
Accepted Manuscript

The State of the Art of Application Restrictions and Sandboxes: A Survey of
Application-oriented Access Controls and their Shortfalls

Z. Cliffe Schreuders, Tanya McGill, Christian Payne

PII: S0167-4048(12)00143-5

DOI: 10.1016/j.cose.2012.09.007

Reference: COSE 641

To appear in: Computers & Security

Received Date: 16 February 2012

Revised Date: 16 September 2012

Accepted Date: 29 September 2012

Please cite this article as: Cliffe Schreuders Z, McGill T, Payne C, The State of the Art of Application
Restrictions and Sandboxes: A Survey of Application-oriented Access Controls and their Shortfalls,
Computers & Security (2012), doi: 10.1016/j.cose.2012.09.007.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.cose.2012.09.007

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

The State of the Art of Application Restrictions and Sandboxes: A
Survey of Application-oriented Access Controls and their Shortfalls

Z. Cliffe Schreudersa, Tanya McGillb and Christian Payneb

a) Corresponding author: Z. Cliffe Schreuders
c.schreuders@leedsmet.ac.uk
+44 0 11381 28608

School of Computing and Creative Technologies
Leeds Metropolitan University
HC CA112, Headingley Campus
Leeds, West Yorkshire, LS6 3QS, UK

b)
{t.mcgill, c.payne}@murdoch.edu.au

School of Information Technology
Murdoch University
Murdoch, Western Australia, 6150, Australia

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

1

The State of the Art of Application Restrictions and
Sandboxes: A Survey of Application-oriented Access

Controls and their Shortfalls

Abstract: Under most widely-used security mechanisms the programs users run possess more
authority than is strictly necessary, with each process typically capable of utilising all of the user’s
privileges. Consequently such security mechanisms often fail to protect against contemporary
threats, such as previously unknown (‘zero-day’) malware and software vulnerabilities, as
processes can misuse a user’s privileges to behave maliciously. Application restrictions and
sandboxes can mitigate threats that traditional approaches to access control fail to prevent by
limiting the authority granted to each process. This developing field has become an active area of
research, and a variety of solutions have been proposed. However, despite the seriousness of the
problem and the security advantages these schemes provide, practical obstacles have restricted
their adoption.

This paper describes the motivation for application restrictions and sandboxes, presenting an in-
depth review of the literature covering existing systems. This is the most comprehensive review of
the field to date. The paper outlines the broad categories of existing application-oriented access
control schemes, such as isolation and rule-based schemes, and discusses their limitations.
Adoption of these schemes has arguably been impeded by workflow, policy complexity, and
usability issues. The paper concludes with a discussion on areas for future work, and points a way
forward within this developing field of research with recommendations for usability and
abstraction to be considered to a further extent when designing application-oriented access
controls.

Keywords: literature review, application-oriented access controls, sandboxing,
virtualization, confinement.

1. Introduction

Traditional approaches to access control have typically been user-oriented, that is,
they make access decisions based primarily on the identity of users. These
methods generally fail to protect users from previously unknown software
vulnerabilities and malware, because when executed this malicious code may
utilise all of the user's privileges. Application restrictions and sandboxing can
mitigate this threat by limiting the authority granted to processes based on the
privileges or resource name-space they require in order to carry out their
legitimate functions. The field of application-oriented access control, schemes
which primarily base access decisions on the programs involved rather than on the
identity of users, has therefore become an active area of research, and a number of
approaches have been proposed. However, despite the security advantages they
provide, adoption of these schemes has been limited. This paper aims to review
the various approaches taken and identify their limitations.

This paper is structured as follows. We begin with a discussion of the limitations
of the traditional security approaches, introducing the concept of user-oriented
access controls and the inability of this method to sufficiently mitigate the threat
posed by malware and vulnerabilities. Limitations of trust-based selective
execution (such as traditional anti-malware software) and integrity-level schemes
are also discussed. This is followed by a comprehensive overview and comparison
of application-oriented access control schemes. Isolation-based schemes,
including traditional sandboxes, virtual machines and containers, are described
and practical drawbacks to these approaches are explored. Rule-based schemes

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

2

and their advantages are discussed, followed by a discussion of the problems with
these systems. Rule-based application-oriented access control schemes include
models such as domain and type enforcement (DTE), system call interposition
schemes such as Janus and Systrace, and mechanisms such as AppArmor and
SELinux. The paper concludes with recommendations, and highlights the
opportunities for progress within this field of research.

2. The Motivation for Application-oriented Access
Controls: Limitations of Traditional Approaches

A long held assumption has been that programs will always run with the full
authority of the user who starts them. This is illustrated by a Microsoft technical
essay describing so called “immutable laws of security”, including the statement
that “if a bad guy can persuade you to run his program on your computer, it's not
your computer anymore” (Microsoft, 2012b). Access controls, which restrict the
actions of processes, have typically been designed on the basis that programs are
trusted to act on behalf of users and that the actions of software are equivalent to
the actions of users. However, this assumption is increasingly proving to be false,
and a number of prevalent types of security attacks leverage this weakness to
misuse the authority of users. In contemporary computing environments,
programs cannot safely be automatically trusted with these rights.

In the past access control has been almost exclusively considered in terms of user
confinement. Access control models were developed to specify exactly what each
user could do with shared resources (based on the user’s clearance or roles) and to
separate users from each other (Department of Defense, 1985, Ferraiolo and
Kuhn, 1992). Essentially the goal has been to protect the confidentiality, integrity,
and availability of the system’s resources and files from malicious users. These
models can be considered examples of user-oriented access controls; that is, they
primarily base access decisions on the authority granted to users. With user-
oriented access control it is typical for active entities within the system (known as
‘subjects’) to have access to all the user’s privileges regardless of the privileges
actually required by the program running. In the literature most access control
models are designed with the assumption that subjects act on behalf of users, and
therefore they base access decisions on the user identity associated with each
subject. In practice this effectively involves treating processes as equivalent to the
corresponding user.

Some examples of user-oriented access control include traditional discretionary
access control (DAC) models (Department of Defense, 1985) as implemented in
most commodity operating systems (Garfinkel et al., 2003, Govindavajhala and

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

3

Appel, 2006)1, traditional mandatory access control (MAC) models (Bell and
LaPadula, 1975, Biba, 1977, Brewer and Nash, 1989, Department of Defense,
1985, Lipner, 1982), and role-based access control (RBAC) (Ferraiolo and Kuhn,
1992).

Despite being widely deployed, user-oriented access control is often insufficient
as the sole access control mechanism. Processes do not always act on behalf of the
users they belong to. Two of the major threats to operating system access control,
those posed by software vulnerabilities and by malware, are particularly effective
due to attackers executing malicious code via processes run by local users.

The 2009 SANS Cyber Security Risks report (Dhamankar et al., 2009) highlights
attacks against software vulnerabilities in applications as the highest priority
security risk. The report states that attacks against vulnerable applications, such as
Adobe PDF Reader, QuickTime, Adobe Flash and Microsoft Office, are
“currently the primary initial infection vector used to compromise computers that
have Internet access” (Dhamankar et al., 2009). Software vulnerabilities often
exist that enable attackers to gain control of legitimate processes, and misuse the
authority to perform malicious actions. The causes of software vulnerabilities are
numerous and varied, and have been explored and categorised by various
taxonomies in the literature (Bishop, 1995, Landwehr et al., 1994, Piessens, 2002,
Weber et al., 2005). Causes include design and implementation flaws, such as
buffer overflows, race conditions, and input validation errors (Cowan et al.,
2001a, Cowan et al., 2001b, Cowan et al., 2000b).

Software that is malicious by design, known as malware, also poses a significant
threat that user-oriented access controls do not sufficiently mitigate. Malware
poses security risks to users’ integrity (via malicious destructiveness),
confidentiality (privacy concerns), and availability (denial of service).
Classifications of malware include Trojan horses, adware, spyware, viruses and
worms, and taxonomies proposed in the literature provide further categorisation
(Dagon et al., 2007, Stafford and Urbaczewski, 2004, Weaver et al., 2003). There
are many ways that malware can propagate to computers including:

• Man-in-the-middle attacks can intercept communications between hosts
and insert malware via trusted websites and hosts. It is even often possible
to intercept “secure” encrypted communications (Marlinspike, 2009).

• Viruses copy themselves to other programs.
• Worms propagate across networks, often by exploiting software

vulnerabilities.
• Trojan horses pose as legitimate programs.
• Malware can be sent via email in targeted attacks.

1 The security schemes of modern operating systems such as Unix and Windows
are primarily based on DAC user-oriented access control. Unix and related
systems have incorporated user-oriented access controls since the 1970s.
Microsoft Windows Me and earlier did not provide user-oriented access controls.
User confinement is limited in Windows XP, and most users run as an
administrator as many programs do not execute correctly on user confinement
restricted accounts. Windows Vista and later provides improved user-oriented
controls, known as User Account Control (UAC). As discussed later, modern
systems are starting to incorporate some application-oriented controls.

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

4

The impact of attacks involving software vulnerabilities and malware is often
significant because the malicious code executes after assuming the identity of an
authorised user and is able to fully utilise all of their privileges (Bishop, 1991).
Attempting to mitigate this problem by applying patches is insufficient, as these
do not protect against zero-day exploits, while anti-malware software fails to
detect previously unknown zero-day malware (Kotadia, 2006, Moser et al., 2007,
Vegge et al., 2009). User confinement, when utilised correctly, protects system
resources and users’ objects from other users, but does not protect users from the
applications they execute.

2.1. Trust-based Selective Execution

One of the simplest access control techniques to mitigate the risk of running
programs with all of the user’s authority is to only allow particular programs to
run. Using this approach, processes typically still have all the authority of the
user; however, only those programs deemed trustworthy (or not “untrusted”) are
allowed to run. There are a variety of methods that have been developed to help
decide whether to treat an application as trustworthy. Mansfield-Devine (2009)
describes the use of simple white or black lists of programs to control which
programs are authorised to run. White lists treat only specific programs as
trustworthy, while black lists specify particular programs as untrusted and treat all
other programs as if they are trustworthy. In addition to the filesystem paths and
attributes attached by the author, digital signatures can be used by these systems
to make decisions based on who authored the software (Schiavo, 2010). Examples
of trust-based selective execution include Microsoft AppLocker and Microsoft
Software Restriction Policies (SRP), which are typically configured by an
administrator to specify the programs that are allowed to execute (Microsoft,
2008a, b). ActiveX controls are used to run native code embedded in a web page
(Microsoft, 2012c). Before an ActiveX control runs, the user is typically prompted
to decide whether to allow content from the author of the control, and
subsequently code signed by the author runs with the full authority of the user.
Due to the threat they can pose, Microsoft maintains a black list of known harmful
ActiveX controls.

Another method of selective execution is to analyse source code or binary files to
decide whether the program is trusted to run. This form of trust-based selective
execution is used by many of the current generation of anti-malware suites,
typically based on attributes that identify code as untrusted. Signature-based and
heuristic lists identify programs based on characteristics of executable files and
are typically used to specify black lists to prevent known types of malware from
running. The techniques used to identify malware have become increasingly
sophisticated, as have the various techniques employed by malware to avoid
detection (Christodorescu et al., 2006, Christodorescu et al., 2005, Nachenberg,
1997, Patcha and Park, 2007, Szor, 2005). Reputation-based security, used by
systems such as Symantec Quorum, Microsoft SpyNet, and McAfee Artemis, is a
relatively new technique, outlined by Ford and Allen (2009), that uses information
collected from a large number of users to make judgements about the likely
trustworthiness of programs to decide if programs should be trusted to run.

These trust-based security systems provide protection from a limited number of
specific threats. However, many legitimate “trusted” programs can be the source

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

5

of malicious behaviour: for example, well-intended software authors may
accidentally introduce design or implementation flaws, resulting in software
vulnerabilities that enable attackers to execute malicious code. These approaches
do not provide a mechanism for safely running programs without trusting them to
run with all of a user’s authority. However, it is not ideal to have to completely
trust any software. Furthermore, in many cases it is overly restrictive or
impractical to prohibit users from running code obtained from third parties via the
Internet. For example, mobile phone “apps” are currently very popular, and the
web is becoming increasingly dynamic, including client-side execution of mobile
code. All of these mechanisms can fail to protect users from malware. At various
times:

• digital signatures and certificates have failed to accurately reflect the
actual origin of programs (Callas, 2005, Marlinspike, 2009, Microsoft,
2001);

• ActiveX has been a prevalent infection vector (Bellovin et al., 2000); and,
• anti-malware black list techniques have failed to identify malware

(Christodorescu and Jha, 2004, Kotadia, 2006, Vegge et al., 2009).

Clearly a more comprehensive confinement approach that has the ability to treat
applications as untrusted, and that facilitates the execution of untrusted software,
can better mitigate the threats posed by the problem of malicious code.

2.2. Integrity-level Schemes

Some integrity-level security schemes are related to application-oriented access
controls. However, rather than focusing on restricting particular programs, these
schemes divide programs and resources based on how trustworthy they are
considered and restrict lower level programs from interacting with higher level
programs and resources. This involves labelling every subject and object with
integrity levels, and restricting the interaction between different levels. For
example, Microsoft Windows (since Vista) incorporates an integrity level scheme
known as the Windows integrity mechanism described by Governa (2009).
Windows runs most user programs at the same integrity level, while some high
risk applications such as Internet Explorer are run at a lower level. Other similar
security schemes include LOMAC, presented by Fraser (2000, Fraser, 2001),
which takes a dynamic approach to integrity labelling, and Li et al.’s (2007) HIPP
mechanism. Although these schemes reduce the risk of malicious code, they are
not intended as mechanisms for restricting and sandboxing applications and do
not limit programs to only the resources they require.

3. Application-oriented Access Control

The limitations of user-oriented access control have led to application-oriented
access control being an increasingly active area of research. Application-oriented
access controls restrict subjects based on the identity of the application or process,
rather than just the identity of the user. This approach is designed to limit the
ability of applications to access resources outside of those they require to perform
legitimate actions. Application-oriented controls can restrict the damage caused
by malware or exploited vulnerabilities by limiting the software to those actions
authorised by whoever configures the security policy, whether end users,
administrators, or software developers. The extent of the mediation to resources
that is provided by each application-oriented access control scheme depends on

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

6

the specifics of the implementation. For example, access to files on the system is
typically mediated, while access to network resources and inter-process
communication may or may not be mediated depending on the goals of the
scheme.

The remainder of this paper provides a comprehensive overview of the various
methods and techniques available to provide application-oriented restrictions.
Policy can be specified by various parties, and policy can do one of the following:
simply specify which programs are authorised to run, isolate programs and their
effects from each other, or allow programs to co-exist in the same namespace and
restrict what each is allowed to do.

3.1. Terminology

In the literature, the relationship between access control that bases its restriction
on the confinement of users and that which provides restrictions based on the
privileges required by specific applications or processes has not always been
identified. In this paper the terms ‘user-oriented access control’ and ‘application-
oriented access control’ are used to differentiate between access control based on
the identity of the user and that based on the identity of the application or process.
It is useful to introduce this distinction, not previously made explicit in the
literature, to distinguish the relationship between these fields of research. With
user-oriented access control, the security context is primarily the identity or
authority of the user associated with the subject being confined. The identity of
the program is of secondary concern and is generally not considered. However,
with application-oriented access control the security context is primarily the
identity or authority of the process or application and the identity of the user is of
secondary concern, typically being considered separately. These terms are
proposed to differentiate between these two related, but distinct, types of access
control that, as areas of research, are often not considered in terms of each other.

Application-oriented access control has usually been considered separately from
user restrictions and access control research. This may be due to an assumed
implicit equivalence between access control and user restrictions. It may also be
due to the tendency of application-oriented access control research to propose,
design and implement systems, rather focus on a theoretical model of a solution
(for example, (Garfinkel, 2003, Goldberg et al., 1996, Wagner, 1999)). A clear
exception is Type Enforcement (TE) (Boebert and Kain, 1985), an application-
oriented access control model that has been described and developed within the
field of access control, although this distinction has typically not been made in the
literature.

User-oriented access controls restrict the actions of users to specific system-wide
resources, while application-oriented controls can further limit an application to
the specific resources it requires, usually a subset of a user’s authority. Essentially
the theory developed in user-oriented (access control) research can apply to
application-oriented research. This is demonstrated in the conceptualisation of the
functionality-based application confinement (FBAC) model (Schreuders and
Payne, 2008a) described at the end of this paper, which incorporates constructs
adapted from RBAC. Although in the past application-oriented restrictions have
usually been considered separately from user restrictions and access control, there
is a close relationship between the two fields.

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

7

3.2. Policy Providers

Independent of the actual techniques used to enforce security decisions,
application-oriented access control schemes can also be differentiated based on
who provides the security policy. Policy defines the access rules that are enforced.
In the case of rule-based controls, these are typically defined in the form of a set
of rules in a policy language that the target mechanism can enforce. Policy rules
can also be defined using other means, including via platform configuration, file
permissions, or digital signatures. Other security mechanisms have an implied
policy, for example, an isolated sandbox, in which case simply entering the
sandbox environment may define the policy that applies. In each case, some
entity, such as a user, administrator, or process has the volition to set the policy.
Application restrictions can be discretionary (in the control of the user) or non-
discretionary (imposed on the user, and thus may provide an additional element of
user confinement). Policy for application-oriented access control can be defined
by various stakeholders to improve security by restricting the behaviour of certain
processes (Anderson et al., 2010). This section describes the main ways that
application restriction policies can be provided. Each of the security mechanisms
mentioned are subsequently described in further detail.

Policy may be defined by distributors (such as software repository administrators)
or software vendors, in order to prevent their software from being subverted and
behaving maliciously due to software vulnerabilities. MapBox is an example of an
application-oriented access control mechanism where vendors specify what
behaviour the application should exhibit and users are then able to alter the exact
policy assigned to these behaviours (Acharya and Raje, 2000). Enck et al. (2009)
outline a similar approach taken by Android applications, which are distributed
with manifest files that specify the privilege requirements of each application
(granting access to protected APIs). Users must accept these policies in order to
install the application. Software vendors and authors are well-placed to create
policies that effectively restrict the damage caused by exploitation of
vulnerabilities, as they have access to internal documentation and source code that
can facilitate least privilege policies. However, it is not always in the authors'
interests to restrict their applications. Creating the policy increases their workload
and it is the user, rather than the author, that primarily bears the risk of an
unrestricted application. Distributors of software are unlikely to provide policies
unless the security system is widespread enough to justify the additional work.
Further, malware authors obviously have malicious motives and cannot be trusted
to create secure policies under any circumstances.

Some schemes allow policy to be defined by software that can, at run-time,
confine itself to prevent unexpected behaviour2. Programs can use these schemes
to safely execute mobile code or reduce the risk of vulnerabilities. Some examples
of such mechanisms available to applications are chroot() and Jails system
calls (Kamp and Watson, 2000, Lessard, 2003). Also, the Mac OS X Seatbelt
sandbox mechanism allows applications to isolate themselves (Edge et al., 2010).
These policies are typically non-discretionary; that is, users usually cannot
configure the policies applications request.

2 The related field, sometimes referred to as ‘application security’, deals with
applications that change their behaviour based on the user’s identity and authority,
and is outside the scope of this article.

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

8

Policies may be defined by system administrators to limit the behaviour of
applications installed on a system and the actions users can perform with
applications. Server applications, or any Internet-enabled applications, can be
confined to minimise the damage caused by exploited vulnerabilities. Also, the
applications accessible to users can be restricted to certain authorized behaviour.
Some examples of application-oriented access control mechanisms that are
managed by system administrators are AppArmor (Cowan et al., 2000a), DTE
(Hallyn and Kearns, 2000), and SELinux (Loscocco and Smalley, 2001a). These
are non-discretionary controls, configured by administrators.

Policies may also be defined by end users, who can confine specific applications,
thus restricting malware or exploits. Examples of systems that provide
discretionary application controls include Systrace (Provos, 2002) and Alcatraz
(Liang et al., 2009). End users who are the ‘administrators’ of their own systems
may also use the previously described non-discretionary controls. Users may be
well-positioned to restrict applications to behavioural expectations because they
know what they require the application to do. However, for this to be effective,
policy management must be simple and unobtrusive due to varying levels of end
user expertise.

Each of these options addresses various security goals. Application-oriented
access control models or mechanisms typically do not provide the flexibility to
enforce policies defined at more than one of the levels described above, meaning
that sometimes it is necessary to combine these mechanisms.

4. Isolation-based Application-oriented Access Controls:
Sandboxes and Virtualisation

One way to restrict a program’s ability to access resources is to run it in an
environment where the application can only access objects within their so-called
‘sandbox’. Although the terminology in use varies, in general a sandbox is
separate from the access controls applied to all running programs. Typically
sandboxes only apply to programs explicitly launched into or from within a
sandbox. In most cases no security context changes take place when a new
process is started, and all programs in a particular sandbox run with the same set
of rights. Sandboxes can either be permanent where resource changes persist after
the programs finish running, or ephemeral where changes are discarded after the
sandbox is no longer in use (Potter and Nieh, 2010, Rutkowska and Wojtczuk,
2010).

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

9

Figure 1: Typical Isolation-based Sandbox

Figure 1 illustrates a typical sandbox scheme, where an application (A) explicitly
starts another application (B) within a sandboxed environment. Application B can
access the resources available within the sandbox; however, the sandboxed
application cannot access (or sometimes even name) resources outside of the
sandbox. Children processes typically remain and co-exist within the same
sandbox. Applications (such as Application A in the figure) that are not within the
sandbox are typically outside the scope of the sandbox access controls, and are
therefore (other security controls permitting) free to access any resources,
including those within a sandbox.

Most sandboxes provide an isolation-based approach where the effect of programs
run inside a sandbox is entirely isolated from resources outside the sandbox’s
authority. However, due to practical requirements, sandboxing schemes often
provide ways of circumventing this isolation in order to copy data into and out of
sandboxes.

System-level sandboxes provide complete operating environments to confined
applications. One way of achieving this is through the use of hardware-level
virtual machines (VMs). A virtual machine monitor (VMM) can be used to
multiplex the physical hardware between multiple self-contained fully virtualised
VM operating environments, each containing a complete operating system. As
early as the 1970s Madnick and Donovan (1973) showed that VMs can be used to
improve overall system security by providing an additional layer of controls.
More recently researchers have proposed using VMs to confine applications to
mitigate the risks associated with excess application authority. For example,
Whitaker et al. (2002) presented a scheme designed to provide a lightweight VM
and operating system for each application. It is possible to confine specific
programs or sets of programs by containing them within separate VMs. This can
be done manually using emulation based virtualisation software (such as VMware
(Sugerman et al., 2001), VirtualBox (Oracle, 2012), Parallels (Parallels Inc,
2012b), Microsoft Virtual Server (Microsoft, 2012a) and QEMU (Bellard, 2005))
or using paravirtualisation software, which requires that guest operating systems
are aware that they are running as VMs and participate in providing virtualisation.

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

10

Xen (Barham et al., 2003), User-mode Linux (UML) (Dike, 2000), and Denali
(Whitaker et al., 2002) are examples of paravirtualisation.

Systems such as Qubes, released by Rutkowska and Wojtczuk (2010), provide an
interface to simplify the management of VMs from a security perspective. Qubes
provides lightweight ‘AppVMs’, which are used for different types of tasks and,
unlike most hardware-level VMs, share the same read-only filesystem. For
example, ‘personal’, ‘work’, and ‘bank’ VMs could be specified to keep the
applications used and the risks associated with each task separate from each other.
Although not based on system-level virtualisation, the earlier WindowBox
scheme, proposed by Balfanz and Simon (2000), provides a similar mechanism
where different desktop sandboxes are used for different types of tasks. Most of
these types of systems provide ways for users to manually move files between
VMs.

Container-based virtualisation, also known as operating-system level
virtualisation, shares the one operating system kernel, but virtualises user space
resources, allowing separate instances of the operating environment to be created.
The Unix chroot() system call isolates a process and its children to a subset of
the file system namespace. However, it was not designed as a security mechanism
and consequently has significant limitations. The FreeBSD Jails mechanism,
proposed by Kamp and Watson (2000), provides the jail() system call that
aims to improve upon the security and functionality provided by chroot().
Jails confines each jail to a given IP address with particular network privileges,
prevents well-documented means of escaping chroot() confinement, prevents
certain super-user privileged actions from taking place, and each jail has a private
copy of operating system objects such as shared memory and sockets (Kamp and
Watson, 2004). Rule Set Based Access Control (RSBAC), presented by Ott et al.
(2001), includes a jail module similar to FreeBSD Jails for Linux. Other similar
systems include Solaris 10 Containers (Tucker and Comay, 2004), Linux
Containers (lxc) (LXC, 2012), Linux VServer (des Ligneris, 2005), OpenVZ
(Parallels Inc, 2012a), FreeVPS (Positive Software Corporation, 2012), Virtuozzo
Containers (Parallels Inc, 2012c), and AIX Workload Partitions (WPARs)
(Blanchard et al., 2007). Some of these systems are primarily designed for
running complete operating environments and for isolating multiple virtual hosts.
These solutions allow applications to be confined (along with the resources they
require) by encapsulating them within a partitioned environment with no access to
objects outside of the sandboxed environment. However, these container
sandboxes are often easier to manage than hardware-level VMs, as different
containers can be configured to use the same resources, such as portions of the
operating system.

Potter and Nieh (2010) have proposed a more sophisticated approach to container-
based sandboxes for application-oriented access control, with an implementation
known as Apiary. Similar to how Qubes provides an interface to manage VMs for
security purposes, Apiary presents a desktop environment that provides a user
interface to launch applications into containers. Users can select whether to launch
applications into ephemeral or persistent containers. Each container is isolated
from each other, although there are ways for users to intervene to share directories
with containers or copy data between containers.

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

11

Some sandbox schemes allow confined applications to read the host computer’s
data with few restrictions, and provide copy-on-write features to write any
modifications programs make to a virtual disk rather than to the actual hard drive.
Systems such as Sandboxie (Tzur, 2012), Pastures (Bratus et al., 2007), Alcatraz
(Liang et al., 2009, Liang et al., 2003, Sun et al., 2005), and Returnil (Returnil,
2012) take this approach. Typically, upon termination of the sandboxed programs,
these systems present the user with a list of all the files that were modified, and
the user has the option to commit changes to the regular file system.

Other sandbox solutions run single, self-contained applications using a VMM or
an interpreter, which isolates the application from making changes to the host
computer without user intervention. Java Applets (Gong et al., 1997), Silverlight
(Farkas, 2007) and Flash (McCauley, 2008) use this approach to embed mobile
code content into websites; very limited access is granted to storage, with
additional access being granted via user interaction. Google native code (NaCl)
executes native instructions inside an isolated sandbox, and interacts with
JavaScript and other plugins that are responsible for granting restricted access to
other resources (Yee et al., 2010). As previously mentioned, Whitaker and Shaw’s
(2002) scheme Denali was originally designed to have VMs running single-
application lightweight operating systems, to provide individual internet services
that are confined. However, newer versions virtualise full commodity operating
systems. Miller et al. (2004) developed CapDesk Caplets, which are self-
contained programs that gain additional authority via a special type of file
selection dialog, known as a ‘powerbox’, that grants access to files selected by the
user.

Kato and Oyama (2002) have proposed a different approach. The scheme, known
as SoftwarePot, restricts programs to an encapsulated filesystem that is mostly
isolated but which can contain rules for mapping resources on the local computer
to the name-space accessible to the restricted program.

4.1. Limitations of Isolation-based Approaches

All of the aforementioned security schemes attempt to mitigate the effects of
malicious code by isolating programs or groups of programs from each other and
the system in general. Although usually relatively straightforward to initially
configure, isolated sandboxes present a number of problems in use. Many of these
schemes suffer from redundancy of resources and management, and isolating
programs entirely is often not practical.

Isolation-based security schemes generally require significant redundancy of
resources, as any resources that an application requires must be contained within
or accessible from the sandbox. In the case of VMs this typically involves
duplicating a copy of the entire operating system for each group of programs that
are confined. There is also often significant overhead in managing the
configuration of the VMs. For container-based sandboxes and self-contained
application sandboxes, often any shared libraries or resources must be duplicated
within each sandbox that requires access to them (Kamp and Watson, 2000). Even
copy-on-write sandboxes, which allow read access to the same operating
environment, introduce management overhead when files are changed within a
sandbox.

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

12

Isolation sandboxes inhibit applications operating in different sandboxes from
easily and securely exchanging information or sharing resources. However, many
applications frequently require access to shared resources and this is integral to
the way some applications are used. For example, users often utilise separate
applications for different tasks when working on a given set of files. A user may
use one program to create a file, another to view it, and then use a third
application to transfer the file over a network. Isolated sandboxes are not well
suited to this scenario as the files they create would typically be completely
isolated from each other. Alternatively, all three applications and the file could
exist in a single sandbox. However, in this case each of the three applications are
effectively entrusted with the same privileges, despite their potentially different
requirements, with the result being that, for example, a viewing program could
maliciously edit or send a file over the network.

Since the ability to share resources is such a common requirement, many of these
systems provide ways of circumventing straightforward isolation. VMs can use
the network to communicate and share files, containers can use hard-linked files
to share the same resources, and others provide mechanisms that require user
intervention. These methods of sharing pose additional challenges and new
security problems, as risks are inevitably associated with requiring users to
circumvent the security model.

Perhaps the greatest obstacle is that isolation sandboxes inhibit users from
working with software in the way they are accustomed. In most cases users need
to decide which applications they need to launch or install into sandboxes. As
discussed by Potter and Nieh (2010), these applications are often not integrated
into, or easily accessible from, the user’s desktop, and such applications cannot
leverage other unconfined applications. Also, requiring user interaction to
manually copy files between sandboxes requires users to have a clear
understanding of these concepts. Due to the large number of resources typically
required to run an application, the decision making process for user intervention
can be complicated (Jaeger et al., 2003, Marceau and Joyce, 2005).

Table 1 presents an approximate summary of the limitations that have been
discussed and how they relate to each of the classes of isolation-based systems
that have been described. In the table an “X” denotes that the limitation typically
applies to this class of system, “X*” describes a limitation that applies to a lesser
extent or with some exceptions. As an example, the following describes the “self-
contained applications” row in the table. The self-contained applications category
of system (as described in the previous section, examples include Java applets,
Flash, and so on) avoids the issue of “OS configuration redundancy”, where
multiple instances of the operating environment can result in configuration
overhead. This is in contrast to system-level sandboxes where entire copies of
operating systems need to be maintained and administered. Continuing the
example, self-contained application schemes typically isolate applications
individually, rather than having “many processes run in the same context” (the
second row in the table), which can diminish the restrictions on applications. Such
is the case with the first three categories of schemes, where applications often
share the same sandbox and subsequently a security compromise in one
application can result in the entire sandbox and all the applications and data
within the sandbox becoming compromised. The third row indicates that self-

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

13

contained application schemes have limited ability to allow sandboxed
applications to access specific files outside of the sandbox, like many isolation-
based application-oriented access controls, these schemes are designed to enable
very limited (if any) access to system resources, and sharing files between
applications is often not possible, with the exception of Powerboxes which some
of these systems, such as CapDesk Caplets, employ to grant access to individual
files – this has the additional caveat that Powerboxes do not suit applications that
require access to files without user interaction: for example, for searching through
multiple files. The following row illustrates that this class of security scheme
often requires libraries to be duplicated for each application; the exception being
libraries provided by the framework itself. The table also shows that these
schemes typically provide network restrictions. Also, there are not usually
complex rules to review. As is the case with all of the isolation-based schemes,
self-contained application schemes are not well suited for editing and viewing
files with separate applications while applying appropriate security restrictions
(for example, read-write or read for editing and viewing respectively); a rare
exception would be a Powerbox system that prompts the user for this information
whenever users open files. As shown in the table, these systems scale fairly well
to restrict a number of applications without making management and policies
more complex. They are typically not designed for separately confined
applications to interact, which can be a practical limitation for building complex
systems from multiple programs. Finally, perhaps their most significant limitation,
self-contained application schemes require the applications to be developed
specifically for the target platform and with the security restrictions in mind; the
security scheme cannot typically be applied to “legacy applications”, that is, other
existing applications.

Although isolated sandboxes suit certain situations – such as when there are only
a few untrusted programs that do not require interaction with other applications –
in most practical scenarios sandboxes are not well-suited to restricting large
numbers of programs, programs that require different privileges, or those that
share resources. Consequently, isolation-based schemes often do not provide a
sufficiently scaleable solution to the problems posed by malicious code. The
evolution of sandboxed environments to provide increasing degrees of exceptions
to straightforward isolation has led to further development of rule-based schemes,
as discussed in the following sections.

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

14

Table 1: Limitations of isolation-based application-oriented access controls

Scheme
category

General
properties Example

O
S

 configuration redundancy

M
any processes run in the sam

e context

S
haring individual files (as required) betw

een
sandboxes is typically not supported, or is

m
anual

D
uplication of resources (O

S
, libraries)

Lack of netw
orking and/or IP

C
 m

ediation

C
om

plex changes or rules to review

D
oes not support sim

ple w
orkflow

 for editing
the sam

e files betw
een sandboxes

D
oes not scale w

ell to a large num
ber of

separate sandboxes

D
oes not suit applications in different

security contexts interacting

C
annot be applied to legacy applications

System-
level

sandbox

VMs
containing
complete

OSs

VirtualBox X X X X X X X X

Isolated
desktop

Multiple
desktops
isolated

from each
other

Qubes X* X X* X* X* X* X

Container-
based

virtualisation

Shares the
kernel, with

separate
user-space
resources

Jails X X* X X X X X X

Desktop
sandbox
launcher

Launches
applications
into various

kinds of
sandboxes

Apairy X* X* X X* X*

Copy-on-
write

sandbox

Applications
can read
system-

wide
resources,
writes are
isolated to
sandbox

Sandboxie X* X X* X* X

Self-
contained

applications

Applications
run via

VMM or an
interpreter,

strictly
isolated
from OS

Flash X* X* X* X X

Self-
contained

applications
with

mapped
resources

As above,
with rules
defining

access to
other

resources

SoftwarePot X* X* X X

5. Rule-based Application-oriented Access Controls

5.1. Rule-based Sandboxes

Rather than focusing on completely isolating applications, rule-based schemes
aim to control what each application is authorised to do. This approach allows
applications to cooperate and share resources; although each application may still

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

15

only perform the actions and access the resources specified in the security policy.
These systems often include methods for policy transitions and the propagation of
privileges when processes are started. Such techniques can restrict individual
programs with different rules and mitigate the ‘confused deputy problem’ where a
malicious program misuses another program’s privileges by influencing the
privileged program to act on its behalf (Benantar, 2006 p. 19, Hardy, 1988). This
section discusses rule-based sandboxing schemes, and the following section
covers system-wide rule-based application-oriented access controls.

Figure 2: Typical Rule-based Sandbox

As illustrated in Figure 2, each rule-based sandbox enforces a specific policy
regarding the resources that applications within the sandbox are allowed to access.
Applications (such as A, in the figure), can implicitly launch applications (B) into
a sandbox that enforces a policy. Depending on the specifics of the scheme and
policy in place, children may have the same policy apply, or may transition to
another sandbox policy. Applications that have not implicitly been launched into a
sandbox are typically out of the scope of the mediation provided.

Berman et al. (1995) presented TRON, a discretionary application-oriented access
control mechanism for Unix implemented on Ultrix. TRON confined applications
to ‘domains’ that were assigned privileges based on text strings naming the files
and directories a domain could access and the type of access allowed. Users then
had the option of confining their applications by running them within a domain
using a command line interface. TRON was implemented using system call
interposition within the kernel.

System call interposition is a method for monitoring and regulating application
behaviour by intercepting the program's system calls (Garfinkel, 2003). All
external interactions, and hence potentially harmful operations, an application can
perform occur via system calls. Therefore filtering calls based on a security policy
can confine an application by restricting the application’s access to the operating
system’s privileged kernel operations. System call interposition tools, such as
Janus (Goldberg et al., 1996, Wagner, 1999), Systrace (Kurchuck and Keromytis,
2004, Provos, 2002), and ETrace (Jain and Sekar, 2000), can enforce extremely

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

16

fine grained policies at the level of granularity of the operating system’s system
call infrastructure.

A number of system call interposition mediation mechanism designs have been
proposed (Alexandrov et al., 1998, Jones, 1993) including library modifications
(Krell and Krishnamurthy, 1992), kernel mediation (Fraser et al., 1999, Ghormley
et al., 1998), and user-space mediation (Alexandrov et al., 1998, Garfinkel et al.,
2004, Goldberg et al., 1996, Jain and Sekar, 2000). In most cases this involves a
monitoring process enforcing the policy on a traced process. For each application
being confined, its security policy is typically defined in terms of the specific
system calls and arguments that are allowed. In many cases a single operation
requires many system calls. For example, in order to make a network connection
the socket is created, and then the protocol is specified. Consequently, system call
interposition-based policies can be extremely lengthy and detailed, exposing the
underlying complexity of the platform on which the software operates. To ease
the burden of policy development, Systrace includes a policy learning mode that
can generate policy rules based on recorded application actions. Some schemes
such as Software Wrappers, proposed by Fraser et al. (1999), specify policy using
a slightly higher level policy language that is independent of the actual system call
interface. Seaborn (2008) has described the Plash scheme that uses system call
interposition and jails to provide a form of capability-based security, thereby
restricting programs to only the files specified by the user.

System call anomaly detection is a related field, pioneered by Forrest et al. (2008,
1994), which aims to monitor system calls in order to detect, and potentially react
to, anomalies in system call sequences. These approaches attempt to apply
concepts from immunology and epidemiology to the problem of detecting and
reacting to abnormal behaviour from processes. A number of techniques for
defining what constitutes valid sequences or parameters for system calls have
been proposed: including learning modes that record program activity (Hofmeyr
et al., 1998, Tandon and Chan, 2006), and static analysis of binary or source code
to determine code path or data flow (Ben-Cohen and Wool, 2008, Giffin et al.,
2002, Lam and Chiueh, 2005, Wagner and Dean, 2001).

Application virtualization is an alternative technique, primarily designed to allow
portable application bytecode to run regardless of the platform. These interfaces
can also provide controls on the resources available to applications. Java (Gong et
al., 1997) and .NET (Thorsteinson and Ganesh, 2003) confinement models restrict
applications based on both certain properties of the code and security policies
defined by the user or administrator, explicitly permitting or denying certain
operations from particular sources and authors. Each set of rules needs to be
configured individually. These security models can only be applied to applications
written in the corresponding programming languages. Due to the complexity of
policy specification, in practice these restrictions are rarely employed. Language-
based security schemes such as type checking and proof-carrying code (Lee and
Necula, 1997, Necula, 1997, Necula and Lee, 2004), call/control-flow graph run-
time verification (Ben-Cohen and Wool, 2008, Giffin et al., 2002, Lam and
Chiueh, 2005, Wagner and Dean, 2001), object-capability schemes (Hardy, 1985,
Mettler and Wagner, 2008, Miller, 2006), intra-component access controls (Levy
et al., 1998), and code/binary transformation (Kiriansky et al., 2002, Pandey and

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

17

Hashii, 1999) can provide related additional layers of protection, but are outside
of the scope of this paper.

Mac OS X includes a sandbox feature that can enforce two types of confinement
(Edge et al., 2010). It allows an application to voluntarily confine itself and its
subsequent children to one of five coarsely grained policies: for example, a ‘no
Internet’ profile. Finely grained policies can also be applied to applications by
launching them into the sandbox using the “sandbox-exec” command. The iOS
platform applies a single finely-grained policy to all installed applications that
largely inhibits their ability to access the data from other applications. However,
this policy currently allows all iPhone applications to access various resources
without notifying the user. For example, all iPhone applications have access to the
address book, phone number, email account settings, and web search history
(Seriot, 2010). With a wide variety of applications being available for the system,
a ‘one size fits all’ approach to security policy is not always appropriate.

The MAPbox scheme, proposed by Raje and Acharya (Acharya and Raje, 2000,
Raje, 1999), utilises a model where the vendor of the application is trusted to
specify its security policy based on a so-called ‘behaviour class’. The application
is then executed and confined based on user-assigned discretionary application-
oriented access control policies for each allowed behaviour class. This allows the
provider to communicate the general expected functionality of the program to the
user, similar to the way in which MIME-types describe the expected format of
data. Programs are described in terms of a behaviour class, and the resources they
require are further clarified by providing parameters. For example, a program may
be of class “editor”, requiring access to parameters that specify the program’s
home directory and a list of files it can edit.

5.2. Rule-based System-wide Controls

Another, more comprehensive, approach is to restrict applications at the operating
system security kernel level. System-wide controls involve confining all programs
with an applicable policy, rather than just those explicitly launched into
sandboxes. In these schemes, policy typically includes identification of programs
and specification of rules for their authorised activity. Program identity may be
established via file path naming, file labelling, or other techniques similar to those
used to identify programs in trust-based selective execution schemes, as discussed
in Section 2.1.

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

18

Figure 3: Typical Rule-based System-wide Control

As illustrated in Figure 3, all applications are confined based on the policies that
apply. In the figure, Application A’s access to any resource is subject to the policy
for that application, while another policy may apply to Application B. Policy
transitions are typically automatic, and applications actions are mediated without
the need to launch them into sandboxed environments.

The simplest form of rule-based system-wide control is achieved by overloading
the user-oriented access controls already in place to restrict applications. For
example, on Linux systems the standard DAC mechanism can be used to control
the actions of a particular program by creating an artificial user account
specifically for that program. If the program has sufficient authority and is trusted
to do so, it can restrict itself by changing its own user identity (for example, when
running the Apache web server as root it typically automatically changes its user
identity to the “nobody” or “apache” account), setuid file permissions can be used
to launch the program as the owner of the executable, or the program can be
launched as a specific user manually. Some application-oriented access control
schemes are based on this technique. Rainbow provides an “exec-wrapper” that
can automate the creation of ‘synthetic’ user accounts and launching of programs
into those user accounts (OLPC, 2012). Stiegler et al. (2006) present the Polaris
system, which leverages this approach to confine programs: applications are
launched into restricted user accounts that are granted access to the user’s files
only when the user selects a file via a Windows file selection dialog. Access is
granted via a mechanism that copies files into the application’s home directory,
and subsequently copies changes back to the user’s home directory. Snowberger’s
(2007) sub-identities scheme aims to allow users to arbitrarily create user
accounts that are limited to a subset of the user’s rights.

Another approach is to divide the actions an application can be authorised to
perform into simple, coarsely-grained privileges. Linux capabilities (also known
as ‘POSIX capabilities’, since they are based on a withdrawn POSIX standard
draft) partition the powerful root privilege into a fixed set of distinct privileges;
for example, the ability to send signals to processes owned by any user, or to
listen on TCP/UDP sockets below 1024 (Hallyn and Morgan, 2008, IEEE, 1997).
Linux capabilities are not associated with any object, are represented as flag
variables, and simply permit certain types of actions. Most other rule-based

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

19

application-oriented access controls take a finer-grained approach that allows
further control over applications.

Some schemes combine overloaded user confinement with additional coarse
privileges. Krsti and Garfinkel (2007) combine the previously-described Rainbow
scheme with coarsely grained privileges to create BitFrost. This scheme is used as
the security model for the ‘One Laptop Per Child’ project to authorise additional
restricted actions such as using the laptop microphone and camera. Authors of
software specify which privileges are required by their programs at installation.
Certain BitFrost privileges cannot normally be combined, which is intended to
limit possible malicious activity. The Android platform creates separate user
accounts for each application installed as part of its security scheme (Enck et al.,
2009). Application authors specify all the coarsely grained kernel-protected
privileges required in an AndroidManifest.xml file and, once an application is
installed, it is prevented from exceeding these privileges. Applications run in a
modified version of Java known as Dalvik, and additional controls are enforced
by an application virtualisation layer. Native code is not subject to these
additional controls (Barrera, 2011).

Program access control lists (PACLs), first proposed by Wichers et al. (1990),
label resources with a list of programs, specifying the types of access allowed.
Schemes such as Tivoli Access Control Facility (TACF) (Manoel et al., 2000) and
eTrust Access Control (Computer Associates, 2001) provide PACLs that specify
the names of the programs or shell scripts users must execute in order to access
PACL protected resources. Rather than configuring policy to describe every
resource accessible to every application, these controls typically limit their
protection to specified resources. Proposed by Enck et al. (2008, 2007), PinUP
provides a related form of restrictions; cryptographic hashes identify unmodified
applications that are allowed to access files. When files are created, detailed rules
are used to automatically assign a list of applications that are allowed access to
them, and users can manually authorise additional application-file interactions that
occur. Other related approaches exist. Schmid et al. (2002) describe the
FileMonster scheme, which tags particular files as requiring user confirmation
before applications can access them. The SubOS scheme, proposed by Ioannidis
et al. (2002), associates policies with files based on their origin on the network,
and processes are restricted by the policies of all the files they have accessed.
However, this combination of numerous remote sources and multiple files can
lead to significant complexity in practice.

An early approach presented by Boebert and Kain (1985), Type enforcement (TE)
is a non-discretionary table-based access control model that confines applications
based on grouping subjects into domains, and objects into types by labelling them.
Access decisions are then made based on the contents of a domain interaction
table (DIT) and a domain definition table (DDT). Walker et al. (1996) extended
type enforcement to create Domain and type enforcement (DTE), which includes
a policy specification language, DTE language (DTEL), to replace the DIT and
DDT tables by describing what domain transitions can occur when executing
programs and what interactions are allowed between domains and types. Several
DTE mechanisms exist, many of which deviate from the original model and
policy language: DTE mechanisms have been developed for Linux (Hallyn and
Kearns, 2000) and FreeBSD (Badger, 1996, Badger et al., 1995) among others.

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

20

Ott’s (2002) RSBAC framework for Linux includes the role compatibility access
control model, which is very similar to type enforcement. Although termed ‘role
compatibility’, it has much more in common with DTE than RBAC: the initial
role is specified, one role is active at a time, role transitions are specified by
compatibility and it may not be possible to return to the original role, objects are
classified as types, and role-type interactions are mediated.

SELinux, originally developed by the US National Security Agency (NSA),
provides non-discretionary controls for Linux (Loscocco and Smalley, 2001a,
Smalley et al., 2001). SELinux is arguably the most complete (and complex) non-
discretionary access control scheme available in any operating system. Access
control decisions are made based on the security context resources are labelled
with, implementing a combination of access control models such as RBAC, DTE,
and multilevel security (MLS) (Loscocco and Smalley, 2001b). DTE forms the
primary basis of application restrictions: rules specify when domain transitions
occur, which determines the domain a program is associated with, and rules define
how processes within particular domains can access resources labelled with
specific types. SELinux combines DTE with a non-standard RBAC model to also
provide user confinement in terms of domains. Additionally, the new SELinux-
Sandbox script provides a form of isolation-based application-oriented access
control; it allows users to restrict programs by launching them via a command that
generates and applies an SELinux policy to isolate the program to the files
specified as arguments (Walsh, 2009). Like DTE and RSBAC, SELinux policies
involve significant complexity.

A common approach to rule-based application-oriented access control is to simply
specify a list of all the resources each application is authorised to access. As
proposed by Cowan et al. (2000a), AppArmor (originally known as SubDomain)
takes this approach, where a lengthy security policy in the form of an application
profile defines all the files the confined program can access. AppArmor is similar
to the previously described TRON (Berman et al., 1995); the main differences
being that AppArmor allows processes to “change hats” depending on the tasks
they are carrying out, and AppArmor is non-discretionary; policy is defined by an
administrator and enforced system wide (Canonical, 2012). AppArmor is supplied
with a number of Linux distributions including the popular Ubuntu and SuSE
systems. Official Novell AppArmor documentation presents it as a user-friendly
alternative to SELinux (Novell, 2012). AppArmor focuses on confining
applications that are at a high risk of vulnerability (applications that are network-
enabled) and confines them to only access the files they need to perform their
tasks. Policies can also contain simple abstractions (common groups of privileges)
and can be generated using a learning mode. Applications without policies are
typically not confined. Harada et al. (2004) have presented TOMOYO, a similar
system that applies policies based on the process invocation ancestry. TOMOYO
also includes a learning mode to develop policies.

The PeaPod application-oriented access control takes a hybrid approach by
combining an isolation-based ‘pod’ (PrOcess Domain), which provides container-
based virtualisation, with ‘peas’ (Protection and Encapsulation Abstraction),
which specify a list of all the resources each process is authorised to access within
a pod (Potter et al., 2007, Potter et al., 2004). Pea policies are similar to the
AppArmor policy language.

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

21

The authors have proposed a model known as functionality-based application
confinement (FBAC) (Schreuders and Payne, 2008a), and an LSM-based (Linux
security module) implementation has been developed (Schreuders, 2012). FBAC
manages the authority assigned to applications based on the features they provide.
Reusable modular policy abstractions known as functionalities can be employed
by end users or administrators to confine programs based on high-level security
goals (Schreuders and Payne, 2008b). For example, an application can be assigned
a “web browser” functionality, which authorises the application to access
appropriate resources. FBAC functionalities are similar in purpose to MAPbox
behavioural classes, while overcoming the previously discussed limitations.
Policy is represented using the FBAC policy language (Schreuders et al., 2011b).
Functionalities are hierarchical and parameterised, which enables them to provide
layers of abstraction and encapsulation of policy details and to adapt to the needs
of individual applications. For example, the “web browser” functionality can be
adapted to the needs of various browsers by specifying parameters, such as where
downloads and configuration is stored for each application.

5.3. Limitations of Rule-based Application Restriction Schemes

Rule-based application restrictions can greatly mitigate the threat posed by
malicious code, and avoid many of the previously discussed problems with
isolation-based approaches. However, despite the large number of rule-based
application restriction schemes that have been developed, these have largely not
been embraced by users. Although they provide significant security advantages,
rule-based schemes have a number of drawbacks that hinder their use. Coarsely
grained controls are less able to protect against a diverse range of threats, while
finely grained controls typically result in policy management complexity and
significant usability problems. This section discusses issues with the previously
described rule-based schemes and explains the need for further work in this area.

Simple coarsely grained policies can complement user-oriented access controls to
reduce the risks associated with running programs with all of a user’s privileges;
for example, Linux capabilities separate many of the root user’s special privileges.
However, these restrictions typically only mediate access to specific resources,
which often means that the policy allows more access than is necessary for the
application to function and malicious programs have free rein with regards to
those resources not specified. For example, flag-based privileges such as Linux
capabilities cannot mediate access to specific files or network ports, so programs
are still free to misuse these resources. Coarsely grained policies such as those
currently used by the Mac OS X sandbox provide an all-or-nothing type of
protection. Mac OS X programs can, for example, state that they don’t require
network connectivity or that they don’t need write access to the file system.
However, programs cannot state what specific access they do require, so a
program that needs to write to any file is granted write access to all of the user’s
files. This type of control is best suited to very simple programs that require very
few privileges to run.

Sandboxes that enforce the same rule-based policy for every program effectively
provide a limited form of isolation. Rather than providing controls that authorise
access to the resources that particular programs need to function, all programs are
granted the same privileges. For example, since some iOS applications require

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

22

sensitive permissions, all applications have been granted these privileges (Seriot,
2010). This highlights the need for each application to be confined based on its
specific requirements.

Other approaches, such as overloading user-oriented access controls and PACLs,
also have drawbacks. User-oriented access controls are not designed to provide
application-oriented access control and, while simple to implement, introduce
complications. For example, as Cowan et al. (2000a) discuss, the Unix DAC
security model allows all user accounts access to all files that permit access to
“others”, which results in a complex management task to ensure that applications
confined by synthetic user accounts cannot misuse these permissions. In addition,
typically all user accounts have permission to use resources such as the network.
Overloading user-oriented control schemes makes it difficult to simultaneously
provide user restrictions and application-oriented restrictions, therefore this
technique is better suited for systems used by only one person. Also, having
separate home directories for applications results in a form of isolation-based
confinement with potentially complex or permissive file permissions used to
specify exceptions and allow applications to share resources. The sub-identities
scheme allows for multiple users, but introduces further complexity since
additional ACL policies need to be specified to allow sub-identities to access any
resources that are not granted to every user.

PACLs and related schemes can protect selected resources from malicious
programs. However, labelling every resource with all the applications that require
access is very complex and arguably impractical (Berman et al., 1995). Adding a
new program involves changing permissions for all the resources required, and
creating new files involves a complex decision making process to specify every
application that should be authorised to access the files. Due to this complexity,
these schemes typically only protect particular files. Therefore this approach
cannot comprehensively mitigate the problem of programs running with too much
authority. Related approaches pose similar concerns. SubOS is particularly
complex since individual policies need to be specified for each remote host files
come from, and processes are simultaneously subject to a myriad of policies from
all of the files each process has accessed. As Provos (2002) points out, not all
exploits are the result of accessing files, and it is sufficient to restrict processes
based on the application’s needs rather than enforcing policies for all the files the
application has accessed.

Finely-grained per-program policies can provide very powerful controls that can
specify with precision the privileges granted to particular applications. This
approach has the greatest control over individual programs, and can allow
confined processes to interact with resources and other processes in authorised
ways. However, finely-grained application restrictions typically result in highly
detailed, low-level policies that expose the internal complexity of applications and
underlying platforms. Translating high level security goals into finely-grained
policies has proven to be problematic, typically requiring expertise and
knowledge of low level operations and interactions of programs. Also, once
constructed, policies can be hard to verify for completeness and correctness
(Garfinkel, 2003, Jaeger et al., 2003, Zanin and Mancini, 2004).

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

23

System call interposition mechanisms typically specify finely-grained rules in
terms of allowed system calls and system call arguments. However, system call
interposition systems have been criticised for inherent complexity and design
flaws (Garfinkel, 2003, Watson, 2007). The main problem with these types of
security policies is that they are so finely grained that the task of managing them
is especially complex. This is also partially due to the complexity of the system
call interface. In many cases a single operation requires multiple system calls.
This complicates policy management and security system implementation as any
nontrivial process utilises a vast number of system calls. This means that creating
system call interposition policies using some schemes requires additional expert
knowledge of low-level system call semantics. Arguably a consequence of this
complexity is that system-call interposition schemes are not practical solutions
since most users do not have the expertise required to translate high level
requirements into meaningful low level policies. Deferring enforcement to user-
space also introduces design challenges, such as the risk of race conditions
(Spencer et al., 1999, Watson, 2007).

System call anomaly detection monitoring faces challenges similar to that of
system call interposition. As a result of the complexity of system calls, anomaly
classification is typically based on a simplified view of activity. For example,
policy is often based on the system calls themselves (such as read, open, mmap)
regardless of what the system calls are actually doing. Due to a simplified view of
system activity, anomaly detection can be subject to mimicry attacks, where
malicious activity can be disguised by interspersing normal-looking system call
sequences (Wagner and Dean, 2001). Furthermore, policy generation faces
challenges. Static analysis of binary or source code can produce policy that does
not detect malicious activity that follows existing code paths, regardless of the
security implications. For example, programs that include logic flaws or have
been misconfigured can be exploited without corrupting the code of the
executable, and therefore static analysis policies consider this to be normal
behaviour. Additionally, static analysis requires access to all source or binary
code, which is not always practical in the case of dynamically linked libraries and
plug-ins. Learning modes can produce policy that is incomplete, since uncommon
code paths may not be profiled, and limited protections are in place while initially
profiling. Due to the high rate of false positives, system call anomaly detection
systems are often passive and do not enforce policy (Forrest et al., 2008).

Type enforcement (TE) and similar models such as role compatibility (RC) define
rules that specify the domains used to confine programs, the types accessible to
domains, and the types associated with files. Although these concepts provide
forms of abstraction, the policies remain complex and these concepts are arguably
not intuitive. Although domains serve as policy abstractions that associate rules
with programs, typically each application is assigned a unique domain consisting
of complex rules specifying allowed file and domain transitions and interactions
with types (similarly labelled objects). SELinux also includes m4 macros, which
are generally very low level abstractions granting a number of access rules to
specified resources. SELinux policy is complex, hard to comprehend and, despite
the maturity of SELinux, few graphical tools have been developed to ease policy
management. SELinux is frequently criticised for its complexity (Bratus et al.,
2007, Harada et al., 2004, Jaeger et al., 2003, Li et al., 2007, Novell, 2012, Zanin
and Mancini, 2004).

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

24

Many finely-grained rule-based application-oriented access controls simply
specify a list of all the resources programs require. As previously discussed, these
include sandboxes such as TRON, higher-level system call interposition schemes
such as Software Wrappers, and system wide controls such as AppArmor and
PeaPod. All of these systems require complex and typically lengthy policies to
restrict applications. Because these policies specify all the low level resources
programs need, they expose the complexity of the operating environment and the
resource requirements of applications. As previously discussed, the list of
resources applications typically need to access can be extremely complicated
(Marceau and Joyce, 2005). Creating, managing and reviewing these policies
therefore generally requires a relatively high level of expertise beyond that of
most end users. Some of these systems include simple policy abstractions that
group lists of rules and can be included in policies. However, due to the low level
nature of the rules and the complexity of the needs of application, these
abstractions represent low level attributes of programs. For example, AppArmor
includes abstractions such as ‘fonts’, ‘bash’, ‘nameservice’, ‘dbus’, ‘orbit2’, and
‘aspell’, which still require expertise to understand and utilise. Application
virtualization schemes use similar methods to define what actions programs are
authorised to perform, with the additional complexity of intra-component rules
and source based rules.

MAPbox makes the important contribution of behavioural classes to create
reusable associations between fine grained rules and programs (Acharya and Raje,
2000, Raje, 1999). However, under MAPbox programs are limited to a single
behaviour class (14 classes identified), and programs that exhibit multiple
behaviours (such as most web browsers) are unable to be confined. Also, although
it has been acknowledged that overlaps exist between classes, each policy is
defined individually. Although author-influenced policies may be useful for
simplifying policy management for users and may reduce the threat from
vulnerabilities, the threat of untrustworthy authors defining insecure policies
remains. An untrusted author will likely choose the most liberal class and
parameters that users will accept in order to improve the chances that the program
will have all the required authority to act as intended, be that benevolently or
maliciously. Also, allowing the user to arbitrarily specify the privileges assigned
to behaviours means that even authors who specify the behavioural class of
applications do not know what privileges they will be authorised. As discussed,
the FBAC model builds on this basic idea and overcomes a number of
shortcomings of the MAPbox model. FBAC was designed to overcome the
common limitations of rule-based application-oriented access controls, which is
discussed further below.

Table 2 presents an approximate summary of the limitations that have been
discussed and how they relate to each of the classes of rule-based systems that
have been described. As with the previous table, an “X” denotes that the
limitation typically applies to this class of system, while “X*” describes a
limitation that applies to a lesser extent or with some exceptions. As with the
approach used to explain Table 1, as an example one row is described in detail, in
this case the “non-discretionary framework combining access control models”
row, which describes security frameworks such as SELinux, and RSBAC:
schemes that combine a number of label-based non-discretionary access control

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

25

models. The first row indicates the complexity of the way policy is represented:
the policy language is complicated by the multiple models being represented
(such as RBAC, TE, and MLS), and is defined in terms of labels, which can be
unintuitive for people unfamiliar with the details of the security mechanism and
requires the text-based policies for restricting applications to be considered in
terms of how the files on the system are labelled. The policies are also typically
compiled into a non-human readable binary format before they are enforced. The
second row indicates that for this class of security system the text-based policies
are typically lengthy and complex, due to the large number of varied resources
that applications often require. The third row indicates that the policies expose the
complexity of underlying systems; that is, understanding policies requires
knowledge of low-level system details such as the filesystem hierarchy standard,
security labels, security models, and network ports. As shown in the next two
rows, these systems typically mediate access to network as well as file resources.
The following row represents the fact that each application's policy is largely
independent and the scheme lacks easily reusable policy abstractions, which is a
common limitation amongst many rule-based schemes. As discussed, in the case
of SELinux m4 macros can provide some limited low-level abstraction, and
multiple executables can be assigned to the same domains. However, in practice
each application policy is typically defined individually due to the inability for
these abstractions to adapt to individual needs of applications. The next row
indicates that these schemes can confine legacy applications; that is, existing
software. The next two rows indicate that these systems are non-discretionary and
are therefore maintained by administrators, and cannot be used by normal users to
confine their applications unless they are the administrator of their computer. The
final row shows that, like many rule-based application-oriented access controls,
non-discretionary frameworks combining access control models typically do
facilitate applications sharing the same resources with different permissions.

Table 2: Limitations of rule-based application-oriented access controls

Scheme
category

General
properties Example

C
om

plex policy representation

C
om

plex and/or lengthy application policies

A
pplication policy exposes the com

plexity of
underlying system

s

Lack netw
orking and/or IP

C
 m

ediation

Lack of file m
ediation

D
oes not scale w

ell, lacks reusable abstractions
for sim

plifying policy

C
annot be applied to legacy applications

D
oes not suit use by norm

al users to protect
them

selves w
ith discretionary controls

D
oes not suit use by adm

in to enforce non-
discretionary controls

D
oes not support sim

ple w
orkflow

 of editing the
sam

e files betw
een sandboxes, w

hile lim
iting

potential dam
age

System call
interposition

Fine-grained
rules,

typically in
terms of

system calls

Systrace X X X X X*

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

26

Scheme
category

General
properties Example

C
om

plex policy representation

C
om

plex and/or lengthy application policies

A
pplication policy exposes the com

plexity of
underlying system

s

Lack netw
orking and/or IP

C
 m

ediation

Lack of file m
ediation

D
oes not scale w

ell, lacks reusable abstractions
for sim

plifying policy

C
annot be applied to legacy applications

D
oes not suit use by norm

al users to protect
them

selves w
ith discretionary controls

D
oes not suit use by adm

in to enforce non-
discretionary controls

D
oes not support sim

ple w
orkflow

 of editing the
sam

e files betw
een sandboxes, w

hile lim
iting

potential dam
age

System call
anomaly
detection

Detects
anomalies in
system call
sequences

Callgraph X X X X X X

Application
virtualization

Portable
application

bytecode run
by a VM with

a security
policy

Java X X X X X X

Fine-grained
rules

sandbox

Fine-grained
rules, in
terms of

resources

Mac OS X
Sandbox X X X* X

One-size-fits-
all fine-
grained
policy

The same
detailed
policy is

applied to all
apps

iOS X* X* X X X

Artificial user
accounts

Applications
are confined
by assigning
them "user"

accounts

Rainbow X X X* X

Coarsely-
grained

privileges

Flag-based
privileges,

assigned to
applications

Linux
capabilities X* X* X X

Artificial user
accounts +
coarsely-
grained

privileges

Applications
are assigned

user
accounts
and flag-

based
privileges by

authors

Android X* X* X
X*

(single
user)

 X*

ACL
extensions

Files are
labelled with
a list of the
programs

that allowed
access

PACLs X X X X X

Type
enforcement

Label-based
permissions

between
types

(objects) and
domains

(processes)

DTE X X X X* X

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

27

Scheme
category

General
properties Example

C
om

plex policy representation

C
om

plex and/or lengthy application policies

A
pplication policy exposes the com

plexity of
underlying system

s

Lack netw
orking and/or IP

C
 m

ediation

Lack of file m
ediation

D
oes not scale w

ell, lacks reusable abstractions
for sim

plifying policy

C
annot be applied to legacy applications

D
oes not suit use by norm

al users to protect
them

selves w
ith discretionary controls

D
oes not suit use by adm

in to enforce non-
discretionary controls

D
oes not support sim

ple w
orkflow

 of editing the
sam

e files betw
een sandboxes, w

hile lim
iting

potential dam
age

Non-
discretionary
framework
combining

access
control
models

Complex
label-based
framework
combining

multiple
access
control
models

SELinux X X X X* X

Fine-grained
system-wide

rules

Fine-grained
rules, in
terms of

resources,
applied

automatically
when the

application
starts

AppArmor X X X* X

Hybrid
container-

based
virtualisation

+ fine-
grained rules

sandbox

Isolation-
based

virtualisation
with

additional
rules for

contained
applications

PeaPod X* X X X*

Functionality-
based

Applications
are confined
based on the
features they
are expected

to perform

FBAC

As illustrated in the table, many application-confinement schemes suffer from
policy complexity. Due to this complexity, using many of these systems it is
impractical to specify policy a priori; that is, without analysing the activity of
each application. For this reason many finely-grained rule-based mechanisms rely
on learning modes to automatically generate policy based on the observation of
programs operating. The program to be confined is executed and all security
sensitive actions are logged. These logged activities are then typically assumed to
be standard behaviour and are used to create a policy for confining the
application. Since only primitive policy abstractions are used (if any), resulting
policies are often large, complex and difficult to review, especially with system
call interposition schemes. As previously mentioned, examples of security
mechanisms that include learning modes include: AppArmor (Cowan et al.,
2000a), Systrace (Provos, 2002), LIDS (LIDS, 2012), SELinux (audit2allow tool)
(Habib, 2007), TOMOYO (Harada et al., 2004) and grsecurity (Spengler, 2012).

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

28

Learning modes develop policies either while the program is confined or when it
is unconfined. Using systems such as AppArmor, incrementally building policy
while the program is confined by the rules being developed can involve a large
number of iterations due to program failures where the program is unable to
continue without access to required privileges. Alternatively, building policy
while the program is not confined poses security risks if the software acts
maliciously during this process. Dynamic policy authorisation, such as used by
PULSE (Murray and Grove, 2008), can somewhat alleviate this risk by waiting
for user confirmation before authorising the program access to each resource.

Although learning modes can make policy generation easier, the policy requires
review to ensure that the logged behaviour does in fact represent legitimate
behaviour. However, reviewing policy requires expertise and meticulous
inspection of the generated policy, and even simple applications can involve a
very large number of rules. If the application is carrying out malicious behaviour
at the time of logging, and this is not detected at review, then the application-
oriented access control will not prevent the application from continuing these
malicious activities. Also, if the application does not access all the resources it
requires during policy generation, in the future it may be restricted from carrying
out its legitimate tasks, or require excessive user interaction and policy
refinement. This makes it difficult to learn behaviour without exposing the
application to the production environment, and possibly attack, during policy
generation.

Using previous finely-grained application restrictions, individual application-
oriented access control policies typically apply primarily to only one specific
application or program. The work involved in constructing policies for all
applications utilised is considerable; the management task generally increases
more or less in proportion to the number of applications being confined.

Furthermore, most schemes either provide user-specified policies (DAC),
administrator-specified policies (MAC), author-specified policies, or software-
specified policies. Each system can address one of these security goals. However,
these are all valid restrictions that should be capable of being combined to provide
defence-in-depth and to enforce the security goals of each party. Using the
schemes described, enforcing these goals simultaneously requires the
management of multiple security systems.

The FBAC approach demonstrably overcomes common limitations in rule-based
controls. Application policies are defined in terms of high-level abstractions,
which results in relatively simple (yet fine-grained) policies mediating access to
files and the network while abstracting the details of the underlying platform
(Schreuders et al., 2011b). FBAC enforces discretionary and non-discretionary
policy defined by a number of parties. The model is designed to provide controls
for users and administrators to enforce security goals. Policies have been created
to demonstrate that this approach can be applied to legacy applications. FBAC
also facilitates the development of policies a priori using high-level security
concepts, eliminating the need for learning modes (Schreuders et al., 2011c).

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

29

6. Application Restrictions and Usability

The result of all these limitations is primarily a usability problem. Despite the fact
that it has long been acknowledged as an important aspect in the design of
security systems (Saltzer and Schroeder, 1975), usability received little attention
in the literature until the importance of applying human-computer interaction
(HCI) techniques to the field of computer security was emphasised by studies
which demonstrated that poorly designed security user interfaces resulted in
degraded protection (Hitchings, 1995, Zurko and Simon, 1996). Although
awareness of the importance of usability in security design has improved (Cranor
and Garfinkel, 2005), and the literature now contains numerous publications
related to computer security usability, very little research has investigated or
addressed the usability issues associated with application-oriented access controls.

Research has explored usability within the wider field of access control and policy
specification. A study by Motiee et al. (2010) identified general problems with
existing user-oriented schemes. The conflict between usability and access control
policy complexity has been acknowledged a number of times, and methods for
improving the usability of policy specification have been explored (Brodie et al.,
2006, Cao and Iverson, 2006, Johnson et al., 2010a, Johnson et al., 2010b, Karat
et al., 2005, Reeder et al., 2008, Reeder et al., 2007, Zurko et al., 1999, Zurko and
Simon, 1996). A number of policy authoring techniques have been developed by
usable security researchers to overcome usability and policy complexity problems.
The Adage (Zurko et al., 1999) and MAP (Zurko and Simon, 1996) projects were
designed to provide usable RBAC for distributed organisations. SPARCLE is a
natural language policy management tool that guides users through the task of
specifying policy (Brodie et al., 2006, Karat et al., 2005). Expandable Grids is a
graphical method of managing and viewing policy using a hierarchical matrix
(Reeder et al., 2008), and Intentional Access Management produces user-oriented
DAC ACL policy rules based on low-level access goals of end users (Cao and
Iverson, 2006). Johnson et al. (2010a, 2010b) have recently proposed techniques
for improving the usability of guided natural language policy specification using
policy templates. Findings of studies such as these have supported the idea that
abstraction improves the usability of access controls and eases policy
specification.

However, little research has explored the usability of application-oriented access
control schemes. The isolation-based Apiary scheme and the data-centric
FileMonster scheme have been the subjects of limited usability studies (Potter and
Nieh, 2010, Schmid et al., 2002). Potter and Nieh (2010) conducted a simple user
study with 24 participants to evaluate the ability of users to use applications in the
Apiary environment. The use of the Apiary desktop was compared with Xfce, a
lightweight Linux desktop environment. Usability evaluation was simply
measured by time-on-task and participants were “asked to rate their perceived
ease of use of each environment on a scale of 1 to 5”. Participants were also asked
some other questions “including, would the Apiary environment be an
environment they could imagine using full time and would it be an environment
they would prefer to use full time if it would keep their desktop secure”. Results
were reported as affirmative, although no inferential statistics were employed.
Schmid et al. (2002) also conducted a simple evaluation of the FileMonster
scheme that measured the number of times the tool required user interaction.

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

30

A study by DeWitt and Kuljis (2006) assessed the usability of the Polaris security
mechanism (Stiegler et al., 2006), an application-oriented access control system
for Windows designed with usability in mind. The study involved 10 participants
utilising Polaris to carry out a number of tasks. Their success at the tasks was
evaluated and perceived usability was measured. After using Polaris to attempt a
number of tasks, participants on average rated the system 44.2 out of 100 using
the System Usability Scale (SUS) (Brooke, 1996), and the study concluded that
further work was necessary to improve the usability of Polaris.

A within-subjects usability study was performed to compare the usability of
SELinux, AppArmor, and FBAC-LSM and to identify factors that have an effect
on the usability of application-oriented access controls (Schreuders et al., 2011a,
Schreuders et al., 2012). Each of the 39 participants used all three systems to
confine a web browser and a simulation of a Trojan horse posing as a game.
Perceived usability was measured using the SUS, and policy success was
measured using a score based on security-sensitive resources available after
attempting the tasks. Inferential statistics indicated that significant differences in
usability existed between the systems. FBAC received a SUS score of 70.21,
AppArmor scored 54.93, and SELinux scored 34.58 (Schreuders et al., 2011a).
Risk exposure scores followed a similar trend with FBAC-LSM outperforming
AppArmor, which in turn successfully provided more protection than SELinux.
Qualitative analysis suggested various factors had an effect on usability, including
the kind of policy abstractions provided (Schreuders et al., 2012).

7. Recommendations and Future Work

This review shows that there are many opportunities for future research in the
field of application restrictions. This paper has identified a number of common
limitations in application-oriented access controls. These identified limitations can
serve as means of assessing existing schemes for suitability for various purposes,
can provide considerations for the design of new systems, and can form the
subject of future research.

In general, it was found that those schemes that were designed with usability in
mind were able to overcome many common limitations. Consequently, we
recommend usability be considered further during the design of application-
oriented access control schemes.

Work by the authors has taken the approach that the usability problems with rule-
based application oriented access controls can be overcome by reusable policy
abstractions representing high-level goals. Previous approaches either lacked
policy abstractions entirely, or utilised abstractions that do not provide the
flexibility and reusability necessary to represent high-level goals and abstract low-
level details from application restriction policies. Most application-oriented access
control models simply associate a list of privileges directly with an application.
Others provide policy abstractions that group privileges and can be reused only to
a limited extent. With most isolation sandboxes, the only policy abstraction
available is an isolated container that groups subjects with the objects they can
interact with; any exceptions are typically specified individually. Models that
restrict access to shared resources are generally either devoid of policy abstraction

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

31

(privileges are listed for each application), or are defined in terms of large
monolithic self-contained policy abstractions, such as is the case with DTE
domains and RC roles. These policy abstractions typically have limited reusability
as they only apply to the specific needs of an individual application. These models
lack the flexibility required to apply the policy abstractions to different
applications with shared high-level goals. Unless the applications have exactly the
same privilege requirements, the abstractions cannot be reused. Results of our
research have supported the idea that policy abstraction can facilitate overcoming
various limitations, and therefore we recommend serious consideration of policy
abstraction when designing application-oriented access controls.

While many different schemes for application-oriented controls currently exist (as
illustrated throughout this paper), a conflict exists between developing new
innovative and more usable methods of control, and improving and standardising
on existing systems which have received limited adoption. The recent popularity
of mobile device operating systems, such as Android and iOS, has demonstrated
that it is possible to provide more widespread use of application restrictions by
standardising on controls. This is a contentious issue for the Linux security
community, where a number of alternatives exist. The authors encourage the
design and adoption of usable controls that suit legacy applications on commodity
operating systems to provide security controls to limit the privilege assigned to
applications.

8. Conclusions

This paper has presented an overview of the motivation for application-oriented
access controls, and described in depth the application-oriented access controls
that have been proposed in the literature. Unlike user-oriented access controls,
application-oriented access controls specify policy primarily in terms of programs
or groups of programs, rather than users or groups of users. By identifying the
privileges required by each application and restricting their actions to those
privileges, the ability of applications to act beyond their legitimate purpose is
limited, and attempts to act maliciously are restricted. Application-oriented
schemes include models that isolate programs to only access the set of resources
available from within the isolated environment, and rule-based schemes that
provide controls over shared resources while allowing applications to access the
same resources in a restricted manner.

Both of these main approaches pose a number of challenges. Isolation does not
suit typical user workflows, can result in redundancy of resources, and requires
frequent circumvention of the security model to be practical. Rule-based schemes
typically result in complex policies that are hard to specify, review, and manage.

There are many opportunities for future research, and there is a need for usable
application-oriented security solutions. Although application-oriented access
controls can provide substantial security benefits by restricting the activities of
individual applications, to date adoption remains relatively rare and targeted,
arguably due to the inadequate usability of these schemes.

References

Acharya A, Raje M. MAPbox: Using Parameterized Behavior Classes to Confine Applications. In

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

32

9th USENIX Security Symposium. Denver, CO, USA: USENIX Association, 2000.
Alexandrov A, Kmiec P, Schauser K, University of California, Technical Report: "Consh:
Confined Execution Environment for Internet Computations," Santa Barbara, CA, USA, 1998.
Anderson J, Bonneau J, Stajano F. Inglorious Installers: Security in the Application Marketplace.
In 9th Workshop on the Economics of Information Security (WEIS 2010). Cambridge, MA, USA:
Harvard University, 2010.
Badger L. A Domain and Type Enforcement UNIX Prototype. Computing Systems. 1996; 9, 1: pp.
47-83.
Badger L, Sterne DF, Sherman DL, Walker KM, Haghighat SA. Practical Domain and Type
Enforcement for UNIX. In 16th IEEE Symposium on Security and Privacy. Oakland, CA, USA:
IEEE Computer Society, 1995, pp. 66-77.
Balfanz D, Simon DR. WindowBox: A Simple Security Model for the Connected Desktop. In 4th
USENIX Windows Systems Symposium. Seattle, WA, USA: USENIX Association, 2000, pp. 37–
48.
Barham P, Dragovic B, Fraser K, Hand S, Harris T, Ho A, et al. Xen and the Art of Virtualization.
In 19th ACM Symposium on Operating Systems Principles. Lake George, NY, USA: ACM Press,
2003, pp. 164-77.
Barrera D. Secure Software Installation on Smartphones. IEEE Security & Privacy. 2011; 9, 3: pp.
42-8.
Bell D, LaPadula L, MITRE Corporation, Technical Report: ESD-TR-75-306 "Secure Computer
System: Unified Exposition and Multics Interpretation," Bedford, MA, USA, 1975.
Bellard F. QEMU, a Fast and Portable Dynamic Translator. In FREENIX Track, USENIX Annual
Technical Conference. Anaheim, CA, USA: USENIX Association, 2005, pp. 41–6.
Bellovin SM, Cohen C, Havrilla J, Hernan S, King B, Lanza J, et al. Results of the Security in
ActiveX Workshop. In CERT Coordination Center Security in ActiveX Workshop. Pittsburgh,
PA, USA: CERT, 2000.
Ben-Cohen O, Wool A. Korset: Automated, Zero False-Alarm Intrusion Detection for Linux. In
The Linux Symposium. Ottawa, ON, Canada, 2008.
Benantar M. Access Control Systems: Security, Identity Management and Trust Models. New
York: Springer; 2006.
Berman A, Bourassa V, Selberg E. TRON: Process-Specific File Protection for the UNIX
Operating System. In Winter USENIX Conference. New Orleans, LA, USA: USENIX
Association, 1995, pp. 165-75.
Biba KJ, Mitre Corp, National Technical Information Service, Technical Report: MTR-3153
"Integrity Considerations for Secure Computer Systems," Bedford, MA, USA, 1977.
Bishop M. An Overview of Computer Viruses in a Research Environment. In 4th Annual
Computer Virus and Security Conference. New York, NY, USA, 1991, pp. 111-44.
Bishop M, Department of Computer Science, University of California at Davis, Technical Report:
CSE-95-8 "A Taxonomy of UNIX System and Network Vulnerabilities," Davis, CA, USA, 1995.
Blanchard B, Coelho P, Hazuka M, Petru J, Thitayanun T, Almond C, IBM Corp., Technical
Report: 073848654X "Introduction to Workload Partition Management in IBM AIX Version 6.1,"
2007.
Boebert WE, Kain RY. A Practical Alternative to Hierarchical Integrity Policies. In 8th National
Computer Security Conference. Gaithersburg, MD, USA: NIST, 1985, pp. 18-27.
Bratus S, Ferguson A, McIlroy D, Smith S. Pastures: Towards Usable Security Policy
Engineering. In 2nd International Conference on Availability, Reliability and Security. Vienna,
Austria, 2007, pp. 1052-9.
Brewer DFC, Nash MJ. The Chinese Wall Security Policy. In 10th IEEE Symposium on Security
and Privacy. Oakland, CA, USA: IEEE Computer Society, 1989, pp. 206–14.
Brodie CA, Karat C-M, Karat J. An Empirical Study of Natural Language Parsing of Privacy
Policy Rules Using the SPARCLE Policy Workbench. In 2nd Symposium on Usable Privacy and
Security (SOUPS). Pittsburgh, PA, USA: ACM Press, 2006.
Brooke J. SUS: A Quick and Dirty Usability Scale. In: Jordan PW, Thomas B, Weerdmeester BA,
McClelland IL, editors. Usability Evaluation in Industry. London: Taylor & Francis; 1996. p. 189-
94.
Callas J. Hacking PGP (Presentation). In Black Hat Europe. Amsterdam, Netherlands, 2005.
Canonical. AppArmor Linux Application Security Framework. https://launchpad.net/apparmor,
Accessed 2012.
Cao X, Iverson L. Intentional Access Management: Making Access Control Usable for End-users.
In 2nd Symposium on Usable Privacy and Security (SOUPS). Pittsburgh, PA, USA: ACM Press,
2006.
Christodorescu M, Jha S. Testing Malware Detectors. In ACM SIGSOFT International

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

33

Symposium on Software Testing and Analysis. Boston, MA, USA: ACM Press, 2004.
Christodorescu M, Jha S, Maughan D, Song D, Wang C. Malware Detection (Advances in
Information Security). New York: Springer-Verlag, Inc.; 2006.
Christodorescu M, Jha S, Seshia SA, Song D, Bryant RE. Semantics-Aware Malware Detection.
In 26th IEEE Symposium on Security and Privacy. Berkeley, CA, USA: IEEE Computer Society,
2005.
Computer Associates, Technical Report: "eTrust Access Control for UNIX," 2001.
Cowan C, Barringer M, Beattie S, Kroah-Hartman G. FormatGuard: Automatic Protection From
printf Format String Vulnerabilities. In 10th USENIX Security Symposium. Washington, DC,
USA: USENIX Association, 2001a.
Cowan C, Beattie S, Kroah-Hartman G, Pu C, Wagle P, Gligor V. SubDomain: Parsimonious
Server Security. In USENIX 14th Systems Administration Conference. New Orleans, LA, USA:
USENIX Association, 2000a.
Cowan C, Beattie S, Wright C, Kroah-Hartman G. RaceGuard: Kernel Protection From Temporary
File Race Vulnerabilities. In 10th USENIX Security Symposium. Washington, DC, USA:
USENIX Association, 2001b.
Cowan C, Wagle P, Pu C, Beattie S, Walpole J. Buffer Overflows: Attacks and Defenses for the
Vulnerability of the Decade. In DARPA Information Survivability Conference and Exposition
(DISCEX). Hilton Head, SC, USA: DARPA, 2000b, pp. 227-37.
Cranor L, Garfinkel S. Security and Usability: Designing Secure Systems That People Can Use:
O'Reilly Media, Inc.; 2005.
Dagon D, Gu G, Lee CP, Lee W. A Taxonomy of Botnet Structures. In 23rd Annual Computer
Security Applications Conference (ACSAC). Miami Beach, FL, USA: IEEE Computer Society,
2007, pp. 325-39.
Department of Defense, United States Government DOD 5200.28-STD "Trusted Computer
Security Evaluation Criteria," USA, 1985.
des Ligneris B. Virtualization of Linux Based Computers: The Linux-VServer Project. In 19th
International Symposium on High Performance Computing Systems and Applications (HPCS'05).
Guelph, Ontario, Canada: Springer, 2005, pp. 340-6.
DeWitt AJ, Kuljis J. Aligning Usability and Security: A Usability Study of Polaris. In 2nd
Symposium on Usable Privacy and Security (SOUPS). Pittsburgh, PA, USA: ACM Press, 2006,
pp. 1-7.
Dhamankar R, Dausin M, Eisenbarth M, King J, SANS, Technical Report: "The Top Cyber
Security Risks," 2009.
Dike J. A User-mode Port of the Linux Kernel. In 4th Annual Linux Showcase and Conference.
Oakland, CA, USA: USENIX Association, 2000, pp. 63–72.
Edge C, Barker W, Hunter B, Sullivan G. Enterprise Mac Security: Mac OS X Snow Leopard,
Second Edition: Apress; 2010.
Enck W, McDaniel P, Jaeger T. PinUP: Pinning User Files to Known Applications. In 24th
Annual Computer Security Applications Conference (ACSAC). Anaheim, CA, USA, 2008, pp. 55-
64.
Enck W, Ongtang M, McDaniel P. Understanding Android Security. IEEE Security & Privacy.
2009; 7, 1: pp. 50-7.
Enck W, Rueda S, Schiffman J, Sreenivasan Y, Clair LS, Jaeger T, et al. Protecting Users From
Themselves. In ACM Workshop on Computer Security Architecture. Fairfax, Virginia, USA:
ACM Press, 2007.
Farkas S. The Silverlight Security Model.
http://blogs.msdn.com/b/shawnfa/archive/2007/05/09/the-silverlight-security-model.aspx, 2007.
Ferraiolo D, Kuhn R. Role-Based Access Control. In 15th National Computer Security
Conference. Baltimore, MD, USA: NIST, 1992, pp. 554-63.
Ford R, Allen WH. Malware Shall Greatly Increase. IEEE Security & Privacy. 2009; 7, 6: pp. 69-
71.
Forrest S, Hofmeyr S, Somayaji A. The Evolution of System-call Monitoring. In 24th Annual
Computer Security Applications Conference (ACSAC). Anaheim, California, USA: IEEE
Computer Society, 2008, pp. 418-30.
Forrest S, Perelson AS, Allen L, Cherukuri R. Self-nonself Discrimination in a Computer. In 15th
IEEE Symposium on Security and Privacy. Los Alamitos, CA, USA: IEEE Computer Society
Press, 1994, pp. 202-12.
Fraser T. LOMAC: Low Water-mark Integrity Protection for COTS Environments. In 21st IEEE
Symposium on Security and Privacy. Berkeley, CA, USA: IEEE Computer Society, 2000, pp. 230-
45.
Fraser T. LOMAC: MAC You Can Live With. In FREENIX Track, USENIX Annual Technical

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

34

Conference. Boston, MA, USA: USENIX Association, 2001.
Fraser T, Badger L, Feldman M. Hardening COTS Software with Generic Software Wrappers. In
20th IEEE Symposium on Security and Privacy. Oakland, CA, USA: IEEE Computer Society,
1999, pp. 2-16.
Garfinkel S, Spafford G, Schwartz A. Practical Unix and Internet Security. 3 ed. Sebastopol, CA,
USA: O'Reilly; 2003.
Garfinkel T. Traps and Pitfalls: Practical Problems in System Call Interposition Based Security
Tools. In 10th Network and Distributed System Security Symposium. San Diego, CA, USA:
Stanford University, 2003, pp. 163-76.
Garfinkel T, Pfaff B, Rosenblum M. Ostia: A Delegating Architecture for Secure System Call
Interposition. In Network and Distributed Systems Security Symposium. San Diego, CA, USA,
2004.
Ghormley DP, Petrou D, Rodrigues SH, Anderson TE. SLIC: An Extensibility System for
Commodity Operating Systems. In USENIX Annual Technical Conference. New Orleans, LA,
USA: USENIX Association, 1998.
Giffin JT, Jha S, Miller BP. Detecting Manipulated Remote Call Streams. In 11th USENIX
Security Symposium. San Francisco, CA, USA: USENIX Association, 2002.
Goldberg I, Wagner D, Thomas R, Brewer EA. A Secure Environment for Untrusted Helper
Applications: Confining the Wily Hacker. In 6th USENIX Security Symposium. San Jose, CA,
USA: USENIX Association, 1996.
Gong L, Mueller M, Prafullchandra H, Schemers R. Going Beyond the Sandbox: An Overview of
the New Security Architecture in the Java Development Kit 1.2. In USENIX Symposium on
Internet Technologies and Systems. Monterey, CA, USA: Prentice Hall PTR, 1997.
Governa F. Fighting Spyware with Mandatory Access Control in MS Windows Vista: A Concept
for Fighting Spyware in the Microsoft Windows Vista OS: VDM Verlag; 2009.
Govindavajhala S, Appel AW. Windows Access Control Demystified. http://packetstorm.security-
guide.de/papers/attack/winval.pdf, 2006.
Habib I. Creating SELinux Policies Simplified. Linux Journal. 2007; 154.
Hallyn SE, Kearns P. Domain and Type Enforcement for Linux. In 4th Annual Linux Showcase
and Conference. Atlanta, GA, USA, 2000, pp. 247–60.
Hallyn SE, Morgan AG. Linux Capabilities: Making Them Work. In The Linux Symposium.
Ottawa, ON, Canada, 2008.
Harada T, Horie T, Tanaka K. Task Oriented Management Obviates Your Onus on Linux. In
Linux Conference 2004. Tokyo, Japan, 2004.
Hardy N. The KeyKOS Architecture. Operating Systems Review. 1985; 19, 4: pp. 8-25.
Hardy N. The Confused Deputy: Or Why Capabilities Might Have Been Invented. ACM SIGOPS
Operating Systems Review. 1988; 22, 4: pp. 36-8.
Hitchings J. Deficiencies of the Traditional Approach to Information Security and the
Requirements for a New Methodology. Computers & Security. 1995; 14, 5: pp. 377-83.
Hofmeyr SA, Forrest S, Somayaji A. Intrusion Detection Using Sequences of System Calls.
Journal of Computer Security. 1998; 6, 3: pp. 151-80.
IEEE, Institute of Electrical and Electronics Engineers, Inc., Withdrawn Standards Draft:
PSSG/D17 "POSIX 1003.1e," 1997.
Ioannidis S, Bellovin SM, Smith JM. Sub-operating Systems: A New Approach to Application
Security. In 10th Workshop on ACM SIGOPS European Workshop. Saint-Emilion, France: ACM
Press, 2002.
Jaeger T, Sailer R, Zhang X. Analyzing Integrity Protection in the SELinux Example Policy. In
12th USENIX Security Symposium, 2003, pp. 59–74.
Jain K, Sekar R. User-Level Infrastructure for System Call Interposition: A Platform for Intrusion
Detection and Confinement. In ISOC Network and Distributed Systems Symposium (NDSS). San
Diego, CA, USA, 2000.
Johnson M, Karat J, Karat C-M, Grueneberg K. Optimizing a Policy Authoring Framework for
Security and Privacy Policies. In 6th Symposium on Usable Privacy and Security (SOUPS).
Redmond, Washington, DC, USA: ACM Press, 2010a.
Johnson M, Karat J, Karat CM, Grueneberg K. Usable Policy Template Authoring for Iterative
Policy Refinement. In IEEE International Symposium on Policies for Distributed Systems and
Networks (POLICY 2011). Fairfax, VA, USA: IEEE Computer Society, 2010b.
Jones MB. Interposition Agents: Transparently Interposing User Code at the System Interface.
ACM SIGOPS Operating Systems Review. 1993; 27, 5: pp. 80-93.
Kamp P-H, Watson R. Jails: Confining the Omnipotent Root. In 2nd International System
Administration and Networking Conference (SANE 2000). Maastricht, The Netherlands, 2000.
Kamp P-H, Watson R. Building Systems to be Shared Securely. ACM Queue. 2004; 2, 5: pp. 42-

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

35

51.
Karat J, Karat C-M, Brodie C, Feng J. Privacy in Information Technology: Designing to Enable
Privacy Policy Management in Organizations. International Journal of Human-Computer Studies.
2005; 63, 1-2: pp. 153-74.
Kato K, Oyama Y. SoftwarePot: An Encapsulated Transferable File System for Secure Software
Circulation. In Mext-NSF-JSPS International Conference on Software Security: Theories and
Systems. Tokyo, Japan: Springer-Verlag, 2002.
Kiriansky V, Bruening D, Amarasinghe S. Secure Execution Via Program Shepherding. In 11th
USENIX Security Symposium. Berkeley, CA, USA: USENIX Association, 2002.
Kotadia M. Eighty Percent of New Malware Defeats Antivirus.
http://www.zdnet.com.au/news/security/soa/Eighty_percent_of_new_malware_defeats_antivirus/0
,2000061744,39263949,00.htm, 2006.
Krell E, Krishnamurthy B. COLA: Customized Overlaying. In USENIX Winter Conference. San
Francisco, CA, USA: USENIX Association, 1992.
Krsti I, Garfinkel SL. Bitfrost: The One Laptop Per Child Security Model. In 3rd Symposium on
Usable Privacy and Security (SOUPS). Pittsburgh, PA, USA: ACM Press, 2007, pp. 132-42.
Kurchuck A, Keromytis AD. Recursive Sandboxes: Extending Systrace to Empower Applications.
In 19th IFIP International Information Security Conference (SEC). Toulouse, France, 2004.
Lam LC, Chiueh TC. Automatic Extraction of Accurate Application-specific Sandboxing Policy.
In IEEE Military Communications Conference (MILCOM). Atlantic City, NJ, USA: IEEE
Computer Society, 2005, pp. 713-9.
Landwehr CE, Bull AR, McDermott JP, Choi WS. A Taxonomy of Computer Program Security
Flaws. ACM Computing Surveys (CSUR). 1994; 26, 3: pp. 211-54.
Lee P, Necula G. Research on Proof-Carrying Code for Mobile-Code Security. In DARPA
Workshop on Foundations for Secure Mobile Code. Pittsburgh, PA, USA: United States
Department of Defense, Defense Advanced Research Projects Agency (DARPA), 1997.
Lessard P, SANS Institute, InfoSec Reading Room Report: "Linux Process Containment – A
Practical Look at chroot and User Mode Linux," 2003.
Levy JY, Demailly L, Ousterhout JK, Welch BB. The Safe-Tcl Security Model. In USENIX
Annual Technical Conference. New Orleans, LA, USA: USENIX Association, 1998.
Li N, Mao Z, Chen H, Purdue University, Center for Education and Research in Information
Assurance and Security, Technical Report: CERIAS TR 2006-38 "Host Integrity Protection
Through Usable Non-discretionary Access Control," West Lafayette, IN, USA, 2007.
Liang Z, Sun W, Venkatakrishnan VN, Sekar R. Alcatraz: An Isolated Environment for
Experimenting with Untrusted Software. ACM Transactions on Information and System Security
(TISSEC). 2009; 12, 3: pp. 1-37.
Liang Z, Venkatakrishnan VN, Sekar R. Isolated Program Execution: An Application Transparent
Approach for Executing Untrusted Programs. In 19th Annual Computer Security Applications
Conference (ACSAC). Las Vegas, NV, USA, 2003, pp. 182-91.
LIDS. Linux Intrusion Detection System (LIDS) - Secure Linux System. http://www.lids.org,
Accessed 2012.
Lipner SB. Non-Discretionary Controls for Commercial Applications. In 3rd IEEE Symposium on
Security and Privacy. Oakland, CA, USA: IEEE Computer Society, 1982, pp. 2-10.
Loscocco P, Smalley S. Integrating Flexible Support for Security Policies into the Linux Operating
System. In FREENIX Track: 2001 USENIX Annual Technical Conference. Boston, MA, USA:
USENIX Association, 2001a, pp. 29-42.
Loscocco P, Smalley S. Meeting Critical Security Objectives with Security-Enhanced Linux. In
Ottawa Linux Symposium. Berkeley, CA, USA, 2001b.
LXC. lxc Linux Containers. http://lxc.sourceforge.net/, Accessed 2012.
Madnick SE, Donovan JJ. Application and Analysis of the Virtual Machine Approach to
Information Security. In ACM Workshop on Virtual Computer Systems. Cambridge, MA, USA:
Harvard University, 1973, pp. 210-24.
Manoel E, Budai V, Buecker A, Edwards D, Samson A, IBM Corporation, Technical Report:
SG24-5520-00 "Enterprise Security Management with Tivoli," 2000.
Mansfield-Devine S. The Promise of Whitelisting. Network Security. 2009; 7: pp. 4-6.
Marceau C, Joyce R. Empirical Privilege Profiling. In Workshop on New Security Paradigms
(NSPW). Lake Arrowhead, CA, USA: ACM Press, 2005, pp. 111-8.
Marlinspike M. More Tricks For Defeating SSL In Practice (Presentation). In Black Hat USA.
Las Vegas, NV, USA, 2009.
McCauley T. Understanding the Security Changes in Flash Player 10.
http://www.addlifetotheweb.com/devnet/flashplayer/articles/fplayer10_security_changes.html,
2008.

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

36

Mettler A, Wagner D, University of California at Berkeley, Technical Report: UCB/EECS-2008-
91 "The Joe-E Language Specification," Berkeley, CA, USA, 2008.
Microsoft. Microsoft Security Bulletin MS01-017: Erroneous VeriSign-Issued Digital Certificates
Pose Spoofing Hazard. http://www.microsoft.com/technet/security/bulletin/MS01-017.mspx,
2001.
Microsoft. Technet Report: Introducing AppLocker. http://technet.microsoft.com/en-
us/library/dd560656(WS.10).aspx, 2008a.
Microsoft. Technet Report: Software Restriction Policies (SRP). http://technet.microsoft.com/en-
us/library/dd348653(WS.10).aspx, 2008b.
Microsoft. Microsoft Virtual Server 2005 R2.
http://www.microsoft.com/windowsserversystem/virtualserver/default.aspx, Accessed 2012a.
Microsoft. TechNet Essay: 10 Immutable Laws of Security. http://technet.microsoft.com/en-
au/library/cc722487.aspx, Accessed 2012b.
Microsoft. Technet Report: Introduction to ActiveX Controls. http://msdn.microsoft.com/en-
us/library/aa751972(VS.85).aspx, Accessed 2012c.
Miller MS. Robust Composition: Towards a Unified Approach to Access Control and
Concurrency Control. Baltimore, MD, USA: Johns Hopkins University; 2006.
Miller MS, Tulloh B, Shapiro JS. The Structure of Authority: Why Security Is Not a Separable
Concern. In Multiparadigm Programming in Mozart/Oz (MOZ). Charleroi, Belgium: Springer-
Verlag, 2004, pp. 2-20.
Moser A, Kruegel C, Kirda E. Limits of Static Analysis for Malware Detection. In 23rd Annual
Computer Security Applications Conference (ACSAC). Miami Beach, FL, USA, 2007.
Motiee S, Hawkey K, Beznosov K. Do Windows Users Follow the Principle of Least Privilege?:
Investigating User Account Control Practices. In 6th Symposium on Usable Privacy and Security
(SOUPS). Redmond, Washington, DC, USA: ACM Press, 2010.
Murray AP, Grove DA. PULSE: A Pluggable User-space Linux Security Environment. In 6th
Australasian Conference on Information Security. Wollongong, NSW, Australia: Australian
Computer Society, Inc., 2008.
Nachenberg C. Computer Virus-antivirus Coevolution. Communications of the ACM. 1997; 40, 1:
pp. 46-51.
Necula GC. Proof-carrying Code. In 24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. Paris, France: ACM Press, 1997.
Necula GC, Lee P. The Design and Implementation of a Certifying Compiler. ACM SIGPLAN
Notices. 2004; 39, 4: pp. 612-25.
Novell. AppArmor and SELinux Comparison.
http://www.novell.com/linux/security/apparmor/selinux_comparison.html, Accessed 2012.
OLPC. Rainbow. http://wiki.laptop.org/go/Rainbow, Accessed 2012.
Oracle. VirtualBox. http://www.virtualbox.org/, Accessed 2012.
Ott A. The Role Compatibility Security Model. In 7th Nordic Workshop on Secure IT Systems
(NordSec). Karlstad, Värmland, Sweden, 2002.
Ott A, Ievlev S, Heinrich WK. The Rule Set Based Access Control (RSBAC) Linux Kernel
Security Extension. In 8th International Linux Kongress. Enschede, Netherlands, 2001.
Pandey R, Hashii B. Providing Fine-Grained Access Control for Java Programs. In 13th European
Conference on Object-Oriented Programming (ECOOP). Lisbon, Portugal: Springer Berlin /
Heidelberg, 1999, p. 668.
Parallels Inc. OpenVZ - Server Virtualization Open Source Project. http://openvz.org/, Accessed
2012a.
Parallels Inc. Virtual PC, Virtual Machine and Multiple Operating System Solutions by Parallels,
Inc. http://www.parallels.com/, Accessed 2012b.
Parallels Inc. Virtuozzo Containers. http://www.parallels.com/au/products/pvc46/, Accessed
2012c.
Patcha A, Park J-M. An Overview of Anomaly Detection Techniques: Existing Solutions and
Latest Technological Trends. Computer Networks: The International Journal of Computer and
Telecommunications Networking. 2007; 51, 12: pp. 3448-70.
Piessens F. A Taxonomy of Causes of Software Vulnerabilities in Internet Software. In The 13th
International Symposium on Software Reliability Engineering. Annapolis, MD, USA: IEEE
Computer Society, 2002, pp. 47-52.
Positive Software Corporation. Free Virtual Private Server Solution.
http://www.freecode.com/projects/freevps, Accessed 2012.
Potter S, Nieh J. Apiary: Easy-to-Use Desktop Application Fault Containment on Commodity
Operating Systems. In USENIX Annual Technical Conference. Boston, MA, USA: USENIX
Association, 2010.

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

37

Potter S, Nieh J, Selsky M. Secure Isolation of Untrusted Legacy Applications. In 21st Large
Installation System Administration Conference (LISA '07). Dallas, TX, USA: USENIX
Association, 2007, pp. 117-30.
Potter S, Nieh J, Subhraveti D, Columbia University, Technical Report: CUCS-005-04 "Secure
Isolation and Migration of Untrusted Legacy Applications," New York, NY, USA, 2004.
Provos N. Improving Host Security with System Call Policies. In 12th USENIX Security
Symposium. Washington, DC, USA: USENIX Association, 2002.
Raje M. TRCS 99-12: Behavior-based Confinement of Untrusted Applications. Santa Barbara:
University of Calfornia; 1999.
Reeder RW, Bauer L, Cranor LF, Reiter MK, Bacon K, How K, et al. Expandable Grids for
Visualizing and Authoring Computer Security Policies. In 26th Annual SIGCHI Conference on
Human Factors in Computing Systems. Florence, Italy: ACM Press, 2008.
Reeder RW, Karat C-M, Karat J, Brodie C. Usability Challenges in Security and Privacy Policy-
authoring Interfaces. In 11th IFIP TC 13 International Conference on Human-computer
Interaction. Rio de Janeiro, Brazil: Springer-Verlag, 2007.
Returnil. Returnil Virtual System. http://www.returnilvirtualsystem.com/returnil-system-safe,
Accessed 2012.
Rutkowska J, Wojtczuk R, Invisible Things Lab, Technical Report: Version 0.3 "Qubes OS
Architecture," 2010.
Saltzer JH, Schroeder MD. The Protection of Information in Computer Systems. Proceedings of
the IEEE. 1975; 63, 9: pp. 1278-308.
Schiavo J. Code Signing for End-user Peace of Mind. Network Security. 2010; 7: pp. 11-3.
Schmid M, Hill F, Ghosh AK. Protecting Data from Malicious Software. In 18th Annual
Computer Security Applications Conference (ACSAC). Washington, DC, USA: IEEE Computer
Society, 2002.
Schreuders ZC. FBAC-LSM: Protect Yourself From Your Apps. http://schreuders.org/FBAC-
LSM, Accessed 2012.
Schreuders ZC, McGill T, Payne C. Empowering End Users to Confine Their Own Applications:
The Results of a Usability Study Comparing SELinux, AppArmor and FBAC-LSM. ACM
Transactions on Information and System Security (TISSEC). 2011a; 14, 2: pp. 1-28.
Schreuders ZC, McGill T, Payne C. Towards Usable Application-oriented Access Controls:
Qualitative Results from a Usability Study of SELinux, AppArmor and FBAC-LSM. International
Journal of Information Security and Privacy. 2012; 6, 1: pp. 57-76.
Schreuders ZC, Payne C. Functionality-Based Application Confinement: Parameterised
Hierarchical Application Restrictions. In International Conference on Security and Cryptography
(SECRYPT 2008). Porto, Portugal: INSTICC Press, 2008a, pp. 72-7.
Schreuders ZC, Payne C. Reusability of Functionality-Based Application Confinement Policy
Abstractions. In 10th International Conference on Information and Communications Security
(ICICS 2008). Birmingham, UK: Springer, 2008b, pp. 206-21.
Schreuders ZC, Payne C, McGill T. A Policy Language for Abstraction and Automation in
Application-oriented Access Controls: The Functionality-based Application Confinement Policy
Language. In IEEE International Symposium on Policies for Distributed Systems and Networks
(POLICY 2011). Italy, Pisa: IEEE Computer Society, 2011b.
Schreuders ZC, Payne C, McGill T. Techniques for Automating Policy Specification for
Application-oriented Access Controls. In 6th International Conference on Availability, Reliability
and Security (ARES 2011) Vienna, Austria: IEEE Computer Society, 2011c.
Seaborn M. Plash. http://plash.beasts.org/, 2008.
Seriot N. iPhone Privacy. In Black Hat DC. Arlington, VA, USA, 2010.
Smalley S, Vance C, Salamon W, National Security Agency (NSA), Technical Report: NAI Labs
Report #01-043 "Implementing SELinux as a Linux Security Module," USA, 2001.
Snowberger P. Sub-identities: A Hierarchical Identity Model For Practical Containment. Notre
Dame, IN, USA: University of Notre Dame; 2007.
Spencer R, Smalley S, Loscocco P, Hibler M, Andersen D, Lepreau J. The Flask Security
Architecture: System Support for Diverse Security Policies. In 8th USENIX Security Symposium.
Washington, DC, USA: USENIX Association, 1999, pp. 123-39.
Spengler B. grsecurity. http://www.grsecurity.net/, Accessed 2012.
Stafford TF, Urbaczewski A. Spyware: The Ghost in the Machine. Communications of the
Association for Information Systems. 2004; 14: pp. 291-306.
Stiegler M, Karp AH, Yee KP, Close T, Miller MS. Polaris: Virus-safe Computing for Windows
XP. Communications of the ACM. 2006; 49, 9: pp. 83-8.
Sugerman J, Venkitachalam G, Lim BH. Virtualizing I/O Devices on VMware Workstation’s
Hosted Virtual Machine Monitor. In USENIX Annual Technical Conference. Boston, MA, USA:

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

38

USENIX Association, 2001, pp. 1–14.
Sun W, Liang Z, Sekar R, Venkatakrishnan VN. One-way Isolation: An Effective Approach for
Realizing Safe Execution Environments. In 12th ISOC Symposium on Network and Distributed
Systems Security (SNDSS). San Diego, CA, USA, 2005.
Szor P. The Art of Computer Virus Research and Defense: Addison-Wesley Professional; 2005.
Tandon G, Chan PK. On the Learning of System Call Attributes for Host-based Anomaly
Detection. International Journal of Artificial Intelligence Tools. 2006; 15, 6: pp. 875-92.
Thorsteinson P, Ganesh GGA. .Net Security and Cryptography: Prentice Hall PTR; 2003.
Tucker A, Comay D. Solaris Zones: Operating System Support for Server Consolidation. In 3rd
Virtual Machine Research and Technology Symposium Works-in-Progress. San Jose, CA, USA,
2004.
Tzur R. Sandboxie. http://www.sandboxie.com/, Accessed 2012.
Vegge H, Halvorsen FM, Nergard RW, Jaatun MG, Jensen J. Where Only Fools Dare to Tread:
An Empirical Study on the Prevalence of Zero-Day Malware. In 4th International Conference on
Internet Monitoring and Protection (ICIMP 2009). Venice/Mestre, Italy: IEEE Computer Society,
2009.
Wagner D, Dean R. Intrusion Detection Via Static Analysis. In 22nd IEEE Symposium on
Security and Privacy. Oakland, CA, USA: IEEE Computer Society, 2001, pp. 156-68.
Wagner DA, University of California, Technical Report: CSD-99-1056 "Janus: An Approach for
Confinement of Untrusted Applications," Berkeley, CA, USA, 1999.
Walker K, Sterne D, Badger M, Petkac M, Sherman D, Oostendorp K. Confining Root Programs
with Domain and Type Enforcement. In 6th USENIX Security Symposium. San Jose, CA, USA:
USENIX Association, 1996.
Walsh D. Dan Walsh's Blog: Introducing the SELinux Sandbox.
http://danwalsh.livejournal.com/28545.html, 2009.
Watson RNM. Exploiting Concurrency Vulnerabilities in System Call Wrappers. In 1st USENIX
Workshop on Offensive Technologies. Boston, MA, USA: USENIX Association, 2007.
Weaver N, Paxson V, Staniford S, Cunningham R. A Taxonomy of Computer Worms. In ACM
Workshop on Rapid Malcode. Washington, DC, USA: ACM Press, 2003, pp. 11-8.
Weber S, Karger PA, Paradkar A. A Software Flaw Taxonomy: Aiming Tools at Security. ACM
SIGSOFT Software Engineering Notes: Software Engineering for Secure Systems (SESS) -
Building Trustworthy Applications 2005; 30, 4: pp. 1-7.
Whitaker A, Shaw M, Gribble SD. Denali: Lightweight Virtual Machines for Distributed and
Networked Applications. In 5th USENIX Symposium on Operating Systems Design and
Implementation. Boston, MA, USA: USENIX Association, 2002, pp. 195–209.
Wichers DR, Cook DM, Olsson RA, Crossley J, Levitt PKKN, Lo R. PACL’s: An Access Control
List Approach to Anti-viral Security. In 13th National Computer Security Conference.
Washington, DC, USA: NIST, 1990.
Yee B, Sehr D, Dardyk G, Chen JB, Muth R, Ormandy T, et al. Native Client: A Sandbox for
Portable, Untrusted x86 Native Code. Communications of the ACM. 2010; 53, 1: pp. 91-9.
Zanin G, Mancini LV. Towards a Formal Model for Security Policies Specification and Validation
in the SELinux System. In 9th ACM Symposium on Access Control Models and Technologies.
Yorktown Heights, NY, USA: ACM Press, 2004, pp. 136-45.
Zurko ME, Simon R, Sanfilippo T. A User-centered, Modular Authorization Service Built on an
RBAC Foundation. In IEEE Symposium on Security and Privacy. Oakland, CA, USA: IEEE
Computer Society, 1999, pp. 57-71.
Zurko ME, Simon RT. User-Centered Security. In New Security Paradigms Workshop (NSPW).
Lake Arrowhead, CA, USA: ACM Press, 1996, pp. 27-33.

