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Abstract

We hope to be able to provide answers to the following questions: 1) Has there been
a structural break in postwar U.S. real GDP growth toward more stabilization? 2) If so,
when would it have been? 3) What's the nature of the structural break?

For this purpose, we employ a Bayesian approach to dealing with structural break
at an unknown changepoint in a Markov-switching model of business cycle. Empirical
results suggest that there has been a structural break in U.S. real GDP growth toward
more stabilization, with the posterior mode of the break date around 1984:1. Furthermore,
we ¯nd a narrowing gap between growth rates during recessions and booms is at least as
important as a decline in the volatility of shocks.

Key Words: Bayes Factor, Gibbs sampling, Marginal Likelihood, Markov-Switching,
Stabilization, Structural Break.
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1. Introduction

In the literature, the issue of postwar stabilization of the U.S. economy relative to

the prewar period has mainly been delivered in the context of volatility stabilization or

the duration stabilization. Burns (1960) and Diebold and Rudebusch (1992) are the rep-

resentative examples. The results in these and other related papers, namely the postwar

stabilization, are questioned by Romer (1986a, b, 1991) and Watson (1994) based on

inconsistency of data between the two periods and the unreliability of prewar reference

dates relative their postwar counterparts. The relative scarcity and poor quality of prewar

data or unreliable prewar reference cycles seem to make the comparison of the two periods

di±cult.

This paper deviates from existing literature on the stabilization issue in at least three

respects. First, we focus on the postwar period and avoid the problem of data inconsis-

tency. A related question would be: Has there been a structural break in the postwar

U.S. economy toward more stabilization? Second, unlike the comparison of the prewar

and postwar periods, the date of the potential structural break is not assumed known.

We ask: if there has been a structural break in the postwar U.S. economy, when would

it have been? Third, unlike existing literature, we explicitly take into account the asym-

metric nature of the business cycle in our analysis. That is, while McConnell and Quiros

(1999) document a recent structural decline in the volatility of real GDP growth within a

linear model, we additionally investigate the possibility of a structural break in real GDP

toward narrowing gap between the growth rates during booms and recessions.

Parameter changes that are thought to be recurrent and endogenous have been mod-

eled as Markov-switching processes in Goldfeld and Quandt (1973), Hamilton (1989), and

Kim (1994). 1. For example, Hamilton (1989) models recessions and booms as switches

1 Goldfeld and Quandt (1973) introduced Markov-switching models for serially uncor-

related data, and Hamilton (1989) for serially correlated data. Kim (1994) extends the
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in the growth rate of real output between high and low states, governed by a Markov

process. However, we would also like to be able to detect non-recurrent changes that

can be thought of as shifts in the hyper parameters of these models that are otherwise

assumed ¯xed. We refer such changes as \structural." In this paper, we deal with the

issues related to recent stabilization of the U.S. economy within the context of Hamil-

ton's (1989) Markov-switching model of the business cycle, focusing on the possibility

of one-time structural break in the mean growth rates of real output in each of the two

unobserved regimes, expansion and recession, as well as the variance of the disturbance

terms.

Section 2 presents model speci¯cations and a Bayesian approach to making inferences.

In Section 3, we present a procedure for comparing models under consideration. For

this purpose, we build on ideas set forth in Chib (1995, 1998). In Section 4, we apply

the proposed models and the model selection procedure to postwar U.S. real GDP to

investigate whether the economy has become more stable during the postwar period.

Section 5 concludes the paper and provides a suggestion for further research.

2. Modeling Structural Break in a Markov-Switching Model and the Problem
Setup

Consider the following version of a Markov-switching model with a structural break

in the hyper parameters:

Á(L)(yt ¡ ¹¤St) = et; et » i:i:d:N(0; ¾2
t ); (1)

¹St = ¹¤0t(1¡ St) + ¹¤1tSt; (2)

¹¤0t < ¹¤1t; (3)

approach to general state-space models. For more general treatment of the Markov-

switching models, refer to Kim and Nelson (1999)
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where yt is the demeaned real output growth rate; ¹¤0t and ¹¤1t are the short run deviations

of output growth from its long-run growth during recession and boom, respectively; roots

of Á(L) = 0 lie outside the complex unit circle; and St is an unobserved two-state Markov-

switching variable that evolves according to the transition probabilities given below:

Pr[St = 1jSt¡1 = 1] = p11; (4)

Pr[St = 0jSt¡1 = 1] = 1¡ p11; (5)

Pr[St = 0jSt¡1 = 0] = p00; (6)

Pr[St = 1jSt¡1 = 0] = 1¡ p00; (7)

0 < p00 < 1; 0 < p11 < 1: (8)

We consider a possibility that the two shift parameters, ¹¤0t and ¹¤1t, as well as the variance

of et, ¾2
t , are subject to one-time structural break with unknown changepoint (¿). In order

to incorporate this possibility, we specify these parameters as follows:

¹¤0t = ¹0 + ¹00Dt; (9)

¹¤1t = ¹1 + ¹11Dt; (10)

¹0 < ¹0 + ¹00; ¹1 > ¹1 + ¹11 (11)

¾2
t = (1¡Dt)¾2

0 +Dt¾2
1; (12)

¾2
0 > ¾2

1; (13)

where

Dt = 0 for 1 · t · ¿ and Dt = 1 for ¿ < t · T ¡ 1; (14)

D1 = 0; DT = 1; (15)

3



and where Dt is independent of St.

Like the latent variable St that determines the recurrent business cycle phases, the

latent variableDt can also be modeled as a two-state Markov process, as suggested by Chib

(1998). This is done by appropriately constraining the transition probabilities so that we

have one-time permanent shift from D¿ = 0 to D¿+1 = 1 at an unknown changepoint ¿ .

For example, the transition probabilities should be constrained such that, conditional on

Dt = 0 there always exists non-zero probability that Dt+1 may be 1, but conditional on

D¿+1 = 1 the probability that D¿+2 = 0 should always be 0, so that we have Dt = 1 for

t ¸ ¿ + 1. The following speci¯cation for the transition probabilities achieves this goal:

Pr[Dt = 0jDt = 0] = q00; Pr[Dt = 1jDt = 0] = 1¡ q00; (16)

Pr[Dt = 1jDt = 1] = 1; Pr[Dt = 0jDt = 1] = 0; (17)

0 < q00 < 1; (18)

where the expected duration of Dt = 0, or the expected duration of a regime before a

structural break occurs, is given by E(¿) = 1
1¡q00

.

Under the null hypothesis that there is no structural break in the real output growth,

we have ¹00 = ¹11 = 0 and ¾2
0 = ¾2

1 and the above model collapses to the benchmark

Hamilton model of business cycle. To investigate the nature of a potential structural

break in the real output growth, we consider various null and alternative hypotheses, and

they result in the following four competing models:

Model I: A Benchmark Markov-switching model with no structural Break [¹00 =

¹11 = 0, ¾2
1 = ¾2

2]

Model II: A Model with Structural Break in the shift parameters [¹00 6= 0,

¹11 6= 0, ¾2
1 = ¾2

2]

Model III: A Model with Structural Break in the variance [¹00 = 0, ¹11 = 0,

¾2
1 6= ¾2

2]
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Model IV: A Model with Structural Break in both the shift parameters and the

variance [¹00 6= 0, ¹11 6= 0, ¾2
1 6= ¾2

2]

The standard test for a structural break at a known date is the Chow (1960) test.

When the date, called changepoint (¿), is not known, it could be treated as a parameter

to be estimated, but it is a nuisance parameter that exists only under the alternative

hypothesis that structural change occurred. Thus, the problem is non-standard, and

though Quandt (1958, 1960) proposed a test with unknown changepoint, the classical

asymptotic results do not hold for the test statistic. Only recently have asymptotic

theories for appropriate test statistics been investigated in the classical framework: the

`supremum' tests of Andrews (1993) and `average' and `exponential' tests of Andrews

and Ploberger (1994) and Andrews, Lee, and Ploberger (1992). 2 In testing for the null

hypothesis of a linear model against the alternative hypothesis of a Markov-switching

model, the transition probabilities are the nuisance parameters that exist only under the

alternative model. Such tests for Markov switching has recently been proposed by Hansen

(1992b) and Garcia (1998) within the classical framework.

As we specify one-time structural break in the hyper-parameters of the model by

treating Dt as a Markov-switching process, the transition probability q00 is a nuisance

parameter that does not exist under the null hypothesis of no structural break. We could

2 Other related parametric approaches to such tests in the classical framework include

James, James, and Siegmund (1987), Hawkins (1987), and Kim and Siegmund (1989).

Nonparametric approaches to tests of parameter instability with unknown changepoint in

the classical framework include the CUSUM test by Brown, Durbin, and Evans (1975) and

°uctuation tests by Ploberger, Kramer, and Kontrus (1989). Banerjee et al. (1992), Zivot

and Andrews (1992), Chu and White (1992), and Hansen (1992a) consider an unknown

changepoint with nonstationary regressors. For more a comprehensive survey, refer to

Maddala and Kim (1996).
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therefore apply the testing procedure proposed by Hansen (1992b) and Garcia (1998).

However, we cast the problem into a Bayesian framework in order to take advantage of

the important features of the Bayesian approach. First, unlike the classical approach, the

nuisance parameters that exists only under the alternative but not under the null does not

pose any special problem. The main issue in a Bayesian model selection comes down to

calculating the marginal likelihood for each model under consideration and the resulting

Bayes factors, and these are obtained by integrating the nuisance parameters out of the

joint density, whether they exist only under the alternative or under both hypotheses.

Second, the hierarchical nature of the models under consideration allows us to easily

employ the Markov chain Monte Carlo (MCMC) integration method of Gibbs sampling

in obtaining the marginal likelihoods and the Bayes factors, or marginal posterior distri-

butions of interest for inference.

Third, test results within the Bayesian framework embody sample information about

the distribution of the unknown changepoint. In addition, as a byproduct of the Bayesian

test of structural change we get the posterior distribution of the unknown changepoint,

which would be the ultimate goal of the research given structural change. Within the

classical framework, on the contrary, sample information is not appropriately used in

integrating the changepoint out of an appropriate test statistic, as Koop and Potter (1996)

noted. For example, Andrews and Ploberger (1994) consider an average of the test statistic

over di®erent values of the the changepoint. Alternatively, they consider an arbitrary

distribution to integrate the changepoint out of the test statistic. The resulting classical

test statistics fail to appropriately include sample information about the changepoint.

The next section deals with Bayesian inferences of the model and the Bayesian model

selection procedure.

3. Bayesian Inference and Model Selection Procedure
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3.1. Bayesian Inference of the Model

For Bayesian inference of the model, given appropriate priors we need the marginal

posterior distributions for the followings: ~¹ = [¹0 ¹1 ¹00 ¹11 ]0; ~Á = [Á1 : : : Ák ]0;

~¾2 = [¾2
0 ¾2

1 ]0; ~DT = [D1 : : : DT ]0; ~ST = [S1 : : : ST ]0; ~p = [ p00 p11 ]0; and

q00. These marginal posterior distributions may be obtained from the joint posterior

distribution,

p(~¹; ~Á; ~¾2; ~DT ; ~ST ; ~p; q00j~YT ); (19)

where ~YT = [ y1 : : : yT ]0.

However, the hierarchical nature of the model allows us to easily employ Gibbs sam-

pling in obtaining the marginal posterior distributions of interest. This is done by suc-

cessively sampling from the full conditional densities. The following describes the Gibbs

sampling procedure:

i) Generate ~¹ from p(~¹j~Á; ~¾2; ~DT ; ~ST ; ~YT ), where, conditional on ~DT and ~ST , ~¹ is

independent of ~p and q00;

ii) Generate ~Á from p(~Áj~¹; ~¾2; ~DT ; ~ST ; ~YT ), where, conditional on ~DT and ~ST , ~Á is

independent of ~p and q00;

iii) Generate ~¾2 from p(~¾2j~¹; ~Á; ~DT ; ~ST ; ~YT ), where, conditional on ~DT and ~ST , ~¾2 is

independent of ~p and q00;

iv) Generate ~DT from p( ~DT j~¹; ~Á; ~¾2; ~ST ; q00; ~YT ), where, conditional on ~ST , ~DT is

independent of ~p;

v) Generate ~ST from p( ~ST j~¹; ~Á; ~¾2; ~DT ; ~p; ~YT ), where, conditional on ~DT , ~ST is inde-

pendent of q00;

vi) Generate ~p from p(~pj ~ST ), where, conditional on ~ST , ~p is independent of the other
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variates;

vii) Generate q00 from p(q00j ~DT ), where, conditional on ~DT , q00 is independent of the

other variates.

Notice that the above procedure is a straightforward extension of Albert and Chib's

(1993) Bayes inference via Gibbs sampling of autoregressive time series subject to Markov

mean and variance shifts. Also notice that as a byproduct of generating ~DT in iv), we can

get the marginal posterior distribution of the changepoint, ¿ , such that D1 = : : : = D¿ = 0

and D¿+1 = : : : = DT = 0.

3.2. Model Comparison: Calculating the Marginal Likelihood

Let ! be the model indicator parameter. Thus, when ! = i, i = 1; 2; 3; 4, we assume

that data ~YT have arisen from Model i de¯ned in Section 2, according to a probability

function (marginal likelihood) m( ~YT j! = j). Within the Bayesian framework, the Bayes

factor has been widely used for model comparison. It is de¯ned as the ratio of marginal

likelihoods for models under consideration:

Bij =
m( ~YT j! = i)
m( ~YT j! = j)

; i; j = 1; 2; 3; 4; i6= j; (20)

where Bij refers to the Bayes factor in favor of Model i.

Various ways of Bayesian model comparison or calculating the Bayes factor have been

proposed in the literature. For example, Carlin and Polson (1991), George and McCul-

loch (1993), Geweke (1996), and Carlin and Chib (1995) provide a procedure for model

comparison based on the sensitivity of the posterior probability of the model indicator pa-

rameter ! to the prior probability. Verdinelli and Wasserman (1995) and Koop and Potter

(1999) suggest a way to indirectly calculating the Bayes factor using the `Savage-Dickey'

density ratio for the nested models. Alternatively, Chib (1995) suggests a procedure for
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directly calculating the marginal likelihoods based on the Gibbs output. 3

In this section, we present a procedure for directly calculating the marginal likelihoods

for models under our consideration, by extending Chib's (1995) procedure in a straight-

forward way. As the other three models are nested within Model IV in Section 2, the

procedure is described only within the context of Model IV. Thus, the model indicator

parameter ! is suppressed throughout the discussion.

De¯ne ~µ = [ ~¹0 ~Á0 ~p0 q00
~¾20 ~D0T ~S 0T ]0 to be a vector of the parameters of the

model. Then, as in Chib (1995) the marginal density of ~YT = [ y1 : : : yT ]0, by virtue

of being the normalizing constant of the posterior density, can be written as:

m( ~YT ) =
f( ~YT j~µ)¼(~µ)
¼(~µj~YT )

; (21)

where the numerator is the product of the sampling density and the prior, with all in-

tegrating constants included, and the denominator is the posterior density of ~µ. As the

above identity holds for any ~µ, we may evaluate m( ~YT ) at the posterior mean ~µ¤. Taking

the logarithm of the above equation for computational convenience, we have:

ln m( ~YT ) = ln f( ~YT j~µ¤) + ln ¼(~µ¤)¡ ln ¼(~µ¤j~YT ) (22)

The log likelihood function and the log of the prior density at ~µ = ~µ¤ can be evaluated

relatively easily. First, the log likelihood function is given by:

ln f( ~YT j~µ¤) =
TX

t=k+1
ln(

4X

Vt=1
: : :

4X

Vt¡k=1
p(Vt; : : : ; Vt¡kj~Yt¡1; ~µ¤)f(ytj~Yt¡1; Vt; : : : ; Vt¡k; ~µ¤));

(23)

where Vt = 1 if St = 0 and Dt = 0; Vt = 2 if St = 0 and Dt = 1; Vt = 3 if St = 1 and

Dt = 0; and Vt = 4 if St = 1 and Dt = 1. Second, the log of prior density is given by:
3 For a general discussion of Bayesian model comparison and the issues related to the

calculation of the Bayes factors, readers are referred to Kass and Raftery (1995).
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ln ¼(~µ¤) = ln ¼(~¹¤) + ln ¼(~Á¤) + ln ¼( ~¾2¤) + ln ¼(~p¤; q¤00); (24)

where it is a priori assumed that ~¹, ~Á, ~¾2, ~p, and q00 are independent of one another.

Evaluation of the posterior density at ~µ = ~µ¤ is more demanding, but we can take

advantage of the approach proposed by Chib (1995). For this purpose, consider the

following decomposition of the posterior density:

¼(~µ¤j~YT ) = ¼(~¹¤j~YT )¼(~Á¤j~¹¤; ~YT )¼( ~¾2¤j~¹¤; ~Á¤; ~YT )¼(~p¤; q¤00j~¹¤; ~Á¤; ~¾2¤; ~YT ); (25)

where

¼(~¹¤j~YT )

=
Z
¼(~¹¤; j~Á; ~¾2; ~DT ; ~ST ; ~p; q00; ~YT )¼(~Á; ~¾2; ~DT ; ~ST ; ~p; q00j~YT )d~Ád ~¾2d ~DTd ~STd~pdq00;

(26)

¼(~Á¤j~¹¤; ~YT )

=
Z
¼(~Á¤j~¹¤; ~¾2; ~DT ; ~ST ; ~p; q00; ~YT )¼( ~¾2; ~DT ; ~ST ; ~p; q00; j~¹¤; ~YT )d ~¾2d ~DTd ~STd~pdq00;

(27)

¼( ~¾2¤j~¹¤; ~Á¤; ~YT )

=
Z
¼( ~¾2¤j~¹¤; ~Á¤; ~DT ; ~ST ; ~p; q00; ~YT )¼( ~DT ; ~ST j~¹¤; ~Á¤; ~p; q00; ~YT )d ~DTd ~STd~pdq00;

(28)

and

¼(~p¤; q¤00j~¹¤; ~Á¤; ~¾2¤; ~YT )

=
Z
¼(~p¤; q¤00j~¹¤; ~Á¤; ~¾2¤ ~DT ; ~ST ; ~YT )¼( ~DT ; ~ST j~¹¤; ~Á¤; ~¾2¤; ~YT )d ~DTd ~ST

(29)

The above decomposition of the posterior density suggests that ¼(~¹¤j~YT ) can be cal-

culated based on draws from the full Gibbs run, and ¼(~Á¤j~¹¤; ~YT ), ¼( ~¾2¤j~¹¤; ~Á¤; ~YT ), and

¼(p¤00; p¤11; q¤00j~¹¤; ~Á¤; ~¾2¤; ~YT ) can be calculated based on draws from the reduced Gibbs
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runs. The following explains how each of these can be calculated based on output from

appropriate Gibbs runs:

¼̂(~¹¤j~YT ) =
1
G

GX

g=1
¼(~¹¤; j~Ág; ~¾2g; ~Dg

T ; ~SgT ; ~pg; qg00; ~YT ); (30)

¼̂(~Á¤j~¹¤; ~YT ) =
1
G

GX

g1=1
¼(~Á¤j~¹¤; ~¾2g1; ~Dg1

T ; ~Sg1T ; ~pg1; qg1
00; ~YT ); (31)

¼̂( ~¾2¤j~¹¤; ~Á¤; ~YT ) =
1
G

GX

g2=1
¼( ~¾2¤j~¹¤; ~Á¤; ~Dg2

T ; ~Sg2
T ; ~pg2; qg200; ~YT ); (32)

¼̂(p¤00; p
¤
11; q

¤
00j~¹¤; ~Á¤; ~¾2¤; ~YT )

=
1
G

GX

g3=1
¼(~p¤; q¤00j~¹¤; ~Á¤; ~¾2¤; ~Dg3

T ; ~Sg3T ; ~YT );
(33)

where the superscript g refers to the g¡ th draw of the full Gibbs run and the superscript

gi, i = 1; 2; 3, refers to the gi ¡ th draw from the appropriate reduced Gibbs runs. Thus,

apart from the usual G iterations for the full Gibbs run, we need additional 3£G iterations

for the appropriate reduced Gibbs run. In order to calculate ¼(p¤00; p¤11; q¤00j~¹¤; ~Á¤; ~¾2¤; ~YT ),

for example, we need output from an additional G iterations for the following reduced

Gibbs run: i) Generate ~p and q00 from p(~p; q00j~¹¤; ~Á¤; ~¾2¤; ~DT ; ~ST ; ~YT ); ii) Generate ~DT

from p( ~DT j~¹¤; ~Á¤; ~¾2¤; ~ST ; ~p; q00; ~YT ); iii) Generate ~ST from p( ~ST j~¹¤; ~Á¤; ~¾2¤; ~DT ; ~p; q00 ~YT ).

Notice that throughout the reduced Gibbs run, ~¹, ~Á, and ~¾2 are not generated and they

are set equal to ~¹¤, ~Á¤, ~¾2¤, respectively.

4. Empirical Results: Has the U.S. Economy Become More Stable?

4.1. Data

Data employed is quarterly U.S. real GDP growth that covers the sample period of

1953.II - 1997.I. In order to take into account the post-1973 `great productivity slowdown',
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the pre-1973 subsample and the post-1973 subsample have been demeaned separately.

However, it would be worth while to mention that the empirical results were not qual-

itatively di®erent from the case in which the post-1973 productivity slowdown was not

taken into account.

4.2. Prior Speci¯cations

We employ Normal priors for ~¹ and ~Á; inverted Gamma distributions for ¾2
0 and ¾2

1;

and ¯nally, Beta distributions for p00, p11, and q00. In order to analyze the sensitivity of

the empirical results to prior speci¯cations for the parameters of the model, we employ

the following three alternative sets of priors: 4

Prior #1: Á1 » N(0; 4); ~¹ = [¹0 ¹1 ¹00 ¹11 ]0 » N((¡0:5 0 0 0 )0; 4I4);

1=¾2
i » Gamma(1; 1), i = 0; 1; p00 » Beta(4; 1); p11 » Beta(4; 1); q00 » Beta(80; 0:1)

Prior #2: Á1 » N(0; 2); ~¹ = [¹0 ¹1 ¹00 ¹11 ]0 » N((¡0:5 0 0 0 )0; 2I4);

1=¾2
i » Gamma(2; 2), i = 0; 1; p00 » Beta(4; 1); p11 » Beta(9; 1); q00 » Beta(80; 0:1)

Prior #3: Á1 » N(0; 1); ~¹ = [¹0 ¹1 ¹00 ¹11 ]0 » N((¡0:5 0 0 0 )0; I4);

1=¾2
i » Gamma(4; 4), i = 0; 1; p00 » Beta(4; 1); p11 » Beta(9; 1); q00 »

Beta(80; 0:1);

where Beta(:; :) and Gamma(:; :) refer to the Beta distribution and Gamma distribution,

respectively.

4.3. Results

4 We employ an AR(1) speci¯cation for the autoregressive parameter, as in McConnell

and Quiros (1999). Thus, ~Á = Á1. In addition, the priors are described in terms of Model

IV.
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We ¯rst compare Bayesian inferences from the four alternative models considered in

Section 2. Throughout this section, all inferences are based on 10,000 Gibbs simulations,

after discarding the initial 2,000 Gibbs simulations in order to mitigate the e®ects of

initial conditions. Tables I-IV summarize the marginal likelihoods as well as the prior

moments and the posterior moments of the parameters for each of the models. Notice

that the prior moments correspond to Prior #1 in Section 4.2. A comparison of the log

of marginal likelihoods suggests that the benchmark Hamilton model with no structural

break (Model I) is clearly dominated by the other three models with a structural break.

Furthermore, in Tables II and IV (for Models II and IV), a decrease in the posterior

mean of the growth rate during booms (¹1 versus ¹1 + ¹11) is sizable, even though an

increase in the posterior mean of the growth rate during recessions (¹0 versus ¹0 + ¹00)

is less so. In Tables III and IV (for Models II and IV), we also notice that a decrease

in the posterior mean for the variance of the disturbance terms (¾2
0 versus ¾2

1) is sizable.

Thus, we conclude that there has been a structural break in the U.S. economy toward

more stabilization: a narrowing gap between the mean growth rates during booms and

recessions and a decline in the volatility of real GDP growth.

To further investigate the nature of the structural break in real GDP growth, we

need to compare Models II, III, and IV. Model II with a structural break in the mean

growth rates is most preferred, suggesting that a narrowing gap between the mean growth

rates during booms and recessions is at least as important as a decline in the volatility

of real GDP growth. 5 Notice that within the context of a linear model, a narrowing

gap between the mean growth rates would show up as a decline in the volatility. Thus,

5 By just comparing Models III and IV, one may be more inclined to infer that a

structural break in the mean growth rates is not as important as a decline in the volatility,

as is the case with McConnell and Quiros (1999). However, this does not seem to be the

case.
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within the linear model, one may not be able to distinguish between the two sources of

stabilization in real GDP growth.

In Figures 2.A, 3.A, and 4.A, the posterior distributions of the changepoint (¿) for

Models II, III, IV are depicted against real GDP growth. In all three cases, the posterior

mode of the Changepoint is 1984.I, as in McConnell and Quiros (1999), even though the

posterior distribution is more widely spread for model II than for the other models.

Inferences about recession probabilities from alternative models may provide us with

further insights into the nature of the structural break in real GDP growth. Figure

1 depicts recession probabilities from the benchmark Hamilton model (Model I) with

no structural break. Figure 2.B depicts recession probabilities from Model II with a

structural break in the shift parameters. For the period before 1984:I, inferences about

recession probabilities are much sharper in Figure 2.B than in Figure 1. However, for

the period after 1984:1, they are worse in Figure 2.B than in Figure 1. As we allow for

a structural break only in the variance term in Figure 3.B (Model III), such pattern is

reversed. That is, for the period before 1984:I, inferences about recession probabilities are

much worse in Figure 3.B than in Figure 1. However, for the period after 1984:1, they

are sharper in Figure 3.B than in Figure 1. These observations suggest that a structural

break in neither the shift parameters nor the variance terms may be ignored. When we

allow for a structural break in the shift parameters as well as the variance terms (Model

IV), inferences about recession probabilities in Figure 4.B improve over those in Figure

1. However, the improvement seems to be only marginal. This explains why the log of

marginal likelihood for Model IV is lower than that for Model II or Model III.

Within the Bayesian framework, inferences are sometimes dependent upon the priors

employed. In order to check the robustness of our results, we try two more alternative

sets of priors as described in Section 4.2 [Prior #2 and Prior #3]. 6 Table 5 summarizes

6 We also checked whether the results are sensitive to di®erent priors for the q00 param-
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the sensitivity of the marginal likelihood (in log scale) to alternative priors employed.

Even though the marginal likelihood for Models I, II, IV are not very sensitive to the

priors employed, the marginal likelihood for Model III seems to be quite sensitive. In

general, Table 5 suggests the followings: First, Model II with a structural break in the

shift parameters is always most preferred regardless of the priors employed. Second,

depending on the priors employed, either Model III or Model IV is second most preferred.

Third, depending on the priors employed, either Model I or Model III is least preferred.

The sensitivity analysis leads us to conclude that, out of the two important sources of

stabilization in recent U.S. real GDP growth, namely a narrowing gap between the mean

growth rates during recessions and booms and a decline in volatility, sample evidence is

stronger for the former.

5. Summary and Conclusion

In this paper, we characterize the nature of recent structural break in U.S. real GDP

growth toward more stabilization. For this purpose, we present a Bayesian approach to

dealing with structural break at an unknown changepoint in a Markov-switching model

of business cycle. Within the context of a Markov-switching model, one can distinguish

between two important sources of stabilization in real GDP growth: a decline in the

variance of shocks and a narrowing gap between growth rates during booms recessions.

Within the context of a linear model, one cannot distinguish between the two sources,

and a narrowing gap between growth rates would show up as a decline in volatility.

Empirical results suggest both sources of stabilization may not be ignored, even though

we ¯nd stronger sample evidence in favor of a narrowing gap between growth rates during

booms and recessions. In addition, the posterior mode of the break date turned out to be

eter. However, the results were not sensitive.

15



1984:I. This is consistent with McConnell and Quiros (1999), who document a structural

decline in the volatility of U.S. real GDP growth within the context of a linear model and

within a classical framework.
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Table 1. Bayesian Inference [Model I: Benchmark Hamilton Model with No
Structural Break]

Prior Posterior

Mean SD Mean SD MD 90% Bands

Á1 0 2 0.258 0.105 0.262 (0.077, 0.420)

¾2
0 1 1 0.776 0.136 0.771 (0.570, 1.007)

¾2
1 { { { { { {

¹0 -0.5 2 -0.817 0.620 -0.800 (-1.811, -0.042)

¹1 0 2 0.297 0.343 0.234 (0.035, 0.666)

¹0 + ¹00 { { { { { {

¹1 + ¹11 { { { { { {

p11 0.8 0.163 0.840 0.152 0.899 (0.504, 0.975)

p00 0.8 0.163 0.706 0.161 0.711 (0.429, 0.968)

q00 { { { { { {

Log of Marginal Likelihood (ln m( ~YT )): -267.63

1. SD and MD refer to standard deviation and median, respectively.
2. 90% Bands refers to 90% posterior probability bands.
3. Out of 12,000 Gibbs simulations, the ¯rst 2,000 are discarded and inferences are based
on the remaining 10,000 Gibbs simulations.
4. Prior Distributions employed:

Á1 » N(0; 4); ~¹ = [¹0 ¹1 ]0 » N((¡0:5 0 )0; 4I2); 1=¾2
0 » Gamma(1; 1); p00 »

Beta(4; 1); p11 » Beta(4; 1)
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Table 2. Bayesian Inference [Model II: Structural Break in the Shift Param-
eters]

Prior Posterior

Mean SD Mean SD MD 90% Bands

Á1 0 2 0.210 0.105 0.212 (0.035, 0.382)

¾2
0 1 1 0.688 0.121 0.670 (0.516, 0.914)

¾2
1 { { { { { {

¹0 -0.5 2 -1.052 0.395 -1.025 (-1.736, -0.422)

¹1 0 2 0.559 0.378 0.486 (0.201, 1.111)

¹0 + ¹00 -0.5
p

8 -0.274 0.338 -0.195 (-0.959, 0.127)

¹1 + ¹11 0
p

8 0.153 0.262 0.137 (-0.159, 0.476)

p11 0.8 0.163 0.819 0.119 0.850 (0.579, 0.945)

p00 0.8 0.163 0.706 0.132 0.713 (0.468, 0.911)

q00 0.988 0.0013 0.984 0.028 0.993 (0.942, 0.999)

Log of Marginal Likelihood (ln m( ~YT )): -247.01

1. SD and MD refer to standard deviation and median, respectively.
2. 90% Bands refers to 90% posterior probability bands.
3. Out of 12,000 Gibbs simulations, the ¯rst 2,000 are discarded and inferences are based
on the remaining 10,000 Gibbs simulations.
4. Prior Distributions employed:

Á1 » N(0; 4); ~¹ = [¹0 ¹1 ¹00 ¹11 ]0 » N((¡0:5 0 0 0 )0; 4I4); 1=¾2
0 »

Gamma(1; 1); p00 » Beta(4; 1); p11 » Beta(4; 1); q00 » Beta(80; 0:1);

22



Table 3. Bayesian Inference [Model III: Structural Break in the Variance]

Prior Posterior

Mean SD Mean SD MD 90% Bands

Á1 0 2 0.298 0.098 0.308 (0.120, 0.447)

¾2
0 1 1 1.151 0.168 1.142 (0.888, 1.438)

¾2
1 1 1 0.259 0.063 0.252 (0.167, 0.372)

¹0 -0.5 2 -0.446 0.518 -0.218 (-1.401, -0.016)

¹1 0 2 0.234 0.384 0.143 (0.017, 0.730)

¹0 + ¹00 { { { { { {

¹1 + ¹11 { { { { { {

p11 0.8 0.163 0.809 0.174 0.870 (0.447, 0.986)

p00 0.8 0.163 0.752 0.165 0.765 (0.455, 0.985)

q00 0.988 0.0013 0.992 0.008 0.994 (0.977, 0.999)

Log of Marginal Likelihood (ln m( ~YT )): -253.70

1. SD and MD refer to standard deviation and median, respectively.
2. 90% Bands refers to 90% posterior probability bands.
3. Out of 12,000 Gibbs simulations, the ¯rst 2,000 are discarded and inferences are based
on the remaining 10,000 Gibbs simulations.
4. Prior Distributions employed:

Á1 » N(0; 4); ~¹ = [¹0 ¹1 ]0 » N((¡0:5 0 )0; 4I2); 1=¾2
i » Gamma(1; 1), i =

0; 1; p00 » Beta(4; 1); p11 » Beta(4; 1); q00 » Beta(80; 0:1)
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Table 4. Bayesian Inference [Model IV: Structural Break in Both the Shift
Parameters and the Variance]

Prior Posterior

Mean SD Mean SD MD 90% Bands

Á1 0 2 0.245 0.120 0.254 (0.040, 0.425)

¾2
0 1 1 1.015 0.192 1.003 (0.717, 1.344)

¾2
1 1 1 0.254 0.064 0.246 (0.164, 0.371)

¹0 -0.5 2 -0.910 0.565 -0.881 (-1.892, -0.130)

¹1 0 2 0.387 0.323 0.327 (0.087, 0.811)

¹0 + ¹00 -0.5
p

8 -0.413 0.432 -0.295 (-1.240, 0.092)

¹1 + ¹11 0
p

8 0.126 0.224 0.097 (-0.078, 0.371)

p11 0.8 0.163 0.847 0.137 0.895 (0.543, 0.978)

p00 0.8 0.163 0.717 0.145 0.733 (0.451, 0.939)

q00 0.988 0.0013 0.992 0.008 0.994 (0.976, 0.999)

Log of Marginal Likelihood (ln m( ~YT )): -260.19

1. SD and MD refer to standard deviation and median, respectively.
2. 90% Bands refers to 90% posterior probability bands.
3. Out of 12,000 Gibbs simulations, the ¯rst 2,000 are discarded and inferences are based
on the remaining 10,000 Gibbs simulations.
4. Prior Distributions employed:

Á1 » N(0; 4); ~¹ = [¹0 ¹1 ¹00 ¹11 ]0 » N((¡0:5 0 0 0 )0; 4I4); 1=¾2
i »

Gamma(1; 1), i = 0; 1; p00 » Beta(4; 1); p11 » Beta(4; 1); q00 » Beta(80; 0:1)
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Table 5. Sensitivity of the Log of Marginal Likelihood to Alternative Priors

Prior #1 Prior #2 Prior #3

Model I -267.63 {265.81 -266.67

Model II -247.01 -246.09 -245.25

Model III -253.70 -289.94 -256.77

Model IV -260.19 -257.76 -258.97

1. Prior Distributions employed:

Prior #1: Á1 » N(0; 4); ~¹ = [¹0 ¹1 ¹00 ¹11 ]0 » N((¡0:5 0 0 0 )0; 4I4);

1=¾2
i » Gamma(1; 1), i = 0; 1; p00 » Beta(4; 1); p11 » Beta(4; 1); q00 » Beta(80; 0:1)

Prior #2: Á1 » N(0; 2); ~¹ = [¹0 ¹1 ¹00 ¹11 ]0 » N((¡0:5 0 0 0 )0; 2I4);

1=¾2
i » Gamma(2; 2), i = 0; 1; p00 » Beta(4; 1); p11 » Beta(9; 1); q00 » Beta(80; 0:1)

Prior #3: Á1 » N(0; 1); ~¹ = [¹0 ¹1 ¹00 ¹11 ]0 » N((¡0:5 0 0 0 )0; I4);

1=¾2
i » Gamma(4; 4), i = 0; 1; p00 » Beta(4; 1); p11 » Beta(9; 1); q00 »

Beta(80; 0:1)
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Figure 1 Probability of a Recession from Model I [Benchmark Hamilton Model  with
              No Structural Break]
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Figure 2.A. Real GDP Growth and Posterior Distribution of Changepoint from Model II
                  [Structural Break in the Shift Parameters]
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Figure 2.B. Probability of a Recession from Model II   [Structural Break in the
                  Shift Parameters ]
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Figure 3.A. Real GDP Growth and Posterior Distribution of Changepoint from Model III
                  [Structural Break in the Variance]
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Figure3.B. Probability of a Recession from Model III   [Structural Break in the
                 the  Variance  ]
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Figure 4.A. Real GDP Growth and Posterior Distribution of Changepoint from Model IV
                  [Structural Break in both the Shift Parameters and  the Variance]
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Figure4.B. Probability of a Recession from Model IV   [Structural Break in both
                 the Shift Parameters and the  Variance  ]


