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Translating programs into continuation-passing style (cps) allows us to express both uses ofstrictness information because:� a cps-translation captures the evaluation order of expressions; and� a closure is essentially a value waiting for a continuation which uses it.The main results of this paper are three cps-conversions which use strictness information,each of which has been proved correct. We start by showing how simple strictness informationcan be used to change the evaluation order (Section 2.1). This is then extended in two orthogonalways: �rstly we give a cps-conversion where functions can be compiled knowing that some oftheir arguments have been evaluated (Section 2.2); and secondly we express how the evaluationorder can be changed in more complicated ways for structured data types such as lists (Section 3).A consequence of the second cps-translation, described in Section 2.2, is that the translationof the types makes it explicit whether or not an (evaluated) argument is being passed in a closurein the heap (i.e. whether or not it is `boxed'). This appears to be a natural alternative to thatgiven in [JL91].In the translation rules, we state what properties must hold in order to use particular rules.Safe approximations to these properties can be determined using established program analyses,as discussed in Section 4.The cps-conversions we describe in this paper can be used in the context of [FM91], where acomplete compiler is proved correct. We can therefore demonstrate the correctness of a completecompiler which uses strictness information.A survey of related work can be found in Section 5, and Section 6 reviews the bene�ts ofthis approach and identi�es areas of further research.2 Using Simple Strictness InformationFigures 1 and 2 describe the syntax of our functional language and its semantics.Our starting point is an adaptation of the compiler described in [FM91]. The key featureof this compiler is the fact that it is described entirely within the functional framework as asuccession of transformations. This makes its correctness proof easier to establish.We need only consider the �rst step of the compiler here, which is the call-by-name cps-transformation, given in Figure 3. The transformation captures the call-by-name computationrule because the translation of an application indicates that the argument is passed unevaluatedto the function. The important point about N [[E]] is that it has at most one redex outside thescope of a lambda, which means that call-by-value and call-by-name coincide for the translatedterm [Plo75]. Furthermore, this redex is always at the head of the expression [FM91], and theexpression can be reduced without dynamic search for the next redex, just like machine code.We have left the types o� the translated terms for clarity. Ans is the type of answers. Theresult of translating an expression of type � is an expression of type B [[�]] = C [[�]] ! Ans.This can be stated formally by Theorem 2.2.De�nition 2.1 If � is a type environment, then its transformation N [[�]] is de�ned by the rule:� ` x : �N [[�]] ` x : B [[�]]Theorem 2.2 � ` E : �N [[�]] ` N [[E]] : B [[�]]2



The set T of types is the least set de�ned by:fbool; intg � T�; � 2 T ) (�!�) 2 T� 2 T ) (list �) 2 TThe type system of �T(1) x� : � (2) k� : �(3) E1 : �!� ; E2 : �(E1 E2) : � (4) E : �(�x�:E) : �!�(5) E : �!��x� E : �Abstract Syntax of �Ttruebool falsebool if bool!�!�!�f0int; 1int; 2int; : : :g plusint!int!int headlist �!�nillist � cons�!list �!list � taillist �!list �The Constants of �TFigure 1: De�nition of the Language �TSB = some domain for the base type BS�!� = S�!S�S(list�) = List S�Semantics of the TypesS [[x�]] �S = �S x�S [[k�]] �S = KS [[k�]]S [[E1 E2]] �S = (S [[E1]] �S) (S [[E2]] �S)S [[�x�:E]] �S = �d�S� :S [[E]] �S[d=x�]S [[�x� E]] �S = Fi�0 (S [[E]] �S)i ?S�Semantics of the Language TermsFigure 2: The Semantics of �T3



U [[int]] = int | unboxed valuesU [[bool]] = boolU [[� ! � ]] = C [[� ]]! B [[�]]! AnsU [[(list �)]] = (B [[�]]� B [[(list �)]]) + nilC [[�]] = U [[�]]! Ans | continuationsB [[�]] = C [[�]]! Ans | boxed valuesTranslation of TypesN [[x]] = xN [[0]] = �c:c 0 | and similarly for other integers and booleansN [[plus]] = �c:c (�c1:�x:c1 (�c2:�y:x (�m:y (�n:plusc c2 m n))))N [[if E1 E2 E3]] = �c:N [[E1]] (ifc (N [[E2]] c) (N [[E3]] c))N [[nil]] = �c:c nilN [[cons]] = �c:c (�c1:�x:c1 (�c2:�y:consc c2 x y))N [[head]] = �c:c (�c1:�x:x (�v:head v c1))N [[E1 E2]] = �c:N [[E1]] (�f:f c (N [[E2]]))N [[�x:E]] = �c:c (�c:�x:N [[E]] c)N [[�x� (�x:E)]] = �xB[[�]] (�x:N [[E]])Translation of Termsplusc c m n = c (plus m n)ifc E1 E2 = �v:if v E1 E2consc c E1 E2 = c (cons E1 E2)Figure 3: The Call-by-Name Cps-conversionExpressions of type C [[�]] are continuations: they take the result of evaluating an expression oftype U [[�]] into an answer. Meyer and Wand �rst showed that the type of the cps-translationof an expression could be derived from the type of the original expression [MW85].The rule for application di�ers slightly from the usual presentation of the cps-translation[Rey74, Plo75]: the continuation is passed as the �rst argument to a function rather than as thesecond argument (as was done in [Fis72]). This change is motivated by the subsequent steps ofthe compiler. We stress that the work of this paper is independent of this change of argumentorder, but has been presented in this way so that our results can be fed into those of [FM91]and so have an optimised compiler whose correctness has been proved.Let us take a small example to illustrate this transformation and expose the potential sourcesof ine�ciency: F = �x:(plus x 1)E = F (plus 2 7):Applying the translation rules from Figure 3 yields, after reducing \administrative redexes"(terminology due to [Plo75]) introduced by continuations:N [[F ]] = �c:c F1F1 = �c:�x:x (�m:plusc c m 1)N [[E]] = �c:F1 c (�c:(plusc c 2 7)):4



S [[x]] = xS [[k�]] = N [[k�]]S [[if E1 E2 E3]] = �c:S [[E1]] (ifc (S [[E2]] c) (S [[E3]] c))S [[E1 E2]] = �c:S [[E2]] (�v:S [[E1]] (�f:f c (�c:c v)))if 8�S : S [[E1]] �S ? = ?= �c:S [[E1]] (�f:f c (S [[E2]]))otherwiseS [[�x:E]] = �c:c (�c:�x:S [[E]] c)S [[�x� (�x:E)]] = �xB[[�]] (�x:S [[E]])Translation of TermsFigure 4: The Cps-conversion Using Simple Strictness InformationWe note that F1 is passed the unevaluated argument (�c:(plusc c 2 7)) which will be imme-diately evaluated in the body of F1. This cost of passing an unevaluated argument may besigni�cant (in terms of execution time as well as space consumption). A more e�cient compu-tation rule would be to evaluate the argument of the function before the call, provided this doesnot change the semantics of the program. This can be achieved in the cps-translation by �rsttranslating the argument expression and then the function, so that the translation of E becomes:�c:plusc (�v:F1 c (�c:c v)) 2 7. This version is more e�cient in terms of space consumptionbecause the closure which is passed as an argument to F1 now represents an evaluated argument.There is still room for improvement however because we have not exploited the fact that F1 willbe passed an evaluated closure in the compilation of F . Using this property we can replace F1in the body of the translation of F by F2 = �c:�x:plusc c x 1, and E by �c:plusc (F2 c) 2 7,which has the e�ect of passing the value 9 to F rather than the evaluated closure (�c:c 9).It is also important to note that the types of the transformed terms give us signi�cantinformation. The type of F1 is C [[int]]! B [[int]]! Ans(= U [[int! int]]), whilst the type of F2 isC [[int]]! U [[int]]! Ans:In implementation terms, a value of type B [[�]] must be represented in the heap and accessedindirectly through the stack, whereas a term of type U [[�]] can be represented directly on thestack if � is a basic type. This distinction has been called boxed versus unboxed representation in[JL91]. In our framework B [[�]] denotes a boxed implementation of � and U [[�]] is an unboxedrepresentation of �, so that the `boxedness' of a value can be determined from its type.These optimisations are presented more formally in the next two subsections.2.1 Changing the Evaluation OrderAn improved cps-translation using simple strictness information is presented in Figure 4.We make the following observations about the rules:� N [[E]] and S [[E]] have the same type, and a similar theorem to Theorem 2.2 can easilybe proved. 5



� The key rule is the translation of application. There are two cases to consider:{ when the functional expression is strict (the �rst rule), then the argument can beevaluated before the functional expression. In cps-conversion, this is expressed byputting the translation of the argument expression at the front of the convertedexpression. The continuation in this case picks up the value, wraps it into a closure(�c:c v) (i.e. boxes the value), and then proceeds to evaluate the functional expressionas before.{ when the functional expression is not strict (second rule), the translation has thesame structure as the call-by-name cps conversion, but uses the S conversion schemeso that strictness information can be used in translating subexpressions.� Apart from if, the conversion rules for the constants are identical to the call-by-name cpsconversion, because the change of evaluation order that is allowed by these constants iscaptured by the general rule for function application. An exception is made for if becausethe evaluation context of the chosen alternative is the same as the evaluation context ofthe application of if, but the strictness information about if says that neither its secondnor its third argument need to be evaluated.The correctness of this translation is expressed by the following theorem. We do not proveit because it follows as a corollary of the more general translation presented in Section 3.Theorem 2.3 For all terms E: S [[S [[E]]]] = S [[N [[E]]]]:2.2 Unboxed ValuesLooking at the two rules for application in Figure 4 we can see that E1 is compiled in the sameway in both cases. This is because the code for E1 expects a closure as its argument; when theargument is evaluated before the call and returns the value v, a closure �c:c v has to be builtto encapsulate this value. This could obviously be omitted provided that E1 is compiled withthe extra assumption that its argument is already evaluated. The rules in Figure 5 achieve thisoptimisation; two extra arguments are passed to the compilation function. I is the set of indicesrepresenting the evaluated arguments of the expression and V is the set of evaluated variables ofthe expression. Notice that each function may be compiled in several di�erent ways, dependingon the calling context. In particular, the operator plus can be compiled in four di�erent ways.Some functions are compiled when their application context is not known (for example,functions which are passed as arguments to another function, or functions in a list), but theymay be applied in a context where their argument has been evaluated. When such a functionis applied (either because it is the closure bound to a variable, or because it is the result ofapplying head to a list of functions), it has to be converted to take an unboxed argument. Thisis accomplished by the function convI , whose de�nition has been omitted for the sake of brevity.The rule given for the �xed point operator in Figure 5 is the most precise translation possible,but is not e�ective in general, as it can lead to the production of in�nite code. We prefer toseparate the issues of exploiting strictness information in a systematic way from the necessaryengineering decisions to be made for limiting the size of the code produced from a real compiler.We consider this second aspect in Section 4.The correctness of this conversion follows from Theorem 2.3 (correctness of the S translationscheme) and Theorem 2.5.De�nition 2.4 If � is a type environment, then its transformation S 0V [[�]] is de�ned by therule: � ` x : � x 2 VS0V [[�]] ` x : U [[�]] � ` x : � x 62 VS0V [[�]] ` x : B [[�]]6



U0I [[int]] = intU0I [[bool]] = boolU0I [[� ! � ]] = C0(dec I) [[� ]]! U [[�]]! Ans if 1 2 I= C0(dec I) [[� ]]! B [[�]]! Ans if 1 62 IU0I [[list �]] = U [[list �]]C0I [[�]] = U0I [[�]]! AnsB0I [[�]] = C0I [[�]]! AnsTranslation of Typesinc I = fi+ 1ji 2 Igdec I = fi� 1ji 2 I ^ i > 1gconvI : B [[�]]! B0I [[�]]S 0 I V [[x]] = convI (�c:c x) if x 2 V= convI x if x 62 VS 0 I V [[0]] = N [[0]] | and similarly for other basic valuesS 0 I V [[plus]] = �c:c (�c1:�x:c1 (�c2:�y:plusc c2 x y))if 1 2 I ^ 2 2 I= �c:c (�c1:�x:c1 (�c2:�y:x (�m:plusc c2 m y)))if 1 62 I ^ 2 2 I= �c:c (�c1:�x:c1 (�c2:�y:y (�m:plusc c2 x m)))if 1 2 I ^ 2 62 I= �c:c (�c1:�x:c1 (�c2:�y:x (�m:y (�n:plusc c2 m n))))if 1 62 I ^ 2 62 IS 0 I V [[if E1 E2 E3]] = �c:S 0 ; V [[E1]] (ifc (S 0 I V [[E2]] c) (S 0 I V [[E3]] c))S 0 I V [[cons]] = N [[cons]]S 0 I V [[head]] = �c:c (�c1:�x:(conv(decI) (head x)) c1)if 1 2 IS 0 I V [[head]] = �c:c (�c1:�x:x(�v:(conv(decI) (head v)) c1))if 1 62 IS 0 I V [[E1 E2]] = �c:S 0 ; V [[E2]] (�v:S 0 (1S(inc I)) V [[E1]] (�f:f c v))if 8�S : S [[E1]] �S ? = ?= �c:S 0 (inc I) V [[E1]] (�f:f c (S 0 ; V [[E2]]))otherwiseS 0 I V [[�x:E]] = �c:c (�c:�x:S 0 (dec I) (V Sfxg) [[E]] c)if 1 2 IS 0 I V [[�x:E]] = �c:c (�c:�x:S 0 (dec I) (V n fxg) [[E]] c)if 1 62 IS 0 I V [[�x� (�x:E)]] = S 0 I V [[E[�x�(�x:E)=x]]]Translation of TermsFigure 5: The cps-conversion Using Strictness and Evaluation Information7



Theorem 2.5 � ` E : �S 0V [[�]] ` S 0 I V [[E]] : B0I [[�]]It is easy to see that S 0; [[�]] = N [[�]] and that B0; [[�]] = B [[�]].3 Using More Complicated Strictness Information: ChangingEvaluation OrderJust using strictness information misses many opportunities for optimisation because functionsoften require their arguments to be evaluated further than weak head normal form (WHNF).Moreover, the amount of evaluation required of an argument in an application may depend onthe context of the application. For example, if an application of the function de�ned by:append = �xlist � (�f:�x:�y: if (eq x nil) y (cons (hd x) (f (tl x) y)))is in a context where the structure of the result of applying append is required, then the structuresof both of its arguments are required. Other contexts may require di�erent amounts of evaluationof the arguments.We have found it useful to characterise an evaluation context by the set of terms whoseevaluation would fail to terminate in that context. Such an evaluation context should have twoproperties:� if the evaluation of some term fails to terminate, then the evaluation of all terms whosesemantics is less de�ned than that term should fail to terminate; and� if the evaluation of all expressions which approximate some term fails to terminate, thenit should fail to terminate for the term itself.Scott-closed sets capture denotationally the two properties that we require of an evaluationcontext. This was �rst noted explicitly in [Bur91a].De�nition 3.1 (Scott-closed set) A set S is Scott-closed of a domain D if1. it is down-closed, that is, if 8d 2 D such that 9s 2 S such that d v s, then d 2 S; and2. if X � S and X is directed, then FX 2 S.We only consider non-empty Scott-closed sets in this paper.We can now give an intuitive explanation of the key features of the transformation rulesgiven in Figure 6. Their correctness is proved as Theorem 3.2.The �rst two arguments to the transformation T have a speci�c meaning in isolation fromeach other, but they are really needed because of the way that they interact, so we will �rstlyexplain their independent meaning and then their interaction.� The �rst argument to the T rule counts how many argument expressions have been passedover in order to reach the expression currently being translated. When the translation ofsome subexpression begins, this index is set to 0 (and so it is 0 for the conversion of theinitial term).� The second argument to the T rule, Q, is the Scott-closed set representing the evaluationcontext of an expression. 8



Conversion of initial term E : � | T 0 f?S�g [[E]]T i Q [[x]] = xT i Q [[k�]] = N [[k�]]T i Q [[if E1 E2 E3]] = �c:T 0 f?Sboolg [[E1]] (ifc (T i Q [[E2]] c) (T i Q [[E3]] c))T i Q [[E1 E2]] = �c:T 0 P [[E2]] (�v:T (i+ 1) Q [[E1]] (�f:f c (�c:c v)))if 8�S; 8v0 2 P; 8v1; : : : ; vi : S [[E1]] �S v0 v1 : : : vi 2 Q= �c:T (i+ 1) Q [[E1]] (�f:f c (T 0 f?S�g [[E2]]))otherwiseT 0 Q [[�x:E]] = �c:c (�c:�x:T 0 f?S� g [[E]] c)T (i+ 1) Q [[�x:E]] = �c:c (�c:�x:T i Q [[E]] c)T i Q [[�x� (�x:E)]] = T i Q [[E[�x� (�x:E)=x]]]Figure 6: The Cps-conversion Using Scott-closed Set Information� We can motivate the way the evaluation context is passed inwards for the application andabstraction rules in the following way. The general form of an application is:E = (�x1: : : :�xj:[(�y1 : : :�yk:D) D1 : : : Dm]) E1 : : :En:Suppose that we are calculating T 0 Q [[E]], and that j = n. Using the rule for applicationj times, and then the rule for lambda-abstraction j times, then part of the term from thetranslation of E will be: T 0 Q [[(�y1 : : :�yk:D) D1 : : : Dm]];which says that the inner application is to be evaluated in the context given by Q. Thiscorresponds to passing the evaluation context to a tail-call.Now we can give some important intuitions about the rest of the translation:� There are two rules for translating an application:{ the �rst is where the argument can be evaluated before evaluating the function.The intuition is that T i Q [[E]] may fail to terminate if the semantics of E appliedto i arbitrary arguments gives a value in the set Q, so that T 0 P [[E2]] may failto terminate only if S [[E2]] �S 2 P . But the correctness proof will show that thecondition of the translation rule guarantees that S [[E1 E2]] �S applied to i arbitraryvalues is in Q in this case, and so it was all right to fail to terminate.{ in the second rule, assuming the E1 has the type �!� , the only evaluation contextthat can be given for the argument E2 is f?S�g because, if the expression is everevaluated, then it will be evaluated at least to WHNF, but it cannot be guaranteedthat it will be evaluated any further.� The same remarks as the ones for Figure 5 hold concerning the �xed point operator.The following theorem gives the correctness of our translation. It states that translatinga term with T gives essentially the same result as translating it with N . By essentially thesame, we mean they have the same semantics. The theorem follows as an easy corollary ofTheorem 3.5. 9



Theorem 3.2 For all expressions E : �, S [[T 0 f?S�g [[E]]]] = S [[N [[E]]]].In the following de�nition, FV(e1; : : : ; en) is the set of free variables of e1 to en; * (E) meansthat the (call-by-name) reduction of E diverges; + (E) means that the (call-by-name) reductionof E converges; and E1 !! E2 means that E1 reduces to E2 in zero or more steps.De�nition 3.3<(e; e0)() FV(e; e0) = ;and 8c * (e0 c) =) S [[e]] = ?and 9c + (e0 c) =) 9e00; 8c; e0 c!! c e00and S [[c e00]] = S [[N [[e]] c]]In order to state and prove Theorem 3.5 we have to be able to apply a function to a numberof arguments. The following de�nition de�nes a continuation that supplies the arguments listedas its superscript to the function it is the continuation of, and then behaves like itself. Wherethe de�nition comes from should be clear from considering the translation of application (andperhaps it is easiest to see this in the call-by-name cps-translation given in Figure 3).De�nition 3.4 c[ ] = cc[e01;:::;e0i] = �f:f c[e02;:::;e0i] e01To prove the correctness of our translation we have to consider arbitrary i, Q and E. Thestatement of the theorem comes in two parts:� the �rst part formalises our intuition that T i Q [[E]] may fail to terminate only if thesemantics of E applied to i arbitrary values gives a value in Q; and� the second part says that if it terminates, then the semantics of the translated expressionis the equal to that which is given by the N translation function.The theorem is complicated in order to give enough power for the inductive step. Both parts ofthe theorem need to be proved together because they rely on each other.Theorem 3.51. 8c * ((T i Q [[E]] c[e01;:::;e0i]) [d0j=xj]j=kj=1) and <(ei; e0i) and <(di; d0i) and FV(E) = fx1; : : : ; xkgand FV(ei; e0i; di; d0i) = ; =) S [[E e1 : : : ei[dj=xj]j=kj=1]] 2 Q:2. 9c + ((T i Q [[E]] c[e01;:::;e0i])[d0j=xj]j=kj=1) and <(ei; e0i) and <(di; d0i) and FV(E) = fx1; : : : ; xkgand FV(ei; e0i; di; d0i) = ;=) 9e00; 8c(T i Q [[E]] c[e01;:::;e0i])[d0j=xj]j=kj=1 !! c e00and S [[c e00]] = S [[(N [[E]] c[e01;:::;e0i])[d0j=xj]j=kj=1]]ProofThe theorem is proved by structural induction over the terms in the language �T . Thecases for all constants except if are trivial because they are in normal form, and T i Q [[E]]is de�ned to be N [[E]].In this abstract we will prove the �rst rule for application.10



1. Suppose that 8c, * ((T i Q [[E1 E2]] c[e01 ;:::;e0i])[d0j=xj]j=kj=1). We �rst of all note that thisis equal to (T 0 P [[E2]] (�v:T (i+ 1) Q [[E1]] c[�c:c v;e01;:::;e0i]))[d0j=xj]j=kj=1:There are two cases why this term might diverge.8c * ((T 0 P [[E2]] c)[d0j=xj]j=kj=1): By the induction hypothesis (part 1) this meansthat S [[E2[dj=xj]j=kj=1]] 2 P , and by the condition of the translation rule thismeans that S [[(E1 E2 e1 : : : ei)[dj=xj]j=kj=1]] 2 Q.9c + ((T 0 P [[E2]] c)[d0j=xj]j=kj=1): By part 2 of the induction hypothesis this meansthat 9e00 such that 8c (T 0 P [[E2]] c)[d0j=xj]j=kj=1 !! c e00 and so the term whosedivergence we are considering reduces to(T (i+ 1) Q [[E1]] c[�c:c e00;e01;:::;e0i])[d0j=xj]j=kj=1:If we can prove that <(E2[dj=xj]j=kj=1; �c:c e00), then we can use part 1 of theinduction hypothesis to conclude thatS [[(E1 E2 e1 : : : ei)[dj=xj]j=kj=1]] 2 Q;which is what we are required to show. To show this, we note that part 2 of theinduction hypothesis implies thatS [[c e00]]= S [[(N [[E2]] c)[d0j=xj]j=kj=1]]= S [[N [[E2]] c]][S [[d0j]] �S=xj]j=kj=1= S [[N [[E2]] c]][S [[N [[dj]]]] �S=xj]j=kj=1 (�)since <(di; d0i)) S [[N [[di]]]] = S [[d0i]]= S [[N [[E2]][N [[dj]]=xj]j=kj=1 c]]= S [[N [[E2[dj=xj]j=kj=1]] c]]since N [[x]] = xand this implies that <(E2[dj=xj]j=kj=1; �c:c e00) as required. (The step marked (�)can be proved by checking �rstly the case that S [[d0i]] = �c:c ? and secondly thecase that S [[d0i]] 6= �c:c ?, corresponding to the two implications in the de�nitionof <. The �rst case follows from the correctness of N and the second case isstraightforward.)2. Suppose instead that 9c + ((T i Q [[E1 E2]] c[e01;:::;e0i])[d0j=xj]j=kj=1). Then, by part 2 ofthe induction hypothesis, 9e00 such that 8c; T 0 P [[E2]] c!! c e00. For the particularcontinuation that we get from the translation of the application (E1 E2) this meansthat (T i Q [[E1 E2]] c[e01;:::;e0i])[d0j=xj]j=kj=1!! (T (i+ 1) Q [[E1]] c[�c:c e00;e01;:::;e0i])[d0j=xj]j=kj=1Since the reduction of this term terminates, we can invoke part 2 of the inductionhypothesis to conclude that 9e0 such that(T (i+ 1) Q [[E1]] c[�c:c e00;e01;:::;e0i])[d0j=xj]j=kj=1!! c e0 11



and that S [[c e0]] = S [[N [[E1]] c[�c:c e00;e01;:::;e0i])[d0j=xj ]j=kj=1]]. Recalling that reductionpreserves semantics, this means thatS [[(T i Q [[E1 E2]] c[e01;:::;e0i])[d0j=xj]j=kj=1]]= S [[c e0]]= S [[N [[E1]] c[�c:c e00;e01;:::;e0i][d0j=xj]j=kj=1]]= S [[N [[E1]] (�f:f c[e01;:::;e0i] (�c:c e00))[d0j=xj]j=kj=1]]= S [[(N [[E1 E2]] c[e01;:::;e0i])[d0j=xj]j=kj=1]]since S [[�c:c e00]] = S [[N [[E2]][d0j=xj ]j=kj=1]]by part 2 of the induction hypothesiswhich is what we were required to show.4 Towards a Real Compiler: the Need for ApproximationsSo far we have not paid any attention to e�ectiveness because we wanted to separate the issuesof exploiting strictness information in a systematic and provably correct way from the inevitableengineering choices that must be taken in the design of a compiler. Fortunately however ourabstract rules can be re�ned to be used in a real compiler.There are two reasons why the transformation rules described in the previous sections needto be re�ned:1. the conditions for the strictness optimisation that occur in the rule for application are notcomputable in general; and2. there is no provision for limiting the size of the code produced for recursive values, whichmight be in�nite.The solution for solving the �rst point is to rely on a program analysis to determine this infor-mation. Many have been proposed in the literature: [Myc81, BHA86, WH87, Wad87, Hun91,Jen92, LM91] for example. It is important to note that the theory we have presented is notcommitted to one particular kind of analysis.The second point can be tackled in a number of ways, some of which give better informationthan others. Let us mention some of these in the light of the transformation rules in Figure 6.The original rule for �x� was:T i Q [[�x� (�x:E)]] = T i Q [[E[�x� (�x:E)=x]]]The most precise and �nite re�nement of this rule is the following:T i Q [[�x� (�x:E)]] = �x� (�x:T i Q [[E]])and this re�nement is correct provided thatT i Q [[E[E 0=x]]] = (T i Q [[E]])[T i Q [[E 0]]=x]:Intuitively this means that the occurrences of x within E are compiled with the same i and Qas the whole expression.At the other end of the spectrum, the least precise, but always correct re�nement, consistsin forgetting all the strictness information and compiling the recursive call with Q = f?S�g:T i Q [[�x� (�x:E)]] = �x� (�x:T i f?S�g [[E]]):12



This re�nement is obviously correct because all the Scott-closed sets considered in this paperare non-empty (and so include bottom).Both these extreme solutions lead to the production of a single piece of code for a recursiveexpression. If the condition for the �rst re�nement is not satis�ed, which means that the recursivecall should be compiled with di�erent strictness attributes, then the compiler could produceseveral versions of the value. The number of versions is an engineering decision motivated byspace-e�ciency trade-o�s. The important point however is that the number of these versionscan be kept �nite by relying on one of the two solutions mentioned above at some stage of there�nement.5 Related WorkAs mentioned in the introduction a number of papers have been devoted to step (1): provingthe correctness of the original compiler [Sch80, Wan82, NN88, Dyb85, Mor73, Mos80, TWW81,Les87, Les88, CCM87, FM91]; and step (2): proving the correctness of the result of the analysis[CC79, CC92, Bur91b, Nie89, WH87, LM91, Jen92, Ben92].Some of the work devoted to the proof of step (1) include a number of local optimisations(such as peephole optimisations), but very few consider optimisations relying on a global analysis.The latter are more di�cult to validate because they involve context-dependent transformations.The only papers addressing this issue, to our knowledge, are [Nie85] and [Ger75]. The secondpaper is concerned with partial correctness and relies on progam annotations and theorem-proving methods. The �rst paper considers a simple imperative language and a collectingsemantics associating with each program point the set of states which are possible when controlreaches that point. This method is not directly applicable to strictness analysis because onlya weak equivalence is obtained in the case of a backwards analysis (whereas termination is thecrucial issue in the correctness proof of strictness-based optimisations). Also their methods dealwith local transformations where strictness-based optimisations involve global modi�cations ofthe program.The work that is closest in spirit to this paper is [Les88], which states a correctness propertyof an optimisation based on strictness analysis in the context of combinator graph reduction ona version of the G-machine. The result however is limited to simple strictness (corresponding toSection 2.1 of this paper), and it is expressed in terms of low-level machine steps.Burn showed that the operational model underlying the transformation given in Figure 6 iscorrect in [Bur91b]. He also showed how this information could be used in compiling code foran abstract machine. However, the correctness of this step was not considered.Last but not least, the work presented here is one more demonstration of the signi�canceof continuations. The bene�ts of continuations to compiler design have been illustrated in[Ste78, KKR+86, Kra88, App92]. The correctness of the continuation-passing translation hasbeen studied in [Rey74, Plo75].6 ConclusionA great number of techniques and optimisation methods have been proposed in the last decadefor the implementation of functional languages. These techniques are more and more sophisti-cated, leading to more and more e�cient implementations of functional languages. However, itis di�cult to give a formal account of the various proposed optimisations and to state preciselyhow these many techniques relate to each other. This paper can be seen as a �rst step towardsa uni�ed framework for the description of various implementation choices. In the future wepropose to make several extensions to this work, including: taking more context into account13



in compiling a function application; making use of another sort of evaluation information; anddescribing formally the exploitation of a sticky version of the strictness analysis. We brieystate what these are in the following two paragraphs.The rule for compiling applications loses the fact that E1 is applied to E2 when compilingthe body of E1. This can be seen most clearly where the test for changing the evaluation orderis given, where the function is applied to i arbitrary arguments, rather than any argumentsit was already applied to (c.f. the concept of `context-sensitive' evaluation transformers in[Bur91b, Section 5.3]). We envisage that this should be fairly easy to carry over into the proofof Theorem 3.5, where c[e01;:::;e0i] is replaced by one which records the arguments in the application.Projection-based analyses can also give information of the form: \this argument cannot beevaluated yet, but if it is ever evaluated, then do so much evaluation of it" [Bur90]. Againwe should be able to modify the rule for application to accommodate this. Instead of usingT 0 f?S�g [[E2]] in the case that the argument expression cannot be evaluated, this can bechanged to T 0 P [[E2]] where P is the Scott-closed set that represents how much evaluation canbe done to the expression if it is evaluated.The optimised compilers described in this paper follow [NN90] in avoiding the introductionof an intermediate pass to annotate the program with strictness information. A two-phasescompiler sometimes produces more e�cient code because strictness information can be exploitedmore e�ectively; we are currently studying its formalisation within our framework.It is also hoped that the methodology of this paper will suggest ways of using informationabout how expressions have been evaluated for structured data types such as lists, somethingwhich has so far eluded even the implementation community.References[App92] A. W. Appel. Compiling with Continuations. Cambridge University Press, 1992.[Ben92] P.N. Benton. Strictness logic and polymorphic invariance. In Proceedings of theSymposium on Logical Foundations of Computer Science, 20{24 July 1992.[BHA86] G.L. Burn, C.L. Hankin, and S. Abramsky. Strictness analysis of higher-order func-tions. Science of Computer Programming, 7:249{278, November 1986.[Bur90] G.L. Burn. Using projection analysis in compiling lazy functional programs. InProceedings of the 1990 ACM Conference on Lisp and Functional Programming,pages 227{241, Nice, France, 27{29 June 1990.[Bur91a] G.L. Burn. The evaluation transformer model of reduction and its correctness. InS. Abramsky and T.S.E. Maibaum, editors, Proceedings of TAPSOFT'91, Volume 2,pages 458{482, Brighton, UK, 8{12 April 1991. Springer-Verlag LNCS 494.[Bur91b] G.L. Burn. Lazy Functional Languages: Abstract Interpretation and Compilation.Research Monographs in Parallel and Distributed Computing. Pitman in associationwith MIT Press, 1991. 238pp.[CC79] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Pro-ceedings of the Sixth Annual Symposium on Principles of Programming Languages,pages 269{282. ACM, January 1979.[CC92] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic andComputation, 2(4), 1992. Special Issue on Abstract Interpretation.14
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