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ABSTRACT

This paper describes the 1998 HTK large vocabulary speech recog-
nition system for conversational telephone speech as used in the
NIST 1998 Hub5E evaluation. Front-end and language modelling
experiments conducted using various training and test setsfrom
both the Switchboard and Callhome English corpora are presented.
Our complete system includes reduced bandwidth analysis, side-
based cepstral feature normalisation, vocal tract length normali-
sation (VTLN), triphone and quinphone hidden Markov models
(HMMs) built using speaker adaptive training (SAT), maximum
likelihood linear regression (MLLR) speaker adaptation and a con-
fidence score based system combination. A detailed description of
the complete system together with experimental results foreach
stage of our multi-pass decoding scheme is presented. The word
error rate obtained is almost 20% better than our 1997 systemon
the development set.

1. INTRODUCTION

Transcription of conversational telephone speech is a complex task,
which has to deal with many severe degradations in speech quality.
These degradations continue to lead to word error rates in the range
of 30 to 50 %, which are almost twice as high as for other difficult
tasks like Broadcast News Transcription [7]. The difficulties re-
sult from a limited bandwidth, distorted audio channels, cross-talk
and other acoustic interference, as well as highly variablespeaking
rates and conversational styles in which grammatical rulesare less
important.

Current experiments for conversational telephone speech are
usually conducted on three corpora distributed by the Linguistic
Data Consortium (LDC) : Switchboard-I (Swbd-I), Switchboard-
II (Swbd-II) and Callhome English (CHE). Both Switchboard cor-
pora consist of telephone conversations within the USA between
strangers. For Swbd-I speakers are given a topic, whereas for
Swbd-II the topic is merely suggested. CHE data consists of calls
to friends or relatives abroad. This leads not only to severeacoustic
channel distortions caused by long distance telephone connections,
but also to a higher number of non-English (and hence unknown)
words. Furthermore, multiple speakers per conversation side are
not uncommon. These factors usually lead to 10% difference in
word error rate between Switchboard and Callhome recognition
tests.

The Swbd-I, Swbd-II and CHE corpora are the subject of the
yearly Hub5 evaluation conducted by the National Institutefor
Standards and Technology (NIST). In the following sectionswe

describe the system we prepared for participation in the 1998 Hub5E
evaluation, and present its final performance.

The remainder of this paper is organised as follows: First
we give a brief overview over our system and the development
objectives. Then we describe our front-end experiments, includ-
ing analysis bandwidth, cepstral feature normalisation and vocal
tract length normalisation (VTLN). Subsequently we present the
speaker adaptation tests using the new front-end, followedby de-
tails about language models used. The final section gives theover-
all system performance.

2. SYSTEM OVERVIEW

The basis for developing our 1998 system was formed by our 1997
conversational telephone speech transcription system [6]. This
system employed gender independent decision-tree state-clustered
triphone models, a 3-gram language model trained on 2 million
words (MW) from Swbd-I and CHE, and a 22K word dictionary
based on the LIMSI 1993 WSJ pronunciation dictionary. Standard
techniques for telephone speech were employed, with the only ma-
jor refinement being the introduction of VTLN. All availableband-
width were used with per segment cepstral mean normalisation.

During the development of our 1997 system we found the vo-
cal tract length normalisation (VTLN) process to give unreliable
results in terms of word error rate (WER) across speakers andtest
sets. In particular, the performance gain when using VTLN was
considerably lower than expected especially for the 1997 Hub5E
evaluation set. Furthermore the front-end processing did not ac-
count for the existence of very short speech segments, nor the spe-
cial characteristics of the telephone channel. These issues have
been addressed in a series of experiments, and subsequent im-
provements have been implemented and tested with our current
system.

Our 1998 system uses an eight-pass decoding strategy with
multiple gender independent and gender dependent state-clustered
triphone and quinphone HMM model sets, and multiple stages of
speaker adaptation.

Each frame of input speech is represented by a 39 dimensional
feature vector that consists of 13 (includingc0) MF-PLP cepstral
parameters and their first and second differentials. The results
from experiments described in section 3.1 suggested the useof
reduced bandwidth analysis and cepstral mean and variance nor-
malisation per conversation side.

Three different types of HMM model sets were used. First,
a gender independent state clustered triphone model set wasbuilt
and trained using a subset of Swbd-I containing 65 hours of speech



(WS96train). The resulting system contained 6039 speech states
with 12 Gaussian mixture components per state. The final model
set (M1) was obtained from this by further reestimation and mix-
ture splitting steps using a training set (h5train98) consisting of
163 hours of speech from Swbd-I and 17 hours from CHE. It was
found that 16 Gaussians per speech state was optimal. The M1
model set was used in the first decoding pass to obtain the tran-
scripts for gender detection and VTLN warp factor computation.

Secondly, a gender independent triphone model set that uses
VTLN warped training data was obtained in a similar fashion to
M1. Gender dependent versions were then derived by a single
gender dependent reestimation step. This model-set pair, subse-
quently referred to as M2, was used in the second and the third
recognition passes.

Finally, decoding passes 4-7 used a gender dependent pair
of quinphone HMM models (M3) trained on the VTLN-warped
h5train98 set. A further speaker adaptive training (SAT) [5] itera-
tion has been used. The resulting model set contained 8763 speech
states, each characterised by a 16 component mixture Gaussian.

In passes 3-7, maximum likelihood linear regression (MLLR)
[2] was employed for updating both means and variances for each
conversation side. Whereas one global MLLR transform was used
in passes 3 and 4, the following stages used a maximum of 2, 4
and 8 transforms per side respectively.

The final stage combined two different system outputs accord-
ing to a computed confidence score for each word. The confi-
dence scores were generated using an N-best homogeneity mea-
sure found using the 1000-best hypotheses from the latticesgen-
erated at the appropriate stage. A decision tree pruned using 10-
fold cross-validation was used to convert the N-best homogeneity
scores to confidence probabilities. This decision tree was trained
on the development data also using 10-fold cross validation. Sys-
tem output from the best triphone system (pass 3) and the best
quinphone system (pass 7) were combined using ROVER [1].

3. FRONT-END EXPERIMENTS

For fast turnaround on front-end experiments, a small subset of the
Swbd-I corpus was chosen for training. This subset (referred to as
MiniTrain) covers 398 sides containing 17.8 hours of speechand
is approximately gender balanced. For testing a gender balanced
half-hour set (MTtest) containing Swbd-I data was chosen. All
front-end experiments have been conducted using a 2MW Switch-
board trigram language model. The following sections detail ex-
periments that investigate analysis bandwidth, cepstral normalisa-
tion, and VTLN.

3.1. Coding Bandwidth and Cepstral Normalisation

Due to the special characteristics of telephone channels, the lower
and upper frequency regions are either distorted or blockedby fil-
tering operations. We compared systems using Mel-scale Filter-
banks within the full 4kHz range and a reduced range between
125-3800 Hz.

Speech recognition systems designed for read speech or even
Broadcast News data usually apply a per segment cepstral mean
normalisation scheme to reduce the effects of constant channel
characteristics. However, for telephone conversations the average
utterance duration is less than 3 seconds, thus providing poor es-
timates for the segment means. To overcome this, the mean was
calculated over a complete conversation side.

Results in Table 1 show the performance of HMM model sets
trained on MiniTrain for different bandwidths using both ofthe
cepstral mean subtraction strategies. Surprisingly the reduced band-
width system performs worse on the MTtest set. Neverthelessboth
coding strategies show a gain of about 1%.

0-4000Hz 125-3800Hz

Seg-CMN GI 46.58 47.33
Side-CMN GI 45.67 46.17

Table 1: % Word Error Rates (WER) for full and reduced band-
width coding using models trained on the MiniTrain set and tested
on MTtest

We also tested the performance of variance normalisation in
conjunction with side-based mean normalisation using several dif-
ferent techniques. A standard segment based scheme was com-
pared with side-based variance normalisation and normalisation
using a time constant decay. Each feature vector component was
normalised to obtain a target variance, which was chosen to be the
overall test data variance. Linear side-based variance normalisa-
tion produced the best results.

0-4000Hz 125-3800Hz

Side-CMN, Side-CVN , GI 44.82 44.35
Side-CMN, Side-CVN , GD 44.33 43.00

Table 2: % WER on MTtest using different bandwidth and gen-
der independent (GI) and gender dependent (GD) MiniTrain model
sets.

Table 2 shows the effect of side based variance normalisation
using both full and reduced bandwidth coding on gender depen-
dent and gender independent models. The performance gain is
high especially for the reduced bandwidth case. Reduced band-
width coding outperforms full bandwidth analysis further using
gender dependent HMMs.

3.2. Maximum Likelihood Vocal Tract Length Normalisation

Maximum likelihood vocal tract length normalisation implements
a per speaker linear frequency scaling of the speech spectrum. The
scale factor is obtained using a search procedure and is thenap-
plied in speaker specific feature stream computation. The scal-
ing can also be implemented by scaling the Mel filterbank cen-
tre frequencies with the inverse warping factor. Smoothingof
the upper frequency filterbank contents is required when using
scale factors larger than one. Instead of achieving this by mirror-
ing the contents of the upper frequency contents [5], our newap-
proach introduces a piecewise linear warping function withlower
and upper cut-off frequencies (see Figure 1). The upper thresh-
old improved the stability of our implementation (Table 3),while
the lower cut-off frequency affected performance only slightly.
Warp factors were found by conducting a parabolic search over
data likelihoods versus warp factors. Given a previously obtained
word level transcript, the average per-frame log-likelihood given
some HMM model set was computed by feature recomputation
and alignment with the transcripts. The next warping factorwas
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Figure 1: Piecewise linear VTLN frequency scaling functionfor
warp factors�. fL andfU denote lower and upper threshold fre-
quencies.

then selected and the procedure repeated. Since the per-frame log-
likelihood tends to be a parabolic function of the warp factor, a
suitable search method was chosen to allow rapid estimationof
the warp factors.

test train & test

old 43.21 42.66
new 42.52 41.56

Table 3: % WER comparison for different VTLN implementa-
tions on MTtest using full bandwidth coding. Test denotes test-set
VTLN only, train & test denotes single iteration VTLN models

Warp factors were computed using standard HMM models
trained on a particular dataset for the use of VTLN in training.
New models were generated by single pass retraining with the
appropriately warped training data. Since multiple iterations of
VTLN training are necessary to allow the warp factor distribution
to converge, the models generated in one iteration serve as awarp
factor estimator as well as the base for single pass retraining in the
next iteration.

VTLN Experiments for both coding bandwidths are shown in
Table 4. In the full bandwidth case the warp factor distribution
settled after two iterations, whereas four iterations werenecessary
for the reduced bandwidth models. Even though full-band coding
seems to perform well for GI models, the gain using GD models
for reduced-band coding is 0.4% greater. Since the relativeim-
provement is small, this result was cross-checked with another test
set.

0-4000Hz 125-3800Hz

GI test 43.21 43.18
GD test 41.92 41.33
GI train/test 41.45 41.61
GD train/test 40.75 40.20

Table 4: % WER for systems trained on MiniTrain and tested on
MTtest. VTLN warping in training and test both for GI and GD
models for full and reduced bandwidth coding.

4. SPEAKER ADAPTATION

The more robust implementation of VTLN together with gender
dependent modelling reduced the improvement in word error rate
achieved with MLLR speaker adaptation significantly. Our 1997
system achieved a gain of 4.8% on the 1997 Hub5E evaluation set
using only global mean and variance speech transforms, and afur-
ther 1.6% by subsequent iterations with larger numbers of speech
transforms. In comparison, only 2.5% improvement has been ob-
tained using our 1998 front-end. The contribution of variance
adaptation was only 0.2%, and the smallness of this figure maybe
attributed to the per-speaker variance normalisation. Subsequent
MLLR iterations gave approximately similar improvements as for
our 1997 system.

5. LANGUAGE MODELLING

Approximately 3 million words of Switchboard and Callhome En-
glish transcriptions were available for language model training (the
h5trainLM set). From this, a 27k word recognition vocabulary
containing only English words was determined. Furthermore, back-
off bigram (bgH5), trigram (tgH5) and 4-gram (fgH5) models were
trained from h5trainLM. To evaluate the effect of the increase in
training data, a trigram tgH597 was built using the approximately
2 million words of Switchboard transcriptions used in our 1997
system.

Using the 27k wordlist, bigram (bgBN), trigram (tgBN) and
4-gram (fgBN) models were trained from Broadcast News data
ranging in epoch from January 1992 to December 1997.

Corresponding H5 and Broadcast News models were merged
by linear interpolation into a single resultant language model file,
allowing them to be used directly in the recognition search.Thus
bgH5 was merged with bgBN to form bgint98, tgH5 with tgBN to
form tgint98, and fgH5 with fgBN to yield fgint98.

Finally, a class-based trigram language model (cat98) was pro-
duced using 350 automatically generated word classes basedon
word bigram statistics [3]. Bigrams and trigrams were only added
if they improve the training set leave-one-out perplexity [4]. Both
the categories as well as the trigram category model were built
using only h4trainLM. An optimal interpolation (in terms ofper-
plexity on the complete 1997 Hub5E evaluation set ) was produced
between fgH5, fgBN and cat98 with respective weights of 0.42,
0.28 and 0.30 , and will be referred to as fgintcat98.

Table 5 displays the performance of these language models.
Note that the 1997 NIST scoring conventions were used in WER
calculation. The WER results for tgint98, fgint98, and fgintcat98
were obtained by rescoring lattices produced with bgint98.

LM PP WER
tgH5 97 98.3 -

tgH5 94.1 -
cat98 101.8 -

bgint98 101.7 45.8
tgint98 82.0 42.7
fgint98 79.2 42.3

fgintcat98 76.4 41.5

Table 5: Perplexity (PP) on eval97 and WER on eval97sub for
various language models.



6. SYSTEM RESULTS ANALYSIS

Table 6 shows the performance of the individual stages on a subset
of the 1997 Hub5E evaluation set (eval97sub) and the full 1998
Hub5E evaluation set (eval98). The eval97sub set was used for
system development and consisted of 20 conversation sides from
Swbd-II and CHE. This set was selected to give approximately
the same performance as the full 1997 evaluation set. The eval98
set is gender balanced on Swbd-II data, but only contains 6 male
speakers from CHE.

PASSES Total Swbd-II CHE

P1 51.1 43.6 58.7
P2 44.6 36.5 52.8
P3 39.5 31.1 48.0
P4 38.1 29.9 46.4
P5 37.5 29.0 46.0
P6 37.3 29.1 45.6
P7 37.1 28.7 45.5
P8 36.6 28.5 44.7

(a)
PASSES Total Swbd-II CHE

P1 49.3 47.0 51.6
P2 45.6 42.9 48.2
P3 42.6 39.9 45.3
P4 40.9 38.3 43.4
P5 40.5 37.9 43.2
P6 40.4 37.7 43.0
P7 40.3 37.7 42.8
P8 39.5 36.7 42.2

(b)

Table 6: % WER for the eval97sub set (a) and the eval98 (b) set for
each decoding pass P1-P8. Word error rates are computed using
the 1998 Hub5E scoring rules.

In the first pass (P1) a word level transcript has been obtained
using M1 models and the tgint98 language model. In the second
pass (P2) all VTLN warping factors for all sides were computed
using gender dependent warp estimation models and the output
from the first pass. Secondly the likelihood for the best warpfactor
for both genders were compared and gender selected according to
the more likely model set. Whereas on eval97sub this gave no
gender detection errors, this was not the case on eval98, where 3
sides out of 80 were misclassified.

Afterwards M2 models and the tgint98 language model were
used to produce better MLLR supervision for the next stage. On
the eval97sub gender dependent modelling plus VTLN broughta
6.5% gain in WER compared to only 3.7% on eval98.

In the third pass (P3) M2 models, MLLR speaker adaptation
and the interpolated bigram model bgint98 were used to produce
lattices, which were expanded using tgint98 and fgintcat98lan-
guage models. The gain of MLLR plus 4-gram language mod-
elling was 5.1% on eval97sub compared to only 3% on eval98.
The use of the M3 quinphone models with further MLLR passes
brought 2.4% on eval97sub and 2.3% on eval98. The final system
combination using ROVER [1] performed approximately equally
on both sets with 0.8% in eval98 and only 0.6% on eval97sub.

The 1997 HTK system [6] on eval97sub had an error rate of

47.7%. The final word error rate (P8 in Table 6a) on the same data
using the 1997 NIST scoring procedure was 38.5%, or a relative
reduction in error rate of nearly 20%.

7. CONCLUSIONS

The 1998 conversational telephone speech transcription system
has been described and shown significant gain in performancebased
on improved acoustic and language modelling concepts.

The improvements include reduced bandwidth analysis, side-
based cepstral feature normalisation, improved VTLN and SAT
trained quinphone models. For language modelling 4-grams and
3-fold interpolation including a class-based model was used.
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