Dynamic Perfect Hashing:
Upper and Lower Bounds

Martin Dietzfelbinger* Anna Karlin'
Universitat—GH—Paderborn DEC Systems Research Center
Fachbereich 17 130 Lytton Ave.

4790 Paderborn, F. R. G. Palo Alto, CA 94301
Kurt Mehlhorn? Friedhelm Meyer auf der Heide*
Max-Planck-Institut Universitat—GH—Paderborn
fur Informatik Fachbereich 17
6600 Saarbricken, F. R. G. 4790 Paderborn, F. R. G.
Hans Rohnert? Robert E. Tarjan'
Siemens AG Princeton University
8000 Miinchen 83, F. R. . Dept. of Computer Science

Princeton, N.J 08544
and NEC Research Institute

Revised Version, January 7, 1990
Final version will appear in SIAM J. Computing

Abstract

The dynamic dictionary problem is considered: provide an algorithm for stor-
ing a dynamic set, allowing the operations insert, delete, and lookup. A dynamic
perfect hashing strategy is given: a randomized algorithm for the dynamic dic-
tionary problem that takes O(1) worst-case time for lookups and O(1) amortized
expected time for insertions and deletions; it uses space proportional to the size
of the set stored. Furthermore, lower bounds for the time complexity of a class
of deterministic algorithms for the dictionary problem are proved. This class
encompasses realistic hashing-based schemes that use linear space. Such algo-
rithms have amortized worst-case time complexity Q(logn) for a sequence of n

*partially supported by DFG Grant Me 872/1-4.

TResearch at Princeton University partially supported by NSF grants DCR-8605962 and STCS8S8-
09648 and ONR Contract N00014-87-K-0467.

tpartially supported by DFG grant Me 620/6-1 and ESPRIT-project ALCOM. K. Mehlhorn and
H. Rohnert were affiliated with the Universitat des Saarlandes when this research was done.



1 INTRODUCTION 2

insertions and lookups; if the worst-case lookup time is restricted to &k then the
lower bound becomes Q(k - n'/%).

Key words. data structures, dictionary problem, hashing, universal hashing,
randomized algorithm, lower bound.

AMS(MOS) subject classifications. 68P05, 68P10, 68Q20.

1 Introduction

A dictionary over a universe U = {0,1,..., N — 1} is a partial function S from U
to some set I. The operations Lookup(x), Insert(x,t), and Delete(x) are available on
a dictionary S; Lookup(x) returns S(x), Insert(x,?) adds = to the domain of S and
sets S(x) to ¢, and Delete(x) removes = from the domain of S. In the following, the
“information field” S(x) associated with the “key” x in the dictionary will be ignored;
thus, S is identified with its domain and regarded as a (dynamic) set. There are two
major techniques for implementing dictionaries: trees and hashing.

For a static set S (no updates), Fredman, Komlds, and Szemerédi [FKS84] described
a hashing technique that achieves linear storage (in n) and constant query time for all
N and n, where n is the size of S.

In this paper (Section 2), we present an extension of their scheme to the dynamic situa-
tion, wherein membership queries are processed in constant worst-case time, insertions
and deletions are processed in constant expected amortized time, and the storage used
at any time is proportional to the number of elements currently stored in the dic-
tionary. The algorithm is randomized; the averaging involved in the analysis is over
choices made by the algorithm and not over the sequence of operations.

Besides solutions that use (balanced) search trees, several other approaches to the
dynamic dictionary problem have been proposed, some of which lead to expected or
average constant time per instruction. Aho and Lee [AL86] presented a scheme achiev-
ing the same time and storage bounds as our algorithm. However, in order to prove
these bounds, they require that the items being inserted are chosen uniformly at ran-
dom from the universe of possible elements.

Carter and Wegman [CW79] proposed universal hashing as a way of avoiding assump-
tions on the distribution of input values. This approach works particularly well in
combination with the idea of “continuous rehashing” introduced by Brassard and Kan-
nan [BK88]. In this way an algorithm is obtained that needs linear space and expected
constant time for each single instruction. However, for n keys being stored in the dic-
tionary in a scheme of this kind the best upper bound known on the expected worst



2 DYNAMIC PERFECT HASHING 3

case time for an instruction (i.e., the length of the longest chain in the resulting hash
table with chaining) is O(log n/loglogn) (cf. [DM90b, S89]), and it can be argued that
it is Q(log n/loglog n) no matter what universal class is used. In fact, this lower bound
even holds in the case of uniform hashing, where one assumes that the hash values for
different keys are chosen uniformly at random [G81, MV84].

In contrast, our algorithm guarantees constant time for each membership query.

When we say that no assumption is made about the sequence of operations, we mean
that the sequence is arbitrary, but fixed before the algorithm starts running. In essence,
all that is needed for the analysis is that the sequence of operations be independent
of the random choices made by the algorithm. Thus, we require that the party that
chooses the sequence of operations not use any knowledge on these random choices to
determine which items to insert in the table.

In the second part of the paper (Sections 4 and 5), we consider the case that we have
to deal with an adversary that knows the random choices made by the algorithm, or
equivalently, that the algorithm is deterministic. We prove an (logn) lower bound on
the amortized worst-case time complexity for any deterministic solution to the dictio-
nary problem which is solely based on hashing and uses only linear space. Furthermore,
if we assume the worst-case lookup time to be bounded by k, the amortized worst-case
complexity is Q(k - n'/%),

Remark 1.1 Some of the lower bounds that hold for the model considered in Sections
4 and 5 are bigger than the O(log n) worst-case bound guaranteed by balanced search
trees. This results from the fact that our model is defined so as to cover only pure
hashing strategies. In [MNR90], which was motivated by the first version of the present
paper, a lower bound of Q(nloglog n) for n insertions is shown in a stronger lower bound
model that encompasses both hashing strategies and search trees.

In Section 3, some general facts concerning the performance of universal classes of
hash functions consisting of polynomials of constant degree or variants thereof are
established. These results have proved useful for variations of the scheme presented
in this paper, which yield constructions of dynamic dictionaries for parallel and dis-
tributed machine models as well as further improvements of the sequential scheme

[DM89, DM90a, DM90b].

2 Dynamic perfect hashing

We begin by reviewing the FKS scheme for statically storing a set S of size n. Let
Hs,={h:U—{1,...,s} | h(z) = (kx mod p) mod s, 1 <k < p—1}, where pis prime
and p > N. The scheme has two levels. At the top level, a hash function partitions the



2 DYNAMIC PERFECT HASHING 4

elements being stored into s sets. The second level consists of a perfect hash function
for each of these sets. Specifically, a function i chosen uniformly at random from H, is
used to partition the set S into s blocks. Let th ={x € S| h(x) = j}; the superscript
h is omitted when A is understood. Fredman, Komlds, and Szemerédi show that if a
function h is chosen from H; uniformly at random then

5 (1) =

0<s5<s S

(where E(X) denotes the expectation of the random variable X), and consequently

that
Pr( 5 (|V‘2/j|) <M) > % (1)

0<s5<s S

Choosing s = 2(n—1), relation (*) implies that for at least half of the functions h € H,

one has

Z (|W]|) < n.

0<s5<s 2
Such a function is used to partition S into blocks W;, 0 < j < s. For each block W;
one uses relation () with s; = max{1,2|W;|(|W;| — 1)}. It follows that for at least

half of the functions h € Hsj one has

5 (|V‘;j,l|)<17

0§l<5j

where W, ={x € W, | h(z) =1}, i. e, |W;;| <1 for all l. For each j therefore at least
half of the functions in Hsj are injective on W;. One uses one such function for each
W;. The total space requirement is linear since

Yosi<s+4- Y ('VZ”):O(n)

0<j<s 0<j<s

by the choice of the hash functions.

For the dynamic case, we use the standard doubling method to deal with the fact that
we do not know in advance how big the top-level table or any of the subtables will get.

Suppose that n is the current number of elements stored in the table. The FKS scheme
in use will accommodate up to M elements. The value of M will initially be set to
(1+¢)-n for some ¢ > 0 and as n changes will never be more than $£5-n. Let s(M), to
be specified, be the number of sets into which the top level hash function is to partition

the elements of 5. The function %~ will be a random element of H,as). Thus, the set S
is partitioned by & into the subsets W; = {& € S | h(z) =1}, 0 < j < s(M).

Let T; be the block of memory used for storing W;. The amount of space allocated
to Tj is s;, where s; = 2mj(m; — 1), and m; is the maximal size of W; the current
table T; is meant to manage. The quantity m; is always as least as big as |W;| and



2 DYNAMIC PERFECT HASHING 3

is at most twice the number of all elements ever mapped to j by the current top level
function h. The subset W; is resolved within T by using a perfect hash function #;
from Hsj. If the value k; specifies which hash function h; is being used, then z € W;
is stored in location (k;z mod p) mod s; of subtable Tj. It will be arranged that the
following condition is always satisfied:

Yo < i?%; +4M . (7)

0<j<s(M)

The parameter s(M) will be chosen to be O(n) so that the right hand side of this
equation is O(n). We will see that this guarantees that the total space used is linear
in the number of elements currently stored in the table.

The algorithm can be specified more precisely as described in the program given in
Figures 1 and 2 below. The variable count keeps track of the number of updates per-
formed in the hash table of the present size M. From time to time it becomes necessary
to restructure the whole table. This is the case when count reaches M or when (k)
becomes wrong. In both cases, we start a new phase, resetting M to the new value
(1 + ¢) - n, where n is the number of elements currently stored in the dictionary; the
variable count is set to n, so that the system is able to perform up to ¢ - n updates
before the beginning of the next phase. Deletions are performed by attaching a tag
“deleted” to the table entry to be erased; only when a new level-1 hash function % or
a new hash function h; for the subtable T} is chosen, do we drop the elements with a
tag “deleted” from T}.

Let us first analyze the space needed by the scheme. By a phase we mean the time
period during which one level-1 hash function % is “in use”: a phase starts when some
h is chosen and ends when the next level-1 function is chosen, either in the same or the
subsequent call to RehashAll. Phases that only consist of choosing an h to find out
that h does not satisfy condition (%) are called degenerate. During any phase that
starts with n keys being stored in the dictionary the number of keys will never drop
below (1 — ¢) - n, since at most ¢ - n updates are made. Thus, the following lemma is
sufficient to prove the claimed space bound.

Lemma 2.1 The memory space used during a phase that starts with n keys being
stored in the dictionary is O(n).

Proof: ~ The lemmais obviously true for degenerate phases, since s(M) = O(n). Thus,
we assume that a function h is chosen that satisfies condition (#*), and determine
how big the table T" has to be to accommodate all versions of all subtables. For
0 <j < s(M),let m; denote the final capacity of T}, that is, the value of m; at the end
of the phase, and let 5; = 2m;(m; — 1) be the final size of T;. The previous versions of
T; (if there were any) had capacity $m;, $mj, ... . Since, for [ > 0,

2-(27 - m)27 emy — 1) <47 2my(my — 1) =471 5,



2 DYNAMIC PERFECT HASHING

procedure [nsert(x);
count «— count + 1;
if count > M
then
RehashAll(x);
else
J = h(w);
if position h;(x) of subtable T, contains
then
if x is marked “deleted” then remove this tag;
else (x x is new for W, )
b]‘ — b]‘ —|— 1;
lf b]‘ S my
then (x size of T} sufficient *)
if position hj(x) of T; is empty
then
store @ in position hj(x) of T};
else
go through the subtable T}, put all elements
not marked “deleted” into a list L;, and
mark all positions of T} empty;
append z to list L;; b; « length of Lj;
repeat h; « randomly chosen function in Hsj
until %; is injective on the elements of list L;;
for all y on list L; store y in position h;(y) of T};
else (x T} is too small *)
mj «— 2-max{l,m;}; s; < 2m;(m; — 1);
if condition () is still satisfied
then (* double capacity of T; *)
allocate new space, namely s; cells, for new subtable T;
go through old subtable T}, put all elements
not marked “deleted” into a list L;,
and mark all positions empty;
append z to list L;; b; « length of Lj;
repeat h; « randomly chosen function in Hsj
until %; is injective on the elements of list L;;
for all y on list L; store y in position h;(y) of T};
else (x level-1-function h “bad” x*)

RehashAll(x);

Figure 1: Insertion



2 DYNAMIC PERFECT HASHING

procedure RehashAll(x);
(* RehashAll(x) is either called by Insert(x), and then x € U,
or by Delete(x), and then x = —1. RehashAll(x) builds a new table
for all elements currently in the table plus « (if € U). *)
go through the whole table T', put all elements not tagged “deleted”
into a list L, count them, and mark all positions in T" “empty”;
if # € U then append « to L;
count « length of list L;
M — (1 + ¢) - max{count,4};
repeat / « randomly chosen function in Hns;
for all j,0 <j < s(M), do form a list L; of all « € L with h(z) = j;
for all 7,0 <j < s(M), do
bj « length of list L;; mj « 2-bj; s; < 2m;(m; —1);
until condition () is satisfied;
for all j,0 <j < s(M), do
allocate space s; for subtable T7;
repeat h; « randomly chosen function in Hsj
until £; is injective on the elements of list L;;
for all x on list L; do store x in position h;(z) of T};

procedure Delete(x);

count «— count + 1;

J — h(x);

if position hj(x) of subtable T} contains
then mark = as “deleted”
else return(z is not a member of 5);

if count > M
then (* start new phase *)

RehashAll(—1);

procedure Lookup(z);
J — h(x);
if position hj(x) of subtable T; contains & (not marked “deleted”)
then return(“x is a member of S7)
else return(“z is not a member of 57”);

procedure [nitialize;
T+ an empty table;
RehashAll,

Figure 2: Setup, Deletion, Lookup, and Rehashing



2 DYNAMIC PERFECT HASHING 8

the total number of cells occupied by all versions of all subtables T} is bounded by

4 /32M?*

oo NYathes; = o0 Y sjg—-< +4M).
0<j<s(M) 120 3 o<ica(n 3 \s(M)
The last inequality holds since the algorithm makes sure that condition (#*) remains
valid throughout the phase.

The space required by the header table is at most 5s(M), since the jth entry of the
header table need only contain a pointer to 7}, the variables s;, b;, and m;, and the
number k; that describes the hash function h;. If we let s(M) = £v/30 - M, the
space needed by the subtables and the header table taken together is bounded by
% . (23%—0;45 —|—4M) +5. %\/30 M = %(\/30 +1)- M <35-(1+¢)-n, which proves

the lemma. O

Now we turn to the time bounds. Note first that membership queries do not interfere
with the time analysis, since they are executed in constant time in the worst case. Thus,
there is no harm in assuming that there are no membership queries at all. Note further
that instructions that are executed in constant time (i.e., deletions in any case and
insertions if they do not cause a subtable T, to be rearranged) can be safely ignored,
since they will not invalidate an overall linear time bound. Thus, we only need to worry
about the time spent for installing new level-1 functions at the beginning of a phase
(in RehashAll), and for constructing new versions of the subtables T; (in RehashAll or
in Insert).

Lemma 2.2 The expected time for a phase that starts with n keys being stored in the
dictionary is O(n).

Proof: ~ Consider the call to RehashAll in which the phase starts. Clearing the old
table (header table and the subtables) and building up the list L takes time O(n), since
by 2.1 the old table occupies only space O(n). Time linear in n suffices to construct
the sublists L;, to compute the values b;, m;, and s;, 0 < j < s(M), and to compute
o<j<s(m) Si- Thus, if the phase is degenerate, it takes O(n) time in the worst case. In
a non-degenerate phase h initially satisfies (#*). By the remarks immediately preceding
Lemma 2.2, we only have to estimate the time spent for installing new hash functions
h; for the subtables. Fix some j, and split the phase, as far as T} is concerned, into
subphases, one subphase being defined as a maximal time period in which the capacity
m; and hence the size s; of T} have a fixed value. We need the following observation:

Claim:  Assume a hash function h; is chosen for T} at the beginning or in the course
of a subphase. Then the probability that A; stays in use until the end of the subphase
exceeds %

Proof of claim: Let the capacity of T} during the phase be m;. Let W; be the set
of keys x contained in the list L; when h; is chosen. Let V; be the set of the first



2 DYNAMIC PERFECT HASHING 9

mj — |W;| different keys x in the sequence of the Insert instructions to be executed
next that satisfy h(x) = j and do not occur in W;. Then, by relation (*), table size
s; = 2m;j(m; — 1) (for m; # 0) implies that with probability exceeding 1 the elements
of W; UV, will be mapped by h; to different locations in 7}. If this happens, the way
b; is changed and repeated keys are treated in Insert and Delete implies that h; stays
in use until b; grows beyond m;; that is, until the end of the subphase. a

By the claim, the probability that u or more hash functions %; are used in a single
subphase is at most 27(“") and hence the expected number of functions h; chosen
during the subphase is bounded by 2. Thus, the expected cost for installing new hash
functions h; during a subphase in which 7} has size s; is O(s;). Exactly as in the
proof of Lemma 2.1 we get an overall bound of O(M) = O(n) for the expected time
for installing new hash functions h;, 0 < j < s(M), by summing over all subtable sizes
and all j, and using (). O

In order to finish the time analysis, we will show in the following two lemmas that
there will not be too many phases. Fix some phase, and let S be the set of elements
stored in the table at the beginning of the phase (whose number is n) together with
those that occur in the next ¢-n update instructions to be executed (repeated elements
are only counted once). Let M = (1 + ¢) - n; clearly, |S| < M. For h € H, chosen
at random, define W; = {a € S | h(z) =7}, 0 < j < s(M).

Lemma 2.3 (a)  With probability exceeding L we have

32M*

S(M) + 4M.

Yo AWEIW] - 1) <

0<j<s(M)

(b)  Ifthe inequality in (a) is satisfied for the level-1 function h chosen at the beginning
of the phase, then the phase ends with the variable count reaching M i.e., the phase
comprises ¢ - n updates.

Proof: (a) In the situation just described, relation (%) reads

of 5, () <)

0<j<s(M)

The claim follows by a simple transformation, using the obvious inequality

Yoci<sany Wil = 5] < M.

(b) It is immediate from the way the variables b; and m; are initialized in RehashAll
and updated in Insert, and from the fact that only keys from S’ can occur in the phase,
that b; < |W;|, and hence m; < 2|W;|, throughout the phase. Since s; = 2m;(m; — 1)
throughout the algorithm, we see that the inequality in (a) entails that (%) stays valid
throughout the phase. O



3 HIGHER ORDER HASH FUNCTIONS 10

Lemma 2.4 Suppose that RehashAll is called at a time when n > 1 keys are stored
in the dictionary. Then the (expected) time needed until the first call to RehashAll
after ¢ - n updates have been performed is O(n).

Proof: ~ Consider an arbitrary phase that starts before the next ¢ - n updates have
been processed. The number of keys in the table at the beginning of this phase is n’,
where (1 —¢)-n <n’ < (1 +¢)-n. By Lemma 2.3(a)(b), the probability that during
this phase ¢-n’ updates are performed exceeds % Since ¢-n—|n’ —n| < ¢-n’ no matter
if n” < n orn’ > n, this means that the probability that this phase extends further
than the ¢-n updates we are considering is at least % Thus, the expected number of
phases needed to perform these ¢-n updates is not more than 2. Each phase occurring
starts with n’ keys, (1 —¢)-n <n’ < (1+¢)-n, and takes O(n) steps (expected) by
2.2. This finishes the proof of 2.4 and the time analysis. a

Lemmas 2.1-2.4 taken together yield the following result.

Theorem 2.5 Dynamic perfect hashing, as described by the algorithm in this section,
uses linear space, needs constant time for membership queries, and has O(1) expected
amortized insertion and deletion cost. O

Remark 2.6 Obviously, the space bound 35(1 4 ¢)n proved in 2.1 is not satisfactory
from a practical point of view. There are many conceivable ways of reducing the space
bound, by varying the parameters fixed in the algorithm, by using slightly different
hash functions, or by adapting more involved schemes, e. g., that described in [FKS84],
which achieves an n+o(n) space bound in the static case. Most of these variations will
increase the bounds on the expected computation time, but this does not necessarily
mean that the time requirements observed in practice will grow significantly. M. Wenzel
[W90] has implemented a variant of the scheme described above. In his implementation
the universe U is {0,1,...,2% —1}; the space requirements are kept small by avoiding
the use of subtables if |W;| is small. He reports that the space requirements of his
implementation are comparable to those of balanced trees and that the running time
is superior to search trees provided n is moderately large (n > 1000). We refer the

reader to [W90] for details.

3 Higher order hash functions

In this section we generalize inequality (1) from Section 2 (which originated in [FKS84])
to polynomials of degree larger than 1, and note some consequences of this general-
ization. These extensions have proved useful since the first version of this paper ap-

peared as [DKMSS], see, e.g., [DM89, DM90a, DM90b]. In order to formulate the

result in a slightly more general way than just for polynomials, we recall a definition



3 HIGHER ORDER HASH FUNCTIONS 11

given originally in [WC79], and studied further (with varying notation) for example in
IMV84, S89].

Definition 3.1 ([WCT79]) Let ‘H be a collection of functions h with domain D and
range R. Let ¢ > 0 and k € IN. The class H is called (¢, k)-universal if for all
sequences x1,...,xy of different elements of D, all sequences yy, ...,y of elements of
R, and randomly chosen h € 'H

Pr(h(x;) =y for1 <i<k) < ﬁ

(Alternatively, such classes have been called ¢ strongly k universal or (k).-independent.)

Examples: (a) [WCT9] If F'is a finite field, we may let D = R = F'; then
H={h|h(z)= > aa' forx€F, ao,...,ap € I}

0<i<k

is (1, k)-universal. This holds since for each sequence of k different arguments in F
and k prescribed values there is exactly one polynomial of degree at most £ — 1 that
interpolates through these argument-value pairs.

(b) [WCT9, MV84] If H is (¢, k)-universal and r : R — R’ is such that [r=*(j)| < d for
all j then the (multi)set H' = {roh | h € H} is (¢, k)-universal, for ¢ = c- (d|R'|/| R])*.
(c) A direct consequence of (a) and (b): If p is prime, and 1 < s < p, then for
D={0,....p—1} and R={0,...,5s — 1} the set

Hfz{h:DeR‘h(m)z( Z ai:z:imodp) mod s, 0 < ag, ..., a5 <p}

0<i<k

is (¢, k)-universal, for ¢ = ([p/s] - S/p)k <(1+s/p)*.

(d) For the finite field D = R = GF(p'), p prime, [ > 1, we obtain (1, k)-universal
classes with |R'| = p"', 1 < I’ < [, by combining (a) with a suitable function » : R — R'.
(See [MV84] for further examples.)

In the following, we assume that D and R = {0,...,s — 1} are fixed, and that H is
a class of functions from D to R. Let a set S C D be fixed, |S| = n, and let xq be
an element of D — S. For h € H and 0 < j < s we define B! = {x € 5 | h(z) = j}
and 0" = |B”|; further, we define B;LO ={x € 5| h(x) = h(zg)} and bZO = |B£§O.
Assume that & is chosen uniformly at random from H. (In the notation, we drop the
superscript h.) For arbitrary z € IR, k > 0, we let (z);, denote the “falling factorial”

Zz—1)...(z—k+1).

Lemma 3.2 If H is (¢, k)-universal for D and R, then

(@) B <e L <o (U foro<ji<s

sk



3 HIGHER ORDER HASH FUNCTIONS 12

(b) E((bxo)k—l) <c- (n)k—l <e- (ﬁ)k—l‘

sh—1 S

Proof:  For [ > 1, let (S); denote the set {(x1,...,2;) € S' | zy,..., 2, different}.

(a) Fix j, and define random variables X, o) (x1,...,2) € (), by

e _{1, if h(aq) =... = h(xg) =7,
Pk 0, otherwise.

Then E(X,, .. l’k) = Pr(X,, .. = 1) < ¢/s*, since H is (e, k)-universal. On the other

(b) The proof is similar to the one given in (a). Define random variables Y/

oeees l’k_17
(xlv' . 7xk—1) S (S)k—lv 0 S] < s, by
Y] _ { 1, if h(l’l) =...= h(l’k_l) = h(l’o) = j,
Tl ¥h—1 0, otherwise.
Then E(Ygg1 ..... 9%—1) < ¢/s*, since H is (c, k)-universal. Further,
(bl’o)k—l — Z Z )/l’jl ..... Tp_1"
(71, _1)E(S) 1 0<y<s
Taking expected values, we get
¢ ¢
E(beghcr) < [(S)ical -5+ 5 = (s - <
as claimed. O

A hash function A is called [-perfect for S if b? <lforall j,0<j <s,i.e., if no block
B]h has size exceeding .

Corollary 3.3 In the situation of Lemma 3.2, if we further assume that s > n, we
have:

(a) Pr(his (k — 1)-perfect) > 1 — (¢/k!) - n - (n/s)F='. In case s = n' T/ this
probability exceeds 1 — ¢/k!.

(b) E( > (bj)k) < ¢+ n, for some constant cy. (Here (b;)* is the k-th power of

0<s5<s

b;.)



3 HIGHER ORDER HASH FUNCTIONS 13

(c) Pr( Z (bj)k < ZCk-n) > %, for e as in (b).

0<s5<s

Corollary 3.4 In the situation of Lemma 3.2 we have:
(a) For 0 < j <s arbitrary:
c- (e u") - (n)s), forl <u<k;
D <
Pr(b; > u) < {c- (eF=1/uk) - (n/s)*, for k < u.

In particular, for s > n and u > k, we have Pr(b; > u) = O(u™F).

(t)
c- (P2 uhy (n)s)E, fork—1 <.

In particular, for s > n and u > k — 1, we have Pr(bxo > u) = O(u—(k—l))‘

Pr(byy > u) < {c' ("™ fur) - (n/s)", for1 <u<k—1;

(Note: The special case k = u in 3.4(a) has already been analyzed in [MV84].)

Proof of Corollary 3.3:
(a) We estimate the probability that A is not (k — 1)-perfect.

Clearly
Pr(3j:b; > k) =Pr(3j: (b)) > k!) < s-max{Pr((b;)r > k)]0 <j < s}.

By 3.2(a) and the Markov inequality the last term is bounded above by s - (¢/k!) -

(n/s)" = (c/kY)-n-(n/s)"!

(b) Let J = {j|b; <k—1}. Since 3_;c;0; < |S| = n, it follows from elementary
considerations that Zjej(bj)k <2 (B=DF+(n— | 2] (k—1)* <n-(E—1)1L

k—1 k—1

We need the following simple fact:
Claim: If z > k, then 2%/(z); < €F71

(Proof of claim:

1:[ | (kkk—_l k—l(k—1) Ez_ <k—1 k—‘ll )

)

BTy =

z=J

—
—
Il

=]

ECH

Thus, we may write:

E( 5 bf) gE(Zb§+Zb§) gn-(k—l)k_l—l—ek‘l-E< 3 (bj)k).

0<j<s jed igJ 0<j<s



4 OPTIMAL LOWER BOUNDS FOR THE DETERMINISTIC CASE 14

By 3.2, we obtain for ¢ = (k — 1)*=! + ¢! that E(Xo<j<s bf) < ¢k n, as claimed.
(c) is immediate from (b). O

Proof of Corollary 3.4:
(a) Assume first that « > k. Then, by 3.2(a),

V
S
<
S—’
ES
S—’
S
<
S—’
ES
AN
&
S
[l
LN
S—’
ES
S—’
o)
TN
|
N
S

Pr(b; > w) - (u)r = Pr((b;)s >

whence we get

< :
— (w)k
By the claim in the proof of 3.3(b), this implies

L k-1 k
Pr(iju)<c ¢ (z) .

-y S

In case 1 < u < k — 1 it is easily seen that H is also (¢, k)-universal. Applying the
above result yields the desired estimate Pr(b; > u) < c-e*™' - (n/s)*/u*.

(b) The argument is exactly the same as in (a). Just use 3.2(b) instead of 3.2(a). O

4 Optimal lower bounds for the deterministic case

In this and the following section we consider deterministic algorithms for the dictionary
problem that are based on hashing, and lower bounds on their performance. It will
turn out that such deterministic algorithms must be much slower than the randomized
algorithms described in the preceding sections.

As a basis for our lower bound proofs we introduce a simplified, abstract type of
algorithm. Such algorithms maintain the following data structure D. If S C U is
the set of elements in the dictionary, then D consists of a rooted tree whose leaves
are labelled with the elements of S. The inner nodes are labelled with hash functions
whose values correspond to the edges leaving the node. In order to access a key = € 5,
one starts at the root and repeatedly evaluates the hash function at the current node
(with « as argument) to determine the edge to be followed out of the node until a
leaf is reached. This leaf has label . This data structure generalizes the one used in
Section 2, where two hash functions had to be evaluated to access a key. We count one
step for the evaluation of a hash function.

In more detail, the data structure can be described as follows. D is a rooted tree in
which each inner node v is labelled with a hash function A, : U — {0,1,...,m, — 1},
with m, > 2, and has m, children, one for each value of h,. Each © € U determines
a path from the root to a leaf. This path is given by wy,wy,...,w,, where wy is the



4 OPTIMAL LOWER BOUNDS FOR THE DETERMINISTIC CASE 15

root, wyyq is the hy,, (2)-th child of wy, for 0 < ¢ < r, and w, is a leaf. We say that D
is a dictionary for S = {xg,...,z,} C U if each leaf contains exactly one of the z;. To
each node v of D we associate the set A(v) C U of keys that are “sent to” v by the
hash functions on the path from the root to v. We define inductively: A(v) = U for v
the root, and A(v,) = {& € A(v) | hy(z) = ¢} for 0 < ¢ < m, where v,, 0 < ¢ < m,,
are the children of v.

For our lower bound arguments, we will consider only insertions. To insert a key
Tny1 = x € U into a dictionary D for S, we follow the path wp, w1, ..., w, determined by
x, and for some node v on this path (determined by the algorithm) perform a rehashing
at v, which means that we choose a new perfect hash function h, for A(v)N (S U {x}).
Thus, all [A(v)N(SU{x})| children of v become leaves, and to each of them corresponds
exactly one element of A(v)N(SU{x}). Such a rehashing must be performed for exactly
one node v on the path. The cost of such an insertion is depth(v) + |A(v) N (S U {x})].
The cost of inserting zq, z2,...,2, € U into a dictionary D is the sum of the costs of
the single insertions. Note that we assume that D initially contains one element x4 in
a leaf, with no root.

Remark 4.1 When a rehashing at v is performed, a perfect hash function for A(v) N
(SU{x}) is given at linear cost; in addition, setting up the hash table, i.e., the subtree
of depth 1, for this set has linear cost as well. This assumption excludes search trees
that use an order on the universe U to define the way keys are distributed at nodes, as
well as other schemes involving cleverly chosen hash functions that can be extended to
additional keys at low cost while keeping the function injective.

Remark 4.2 (a) We require that collisions are resolved immediately by rehashing. In
particular, we do not allow forming chains, i. e., linked lists, at the leaves of the tree as
is done in many hashing schemes. But the absence of this restriction would not change
the lower bounds by much. If we were to allow chaining, inserting n elements would
cost n steps, because we could insert each element at the head of the chain, which would
mean constant time per insertion. To justify our model, we have to consider tasks with
insertions and lookups. If after inserting x we include a lookup for the element at the
end of the chain into which x was inserted, then this lookup costs essentially as much
as rehashing at the leaf to which the chain belongs. Thus algorithms for insertions and
lookups, with chaining allowed, are as least as costly as algorithms without chaining
for insertions only.

(b) One could ask if it would be advantageous to also allow rehashings at nodes v that
do not lie on the path determined by the = just being inserted. But it is easily checked
that the algorithm does not become slower if such rehashings are performed at the time
when the last element of S N A(v) is inserted into D. Thus it is justified not to admit
such “spontaneous” rehashings.

Remark 4.3 The role of space limitations. In the description of the data structure D,
we have not introduced the concept of the space used by D. On the other hand, some



4 OPTIMAL LOWER BOUNDS FOR THE DETERMINISTIC CASE 16

space restriction is necessary, since using the identity function as the hash function at
the root would make all rehashing superfluous.

It we assume that storing a hash function h, together with the corresponding table
takes space O(m,) = O(|range(h,)|), then >, oqeinp Mo i a reasonable measure for
the space used by D. In our description of the data structure D we assumed that every
leaf of D contained an element of S, so for every h, and every j € {0,...,m, — 1}
there is some x € S with h,(x) = j. Since in every rooted tree with n + 1 leaves and
outdegree at least two the number of edges is bounded by 2n, our data structure D
satisfies Y, m, < 2n, which means that it needs linear space.

If the algorithm were allowed to use hash functions h, with range larger than |A(v)N S|
when rehashing at node v, then the lower bounds given in the theorems below would
still hold, with constants smaller by a factor of i than those in the theorems. We
only have to assume that the space used by D is not too large in relation to the
size of the universe U (namely |U] > (S(n)2logn)*°¢™ . (n 4 1) in Theorem 4.4 and
|U] > (S(n)/k)* in Theorem 4.6 for S(n) = ¥, m,,). We shall comment on this in more

detail below when the adversary strategies for the lower bound proofs are discussed.

We want to study the following quantities.

T(n) = worst-case (amortized) cost incurred by an optimal algorithm to insert
n elements.

Tmax(n) = worst-case cost needed for a single insertion or membership query in
a sequence of n instructions.

Ti(n) = worst-case amortized cost needed by an optimal algorithm to insert n
elements, if the depth of the tree is not allowed to exceed k, i.e., if
the worst case lookup time is k.

The following three theorems sum up the results (upper and lower bounds) concerning
these three quantities. Theorem 4.4 shows that amortized time O(n) for n insertions
cannot be achieved in the deterministic case, but that a slowdown by a factor logn is
unavoidable. Theorem 4.5 shows that in any case there will be single instructions that
are very costly. If we demand constant lookup time to be guaranteed, Theorem 4.6
shows that this can only be achieved by many costly rehashings.



5 PROOFS OF THE LOWER BOUNDS 17

Theorem 4.4
(@) T(n) 2 (n+1) -logln + 1), if [U] = (n/ logn)?*5" - (n + 1),
(b) T(n) <3(n+1)log(n+1).

Theorem 4.5
(@) Toan(n) = VT, i 1U] > 2(y/m) V7.

(b) If only algorithms with a total cost smaller than f(n) - n for n insertions are

considered, and |U| > (%)zf(”) “(n+1), then Tnax(n) = Q(n/f(n)).

Theorem 4.6
(a) Tr(n) > (kfe)-n' T % forn > &b if (U] > (2n/k)F.

(b) Tp(n) < dy - n'"tY* for all sufficiently large n, where the constants dy can be
chosen to satisfy dy ~ k/e. (Here e = 2.71828 ... = Euler’s constant.)

The proofs of the theorems will be given in the next section.

Remark 4.7 If we reconsider the randomized algorithm presented in Section 2, we
see that randomization is only used for constructing perfect hash functions at expected
linear cost. Thus, if we give such hash functions at guaranteed linear cost, we should
obtain a deterministic algorithm that is as least not slower than the randomized one.
This seems to contradict our lower bounds! To resolve this paradox, consider adversary
strategies for the randomized computation model. Here the adversary has to determine
the moves of the strategy without knowledge of the outcomes of the coin flips of the
algorithm to be executed. This means that the data structure produced by the algo-
rithm cannot be taken into consideration by the adversary. But this is what happens
in the deterministic case and what makes the adversary as strong as indicated in the
lower bounds for the deterministic model.

Remark 4.8 Theorem 4.5 gives a lower bound for our model that is bigger than the
O(log n) worst-case bound for single instructions guaranteed by implementations of
dictionaries as balanced search trees. This is an effect of the quite severe restriction
that rehashing at a node v has cost linear in the size of the subtree rooted at v. (Cf.

Remark 1.1.)

5 Proofs of the lower bounds

This section contains the proofs of the theorems stated in Section 4.



5 PROOFS OF THE LOWER BOUNDS 18
5.1 The adversary strategy

For proving the lower bounds, we apply an adversary argument in each case. Let us
first give a general description of the adversary strategy. Initially, the tree D contains
one element xq. The adversary chooses, step by step, the element x; to be inserted
next. Basically, z; is always chosen in such a way that it has to follow a longest path

in D.

In order to always be able to find such an element x;, we must make sure that the set
of elements of U that belongs to such a longest path is not empty. The aim of the
adversary is to build up long paths wg, wq,ws, ... in the tree and to make sure that
the sets A(wo), A(wy), A(ws),... are as large as possible. Thus, if a decision is to be
made which path to choose, the adversary will, at each node v, choose that child ¢ of
v that maximizes |k, '[¢] N A(v)|, 0 < ¢ < m,. (If there is a tie, the smallest such ¢ is
chosen.) For the sake of simplicity of notation, we will assume that ¢ = 0 always has
this property. (If this is not the case, renumber the children of v.)

Assumption 5.1 For all trees D ever built by the algorithms and for all nodes v of D,
the set A(v)N ;0] is maximal (w.r.t. cardinality) among A(v)Nh;tql, 0 < g < m,.

We will regard the child number 0 of v as the leftmost child of v, and define the leftmost
path and the leftmost leaf in D accordingly (always follow the edge to child 0).

Simple adversary strateqy: Choose x1 # x¢ arbitrarily. For ¢ > 1, assume that

T1,...,x;—1 have been inserted and that a tree D has been set up by the algorithm.
Then let @;; be an arbitrary element of A(v)—{xg, x1,...,2;_1}, where v is the leftmost
leaf of D.

Note that all elements inserted follow the leftmost path in . This path grows as
the result of inserting x; if the algorithm chooses to perform a rehashing only at the
leftmost leaf, or it is cut off at v if the algorithm performs a rehashing at an inner node
v of the leftmost path.

Remark 5.2 We have made the assumption that in all nodes v of D all values of A,
are used by members of S (cf. Remark 4.3). This has the effect that each insertion
causes a collision at some node, at the latest at the leaf reached by the newly inserted
element, and hence causes a rehashing. If some values of h, are not used by elements of
S, it may happen that when z; is inserted, it reaches a leaf that is not already occupied
by a key from {xq,...,2;,_1}, hence no rehashing is necessary. However, observe that
out of two subsequent insertions performed according to the adversary strategy at least
one must cause a rehashing somewhere along the leftmost path. It is then seen that
all lower bounds proved below hold under the assumption that not n but 2n keys are
inserted, because they cause at least n rehashings.



5 PROOFS OF THE LOWER BOUNDS 19

The following lemma makes precise how big U has to be in order to guarantee that
some suitable z; is available in each step of the adversary strategy.

Lemma 5.3 Let v be a node on the leftmost path in D, and let the depth of v in D be
r. Then

@ Az l/ (2

(b) If we drop the assumption (cf. 4.3) that for all nodes v in the tree A(v) NS # 0,
and regard s(D) = Y, node in D M as a measure for the space needed by D, then for v

) = o]/ (52

Proof:  Let wg,wq,...,w, = v be the path from the root wy to v. By definition,
|A(wo)| = |U|; further, [A(wiy1)| > [A(we)|/mu,, by Assumption 5.1. Thus, |A(v)| >
\UJ/(IT)=p 1w, ). Obviously, 725 m,, < s(D). From this it is easily seen that the
denominator [];Zy m., cannot be larger than (s(D)/r)”. This proves (b). As noted
already in 4.3, if A(v) NS # 0 for all nodes v in D, then s(D) < 2n. This proves (a).
O

as in (a)

s(D)

Lemma 5.4 Let T(n) denote the minimal number of steps needed by any algorithm
for inserting n elements, if these elements are chosen according to the simple adversary
strategy. (In particular, the algorithm has to admit the simple adversary strategy, which
means that for each i < n we have that after inserting x; the set A(v) —{xo, x1,...,2;}
is nonempty, for v the leftmost leaf in D.) Then

T(n) > (n+1)log(n+1).

Proof:  (Induction on n.) Fix such an algorithm for n elements. Clearly, 7'(0) = 0,
T(1) = 2 (rehashing at the root is forced). Let n > 1. Let 1 < i < n where i is maximal
such that x; is inserted by rehashing at the root. (Such an ¢ exists, since this applies to
¢ = 1.) Inserting 1, ..., 7;_; costs at least T'( — 1), by the definition of T', inserting z;
costs 7+ 1, inserting z;11, . .., 2, costs at least n — 7+ T(n — 1), since the hash function
at the root has to be evaluated for x;14,...,z,, and all these elements are sent into the
leftmost subtree and have to be inserted there, and are chosen according to the simple
adversary strategy with respect to this subtree. (Note that this subtree already has an
element.) Thus

Tn)>TE—1)+G+1)+(n—1i)+T(n—1).
By the induction hypothesis, this entails

T(n)>ilogi+(n+1—d)logln+1—i)+n+1,

and the right hand side of the last inequality is at least (n 4+ 1)log(n + 1), since the
function ylogy + (n+ 1 —y)log(n 4+ 1 — y) attains its minimum in the range 1 <y <n
iny=(n+1)/2. O



5 PROOFS OF THE LOWER BOUNDS 20

5.2 Proof of Theorem 4.4

We first consider the lower bound (part(a)). We would like to use the adversary strategy
described above. However, to provide for the case that the leftmost path in D becomes
very long and U is not as big as demanded in 5.3, we must slightly change the adversary
strategy: We choose z; so that it aims at the [2]log n|-th node on the leftmost path in
D.

Modified adversary strateqy: Choose 1 # wx¢ arbitrarily. For 7 > 1, assume that
T1,...,x;—1 have been inserted and that a tree D has been set up by the algorithm.
Let wp, w1, ..., w, be the path from the root to the leftmost leaf in D. Choose z; to
be an arbitrary element of A(w,) — {xo,...,2;,—1}, where ' = min(r, [2logn|).

By Lemma 5.3, this strategy will work as long as |U|/(%)2k’g” >n+1,ie, Ul >
(757 1 + 1),

logn
Define

L={x |1<i<n, depth(v) > 2logn for the vertex v in D
at which rehashing is performed when x; is inserted }.

Clearly, for each z; € L the cost of evaluating the hash functions on the way down
to v alone is at least 2logn. We determine a lower bound for inserting the elements
in {x;,2,...,2;,} = {21,...,2,} — L into the tree as follows. (Here, n’ = n —
|L|.) Observe that if we disregard all elements x; € L and all inner nodes at depth
> 2logn in the computation for zy,...,2,, then we obtain a computation in which
Tip,..., 2, are inserted into a dictionary that always has depth smaller than 2log n,
and ;,,...,2; , are chosen according to the simple adversary strategy considered in
Lemma 5.4. Thus we may conclude from Lemma 5.4 that inserting x;,,...,x; , has
cost at least (n' 4 1)log(n’+ 1). Altogether we get
T(n) |L|-2logn + (n— |L|+1)-log(n —|L|+ 1)
min (y-2logn+(n—y+1) -log(n —y+1)).

>
>
T 0<y<n—1

For n > 4, the minimum is attained for y = 0; hence T'(n) > (n + 1)log(n + 1). For
n = 1,2,3, the lower bound in Theorem 4.4 is obvious. This finishes the proof of 4.4(a).

To prove the upper bound in Theorem 4.4 (part (b)), we use the following algorithm
for arbitrary n: Perform a global rehashing (i.e., a rehashing at the root) for w; if
¢ 1s a power of 2. Choose the hash functions h,, for v the root, in such a way that
| [g]| = 1 for all ¢ > 0; then all insertions that do not cause a rehashing at the root
go into the leftmost subtree, to which the same algorithm is applied recursively. Let
T(n) = cost of this algorithm when applied to n elements. By inspection, T(l) = 2,
T(2) =5, T( ) = 8. We claim that T(n) <3(n+1)log(n+1) for all n. Fixn > 4 and
t 1

= Uog n|. We split 4,..., 2, into three groups and two single elements:

le



5 PROOFS OF THE LOWER BOUNDS 21

— inserting @y, ..., Tg-1_y costs T(271 —1);

— inserting x,e—1 costs 2t—1 4 1;

— inserting @ge—14q,..., 291 costs T(2071 — 1) 4 (2071 — 1);

— inserting xy¢ costs 20+ 1;

— inserting @gtyq,...,x, costs T'(n — 2%) 4+ (n — 2%).
Thus, by the induction hypothesis,
T(n) <2427 4n+2-3-27og(27) +3- (n — 2" + 1) log(n — 2! + 1).
With 2 4+ 21 4+ n < 3. 28 it follows that
T(n) <3-2og(2) +3-(n — 2"+ 1)log(n — 2! + 1);

hence, by the convexity of the function ylogy, we get T(n) <3(n+1)log(n +1), as
desired.

This finishes the proof of 4.4(b).

5.3 Proof of Theorem 4.5

(a) Apply the simple adversary strategy from Section 5.1. If at some time the leftmost
path in the tree becomes longer than y/n then at least one insertion had cost y/n. Oth-
erwise, the assumption |U] > 2(,/n)V" guarantees, by Lemma 5.3, that the adversary
strategy can be carried out. Only nodes on the leftmost path have children, hence
there must be one node on the leftmost path that has at least /n children. Thus, the
cost of the last rehashing at this node was at least \/n.

(b) Apply the modified adversary strategy from the proof of Theorem 4.4, for r' =
min{r,2f(n)}. At most n/2 keys can be inserted below level 2f(n), by the overall time
bound; hence at least n/2 will be above that level. In levels smaller than 2f(n), only
nodes on the leftmost path can have children; as in (a) it follows that one insertion
must have had cost at least n/2f(n).

5.4 Proof of Theorem 4.6
5.4.1 The lower bound

Let an arbitrary algorithm for inserting x4, ..., 2, (into a table that initially contains
one element x¢) be given. We use the simple adversary strategy from Section 5.1.



5 PROOFS OF THE LOWER BOUNDS 22

From Lemma 5.3 we know that the assumption |U| > (2rn/k)* is sufficient to ensure
that |A(v)| > 2 for v the leftmost leaf of D, and hence that the strategy is always
applicable under this assumption.

For k£ > 1, n > 1 define Tk(n) = the minimal number of steps needed by any algorithm

to insert zy,..., 2, chosen according to the adversary strategy. Clearly, Ty(n) > Tk(n)
Trivially, T;(0) = 0 for all £ > 1.

Lemma 5.5 Tk(n) satisfies the following inequalities.

(a) Ty(n) = (n+1)(n+2)/2 —1, forn > 0.

l l
(b) Tk(n) Zmin{l—l—Z(jaj—l-Tk_l(aj —1)) | [ Z 1,@1,...,a1 & W,Zaj = n}}
7=1 =1

forn>2,k>2.

Proof: (a) If k =1, then every element z; is inserted by rehashing at the root, which
has cost ¢ + 1. Thus Ti(n) =", +1)=(n+1)(n+2)/2 - 1.

(b) Let x4, ..., x, be inserted, chosen according to the simple adversary strategy. Con-
sider an algorithm that for inserting these elements needs Tk(n) steps. Let x;, x,...,
x;,_, be those elements that are inserted by global rehashing, i.e., by constructing a
new perfect hash function at the root. (For x; this is forced, hence ig = 1.) Also,
let iy = n + 1. Note that between global rehashings the elements x;,_, y1,...,7;,_1 are
chosen so that they are all sent to the subtree rooted at the leftmost child of the root of
D, and that insertions into this subtree are performed according to some strategy for
i; —1;-1 — 1 elements and depth k — 1; further, after the insertion of x;,_, this subtree
already has one element. By the definition of Tk(n), inserting these elements into the
subtree has cost at least Tk_l(ij — ;-1 — 1). In addition, for these elements the hash

function at the root has to be evaluated, which has cost ¢; —2;_; — 1. Inserting =;,,
J=0,1,...,0—1, has cost z; + 1. Thus the total cost is

-1

Ty(n) > j— i = D)+ T (i — i — 1)+ 33, + 1)

|M~

= 7=1
l l
j=1 7=1

Let ajy1-j = 1; — ;-1 for 1 < j < [. Then 2221 a; = 1 — 19 = n, and 2221 1 =
[-ig + Zé‘:l(l + 1 — ) ai41-j; hence

l
W) 2 S0+ Tiafa — 1)+ 1
7=1



5 PROOFS OF THE LOWER BOUNDS 23

This proves part (b). O

The proof of Theorem 4.6 is completed by the following lemma.

Lemma 5.6

A

T(n) > geln+1)
forallk>1, n >0, where

0, fory=20;
ylny, f0r0<y§ek;
gr(y) = .

— yl""l/k, for eF <.
€

For the proof of this lemma see the Appendix. It is a technical argument based solely
on the inequalities of Lemma 5.5.

5.4.2 The upper bound

We will describe an algorithm for inserting n elements zq,...,x, € U into a table
(which initially contains one element 1) so that the depth of the resulting tree never
becomes larger than k. As in the proof of Theorem 4.4(b), the hash function h, chosen
for a vertex v always satisfies |h;[¢g] N A(v)| = 1 for all ¢ > 0. This means that
subsequent elements that are inserted in the subtree rooted at v are always sent to the
leftmost subtree of v. Let

(k—1)/k
k41 di_1
d=1. d.=Fk. . for k> 1.
1 ) k k—|—2 (k—l) ) or >

Then dj, = k- (Hszz((q +1)/(q+ 2))q)1/k. As an abbreviation, let by, = dj/k.

Algorithm for a table of depth at most k (Inductive description):

k = 1: Insert each element by global rehashing.

B> 1 Let iy = [0 (s/(k - bk_l))k_lw, for t = 0,1,2,3,.... Insert the elements
Ty = Ti, Tiy, Tiy, ... by global rehashing; that is, by establishing a new hash function
h, at the root v. Between these global rehashings the elements a;,_ 41,..., ;-1 all go

into the leftmost subtree of the root. Apply the algorithm for depth at most £ — 1 to
this subtree, for these ; — 7;,_1 — 1 elements.

It is obvious that this algorithm always maintains a tree of depth at most &, hence
a lookup time of k is guaranteed. We only have to analyze the time required for



5 PROOFS OF THE LOWER BOUNDS 24

insertions. For k > 1, n > 0, let

Ti(n) = cost of inserting a1, ..., 2, into a table, which initially
has one element, using the algorithm just described.

(Note that for the cost of the algorithm it is irrelevant which particular elements
T1,...,x, are inserted.) To finish the proof of Theorem 4.6(b), we just have to show
the following.

Lemma 5.7
(a) Tk(n) <dy, - n" TV for all n > ny,, for ny large enough (for all k> 1).

. dg
Wt

Proof: (a) (Induction on k.)
Initial step (k = 1): Obviously, Tl(n) =(n+1)(n+2)/2—1<n*forn>3.

Induction step (k > 1): Assume Tk—l < dy_q - n*D for all n > ng_;. Now let n
be fixed, n large enough. Define {5 = min{t > 1 | ¢; > n}, for the sequence #;, t > 1,
defined in the strategy. We first estimate ¢q. Clearly, by the definition of ¢; and tg we
have

to—1 to
Z < (kb)) n < Zsk_l,
s=1 s=1

hence (by estimating the sums by integrals and taking k-th roots),
to—1 < k-0 pl/E <41 (3)

In the following, we estimate Ty(i;, — 1), which certainly is an upper bound for Ty (n).
We let ig = 0. Then inserting the element x;, (by global rehashing) has cost ¢; + 1, for
t=1,2,...,19 — 1; inserting the elements x;,_,41,...,2;,-1 has cost (iy — ;-1 — 1) +
Tk_l(it — 441 — 1), fort =1,2,...,t5. Thus,

Ty(n) < é((it—zt_l ) Toaliy — it — 1)) §<¢t+1>,

or, after a trivial transformation,

to .
Ti(n) < Z ((to+ 1 =) (4 — tm1) + Tho1 (44 — 11 — 1)).

=1
Substituting the induction hypothesis Tk_l(n’) < dp_, - (n’)k/(k_l), for n’ > ny_y, into
this inequality yields

to
Te(n) <3 ((to+ 1= 1)(ir — irm1 — 1) + dier (i — i0-1 — D7) 4 Tt + 1) + By,

t=1



5 PROOFS OF THE LOWER BOUNDS 25

for some constant Ej (needed to make up for the error caused by replacing Tk_l(it —
tm1 — 1) by dp—1(t; — t4—1 — 1)k/(k_1) for ¢ so small that ¢, — 44—y — 1 < ng_1). By the
definition of 7; we clearly have 7, —i;,_; — 1 < (t/(kbk_l))k_l; furthermore, from the
bounds on %o in (1) it follows that t2 = O((n'/*¥)?) = O(n). Thus,

Ti(n) < Z[(kbzl)kl ot 1= 1) Fdims - <kbzl)k] +0)

=1
to

to
— (kb)) (Z(to b1t - Zt’“/k) +0(n).
t=1 t=1
We substitute the two inequalities Y12, 1571 < (14 1)F/k and 00, tF > 45/ (k + 1)
(obtained by replacing the sums by integrals), and simplify, noting that (o + 1)1 =
tET 4+ O(tF). In this way we get
. 1

Ti(n) <

< g bbe) 4 4O + On).

By (1), we have t = O((n'/*)*) = O(n) and furthermore that ¢;*' = EF+'. bz:}/k .
pitl/k 4 O(té“). Hence

- 1

Tin) < - bbe)' ™8 R T a4 On)
k? _
= o un e o).

For n large enough, this implies

i E+1  (e-1y/k
Ti(n) < k- 3 ) 52_11)/ R =g n1-|—1/k7

and this is what we wanted to show.

g+1

g\ 1/k
) ) . Recall that
q+2

d k
(b) By definition, f = (H(

9=2

q+2 q+1
gty b fat]
qg+2 e qg+2
for all ¢, and hence

L)) = O =)
k q+2 — \e -k qg+2 '

=2 q=2
Clearly,
et I\ 3\
lim ( —) = lim (—) =1,
k—o0 =2 q-+—2 k—oo \ k +—1
. dg )
and thus lim —= = —. as claimed. O

k—oco 67



REFERENCES 26

References

[ALS6]

[BKS8S]

[CWT9]

[DKMSS]

[DMS9]

[DM90a]

[DMO90b)]

[FKS84]

[Gs1]

[M84]

[MNR90]

[MV84]

[S89]

[T83]

Aho, H. V., and Lee, D., Storing a dynamic sparse table, Proc. of the 27th
IEEE FOCS, 1986, pp. 55-60.

Brassard, G., and Kannan, S., The generation of random permutations on
the fly, Information Processing Letters 28 (1988) 207-212.

Carter, J. L., and Wegman, M. N., Universal classes of hash functions,

J. Comput. Syst. Sci. 18 (1979) 143-154.

Dietzfelbinger, M., Karlin, A., Mehlhorn, K., Meyer aut der Heide, F.,
Rohnert, H., and Tarjan, R. E., Dynamic perfect hashing: Upper and lower
bounds, Proc. of the 29th IEEE FOCS, 1988, pp. 524-531; also: Tech.
Report No. 282, Fachbereich Informatik, Universitat Dortmund, 1988.

Dietzfelbinger, M., and Meyer auf der Heide, F., An optimal parallel dictio-
nary, Proc. of ACM Symp. on Parallel Algorithms and Architectures, 1989,
pp. 360-368.

Dietzfelbinger, M., Meyer auf der Heide, F., How to distribute a dictionary
in a complete network, Proc. of the 22nd ACM STOC, 1990, pp. 117-127.

Dietzfelbinger, M., and Meyer auf der Heide, F., A new universal class of
hash functions, and dynamic hashing in real time, Proc. of 17th ICALP,
Springer LNCS 443, 1990, pp. 6-19.

Fredman, M. L., Komlés, J., and Szemerédi, E., Storing a sparse table with
O(1) worst case access time, J. ACM 31(3), 1984, 538-544.

Gonnet, Gaston H., Expected length of the longest probe sequence in hash
code searching, J. ACM 28(3) (1981) 289-304.

Mehlhorn, K., Data Structures and Algorithms, Vol. 1, Springer Verlag,
Berlin, 1984.

Mehlhorn, K., Naher, S., and Rauch, M., On the complexity of a game
related to the dictionary problem, STAM J. Comput. 19(5) (1990) 902-906.

Mehlhorn, K., and Vishkin, U., Randomized and deterministic simulations
of PRAMs by parallel machines with restricted granularity of parallel mem-
ory, Acta Informatica 21 (1984) 339-374.

Siegel, A., On universal classes of fast hash functions, their time-space
tradeoff, and their applications, Proc. of the 30th IEEE FOCS, 1989, pp. 20—
25.

Troutman, J. L., Vartational calculus with elementary convexity, Springer

Verlag, New York, 1983.



REFERENCES 27
[WCT9] Wegman, M. N., and Carter, J. L., New classes and applications of hash
functions, Proc. of the 20th IEEE FOCS, 1979, 175-182.

[W90] Wenzel, M., Eine Implementierung von Dynamic Perfect Hashing, Diplom-
arbeit, Universitat des Saarlandes, 1990.



A APPENDIX 28

A Appendix

A.1 Proof of Lemma 5.6

We show the following: If the functions Ty, & > 1, satisfy the inequalities stated in
Lemma 5.5, that is, T}(0) = 0 for all £ > 1, and

(a) Ti(n) > (n+1)(n+2)/2 -1, foralln>1,

! !
(b) Ti(n) > min{l + Z(jaj + Th-1(a; — 1)) ‘ [>1,ay,...,a; € IN, Zaj = n},
=1 7=1

J
foralln > 1,k > 2,

then the functions T} satisty the assertion of Lemma 5.6; that is,
Ti(n) = gr(n +1)

for all £ > 1,n > 0, where, for £ > 1,

0, ify=0
ge(y) =< ylny, if 0 <y <eb
{(k/ )y R ek <y
We proceed by induction on k. For k = 1, it is easily checked that ¢g;(n + 1) <
(n+1)(n+2)/2 =1 for all n > 0. Thus, let k£ > 1, and assume the claim to be true
for k — 1; that is, Tp—1(n) > gr—1(n + 1) = g(n + 1), for all n > 0. (From here on, we
will write g for gr—1.) For n = 0, the claim is trivially satisfied. Let n > 1 be fixed.
By assumption (b) above and the induction hypothesis we may fix some [ > 1 and a
sequence a = (ay,...,a;) of natural numbers with Z] La; =n and

{ {
> (ja; + Tr—i1(a; > (ja; + g(ay)). (1)
J=1 7=1

We want to find a lower bound on the last sum in (1). The first step we take is
to transform sums to integrals and sequences of natural numbers to real functions.
The sequence a may be regarded as equivalent to the piecewise constant function

fur IRT — IR defined by

Cfay, fj-1<z<y,5=1,...,1
fa(x)_{(), ifl <z < 0.

The condition Zé‘:l a; = n translates to [~ fu(2)dz = n, and the sum in (1) can be
expressed as

Sias +gta) = [ (eholo) + ol fola) do + 5. 2)



A APPENDIX 29

Our aim is now to find a lower bound on the integral in (2). To this end, we transform
the minimization problem a little further: instead of piecewise constant functions such
as f, we will consider continuous functions.

Definition A.1

(a) Let D be the class of all continuous functions f: IRT — IRT (strictly positive) so
that 7 f(x)dez =n and so that lim,_.. €* f(x) exists and is positive.

(b) Let G: IR} x IRY — IR be defined by G(x,y) = 2y + g(y) = 2y + gr_1(y).

(c) For feDlet I(f) =[Gz, f(x))dx.
(Note that the condition lim,_, e” f(x) > 0 ensures that the integral exists.)

It is easy to see that for any given ¢ > 0 the piecewise constant function f, can be
approximated by some f,. € D in such a way that

(e < e+ [ afu(e) + glfule)) da. (3)

Now it follows from (1), (2), (3), and the fact that f,. € D for all ¢ > 0 that

Tetw) = (5 +1) = if{1() | F €D}, (1)
The following proposition establishes the existence of a function fo € D that realizes
this infimum; moreover it provides an equation for f; that will enable us to calculate
fo explicitly. Then we may evaluate I(fy) to obtain the desired lower bound on Ty(n).
The proposition is proved by reducing the problem of minimizing I(f) over D to a
standard situation treated in the Calculus of Variations. (The details of this proof,
which will be given in the second part of the appendix, are irrelevant for the rest of
the argument.)

Proposition A.2 There is a unique function fo € D so that

I(fo) =min{I(f) | f € D}. ()

Moreover, there is some constant A € IR so that fy satisfies

2 Gz, y) = A, forallzc IR, (6)

Dy
Y v=/o(z)

Our next goal is to use (6) in order to obtain an expression for fy. First, we calculate
A. By the definition of G, we have that aa—yG(l', y) =+ ¢'(y), and hence (6) becomes

v+ ¢'(fo(z))=A, for z>0. (7)



A APPENDIX 30

It follows easily from the definition of ¢ = gx_; that

) = 1+ 1Iny, if 0 <y < et
(k/e) -y if F=1 <y < oo,

Obviously, ¢'(y) is a strictly increasing function of y with range IR, and the inverse of
¢’ is given by

z—1 :
netls ) e, if —oo<z<k,
VINCE PR ot 5
Thus (7) can be transformed to
folz) = (g')_l(A —a), forax>0. 9)

Since fo € D, we have (using the explicit formula (8) for (¢')7'):

A-1 :
I NS _Jet if A<k,
R RARC R T E T (10)
We may now solve (10) for A to obtain
) 1+Inn, if n <ef 1t
A= { (n/ek—l)l/k . k, ifn> k-1 (11)

Now, finally, we are in a position to evaluate I(fy). First, we substitute (9) into the

definition of I(fy) (see Definition A.1(b)(c)) to obtain
1) = [ () (A=) +g((g) (A=) da. (12)

Case 1: n > €71, Then A — k > 0, and we get from (12), by substituting (8) and the
definition of ¢ = ¢5_1, that

Ak E—
10 = [ (el = )b 4 oA = ) b da
&0 A—-z-1 A—-z-1 A—-z-1
+ A_k:zj-e +e -In(e )dx.

The second integral evaluates to (A — 1)e®~1, the first one equals

e\ k-1 A—k k1 A—k
A-(E) /0 (A—aftde - /0 (A = 2) da
1 ekl 1
_ k-1 k k k+1 k+1
1 k k
_ Ak—l—l' k_l'—'——A' k-1 k-1 A
S s L A
Altogether,
k 1 b1

1
1(fo) = APt P




A APPENDIX 31

Substituting the value A = (n/e*=")'/% . k given by (11) into the last equation and
using the fact that 2= > e¢=/* results in

)
I(fy) = kk? e A L ]:k% > g Ltk kekj_ll'
In combination with (4) and (5) this yields
T(n) > &t #ilh _ LY (13)
e k+1 2
Elementary estimates show that the right hand side of (13) is bounded from below by

(n+1)n(n+1),ifn4+1< ¥, and (k/e)-(n+ 1)1+1/k, if n +1 > ¢*. This proves the
inequality Tx(n) > gr(n 4+ 1) in Case 1.

Case 2: n < ¢*=1. Then A — k <0, and we get from (12) and (8) that
I(fo) = /OO:L' cefATTTl ATl ln(eA_x_l) de=(A-1)- et
0

We now substitute the value A =1+ 1Inn from (11) to obtain that I(fy) = nlnn. In
combination with (5) and (4) this entails that

Ti(n) > nlnn—l—g—l— 1.

Elementary estimates show that the right hand side of this inequality is bounded from
below by (n + 1)In(n 4 1) = gr(n + 1). This finishes the proof of Lemma 5.6. O

A.2 Proof of Proposition A.2

We sketch a proof of Proposition A.2 stated in the first part of this appendix. We reduce
the proposition to a standard theorem from the Calculus of Variations. First, instead
of dealing with conditions defined by the integrals of the functions in class D (see
Definition A.1(a)) we need conditions on the values of the functions considered at the
boundaries of the interval. For this, we consider the integral functions x — [J f(£) d€,
for f € D, x € IRY. Second, we transform the unbounded interval IR} to the bounded
interval [0, 1] by means of the transformation = z(¢) = —In(1 —¢), for 0 <t < 1,
with inverse transformation ¢t = t(x) =1 — ™7, for 0 < 2 < .



A APPENDIX 32

Definition A.3

(a) Let € be the class of all functions ¢:[0,1] — IR{ that have a continuous derivative
Lo(t) =¢'(1) > 0 in [0,1] and satisfy ©(0) = 0 and p(1) = n.

(b) Let H:[0,1] x IRT — IR be defined by

H(t,z):{ L G(—=In(1-1),(1—=1)2), fz>0and0<t<1;

-t
zlnz, ifz>0andt=1,
where G(x,y) = xy + g(y) is as in Definition A.1(b).

(¢) Forp € & let J(p) = fy H(t,o'(t))dt.
(The following lemma implies that the integral is well-defined.)

Lemma A.4 The function H from the previous definition is continuous, and for each
fized t € [0,1] the function z — iH(t,z), z € IR, is continuous and strictly positive,

022

excepting fort £ 1 and y = "1 /(1 — t).

Proof: Straightforward verification. O

Lemma A.5 There is a bijection between D and € given by the mappings [ — ¢y and
@ +— f,, where

—In(1-¢) . ‘
sof<t>{/0 rede, qosi<r;
n, th:l7

and
Jolr)= ol =) =@/ (1—e7") 7", f 0 <2 < co.
Moreover, we have I(f) = J(pys), for all f € D.

Proof: Straightforward verification. O

We now need the following theorem, which is obtained by combining Proposition (3.10)
and Theorem (3.7) from [T83].

Theorem A.6 [f I = H(t,z) is continuous on [0,1] x IRS and if, for each t € [0,1],
the function z — %H(t,z) is continuous and positive (except possibly at a finite set
of z-values), then there is exactly one function po € € that minimizes [3 H(t,¢'(1)) dt

on €. Moreover, this function @q satisfies aa—ZH(t,z) )= const , fort €[0,1]. O

2=¢y 13



A APPENDIX 33

By Lemma A.4, the function H from Definition A.3 satisfies the hypothesis of this
theorem, and hence there is a unique function ¢y € £ that minimizes J(p) over &;

= A for all t € [0,1]. By

=g (1)
Lemma A.5, the function f, = f,, minimizes I(f) over D. It remains to establish
Equation (6).

moreover, there is some A € IR with aa—ZH(t,z)‘

, and hence

By Definition A.3(b) we have ZH(t,z) = aa—yG(—lﬂ(l - t)vy)‘ (1-1)
y: - 4

= aa—yG(— In(1 —1),y)

,for 0 <t < 1. (14)
y=(1-1)¢} (0
By Lemma A.5 we have fo(z) = Lpo(l — ™) = (1 —e™) - e = @p(t) - (1 — 1),
under the bijection ¢t — x(t) = —In(l — ). Hence, Equation (14) entails that
aa—yG(l', y)‘ = A for all x € IR, as claimed. This finishes the proof of Proposi-
y
tion A.2.

=fo(=)



