Cps-Translation and the Correctness of Optimising Compilers

Geoffrey Burn* and Daniel Le Métayer!
Department of Computing
Imperial College of Science, Technology and Medicine
180 Queen’s Gate, London SW7 2BZ, United Kingdom.
{glb,dlm}@doc.ic.ac.uk

Submitted for publication. In the meantime, please refer to as Imperial
College, Department of Computing Technical Report number DoC92/20.

Abstract

We show that compiler optimisations based on strictness analysis can be expressed for-
mally in the functional framework using continuations. This formal presentation has two
benefits: it allows us to give a rigorous correctness proof of the optimised compiler; and it
exposes the various optimisations made possible by a strictness analysis. These benefits are
especially significant in the presence of partially evaluated data structures.

1 Introduction

Realistic compilers for imperative or functional languages include a number of optimisations
based on non-trivial global analyses. Proving the correctness of such optimising compilers should
involve three steps:

1. proving the correctness of the original (unoptimised) compiler;
2. proving the correctness of the analysis; and

3. proving the correctness of the modifications of the simple-minded compiler to exploit the
results of the analysis.

A substantial amount of work has been devoted to steps (1) and (2) but there has been
surprisingly few attempts at tackling step (3). In this paper we propose a method to carry out
this third step in the context of optimising compilers for functional languages which use the
results of ‘strictness’ analysis.

There are two ways we might want to use strictness information in compiling lazy functional
languages:

e evaluating an argument expression instead of passing it as an unevaluated closure; and

¢ compiling functions which know their arguments have been evaluated, so that the argument
can be passed explicitly, rather than as a closure containing a value in the heap (i.e.
‘unboxed’ rather than ‘boxed’).

*This author is partially funded by ESPRIT BRA 3124 (Semantique) and SERC grant GR/H 17381 (“Using
the Evaluation Transformer Model to make Lazy Functional Languages more Efficient”).

"This author is on leave from INRIA/IRISA and is partially funded by the SERC Visiting Fellowship GR/H
19330.

Translating programs into continuation-passing style (cps) allows us to express both uses of
strictness information because:

e a cps-translation captures the evaluation order of expressions; and
e a closure is essentially a value waiting for a continuation which uses it.

The main results of this paper are three cps-conversions which use strictness information,
each of which has been proved correct. We start by showing how simple strictness information
can be used to change the evaluation order (Section 2.1). This is then extended in two orthogonal
ways: firstly we give a cps-conversion where functions can be compiled knowing that some of
their arguments have been evaluated (Section 2.2); and secondly we express how the evaluation
order can be changed in more complicated ways for structured data types such as lists (Section 3).

A consequence of the second cps-translation, described in Section 2.2, is that the translation
of the types makes it explicit whether or not an (evaluated) argument is being passed in a closure
in the heap (i.e. whether or not it is ‘boxed’). This appears to be a natural alternative to that
given in [JL91].

In the translation rules, we state what properties must hold in order to use particular rules.
Safe approximations to these properties can be determined using established program analyses,
as discussed in Section 4.

The cps-conversions we describe in this paper can be used in the context of [FM91], where a
complete compiler is proved correct. We can therefore demonstrate the correctness of a complete
compiler which uses strictness information.

A survey of related work can be found in Section 5, and Section 6 reviews the benefits of
this approach and identifies areas of further research.

2 Using Simple Strictness Information

Figures 1 and 2 describe the syntax of our functional language and its semantics.

Our starting point is an adaptation of the compiler described in [FM91]. The key feature
of this compiler is the fact that it is described entirely within the functional framework as a
succession of transformations. This makes its correctness proof easier to establish.

We need only consider the first step of the compiler here, which is the call-by-name cps-
transformation, given in Figure 3. The transformation captures the call-by-name computation
rule because the translation of an application indicates that the argument is passed unevaluated
to the function. The important point about A" [F] is that it has at most one redex outside the
scope of a lambda, which means that call-by-value and call-by-name coincide for the translated
term [Plo75]. Furthermore, this redex is always at the head of the expression [FM91], and the
expression can be reduced without dynamic search for the next redex, just like machine code.

We have left the types off the translated terms for clarity. Ans is the type of answers. The
result of translating an expression of type ¢ is an expression of type B [¢] = C [¢] — Ans.
This can be stated formally by Theorem 2.2.

Definition 2.1 If p is a type environment, then its transformation N [p] is defined by the rule:

pFaz:o
N [p]+Fz:B [o]

Theorem 2.2

pHFE:c
N [plEN [E]:B [o]

The set T of types is the least set defined by:

{bool,int} C T
o,T€T = (c—1)eT
cel = (listo)eT

The type system of Ap

(1) 279 : o (2) k, : o
i :o—-1, Py @ 0 E .7
4
(3) (FEy Fy) @7 () (Az?.F) : o—T1
E : o—0

Abstract Syntax of Ap

tI'uebool fa-lsebool 1fbool—>a—>a—>a
{Ointv]—intv 2int7 .. } plusint_w'nt—n'nt headlist o—0
nily;,; 5 CONS,_iist o—tist o tA1l1gy oiist o

The Constants of Ap

Figure 1: Definition of the Language Ay

Sg = some domain for the base type B
SU—>T = SO'_>ST
S(lista) = st SO‘

Semantics of the Types

S [[$U]] pS — pS o

S [[ka]] pS =K® [[ka]]

S [Ey Eo] p° = (S [£41] p®) (S [E5] p°)
S [Az?.E] p% = Ad:S,.S [E] p®[d/z°]
S [fix, E] p° = I_liZO (S [E] p®) Ls,

Semantics of the Language Terms

Figure 2: The Semantics of Ap

U [int] = nt — unboxed values

U [bool] = bool
Uflo —7] = C[r]—BJ[o]— Ans
U (list 0)] = (B [o] x B [(list o)]) + nil
C o] = U [o] — Ans — continuations
B [o] = C[o] — Ans — boxed values
Translation of Types
N [z] = =z
N (0] = Xcc0 — and similarly for other integers and booleans
N [plus] = Ace (Acp.Az.cq (AeaAy.z (Amey (An.plus, ¢; m n))))
N it By By B3] = AeN [E] (ife (V [E2] ¢) (M [Es] ¢))
N [nil] = Ac.cnil
N [cons] = Ac.e (Aep.Az.cq (Aea Ay.cons, ¢z @ ¥))
N [head] = Ac.e (Acp.Az.z (Av.head v ¢y))
N [, Es] = AN [E] (Aff ¢ (N [E]))
N [Ax.E] = Aee (AcAe N [E] o)

N [fix, (A2.E)] = fixgpy (AN [E])

Translation of Terms

plusccmn = ¢ (plus m n)
ifc El E2 = Xvifv El E2
cons. ¢ Fy s = ¢ (cons F, Es)

Figure 3: The Call-by-Name Cps-conversion

Expressions of type C [o] are continuations: they take the result of evaluating an expression of
type U [o] into an answer. Meyer and Wand first showed that the type of the cps-translation
of an expression could be derived from the type of the original expression [MW85].

The rule for application differs slightly from the usual presentation of the cps-translation
[Rey74, Plo75]: the continuation is passed as the first argument to a function rather than as the
second argument (as was done in [Fis72]). This change is motivated by the subsequent steps of
the compiler. We stress that the work of this paper is independent of this change of argument
order, but has been presented in this way so that our results can be fed into those of [FM91]
and so have an optimised compiler whose correctness has been proved.

Let us take a small example to illustrate this transformation and expose the potential sources
of inefficiency:

F =Xz (plus 2z 1)
E=F (plus 2 7).

Applying the translation rules from Figure 3 yields, after reducing “administrative redexes”
(terminology due to [Plo75]) introduced by continuations:

N[F] = Ace B
F = Ac.Az.z (Am.plus. ¢ m 1)
N [E] = Ac.Fi ¢ (Ae(plus. ¢ 27)).

S [=] =

S [k,] = N[k/]

S [if B, By E5] = Ae.S[E1] (ife (S [Es] ¢) (S [£5] ¢))

S [E1 Es] = Ac.S [Es] (M.S [EL] (Af.f ¢ (Ac.c v)))

iftVpS:S[E]pS L=1
= AcS[E](Aff e (S [ED)
otherwise
S [z .E] = Ac.e (Ae Az S [E] o)
S [fix, (Az.E)] = fixgpy (Az.S [F])

Translation of Terms

Figure 4: The Cps-conversion Using Simple Strictness Information

We note that F} is passed the unevaluated argument (Ac.(plus. ¢ 2 7)) which will be imme-
diately evaluated in the body of F;. This cost of passing an unevaluated argument may be
significant (in terms of execution time as well as space consumption). A more efficient compu-
tation rule would be to evaluate the argument of the function before the call, provided this does
not change the semantics of the program. This can be achieved in the cps-translation by first
translating the argument expression and then the function, so that the translation of F/ becomes:
Ac.plus. (Av.Fy ¢ (Ac.c v)) 2 7. This version is more efficient in terms of space consumption
because the closure which is passed as an argument to F; now represents an evaluated argument.
There is still room for improvement however because we have not exploited the fact that £, will
be passed an evaluated closure in the compilation of F. Using this property we can replace F;
in the body of the translation of F' by F, = Ac.Az.plus. ¢ z 1, and F by Ac.plus. (F5 ¢) 27,
which has the effect of passing the value 9 to F' rather than the evaluated closure (Ac.c 9).

It is also important to note that the types of the transformed terms give us significant
information. The type of F} is

C [int] — B [int] — Ans
(= U [int — int]), whilst the type of F} is
C [int] — U [int] — Ans.

In implementation terms, a value of type B [¢] must be represented in the heap and accessed
indirectly through the stack, whereas a term of type U [o] can be represented directly on the
stack if o is a basic type. This distinction has been called bozed versus unboxed representation in
[JLI1]. In our framework B [o] denotes a boxed implementation of ¢ and U [o] is an unboxed
representation of ¢, so that the ‘boxedness’ of a value can be determined from its type.

These optimisations are presented more formally in the next two subsections.

2.1 Changing the Evaluation Order

An improved cps-translation using simple strictness information is presented in Figure 4.
We make the following observations about the rules:

e N [E] and S [FE] have the same type, and a similar theorem to Theorem 2.2 can easily
be proved.

e The key rule is the translation of application. There are two cases to consider:

— when the functional expression is strict (the first rule), then the argument can be
evaluated before the functional expression. In cps-conversion, this is expressed by
putting the translation of the argument expression at the front of the converted
expression. The continuation in this case picks up the value, wraps it into a closure
(Ac.cv) (i.e. boxes the value), and then proceeds to evaluate the functional expression
as before.

— when the functional expression is not strict (second rule), the translation has the
same structure as the call-by-name cps conversion, but uses the § conversion scheme
so that strictness information can be used in translating subexpressions.

e Apart from if, the conversion rules for the constants are identical to the call-by-name cps
conversion, because the change of evaluation order that is allowed by these constants is
captured by the general rule for function application. An exception is made for if because
the evaluation context of the chosen alternative is the same as the evaluation context of
the application of if, but the strictness information about if says that neither its second
nor its third argument need to be evaluated.

The correctness of this translation is expressed by the following theorem. We do not prove
it because it follows as a corollary of the more general translation presented in Section 3.

Theorem 2.3 For all terms E: S [S [E]] =S [NV [F]].

2.2 Unboxed Values

Looking at the two rules for application in Figure 4 we can see that F; is compiled in the same
way in both cases. This is because the code for F; expects a closure as its argument; when the
argument is evaluated before the call and returns the value v, a closure Ac.c v has to be built
to encapsulate this value. This could obviously be omitted provided that F; is compiled with
the extra assumption that its argument is already evaluated. The rules in Figure 5 achieve this
optimisation; two extra arguments are passed to the compilation function. I is the set of indices
representing the evaluated arguments of the expression and V is the set of evaluated variables of
the expression. Notice that each function may be compiled in several different ways, depending
on the calling context. In particular, the operator plus can be compiled in four different ways.

Some functions are compiled when their application context is not known (for example,
functions which are passed as arguments to another function, or functions in a list), but they
may be applied in a context where their argument has been evaluated. When such a function
is applied (either because it is the closure bound to a variable, or because it is the result of
applying head to a list of functions), it has to be converted to take an unboxed argument. This
is accomplished by the function conwvy, whose definition has been omitted for the sake of brevity.

The rule given for the fixed point operator in Figure 5 is the most precise translation possible,
but is not effective in general, as it can lead to the production of infinite code. We prefer to
separate the issues of exploiting strictness information in a systematic way from the necessary
engineering decisions to be made for limiting the size of the code produced from a real compiler.
We consider this second aspect in Section 4.

The correctness of this conversion follows from Theorem 2.3 (correctness of the S translation
scheme) and Theorem 2.5.

Definition 2.4 If p is a type environment, then its transformation S’y [p] is defined by the
rule:

pFz:oc z€eV prax:oc gV
S'vplrz:Ufe] S'vI[p]ta:B][o]

U/[[[mt]]
U'; [bool]

U's o — 7]

U'; [list o]

C'r o]
B'; [7]

STV [z]

S 1V [o]
S IV [plus]

S' IV [if E, Ey Ey
S IV [cons]
§' IV [head]
§' IV [head]

S' IV [E, Es]

S' IV [Ae.E]
S' IV [Ae.E]

S 1V [fix, (Az.L)]

= nt

= bool

= Cueen[r]=VUo] = Ans iflel
= Cleeny[r]—=B[o] - Ans if1¢1
= U [list o]

= Uy [o] — Ans

= (o] — Ans

Translation of Types

incl = {i+1)iel}
decl = {illlielni>1}
convy : B [o] — B';[o]

convy (Ac.cx) ifaxeV

convp x iz gV

N [0] — and similarly for other basic values
Ac.c (Aep.Az.cy (Aea Ay.plus. ¢z x ¥))
ifleln2el

Ac.e (Aep.Az.cy (Aea Ay.x (Am.plus. ¢ m y)))
if1gIn2el

Ac.e (AepAz.cy (Aea Ay.y (Am.plus, ¢a © m)))
if1eln2gl

Ac.c (Aep.Az.cy (Aea Ay.x (Am.y (An.plus. ¢ca m n))))
if1gIn2dl

Ae.S" OV [E] (if. (8" TV [Es]e) (S TV [E;]e)
N [cons]

Ac.c (AeiAx.(convige.ry (head 2)) ¢;)

iflel

Ac.c (AepAz.2(Av.(convige.r) (head v)) ¢1))

if1g1

Ae.S" OV [Es] (M.S" (LU(ine 1)) V [E\] (Mf.f cv))
ifVpS :S[F]pS L=1

Ae.S (ine I) V [EL] (Af-f e (S 0V [Es]))
otherwise

Ac.e (Ae Az S (dee I) (VU{z}) [E] ¢

iflel

Ac.e (Ae Az S (dec I) (V\A{z}) [£] ¢)

if1g1

S 1TV [Elfix,(Az.E)/z]]

Translation of Terms

Figure 5: The cps-conversion Using Strictness and Evaluation Information

Theorem 2.5

pHFE:c
Sy [p]-S" 1TV [E]:B; o]

It is easy to see that &'y [p] = N [p] and that B’y [o] = B [o].

3 Using More Complicated Strictness Information: Changing
Evaluation Order

Just using strictness information misses many opportunities for optimisation because functions
often require their arguments to be evaluated further than weak head normal form (WHNF').
Moreover, the amount of evaluation required of an argument in an application may depend on
the context of the application. For example, if an application of the function defined by:

append = fix;s; o (Af.Az.Ay. if (eq nil) y (cons (hd z) (f (tl z) y)))

isin a context where the structure of the result of applying append is required, then the structures
of both of its arguments are required. Other contexts may require different amounts of evaluation
of the arguments.

We have found it useful to characterise an evaluation context by the set of terms whose
evaluation would fail to terminate in that context. Such an evaluation context should have two
properties:

e if the evaluation of some term fails to terminate, then the evaluation of all terms whose
semantics is less defined than that term should fail to terminate; and

e if the evaluation of all expressions which approximate some term fails to terminate, then
it should fail to terminate for the term itself.

Scott-closed sets capture denotationally the two properties that we require of an evaluation
context. This was first noted explicitly in [Bur9lal.

Definition 3.1 (Scott-closed set) A set S is Scott-closed of a domain D if
1. it is down-closed, that is, if Yd € D such that 3s € S such that d C s, then d € §; and
2. if X C 5 and X is directed, then | | X € 5.
We only consider non-empty Scott-closed sets in this paper. [|

We can now give an intuitive explanation of the key features of the transformation rules
given in Figure 6. Their correctness is proved as Theorem 3.2.

The first two arguments to the transformation 7 have a specific meaning in isolation from
each other, but they are really needed because of the way that they interact, so we will firstly
explain their independent meaning and then their interaction.

e The first argument to the 7 rule counts how many argument expressions have been passed
over in order to reach the expression currently being translated. When the translation of
some subexpression begins, this index is set to 0 (and so it is 0 for the conversion of the
initial term).

e The second argument to the 7 rule, @), is the Scott-closed set representing the evaluation
context of an expression.

Conversion of initial term F':0 — 7 0{Lls,} [F]

T1Q [«] =
TiQ K] - N[k
TiQif By By B3] = Ae.T 0{4s,,} [B] (i (T Q [E]) (T i Q [Fs] o))
T:Q [E Es = AT 0P [E] (AT (4 1) Q [E1] (Af.f e (Accw)))
if Vp°, Yo, € P, Yoy, ..., v, :S[E]pSvovy ... ; €Q
= T (4 1) QIET (M-S ¢ (T 0 {Ls,} [Ea])
otherwise
70Q [Me.F] = Ace (Ae AT 0{Ls } [E] ¢)

T (i+1)Q [Ae.E]
71 Q [fix, (Az.F)]

Ac.e (Aede.T 1 Q [F] ¢)
71 Q [Flfix, (Az.F)/z]]

Figure 6: The Cps-conversion Using Scott-closed Set Information

e We can motivate the way the evaluation context is passed inwards for the application and
abstraction rules in the following way. The general form of an application is:

Suppose that we are calculating 7 0 @ [F], and that j = n. Using the rule for application
7 times, and then the rule for lambda-abstraction j times, then part of the term from the
translation of £ will be:

T0Q [(Ayr... Aye.D) Dy ... D],

which says that the inner application is to be evaluated in the context given by). This
corresponds to passing the evaluation context to a tail-call.

Now we can give some important intuitions about the rest of the translation:
e There are two rules for translating an application:

— the first is where the argument can be evaluated before evaluating the function.
The intuition is that 7 ¢ @ [E] may fail to terminate if the semantics of F applied
to ¢ arbitrary arguments gives a value in the set @, so that 7 0 P [F,] may fail
to terminate only if S [F,] p° € P. But the correctness proof will show that the
condition of the translation rule guarantees that S [F; F-] p® applied to i arbitrary
values is in) in this case, and so it was all right to fail to terminate.

— in the second rule, assuming the F; has the type o—7, the only evaluation context
that can be given for the argument F, is {Lg, } because, if the expression is ever
evaluated, then it will be evaluated at least to WHNF, but it cannot be guaranteed
that it will be evaluated any further.

e The same remarks as the ones for Figure 5 hold concerning the fixed point operator.

The following theorem gives the correctness of our translation. It states that translating
a term with 7 gives essentially the same result as translating it with A'. By essentially the

same, we mean they have the same semantics. The theorem follows as an easy corollary of
Theorem 3.5.

Theorem 3.2 For all expressions E : 0, S [T 0 {Ls,} [E]] =S [N [F]].

In the following definition, FV(ey, ..., e,) is the set of free variables of e; to e,; } (¥) means
that the (call-by-name) reduction of F diverges; || (£) means that the (call-by-name) reduction
of I converges; and F; — F, means that F; reduces to F5 in zero or more steps.

Definition 3.3
R(e,¢') <= FV(e,e')=10
andVe (¢ ¢) = Se]=1

and dc || (¢' ¢) = ey, Ve, € ¢ — ¢ €
and S e e)] =S [N [e]]

In order to state and prove Theorem 3.5 we have to be able to apply a function to a number
of arguments. The following definition defines a continuation that supplies the arguments listed
as its superscript to the function it is the continuation of, and then behaves like itself. Where
the definition comes from should be clear from considering the translation of application (and
perhaps it is easiest to see this in the call-by-name cps-translation given in Figure 3).

Definition 3.4

To prove the correctness of our translation we have to consider arbitrary 7, ¢ and FE. The
statement of the theorem comes in two parts:

e the first part formalises our intuition that 7 ¢ @ [F] may fail to terminate only if the
semantics of F applied to ¢ arbitrary values gives a value in ¢); and

e the second part says that if it terminates, then the semantics of the translated expression
is the equal to that which is given by the A translation function.

The theorem is complicated in order to give enough power for the inductive step. Both parts of
the theorem need to be proved together because they rely on each other.

Theorem 3.5

1.Yet (T i Q [E] ceve) [d;/xj]ﬁ]f) and R(e;, ;) and R(d;, d}) and FV(E) = {zq,..., 2}
and FV (e, el d;,dl) =10

= S [E e ...qldj/2) 20 € Q.

2. 3| (T i Q [E] v el])[dg/x]]ﬁ]f) and R(e;, ;) and R(d;, d}) and FV(E) = {zq,..., 2}
and FV (e;, el d;,d}) =0
= Jep,Ve(7 1 Q [F] e elll])[d}/wj]gzlf —c €y
and S [e e;] = S [(V [E] eved)[d} /)12
Proof

The theorem is proved by structural induction over the terms in the language Ar. The
cases for all constants except if are trivial because they are in normal form, and 7 ¢ Q [F]

is defined to be N [F].

In this abstract we will prove the first rule for application.

10

1. Suppose that Ve, ft ((7 i Q [Ey Es] clev- el])[dé/x]]ﬁ]f) We first of all note that this

is equal to
(T0 P [Ea] (AT (i +1) @ [Ea] cbeevtned))[ds fay i

There are two cases why this term might diverge.

Ve t (70 P [Es])[d’/x]]':k) By the induction hypothesis (part 1) this means
that S [Fy[d;/x;]i2 *] € P, and by the condition of the translation rule this
means that S [(£), Es e; ... e;)[d;/2;iZ5] € Q.

de L (7 0 P[] c)[dg/wj]gzlf) By part 2 of the induction hypothesis this means

that Jey such that Ve (7 0 P [Es] ¢)[d’/x]]] 1 — ¢ ¢ and so the term whose
divergence we are considering reduces to

(7 (i+1)Q [E\] Peceocoed)[d, /o, 1i2E

If we can prove that %(Ez[dj/x]]g ¥ Ae.c €)), then we can use part 1 of the

induction hypothesis to conclude that

SI(E Esey ... €)[d/x]] TeQ,

which is what we are required to show. To show this, we note that part 2 of the
induction hypothesis implies that

S [c €]
= S[NV[E]c
= S [N [£]]

[d; /a2

S [d;] p/a; 127
S [V [E2] IS [NV [4;]1 p° /305 (*)
since R(d;,d}) = S [[N [[d 11 =-5S[d]

= S [V [E]WV [[d]]/%] iy

= S [N [Bfd;/2;iZ1] €]
since N [z] = =

_/.—|.—|\ .

and this implies that %(Ez[dj/x]]g 1, Ae.c €)) as required. (The step marked ()
can be proved by checking firstly the case that S [d;] = Ac.c L and secondly the
case that S [d] # Ac.c L, corresponding to the two implications in the definition
of ®. The first case follows from the correctness of N' and the second case is

straightforward.)
2. Suppose instead that Jc | (7 i Q [y Es] clv ei])[d}/xj]jfk). Then, by part 2 of

j=1
the induction hypothesis, Jej such that Ve, 7 0 P [FE,] ¢ — ¢ ¢},. For the particular

continuation that we get from the translation of the application (F; Fs) this means

that ' . .
(TQ B B bl b
— (T (i+1) Q [E,] ePorvevad)d) /o 12
Since the reduction of this term terminates, we can invoke part 2 of the induction
hypothesis to conclude that de’ such that

(T (i+1) Q [Ea] reeeocimcddy fa; 2)

— ceé

11

and that S [e €] = S [N [F] c[’\c'ceg’ell"“’ei])[d}/xj]gzlf]]. Recalling that reduction
preserves semantics, this means that

S [(7T i Q [y Fa] deire)d, fa; =S
= Sfee]
- S [[N [[El]] C[)\c.ce{],e'l,...,e'l][d}/xj]gzllﬂ
S [NV [E] (Mff el (e e))[d) /2123
= SV [E) B] oo fa;)i21]
since S [Ac.c ey] = S [NV [E,][d} /1128
by part 2 of the induction hypothesis

which is what we were required to show.

4 Towards a Real Compiler: the Need for Approximations

So far we have not paid any attention to effectiveness because we wanted to separate the issues
of exploiting strictness information in a systematic and provably correct way from the inevitable
engineering choices that must be taken in the design of a compiler. Fortunately however our
abstract rules can be refined to be used in a real compiler.

There are two reasons why the transformation rules described in the previous sections need
to be refined:

1. the conditions for the strictness optimisation that occur in the rule for application are not
computable in general; and

2. there is no provision for limiting the size of the code produced for recursive values, which
might be infinite.

The solution for solving the first point is to rely on a program analysis to determine this infor-
mation. Many have been proposed in the literature: [Myc81, BHA86, WH&7, Wad87, Hun91,
Jen92, LM91] for example. It is important to note that the theory we have presented is not
committed to one particular kind of analysis.

The second point can be tackled in a number of ways, some of which give better information
than others. Let us mention some of these in the light of the transformation rules in Figure 6.
The original rule for fix, was:

71 Q [fix, (M. E)]=71:Q [Flfix, (A\z.F)/z]]
The most precise and finite refinement of this rule is the following:
71 Q [fix, (A\z.l)] = fix, (Ae. T ¢ Q [F])
and this refinement is correct provided that
TiQ IEFa]) = (T i Q [EVT i Q [F')/a).

Intuitively this means that the occurrences of # within £ are compiled with the same 7 and @
as the whole expression.

At the other end of the spectrum, the least precise, but always correct refinement, consists
in forgetting all the strictness information and compiling the recursive call with @ = {Lg, }:

71 Q [fix, (\a.F)] = fix, (Ae.T i {Ls,} [E]).

12

This refinement is obviously correct because all the Scott-closed sets considered in this paper
are non-empty (and so include bottom).

Both these extreme solutions lead to the production of a single piece of code for a recursive
expression. If the condition for the first refinement is not satisfied, which means that the recursive
call should be compiled with different strictness attributes, then the compiler could produce
several versions of the value. The number of versions is an engineering decision motivated by
space-efficiency trade-offs. The important point however is that the number of these versions
can be kept finite by relying on one of the two solutions mentioned above at some stage of the
refinement.

5 Related Work

As mentioned in the introduction a number of papers have been devoted to step (1): proving
the correctness of the original compiler [Sch80, Wan82, NN88, Dyb&5, Mor73, Mos80, TWW8I,
Les87, Les88, CCM87, FMO91]; and step (2): proving the correctness of the result of the analysis
[CCT79, CCI2, Bur91lb, Nie89, WHS7, LM91, Jen92, Ben92].

Some of the work devoted to the proof of step (1) include a number of local optimisations
(such as peephole optimisations), but very few consider optimisations relying on a global analysis.
The latter are more difficult to validate because they involve context-dependent transformations.
The only papers addressing this issue, to our knowledge, are [Nie85] and [Ger75]. The second
paper is concerned with partial correctness and relies on progam annotations and theorem-
proving methods. The first paper considers a simple imperative language and a collecting
semantics associating with each program point the set of states which are possible when control
reaches that point. This method is not directly applicable to strictness analysis because only
a weak equivalence is obtained in the case of a backwards analysis (whereas termination is the
crucial issue in the correctness proof of strictness-based optimisations). Also their methods deal
with local transformations where strictness-based optimisations involve global modifications of
the program.

The work that is closest in spirit to this paper is [Les88], which states a correctness property
of an optimisation based on strictness analysis in the context of combinator graph reduction on
a version of the G-machine. The result however is limited to simple strictness (corresponding to
Section 2.1 of this paper), and it is expressed in terms of low-level machine steps.

Burn showed that the operational model underlying the transformation given in Figure 6 is
correct in [Bur91b]. He also showed how this information could be used in compiling code for
an abstract machine. However, the correctness of this step was not considered.

Last but not least, the work presented here is one more demonstration of the significance
of continuations. The benefits of continuations to compiler design have been illustrated in
[Ste78, KKR*86, Kra’8, App92]. The correctness of the continuation-passing translation has
been studied in [Rey74, Plo75].

6 Conclusion

A great number of techniques and optimisation methods have been proposed in the last decade
for the implementation of functional languages. These techniques are more and more sophisti-
cated, leading to more and more efficient implementations of functional languages. However, it
is difficult to give a formal account of the various proposed optimisations and to state precisely
how these many techniques relate to each other. This paper can be seen as a first step towards
a unified framework for the description of various implementation choices. In the future we
propose to make several extensions to this work, including: taking more context into account

13

in compiling a function application; making use of another sort of evaluation information; and
describing formally the exploitation of a sticky version of the strictness analysis. We briefly
state what these are in the following two paragraphs.

The rule for compiling applications loses the fact that F; is applied to £3 when compiling
the body of ;. This can be seen most clearly where the test for changing the evaluation order
is given, where the function is applied to ¢ arbitrary arguments, rather than any arguments
it was already applied to (c.f. the concept of ‘context-sensitive’ evaluation transformers in
[Bur91b, Section 5.3]). We envisage that this should be fairly easy to carry over into the proof
of Theorem 3.5, where ¢l*v¢ is replaced by one which records the arguments in the application.

Projection-based analyses can also give information of the form: “this argument cannot be
evaluated yet, but if it is ever evaluated, then do so much evaluation of it” [Bur90]. Again
we should be able to modify the rule for application to accommodate this. Instead of using
7 0{Lls,} [F2] in the case that the argument expression cannot be evaluated, this can be
changed to 7 0 P [F:] where P is the Scott-closed set that represents how much evaluation can
be done to the expression if it is evaluated.

The optimised compilers described in this paper follow [NN90] in avoiding the introduction
of an intermediate pass to annotate the program with strictness information. A two-phases
compiler sometimes produces more efficient code because strictness information can be exploited
more effectively; we are currently studying its formalisation within our framework.

It is also hoped that the methodology of this paper will suggest ways of using information
about how expressions have been evaluated for structured data types such as lists, something
which has so far eluded even the implementation community.

References

[App92] A. W. Appel. Compiling with Continuations. Cambridge University Press, 1992.

[Ben92] P.N. Benton. Strictness logic and polymorphic invariance. In Proceedings of the
Symposium on Logical Foundations of Computer Science, 20-24 July 1992.

[BHAS6] G.L. Burn, C.L. Hankin, and S. Abramsky. Strictness analysis of higher-order func-
tions. Science of Computer Programming, 7:249-278, November 1986.

[Bur90] G.L. Burn. Using projection analysis in compiling lazy functional programs. In
Proceedings of the 1990 ACM Conference on Lisp and Functional Programming,
pages 227-241, Nice, France, 27-29 June 1990.

[Bur9la] G.L. Burn. The evaluation transformer model of reduction and its correctness. In
S. Abramsky and T.5.E. Maibaum, editors, Proceedings of TAPSOFT’91, Volume 2,
pages 458482, Brighton, UK, 8-12 April 1991. Springer-Verlag LNCS 494.

[Bur91b] G.L. Burn. Lazy Functional Languages: Abstract Interpretation and Compilation.
Research Monographs in Parallel and Distributed Computing. Pitman in association
with MIT Press, 1991. 238pp.

[CCT79] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Pro-
ceedings of the Sixth Annual Symposium on Principles of Programming Languages,
pages 269-282. ACM, January 1979.

[CC92] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic and
Computation, 2(4), 1992. Special Issue on Abstract Interpretation.

14

[CCMST]

[Dyb85]

[Fis72]

[FMO1]

[GerT5]

[Hun91]

[Jen92]

[J1.91]

[KKR*86]

[Kra88]

[Les87]

[Les88]

[LMO1]

[Mor73]

[Mos80]

G. Cousineau, P.-I.. Curien, and M. Mauny. The categorical abstract machine. Sei-
ence of Computer Programming, 8:173-202, 1987.

P. Dybjer. Using domain algebras to prove the correctness of a compiler. In Pro-
ceedings of STACS85, pages 98-108. Springer-Verlag LNCS182, 1985.

M. J. Fischer. Lambda calculus schemata. In ACM Conference on Proving Assertions
about Programs, pages 104-109, New Mexico, January 1972. ACM Sigplan Notices

7(1).

P. Fradet and D Le Métayer. Compilation of functional languages by program trans-
formation. ACM Transactions on Programming Languages and Systems, 13(1):21-51,
January 1991.

S.L. Gerhart. Correctness-preserving program transformations. In Proceedings of
POPL75, pages 54-66. ACM, 1975.

L.S. Hunt. Abstract Interpretation of Functional Languages: From Theory to Prac-
tice. PhD thesis, Department of Computing, Imperial College of Science, Technology
and Medicine, University of London, 1991.

T.P. Jensen. Disjunctive strictness analysis. In Proceedings of the 7th Symposium on
Logic In Computer Science. Computer Society Press of the IEEE, 1992.

S.L. Peyton Jones and J. Launchbury. Unboxed values as first class citizens in a
non-strict functional language. In J. Hughes, editor, Proceedings of the Conference
on Functional Programming and Computer Architecture, pages 636-666, Cambridge,
Massachussets, USA, 26-28 August 1991. Springer-Verlag LNCS523.

D.A. Kranz, R. Kelsey, J.A. Rees, P. Hudak, J. Philbin, and N.I. Adams. Orbit: An
optimising compiler for scheme. In Proceedings of the SIGPLAN ’86 Symposium on
Compiler Construction, pages 219-233. ACM, June 1986.

D.A. Kranz. Orbit: An Optimising Compiler for Scheme. PhD thesis, De-
partment of Computer Science, Yale University, February 1988. Report Number
YALEU/DCS/RR-632.

D. Lester. The G-machine as a representation of stack semantics. In G. Kahn, editor,
Proceedings of the Functional Programming Languages and Computer Architecture
Conference, pages 46-59. Springer-Verlag LNCS 274, September 1987.

D.R. Lester. Combinator Graph Reduction: A Congruence and its Applications.
DPhil thesis, Oxford University, 1988. Also published as Technical Monograph PRG-
73.

A. Leung and P. Mishra. Reasoning about simple and exhaustive demand in higher-
order languages. In J. Hughes, editor, Proceedings of the Conference on Functional
Programming and Computer Architecture, pages 329-351, Cambridge, Massachus-
sets, USA, 26-28 August 1991. Springer-Verlag LNCS523.

F.L. Morris. Advice on structuring compilers and proving them correct. In Proceed-
ings of POPL7T3, pages 144-152. ACM, 1973.

P.D. Mosses. A constructive approach to compiler correctness. In Proceedings of
ICALPS80, pages 449-462. Springer-Verlag LNCS85, 1980.

15

[MWS85] A. Meyer and M. Wand. Continuation semantics in the typed lambda-calculus. In
LNCS 193: Proceedings of Logics of Programs, pages 219-224, Berlin, 1985. Springer-
Verlag.

[Myc81] A. Mycroft. Abstract Interpretation and Optimising Transformations for Applicative
Programs. PhD thesis, University of Edinburgh, Department of Computer Science,
December 1981. Also published as CST-15-81.

[Nie85] F. Nielson. Program transformations in a denotational setting. ACM TOPLAS,
7:359-379, 1985.

[Nie89] F. Nielson. Two-level semantics and abstract interpretation. Theoretical Computer
Science, 69:117-242, 1989.

[NN88] H Riis Nielson and F. Nielson. Two-level semantics and code generation. TCS,
56:59-133, 1988.

[NN90] H. Nielson and F. Nielson. Context information for lazy code generation. In Pro-
ceedings of the 1990 ACM Conference on Lisp and Functional Programming, pages
251-263, Nice, France, 27-29 June 1990.

[Plo75] G.D. Plotkin. Call-by-name, call-by-value and the A-calculus. Theoretical Computer
Science, 1:125-159, 1975.

[Rey74] J.C. Reynolds. On the relation between direct and continuation semantics. In Pro-

ceedings of the Second Colloguium on Automata, Languages and Programming, pages
141-156, Saarbrucken, 1974. Springer-Verlag.

[Sch80] D.A. Schmidt. State transition machines for lambda-calculus expressions. In Pro-
ceedings of the Semantics-Directed Compiler Generation Workshop, pages 415-440.
Springer-Verlag LNCS594, 1980.

[Ste78] G.L. Steele Jr. Rabbit: A compiler for scheme. Technical Report ATl Tech. Rep. 474,
MIT, Cambridge, Mass., 1978.

[TWWS81] J.W. Thatcher, E.G Wagner, and J.B. Wright. More advice on structuring compilers
and proving them correct. Theoretical Computer Science, 15:223-249, 1981.

[Wad87] P.L. Wadler. Strictness analysis on non-flat domains (by abstract interpretation over
finite domains). In S. Abramsky and C.L. Hankin, editors, Abstract Interpretation of
Declarative Languages, chapter 12, pages 266-275. Ellis Horwood Ltd., Chichester,
West Sussex, England, 1987.

[Wan82] M. Wand. Deriving target code as a representation of continuation semantics. ACM
Transactions on Programming Languages and Systems, 4(3):496-517, July 1982.

[WH87] P. Wadler and R. J. M. Hughes. Projections for strictness analysis. In G. Kahn,
editor, Proceedings of the Functional Programming Languages and Computer Archi-
tecture Conference, pages 385-407. Springer-Verlag LNCS 274, September 1987.

16

