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Abstract: Recently, a comprehensive dynamic mathematical model named Copernicus has been
established to discover the mechanism of the vascular bubble formation and growth during and
after decompression from a dive. The model uses Venous Gas Emboli (VGE) as a measurement
and connects it to the risk of severe Decompression Sickness (DCS). Being validated by a series
of diving tests, Copernicus model is believed to be suitable and efficient to predict DCS hence
generate optimal decompression profiles for the divers. This paper is based on the Copernicus
model and presents a nonlinear model predictive control approach, where multi-parametric
nonlinear programming is used to construct an explicit solution for the ease of implementation
on a typical low-cost diving computer.
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decompression model.

1. INTRODUCTION

DCS is best known as an injury that affects ascending
divers who have breathed gas which is at a higher pressure
than the surface pressure due to the pressure of the
surrounding water. To prevent DCS and ensure safety
many decompression procedures are proposed based on
the principles described in Boycott et al. [1908]. The
idea is to set up a sufficiently large gradient for gas
elimination, which however raises another question - how
close to optimal in terms of total decompression time will
a decompression procedure be?

To answer this question one needs first an indicator of
DCS. Traditional methods tend to use DCS symptoms
as the indicator, which can often be summed up by “the
bends”, “the chokes”, “the staggers”, and “the tingles”
representing the musculoskeletal, pulmonary, inner ear,
and skin/central nervous system involvement seen. How-
ever there are some ethical concerns provoking DCS on
test subjects and the symptomatology of DCS is diffuse.
Gutvik and Brubakk [2009] proposed that VGE can also
be used as a reliable and sensitive DCS indicator. This has
greatly improved the observability of DCS because VGE
can be measured using ultrasonic imaging or Doppler.

After having had a DCS indicator one can construct a
model to describe the mechanism of how the indicator
is affected by different dives and different decompression
procedures. A traditional model was proposed in Hills
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[1970] using DCS symptoms as the indicator. Many de-
compression procedures are proposed based on this type
of model. In Gutvik and Brubakk [2009] a comprehensive
dynamic mathematical model (Copernicus) was proposed
using VGE as the DCS indicator. An advantage is that
this model requires fewer dives and less strenuous proto-
cols to obtain statistically sufficient data (Eftedal et al.
[2007]). And in a later test (Gutvik et al. [2009a]) it is also
shown that existing decompression algorithms (standard
diving tables and protocols) are not consistent in terms of
controlling the VGE formation and consequently the risk
of DCS.

In this paper, with the Copernicus model, we numerically
optimize the decompression procedure by minimizing the
total ascend time subject to constraints on the peak de-
compression stress. Theoretically, solving such an optimal
control problem generates a continuous time-depth profile
which is not only practically impossible for a diver to
follow but also computationally inefficient for later im-
plementation in a low-cost diving computer. Hence two
input parameterization methods are studied. The input
parameterization methods not only simplify the optimiza-
tion problem but also reduce the solution space.

Another important issue studied in this paper is on prac-
tical implementation in a low-cost diving computer. There
are two main obstacles which will be introduced as follows.

The first obstacle is uncertainty, which includes uncer-
tainty within the diver and uncertainty in the environ-
ment, e.g., the diver’s physiological state change during
diving and decompression, pressure, blood perfusion, etc.
Another fact is that the diver can never follow the optimal
decompression profile perfectly. All of these uncertainty



may render the decompression profile obtained earlier not
optimal anymore during the decompression. A possible
way to overcome this obstacle is to solve the optimal
control problem in a receding horizon fashion. That is,
the dynamic model is updated based on present measure-
ments, and the decompression profile is re-optimized at
regular intervals in a diving computer.

The other obstacle is the limited CPU capacity and power
consumption requirements for a typical low-cost diving
computer. The real-time nonlinear optimization and the
receding horizon algorithm requires a large amount of
floating point numerical computations per re-optimization.
For safety reasons the convergence and correctness of
the numerical optimization result needs to be verified.
These are considered prohibitive for practical implemen-
tation (Feng et al. [2009]). However, the approximate ex-
plicit solution of nonlinear constrained optimization us-
ing multi-parametric nonlinear programming (mp-NLP)
(Grancharova et al. [2007], Johansen [2004]) is expected
to be very well suited. Rather than re-computing numeri-
cally the optimal solution at each sampling instant based
on updated physiological state information, the solution
is simply obtained by evaluating a piecewise (non)linear
approximation to the optimal solution function. Since such
piecewise (non)linear function representation can be pre-
computed off-line and stored in memory on the diving
computer, the computational load on the diving computer
will be dramatically relaxed. Moreover, since the solution
function is pre-computed, it is easier to verify the correct-
ness and will benefit in the safety-critical applications such
as a diving computer.

2. BRIEF MODEL DESCRIPTION

The dynamic model introduced in Gutvik and Brubakk
[2009] and Gutvik et al. [2009a] is briefly presented here
for the ease of reading. The diver can be regarded as a
dynamic system where the state vector 𝑥 is influenced by
the input vector 𝑢.

�̇� = 𝑓(𝑥, 𝑢) (1a)

𝑦 = ℎ𝑚(𝑥, 𝑢) (1b)
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𝑥 = [𝑟1, 𝑝𝑡,1, 𝑟2, 𝑝𝑡,2, . . . , 𝑟𝑛𝑡 , 𝑝𝑡,𝑛𝑡 , 𝑃𝑎𝑚𝑏]
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The model is constituted of 𝑛𝑡 tissues. Theoretically 𝑛𝑡
can be chosen as large as we want therefore the model
can approximate a human body as precisely as needed.
On the other hand it’s convenient to keep 𝑛𝑡 as small as
possible considering the size of the resulting optimization
problem. In this paper we use two tissues (𝑖 = {1, 2}), the
muscles and fat tissues, which represent the dynamics of
fast and slow tissues, respectively Gutvik et al. [2009a,b].
The nomenclature is presented as below.

3. OPTIMAL DECOMPRESSION PROBLEM

3.1 Parameterization of the decompression profile

The main purpose of the optimal decompression is to
ascend a diver as fast as possible while the size of bubbles
in the pulmonary (output 𝑦, also referred to as the decom-
pression stress) does not exceed a pre-defined threshold.
A stepwise decompression formulation is normally used,
illustrated as in Figure 1.

Fig. 1. Stepwise decompression profile parameterization
(Tøndel et al. [2005])

A fixed number of stopping depths (𝜌1, 𝜌2, . . . , 𝜌𝑛𝑠) are
defined. Assuming the ascending speed of the diver (𝑎)
is constant, the time for ascending Δ𝑡𝑎,1 + Δ𝑡𝑎,2 + . . . +
Δ𝑡𝑎,𝑠𝑢𝑟𝑓 is a constant. Suppose Δ𝑡1,Δ𝑡2, . . . ,Δ𝑡𝑛𝑠 are the
stopping times on each stopping depth. Hence the goal of
optimal decompression is to

min

𝑛𝑠∑
𝑖=1

Δ𝑡𝑖. (2)

With such parameterization there are 𝑛𝑠 parameters to be
optimized subject to Δ𝑡𝑖 ⩾ 0. However in some cases, e.g.,
a long deep dive, there shall be quite many stopping depths
to safely ascend a diver, which means 𝑛𝑠 can still be large
and the computational effort can still be huge. In addition,
this parameterization tends to give a “flat minimum” with
associated numerical challenges. This motivated another
parameterization method used in Gutvik et al. [2009b] and
studied in Feng et al. [2009], illustrated in Figure 2.



Param. Description Value Unit

𝑛𝑡 Number of tissues. 2 -
𝐷 Bubble barrier diffusivity. 20 𝜇𝑚2/min
𝛼𝑏 Blood solubility. 0.0158 msw−1

ℎ Bubble barrier thickness. 0.1 𝜇𝑚
𝛾 Surface tension. 17.890 𝜇𝑚 msw
𝑃𝑚𝑒𝑡𝑎 Partial pressure of the metabolic gases. 0.1773 atm
𝑐𝑠 Coefficient. 0.9479 𝜇𝑚3 atm
𝜀𝜏,1 Time constant correction of muscles. 0.2868 -
𝜀𝜏,2 Time constant correction of fat. 0.8115 -
𝛼𝑡,1 Tissue solubility of muscles. 0.0278 atm−1

𝛼𝑡,2 Tissue solubility of fat. 0.0640 atm−1

𝛿 Bubble nuclei density. 5 ⋅ 10−7 #/𝜇𝑚3

𝑘𝑚 Measurement gain. 200 -
𝑉0 Dead volume for detection. 0.005 #bubbles /cm2/min
𝑉1 Tissues volume of muscles. 28.4 dm3

𝑉2 Tissues volume of fat. 11.7 dm3

𝑟𝑖 Bubble radius in tissue 𝑖. 𝜇𝑚
𝑝𝑡,𝑖 Gas tension in tissue 𝑖. ATA
𝑃𝑎𝑚𝑏 Ambient pressure. msw

�̇�𝑎𝑚𝑏 Rate of descent. msw/min
𝑓𝑁2

Fraction of nitrogen in inspired gas. 0.78 -
𝜔1,𝑑𝑖𝑣𝑒 Blood perfusion of muscles (dive). 0.16 L/min/dm3

𝜔1,𝑠𝑢𝑟𝑓 Blood perfusion of muscles (surface). 0.091 L/min/dm3

𝜔2,𝑑𝑖𝑣𝑒 Blood perfusion of fat (dive). 0.047 L/min/dm3

𝜔2,𝑠𝑢𝑟𝑓 Blood perfusion of fat (surface). 0.043 L/min/dm3

𝑦 Measurement of the number of bubbles in the pulmonary artery. #bubbles /cm2/min

Table 1. Nomenclature

Fig. 2. Curve decompression profile parameterization
(Feng et al. [2009])

The idea is to first define a curve function with two pa-
rameters 𝑑 and 𝑡 (illustrated in Figure 2). For a given
𝑑 and 𝑡, the curve can be quantized and generate the
stepwise formulation and also a total ascend time accord-
ing to stopping depths (𝜌1, 𝜌2, . . . , 𝜌𝑛𝑠). Then instead of
optimizing 𝑛𝑠 parameters in the original formulation, now
only two parameters need to be optimized. Obviously this
parameterization and quantization method leads to a sim-
plified optimization problem but may also introduces some
conservatism, that is, the total ascending time (𝑡) may
be longer and/or the stress threshold may be exceeded.
The benefit and performance loss of this parameterization
method was studied by simulations in Feng et al. [2009].

3.2 Constraints

The nonlinear constraints setup is in a predictive manner.
This is because generally the bubbles in the pulmonary
artery are first compressed due to the increasing ambient

pressure while the diver is descending, and start growing
in size after the maximum depth is reached. The growing
speed depends on several factors, such as pressure, diver’s
heart rate, and decompression profile. We may not know
in advance at which time the maximum decompression
stress is reached. Generally the bubbles will reach their
peak sizes sometime after the diver arrives the surface.
Therefore to avoid violating a predefined threshold on the
VGE peak, the output 𝑦 (decompression stress) at not only
current time but also during a prediction horizon shall be
considered and kept under the threshold. Mathematically,
the nonlinear constraints can be written as

𝐻(𝑧, 𝑥0, 𝑛𝑘) =

⎡
⎢⎢⎣
𝑦(𝑥1)− 𝑦𝑙𝑖𝑚𝑖𝑡

𝑦(𝑥2)− 𝑦𝑙𝑖𝑚𝑖𝑡

...
𝑦(𝑥𝑛𝑘

)− 𝑦𝑙𝑖𝑚𝑖𝑡

⎤
⎥⎥⎦ ⩽ 0. (3)

where 𝑥0 is the current state, the future state 𝑥𝑖 is
predicted through numerical integration of the model from
𝑥0 and 𝑖 ∈ {1, 2, . . . , 𝑛𝑘} are the discretization times.
Please note that 𝑛𝑘 shall be large enough to allow the
bubbles to reach their peak sizes.

3.3 Optimization problem

The optimal decompression problem using curve parame-
terization is given as follows:

min
𝑡,𝑑

𝑛𝑠∑
𝑖=1

Δ𝑡𝑖 (4a)

s.t.
−𝑞𝑡(𝑡, 𝑑) ⩽ 0,

𝐻(𝑞𝑡(𝑡, 𝑑), 𝑥0, 𝑛𝑘) ⩽ 0,

System dynamics in (1),

(4b)



where 𝑧 = [Δ𝑡1,Δ𝑡2, . . . ,Δ𝑡𝑛𝑠 ]
𝑇 = 𝑞𝑡(𝑡, 𝑑) is the curve

quantization function illustrated in Fig. 2.

Considering the uncertainty, the optimization problem
needs to be solved in a receding horizon control manner.
The diving computer first measures the ambient pressure
𝑃𝑎𝑚𝑏 and heart rate of the diver; then estimates a current
state based on this measurement, manual input, and the
mathematical model; uses this information to generate
an optimal decompression profile for the diver. The diver
tries to follow the command he received and ascend to
a stopping depth as suggested (which might not be very
accurate). After which the diving computer measures a
new ambient pressure 𝑃𝑎𝑚𝑏 and heart rate and solves the
optimization problem repetitively at the new time step.

4. PIECEWISE NONLINEAR EXPLICIT SOLUTION

4.1 Introduction to multi-parametric nonlinear programming

In order to obtain a piecewise nonlinear explicit solution
function out of the optimization problem (4), a brief
introduction to multi-parametric nonlinear programming
(Fiacco [1983]) is presented here for the ease of reading.

Basically, in RHC optimization it is regarded as a natural
extension of explicit solutions derived for linear input and
state constrained RHC and linear quadratic regulation
(Bemporad et al. [2000], Bemporad and Filippi [2001]).
The main difference is that in linear cases the exact state
feedback solution takes the form of a piecewise linear
(PWL) function which can be pre-computed off-line using
multi-parametric quadratic programming (mp-QP) algo-
rithms (Bemporad et al. [2000]), while in the nonlinear
cases no exact state feedback solution can be finitely
represented in general but approximately described using
mp-NLP. Recently in Johansen [2004] mp-NLP is used
to extend from linear RHC (Johansen and Grancharova
[2003]) to nonlinear constrained RHC problems. The main
differences are related to replacing several quadratic pro-
grams (QP) sub-problems with nonlinear programming
(NLP) sub-problems. The algorithm in Johansen and
Grancharova [2003], Johansen [2004] has the advantage
that a computationally favorable PWL approximation is
implemented via a binary search tree.

The algorithms to find a piecewise linear and nonlinear ex-
plicit solution are discussed in detail in Grancharova et al.
[2007], Grancharova and Johansen [2009]. Basically these
approaches differs from each other in the approximation
functions. The piecewise nonlinear approximation function
has more powerful approximation ability but also leads to
more computational demand compared to the piecewise
linear approximation function. In both approaches the
solution is found by partitioning the parameter space into
a set of hypercubes, and giving a piecewise (non)linear
explicit approximation of the NLP in each hypercube.
Putting these mp-NLP solutions together gives an ap-
proximate solution of the NLP as a function of the pa-
rameter. This means that the main effort of solving the
optimization problem is moved off-line. The on-line effort
is then reduced to evaluating a piecewise function, which
can be implemented efficiently using a binary search tree
(Johansen [2004]).

4.2 Piecewise nonlinear explicit solution to the optimal
decompression problem

Looking back at the optimal decompression problem de-
scribed in this paper, the re-optimization requires com-
putational effort which is considered hard to implement,
especially on a typical low-cost diving computer. In the
light of multi-parametric nonlinear programming, an ex-
plicit solution can be obtained and is suitable in this
case. Considering the requirements and complexity of the
decompression problem, in this paper we use a piecewise
quadratic function to approximate the exact optimal solu-
tion.

It can be defined that 𝜃 = [𝑡, 𝑑] ∈ ℝ
2 in (4) is a vector of

decision variables, and the time-varying state 𝑥0 should be
considered a parameter vector to the optimization prob-
lem. Using barrier functions as in Feng et al. [2009] (4) can
be considered an mp-NLP, which means that the optimal
solution should be found for a given range of the parameter
values. We seek an explicit approximate representation
of the solution as a function of these parameters. The
algorithm can be summarized as follows.

For a given hypercube 𝑋0,

1. Solve the optimization problem (4) when 𝑥0 equals to
each and every vertex of 𝑋0;

2. If all the optimizations are feasible, goto step 3.
Otherwise check if the size of 𝑋0 is too small. If yes,
mark 𝑋0 as explored and infeasible and return. If no
goto step 5;

3. Compute a quadratic function to best approximate
the optimal solutions obtained in step 1;

4. Estimate the approximation error in𝑋0. If the error is
under a pre-defined error bound, mark𝑋0 as explored
and feasible and return, else goto step 5.

5. Split 𝑋0 following some heuristic rules described in
Johansen [2004], mark both unexplored and call the
procedure recursively for each of them.

Recursively running this algorithm will partition the initial
parameter space into a set of hypercubes, and give an ac-
ceptable (by defining an error bound) piecewise quadratic
approximation of each hypercube. Putting these piecewise
solutions together gives an approximate solution to the
NLP as a function of the parameter, i.e.,

𝜃(𝑥0) =

[
𝑡
𝑑

]
= 𝐾2,𝑗𝑥

𝑇
0 ⋅ 𝑥0 +𝐾1,𝑗𝑥0 +𝐾0,𝑗, if 𝑥0 ∈ 𝑅𝑗

where 𝑥0 ⋅ 𝑥0 means dot product, 𝑅𝑗 is the 𝑗th hypercube,
𝐾2,𝑗,𝐾1,𝑗 and𝐾0,𝑗 are approximate parameters according
to the hypercube 𝑅𝑗 .

5. SIMULATION RESULTS

In this paper we have restricted our attention to decom-
pression profiles for depths from 0 to 50 m and the total
decompression time less than 64 minutes, with a stepwise
decompression trajectory with stops at every 3 m from 0
to 15 m. That is, for dives to depth from 50 m to 15 m, 5
stops are considered. For dives to depth between 15 and 12
m, 4 stops are considered, and so on. All these parameters
can be easily modified in the algorithm, depending on what
kind of dives are of interest.



Based on the range of the dives defined above we can
simulate the Copernicus model and find the 5-dimensional
state space that interests us. Please note that the bubbles
start growing during bottom time and the decompression
phase. Therefore the bounds on the bubble sizes (𝑟1 and
𝑟2) as well as the gas tension (𝑃𝑡,1 and 𝑃𝑡,2) should
be chosen carefully. Too small bounds may render the
explicit solution not applicable in some cases while too
large bounds can lead to a very long computational time
to fully explore the whole state space. In this paper the
state space inside which the explicit solution is computed
is given below.

0.2550 𝜇𝑚 < 𝑟1 < 4.3473 𝜇𝑚
11.0971 ATA < 𝑃𝑡,1 < 24.3381 ATA
0.2483 𝜇𝑚 < 𝑟2 < 2.8658 𝜇𝑚
9.1156 ATA < 𝑃𝑡,2 < 17.6887 ATA

11.0000 msw < 𝑃𝑎𝑚𝑏 < 60.0000 msw

.

The model is integrated at a varying integration step.
During decompression stop, the integration step is the
stopping time divided by 30. Integration step during
accent phases between decompression stops is 1

9 minute.
The prediction horizon after ascending to the surface is
set to 900 minutes (until the estimated stress reaches its
maximum).

The explicit solutions is obtained off-line which takes 129
hours with 4591 regions. All the computations are done on
an Intel Due 2.53G desktop where each NLP is solved in
Matlab with the TOMLAB ‘conSolve’ algorithm using a
Quasi-Newton method BFGS. We use a binary search tree
to locate the region corresponding to the state. In this case
at most 20 arithmetic operations per update are needed.
The arithmetic operation can be implemented with fixed
point arithmetics such that floating point capability of the
diving computer is not needed.

Using the explicit solution two decompression scenarios
are simulated. We assume the diver can ascend at a
fixed speed 𝑎, but may have problem stopping exactly
as long as suggested by the diving computer. Because
of the uncertainty on the stopping time, an updated
decompression profile must be produced to the diver.

In the first scenario we assume the diver rounds off the
suggestion from the diving computer for the ease of timing.
The result is given in Table 2 and plotted in Figure 3.
The first column of the table is current depth; the second
column is the optimal solution given by the proposed
method before the stop; the third column is the suggested
stopping time at current depth while the forth column is
the real stopping time at current depth; the fifth column
is the updated optimal solution after the recent stop. In
Figure 3 the sub-figure on the top gives the time-depth
decompression profile while the one on the bottom is the
output 𝑦 (solid line, measurement of the number of bubbles
in the pulmonary artery). The dotted line in the bottom
sub-figure is the stress threshold which is designed not to
be violated during simulation.

The total decompression time is 63 minutes, which is
11.14% longer than the optimal solution obtained at 50
m depth. This is because of the uncertainty and also the
curve approximation method.
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Fig. 3. Decompression scenario 1 of the diving schedule
[50, 20, 95, 0.78]

In the second scenario we assume the diver is more careless.
During the simulation the suggestion from the computer
is only taken as a reference. The real stopping time varies
much from the optimal one. So it’s a more harsh test of
the explicit solution. The result is given in Table 3 and
plotted in Figure 4.
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Fig. 4. Decompression scenario 2 of the diving schedule
[50, 20, 95, 0.78]

The total decompression time is 70 minutes.

From the simulation results we can see that the proposed
method gives updated optimal decompression profiles al-
though there’s some uncertainty.

6. CONCLUSION

In this paper we applied a new dynamic model on bubble
formulation and evolution in human body. The model
is based on Venous Gas Emboli (VGE) rather than de-
compression sickness (DCS). Based on this model the de-
compression problem is formulated as a nonlinear optimal
control problem, i.e., minimizing the total decompression
time subject to safety constraints. The explicit solution
is obtained using piecewise approximation method and
multi-parametric programming. Simulation is carried on
a two tissue model and the results are promising.
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Depth Optimal solution before the stop Suggested Real Optimal solution after the stop

50 20.0000 [0.6004,3.4440,8.8124,16.7055,27.1235]
15 [0.6004,3.4440,8.8124,16.7055,27.1235] 0.6004 1.0000 [0.0000,2.1956,7.6781,16.6056,28.9779]
12 [0.0000,2.1956,7.6781,16.6056,28.9779] 2.1956 2.0000 [0.0000,0.0000,4.2747,16.6338,37.4344]
9 [0.0000,0.0000,4.2747,16.6338,37.4344] 4.2747 4.0000 [0.0000,0.0000,0.0000,10.8001,46.3912]
6 [0.0000,0.0000,0.0000,10.8001,46.3912] 10.8001 10.0000 [0.0000,0.0000,0.0000,00.0000,46.2025]
3 [0.0000,0.0000,0.0000,00.0000,46.2025] 46.2025 46.0000

Table 2. Decompression scenario 1 with uncertainty from diver. Dive schedule: [50, 20, 95, 0.78]

Depth Optimal solution before the stop Suggested Real Optimal solution after the stop

50 20.0000 [0.6004,3.4440,8.8124,16.7055,27.1235]
15 [0.6004,3.4440,8.8124,16.7055,27.1235] 0.6004 20.0000 [0.0000,1.7460,6.1611,13.3707,23.3748]
12 [0.0000,1.7460,6.1611,13.3707,23.3748] 1.7460 20.0000 [0.0000,0.0000,2.1692,08.3724,18.7866]
9 [0.0000,0.0000,2.1692,08.3724,18.7866] 2.1692 0.0000 [0.0000,0.0000,0.0000,06.3185,25.0768]
6 [0.0000,0.0000,0.0000,06.3185,25.0768] 6.3185 15.0000 [0.0000,0.0000,0.0000,00.0000,12.8902]
3 [0.0000,0.0000,0.0000,00.0000,12.8902] 12.8902 15.0000

Table 3. Decompression scenario 2 with uncertainty from diver. Dive schedule: [50, 20, 95, 0.78]
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