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The State of the Art of Application Restrictions and 
Sandboxes: A Survey of Application-oriented Access 

Controls and their Shortfalls 

 

Abstract:  Under most widely-used security mechanisms the programs users run possess more 
authority than is strictly necessary, with each process typically capable of utilising all of the user’s 
privileges. Consequently such security mechanisms often fail to protect against contemporary 
threats, such as previously unknown (‘zero-day’) malware and software vulnerabilities, as 
processes can misuse a user’s privileges to behave maliciously. Application restrictions and 
sandboxes can mitigate threats that traditional approaches to access control fail to prevent by 
limiting the authority granted to each process. This developing field has become an active area of 
research, and a variety of solutions have been proposed. However, despite the seriousness of the 
problem and the security advantages these schemes provide, practical obstacles have restricted 
their adoption. 

This paper describes the motivation for application restrictions and sandboxes, presenting an in-
depth review of the literature covering existing systems. This is the most comprehensive review of 
the field to date. The paper outlines the broad categories of existing application-oriented access 
control schemes, such as isolation and rule-based schemes, and discusses their limitations. 
Adoption of these schemes has arguably been impeded by workflow, policy complexity, and 
usability issues. The paper concludes with a discussion on areas for future work, and points a way 
forward within this developing field of research with recommendations for usability and 
abstraction to be considered to a further extent when designing application-oriented access 
controls. 

Keywords: literature review, application-oriented access controls, sandboxing, 
virtualization, confinement. 
 

1. Introduction 

Traditional approaches to access control have typically been user-oriented, that is, 
they make access decisions based primarily on the identity of users. These 
methods generally fail to protect users from previously unknown software 
vulnerabilities and malware, because when executed this malicious code may 
utilise all of the user's privileges. Application restrictions and sandboxing can 
mitigate this threat by limiting the authority granted to processes based on the 
privileges or resource name-space they require in order to carry out their 
legitimate functions. The field of application-oriented access control, schemes 
which primarily base access decisions on the programs involved rather than on the 
identity of users, has therefore become an active area of research, and a number of 
approaches have been proposed. However, despite the security advantages they 
provide, adoption of these schemes has been limited. This paper aims to review 
the various approaches taken and identify their limitations. 
 
This paper is structured as follows. We begin with a discussion of the limitations 
of the traditional security approaches, introducing the concept of user-oriented 
access controls and the inability of this method to sufficiently mitigate the threat 
posed by malware and vulnerabilities. Limitations of trust-based selective 
execution (such as traditional anti-malware software) and integrity-level schemes 
are also discussed. This is followed by a comprehensive overview and comparison 
of application-oriented access control schemes. Isolation-based schemes, 
including traditional sandboxes, virtual machines and containers, are described 
and practical drawbacks to these approaches are explored. Rule-based schemes 
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and their advantages are discussed, followed by a discussion of the problems with 
these systems. Rule-based application-oriented access control schemes include 
models such as domain and type enforcement (DTE), system call interposition 
schemes such as Janus and Systrace, and mechanisms such as AppArmor and 
SELinux. The paper concludes with recommendations, and highlights the 
opportunities for progress within this field of research. 

2. The Motivation for Application-oriented Access 
Controls: Limitations of Traditional Approaches 

A long held assumption has been that programs will always run with the full 
authority of the user who starts them. This is illustrated by a Microsoft technical 
essay describing so called “immutable laws of security”, including the statement 
that “if a bad guy can persuade you to run his program on your computer, it's not 
your computer anymore” (Microsoft, 2012b). Access controls, which restrict the 
actions of processes, have typically been designed on the basis that programs are 
trusted to act on behalf of users and that the actions of software are equivalent to 
the actions of users. However, this assumption is increasingly proving to be false, 
and a number of prevalent types of security attacks leverage this weakness to 
misuse the authority of users. In contemporary computing environments, 
programs cannot safely be automatically trusted with these rights. 
 
In the past access control has been almost exclusively considered in terms of user 
confinement. Access control models were developed to specify exactly what each 
user could do with shared resources (based on the user’s clearance or roles) and to 
separate users from each other (Department of Defense, 1985, Ferraiolo and 
Kuhn, 1992). Essentially the goal has been to protect the confidentiality, integrity, 
and availability of the system’s resources and files from malicious users. These 
models can be considered examples of user-oriented access controls; that is, they 
primarily base access decisions on the authority granted to users. With user-
oriented access control it is typical for active entities within the system (known as 
‘subjects’) to have access to all the user’s privileges regardless of the privileges 
actually required by the program running. In the literature most access control 
models are designed with the assumption that subjects act on behalf of users, and 
therefore they base access decisions on the user identity associated with each 
subject. In practice this effectively involves treating processes as equivalent to the 
corresponding user.  
 
Some examples of user-oriented access control include traditional discretionary 
access control (DAC) models (Department of Defense, 1985) as implemented in 
most commodity operating systems (Garfinkel et al., 2003, Govindavajhala and 
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Appel, 2006)1, traditional mandatory access control (MAC) models (Bell and 
LaPadula, 1975, Biba, 1977, Brewer and Nash, 1989, Department of Defense, 
1985, Lipner, 1982), and role-based access control (RBAC) (Ferraiolo and Kuhn, 
1992). 
 
Despite being widely deployed, user-oriented access control is often insufficient 
as the sole access control mechanism. Processes do not always act on behalf of the 
users they belong to. Two of the major threats to operating system access control, 
those posed by software vulnerabilities and by malware, are particularly effective 
due to attackers executing malicious code via processes run by local users.  
 
The 2009 SANS Cyber Security Risks report (Dhamankar et al., 2009) highlights 
attacks against software vulnerabilities in applications as the highest priority 
security risk. The report states that attacks against vulnerable applications, such as 
Adobe PDF Reader, QuickTime, Adobe Flash and Microsoft Office, are 
“currently the primary initial infection vector used to compromise computers that 
have Internet access” (Dhamankar et al., 2009). Software vulnerabilities often 
exist that enable attackers to gain control of legitimate processes, and misuse the 
authority to perform malicious actions. The causes of software vulnerabilities are 
numerous and varied, and have been explored and categorised by various 
taxonomies in the literature (Bishop, 1995, Landwehr et al., 1994, Piessens, 2002, 
Weber et al., 2005). Causes include design and implementation flaws, such as 
buffer overflows, race conditions, and input validation errors (Cowan et al., 
2001a, Cowan et al., 2001b, Cowan et al., 2000b).  
 
Software that is malicious by design, known as malware, also poses a significant 
threat that user-oriented access controls do not sufficiently mitigate. Malware 
poses security risks to users’ integrity (via malicious destructiveness), 
confidentiality (privacy concerns), and availability (denial of service). 
Classifications of malware include Trojan horses, adware, spyware, viruses and 
worms, and taxonomies proposed in the literature provide further categorisation 
(Dagon et al., 2007, Stafford and Urbaczewski, 2004, Weaver et al., 2003). There 
are many ways that malware can propagate to computers including: 

• Man-in-the-middle attacks can intercept communications between hosts 
and insert malware via trusted websites and hosts. It is even often possible 
to intercept “secure” encrypted communications (Marlinspike, 2009). 

• Viruses copy themselves to other programs. 
• Worms propagate across networks, often by exploiting software 

vulnerabilities. 
• Trojan horses pose as legitimate programs. 
• Malware can be sent via email in targeted attacks. 

                                                
1 The security schemes of modern operating systems such as Unix and Windows 
are primarily based on DAC user-oriented access control. Unix and related 
systems have incorporated user-oriented access controls since the 1970s. 
Microsoft Windows Me and earlier did not provide user-oriented access controls. 
User confinement is limited in Windows XP, and most users run as an 
administrator as many programs do not execute correctly on user confinement 
restricted accounts. Windows Vista and later provides improved user-oriented 
controls, known as User Account Control (UAC). As discussed later, modern 
systems are starting to incorporate some application-oriented controls. 
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The impact of attacks involving software vulnerabilities and malware is often 
significant because the malicious code executes after assuming the identity of an 
authorised user and is able to fully utilise all of their privileges (Bishop, 1991). 
Attempting to mitigate this problem by applying patches is insufficient, as these 
do not protect against zero-day exploits, while anti-malware software fails to 
detect previously unknown zero-day malware (Kotadia, 2006, Moser et al., 2007, 
Vegge et al., 2009). User confinement, when utilised correctly, protects system 
resources and users’ objects from other users, but does not protect users from the 
applications they execute.  

2.1. Trust-based Selective Execution 

One of the simplest access control techniques to mitigate the risk of running 
programs with all of the user’s authority is to only allow particular programs to 
run. Using this approach, processes typically still have all the authority of the 
user; however, only those programs deemed trustworthy (or not “untrusted”) are 
allowed to run. There are a variety of methods that have been developed to help 
decide whether to treat an application as trustworthy. Mansfield-Devine (2009) 
describes the use of simple white or black lists of programs to control which 
programs are authorised to run. White lists treat only specific programs as 
trustworthy, while black lists specify particular programs as untrusted and treat all 
other programs as if they are trustworthy. In addition to the filesystem paths and 
attributes attached by the author, digital signatures can be used by these systems 
to make decisions based on who authored the software (Schiavo, 2010). Examples 
of trust-based selective execution include Microsoft AppLocker and Microsoft 
Software Restriction Policies (SRP), which are typically configured by an 
administrator to specify the programs that are allowed to execute (Microsoft, 
2008a, b). ActiveX controls are used to run native code embedded in a web page 
(Microsoft, 2012c). Before an ActiveX control runs, the user is typically prompted 
to decide whether to allow content from the author of the control, and 
subsequently code signed by the author runs with the full authority of the user. 
Due to the threat they can pose, Microsoft maintains a black list of known harmful 
ActiveX controls. 
 
Another method of selective execution is to analyse source code or binary files to 
decide whether the program is trusted to run. This form of trust-based selective 
execution is used by many of the current generation of anti-malware suites, 
typically based on attributes that identify code as untrusted. Signature-based and 
heuristic lists identify programs based on characteristics of executable files and 
are typically used to specify black lists to prevent known types of malware from 
running. The techniques used to identify malware have become increasingly 
sophisticated, as have the various techniques employed by malware to avoid 
detection (Christodorescu et al., 2006, Christodorescu et al., 2005, Nachenberg, 
1997, Patcha and Park, 2007, Szor, 2005). Reputation-based security, used by 
systems such as Symantec Quorum, Microsoft SpyNet, and McAfee Artemis, is a 
relatively new technique, outlined by Ford and Allen (2009), that uses information 
collected from a large number of users to make judgements about the likely 
trustworthiness of programs to decide if programs should be trusted to run. 
 
These trust-based security systems provide protection from a limited number of 
specific threats. However, many legitimate “trusted” programs can be the source 
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of malicious behaviour: for example, well-intended software authors may 
accidentally introduce design or implementation flaws, resulting in software 
vulnerabilities that enable attackers to execute malicious code. These approaches 
do not provide a mechanism for safely running programs without trusting them to 
run with all of a user’s authority. However, it is not ideal to have to completely 
trust any software. Furthermore, in many cases it is overly restrictive or 
impractical to prohibit users from running code obtained from third parties via the 
Internet. For example, mobile phone “apps” are currently very popular, and the 
web is becoming increasingly dynamic, including client-side execution of mobile 
code. All of these mechanisms can fail to protect users from malware. At various 
times: 

• digital signatures and certificates have failed to accurately reflect the 
actual origin of programs (Callas, 2005, Marlinspike, 2009, Microsoft, 
2001); 

• ActiveX has been a prevalent infection vector (Bellovin et al., 2000); and, 
• anti-malware black list techniques have failed to identify malware 

(Christodorescu and Jha, 2004, Kotadia, 2006, Vegge et al., 2009). 
 
Clearly a more comprehensive confinement approach that has the ability to treat 
applications as untrusted, and that facilitates the execution of untrusted software, 
can better mitigate the threats posed by the problem of malicious code. 

2.2. Integrity-level Schemes 

Some integrity-level security schemes are related to application-oriented access 
controls. However, rather than focusing on restricting particular programs, these 
schemes divide programs and resources based on how trustworthy they are 
considered and restrict lower level programs from interacting with higher level 
programs and resources. This involves labelling every subject and object with 
integrity levels, and restricting the interaction between different levels. For 
example, Microsoft Windows (since Vista) incorporates an integrity level scheme 
known as the Windows integrity mechanism described by Governa (2009). 
Windows runs most user programs at the same integrity level, while some high 
risk applications such as Internet Explorer are run at a lower level. Other similar 
security schemes include LOMAC, presented by Fraser (2000, Fraser, 2001), 
which takes a dynamic approach to integrity labelling, and Li et al.’s (2007) HIPP 
mechanism. Although these schemes reduce the risk of malicious code, they are 
not intended as mechanisms for restricting and sandboxing applications and do 
not limit programs to only the resources they require.  

3. Application-oriented Access Control 

The limitations of user-oriented access control have led to application-oriented 
access control being an increasingly active area of research. Application-oriented 
access controls restrict subjects based on the identity of the application or process, 
rather than just the identity of the user. This approach is designed to limit the 
ability of applications to access resources outside of those they require to perform 
legitimate actions. Application-oriented controls can restrict the damage caused 
by malware or exploited vulnerabilities by limiting the software to those actions 
authorised by whoever configures the security policy, whether end users, 
administrators, or software developers. The extent of the mediation to resources 
that is provided by each application-oriented access control scheme depends on 
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the specifics of the implementation. For example, access to files on the system is 
typically mediated, while access to network resources and inter-process 
communication may or may not be mediated depending on the goals of the 
scheme. 
 
The remainder of this paper provides a comprehensive overview of the various 
methods and techniques available to provide application-oriented restrictions. 
Policy can be specified by various parties, and policy can do one of the following: 
simply specify which programs are authorised to run, isolate programs and their 
effects from each other, or allow programs to co-exist in the same namespace and 
restrict what each is allowed to do. 

3.1. Terminology 

In the literature, the relationship between access control that bases its restriction 
on the confinement of users and that which provides restrictions based on the 
privileges required by specific applications or processes has not always been 
identified. In this paper the terms ‘user-oriented access control’ and ‘application-
oriented access control’ are used to differentiate between access control based on 
the identity of the user and that based on the identity of the application or process. 
It is useful to introduce this distinction, not previously made explicit in the 
literature, to distinguish the relationship between these fields of research. With 
user-oriented access control, the security context is primarily the identity or 
authority of the user associated with the subject being confined. The identity of 
the program is of secondary concern and is generally not considered. However, 
with application-oriented access control the security context is primarily the 
identity or authority of the process or application and the identity of the user is of 
secondary concern, typically being considered separately. These terms are 
proposed to differentiate between these two related, but distinct, types of access 
control that, as areas of research, are often not considered in terms of each other. 
 
Application-oriented access control has usually been considered separately from 
user restrictions and access control research. This may be due to an assumed 
implicit equivalence between access control and user restrictions. It may also be 
due to the tendency of application-oriented access control research to propose, 
design and implement systems, rather focus on a theoretical model of a solution 
(for example, (Garfinkel, 2003, Goldberg et al., 1996, Wagner, 1999)). A clear 
exception is Type Enforcement (TE) (Boebert and Kain, 1985), an application-
oriented access control model that has been described and developed within the 
field of access control, although this distinction has typically not been made in the 
literature. 
 
User-oriented access controls restrict the actions of users to specific system-wide 
resources, while application-oriented controls can further limit an application to 
the specific resources it requires, usually a subset of a user’s authority. Essentially 
the theory developed in user-oriented (access control) research can apply to 
application-oriented research. This is demonstrated in the conceptualisation of the 
functionality-based application confinement (FBAC) model (Schreuders and 
Payne, 2008a) described at the end of this paper, which incorporates constructs 
adapted from RBAC. Although in the past application-oriented restrictions have 
usually been considered separately from user restrictions and access control, there 
is a close relationship between the two fields. 
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3.2. Policy Providers 

Independent of the actual techniques used to enforce security decisions, 
application-oriented access control schemes can also be differentiated based on 
who provides the security policy. Policy defines the access rules that are enforced. 
In the case of rule-based controls, these are typically defined in the form of a set 
of rules in a policy language that the target mechanism can enforce. Policy rules 
can also be defined using other means, including via platform configuration, file 
permissions, or digital signatures. Other security mechanisms have an implied 
policy, for example, an isolated sandbox, in which case simply entering the 
sandbox environment may define the policy that applies. In each case, some 
entity, such as a user, administrator, or process has the volition to set the policy. 
Application restrictions can be discretionary (in the control of the user) or non-
discretionary (imposed on the user, and thus may provide an additional element of 
user confinement). Policy for application-oriented access control can be defined 
by various stakeholders to improve security by restricting the behaviour of certain 
processes (Anderson et al., 2010). This section describes the main ways that 
application restriction policies can be provided. Each of the security mechanisms 
mentioned are subsequently described in further detail. 
 
Policy may be defined by distributors (such as software repository administrators) 
or software vendors, in order to prevent their software from being subverted and 
behaving maliciously due to software vulnerabilities. MapBox is an example of an 
application-oriented access control mechanism where vendors specify what 
behaviour the application should exhibit and users are then able to alter the exact 
policy assigned to these behaviours (Acharya and Raje, 2000). Enck et al. (2009) 
outline a similar approach taken by Android applications, which are distributed 
with manifest files that specify the privilege requirements of each application 
(granting access to protected APIs). Users must accept these policies in order to 
install the application. Software vendors and authors are well-placed to create 
policies that effectively restrict the damage caused by exploitation of 
vulnerabilities, as they have access to internal documentation and source code that 
can facilitate least privilege policies. However, it is not always in the authors' 
interests to restrict their applications. Creating the policy increases their workload 
and it is the user, rather than the author, that primarily bears the risk of an 
unrestricted application. Distributors of software are unlikely to provide policies 
unless the security system is widespread enough to justify the additional work. 
Further, malware authors obviously have malicious motives and cannot be trusted 
to create secure policies under any circumstances. 
 
Some schemes allow policy to be defined by software that can, at run-time, 
confine itself to prevent unexpected behaviour2. Programs can use these schemes 
to safely execute mobile code or reduce the risk of vulnerabilities. Some examples 
of such mechanisms available to applications are chroot() and Jails system 
calls (Kamp and Watson, 2000, Lessard, 2003). Also, the Mac OS X Seatbelt 
sandbox mechanism allows applications to isolate themselves (Edge et al., 2010). 
These policies are typically non-discretionary; that is, users usually cannot 
configure the policies applications request. 
                                                
2 The related field, sometimes referred to as ‘application security’, deals with 
applications that change their behaviour based on the user’s identity and authority, 
and is outside the scope of this article. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

8 

 
Policies may be defined by system administrators to limit the behaviour of 
applications installed on a system and the actions users can perform with 
applications. Server applications, or any Internet-enabled applications, can be 
confined to minimise the damage caused by exploited vulnerabilities. Also, the 
applications accessible to users can be restricted to certain authorized behaviour. 
Some examples of application-oriented access control mechanisms that are 
managed by system administrators are AppArmor (Cowan et al., 2000a), DTE 
(Hallyn and Kearns, 2000), and SELinux (Loscocco and Smalley, 2001a). These 
are non-discretionary controls, configured by administrators. 
 
Policies may also be defined by end users, who can confine specific applications, 
thus restricting malware or exploits. Examples of systems that provide 
discretionary application controls include Systrace (Provos, 2002) and Alcatraz 
(Liang et al., 2009). End users who are the ‘administrators’ of their own systems 
may also use the previously described non-discretionary controls. Users may be 
well-positioned to restrict applications to behavioural expectations because they 
know what they require the application to do. However, for this to be effective, 
policy management must be simple and unobtrusive due to varying levels of end 
user expertise.  
 
Each of these options addresses various security goals. Application-oriented 
access control models or mechanisms typically do not provide the flexibility to 
enforce policies defined at more than one of the levels described above, meaning 
that sometimes it is necessary to combine these mechanisms.  
 

4. Isolation-based Application-oriented Access Controls: 
Sandboxes and Virtualisation 

One way to restrict a program’s ability to access resources is to run it in an 
environment where the application can only access objects within their so-called 
‘sandbox’. Although the terminology in use varies, in general a sandbox is 
separate from the access controls applied to all running programs. Typically 
sandboxes only apply to programs explicitly launched into or from within a 
sandbox. In most cases no security context changes take place when a new 
process is started, and all programs in a particular sandbox run with the same set 
of rights. Sandboxes can either be permanent where resource changes persist after 
the programs finish running, or ephemeral where changes are discarded after the 
sandbox is no longer in use (Potter and Nieh, 2010, Rutkowska and Wojtczuk, 
2010). 
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Figure 1: Typical Isolation-based Sandbox 

Figure 1 illustrates a typical sandbox scheme, where an application (A) explicitly 
starts another application (B) within a sandboxed environment. Application B can 
access the resources available within the sandbox; however, the sandboxed 
application cannot access (or sometimes even name) resources outside of the 
sandbox. Children processes typically remain and co-exist within the same 
sandbox. Applications (such as Application A in the figure) that are not within the 
sandbox are typically outside the scope of the sandbox access controls, and are 
therefore (other security controls permitting) free to access any resources, 
including those within a sandbox.  
 
Most sandboxes provide an isolation-based approach where the effect of programs 
run inside a sandbox is entirely isolated from resources outside the sandbox’s 
authority. However, due to practical requirements, sandboxing schemes often 
provide ways of circumventing this isolation in order to copy data into and out of 
sandboxes. 
 
System-level sandboxes provide complete operating environments to confined 
applications. One way of achieving this is through the use of hardware-level 
virtual machines (VMs). A virtual machine monitor (VMM) can be used to 
multiplex the physical hardware between multiple self-contained fully virtualised 
VM operating environments, each containing a complete operating system. As 
early as the 1970s Madnick and Donovan (1973) showed that VMs can be used to 
improve overall system security by providing an additional layer of controls. 
More recently researchers have proposed using VMs to confine applications to 
mitigate the risks associated with excess application authority. For example, 
Whitaker et al. (2002) presented a scheme designed to provide a lightweight VM 
and operating system for each application. It is possible to confine specific 
programs or sets of programs by containing them within separate VMs. This can 
be done manually using emulation based virtualisation software (such as VMware 
(Sugerman et al., 2001), VirtualBox (Oracle, 2012), Parallels (Parallels Inc, 
2012b), Microsoft Virtual Server (Microsoft, 2012a) and QEMU (Bellard, 2005)) 
or using paravirtualisation software, which requires that guest operating systems 
are aware that they are running as VMs and participate in providing virtualisation. 
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Xen (Barham et al., 2003), User-mode Linux (UML) (Dike, 2000), and Denali 
(Whitaker et al., 2002) are examples of paravirtualisation. 
 
Systems such as Qubes, released by Rutkowska and Wojtczuk (2010), provide an 
interface to simplify the management of VMs from a security perspective. Qubes 
provides lightweight ‘AppVMs’, which are used for different types of tasks and, 
unlike most hardware-level VMs, share the same read-only filesystem. For 
example, ‘personal’, ‘work’, and ‘bank’ VMs could be specified to keep the 
applications used and the risks associated with each task separate from each other. 
Although not based on system-level virtualisation, the earlier WindowBox 
scheme, proposed by Balfanz and Simon (2000), provides a similar mechanism 
where different desktop sandboxes are used for different types of tasks. Most of 
these types of systems provide ways for users to manually move files between 
VMs. 
 
Container-based virtualisation, also known as operating-system level 
virtualisation, shares the one operating system kernel, but virtualises user space 
resources, allowing separate instances of the operating environment to be created. 
The Unix chroot() system call isolates a process and its children to a subset of 
the file system namespace. However, it was not designed as a security mechanism 
and consequently has significant limitations. The FreeBSD Jails mechanism, 
proposed by Kamp and Watson (2000), provides the jail() system call that 
aims to improve upon the security and functionality provided by chroot(). 
Jails confines each jail to a given IP address with particular network privileges, 
prevents well-documented means of escaping chroot() confinement, prevents 
certain super-user privileged actions from taking place, and each jail has a private 
copy of operating system objects such as shared memory and sockets (Kamp and 
Watson, 2004). Rule Set Based Access Control (RSBAC), presented by Ott et al. 
(2001), includes a jail module similar to FreeBSD Jails for Linux. Other similar 
systems include Solaris 10 Containers (Tucker and Comay, 2004), Linux 
Containers (lxc) (LXC, 2012), Linux VServer (des Ligneris, 2005), OpenVZ 
(Parallels Inc, 2012a), FreeVPS (Positive Software Corporation, 2012), Virtuozzo 
Containers (Parallels Inc, 2012c), and AIX Workload Partitions (WPARs) 
(Blanchard et al., 2007). Some of these systems are primarily designed for 
running complete operating environments and for isolating multiple virtual hosts. 
These solutions allow applications to be confined (along with the resources they 
require) by encapsulating them within a partitioned environment with no access to 
objects outside of the sandboxed environment. However, these container 
sandboxes are often easier to manage than hardware-level VMs, as different 
containers can be configured to use the same resources, such as portions of the 
operating system.  
 
Potter and Nieh (2010) have proposed a more sophisticated approach to container-
based sandboxes for application-oriented access control, with an implementation 
known as Apiary. Similar to how Qubes provides an interface to manage VMs for 
security purposes, Apiary presents a desktop environment that provides a user 
interface to launch applications into containers. Users can select whether to launch 
applications into ephemeral or persistent containers. Each container is isolated 
from each other, although there are ways for users to intervene to share directories 
with containers or copy data between containers. 
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Some sandbox schemes allow confined applications to read the host computer’s 
data with few restrictions, and provide copy-on-write features to write any 
modifications programs make to a virtual disk rather than to the actual hard drive. 
Systems such as Sandboxie (Tzur, 2012), Pastures (Bratus et al., 2007), Alcatraz 
(Liang et al., 2009, Liang et al., 2003, Sun et al., 2005), and Returnil (Returnil, 
2012) take this approach. Typically, upon termination of the sandboxed programs, 
these systems present the user with a list of all the files that were modified, and 
the user has the option to commit changes to the regular file system. 
 
Other sandbox solutions run single, self-contained applications using a VMM or 
an interpreter, which isolates the application from making changes to the host 
computer without user intervention. Java Applets (Gong et al., 1997), Silverlight 
(Farkas, 2007) and Flash (McCauley, 2008) use this approach to embed mobile 
code content into websites; very limited access is granted to storage, with 
additional access being granted via user interaction. Google native code (NaCl) 
executes native instructions inside an isolated sandbox, and interacts with 
JavaScript and other plugins that are responsible for granting restricted access to 
other resources (Yee et al., 2010). As previously mentioned, Whitaker and Shaw’s 
(2002) scheme Denali was originally designed to have VMs running single-
application lightweight operating systems, to provide individual internet services 
that are confined. However, newer versions virtualise full commodity operating 
systems. Miller et al. (2004) developed CapDesk Caplets, which are self-
contained programs that gain additional authority via a special type of file 
selection dialog, known as a ‘powerbox’, that grants access to files selected by the 
user. 
 
Kato and Oyama (2002) have proposed a different approach. The scheme, known 
as SoftwarePot, restricts programs to an encapsulated filesystem that is mostly 
isolated but which can contain rules for mapping resources on the local computer 
to the name-space accessible to the restricted program.  

4.1. Limitations of Isolation-based Approaches 

All of the aforementioned security schemes attempt to mitigate the effects of 
malicious code by isolating programs or groups of programs from each other and 
the system in general. Although usually relatively straightforward to initially 
configure, isolated sandboxes present a number of problems in use. Many of these 
schemes suffer from redundancy of resources and management, and isolating 
programs entirely is often not practical. 
 
Isolation-based security schemes generally require significant redundancy of 
resources, as any resources that an application requires must be contained within 
or accessible from the sandbox. In the case of VMs this typically involves 
duplicating a copy of the entire operating system for each group of programs that 
are confined. There is also often significant overhead in managing the 
configuration of the VMs. For container-based sandboxes and self-contained 
application sandboxes, often any shared libraries or resources must be duplicated 
within each sandbox that requires access to them (Kamp and Watson, 2000). Even 
copy-on-write sandboxes, which allow read access to the same operating 
environment, introduce management overhead when files are changed within a 
sandbox. 
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Isolation sandboxes inhibit applications operating in different sandboxes from 
easily and securely exchanging information or sharing resources. However, many 
applications frequently require access to shared resources and this is integral to 
the way some applications are used. For example, users often utilise separate 
applications for different tasks when working on a given set of files. A user may 
use one program to create a file, another to view it, and then use a third 
application to transfer the file over a network. Isolated sandboxes are not well 
suited to this scenario as the files they create would typically be completely 
isolated from each other. Alternatively, all three applications and the file could 
exist in a single sandbox. However, in this case each of the three applications are 
effectively entrusted with the same privileges, despite their potentially different 
requirements, with the result being that, for example, a viewing program could 
maliciously edit or send a file over the network. 
 
Since the ability to share resources is such a common requirement, many of these 
systems provide ways of circumventing straightforward isolation. VMs can use 
the network to communicate and share files, containers can use hard-linked files 
to share the same resources, and others provide mechanisms that require user 
intervention. These methods of sharing pose additional challenges and new 
security problems, as risks are inevitably associated with requiring users to 
circumvent the security model. 
 
Perhaps the greatest obstacle is that isolation sandboxes inhibit users from 
working with software in the way they are accustomed. In most cases users need 
to decide which applications they need to launch or install into sandboxes. As 
discussed by Potter and Nieh (2010), these applications are often not integrated 
into, or easily accessible from, the user’s desktop, and such applications cannot 
leverage other unconfined applications. Also, requiring user interaction to 
manually copy files between sandboxes requires users to have a clear 
understanding of these concepts. Due to the large number of resources typically 
required to run an application, the decision making process for user intervention 
can be complicated (Jaeger et al., 2003, Marceau and Joyce, 2005). 
 
Table 1 presents an approximate summary of the limitations that have been 
discussed and how they relate to each of the classes of isolation-based systems 
that have been described. In the table an “X” denotes that the limitation typically 
applies to this class of system, “X*” describes a limitation that applies to a lesser 
extent or with some exceptions. As an example, the following describes the “self-
contained applications” row in the table. The self-contained applications category 
of system (as described in the previous section, examples include Java applets, 
Flash, and so on) avoids the issue of “OS configuration redundancy”, where 
multiple instances of the operating environment can result in configuration 
overhead. This is in contrast to system-level sandboxes where entire copies of 
operating systems need to be maintained and administered. Continuing the 
example, self-contained application schemes typically isolate applications 
individually, rather than having “many processes run in the same context” (the 
second row in the table), which can diminish the restrictions on applications. Such 
is the case with the first three categories of schemes, where applications often 
share the same sandbox and subsequently a security compromise in one 
application can result in the entire sandbox and all the applications and data 
within the sandbox becoming compromised. The third row indicates that self-
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contained application schemes have limited ability to allow sandboxed 
applications to access specific files outside of the sandbox, like many isolation-
based application-oriented access controls, these schemes are designed to enable 
very limited (if any) access to system resources, and sharing files between 
applications is often not possible, with the exception of Powerboxes which some 
of these systems, such as CapDesk Caplets, employ to grant access to individual 
files – this has the additional caveat that Powerboxes do not suit applications that 
require access to files without user interaction: for example, for searching through 
multiple files. The following row illustrates that this class of security scheme 
often requires libraries to be duplicated for each application; the exception being 
libraries provided by the framework itself. The table also shows that these 
schemes typically provide network restrictions. Also, there are not usually 
complex rules to review. As is the case with all of the isolation-based schemes, 
self-contained application schemes are not well suited for editing and viewing 
files with separate applications while applying appropriate security restrictions 
(for example, read-write or read for editing and viewing respectively); a rare 
exception would be a Powerbox system that prompts the user for this information 
whenever users open files. As shown in the table, these systems scale fairly well 
to restrict a number of applications without making management and policies 
more complex. They are typically not designed for separately confined 
applications to interact, which can be a practical limitation for building complex 
systems from multiple programs. Finally, perhaps their most significant limitation, 
self-contained application schemes require the applications to be developed 
specifically for the target platform and with the security restrictions in mind; the 
security scheme cannot typically be applied to “legacy applications”, that is, other 
existing applications. 
 
Although isolated sandboxes suit certain situations – such as when there are only 
a few untrusted programs that do not require interaction with other applications –
in most practical scenarios sandboxes are not well-suited to restricting large 
numbers of programs, programs that require different privileges, or those that 
share resources. Consequently, isolation-based schemes often do not provide a 
sufficiently scaleable solution to the problems posed by malicious code. The 
evolution of sandboxed environments to provide increasing degrees of exceptions 
to straightforward isolation has led to further development of rule-based schemes, 
as discussed in the following sections. 
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Table 1: Limitations of isolation-based application-oriented access controls 

Scheme 
category 

General 
properties Example 

O
S

 configuration redundancy 

M
any processes run in the sam

e context 

S
haring individual files (as required) betw

een 
sandboxes is typically not supported, or is 

m
anual 

D
uplication of resources (O

S
, libraries) 

Lack of netw
orking and/or IP

C
 m

ediation 

C
om

plex changes or rules to review
 

D
oes not support sim

ple w
orkflow

 for editing 
the sam

e files betw
een sandboxes 

D
oes not scale w

ell to a large num
ber of 

separate sandboxes 

D
oes not suit applications in different 

security contexts interacting 

C
annot be applied to legacy applications 

System-
level 

sandbox 

VMs 
containing 
complete 

OSs 

VirtualBox X X X X X  X X X  

Isolated 
desktop 

Multiple 
desktops 
isolated 

from each 
other 

Qubes X* X X* X* X*  X*  X  

Container-
based 

virtualisation 

Shares the 
kernel, with 

separate 
user-space 
resources 

Jails X X* X X X  X X X  

Desktop 
sandbox 
launcher 

Launches 
applications 
into various 

kinds of 
sandboxes 

Apairy X*  X*  X  X*  X*  

Copy-on-
write 

sandbox 

Applications 
can read 
system-

wide 
resources, 
writes are 
isolated to 
sandbox 

Sandboxie X*    X X* X*  X  

Self-
contained 

applications 

Applications 
run via 

VMM or an 
interpreter, 

strictly 
isolated 
from OS 

Flash   X* X*   X*  X X 

Self-
contained 

applications 
with 

mapped 
resources 

As above, 
with rules 
defining 

access to 
other 

resources 

SoftwarePot    X*  X* X  X  

 
 

5. Rule-based Application-oriented Access Controls 

5.1. Rule-based Sandboxes 

Rather than focusing on completely isolating applications, rule-based schemes 
aim to control what each application is authorised to do. This approach allows 
applications to cooperate and share resources; although each application may still 
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only perform the actions and access the resources specified in the security policy. 
These systems often include methods for policy transitions and the propagation of 
privileges when processes are started. Such techniques can restrict individual 
programs with different rules and mitigate the ‘confused deputy problem’ where a 
malicious program misuses another program’s privileges by influencing the 
privileged program to act on its behalf (Benantar, 2006 p. 19, Hardy, 1988). This 
section discusses rule-based sandboxing schemes, and the following section 
covers system-wide rule-based application-oriented access controls. 
 

 

Figure 2: Typical Rule-based Sandbox 

As illustrated in Figure 2, each rule-based sandbox enforces a specific policy 
regarding the resources that applications within the sandbox are allowed to access. 
Applications (such as A, in the figure), can implicitly launch applications (B) into 
a sandbox that enforces a policy. Depending on the specifics of the scheme and 
policy in place, children may have the same policy apply, or may transition to 
another sandbox policy. Applications that have not implicitly been launched into a 
sandbox are typically out of the scope of the mediation provided.  
 
Berman et al. (1995) presented TRON, a discretionary application-oriented access 
control mechanism for Unix implemented on Ultrix. TRON confined applications 
to ‘domains’ that were assigned privileges based on text strings naming the files 
and directories a domain could access and the type of access allowed. Users then 
had the option of confining their applications by running them within a domain 
using a command line interface. TRON was implemented using system call 
interposition within the kernel. 
 
System call interposition is a method for monitoring and regulating application 
behaviour by intercepting the program's system calls (Garfinkel, 2003). All 
external interactions, and hence potentially harmful operations, an application can 
perform occur via system calls. Therefore filtering calls based on a security policy 
can confine an application by restricting the application’s access to the operating 
system’s privileged kernel operations. System call interposition tools, such as 
Janus (Goldberg et al., 1996, Wagner, 1999), Systrace (Kurchuck and Keromytis, 
2004, Provos, 2002), and ETrace (Jain and Sekar, 2000), can enforce extremely 
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fine grained policies at the level of granularity of the operating system’s system 
call infrastructure.  
 
A number of system call interposition mediation mechanism designs have been 
proposed (Alexandrov et al., 1998, Jones, 1993) including library modifications 
(Krell and Krishnamurthy, 1992), kernel mediation (Fraser et al., 1999, Ghormley 
et al., 1998), and user-space mediation (Alexandrov et al., 1998, Garfinkel et al., 
2004, Goldberg et al., 1996, Jain and Sekar, 2000). In most cases this involves a 
monitoring process enforcing the policy on a traced process. For each application 
being confined, its security policy is typically defined in terms of the specific 
system calls and arguments that are allowed. In many cases a single operation 
requires many system calls. For example, in order to make a network connection 
the socket is created, and then the protocol is specified. Consequently, system call 
interposition-based policies can be extremely lengthy and detailed, exposing the 
underlying complexity of the platform on which the software operates. To ease 
the burden of policy development, Systrace includes a policy learning mode that 
can generate policy rules based on recorded application actions. Some schemes 
such as Software Wrappers, proposed by Fraser et al. (1999), specify policy using 
a slightly higher level policy language that is independent of the actual system call 
interface. Seaborn (2008) has described the Plash scheme that uses system call 
interposition and jails to provide a form of capability-based security, thereby 
restricting programs to only the files specified by the user. 
 
System call anomaly detection is a related field, pioneered by Forrest et al. (2008, 
1994), which aims to monitor system calls in order to detect, and potentially react 
to, anomalies in system call sequences. These approaches attempt to apply 
concepts from immunology and epidemiology to the problem of detecting and 
reacting to abnormal behaviour from processes. A number of techniques for 
defining what constitutes valid sequences or parameters for system calls have 
been proposed: including learning modes that record program activity (Hofmeyr 
et al., 1998, Tandon and Chan, 2006), and static analysis of binary or source code 
to determine code path or data flow (Ben-Cohen and Wool, 2008, Giffin et al., 
2002, Lam and Chiueh, 2005, Wagner and Dean, 2001).  
 
Application virtualization is an alternative technique, primarily designed to allow 
portable application bytecode to run regardless of the platform. These interfaces 
can also provide controls on the resources available to applications. Java (Gong et 
al., 1997) and .NET (Thorsteinson and Ganesh, 2003) confinement models restrict 
applications based on both certain properties of the code and security policies 
defined by the user or administrator, explicitly permitting or denying certain 
operations from particular sources and authors. Each set of rules needs to be 
configured individually. These security models can only be applied to applications 
written in the corresponding programming languages. Due to the complexity of 
policy specification, in practice these restrictions are rarely employed. Language-
based security schemes such as type checking and proof-carrying code (Lee and 
Necula, 1997, Necula, 1997, Necula and Lee, 2004), call/control-flow graph run-
time verification (Ben-Cohen and Wool, 2008, Giffin et al., 2002, Lam and 
Chiueh, 2005, Wagner and Dean, 2001), object-capability schemes (Hardy, 1985, 
Mettler and Wagner, 2008, Miller, 2006), intra-component access controls (Levy 
et al., 1998), and code/binary transformation (Kiriansky et al., 2002, Pandey and 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

17 

Hashii, 1999) can provide related additional layers of protection, but are outside 
of the scope of this paper. 
 
Mac OS X includes a sandbox feature that can enforce two types of confinement 
(Edge et al., 2010). It allows an application to voluntarily confine itself and its 
subsequent children to one of five coarsely grained policies: for example, a ‘no 
Internet’ profile. Finely grained policies can also be applied to applications by 
launching them into the sandbox using the “sandbox-exec” command. The iOS 
platform applies a single finely-grained policy to all installed applications that 
largely inhibits their ability to access the data from other applications. However, 
this policy currently allows all iPhone applications to access various resources 
without notifying the user. For example, all iPhone applications have access to the 
address book, phone number, email account settings, and web search history 
(Seriot, 2010). With a wide variety of applications being available for the system, 
a ‘one size fits all’ approach to security policy is not always appropriate. 
 
The MAPbox scheme, proposed by Raje and Acharya (Acharya and Raje, 2000, 
Raje, 1999), utilises a model where the vendor of the application is trusted to 
specify its security policy based on a so-called ‘behaviour class’. The application 
is then executed and confined based on user-assigned discretionary application-
oriented access control policies for each allowed behaviour class. This allows the 
provider to communicate the general expected functionality of the program to the 
user, similar to the way in which MIME-types describe the expected format of 
data. Programs are described in terms of a behaviour class, and the resources they 
require are further clarified by providing parameters. For example, a program may 
be of class “editor”, requiring access to parameters that specify the program’s 
home directory and a list of files it can edit. 

5.2. Rule-based System-wide Controls 

Another, more comprehensive, approach is to restrict applications at the operating 
system security kernel level. System-wide controls involve confining all programs 
with an applicable policy, rather than just those explicitly launched into 
sandboxes. In these schemes, policy typically includes identification of programs 
and specification of rules for their authorised activity. Program identity may be 
established via file path naming, file labelling, or other techniques similar to those 
used to identify programs in trust-based selective execution schemes, as discussed 
in Section 2.1. 
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Figure 3: Typical Rule-based System-wide Control 

As illustrated in Figure 3, all applications are confined based on the policies that 
apply. In the figure, Application A’s access to any resource is subject to the policy 
for that application, while another policy may apply to Application B. Policy 
transitions are typically automatic, and applications actions are mediated without 
the need to launch them into sandboxed environments. 
 
The simplest form of rule-based system-wide control is achieved by overloading 
the user-oriented access controls already in place to restrict applications. For 
example, on Linux systems the standard DAC mechanism can be used to control 
the actions of a particular program by creating an artificial user account 
specifically for that program. If the program has sufficient authority and is trusted 
to do so, it can restrict itself by changing its own user identity (for example, when 
running the Apache web server as root it typically automatically changes its user 
identity to the “nobody” or “apache” account), setuid file permissions can be used 
to launch the program as the owner of the executable, or the program can be 
launched as a specific user manually. Some application-oriented access control 
schemes are based on this technique. Rainbow provides an “exec-wrapper” that 
can automate the creation of ‘synthetic’ user accounts and launching of programs 
into those user accounts (OLPC, 2012). Stiegler et al. (2006) present the Polaris 
system, which leverages this approach to confine programs: applications are 
launched into restricted user accounts that are granted access to the user’s files 
only when the user selects a file via a Windows file selection dialog. Access is 
granted via a mechanism that copies files into the application’s home directory, 
and subsequently copies changes back to the user’s home directory. Snowberger’s 
(2007) sub-identities scheme aims to allow users to arbitrarily create user 
accounts that are limited to a subset of the user’s rights. 
 
Another approach is to divide the actions an application can be authorised to 
perform into simple, coarsely-grained privileges. Linux capabilities (also known 
as ‘POSIX capabilities’, since they are based on a withdrawn POSIX standard 
draft) partition the powerful root privilege into a fixed set of distinct privileges; 
for example, the ability to send signals to processes owned by any user, or to 
listen on TCP/UDP sockets below 1024 (Hallyn and Morgan, 2008, IEEE, 1997). 
Linux capabilities are not associated with any object, are represented as flag 
variables, and simply permit certain types of actions. Most other rule-based 
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application-oriented access controls take a finer-grained approach that allows 
further control over applications. 
 
Some schemes combine overloaded user confinement with additional coarse 
privileges. Krsti and Garfinkel (2007) combine the previously-described Rainbow 
scheme with coarsely grained privileges to create BitFrost. This scheme is used as 
the security model for the ‘One Laptop Per Child’ project to authorise additional 
restricted actions such as using the laptop microphone and camera. Authors of 
software specify which privileges are required by their programs at installation. 
Certain BitFrost privileges cannot normally be combined, which is intended to 
limit possible malicious activity. The Android platform creates separate user 
accounts for each application installed as part of its security scheme (Enck et al., 
2009). Application authors specify all the coarsely grained kernel-protected 
privileges required in an AndroidManifest.xml file and, once an application is 
installed, it is prevented from exceeding these privileges. Applications run in a 
modified version of Java known as Dalvik, and additional controls are enforced 
by an application virtualisation layer. Native code is not subject to these 
additional controls (Barrera, 2011). 
 
Program access control lists (PACLs), first proposed by Wichers et al. (1990),  
label resources with a list of programs, specifying the types of access allowed. 
Schemes such as Tivoli Access Control Facility (TACF) (Manoel et al., 2000) and 
eTrust Access Control (Computer Associates, 2001) provide PACLs that specify 
the names of the programs or shell scripts users must execute in order to access 
PACL protected resources. Rather than configuring policy to describe every 
resource accessible to every application, these controls typically limit their 
protection to specified resources. Proposed by Enck et al. (2008, 2007), PinUP 
provides a related form of restrictions; cryptographic hashes identify unmodified 
applications that are allowed to access files. When files are created, detailed rules 
are used to automatically assign a list of applications that are allowed access to 
them, and users can manually authorise additional application-file interactions that 
occur. Other related approaches exist. Schmid et al. (2002) describe the 
FileMonster scheme, which tags particular files as requiring user confirmation 
before applications can access them. The SubOS scheme, proposed by Ioannidis 
et al. (2002), associates policies with files based on their origin on the network, 
and processes are restricted by the policies of all the files they have accessed. 
However, this combination of numerous remote sources and multiple files can 
lead to significant complexity in practice. 
 
An early approach presented by Boebert and Kain (1985), Type enforcement (TE) 
is a non-discretionary table-based access control model that confines applications 
based on grouping subjects into domains, and objects into types by labelling them. 
Access decisions are then made based on the contents of a domain interaction 
table (DIT) and a domain definition table (DDT). Walker et al. (1996) extended 
type enforcement to create Domain and type enforcement (DTE), which includes 
a policy specification language, DTE language (DTEL), to replace the DIT and 
DDT tables by describing what domain transitions can occur when executing 
programs and what interactions are allowed between domains and types. Several 
DTE mechanisms exist, many of which deviate from the original model and 
policy language: DTE mechanisms have been developed for Linux (Hallyn and 
Kearns, 2000) and FreeBSD (Badger, 1996, Badger et al., 1995) among others. 
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Ott’s (2002) RSBAC framework for Linux includes the role compatibility access 
control model, which is very similar to type enforcement. Although termed ‘role 
compatibility’, it has much more in common with DTE than RBAC: the initial 
role is specified, one role is active at a time, role transitions are specified by 
compatibility and it may not be possible to return to the original role, objects are 
classified as types, and role-type interactions are mediated.  
 
SELinux, originally developed by the US National Security Agency (NSA), 
provides non-discretionary controls for Linux (Loscocco and Smalley, 2001a, 
Smalley et al., 2001). SELinux is arguably the most complete (and complex) non-
discretionary access control scheme available in any operating system. Access 
control decisions are made based on the security context resources are labelled 
with, implementing a combination of access control models such as RBAC, DTE, 
and multilevel security (MLS) (Loscocco and Smalley, 2001b). DTE forms the 
primary basis of application restrictions: rules specify when domain transitions 
occur, which determines the domain a program is associated with, and rules define 
how processes within particular domains can access resources labelled with 
specific types. SELinux combines DTE with a non-standard RBAC model to also 
provide user confinement in terms of domains. Additionally, the new SELinux-
Sandbox script provides a form of isolation-based application-oriented access 
control; it allows users to restrict programs by launching them via a command that 
generates and applies an SELinux policy to isolate the program to the files 
specified as arguments (Walsh, 2009). Like DTE and RSBAC, SELinux policies 
involve significant complexity. 
 
A common approach to rule-based application-oriented access control is to simply 
specify a list of all the resources each application is authorised to access. As 
proposed by Cowan et al. (2000a), AppArmor (originally known as SubDomain) 
takes this approach, where a lengthy security policy in the form of an application 
profile defines all the files the confined program can access. AppArmor is similar 
to the previously described TRON (Berman et al., 1995); the main differences 
being that AppArmor allows processes to “change hats” depending on the tasks 
they are carrying out, and AppArmor is non-discretionary; policy is defined by an 
administrator and enforced system wide (Canonical, 2012). AppArmor is supplied 
with a number of Linux distributions including the popular Ubuntu and SuSE 
systems. Official Novell AppArmor documentation presents it as a user-friendly 
alternative to SELinux (Novell, 2012). AppArmor focuses on confining 
applications that are at a high risk of vulnerability (applications that are network-
enabled) and confines them to only access the files they need to perform their 
tasks. Policies can also contain simple abstractions (common groups of privileges) 
and can be generated using a learning mode. Applications without policies are 
typically not confined. Harada et al. (2004) have presented TOMOYO, a similar 
system that applies policies based on the process invocation ancestry. TOMOYO 
also includes a learning mode to develop policies. 
 
The PeaPod application-oriented access control takes a hybrid approach by 
combining an isolation-based ‘pod’ (PrOcess Domain), which provides container-
based virtualisation, with ‘peas’ (Protection and Encapsulation Abstraction), 
which specify a list of all the resources each process is authorised to access within 
a pod (Potter et al., 2007, Potter et al., 2004). Pea policies are similar to the 
AppArmor policy language. 
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The authors have proposed a model known as functionality-based application 
confinement (FBAC) (Schreuders and Payne, 2008a), and an LSM-based (Linux 
security module) implementation has been developed (Schreuders, 2012). FBAC 
manages the authority assigned to applications based on the features they provide. 
Reusable modular policy abstractions known as functionalities can be employed 
by end users or administrators to confine programs based on high-level security 
goals (Schreuders and Payne, 2008b). For example, an application can be assigned 
a “web browser” functionality, which authorises the application to access 
appropriate resources. FBAC functionalities are similar in purpose to MAPbox 
behavioural classes, while overcoming the previously discussed limitations. 
Policy is represented using the FBAC policy language (Schreuders et al., 2011b). 
Functionalities are hierarchical and parameterised, which enables them to provide 
layers of abstraction and encapsulation of policy details and to adapt to the needs 
of individual applications. For example, the “web browser” functionality can be 
adapted to the needs of various browsers by specifying parameters, such as where 
downloads and configuration is stored for each application.  

5.3. Limitations of Rule-based Application Restriction Schemes 

Rule-based application restrictions can greatly mitigate the threat posed by 
malicious code, and avoid many of the previously discussed problems with 
isolation-based approaches. However, despite the large number of rule-based 
application restriction schemes that have been developed, these have largely not 
been embraced by users. Although they provide significant security advantages, 
rule-based schemes have a number of drawbacks that hinder their use. Coarsely 
grained controls are less able to protect against a diverse range of threats, while 
finely grained controls typically result in policy management complexity and 
significant usability problems. This section discusses issues with the previously 
described rule-based schemes and explains the need for further work in this area. 
 
Simple coarsely grained policies can complement user-oriented access controls to 
reduce the risks associated with running programs with all of a user’s privileges; 
for example, Linux capabilities separate many of the root user’s special privileges. 
However, these restrictions typically only mediate access to specific resources, 
which often means that the policy allows more access than is necessary for the 
application to function and malicious programs have free rein with regards to 
those resources not specified. For example, flag-based privileges such as Linux 
capabilities cannot mediate access to specific files or network ports, so programs 
are still free to misuse these resources. Coarsely grained policies such as those 
currently used by the Mac OS X sandbox provide an all-or-nothing type of 
protection. Mac OS X programs can, for example, state that they don’t require 
network connectivity or that they don’t need write access to the file system. 
However, programs cannot state what specific access they do require, so a 
program that needs to write to any file is granted write access to all of the user’s 
files. This type of control is best suited to very simple programs that require very 
few privileges to run. 
 
Sandboxes that enforce the same rule-based policy for every program effectively 
provide a limited form of isolation. Rather than providing controls that authorise 
access to the resources that particular programs need to function, all programs are 
granted the same privileges. For example, since some iOS applications require 
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sensitive permissions, all applications have been granted these privileges (Seriot, 
2010). This highlights the need for each application to be confined based on its 
specific requirements. 
 
Other approaches, such as overloading user-oriented access controls and PACLs, 
also have drawbacks. User-oriented access controls are not designed to provide 
application-oriented access control and, while simple to implement, introduce 
complications. For example, as Cowan et al. (2000a) discuss, the Unix DAC 
security model allows all user accounts access to all files that permit access to 
“others”, which results in a complex management task to ensure that applications 
confined by synthetic user accounts cannot misuse these permissions. In addition, 
typically all user accounts have permission to use resources such as the network. 
Overloading user-oriented control schemes makes it difficult to simultaneously 
provide user restrictions and application-oriented restrictions, therefore this 
technique is better suited for systems used by only one person. Also, having 
separate home directories for applications results in a form of isolation-based 
confinement with potentially complex or permissive file permissions used to 
specify exceptions and allow applications to share resources. The sub-identities 
scheme allows for multiple users, but introduces further complexity since 
additional ACL policies need to be specified to allow sub-identities to access any 
resources that are not granted to every user. 
 
PACLs and related schemes can protect selected resources from malicious 
programs. However, labelling every resource with all the applications that require 
access is very complex and arguably impractical (Berman et al., 1995). Adding a 
new program involves changing permissions for all the resources required, and 
creating new files involves a complex decision making process to specify every 
application that should be authorised to access the files. Due to this complexity, 
these schemes typically only protect particular files. Therefore this approach 
cannot comprehensively mitigate the problem of programs running with too much 
authority. Related approaches pose similar concerns. SubOS is particularly 
complex since individual policies need to be specified for each remote host files 
come from, and processes are simultaneously subject to a myriad of policies from 
all of the files each process has accessed. As Provos (2002) points out, not all 
exploits are the result of accessing files, and it is sufficient to restrict processes 
based on the application’s needs rather than enforcing policies for all the files the 
application has accessed. 
 
Finely-grained per-program policies can provide very powerful controls that can 
specify with precision the privileges granted to particular applications. This 
approach has the greatest control over individual programs, and can allow 
confined processes to interact with resources and other processes in authorised 
ways. However, finely-grained application restrictions typically result in highly 
detailed, low-level policies that expose the internal complexity of applications and 
underlying platforms. Translating high level security goals into finely-grained 
policies has proven to be problematic, typically requiring expertise and 
knowledge of low level operations and interactions of programs. Also, once 
constructed, policies can be hard to verify for completeness and correctness 
(Garfinkel, 2003, Jaeger et al., 2003, Zanin and Mancini, 2004).  
 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

23 

System call interposition mechanisms typically specify finely-grained rules in 
terms of allowed system calls and system call arguments. However, system call 
interposition systems have been criticised for inherent complexity and design 
flaws (Garfinkel, 2003, Watson, 2007). The main problem with these types of 
security policies is that they are so finely grained that the task of managing them 
is especially complex. This is also partially due to the complexity of the system 
call interface. In many cases a single operation requires multiple system calls. 
This complicates policy management and security system implementation as any 
nontrivial process utilises a vast number of system calls. This means that creating 
system call interposition policies using some schemes requires additional expert 
knowledge of low-level system call semantics. Arguably a consequence of this 
complexity is that system-call interposition schemes are not practical solutions 
since most users do not have the expertise required to translate high level 
requirements into meaningful low level policies. Deferring enforcement to user-
space also introduces design challenges, such as the risk of race conditions 
(Spencer et al., 1999, Watson, 2007). 
 
System call anomaly detection monitoring faces challenges similar to that of 
system call interposition. As a result of the complexity of system calls, anomaly 
classification is typically based on a simplified view of activity. For example, 
policy is often based on the system calls themselves (such as read, open, mmap) 
regardless of what the system calls are actually doing. Due to a simplified view of 
system activity, anomaly detection can be subject to mimicry attacks, where 
malicious activity can be disguised by interspersing normal-looking system call 
sequences (Wagner and Dean, 2001). Furthermore, policy generation faces 
challenges. Static analysis of binary or source code can produce policy that does 
not detect malicious activity that follows existing code paths, regardless of the 
security implications. For example, programs that include logic flaws or have 
been misconfigured can be exploited without corrupting the code of the 
executable, and therefore static analysis policies consider this to be normal 
behaviour. Additionally, static analysis requires access to all source or binary 
code, which is not always practical in the case of dynamically linked libraries and 
plug-ins. Learning modes can produce policy that is incomplete, since uncommon 
code paths may not be profiled, and limited protections are in place while initially 
profiling. Due to the high rate of false positives, system call anomaly detection 
systems are often passive and do not enforce policy (Forrest et al., 2008). 
 
Type enforcement (TE) and similar models such as role compatibility (RC) define 
rules that specify the domains used to confine programs, the types accessible to 
domains, and the types associated with files. Although these concepts provide 
forms of abstraction, the policies remain complex and these concepts are arguably 
not intuitive. Although domains serve as policy abstractions that associate rules 
with programs, typically each application is assigned a unique domain consisting 
of complex rules specifying allowed file and domain transitions and interactions 
with types (similarly labelled objects). SELinux also includes m4 macros, which 
are generally very low level abstractions granting a number of access rules to 
specified resources. SELinux policy is complex, hard to comprehend and, despite 
the maturity of SELinux, few graphical tools have been developed to ease policy 
management. SELinux is frequently criticised for its complexity (Bratus et al., 
2007, Harada et al., 2004, Jaeger et al., 2003, Li et al., 2007, Novell, 2012, Zanin 
and Mancini, 2004). 
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Many finely-grained rule-based application-oriented access controls simply 
specify a list of all the resources programs require. As previously discussed, these 
include sandboxes such as TRON, higher-level system call interposition schemes 
such as Software Wrappers, and system wide controls such as AppArmor and 
PeaPod. All of these systems require complex and typically lengthy policies to 
restrict applications. Because these policies specify all the low level resources 
programs need, they expose the complexity of the operating environment and the 
resource requirements of applications. As previously discussed, the list of 
resources applications typically need to access can be extremely complicated 
(Marceau and Joyce, 2005). Creating, managing and reviewing these policies 
therefore generally requires a relatively high level of expertise beyond that of 
most end users. Some of these systems include simple policy abstractions that 
group lists of rules and can be included in policies. However, due to the low level 
nature of the rules and the complexity of the needs of application, these 
abstractions represent low level attributes of programs. For example, AppArmor 
includes abstractions such as ‘fonts’, ‘bash’, ‘nameservice’, ‘dbus’, ‘orbit2’, and 
‘aspell’, which still require expertise to understand and utilise. Application 
virtualization schemes use similar methods to define what actions programs are 
authorised to perform, with the additional complexity of intra-component rules 
and source based rules. 
 
MAPbox makes the important contribution of behavioural classes to create 
reusable associations between fine grained rules and programs (Acharya and Raje, 
2000, Raje, 1999). However, under MAPbox programs are limited to a single 
behaviour class (14 classes identified), and programs that exhibit multiple 
behaviours (such as most web browsers) are unable to be confined. Also, although 
it has been acknowledged that overlaps exist between classes, each policy is 
defined individually. Although author-influenced policies may be useful for 
simplifying policy management for users and may reduce the threat from 
vulnerabilities, the threat of untrustworthy authors defining insecure policies 
remains. An untrusted author will likely choose the most liberal class and 
parameters that users will accept in order to improve the chances that the program 
will have all the required authority to act as intended, be that benevolently or 
maliciously. Also, allowing the user to arbitrarily specify the privileges assigned 
to behaviours means that even authors who specify the behavioural class of 
applications do not know what privileges they will be authorised. As discussed, 
the FBAC model builds on this basic idea and overcomes a number of 
shortcomings of the MAPbox model. FBAC was designed to overcome the 
common limitations of rule-based application-oriented access controls, which is 
discussed further below. 
 
Table 2 presents an approximate summary of the limitations that have been 
discussed and how they relate to each of the classes of rule-based systems that 
have been described. As with the previous table, an “X” denotes that the 
limitation typically applies to this class of system, while “X*” describes a 
limitation that applies to a lesser extent or with some exceptions. As with the 
approach used to explain Table 1, as an example one row is described in detail, in 
this case the “non-discretionary framework combining access control models” 
row, which describes security frameworks such as SELinux, and RSBAC: 
schemes that combine a number of label-based non-discretionary access control 
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models. The first row indicates the complexity of the way policy is represented: 
the policy language is complicated by the multiple models being represented 
(such as RBAC, TE, and MLS), and is defined in terms of labels, which can be 
unintuitive for people unfamiliar with the details of the security mechanism and 
requires the text-based policies for restricting applications to be considered in 
terms of how the files on the system are labelled. The policies are also typically 
compiled into a non-human readable binary format before they are enforced. The 
second row indicates that for this class of security system the text-based policies 
are typically lengthy and complex, due to the large number of varied resources 
that applications often require. The third row indicates that the policies expose the 
complexity of underlying systems; that is, understanding policies requires 
knowledge of low-level system details such as the filesystem hierarchy standard, 
security labels, security models, and network ports. As shown in the next two 
rows, these systems typically mediate access to network as well as file resources. 
The following row represents the fact that each application's policy is largely 
independent and the scheme lacks easily reusable policy abstractions, which is a 
common limitation amongst many rule-based schemes. As discussed, in the case 
of SELinux m4 macros can provide some limited low-level abstraction, and 
multiple executables can be assigned to the same domains. However, in practice 
each application policy is typically defined individually due to the inability for 
these abstractions to adapt to individual needs of applications. The next row 
indicates that these schemes can confine legacy applications; that is, existing 
software. The next two rows indicate that these systems are non-discretionary and 
are therefore maintained by administrators, and cannot be used by normal users to 
confine their applications unless they are the administrator of their computer. The 
final row shows that, like many rule-based application-oriented access controls, 
non-discretionary frameworks combining access control models typically do 
facilitate applications sharing the same resources with different permissions. 
 

Table 2: Limitations of rule-based application-oriented access controls 

Scheme 
category 

General 
properties Example 

C
om

plex policy representation 

C
om

plex and/or lengthy application policies 

A
pplication policy exposes the com

plexity of 
underlying system

s 

Lack  netw
orking and/or IP

C
 m

ediation 

Lack of file m
ediation 

D
oes not scale w

ell, lacks reusable abstractions 
for sim

plifying policy 

C
annot be applied to legacy applications 

D
oes not suit use by norm

al users to protect 
them

selves w
ith discretionary controls 

D
oes not suit use by adm

in to enforce non-
discretionary controls 

D
oes not support sim

ple w
orkflow

 of editing the 
sam

e files betw
een sandboxes, w

hile lim
iting 

potential dam
age 

System call 
interposition 

Fine-grained 
rules, 

typically in 
terms of 

system calls 

Systrace X X X   X   X*  
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Scheme 
category 

General 
properties Example 

C
om

plex policy representation 

C
om

plex and/or lengthy application policies 

A
pplication policy exposes the com

plexity of 
underlying system

s 

Lack  netw
orking and/or IP

C
 m

ediation 

Lack of file m
ediation 

D
oes not scale w

ell, lacks reusable abstractions 
for sim

plifying policy 

C
annot be applied to legacy applications 

D
oes not suit use by norm

al users to protect 
them

selves w
ith discretionary controls 

D
oes not suit use by adm

in to enforce non-
discretionary controls 

D
oes not support sim

ple w
orkflow

 of editing the 
sam

e files betw
een sandboxes, w

hile lim
iting 

potential dam
age 

System call 
anomaly 
detection  

Detects 
anomalies in 
system call 
sequences 

Callgraph X X X X X X     

Application 
virtualization  

Portable 
application 

bytecode run 
by a VM with 

a security 
policy 

Java X X X   X X  X  

Fine-grained 
rules 

sandbox 

Fine-grained 
rules, in 
terms of 

resources 

Mac OS X 
Sandbox  X X   X*   X  

One-size-fits-
all fine-
grained 
policy 

The same 
detailed 
policy is 

applied to all 
apps 

iOS    X* X*   X X X 

Artificial user 
accounts 

Applications 
are confined 
by assigning 
them "user" 

accounts 

Rainbow    X  X  X*  X 

Coarsely-
grained 

privileges 

Flag-based 
privileges, 

assigned to 
applications 

Linux 
capabilities     X* X* X  X   

Artificial user 
accounts + 
coarsely-
grained 

privileges 

Applications 
are assigned 

user 
accounts 
and flag-

based 
privileges by 

authors 

Android X*   X*  X  
X* 

(single 
user) 

 X* 

ACL 
extensions 

Files are 
labelled with 
a list of the 
programs 

that allowed 
access 

PACLs  X X X  X   X  

Type 
enforcement 

Label-based 
permissions 

between 
types 

(objects) and 
domains 

(processes) 

DTE X X X   X*  X   
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Scheme 
category 

General 
properties Example 

C
om

plex policy representation 

C
om

plex and/or lengthy application policies 

A
pplication policy exposes the com

plexity of 
underlying system

s 

Lack  netw
orking and/or IP

C
 m

ediation 

Lack of file m
ediation 

D
oes not scale w

ell, lacks reusable abstractions 
for sim

plifying policy 

C
annot be applied to legacy applications 

D
oes not suit use by norm

al users to protect 
them

selves w
ith discretionary controls 

D
oes not suit use by adm

in to enforce non-
discretionary controls 

D
oes not support sim

ple w
orkflow

 of editing the 
sam

e files betw
een sandboxes, w

hile lim
iting 

potential dam
age 

Non-
discretionary 
framework 
combining 

access 
control 
models 

Complex 
label-based 
framework 
combining 

multiple 
access 
control 
models 

SELinux X X X   X*  X   

Fine-grained 
system-wide 

rules 

Fine-grained 
rules, in 
terms of 

resources, 
applied 

automatically 
when the 

application 
starts 

AppArmor  X X   X*  X   

Hybrid 
container-

based 
virtualisation 

+ fine-
grained rules 

sandbox 

Isolation-
based 

virtualisation 
with 

additional 
rules for 

contained 
applications 

PeaPod   X* X   X  X*   

Functionality-
based 

Applications 
are confined 
based on the 
features they 
are expected 

to perform 

FBAC           

 
As illustrated in the table, many application-confinement schemes suffer from 
policy complexity. Due to this complexity, using many of these systems it is 
impractical to specify policy a priori; that is, without analysing the activity of 
each application. For this reason many finely-grained rule-based mechanisms rely 
on learning modes to automatically generate policy based on the observation of 
programs operating. The program to be confined is executed and all security 
sensitive actions are logged. These logged activities are then typically assumed to 
be standard behaviour and are used to create a policy for confining the 
application. Since only primitive policy abstractions are used (if any), resulting 
policies are often large, complex and difficult to review, especially with system 
call interposition schemes. As previously mentioned, examples of security 
mechanisms that include learning modes include: AppArmor (Cowan et al., 
2000a), Systrace (Provos, 2002), LIDS (LIDS, 2012), SELinux (audit2allow tool) 
(Habib, 2007), TOMOYO (Harada et al., 2004) and grsecurity (Spengler, 2012). 
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Learning modes develop policies either while the program is confined or when it 
is unconfined. Using systems such as AppArmor, incrementally building policy 
while the program is confined by the rules being developed can involve a large 
number of iterations due to program failures where the program is unable to 
continue without access to required privileges. Alternatively, building policy 
while the program is not confined poses security risks if the software acts 
maliciously during this process. Dynamic policy authorisation, such as used by 
PULSE (Murray and Grove, 2008), can somewhat alleviate this risk by waiting 
for user confirmation before authorising the program access to each resource. 
 
Although learning modes can make policy generation easier, the policy requires 
review to ensure that the logged behaviour does in fact represent legitimate 
behaviour. However, reviewing policy requires expertise and meticulous 
inspection of the generated policy, and even simple applications can involve a 
very large number of rules. If the application is carrying out malicious behaviour 
at the time of logging, and this is not detected at review, then the application-
oriented access control will not prevent the application from continuing these 
malicious activities. Also, if the application does not access all the resources it 
requires during policy generation, in the future it may be restricted from carrying 
out its legitimate tasks, or require excessive user interaction and policy 
refinement. This makes it difficult to learn behaviour without exposing the 
application to the production environment, and possibly attack, during policy 
generation. 
 
Using previous finely-grained application restrictions, individual application-
oriented access control policies typically apply primarily to only one specific 
application or program. The work involved in constructing policies for all 
applications utilised is considerable; the management task generally increases 
more or less in proportion to the number of applications being confined. 
 
Furthermore, most schemes either provide user-specified policies (DAC), 
administrator-specified policies (MAC), author-specified policies, or software-
specified policies. Each system can address one of these security goals. However, 
these are all valid restrictions that should be capable of being combined to provide 
defence-in-depth and to enforce the security goals of each party. Using the 
schemes described, enforcing these goals simultaneously requires the 
management of multiple security systems. 
 
The FBAC approach demonstrably overcomes common limitations in rule-based 
controls. Application policies are defined in terms of high-level abstractions, 
which results in relatively simple (yet fine-grained) policies mediating access to 
files and the network while abstracting the details of the underlying platform 
(Schreuders et al., 2011b). FBAC enforces discretionary and non-discretionary 
policy defined by a number of parties. The model is designed to provide controls 
for users and administrators to enforce security goals. Policies have been created 
to demonstrate that this approach can be applied to legacy applications. FBAC 
also facilitates the development of policies a priori using high-level security 
concepts, eliminating the need for learning modes (Schreuders et al., 2011c). 
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6. Application Restrictions and Usability 

The result of all these limitations is primarily a usability problem. Despite the fact 
that it has long been acknowledged as an important aspect in the design of 
security systems (Saltzer and Schroeder, 1975), usability received little attention 
in the literature until the importance of applying human-computer interaction 
(HCI) techniques to the field of computer security was emphasised by studies 
which demonstrated that poorly designed security user interfaces resulted in 
degraded protection (Hitchings, 1995, Zurko and Simon, 1996). Although 
awareness of the importance of usability in security design has improved (Cranor 
and Garfinkel, 2005), and the literature now contains numerous publications 
related to computer security usability, very little research has investigated or 
addressed the usability issues associated with application-oriented access controls.  
 
Research has explored usability within the wider field of access control and policy 
specification. A study by Motiee et al. (2010) identified general problems with 
existing user-oriented schemes. The conflict between usability and access control 
policy complexity has been acknowledged a number of times, and methods for 
improving the usability of policy specification have been explored (Brodie et al., 
2006, Cao and Iverson, 2006, Johnson et al., 2010a, Johnson et al., 2010b, Karat 
et al., 2005, Reeder et al., 2008, Reeder et al., 2007, Zurko et al., 1999, Zurko and 
Simon, 1996). A number of policy authoring techniques have been developed by 
usable security researchers to overcome usability and policy complexity problems. 
The Adage (Zurko et al., 1999) and MAP (Zurko and Simon, 1996) projects were 
designed to provide usable RBAC for distributed organisations. SPARCLE is a 
natural language policy management tool that guides users through the task of 
specifying policy (Brodie et al., 2006, Karat et al., 2005). Expandable Grids is a 
graphical method of managing and viewing policy using a hierarchical matrix 
(Reeder et al., 2008), and Intentional Access Management produces user-oriented 
DAC ACL policy rules based on low-level access goals of end users (Cao and 
Iverson, 2006). Johnson et al. (2010a, 2010b) have recently proposed techniques 
for improving the usability of guided natural language policy specification using 
policy templates. Findings of studies such as these have supported the idea that 
abstraction improves the usability of access controls and eases policy 
specification.  
 
However, little research has explored the usability of application-oriented access 
control schemes. The isolation-based Apiary scheme and the data-centric 
FileMonster scheme have been the subjects of limited usability studies (Potter and 
Nieh, 2010, Schmid et al., 2002). Potter and Nieh (2010) conducted a simple user 
study with 24 participants to evaluate the ability of users to use applications in the 
Apiary environment. The use of the Apiary desktop was compared with Xfce, a 
lightweight Linux desktop environment. Usability evaluation was simply 
measured by time-on-task and participants were “asked to rate their perceived 
ease of use of each environment on a scale of 1 to 5”. Participants were also asked 
some other questions “including, would the Apiary environment be an 
environment they could imagine using full time and would it be an environment 
they would prefer to use full time if it would keep their desktop secure”. Results 
were reported as affirmative, although no inferential statistics were employed. 
Schmid et al. (2002) also conducted a simple evaluation of the FileMonster 
scheme that measured the number of times the tool required user interaction. 
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A study by DeWitt and Kuljis (2006) assessed the usability of the Polaris security 
mechanism (Stiegler et al., 2006), an application-oriented access control system 
for Windows designed with usability in mind. The study involved 10 participants 
utilising Polaris to carry out a number of tasks. Their success at the tasks was 
evaluated and perceived usability was measured. After using Polaris to attempt a 
number of tasks, participants on average rated the system 44.2 out of 100 using 
the System Usability Scale (SUS) (Brooke, 1996), and the study concluded that 
further work was necessary to improve the usability of Polaris.  
 
A within-subjects usability study was performed to compare the usability of 
SELinux, AppArmor, and FBAC-LSM and to identify factors that have an effect 
on the usability of application-oriented access controls (Schreuders et al., 2011a, 
Schreuders et al., 2012). Each of the 39 participants used all three systems to 
confine a web browser and a simulation of a Trojan horse posing as a game. 
Perceived usability was measured using the SUS, and policy success was 
measured using a score based on security-sensitive resources available after 
attempting the tasks. Inferential statistics indicated that significant differences in 
usability existed between the systems. FBAC received a SUS score of 70.21, 
AppArmor scored 54.93, and SELinux scored 34.58 (Schreuders et al., 2011a). 
Risk exposure scores followed a similar trend with FBAC-LSM outperforming 
AppArmor, which in turn successfully provided more protection than SELinux. 
Qualitative analysis suggested various factors had an effect on usability, including 
the kind of policy abstractions provided (Schreuders et al., 2012). 

7. Recommendations and Future Work 

This review shows that there are many opportunities for future research in the 
field of application restrictions. This paper has identified a number of common 
limitations in application-oriented access controls. These identified limitations can 
serve as means of assessing existing schemes for suitability for various purposes, 
can provide considerations for the design of new systems, and can form the 
subject of future research. 
 
In general, it was found that those schemes that were designed with usability in 
mind were able to overcome many common limitations. Consequently, we 
recommend usability be considered further during the design of application-
oriented access control schemes. 
 
Work by the authors has taken the approach that the usability problems with rule-
based application oriented access controls can be overcome by reusable policy 
abstractions representing high-level goals. Previous approaches either lacked 
policy abstractions entirely, or utilised abstractions that do not provide the 
flexibility and reusability necessary to represent high-level goals and abstract low-
level details from application restriction policies. Most application-oriented access 
control models simply associate a list of privileges directly with an application. 
Others provide policy abstractions that group privileges and can be reused only to 
a limited extent. With most isolation sandboxes, the only policy abstraction 
available is an isolated container that groups subjects with the objects they can 
interact with; any exceptions are typically specified individually. Models that 
restrict access to shared resources are generally either devoid of policy abstraction 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

31 

(privileges are listed for each application), or are defined in terms of large 
monolithic self-contained policy abstractions, such as is the case with DTE 
domains and RC roles. These policy abstractions typically have limited reusability 
as they only apply to the specific needs of an individual application. These models 
lack the flexibility required to apply the policy abstractions to different 
applications with shared high-level goals. Unless the applications have exactly the 
same privilege requirements, the abstractions cannot be reused. Results of our 
research have supported the idea that policy abstraction can facilitate overcoming 
various limitations, and therefore we recommend serious consideration of policy 
abstraction when designing application-oriented access controls. 
 
While many different schemes for application-oriented controls currently exist (as 
illustrated throughout this paper), a conflict exists between developing new 
innovative and more usable methods of control, and improving and standardising 
on existing systems which have received limited adoption. The recent popularity 
of mobile device operating systems, such as Android and iOS, has demonstrated 
that it is possible to provide more widespread use of application restrictions by 
standardising on controls. This is a contentious issue for the Linux security 
community, where a number of alternatives exist. The authors encourage the 
design and adoption of usable controls that suit legacy applications on commodity 
operating systems to provide security controls to limit the privilege assigned to 
applications. 

8. Conclusions 

This paper has presented an overview of the motivation for application-oriented 
access controls, and described in depth the application-oriented access controls 
that have been proposed in the literature. Unlike user-oriented access controls, 
application-oriented access controls specify policy primarily in terms of programs 
or groups of programs, rather than users or groups of users. By identifying the 
privileges required by each application and restricting their actions to those 
privileges, the ability of applications to act beyond their legitimate purpose is 
limited, and attempts to act maliciously are restricted. Application-oriented 
schemes include models that isolate programs to only access the set of resources 
available from within the isolated environment, and rule-based schemes that 
provide controls over shared resources while allowing applications to access the 
same resources in a restricted manner.  
 
Both of these main approaches pose a number of challenges. Isolation does not 
suit typical user workflows, can result in redundancy of resources, and requires 
frequent circumvention of the security model to be practical. Rule-based schemes 
typically result in complex policies that are hard to specify, review, and manage. 
 
There are many opportunities for future research, and there is a need for usable 
application-oriented security solutions. Although application-oriented access 
controls can provide substantial security benefits by restricting the activities of 
individual applications, to date adoption remains relatively rare and targeted, 
arguably due to the inadequate usability of these schemes. 
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