profit when devoted 
on time. 
 

The ACM constitutes of two major elements: 
a Concurrency Admission Control Manager (CACM) 
and a Workload Admission Control Manager 
(WACM). The CACM is responsible ensuring that 
admitted transactions do not overburden the system 
by demanding a level of concurrency that is not 
sustainable. The WACM is responsible for 
promising that accepted deals do not overload the 
system by demanding computing (e.g., CPU time) that 
are not sustainable. 

 
I n  this paper we presume that an Optimistic 

Concurrency Control Algorithm with forward 
establishment (such as OCC-BC [Mena82] or SCC-nS 
[Best94]) is used to assure serializability. OCC 
techniques are better fitted for systems with 
governable utilization [Hari90], which is the case in a 
system with admission  control like ours.3 

 
We adopt a 2-level priority strategy to schedule 

system resources (e.g., CPU). I n  particular, all 
recovery blocks are accepted to have a higher priority 
than primary tasks. Thus, a primary task may be 
preempted by a recovery block, whereas a recovery 
block cannot be pre-empted. 

 
2 . 1  W o r k l o a d  A d m i s s i o n  C o n t r o l  
M a n a g e r  
The source contains a set of transactions which are 
generated off-line. Each enters the system at a random 
time and is first processed by the ACM. The decision 
of whether to admit or reject a trans-action submitted 
for execution is based upon a feedback mechanism 
that assumes into consideration the current demand on 
the resources in the system. This conclusion is 
prompted by the overall goal for maximizing profit 
by maximizing the number of productive dedications 
(when primary tasks finish) and minimizing the 
number of safe terminations (when recovery blocks 
finish). For example, i f  the percentage of the CPU 
bandwidth already committed to recovery blocks is 
high, then it may be prudent for the WACM to reject 
the submitted transaction. Another significant 
function of the WACM is the programming of 
recovery blocks. A transaction is refused i f  its 
recovery block cannot be scheduled, even if the 
current demand on the resources in the system is 
low. 
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2.2 Concurrency Admission A s s u r e  Manager 
In order to assure that recovery blocks can execute 
unhampered (and thus complete within their WCETs) the 
CACM must ensure that the admission of a transaction into 
the system does not result in data conflicts between the 
recovery block of that transaction and other already 
accepted transactions. In a uniprocessor system 
employing an OCC algorithm with forward validation, 
recovery blocks (which cannot be preempted) are 
guaranteed to finish execution without incuring any restart 
delays. This is not true in a multiprocessor system, where 
product retrieval blocks may be accomplishing 
concurrently. In such a system, the CACM assures that 
only those recovery blocks that do not conflict with each 
other are allowed to overlap when executed. 
 
2.3 Processor Programming A l g o r i t h m  
There are two queues handled by the processor scheduler: 
the Primary Task Queue (PTQ) and the Recovery Block 
Queue (RBQ). Each accepted transaction adds one entry 
in each of these queues. A primary task is prepare to 
execute as soon as it is enqueued in the PTQ, whereas a 
recovery block must wait for its start time, defined by the 
ACM. As indicated before, recovery blocks accomplish at 
a priority higher than that of the primary tasks. Thus, the 
scheduling algorithm will always preempt a primary task 
in favor of a recovery block which is prepare to execute. 

Since all tasks in the PTQ are ready to execute, a 
scheduling algorithm must be used to apportion the CPU 
time between these tasks. We use the Earliest Deadline 
First algorithm (EDF) [Liu73], which is optimal for a 
uniprocessor system with independent, pre-empt tasks 
having arbitrary deadlines [Dert74]. 

 
2.4 Concurrency A s s u r e  Manager 
As each transaction completes its execution, either by the 
dedication of its primary task or by the safe outcome of its 
recovery block, the CCM must ensure that all other active 
transactions (i.e. primary tasks admitted to the system) 
that have data conflicts with the finished transaction are 
handled according to the concurrency control 
communications protocol in effect. In the case of OCC-
BC, self-contradictory transactions are restarted whereas 
with SCC-nS, we roll-back the deal to a point preceding 
the conflicting action. All transactions, whether filled out 
or refused, are removed from the system and sent to the 
sink which gives statistical information used to evaluate the 
system operation. 
 
3  O p t i m i z i n g  P r o f i t  t h r o u g h  
A C M  
In  order to maximize the value increased the system from 
the fortunate commitment of transactions, the ACM must 
admit “enough" deals-but not too many-to make use of 
the system capacity. Accepting too many transactions 

results in the system being overloaded, which results in 
having to be content with most deals safely terminating 
(i.e. not successfully committing), which minimizes the 
profit to the system. We employ the term thrashing to coin 
this condition (i.e. the system is busy, yet doing nothing of 
value). 

As suggested before, the main epitome of whether 
transactions are admitted into the system is the 
schedulability of recovery blocks. In this section we present 
a number of techniques that could be used by the WACM 
and contrast their performance. 

 
First-Fi t  (FF) Using this proficiency, the recovery 
block of a transaction is inserted in the RBQ at the latest 
slot that satisfies its WCET. If no slot is big enough to ~t 
the recovery block, then the transaction is rejected, 
otherwise it is admitted. 
Latest-Fit (LF) Using this proficiency, the recovery 
block of a transaction is inserted in the RBQ at the latest 
slot. I f  the slot is not large enough, then the recovery 
blocks preceeding that slot are rescheduled to start at 
earlier times so as to “make room" for the new recovery 
block. If this rescheduling is not possible-because it leads 
to a recovery block having to be rescheduled before the 
current time-then the transaction is rejected, otherwise it 
is admitted. 
Latest-Marginal-Fit (LMF) This proficiency is identical 
to Latest-Fit, except that the scheduling of a recovery 
block-and, if necessary, the ensuing rescheduling of other 
recovery blocks4is conditional on whether or not the 
percentage of CPU time allotted to recovery blocks4 is 
below a preset margin or threshold. I f  recovery blocks 
scheduled so far utilize CPU bandwidth above that margin, 
then the transaction is rejected, otherwise Latest-Fit (as 
described before) is attempted. 
 
Latest-Adaptable-Fit (LAF) This proficiency is identical 
to Latest-Marginal-Fit, except that the threshold used to 
gauge the CPU bandwidth alloted to recovery blocks is 
set dynamically, based on measured variables, such as 
arrival rate of transactions, distribution of computation 
times for successfully committed primary tasks as it 
relates to the distribution of computation times for 
recovery blocks, probability of conflict over database 
objects (e.g., transaction read/write mix). 
 

Both FF and LF go forward to admit 
transactions into the system as long as recovery 
blocks are schedulable. I n  other words, there is no 
feedback mechanism that would prevent thrashing. 
LMF implements such a mechanism by refraining 
from admitting new transactions, once the percentage 
of CPU bandwidth allocated to recovery blocks 
reaches a preset static threshold. LAF does the same, 
but allows that threshold to be determined 
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dynamically using a table lookup procedure. The 
table is computed o~-line (using simulations) to 
determine the optimum quiescent value for the 
threshold under a host of other parameters. 

 
4  P e r f o r m a n c e  E v a l u a t i o n s  
We have carried out the above ACM policies for a 
uniprocessor system using OCC-BC. I n  this section 
we show the value of admission control by equating 
the performance achievable through FF, LF, LMF, 
and LAF. Since we presume that all transactions 
bring in equal profit when committed before their 
deadlines, we desire to maximize the number of 
primary task completions while minimizing the 
number of recovery block completions (i.e. primary 
task abortions). 
 

We assume a 1000-page memory-resident 
database. The main task of each transaction reads 16 
pages selected at random with a 25% update 
probability. The CPU time needed to process a read or 
a write is 5 ms. Thus, in the absence of any data or 
resource confl ic t s  ,  the primary task of each 
transaction would need a serial execution time of 
100 ms CPU time.5 The recovery block of each 
transaction follows a normal distribution with a 
mean of 25 ms and standard deviation of 12.5 ms.6 
Transaction points were related the serial execution 
time through a slack factor, such that (deadline time 
- arrival time) = S l a c k F a c t o r  ~ serial execution 
time. 

The transaction inter-arrival rate, which is 
attracted from an exponential distribution, is varied 
from 2 transactions per second up to 20 transactions 
per second in increments of 2, which represents a 
light-to-medium loaded system. We used two 
additional arrival rates of 30 and 40 transactions per 
second to experiment with a very heavy loaded 
system. Each simulation was run four times, each 
time with a different seed, for 500,000 ms. The results 
depicted are the average over the four runs.Figure 2 
demonstrates the absolute number of successfully devoted 
deals, which is a measure of the value-added to (or profit of) 
the system, when the FF, LF, LMF (with a 0.167 threshold) 
policies are in use. Under light-to-medium loads (arrival 
rates < 8 TPS), the performance of FF and that of LF are 
identical. Under medium-to-heavy (arrival rates > 8 TPS) 
loads FF performs slightly better. This is anticipated due to 
LF's tighter packing of recovery blocks via scheduling, 
which results in the admission of more transactions, thus 
resulting in a more pronounced thrashing behavior. Under 
light-to-medium loads, the performance of LMF is slightly 
worse than that of FF or LF, but under medium-to-heavy 
loads LMF manages to stave off thrashing, thus continuing 
the system's profit in check with its capacity.  

Figure 2: Performance of FF, LF, and LMF 

 
The value of the threshold to be used in LMF 

is key to its operation. As we explained before, the 
optimal value for this threshold depends upon many 
parameters, most of which cannot be estimated a 
priori. One such parameter is the arrival rate of 
transactions. To demonstrate this, we ran a set of 
experiments using LMF, in which we varied the 
value of the threshold and the deal arrival rates. 
Specifically, we used threshold values of 0.05, 0.1, 
0.125, 0.167, 0.25, 0.5, 0.75, and 1.0 (i.e. accept all, 
which reduces LMF to LF), and we used arrival rates 
of 4, 6, 8, 10, 12, 16, 20, 30 TPS. Figure 3 shows the 
percentage of presented transactions that was 
successfully committed by LMF for these threshold 
values and arrival rates. 

Figure 3: Effect of threshold setting on LMF 
performance 
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Figure 3 demonstrates that for lightly-loaded 
systems (arrival rates less than 6 TPS), the 
performance is unimodal, thus any threshold less 
than 1 is not optimal. This implies that at such low 
loads all deals should be accepted, making the 
performance of LMF identical to that of LF. For 
moderately-loaded and heavily-loaded systems, 
Figure 3 suggests that an optimum threshold exists for 
each arrival rate. Setting the threshold to that 
optimal value yields the highest percentage of 
productive commitments, and thus gives the highest 
potential profit. The sensitivity of the profit to the 
value of that threshold is much more pronounced 
under heavy loads (e.g., 12-40 TPS) than it is under 
more moderate loads (e.g., 6-10 TPS). 

 
To measure the effect of dynamically altering 

the threshold in LAF, we ran a computer simulation 
of the system, in which we varied the arrival rate 
(while keeping all other parameters unchanged). Our 
simulation consisted of 5 straight epochs, each 
running for 125 sec, for a total of 625 seconds. The 
arrival rate of transactions in these epochs was set to 
6, 10, 14, 18, 30 TPS, respectively. 

Figure 4 demonstrates the performance of 
LAF versus that of LMF for two threshold values: 
0.125 and 0.25. For each one of the three 
mechanisms, we plotted the mean number of 
productive commitments observed over periods of 25 
sec, thus yielding five measurements per epoch for 
each mechanism (shown in Figure 4 as a scatter 
plot). These data points were used to fit a curve to 
qualify the public presentation of each mechanism 
over the full 625 seconds of simulation. Overall, the 
performance of LAF is better than both LMF (@ 
0.125) and LMF (@ 0.25). As anticipated, when the 
system is lightly loaded, the performance of LMF 
(@ 0.25) is close to that of LAF, whereas the 
performance of LMF (@ 0.125) is meager as a result 
of its unduly restrictive admission control. When the 
system is heavily loaded, the performance of LMF 
(@ 0.125) is close to that of LAF, whereas the 
performance of LMF (@ 0.25) is meager as a result 
of its excessively lax admission control. When the 
system is reasonably loaded, the performance of all 
three techniques is indistinguishable. 

I n  the above experiment, only the arrival rate 
of transactions exchanges from one epoch to the 
other, and as a result, LAF was allowed for to adapt 
its threshold value to a single parameter, namely the 
arrival rate of transactions. I n  other words, LAF 
optimized the value of its threshold along a single 
dimension. 

I n  a typical system, more than one parameter 
is likely to change over time. LAF could be well 

used in such systems by allowing i t  to optimize the 
value of its threshold along multiple dimensions. I n  
particular, assuming n  different dimensions (e.g., 
observed average arrival rate, average slack factor, 
average read/write mix, and average recovery block 
length, among others), then expending o~-line 
simulation experiments (such as the one portrayed in 
figure 3), the optimum threshold value for each node 
in an n-dimensional mesh could be evaluated for 
later use by LAF in a manner similar to that shown 
in figure 4. The identification of the reserve 
dimensions for this optimization process is an 
interesting research problem. 

Figure 4: Dynamic Performance of LMF and LAF 
 
5  C o n c l u s i o n s  a n d  F u t u r e  
W o r k  
I n  this paper, we proposed a new paradigm for the 
execution of transactions in a RTDBS. Our paradigm 
allows the system to reject a transaction that is 
submitted for execution, or else admit it and thus 
guarantee that one of two outcomes will occur by the 
transaction's deadline: either the transaction wi l l  
successfully commit through the execution of a 
primary task, or the transaction wil l  safely terminate 
through the execution of a recovery block. The 
system assumes no a priori knowledge of the 
execution requirements of the primary task, but 
assumes that the WCET and read/write sets of the 
recovery block are known. Through the use of 
appropriate admission control policies, we show that 
it is possible for the system to maximize its profit 
dynamically. 
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I n  this paper, we considered only hard-
deadline transactions. This implied that once admit-
ted, a transaction must be successfully committed, or 
else safely terminated by its deadline (due to the 
prohibitive loss to be incured if that deadline is 
missed). I f  soft-deadline transactions are to be 
managed, then it is possible for the system to finish 
(commit/terminate) a transaction past its deadline, 
which makes the problem of recovery block 
scheduling much harder. 

The interaction between concurrency control 
and admission control is one of the main themes of 
this paper. Yet, many facets of this interaction have 
not been addressed. For example, the CCM could use 
information provided to the CACM to make better 
concurrency control decisions.10 Conversely, the 
CACM could use information about the read/write 
sets of primary tasks to determine whether or not to 
accept a particular recovery block. 

I n  this paper we singled out concurrency 
control and CPU scheduling as representative 
activities within a RTDBS. In that respect, we 
showed how an admission control strategy could be 
composed with these activities to optimize the 
system performance dynamically. I n  a typical 
RTDBS, other activities must be considered as well. 
I n  particular, the admission control decisions may 
depend not only on the CPU capacity and/or on the 
CCM capacity to deal with data conflicts , but also 
on the capacity of other RTDBS components, such as 
the I / O  scheduler, memory manager, and index 
concurrency control manager. Such a generalized 
admission control manager is under development. 
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