
Dynamic Perfect Hashing:Upper and Lower BoundsMartin Dietzfelbinger�Universit�at{GH{PaderbornFachbereich 174790 Paderborn, F.R.G. Anna KarlinyDEC Systems Research Center130 Lytton Ave.Palo Alto, CA 94301Kurt MehlhornzMax-Planck-Institutf�ur Informatik6600 Saarbr�ucken, F.R.G. Friedhelm Meyer auf der Heide�Universit�at{GH{PaderbornFachbereich 174790 Paderborn, F.R.G.Hans RohnertzSiemens AG8000 M�unchen 83, F.R.G. Robert E. TarjanyPrinceton UniversityDept. of Computer SciencePrinceton, NJ 08544and NEC Research InstituteRevised Version, January 7, 1990Final version will appear in SIAM J. ComputingAbstractThe dynamic dictionary problem is considered: provide an algorithm for stor-ing a dynamic set, allowing the operations insert, delete, and lookup. A dynamicperfect hashing strategy is given: a randomized algorithm for the dynamic dic-tionary problem that takes O(1) worst-case time for lookups and O(1) amortizedexpected time for insertions and deletions; it uses space proportional to the sizeof the set stored. Furthermore, lower bounds for the time complexity of a classof deterministic algorithms for the dictionary problem are proved. This classencompasses realistic hashing-based schemes that use linear space. Such algo-rithms have amortized worst-case time complexity
(logn) for a sequence of n�partially supported by DFG Grant Me 872/1-4.yResearch at Princeton University partially supported by NSF grants DCR-8605962 and STC88-09648 and ONR Contract N00014-87-K-0467.zpartially supported by DFG grant Me 620/6-1 and ESPRIT-project ALCOM. K. Mehlhorn andH. Rohnert were a�liated with the Universit�at des Saarlandes when this research was done.1

1 INTRODUCTION 2insertions and lookups; if the worst-case lookup time is restricted to k then thelower bound becomes
(k � n1=k).Key words. data structures, dictionary problem, hashing, universal hashing,randomized algorithm, lower bound.AMS(MOS) subject classi�cations. 68P05, 68P10, 68Q20.1 IntroductionA dictionary over a universe U = f0; 1; : : : ; N � 1g is a partial function S from Uto some set I. The operations Lookup(x), Insert(x; i), and Delete(x) are available ona dictionary S; Lookup(x) returns S(x), Insert(x; i) adds x to the domain of S andsets S(x) to i, and Delete(x) removes x from the domain of S. In the following, the\information �eld" S(x) associated with the \key" x in the dictionary will be ignored;thus, S is identi�ed with its domain and regarded as a (dynamic) set. There are twomajor techniques for implementing dictionaries: trees and hashing.For a static set S (no updates), Fredman, Koml�os, and Szemer�edi [FKS84] describeda hashing technique that achieves linear storage (in n) and constant query time for allN and n, where n is the size of S.In this paper (Section 2), we present an extension of their scheme to the dynamic situa-tion, wherein membership queries are processed in constant worst-case time, insertionsand deletions are processed in constant expected amortized time, and the storage usedat any time is proportional to the number of elements currently stored in the dic-tionary. The algorithm is randomized; the averaging involved in the analysis is overchoices made by the algorithm and not over the sequence of operations.Besides solutions that use (balanced) search trees, several other approaches to thedynamic dictionary problem have been proposed, some of which lead to expected oraverage constant time per instruction. Aho and Lee [AL86] presented a scheme achiev-ing the same time and storage bounds as our algorithm. However, in order to provethese bounds, they require that the items being inserted are chosen uniformly at ran-dom from the universe of possible elements.Carter and Wegman [CW79] proposed universal hashing as a way of avoiding assump-tions on the distribution of input values. This approach works particularly well incombination with the idea of \continuous rehashing" introduced by Brassard and Kan-nan [BK88]. In this way an algorithm is obtained that needs linear space and expectedconstant time for each single instruction. However, for n keys being stored in the dic-tionary in a scheme of this kind the best upper bound known on the expected worst

2 DYNAMIC PERFECT HASHING 3case time for an instruction (i. e., the length of the longest chain in the resulting hashtable with chaining) is O(log n= log log n) (cf. [DM90b, S89]), and it can be argued thatit is
(log n= log log n) no matter what universal class is used. In fact, this lower boundeven holds in the case of uniform hashing, where one assumes that the hash values fordi�erent keys are chosen uniformly at random [G81, MV84].In contrast, our algorithm guarantees constant time for each membership query.When we say that no assumption is made about the sequence of operations, we meanthat the sequence is arbitrary, but �xed before the algorithm starts running. In essence,all that is needed for the analysis is that the sequence of operations be independentof the random choices made by the algorithm. Thus, we require that the party thatchooses the sequence of operations not use any knowledge on these random choices todetermine which items to insert in the table.In the second part of the paper (Sections 4 and 5), we consider the case that we haveto deal with an adversary that knows the random choices made by the algorithm, orequivalently, that the algorithm is deterministic. We prove an
(log n) lower bound onthe amortized worst-case time complexity for any deterministic solution to the dictio-nary problem which is solely based on hashing and uses only linear space. Furthermore,if we assume the worst-case lookup time to be bounded by k, the amortized worst-casecomplexity is
(k � n1=k).Remark 1.1 Some of the lower bounds that hold for the model considered in Sections4 and 5 are bigger than the O(log n) worst-case bound guaranteed by balanced searchtrees. This results from the fact that our model is de�ned so as to cover only purehashing strategies. In [MNR90], which was motivated by the �rst version of the presentpaper, a lower bound of
(n log log n) for n insertions is shown in a stronger lower boundmodel that encompasses both hashing strategies and search trees.In Section 3, some general facts concerning the performance of universal classes ofhash functions consisting of polynomials of constant degree or variants thereof areestablished. These results have proved useful for variations of the scheme presentedin this paper, which yield constructions of dynamic dictionaries for parallel and dis-tributed machine models as well as further improvements of the sequential scheme[DM89, DM90a, DM90b].2 Dynamic perfect hashingWe begin by reviewing the FKS scheme for statically storing a set S of size n. LetHs = fh : U ! f1; : : : ; sg j h(x) = (kx mod p) mod s; 1 � k � p�1g, where p is primeand p � N . The scheme has two levels. At the top level, a hash function partitions the

2 DYNAMIC PERFECT HASHING 4elements being stored into s sets. The second level consists of a perfect hash functionfor each of these sets. Speci�cally, a function h chosen uniformly at random from Hs isused to partition the set S into s blocks. LetW hj = fx 2 S j h(x) = jg; the superscripth is omitted when h is understood. Fredman, Koml�os, and Szemer�edi show that if afunction h is chosen from Hs uniformly at random thenE X0�j<s jWjj2 !! � n(n� 1)s (2)(where E(X) denotes the expectation of the random variable X), and consequentlythat Pr X0�j<s jWjj2 ! < 2n(n � 1)s ! � 12 : (1)Choosing s = 2(n�1), relation (�) implies that for at least half of the functions h 2 Hsone has X0�j<s jWjj2 ! < n:Such a function is used to partition S into blocks Wj , 0 � j < s. For each block Wjone uses relation (�) with sj = maxf1; 2jWjj(jWjj � 1)g. It follows that for at leasthalf of the functions h 2 Hsj one hasX0�l<sj jWj;lj2 ! < 1;where Wj;l = fx 2 Wj j h(x) = lg, i. e., jWj;lj � 1 for all l. For each j therefore at leasthalf of the functions in Hsj are injective on Wj. One uses one such function for eachWj. The total space requirement is linear sinceX0�j<s sj � s+ 4 � X0�j<s jWj j2 ! = O(n)by the choice of the hash functions.For the dynamic case, we use the standard doubling method to deal with the fact thatwe do not know in advance how big the top-level table or any of the subtables will get.Suppose that n is the current number of elements stored in the table. The FKS schemein use will accommodate up to M elements. The value of M will initially be set to(1+c) �n for some c > 0 and as n changes will never be more than 1+c1�c �n. Let s(M), tobe speci�ed, be the number of sets into which the top level hash function is to partitionthe elements of S. The function h will be a random element of Hs(M). Thus, the set Sis partitioned by h into the subsets Wj = fx 2 S j h(x) = ig, 0 � j < s(M).Let Tj be the block of memory used for storing Wj. The amount of space allocatedto Tj is sj, where sj = 2mj(mj � 1), and mj is the maximal size of Wj the currenttable Tj is meant to manage. The quantity mj is always as least as big as jWjj and

2 DYNAMIC PERFECT HASHING 5is at most twice the number of all elements ever mapped to j by the current top levelfunction h. The subset Wj is resolved within Tj by using a perfect hash function hjfrom Hsj . If the value kj speci�es which hash function hj is being used, then x 2 Wjis stored in location (kjx mod p) mod sj of subtable Tj. It will be arranged that thefollowing condition is always satis�ed:X0�j<s(M)sj � 32M2s(M) + 4M : (7)The parameter s(M) will be chosen to be �(n) so that the right hand side of thisequation is O(n). We will see that this guarantees that the total space used is linearin the number of elements currently stored in the table.The algorithm can be speci�ed more precisely as described in the program given inFigures 1 and 2 below. The variable count keeps track of the number of updates per-formed in the hash table of the present sizeM . From time to time it becomes necessaryto restructure the whole table. This is the case when count reaches M or when (��)becomes wrong. In both cases, we start a new phase, resetting M to the new value(1 + c) � n, where n is the number of elements currently stored in the dictionary; thevariable count is set to n, so that the system is able to perform up to c � n updatesbefore the beginning of the next phase. Deletions are performed by attaching a tag\deleted" to the table entry to be erased; only when a new level-1 hash function h ora new hash function hj for the subtable Tj is chosen, do we drop the elements with atag \deleted" from Tj.Let us �rst analyze the space needed by the scheme. By a phase we mean the timeperiod during which one level-1 hash function h is \in use": a phase starts when someh is chosen and ends when the next level-1 function is chosen, either in the same or thesubsequent call to RehashAll . Phases that only consist of choosing an h to �nd outthat h does not satisfy condition (��) are called degenerate. During any phase thatstarts with n keys being stored in the dictionary the number of keys will never dropbelow (1 � c) � n, since at most c � n updates are made. Thus, the following lemma issu�cient to prove the claimed space bound.Lemma 2.1 The memory space used during a phase that starts with n keys beingstored in the dictionary is O(n).Proof: The lemma is obviously true for degenerate phases, since s(M) = �(n). Thus,we assume that a function h is chosen that satis�es condition (��), and determinehow big the table T has to be to accommodate all versions of all subtables. For0 � j < s(M), let �mj denote the �nal capacity of Tj, that is, the value of mj at the endof the phase, and let �sj = 2 �mj(�mj � 1) be the �nal size of Tj. The previous versions ofTj (if there were any) had capacity 12 �mj, 14 �mj, : : : . Since, for l � 0,2 � (2�l � �mj)(2�l � �mj � 1) � 4�l � 2 �mj(�mj � 1) = 4�l � �sj;

2 DYNAMIC PERFECT HASHING 6procedure Insert(x);count count + 1;if count > MthenRehashAll(x);elsej h(x);if position hj(x) of subtable Tj contains xthenif x is marked \deleted" then remove this tag;else (� x is new for Wj �)bj bj + 1;if bj � mjthen (� size of Tj su�cient �)if position hj(x) of Tj is emptythenstore x in position hj(x) of Tj;elsego through the subtable Tj, put all elementsnot marked \deleted" into a list Lj , andmark all positions of Tj empty;append x to list Lj ; bj length of Lj;repeat hj randomly chosen function in Hsjuntil hj is injective on the elements of list Lj;for all y on list Lj store y in position hj(y) of Tj;else (� Tj is too small �)mj 2 �maxf1;mjg; sj 2mj(mj � 1);if condition (��) is still satis�edthen (� double capacity of Tj �)allocate new space, namely sj cells, for new subtable Tj;go through old subtable Tj, put all elementsnot marked \deleted" into a list Lj ,and mark all positions empty;append x to list Lj ; bj length of Lj;repeat hj randomly chosen function in Hsjuntil hj is injective on the elements of list Lj;for all y on list Lj store y in position hj(y) of Tj;else (� level-1-function h \bad" �)RehashAll(x);Figure 1: Insertion

2 DYNAMIC PERFECT HASHING 7procedure RehashAll(x);(� RehashAll(x) is either called by Insert(x), and then x 2 U ,or by Delete(x), and then x = �1. RehashAll(x) builds a new tablefor all elements currently in the table plus x (if x 2 U). �)go through the whole table T , put all elements not tagged \deleted"into a list L, count them, and mark all positions in T \empty";if x 2 U then append x to L;count length of list L;M (1 + c) �maxfcount ; 4g;repeat h randomly chosen function in Hs(M);for all j, 0 � j < s(M), do form a list Lj of all x 2 L with h(x) = j;for all j, 0 � j < s(M), dobj length of list Lj ; mj 2 � bj; sj 2mj(mj � 1);until condition (��) is satis�ed;for all j, 0 � j < s(M), doallocate space sj for subtable Tj;repeat hj randomly chosen function in Hsjuntil hj is injective on the elements of list Lj ;for all x on list Lj do store x in position hj(x) of Tj;procedure Delete (x);count count + 1;j h(x);if position hj(x) of subtable Tj contains xthen mark x as \deleted"else return(x is not a member of S);if count �Mthen (� start new phase �)RehashAll(�1);procedure Lookup(x);j h(x);if position hj(x) of subtable Tj contains x (not marked \deleted")then return(\x is a member of S")else return(\x is not a member of S");procedure Initialize;T an empty table;RehashAll ; Figure 2: Setup, Deletion, Lookup, and Rehashing

2 DYNAMIC PERFECT HASHING 8the total number of cells occupied by all versions of all subtables Tj is bounded byX0�j<s(M) Xl�0 4�l � �sj = 43 � X0�j<s(M) �sj � 43 � �32M2s(M) + 4M�:The last inequality holds since the algorithm makes sure that condition (��) remainsvalid throughout the phase.The space required by the header table is at most 5s(M), since the jth entry of theheader table need only contain a pointer to Tj, the variables sj, bj, and mj, and thenumber kj that describes the hash function hj . If we let s(M) = 815p30 � M , thespace needed by the subtables and the header table taken together is bounded by43 � �32M2�158p30�M + 4M� + 5 � 815p30 �M = 163 (p30 + 1) �M < 35 � (1 + c) � n, which provesthe lemma. 2Now we turn to the time bounds. Note �rst that membership queries do not interferewith the time analysis, since they are executed in constant time in the worst case. Thus,there is no harm in assuming that there are no membership queries at all. Note furtherthat instructions that are executed in constant time (i. e., deletions in any case andinsertions if they do not cause a subtable Tj to be rearranged) can be safely ignored,since they will not invalidate an overall linear time bound. Thus, we only need to worryabout the time spent for installing new level-1 functions at the beginning of a phase(in RehashAll), and for constructing new versions of the subtables Tj (in RehashAll orin Insert).Lemma 2.2 The expected time for a phase that starts with n keys being stored in thedictionary is O(n).Proof: Consider the call to RehashAll in which the phase starts. Clearing the oldtable (header table and the subtables) and building up the list L takes timeO(n), sinceby 2.1 the old table occupies only space O(n). Time linear in n su�ces to constructthe sublists Lj, to compute the values bj, mj, and sj , 0 � j < s(M), and to computeP0�j<s(M) sj. Thus, if the phase is degenerate, it takes O(n) time in the worst case. Ina non-degenerate phase h initially satis�es (��). By the remarks immediately precedingLemma 2.2, we only have to estimate the time spent for installing new hash functionshj for the subtables. Fix some j, and split the phase, as far as Tj is concerned, intosubphases, one subphase being de�ned as a maximal time period in which the capacitymj and hence the size sj of Tj have a �xed value. We need the following observation:Claim: Assume a hash function hj is chosen for Tj at the beginning or in the courseof a subphase. Then the probability that hj stays in use until the end of the subphaseexceeds 12 :Proof of claim: Let the capacity of Tj during the phase be mj. Let Wj be the setof keys x contained in the list Lj when hj is chosen. Let Vj be the set of the �rst

2 DYNAMIC PERFECT HASHING 9mj � jWjj di�erent keys x in the sequence of the Insert instructions to be executednext that satisfy h(x) = j and do not occur in Wj. Then, by relation (�), table sizesj = 2mj(mj � 1) (for mj 6= 0) implies that with probability exceeding 12 the elementsof Wj [Vj will be mapped by hj to di�erent locations in Tj. If this happens, the waybi is changed and repeated keys are treated in Insert and Delete implies that hj staysin use until bj grows beyond mj; that is, until the end of the subphase. 2By the claim, the probability that u or more hash functions hj are used in a singlesubphase is at most 2�(u�1), and hence the expected number of functions hj chosenduring the subphase is bounded by 2. Thus, the expected cost for installing new hashfunctions hj during a subphase in which Tj has size sj is O(sj). Exactly as in theproof of Lemma 2.1 we get an overall bound of O(M) = O(n) for the expected timefor installing new hash functions hj, 0 � j < s(M), by summing over all subtable sizesand all j, and using (��). 2In order to �nish the time analysis, we will show in the following two lemmas thatthere will not be too many phases. Fix some phase, and let S be the set of elementsstored in the table at the beginning of the phase (whose number is n) together withthose that occur in the next c �n update instructions to be executed (repeated elementsare only counted once). Let M = (1 + c) � n; clearly, jSj � M . For h 2 Hs(M) chosenat random, de�ne Wj = fx 2 S j h(x) = jg, 0 � j < s(M).Lemma 2.3 (a) With probability exceeding 12 we haveX0�j<s(M) 4jWj j(2jWjj � 1) < 32M2s(M) + 4M:(b) If the inequality in (a) is satis�ed for the level-1 function h chosen at the beginningof the phase, then the phase ends with the variable count reaching M ; i. e., the phasecomprises c � n updates.Proof: (a) In the situation just described, relation (�) readsPr X0�j<s(M) jWjj2 ! � 2M(M � 1)s(M) ! � 12 :The claim follows by a simple transformation, using the obvious inequalityP0�j<s(M) jWjj = jSj �M:(b) It is immediate from the way the variables bj and mj are initialized in RehashAlland updated in Insert , and from the fact that only keys from S can occur in the phase,that bj � jWjj, and hence mj � 2jWj j, throughout the phase. Since sj = 2mj(mj � 1)throughout the algorithm, we see that the inequality in (a) entails that (��) stays validthroughout the phase. 2

3 HIGHER ORDER HASH FUNCTIONS 10Lemma 2.4 Suppose that RehashAll is called at a time when n � 1 keys are storedin the dictionary. Then the (expected) time needed until the �rst call to RehashAllafter c � n updates have been performed is O(n):Proof: Consider an arbitrary phase that starts before the next c � n updates havebeen processed. The number of keys in the table at the beginning of this phase is n0,where (1 � c) � n < n0 < (1 + c) � n: By Lemma 2.3(a)(b), the probability that duringthis phase c �n0 updates are performed exceeds 12. Since c �n�jn0�nj � c �n0 no matterif n0 < n or n0 � n, this means that the probability that this phase extends furtherthan the c � n updates we are considering is at least 12. Thus, the expected number ofphases needed to perform these c �n updates is not more than 2. Each phase occurringstarts with n0 keys, (1 � c) � n < n0 < (1 + c) � n; and takes O(n) steps (expected) by2.2. This �nishes the proof of 2.4 and the time analysis. 2Lemmas 2.1{2.4 taken together yield the following result.Theorem 2.5 Dynamic perfect hashing, as described by the algorithm in this section,uses linear space, needs constant time for membership queries, and has O(1) expectedamortized insertion and deletion cost. 2Remark 2.6 Obviously, the space bound 35(1 + c)n proved in 2.1 is not satisfactoryfrom a practical point of view. There are many conceivable ways of reducing the spacebound, by varying the parameters �xed in the algorithm, by using slightly di�erenthash functions, or by adapting more involved schemes, e. g., that described in [FKS84],which achieves an n+o(n) space bound in the static case. Most of these variations willincrease the bounds on the expected computation time, but this does not necessarilymean that the time requirements observed in practice will grow signi�cantly. M. Wenzel[W90] has implemented a variant of the scheme described above. In his implementationthe universe U is f0; 1; : : : ; 231� 1g; the space requirements are kept small by avoidingthe use of subtables if jWjj is small. He reports that the space requirements of hisimplementation are comparable to those of balanced trees and that the running timeis superior to search trees provided n is moderately large (n � 1000). We refer thereader to [W90] for details.3 Higher order hash functionsIn this section we generalize inequality (y) from Section 2 (which originated in [FKS84])to polynomials of degree larger than 1, and note some consequences of this general-ization. These extensions have proved useful since the �rst version of this paper ap-peared as [DKM88], see, e. g., [DM89, DM90a, DM90b]. In order to formulate theresult in a slightly more general way than just for polynomials, we recall a de�nition

3 HIGHER ORDER HASH FUNCTIONS 11given originally in [WC79], and studied further (with varying notation) for example in[MV84, S89].De�nition 3.1 ([WC79]) Let H be a collection of functions h with domain D andrange R. Let c > 0 and k 2 IN. The class H is called (c; k)-universal if for allsequences x1; : : : ; xk of di�erent elements of D, all sequences y1; : : : ; yk of elements ofR, and randomly chosen h 2 HPr(h(xi) = yi for 1 � i � k) � cjRjk :(Alternatively, such classes have been called c strongly k universal or (k)c-independent.)Examples: (a) [WC79] If F is a �nite �eld, we may let D = R = F ; thenH = fh j h(x) = X0�i<k ai xi for x 2 F; a0; : : : ; ak 2 Fgis (1; k)-universal. This holds since for each sequence of k di�erent arguments in Fand k prescribed values there is exactly one polynomial of degree at most k � 1 thatinterpolates through these argument-value pairs.(b) [WC79, MV84] If H is (c; k)-universal and r : R! R0 is such that jr�1(j)j � d forall j then the (multi)setH0 = fr �h j h 2 Hg is (ĉ; k)-universal, for ĉ = c � (djR0j=jRj)k:(c) A direct consequence of (a) and (b): If p is prime, and 1 � s � p, then forD = f0; : : : ; p� 1g and R = f0; : : : ; s� 1g the setHks = n h : D ! R ��� h(x) = � X0�i<k ai xi mod p� mod s; 0 � a0; : : : ; ak�1 < p ois (c; k)-universal, for c = (dp=se � s=p)k � (1 + s=p)k:(d) For the �nite �eld D = R = GF(pl), p prime, l � 1, we obtain (1; k)-universalclasses with jR0j = pl0 , 1 � l0 � l, by combining (a) with a suitable function r : R! R0.(See [MV84] for further examples.)In the following, we assume that D and R = f0; : : : ; s � 1g are �xed, and that H isa class of functions from D to R. Let a set S � D be �xed, jSj = n, and let x0 bean element of D � S. For h 2 H and 0 � j < s we de�ne Bhj = fx 2 S j h(x) = jgand bhj = jBhj j; further, we de�ne Bhx0 = fx 2 S j h(x) = h(x0)g and bhx0 = jBhx0j.Assume that h is chosen uniformly at random from H. (In the notation, we drop thesuperscript h.) For arbitrary z 2 IR, k � 0, we let (z)k denote the \falling factorial"z(z � 1) : : : (z � k + 1):Lemma 3.2 If H is (c; k)-universal for D and R, then(a) E((bj)k) � c � (n)ksk � c � �ns �k, for 0 � j < s;

3 HIGHER ORDER HASH FUNCTIONS 12(b) E((bx0)k�1) � c � (n)k�1sk�1 � c � �ns �k�1:Proof: For l � 1, let (S)l denote the set f(x1; : : : ; xl) 2 Sl j x1; : : : ; xl di�erentg.(a) Fix j, and de�ne random variables Xx1;:::;xk ; (x1; : : : ; xk) 2 (S)k, byXx1;:::;xk = � 1; if h(x1) = : : : = h(xk) = j;0; otherwise.Then E(Xx1;:::;xk) = Pr(Xx1;:::;xk= 1) � c=sk, since H is (c; k)-universal. On the otherhand, it is clear that (bj)k = X(x1;:::;xk)2(S)kXx1;:::;xk :Consequently,E((bj)k) = X(x1;:::;xk)2(S)kE(Xx1;:::;xk) � j(S)kj � csk = (n)k � csk :(b) The proof is similar to the one given in (a). De�ne random variables Y jx1;:::;xk�1,(x1; : : : ; xk�1) 2 (S)k�1, 0 � j < s, byY jx1;:::;xk�1 = � 1; if h(x1) = : : : = h(xk�1) = h(x0) = j;0; otherwise.Then E(Y jx1;:::;xk�1) � c=sk, since H is (c; k)-universal. Further,(bx0)k�1 = X(x1;:::;xk�1)2(S)k�1 X0�j<s Y jx1;:::;xk�1:Taking expected values, we getE((bx0)k�1) � j(S)k�1j � s � csk = (n)k�1 � csk�1 ;as claimed. 2A hash function h is called l-perfect for S if bhj � l for all j, 0 � j < s, i. e., if no blockBhj has size exceeding l.Corollary 3.3 In the situation of Lemma 3.2, if we further assume that s � n, wehave:(a) Pr(h is (k � 1)-perfect) � 1 � (c=k!) � n � (n=s)k�1. In case s = n1+1=(k�1) thisprobability exceeds 1 � c=k!:(b) E� X0�j<s(bj)k� � ck � n, for some constant ck. (Here (bj)k is the k-th power ofbj.)

3 HIGHER ORDER HASH FUNCTIONS 13(c) Pr� X0�j<s(bj)k � 2ck � n� � 12 , for ck as in (b).Corollary 3.4 In the situation of Lemma 3.2 we have:(a) For 0 � j < s arbitrary:Pr(bj � u) � (c � (eu�1=uu) � (n=s)u; for 1 � u < k;c � (ek�1=uk) � (n=s)k; for k � u:In particular, for s � n and u � k, we have Pr(bj � u) = O(u�k):(b) Pr(bx0 � u) � (c � (eu�1=uu) � (n=s)u; for 1 � u < k � 1;c � (ek�2=uk�1) � (n=s)k�1; for k � 1 � u:In particular, for s � n and u � k � 1, we have Pr(bx0 � u) = O(u�(k�1)):(Note: The special case k = u in 3.4(a) has already been analyzed in [MV84].)Proof of Corollary 3.3:(a) We estimate the probability that h is not (k � 1)-perfect.ClearlyPr(9j : bj � k) = Pr(9j : (bj)k � k!) � s �maxfPr((bj)k � k!) j 0 � j < sg:By 3.2(a) and the Markov inequality the last term is bounded above by s � (c=k!) �(n=s)k = (c=k!) � n � (n=s)k�1.(b) Let J = f j j bj � k � 1g. Since Pj2J bj � jSj = n, it follows from elementaryconsiderations that Pj2J(bj)k � b nk�1c � (k�1)k+(n�b nk�1c � (k�1))k � n � (k�1)k�1:We need the following simple fact:Claim: If z � k, then zk=(z)k < ek�1:(Proof of claim:zk(z)k = k�1Yj=1 zz � j � k�1Yj=1 kk � j = kk�1(k � 1)! = k�1Xl=0 k � 1l !�(k � 1)l(k � 1)! < k�1Xl=0 (k � 1)ll! < ek�1:)Thus, we may write:E� X0�j<s bkj� � E�Xj2J bkj +Xj 62J bkj� � n � (k � 1)k�1 + ek�1 � E� X0�j<s(bj)k�:

4 OPTIMAL LOWER BOUNDS FOR THE DETERMINISTIC CASE 14By 3.2, we obtain for ck = (k � 1)k�1 + cek�1 that E(P0�j<s bkj) � ck � n, as claimed.(c) is immediate from (b). 2Proof of Corollary 3.4:(a) Assume �rst that u � k. Then, by 3.2(a),Pr(bj � u) � (u)k = Pr((bj)k � (u)k) � (u)k � E((bj)k) � c � �ns�k ;whence we get Pr(bj � u) � c(u)k � �ns�k :By the claim in the proof of 3.3(b), this impliesPr(bj � u) � c � ek�1uk � �ns�k :In case 1 � u � k � 1 it is easily seen that H is also (c; k)-universal. Applying theabove result yields the desired estimate Pr(bj � u) � c � eu�1 � (n=s)u=uu:(b) The argument is exactly the same as in (a). Just use 3.2(b) instead of 3.2(a). 24 Optimal lower bounds for the deterministic caseIn this and the following section we consider deterministic algorithms for the dictionaryproblem that are based on hashing, and lower bounds on their performance. It willturn out that such deterministic algorithms must be much slower than the randomizedalgorithms described in the preceding sections.As a basis for our lower bound proofs we introduce a simpli�ed, abstract type ofalgorithm. Such algorithms maintain the following data structure D. If S � U isthe set of elements in the dictionary, then D consists of a rooted tree whose leavesare labelled with the elements of S. The inner nodes are labelled with hash functionswhose values correspond to the edges leaving the node. In order to access a key x 2 S,one starts at the root and repeatedly evaluates the hash function at the current node(with x as argument) to determine the edge to be followed out of the node until aleaf is reached. This leaf has label x. This data structure generalizes the one used inSection 2, where two hash functions had to be evaluated to access a key. We count onestep for the evaluation of a hash function.In more detail, the data structure can be described as follows. D is a rooted tree inwhich each inner node v is labelled with a hash function hv : U ! f0; 1; : : : ;mv � 1g,with mv � 2, and has mv children, one for each value of hv. Each x 2 U determinesa path from the root to a leaf. This path is given by w0; w1; : : : ; wr, where w0 is the

4 OPTIMAL LOWER BOUNDS FOR THE DETERMINISTIC CASE 15root, wt+1 is the hwt(x)-th child of wt, for 0 < t < r, and wr is a leaf. We say that Dis a dictionary for S = fx0; : : : ; xng � U if each leaf contains exactly one of the xi. Toeach node v of D we associate the set A(v) � U of keys that are \sent to" v by thehash functions on the path from the root to v. We de�ne inductively: A(v) = U for vthe root, and A(vq) = fx 2 A(v) j hv(x) = qg for 0 � q < mv where vq, 0 � q < mv,are the children of v.For our lower bound arguments, we will consider only insertions. To insert a keyxn+1 = x 2 U into a dictionaryD for S, we follow the path w0; w1; : : : ; wr determined byx, and for some node v on this path (determined by the algorithm) perform a rehashingat v, which means that we choose a new perfect hash function hv for A(v)\ (S [fxg):Thus, all jA(v)\(S[fxg)j children of v become leaves, and to each of them correspondsexactly one element of A(v)\(S[fxg). Such a rehashing must be performed for exactlyone node v on the path. The cost of such an insertion is depth(v)+ jA(v)\ (S [fxg)j:The cost of inserting x1; x2; : : : ; xn 2 U into a dictionary D is the sum of the costs ofthe single insertions. Note that we assume that D initially contains one element x0 ina leaf, with no root.Remark 4.1 When a rehashing at v is performed, a perfect hash function for A(v)\(S[fxg) is given at linear cost; in addition, setting up the hash table, i. e., the subtreeof depth 1, for this set has linear cost as well. This assumption excludes search treesthat use an order on the universe U to de�ne the way keys are distributed at nodes, aswell as other schemes involving cleverly chosen hash functions that can be extended toadditional keys at low cost while keeping the function injective.Remark 4.2 (a) We require that collisions are resolved immediately by rehashing. Inparticular, we do not allow forming chains, i. e., linked lists, at the leaves of the tree asis done in many hashing schemes. But the absence of this restriction would not changethe lower bounds by much. If we were to allow chaining, inserting n elements wouldcost n steps, because we could insert each element at the head of the chain, which wouldmean constant time per insertion. To justify our model, we have to consider tasks withinsertions and lookups. If after inserting x we include a lookup for the element at theend of the chain into which x was inserted, then this lookup costs essentially as muchas rehashing at the leaf to which the chain belongs. Thus algorithms for insertions andlookups, with chaining allowed, are as least as costly as algorithms without chainingfor insertions only.(b) One could ask if it would be advantageous to also allow rehashings at nodes v thatdo not lie on the path determined by the x just being inserted. But it is easily checkedthat the algorithm does not become slower if such rehashings are performed at the timewhen the last element of S \A(v) is inserted into D. Thus it is justi�ed not to admitsuch \spontaneous" rehashings.Remark 4.3 The role of space limitations. In the description of the data structure D,we have not introduced the concept of the space used by D. On the other hand, some

4 OPTIMAL LOWER BOUNDS FOR THE DETERMINISTIC CASE 16space restriction is necessary, since using the identity function as the hash function atthe root would make all rehashing superuous.If we assume that storing a hash function hv together with the corresponding tabletakes space O(mv) = O(jrange(hv)j), then Pv node inDmv is a reasonable measure forthe space used by D. In our description of the data structure D we assumed that everyleaf of D contained an element of S, so for every hv and every j 2 f0; : : : ;mv � 1gthere is some x 2 S with hv(x) = j. Since in every rooted tree with n + 1 leaves andoutdegree at least two the number of edges is bounded by 2n, our data structure Dsatis�es Pv mv � 2n, which means that it needs linear space.If the algorithm were allowed to use hash functions hv with range larger than jA(v)\Sjwhen rehashing at node v, then the lower bounds given in the theorems below wouldstill hold, with constants smaller by a factor of 14 than those in the theorems. Weonly have to assume that the space used by D is not too large in relation to thesize of the universe U (namely jU j � (S(n)2 log n)2 logn � (n + 1) in Theorem 4.4 andjU j � (S(n)=k)k in Theorem 4.6 for S(n) = Pv mv):We shall comment on this in moredetail below when the adversary strategies for the lower bound proofs are discussed.We want to study the following quantities.T (n) = worst-case (amortized) cost incurred by an optimal algorithm to insertn elements.Tmax(n) = worst-case cost needed for a single insertion or membership query ina sequence of n instructions.Tk(n) = worst-case amortized cost needed by an optimal algorithm to insert nelements, if the depth of the tree is not allowed to exceed k, i. e., ifthe worst case lookup time is k.The following three theorems sum up the results (upper and lower bounds) concerningthese three quantities. Theorem 4.4 shows that amortized time O(n) for n insertionscannot be achieved in the deterministic case, but that a slowdown by a factor log n isunavoidable. Theorem 4.5 shows that in any case there will be single instructions thatare very costly. If we demand constant lookup time to be guaranteed, Theorem 4.6shows that this can only be achieved by many costly rehashings.

5 PROOFS OF THE LOWER BOUNDS 17Theorem 4.4(a) T (n) � (n+ 1) � log(n+ 1), if jU j � (n= log n)2 logn � (n + 1):(b) T (n) � 3(n+ 1) log(n+ 1):Theorem 4.5(a) Tmax(n) = pn, if jU j � 2(pn)pn:(b) If only algorithms with a total cost smaller than f(n) � n for n insertions areconsidered, and jU j � (nf(n))2f(n) � (n+ 1), then Tmax(n) =
(n=f(n)):Theorem 4.6(a) Tk(n) � (k=e) � n1+1=kfor n � ek, if jU j > (2n=k)k:(b) Tk(n) � dk � n1+1=k for all su�ciently large n, where the constants dk can bechosen to satisfy dk � k=e: (Here e = 2:71828 : : : = Euler's constant.)The proofs of the theorems will be given in the next section.Remark 4.7 If we reconsider the randomized algorithm presented in Section 2, wesee that randomization is only used for constructing perfect hash functions at expectedlinear cost. Thus, if we give such hash functions at guaranteed linear cost, we shouldobtain a deterministic algorithm that is as least not slower than the randomized one.This seems to contradict our lower bounds! To resolve this paradox, consider adversarystrategies for the randomized computation model. Here the adversary has to determinethe moves of the strategy without knowledge of the outcomes of the coin ips of thealgorithm to be executed. This means that the data structure produced by the algo-rithm cannot be taken into consideration by the adversary. But this is what happensin the deterministic case and what makes the adversary as strong as indicated in thelower bounds for the deterministic model.Remark 4.8 Theorem 4.5 gives a lower bound for our model that is bigger than theO(log n) worst-case bound for single instructions guaranteed by implementations ofdictionaries as balanced search trees. This is an e�ect of the quite severe restrictionthat rehashing at a node v has cost linear in the size of the subtree rooted at v. (Cf.Remark 1.1.)5 Proofs of the lower boundsThis section contains the proofs of the theorems stated in Section 4.

5 PROOFS OF THE LOWER BOUNDS 185.1 The adversary strategyFor proving the lower bounds, we apply an adversary argument in each case. Let us�rst give a general description of the adversary strategy. Initially, the tree D containsone element x0. The adversary chooses, step by step, the element xi to be insertednext. Basically, xi is always chosen in such a way that it has to follow a longest pathin D.In order to always be able to �nd such an element xi, we must make sure that the setof elements of U that belongs to such a longest path is not empty. The aim of theadversary is to build up long paths w0; w1; w2; : : : in the tree and to make sure thatthe sets A(w0); A(w1); A(w2); : : : are as large as possible. Thus, if a decision is to bemade which path to choose, the adversary will, at each node v, choose that child q ofv that maximizes jh�1v [q] \A(v)j, 0 � q < mv. (If there is a tie, the smallest such q ischosen.) For the sake of simplicity of notation, we will assume that q = 0 always hasthis property. (If this is not the case, renumber the children of v.)Assumption 5.1 For all trees D ever built by the algorithms and for all nodes v of D,the set A(v)\h�1v [0] is maximal (w. r. t. cardinality) among A(v)\h�1v [q], 0 � q < mv.We will regard the child number 0 of v as the leftmost child of v, and de�ne the leftmostpath and the leftmost leaf in D accordingly (always follow the edge to child 0).Simple adversary strategy: Choose x1 6= x0 arbitrarily. For i > 1, assume thatx1; : : : ; xi�1 have been inserted and that a tree D has been set up by the algorithm.Then let xi be an arbitrary element of A(v)�fx0; x1; : : : ; xi�1g, where v is the leftmostleaf of D.Note that all elements inserted follow the leftmost path in D. This path grows asthe result of inserting xi if the algorithm chooses to perform a rehashing only at theleftmost leaf, or it is cut o� at v if the algorithm performs a rehashing at an inner nodev of the leftmost path.Remark 5.2 We have made the assumption that in all nodes v of D all values of hvare used by members of S (cf. Remark 4.3). This has the e�ect that each insertioncauses a collision at some node, at the latest at the leaf reached by the newly insertedelement, and hence causes a rehashing. If some values of hv are not used by elements ofS, it may happen that when xi is inserted, it reaches a leaf that is not already occupiedby a key from fx0; : : : ; xi�1g, hence no rehashing is necessary. However, observe thatout of two subsequent insertions performed according to the adversary strategy at leastone must cause a rehashing somewhere along the leftmost path. It is then seen thatall lower bounds proved below hold under the assumption that not n but 2n keys areinserted, because they cause at least n rehashings.

5 PROOFS OF THE LOWER BOUNDS 19The following lemma makes precise how big U has to be in order to guarantee thatsome suitable xi is available in each step of the adversary strategy.Lemma 5.3 Let v be a node on the leftmost path in D, and let the depth of v in D ber. Then(a) jA(v)j � jU j��2nr �r :(b) If we drop the assumption (cf. 4.3) that for all nodes v in the tree A(v) \ S 6= ;,and regard s(D) = Pv node in Dmv as a measure for the space needed by D, then for vas in (a) jA(v)j � jU j��s(D)r �r:Proof: Let w0; w1; : : : ; wr = v be the path from the root w0 to v. By de�nition,jA(w0)j = jU j; further, jA(wt+1)j � jA(wt)j=mmt, by Assumption 5.1. Thus, jA(v)j �jU j=(Qr�1t=0 mwt): Obviously, Pr�1t=0 mwt � s(D). From this it is easily seen that thedenominator Qr�1t=0 mwt cannot be larger than (s(D)=r)r. This proves (b). As notedalready in 4.3, if A(v) \ S 6= ; for all nodes v in D, then s(D) � 2n. This proves (a).2Lemma 5.4 Let �T (n) denote the minimal number of steps needed by any algorithmfor inserting n elements, if these elements are chosen according to the simple adversarystrategy. (In particular, the algorithm has to admit the simple adversary strategy, whichmeans that for each i < n we have that after inserting xi the set A(v)�fx0; x1; : : : ; xigis nonempty, for v the leftmost leaf in D.) Then�T (n) � (n+ 1) log(n+ 1):Proof: (Induction on n.) Fix such an algorithm for n elements. Clearly, �T (0) = 0,�T (1) = 2 (rehashing at the root is forced). Let n > 1. Let 1 � i � n where i is maximalsuch that xi is inserted by rehashing at the root. (Such an i exists, since this applies toi = 1.) Inserting x1; : : : ; xi�1 costs at least �T (i� 1), by the de�nition of �T , inserting xicosts i+1, inserting xi+1; : : : ; xn costs at least n� i+ �T(n� i), since the hash functionat the root has to be evaluated for xi+1; : : : ; xn, and all these elements are sent into theleftmost subtree and have to be inserted there, and are chosen according to the simpleadversary strategy with respect to this subtree. (Note that this subtree already has anelement.) Thus �T (n) � �T (i� 1) + (i+ 1) + (n� i) + �T (n� i):By the induction hypothesis, this entails�T (n) � i log i+ (n+ 1� i) log(n+ 1 � i) + n+ 1;and the right hand side of the last inequality is at least (n + 1) log(n + 1), since thefunction ylog y+(n+1� y) log(n+1� y) attains its minimum in the range 1 � y � nin y = (n+ 1)=2. 2

5 PROOFS OF THE LOWER BOUNDS 205.2 Proof of Theorem 4.4We �rst consider the lower bound (part(a)). We would like to use the adversary strategydescribed above. However, to provide for the case that the leftmost path in D becomesvery long and U is not as big as demanded in 5.3, we must slightly change the adversarystrategy: We choose xi so that it aims at the b2 log nc-th node on the leftmost path inD.Modi�ed adversary strategy: Choose x1 6= x0 arbitrarily. For i > 1, assume thatx1; : : : ; xi�1 have been inserted and that a tree D has been set up by the algorithm.Let w0; w1; : : : ; wr be the path from the root to the leftmost leaf in D. Choose xi tobe an arbitrary element of A(wr0)� fx0; : : : ; xi�1g, where r0 = min(r; b2 log nc):By Lemma 5.3, this strategy will work as long as jU j=(2n2 logn)2 logn � n+ 1, i. e., jU j �(nlogn)2 logn � (n+ 1):De�neL = fxi j 1 � i � n; depth(v) � 2 log n for the vertex v in Dat which rehashing is performed when xi is inserted g:Clearly, for each xi 2 L the cost of evaluating the hash functions on the way downto v alone is at least 2 log n. We determine a lower bound for inserting the elementsin fxi1; xi2; : : : ; xin0g = fx1; : : : ; xng � L into the tree as follows. (Here, n0 = n �jLj.) Observe that if we disregard all elements xi 2 L and all inner nodes at depth� 2 log n in the computation for x1; : : : ; xn, then we obtain a computation in whichxi1; : : : ; xin0 are inserted into a dictionary that always has depth smaller than 2 log n,and xi1; : : : ; xin0 are chosen according to the simple adversary strategy considered inLemma 5.4. Thus we may conclude from Lemma 5.4 that inserting xi1; : : : ; xin0 hascost at least (n0 + 1) log(n0 + 1). Altogether we getT (n) � jLj � 2 log n+ (n� jLj+ 1) � log(n� jLj+ 1)� min0�y�n�1(y � 2 log n+ (n� y + 1) � log(n� y + 1)):For n � 4, the minimum is attained for y = 0; hence T (n) � (n + 1) log(n + 1). Forn = 1; 2; 3; the lower bound in Theorem 4.4 is obvious. This �nishes the proof of 4.4(a).To prove the upper bound in Theorem 4.4 (part (b)), we use the following algorithmfor arbitrary n: Perform a global rehashing (i. e., a rehashing at the root) for xi ifi is a power of 2. Choose the hash functions hv, for v the root, in such a way thatjh�1v [q]j = 1 for all q > 0; then all insertions that do not cause a rehashing at the rootgo into the leftmost subtree, to which the same algorithm is applied recursively. Let~T (n) = cost of this algorithm when applied to n elements. By inspection, ~T (1) = 2,~T (2) = 5, ~T (3) = 8. We claim that ~T (n) � 3(n+1) log(n+1) for all n. Fix n � 4 andlet t = blog nc. We split x1; : : : ; xn into three groups and two single elements:

5 PROOFS OF THE LOWER BOUNDS 21{ inserting x1; : : : ; x2t�1�1 costs ~T (2t�1 � 1);{ inserting x2t�1 costs 2t�1 + 1;{ inserting x2t�1+1; : : : ; x2t�1 costs ~T (2t�1 � 1) + (2t�1 � 1);{ inserting x2t costs 2t + 1;{ inserting x2t+1; : : : ; xn costs ~T (n� 2t) + (n� 2t).Thus, by the induction hypothesis,~T (n) � 2 + 2t�1 + n+ 2 � 3 � 2t�1 log(2t�1) + 3 � (n� 2t + 1) log(n� 2t + 1):With 2 + 2t�1 + n � 3 � 2t it follows that~T (n) � 3 � 2t log(2t) + 3 � (n� 2t + 1) log(n� 2t + 1);hence, by the convexity of the function y log y, we get ~T (n) � 3(n + 1) log(n + 1), asdesired.This �nishes the proof of 4.4(b).5.3 Proof of Theorem 4.5(a) Apply the simple adversary strategy from Section 5.1. If at some time the leftmostpath in the tree becomes longer than pn then at least one insertion had cost pn. Oth-erwise, the assumption jU j � 2(pn)pn guarantees, by Lemma 5.3, that the adversarystrategy can be carried out. Only nodes on the leftmost path have children, hencethere must be one node on the leftmost path that has at least pn children. Thus, thecost of the last rehashing at this node was at least pn.(b) Apply the modi�ed adversary strategy from the proof of Theorem 4.4, for r0 =minfr; 2f(n)g. At most n=2 keys can be inserted below level 2f(n), by the overall timebound; hence at least n=2 will be above that level. In levels smaller than 2f(n), onlynodes on the leftmost path can have children; as in (a) it follows that one insertionmust have had cost at least n=2f(n):5.4 Proof of Theorem 4.65.4.1 The lower boundLet an arbitrary algorithm for inserting x1; : : : ; xn (into a table that initially containsone element x0) be given. We use the simple adversary strategy from Section 5.1.

5 PROOFS OF THE LOWER BOUNDS 22From Lemma 5.3 we know that the assumption jU j � (2n=k)k is su�cient to ensurethat jA(v)j � 2 for v the leftmost leaf of D, and hence that the strategy is alwaysapplicable under this assumption.For k � 1, n � 1 de�ne T̂k(n) = the minimal number of steps needed by any algorithmto insert x1; : : : ; xn chosen according to the adversary strategy. Clearly, Tk(n) � T̂k(n).Trivially, T̂k(0) = 0 for all k � 1.Lemma 5.5 T̂k(n) satis�es the following inequalities.(a) T̂1(n) = (n+ 1)(n+ 2)=2 � 1, for n � 0.(b) T̂k(n) � minn l+ lXj=1(jaj + T̂k�1(aj � 1)) j l � 1; a1; : : : ; al 2 IN; lXj=1 aj = no,for n � 2, k � 2.Proof: (a) If k = 1, then every element xi is inserted by rehashing at the root, whichhas cost i+ 1. Thus T̂1(n) = Pni=1(i+ 1) = (n+ 1)(n + 2)=2 � 1.(b) Let x1; : : : ; xn be inserted, chosen according to the simple adversary strategy. Con-sider an algorithm that for inserting these elements needs T̂k(n) steps. Let xi0; xi1; : : : ;xil�1 be those elements that are inserted by global rehashing, i.e., by constructing anew perfect hash function at the root. (For x1 this is forced, hence i0 = 1.) Also,let il = n+ 1. Note that between global rehashings the elements xij�1+1; : : : ; xij�1 arechosen so that they are all sent to the subtree rooted at the leftmost child of the root ofD, and that insertions into this subtree are performed according to some strategy forij � ij�1� 1 elements and depth k� 1; further, after the insertion of xij�1 this subtreealready has one element. By the de�nition of T̂k(n), inserting these elements into thesubtree has cost at least T̂k�1(ij � ij�1 � 1). In addition, for these elements the hashfunction at the root has to be evaluated, which has cost ij � ij�1 � 1. Inserting xij ,j = 0; 1; : : : ; l � 1, has cost ij + 1. Thus the total cost isT̂k(n) � lXj=1(ij � ij�1 � 1) + T̂k�1(ij � ij�1 � 1)) + l�1Xj=1(ij + 1)= lXj=1 T̂k�1(ij � ij�1 � 1) + lXj=1 ij:Let al+1�j = ij � ij�1 for 1 � j � l. Then Plj=1 aj = il � i0 = n, and Plj=1 ij =l � i0 +Plj=1(l + 1� j) � al+1�j; henceT̂k(n) � lXj=1(j � aj + T̂k�1(aj � 1)) + l:

5 PROOFS OF THE LOWER BOUNDS 23This proves part (b). 2The proof of Theorem 4.6 is completed by the following lemma.Lemma 5.6 T̂k(n) � gk(n+ 1)for all k � 1, n � 0, wheregk(y) = 8>>><>>>: 0; for y = 0;y ln y; for 0 < y � ek;ke � y1+1=k; for ek < y.For the proof of this lemma see the Appendix. It is a technical argument based solelyon the inequalities of Lemma 5.5.5.4.2 The upper boundWe will describe an algorithm for inserting n elements x1; : : : ; xn 2 U into a table(which initially contains one element x0) so that the depth of the resulting tree neverbecomes larger than k. As in the proof of Theorem 4.4(b), the hash function hv chosenfor a vertex v always satis�es jh�1v [q] \ A(v)j = 1 for all q > 0. This means thatsubsequent elements that are inserted in the subtree rooted at v are always sent to theleftmost subtree of v. Letd1 = 1; dk = k � k + 1k + 2 � dk�1k � 1!(k�1)=k ; for k > 1.Then dk = k � �Qkq=2((q + 1)=(q + 2))q�1=k. As an abbreviation, let bk = dk=k.Algorithm for a table of depth at most k (Inductive description):k = 1: Insert each element by global rehashing.k > 1: Let it = dPts=1(s=(k � bk�1))k�1 e, for t = 0; 1; 2; 3; : : : . Insert the elementsx1 = xi1 ; xi2; xi3; : : : by global rehashing; that is, by establishing a new hash functionhv at the root v. Between these global rehashings the elements xit�1+1; : : : ; xit�1 all gointo the leftmost subtree of the root. Apply the algorithm for depth at most k � 1 tothis subtree, for these it � it�1 � 1 elements.It is obvious that this algorithm always maintains a tree of depth at most k, hencea lookup time of k is guaranteed. We only have to analyze the time required for

5 PROOFS OF THE LOWER BOUNDS 24insertions. For k � 1, n � 0, let~Tk(n) = cost of inserting x1; : : : ; xn into a table, which initiallyhas one element, using the algorithm just described.(Note that for the cost of the algorithm it is irrelevant which particular elementsx1; : : : ; xn are inserted.) To �nish the proof of Theorem 4.6(b), we just have to showthe following.Lemma 5.7(a) ~Tk(n) � dk � n1+1=k for all n � nk, for nk large enough (for all k � 1).(b) limk!1 dkk=e = 1:Proof: (a) (Induction on k.)Initial step (k = 1): Obviously, ~T1(n) = (n+ 1)(n + 2)=2 � 1 � n2 for n � 3.Induction step (k > 1): Assume ~Tk�1 � dk�1 � nk=(k�1) for all n � nk�1. Now let nbe �xed, n large enough. De�ne t0 = minft � 1 j it > ng, for the sequence it, t � 1,de�ned in the strategy. We �rst estimate t0. Clearly, by the de�nition of it and t0 wehave t0�1Xs=1 sk�1 � (k � bk�1)k�1 � n < t0Xs=1 sk�1;hence (by estimating the sums by integrals and taking k-th roots),t0 � 1 � k � b(k�1)=kk�1 � n1=k < t0 + 1 (3)In the following, we estimate ~Tk(it0 � 1), which certainly is an upper bound for ~Tk(n).We let i0 = 0. Then inserting the element xit (by global rehashing) has cost it + 1, fort = 1; 2; : : : ; t0 � 1; inserting the elements xit�1+1; : : : ; xit�1 has cost (it � it�1 � 1) +~Tk�1(it � it�1 � 1), for t = 1; 2; : : : ; t0. Thus,~Tk(n) � t0Xt=1 ((it � it�1 � 1) + ~Tk�1(it � it�1 � 1)) + t0�1Xt=1 (it + 1);or, after a trivial transformation,~Tk(n) � t0Xt=1 ((t0 + 1� t)(it � it�1) + ~Tk�1(it � it�1 � 1)):Substituting the induction hypothesis ~Tk�1(n0) � dk�1 � (n0)k=(k�1), for n0 � nk�1, intothis inequality yields~Tk(n) � t0Xt=1 ((t0 + 1� t)(it � it�1 � 1) + dk�1(it � it�1 � 1)k=(k�1)) + 12t0(t0 + 1) + Ek;

5 PROOFS OF THE LOWER BOUNDS 25for some constant Ek (needed to make up for the error caused by replacing ~Tk�1(it �it�1 � 1) by dk�1(it � it�1 � 1)k=(k�1) for t so small that it � it�1 � 1 < nk�1). By thede�nition of it we clearly have it � it�1 � 1 � (t=(kbk�1))k�1; furthermore, from thebounds on t0 in (z) it follows that t 20 = O((n1=k)2) = O(n). Thus,~Tk(n) � t0Xt=1�� tkbk�1�k�1 � (t0 + 1� t) + dk�1 � � tkbk�1�k �+O(n)= (kbk�1)1�k � � t0Xt=1(t0 + 1)tk�1 � t0Xt=1 tk=k�+O(n):We substitute the two inequalitiesPt0t=1 tk�1 � (t0+1)k=k and Pt0t=1 tk � t k+10 =(k + 1)(obtained by replacing the sums by integrals), and simplify, noting that (t0 + 1)k+1 =t k+10 +O(t k0). In this way we get~Tk(n) � 1k + 1 � (kbk�1)1�k � t k+10 +O(t k0) +O(n):By (z), we have t k0 = O((n1=k)k) = O(n) and furthermore that t k+10 = kk+1 � bk�1=kk�1 �n1+1=k +O(t k0). Hence~Tk(n) � 1k + 1 � (kbk�1)1�k � kk+1 � bk�1=kk�1 � n1+1=k +O(n)= k2k + 1 � b(k�1)=kk�1 � n1+1=k +O(n):For n large enough, this implies~Tk(n) � k � k + 1k + 2 � b(k�1)=kk�1 � n1+1=k = dk � n1+1=k;and this is what we wanted to show.(b) By de�nition, dkk = � kYq=2�q + 1q + 2�q�1=k. Recall that q + 1q + 2!q+2 � 1e � q + 1q + 2!q+1for all q, and hencedkk � � kYq=2�q + 1q + 2�2 �1=k � �1e�(k�1)=k � dkk � � kYq=2�q + 1q + 2��1=k:Clearly, limk!1� kYq=2 q + 1q + 2�1=k = limk!1� 3k + 1�1=k = 1;and thus limk!1 dkk = 1e , as claimed. 2

REFERENCES 26References[AL86] Aho, H. V., and Lee, D., Storing a dynamic sparse table, Proc. of the 27thIEEE FOCS, 1986, pp. 55{60.[BK88] Brassard, G., and Kannan, S., The generation of random permutations onthe y, Information Processing Letters 28 (1988) 207{212.[CW79] Carter, J. L., and Wegman, M. N., Universal classes of hash functions,J. Comput. Syst. Sci. 18 (1979) 143{154.[DKM88] Dietzfelbinger, M., Karlin, A., Mehlhorn, K., Meyer auf der Heide, F.,Rohnert, H., and Tarjan, R. E., Dynamic perfect hashing: Upper and lowerbounds, Proc. of the 29th IEEE FOCS, 1988, pp. 524{531; also: Tech.Report No. 282, Fachbereich Informatik, Universit�at Dortmund, 1988.[DM89] Dietzfelbinger, M., and Meyer auf der Heide, F., An optimal parallel dictio-nary, Proc. of ACM Symp. on Parallel Algorithms and Architectures, 1989,pp. 360{368.[DM90a] Dietzfelbinger, M., Meyer auf der Heide, F., How to distribute a dictionaryin a complete network, Proc. of the 22nd ACM STOC, 1990, pp. 117{127.[DM90b] Dietzfelbinger, M., and Meyer auf der Heide, F., A new universal class ofhash functions, and dynamic hashing in real time, Proc. of 17th ICALP,Springer LNCS 443, 1990, pp. 6{19.[FKS84] Fredman, M. L., Koml�os, J., and Szemer�edi, E., Storing a sparse table withO(1) worst case access time, J. ACM 31(3), 1984, 538{544.[G81] Gonnet, Gaston H., Expected length of the longest probe sequence in hashcode searching, J. ACM 28(3) (1981) 289{304.[M84] Mehlhorn, K., Data Structures and Algorithms, Vol. 1, Springer Verlag,Berlin, 1984.[MNR90] Mehlhorn, K., N�aher, S., and Rauch, M., On the complexity of a gamerelated to the dictionary problem, SIAM J. Comput. 19(5) (1990) 902{906.[MV84] Mehlhorn, K., and Vishkin, U., Randomized and deterministic simulationsof PRAMs by parallel machines with restricted granularity of parallel mem-ory, Acta Informatica 21 (1984) 339{374.[S89] Siegel, A., On universal classes of fast hash functions, their time-spacetradeo�, and their applications, Proc. of the 30th IEEE FOCS, 1989, pp. 20{25.[T83] Troutman, J. L., Variational calculus with elementary convexity, SpringerVerlag, New York, 1983.

REFERENCES 27[WC79] Wegman, M. N., and Carter, J. L., New classes and applications of hashfunctions, Proc. of the 20th IEEE FOCS, 1979, 175{182.[W90] Wenzel, M., Eine Implementierung von Dynamic Perfect Hashing, Diplom-arbeit, Universit�at des Saarlandes, 1990.

A APPENDIX 28A AppendixA.1 Proof of Lemma 5.6We show the following: If the functions Tk; k � 1, satisfy the inequalities stated inLemma 5.5, that is, Tk(0) = 0 for all k � 1, and(a) T1(n) � (n+ 1)(n+ 2)=2 � 1; for all n � 1;(b) Tk(n) � minn1 + lXj=1(jaj + Tk�1(aj � 1)) ��� l � 1; a1; : : : ; al 2 IN; lXj=1aj = no;for all n � 1; k � 2;then the functions Tk satisfy the assertion of Lemma 5.6; that is,Tk(n) � gk(n + 1)for all k � 1; n � 0, where, for k � 1,gk(y) = 8><>: 0; if y = 0;y ln y; if 0 < y � ek;(k=e) � y1+1=k; if ek < y:We proceed by induction on k. For k = 1, it is easily checked that g1(n + 1) �(n + 1)(n + 2)=2 � 1 for all n � 0. Thus, let k > 1, and assume the claim to be truefor k � 1; that is, Tk�1(n) � gk�1(n + 1) = g(n + 1), for all n � 0: (From here on, wewill write g for gk�1:) For n = 0, the claim is trivially satis�ed. Let n � 1 be �xed.By assumption (b) above and the induction hypothesis, we may �x some l � 1 and asequence a = (a1; : : : ; al) of natural numbers with Plj=1 aj = n andTk(n)� 1 � lXj=1(jaj + Tk�1(aj � 1)) � lXj=1(jaj + g(aj)): (1)We want to �nd a lower bound on the last sum in (1). The �rst step we take isto transform sums to integrals and sequences of natural numbers to real functions.The sequence a may be regarded as equivalent to the piecewise constant functionfa: IR+0 ! IR+0 de�ned byfa(x) = � aj; if j � 1 � x < j, j = 1; : : : ; l;0; if l � x <1.The condition Plj=1 aj = n translates to R10 fa(x) dx = n, and the sum in (1) can beexpressed as lXj=1(jaj + g(aj)) = Z 10 �xfa(x) + g(fa(x))� dx+ n2 : (2)

A APPENDIX 29Our aim is now to �nd a lower bound on the integral in (2). To this end, we transformthe minimization problem a little further: instead of piecewise constant functions suchas fa we will consider continuous functions.De�nition A.1(a) Let D be the class of all continuous functions f : IR+0 ! IR+ (strictly positive) sothat R10 f(x) dx = n and so that limx!1 exf(x) exists and is positive.(b) Let G: IR+0 � IR+0 ! IR be de�ned by G(x; y) = xy + g(y) = xy + gk�1(y).(c) For f 2 D let I(f) = R10 G(x; f(x)) dx.(Note that the condition limx!1 exf(x) > 0 ensures that the integral exists.)It is easy to see that for any given " > 0 the piecewise constant function fa can beapproximated by some fa;" 2 D in such a way thatI(fa;") < "+ Z 10 xfa(x) + g(fa(x)) dx: (3)Now it follows from (1), (2), (3), and the fact that fa;" 2 D for all " > 0 thatTk(n)� �n2 + 1� � inff I(f) j f 2 D g: (4)The following proposition establishes the existence of a function f0 2 D that realizesthis in�mum; moreover it provides an equation for f0 that will enable us to calculatef0 explicitly. Then we may evaluate I(f0) to obtain the desired lower bound on Tk(n).The proposition is proved by reducing the problem of minimizing I(f) over D to astandard situation treated in the Calculus of Variations. (The details of this proof,which will be given in the second part of the appendix, are irrelevant for the rest ofthe argument.)Proposition A.2 There is a unique function f0 2 D so thatI(f0) = minf I(f) j f 2 D g: (5)Moreover, there is some constant A 2 IR so that f0 satis�es@@yG(x; y)����y=f0(x) = A ; for all x 2 IR+0 : (6)Our next goal is to use (6) in order to obtain an expression for f0. First, we calculateA. By the de�nition of G, we have that @@yG(x; y) = x+ g0(y), and hence (6) becomesx+ g0(f0(x)) = A ; for x � 0: (7)

A APPENDIX 30It follows easily from the de�nition of g = gk�1 thatg0(y) = (1 + lny; if 0 < y � ek�1;(k=e) � y1=(k�1); if ek�1 � y <1.Obviously, g0(y) is a strictly increasing function of y with range IR, and the inverse ofg0 is given by (g0)�1(z) = (ez�1; if �1 < z � k;(ez=k)k�1; if k � z <1 (8)Thus (7) can be transformed tof0(x) = (g0)�1(A� x) ; for x � 0: (9)Since f0 2 D, we have (using the explicit formula (8) for (g0)�1):n = Z 10 (g0)�1(A� x) dx = (eA�1; if A � k;(ek�1=kk) �Ak; if A � k: (10)We may now solve (10) for A to obtainA = (1 + lnn; if n � ek�1;(n=ek�1)1=k � k; if n � ek�1: (11)Now, �nally, we are in a position to evaluate I(f0). First, we substitute (9) into thede�nition of I(f0) (see De�nition A.1(b)(c)) to obtainI(f0) = Z 10 x � (g0)�1(A� x) + g((g0)�1(A� x)) dx: (12)Case 1: n � ek�1: Then A� k � 0, and we get from (12), by substituting (8) and thede�nition of g = gk�1, thatI(f0) = Z A�k0 x � (e(A� x)=k)k�1 + k � 1e � (e(A� x)=k)k dx+ Z 1A�kx � eA�x�1 + eA�x�1 � ln(eA�x�1) dx:The second integral evaluates to (A� 1)ek�1, the �rst one equalsA � �ek�k�1 � Z A�k0 (A� x)k�1 dx� ek�1kk � Z A�k0 (A� x)k dx= A � ek�1 � 1kk � (Ak � kk)� ek�1kk � 1k + 1(Ak+1 � kk+1)= Ak+1 � ek�1 � 1kk � kk + 1 �A � ek�1 + ek�1 � kk + 1 :Altogether, I(f0) = Ak+1ek�1 � 1kk � kk + 1 � 1k + 1 � ek�1:

A APPENDIX 31Substituting the value A = (n=ek�1)1=k � k given by (11) into the last equation andusing the fact that kk+1 � e�1=k results inI(f0) = kk + 1 � e�1+1=k � k � n1+1=k � ek�1k + 1 � ke � n1+1=k � ek�1k + 1 :In combination with (4) and (5) this yieldsTk(n) � ke � n1+1=k � ek�1k + 1 + n2 + 1: (13)Elementary estimates show that the right hand side of (13) is bounded from below by(n+ 1) ln(n+ 1), if n+ 1 � ek, and (k=e) � (n+ 1)1+1=k, if n+ 1 � ek. This proves theinequality Tk(n) � gk(n+ 1) in Case 1.Case 2: n � ek�1. Then A� k � 0, and we get from (12) and (8) thatI(f0) = Z 10 x � eA�x�1 + eA�x�1 � ln(eA�x�1) dx = (A� 1) � eA�1:We now substitute the value A = 1 + lnn from (11) to obtain that I(f0) = n lnn. Incombination with (5) and (4) this entails thatTk(n) � n lnn+ n2 + 1:Elementary estimates show that the right hand side of this inequality is bounded frombelow by (n+ 1) ln(n+ 1) = gk(n+ 1). This �nishes the proof of Lemma 5.6. 2A.2 Proof of Proposition A.2We sketch a proof of Proposition A.2 stated in the �rst part of this appendix. We reducethe proposition to a standard theorem from the Calculus of Variations. First, insteadof dealing with conditions de�ned by the integrals of the functions in class D (seeDe�nition A.1(a)) we need conditions on the values of the functions considered at theboundaries of the interval. For this, we consider the integral functions x 7! R x0 f(�) d�,for f 2 D, x 2 IR+0 . Second, we transform the unbounded interval IR+0 to the boundedinterval [0; 1] by means of the transformation x = x(t) = � ln(1 � t), for 0 � t < 1,with inverse transformation t = t(x) = 1� e�x, for 0 � x <1.

A APPENDIX 32De�nition A.3(a) Let E be the class of all functions ': [0; 1]! IR+0 that have a continuous derivativeddt'(t) = '0(t) > 0 in [0; 1] and satisfy '(0) = 0 and '(1) = n.(b) Let H: [0; 1]� IR+0 ! IR be de�ned byH(t; z) = (11�t �G(� ln(1� t); (1� t)z) ; if z > 0 and 0 � t < 1 ;z ln z ; if z > 0 and t = 1 ;where G(x; y) = xy + g(y) is as in De�nition A.1(b).(c) For ' 2 E let J(') = R 10 H(t; '0(t)) dt.(The following lemma implies that the integral is well-de�ned.)Lemma A.4 The function H from the previous de�nition is continuous, and for each�xed t 2 [0; 1] the function z 7! @2@z2H(t; z), z 2 IR, is continuous and strictly positive,excepting for t 6= 1 and y = ek�1=(1 � t).Proof: Straightforward veri�cation. 2Lemma A.5 There is a bijection between D and E given by the mappings f 7! 'f and' 7! f', where 'f(t) = 8><>: Z � ln(1�t)0 f(�) d� ; if 0 � t < 1 ;n ; if t = 1 ;and f'(x) = ddx'(1� e�x) = '0(1 � e�x) � e�x ; if 0 � x �1:Moreover, we have I(f) = J('f), for all f 2 D.Proof: Straightforward veri�cation. 2We now need the following theorem, which is obtained by combining Proposition (3.10)and Theorem (3.7) from [T83].Theorem A.6 If H = H(t; z) is continuous on [0; 1]� IR+0 and if, for each t 2 [0; 1],the function z 7! @2@z2H(t; z) is continuous and positive (except possibly at a �nite setof z-values), then there is exactly one function '0 2 E that minimizes R 10H(t; '0(t)) dton E. Moreover, this function '0 satis�es @@zH(t; z)���z='00(t) = const , for t 2 [0; 1]. 2

A APPENDIX 33By Lemma A.4, the function H from De�nition A.3 satis�es the hypothesis of thistheorem, and hence there is a unique function '0 2 E that minimizes J(') over E ;moreover, there is some A 2 IR with @@zH(t; z)���z='00(t) = A for all t 2 [0; 1]. ByLemma A.5, the function f0 = f'0 minimizes I(f) over D. It remains to establishEquation (6).By De�nition A.3(b) we have @@zH(t; z) = @@yG(� ln(1 � t); y)���y=(1�t)z, and henceA = @@zH(t; z)����z='00(t) = @@yG(� ln(1� t); y)����y=(1�t)'00(t) , for 0 � t � 1: (14)By Lemma A.5 we have f0(x) = ddx'0(1 � e�x) = '00(1 � e�x) � e�x = '00(t) � (1 � t),under the bijection t 7! x(t) = � ln(1 � t). Hence, Equation (14) entails that@@yG(x; y)���y=f0(x) = A for all x 2 IR+0 , as claimed. This �nishes the proof of Proposi-tion A.2.

