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Abstract

Profile-based optimizations can be used for instruc-
tion scheduling, loop scheduling, data preloading,
function in-lining, and instruction cache performance
enhancement. However, these techniques have not
been embraced by software vendors because programs
instrumented for profiling run 2-30 times slower, an
awkward compile-run-recompile sequence is required,
and a test input suite must be collected and validated
for each program. This paper proposes using existing
branch handling hardware to generate profile infor-
mation in real time. Techniques are presented for
both one-level and two-level branch hardware organi-
zations. The approach produces high accuracy with
small slowdown in execution (0.4%—4.6%). This al-
lows a program to be profiled while it 1s used, elim-
inating the need for a test input suite. This prac-
tically removes the inconvenience of profiling. With
contemporary processors driven increasingly by com-
piler support, hardware-based profiling is important
for high-performance systems.

1 Introduction

Advanced compilers perform optimizations across
block boundaries to increase instruction-level paral-
lelism, enhance resource usage and improve cache
performance. Many of these methods, such as trace
scheduling [1], and superblock scheduling [2], either
rely on or can benefit from information about dy-
namic program behavior. For example, traditional
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optimizations enhance performance by an additional
15% when combined with profile-driven superblock
formation [2]. Other examples include data preload-
ing [3], improved function in-lining [4], and improved
instruction cache performance [5].

There are several drawbacks to profile-driven op-
timizations. Many of the techniques can result in
code size explosion if they are performed too aggres-
sively. Dynamic basic block execution frequencies can
be used to reduce this phenomenon. More problem-
atic is the task of profiling itself. Obtaining pro-
file data through software methods can be complex
and time consuming, requiring additional steps in the
compilation process. The usual method employed is a
compile-run-recompile sequence. First, the program
i1s compiled with profiling probes placed within each
basic block!. The program is then run using several
different test inputs. The resulting profile data is used
to drive a profile-based compilation of the original
program.

Execution of the profiled version of the program is
slow. With some methods, the profiled version runs
30 times slower than the optimized program. At best,
a profiling program can be expected to run two times
slower. In addition, test inputs need to be carefully
chosen [6],[7].

Static estimation solves some of the problems re-
lated to gathering profile data [8]. However, these
techniques are not as accurate as profiling [6],[7].
When used for superblock scheduling, static estimates
achieve approximately 50% of the speedup that pro-
filing can achieve [9].

Many commercial microprocessors, such as the
Pentium series [10] and the PowerPC 604 [11], in-
corporate some form of branch handling hardware.
This paper proposes using existing branch handling
hardware, along with OS support, to obtain profile
information. Using this, the slowdown for profiling is

1The profiling probes are extra instructions which log the
execution of a basic block at run time.
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imperceptible (e.g., 0.4%-4.6% increase). This allows
an application to be deployed in the field and later re-
trieved for profile-based recompilation. Since 1t cap-
tures actual usage, 1t solves the problem of obtaining
valid test inputs for profiling. It also allows profiling
of real-time applications and system software. Using
dynamic information improves the accuracy of static
techniques. In general, the techniques presented in
this paper solve many of the problems with profiling
and expand the usefulness of profile-driven optimiza-
tion.

The following section reviews several hardware
branch prediction mechanisms, along with published
mechanisms that out-perform those currently imple-
mented. Methods for deriving profile information
from hardware are discussed in the third section. Al-
though these methods are less accurate than full-
fledged profiling, they are significantly more accurate
than static estimates. Metrics to measure this er-
ror are discussed in Section 3.4. The fourth section
presents experimental results and discusses the trade-
offs between the various schemes. The paper closes
with recommendations for hardware-supported pro-
filing, many of which can be implemented today in
existing systems.

2 Branch Prediction and Profiling

There are several contemporary dynamic branch pre-
diction mechanisms that have been implemented in
commercial processors. This section briefly reviews
these schemes. A graph representation for profile in-
formation is also presented, along with two methods
for grouping basic blocks into larger structures.

2.1 Contemporary branch handling mecha-
nisms

There are two classes of branch prediction methods:
one-level and two-level schemes. One-level schemes
use the address of the branch instruction to index
into a branch target buffer (BTB), which contains a
small state machine for predicting the outcome of a
branch. When the branch completes execution the
actual outcome 1s used to update the state machine.
Figure 1 depicts this process. The most common
state machine for one-level schemes is the two-bit
counter predictor, described in [12]. This predictor
is 1mplemented in several contemporary processors.
The nominal size for the one-level branch prediction
buffer is between 512 and 1024 entries. Our experi-
ments show that the two-bit counter, when used with
a 1024-entry BTB, achieves a branch prediction ac-
curacy of 90% on-average across the SPEC92 bench-
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Figure 1: One-level branch prediction.

marks.

Two-level schemes use two separate buffers. The
first buffer is indexed similar to the BTB and stores
the branch history as a binary string. The second
is indexed using this branch history and stores the
state of a predictor. This is depicted in Figure 2.
These schemes have been studied extensively by Yeh
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Figure 2: Two-level branch prediction.

and Patt [13],[14] and we will use their nomenclature
here. The first level buffer is termed the history regis-
ter table (HRT). The HRT is b bits wide and stores a
sequential, binary string of the branch’s history, using
0 for not-taken and 1 for taken branches?. A predic-
tion is made by indexing into the HRT, then using the
history string to index into a second table, the pattern
table (PT). The PT stores the state of a small state
machine used to predict the branch. This decouples
the branch prediction from the address of the branch
instruction. The effect of this decoupling is dramatic.
Yeh’s algorithm can achieve 96% branch prediction
accuracy for SPEC92 benchmarks [13],[14]. As of to-
day, Yeh’s algorithm has not been implemented in
any commercially available microprocessor. However,
the needs of wide-issue superscalars will likely drive
future implementations of this branch predictor.

2.2 Weighted control flow graphs

Profile-driven optimizations use a structure known as
a weighted control flow graph (WCFQG), which is a

2The “PAs” scheme with a 1024-entry HRT (b = 12) is used
in this paper.
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directed graph with basic-blocks as nodes. Arcs in a
WCFG are due to one of two occurrences: either a
code label or a branch instruction. An unweighted
CFG for each function can be determined statically
by the compiler.

A WCFG can be used to form larger groupings of
blocks, which in turn can be used to enhance the
scope of optimization and scheduling. Examples of
these structures include Fisher’s traces [1], and the
IMPACT project superblocks [2]. Chang, et al. re-
port a speedup of 15% when superblocks were used
to extend the scope of traditional optimizations [2]
Superblock formation and trace selection both use
the same heuristics to form traces. Superblocks differ
from traces in the method for providing fix-up code
for off-trace/superblock execution and tail duplica-
tion [2],[9],[15]. Either method results in significant
code size explosion. To limit this explosion, a thresh-
old is placed on the execution frequency of a block. If
a block’s frequency 1s below this threshold, it is not
considered for trace membership. (This is discussed
in more detail in Section 3.4 below).

There are several methods of recording profile in-
formation. One method is to insert extra code at
the beginning of each basic block that records the
block id in a buffer. This buffer is then parsed into
a WCFGQG, either periodically during execution, or af-
ter program completes execution. One example is
the Spike profiler, which is built into the back end of
GNU CC [16]. A disadvantage is its slowdown, which
i1s approximately 30 times for Spike.

Another method used by AT&T Global Informa-
tion Solutions in their commercial compilers is arc-
based profiling. In this method, a transition block 1s
added to the code to record the execution along an
arc [17]. The target of the branch is changed to this
new transition block, and an unconditional branch to
the original destination is added to the end of the
transition block. A table of all possible arcs is added
to the object code by the compiler. An instruction
to increment an arc’s table entry is placed inside the
transition block. When implemented, arc-based pro-
filing results in a slowdown by a factor of two. Of the
profiling approaches, arc-based profiling is the best
suited to hardware adaptation.

2.3 The drawbacks of software profiling

Although the benefits of profile-driven optimization
are large, there are many drawbacks to collecting
profiles in software. The most severe is execution
slowdown over unprofiled code. Slowdown is more
than a minor inconvenience. Experience at AT&T
Global Information Solutions has shown that slow-

down is the major reason why profile-driven optimiza-
tions have not been adopted by the user community.
Real-time applications such as kernels and embed-
ded systems are excluded from the benefits of profile-
driven optimizations. Long-running applications such
as database systems are often excluded from profiling
as well.

Another problem of profiling is the selection of in-
puts for the profiling task. Programs that are highly
data-dependent, such as a sort routine (simple) or a
database application (complex), have branches that
are sensitive to user inputs. If the inputs are not
selected carefully, the profile will not reflect actual
usage. Validating profiling is difficult without a large
scale study of user habits. In the absence of this,
profiling is typically done using a large set of inputs,
further increasing the time required for accurate pro-
filing.

A third problem with profiling is the method for
its use. A program must be compiled with profil-
ing enabled, run using the test inputs, and then re-
compiled. For small programs, this 1s not difficult.
For large systems, such as OS kernels or commer-
cial database applications, this requires significant al-
teration of Makefile scripts [18]. A large amount of
man-hours is invested in these scripts. For this rea-
son, software vendors are hesitant to adopt any profile
driven optimizations.

Ball and Larus have developed a set of heuristics to
determine which arcs are more likely to be traversed
in a CFG [8]. An extension to these that estimates
node weights is presented in [19]. Such static heuris-
tics can be used to solve many of the problems of
profiling, but with less accurate results. For exam-
ple, when static estimates are used to predict branch
directions, the inaccuracies of the predictions are ap-
proximately twice that of profiled information [19].

3 Using Branch Prediction Hardware for
Profiling

The goal of this paper is to demonstrate that the con-
tents of hardware branch buffers can be used to add
weights to a statically-built CFG. Most commercial
processors allow the serial scan-out of state informa-
tion for testing purposes. In addition to this, several
processors implement kernel-mode instructions for
reading branch hardware buffers directly. Hardware
implementations typically include target address in-
formation along with prediction information. The
combination of the target address (the destination of
the arc), the buffer tag (the source of the arc), and
the prediction information (the arc’s weight), fully
specify an arc in the WCFG.
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The specific procedure for producing a WCFG 1s
as follows: (1) A program is compiled with a special
identifier token (magic number), indicating it con-
tains a table of CFG arcs. (2) During execution, the
kernel periodically reads the buffer and uses its con-
tents to increment the arc counters. This period may
be at every context switch, or more frequently. (3)
On exit, the arc table is updated on disk. When
branch hardware for profiling was implemented us-
ing a Pentium-based AT&T server system, results
show an imperceptible difference in execution time
between programs modified in this way and unmod-
ified, traditionally-optimized programs. This slow-
down is shown in Table 1 for five of the SPECint92
benchmarks. The maximum is for espresso, with a
slowdown of just under 5%.

Table 1: Slowdown due to hardware profiling.

Hardware

Unprofiled profiled | Slow-
Benchmark | time (sec) | time (sec) | down
compress 95.6 98.4 | 0.8%
eqntott 31.7 31.9 | 0.6%
espresso 45.4 47.6 | 4.6%
gee 110.2 114.0 | 3.3%
xlisp 91.4 91.8 | 0.4%

3.1 Code adjustments to support arc-based
profiling

There are two adjustments that need to be made
to convert hardware branch information into arc
weights. Indirect jumps can produce blocks with
more than two outgoing arcs, reducing the one-to-
one mapping between a buffer entry and an arc. The
two primary sources of indirect jumps in C are due
to call-through-pointers and switch statements. Call-
through-pointers are not problematic, since trace se-
lection 1s traditionally performed on a per-function
basis. Switch statements can be converted into a
chain of if statements. The performance lost from
this conversion is later regained when the cases of the
switch are sorted according to execution weight. The
side-effect of this conversion is an increased branch
target address predictability.

The second adjustment concerns code labels. Basic
blocks formed due to code-labels are never allocated
entries in the hardware buffer. A solution to this
problem is to use the structure of the static graph to
propagate profile information to these blocks. This
can be done when the program is recompiled, and

does not need to be done at execution time.

3.2 Two-level profiling

Slight modifications are required to adapt two-level
schemes for the recording of arc weights. Since these
buffers store a history of branch behavior, counting
the number of 1’s in a history register and dividing
by the register width can be used to estimate the
weight of an arc (we will refer to this as dumping the
history register). After a history register is dumped,
it must be updated in some fashion so that its con-
tents are not over-counted at the next dumping point.
Since dumping the buffer may occur at context switch
points, there 1s no point in preserving the contents of
the history registers. For these reasons, the history
registers are initialized to 0 after being dumped?®.

Zeroing the history registers does not solve the
problem of over-counting an arc’s weight. Entries
of ‘0’ in the registers signify not-taken (fall-through)
branches. A mechanism 1s needed that determines
which ‘0’s are due to actual execution and which are
left over from the last buffer dump. Several tech-
niques were experimented with, including marking
each history with a dirty bit. In the dirty bit scheme,
extra bits are added, one per history entry. These
bits are cleared at each dump point. When a branch
indexes into a history register, the bit is set. Since
the HRT is a cache-like structure, it will contain a
tag store. The “dirty” state can be marked by stor-
ing an invalid, impossible tag value for the history
register entry. Thus, a dirty bit can be implemented
with little hardware modification.

For frequently-encountered branches, the dirty bit
scheme will produce accurate results. However, if
a branch is encountered infrequently, the ‘0’ entries
from the buffer dump may still remain in a register,
even though the dirty bit is set. This can increase the
error for moderate-to-lightly visited basic blocks. The
results in the following section support this claim.

Another scheme is to use a marker bit to record
the boundary between the valid and invalid branch
histories, as illustrated in Figure 3. After each dump,
the registers are zeroed and the LSB of each register
is set to ‘1’ (i.e., ‘00---01"). As the branch updates
its history, this bit shifts to the left. An extra full
bit is maintained in the MSB of the register. When
full bit = 1, the entire contents of the register are
treated as valid at a dump point. Otherwise, only
the positions to the right of the leading ‘1’ in the
register are valid (i.e., if ‘00---0lzzaz’, then only

3Our experiments show that this causes negligible change in
the prediction accuracy. This is because context switches will
normally result in a partial or near-total flush of the buffer.
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the xzxx bits are valid). To complete this scheme,
the full bit 18 zeroed at each dump point. Note that
the marker bit 1s not wasted space. The entire history
register holds a valid history once the full bit is set.
Therefore, only one additional bit per history entry is
required, regardless of the length of the HRT entries.

History Register Table

Initially (after dumping) .
full bit\O\O 0000O0 09\ l\

invalid history marker bit

After history: TNTT

full bit{ 00 0 0L 1 0 1 /1]

marker bit

After history: TNTTNNNT

fullbit 101 1000/1]

Figure 3: The marker bit modification to Yeh’s algo-
rithm for arc weight calculation.

3.3 Ome-level profiling

Modification of one-level schemes is less complicated,
but also less accurate. Some indicator of the valid-
ity of a branch history is still required. For one-level
schemes, this can be implemented using a dirty bit.
As with the two-level schemes, this can be imple-
mented without any modification if the BTB main-
tains a tag store.

The inaccuracy for one-level schemes is a result of
using a two-bit counter to estimate the number of
times a branch is taken or not-taken. As with the two-
level scheme, several approaches were tried until one
was found that achieved highly accurate performance.
This scheme relies on the ability to keep a count of the
total number of instructions executed since the last
history dump. This is relatively easy since most mod-
ern processors have on-chip performance monitoring
hardware to record such information® Given that N
instructions were executed, the compiler (and hence

4In the absence of monitoring hardware, an approximation
can be obtained using the buffer sampling rate and the proces-
sor’s CPI rating.

the dumping routine) can approximate the average
number of instructions per basic block, B. Then, if
d entries in the BTB are dirty, each entry is assumed
to be touched w = N/(B x d) times. This value is
then used to translate the two-bit counter value into
increments to the arc counters. This translation is
presented in Table 2. The reason for the success of
these approximations is discussed in Section 4 below.

Table 2: Approximations used to convert BTB entries
into arc weights.

Counter Value Arc to Increment
value interpretation increment value
00 strongly not-taken fall-through 2
01 weakly not-taken fall-through w
10 weakly taken target w
11 strongly taken target 2

(where @ = N/(B x d))

3.4 Comparing profiles

Validation of hardware profiling is done by compar-
ing traditionally-generated profiles (actual profiles) to
hardware-generated profiles (estimated profiles). One
method for this is to perform trace selection on both
the actual and the estimated profiles and compare the
results. An example of trace selection is illustrated in
Figure 4. Graph (a) is annotated with the actual pro-
file information, whereas graph (b) is the hardware-
generated profile. Traces are formed using an arc
trace selection threshold of 60% to group blocks [15].
Code explosion is avoided by not extending traces to
blocks with low weights. This i1s implemented as a
threshold, 7. Values of T' = 0.1%, 1%, 3% and 5%
are considered below.

The metric for trace selection error is introduced
using the example of Figure 4. In the actual graph
(graph (a)), basic blocks 1, 7, 11 and 13 are grouped
together to form a trace. Due to errors in the weights
of outgoing arcs for block 7, the blocks 1, 7, 8 and 9
are grouped to form a trace in the estimated graph.
The error for block 7 is due to the difference in
arc weights between the two graphs. The transition
from block 7 to 8 will occur 0.15 x 0.1 = 1.5% of
the total execution time. Similarly, the transition
from 7 to 11 will occur 0.15 x 0.9 = 13.5% of the
time. (Since the actual graph contains the real exe-
cution frequencies of the program, these frequencies
are used.) Hence, the transition from 7 to 11 occu-
pies a higher percentage of the total execution. The
trace in graph (b) incorrectly assumes the transition
of 7 to 8 i1s more likely. This assumption is wrong
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Estimated (hardware—generated) graph

(b)

Figure 4: Trace selection example.

for 13.5% — 1.5% = 12% of the execution. The figure
of 12% is therefore the percentage of execution time
that the incorrect trace membership will be exercised.

In general, the trace selection error is the total per-
centage of execution time that incorrect trace mem-
bership is exercised due to errors in the estimated
profile. The trace selection error (TSE is formally
specified by taking W; to be the normalized weight
(or, execution frequency) of block i. Let w;; be the
normalized weight of the arc from block ¢ to block
j- The trace selection error is calculated using the
following procedure:

1. TSE=0

2. forall blocks i € WCFG(actual) do:
(a) j — trace_successor(WCFG(actual), ¢)
(b) k — trace_successor(WCFG(estimate), i)
(¢)if j # k then TSE — TSE 4+ W; x

lwij — wig

3. enddo

Another method for comparison is the distribution
of arc weight error versus block weights. This metric
1s useful since it shows where the trace selection error
is occurring. The distribution is calculated by com-
puting the maximum differences between the actual
and the estimated arc weights for each category of
block frequencies®. Let w;; be the weight from i to
J in the estimated (hardware-generated) profile, and
w;; be the weight for the actual profile. Define the
maximuim difference to be,

Awi = Inax |wi]' — 12}2']'| . (1)
J Esuce()

Then the (unnormalized) distribution function is,
> Auw, (2)

or the sum of the maximum arc differences for each
block with weight W. The distribution of arc weight
error provides good insight into the performance of
the techniques, as is shown in the next section.

Juree (W) =

4 Experimental results

The three schemes for hardware-based profiling were
tested using benchmarks from the original SPEC92
benchmark suite as test workloads. Results are pre-
sented here for all the integer and an equal num-
ber of floating-point benchmarks (see Table 3). The

Table 3: SPEC92 benchmarks used for evaluation.

[ Class [[ Benchmark [ Input |
€Spresso cps.in
xlisp li-input.lsp
Integer eqntott int_pri_3.eqn
compress in
sC loadal
gce tree.i
doduc doducin
Floating- || nasa7 —
point mdljdp2 mdlj2.dat
waved —
tomcatv —
ora params

benchmarks are compiled using the GNU C com-
piler with all optimizations enabled. The FORTRAN
floating-point benchmarks are first converted from
FORTRAN to C.

Several approximations are made in the previous
section to extract arc weights from hardware. One

5The maximum difference is used in order to avoid over-
counting a single error. For example, there is a 4% difference
for two arcs with weights 40%/60% (actual) vs. 44%/56% (es-
timate), not an 8% difference.
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Table 4: Dynamic basic block distribution.

Basic Blocks
Bench- Total
mark E-25|E-50|E-90|E-99|E-100|static

espresso 15| 49| 225| 842 2838| 7582

xlisp 10| 34| 119| 264| 1058| 3138
eqntott 1 2 6| 34| 502| 1323
compress 2 5/ 17| 21| 135 432

sC 2 52| 135| 1529| 4634
gce 72| 348(2610|6535(14382|34347

-3

doduc 1 7| 283| 468| 1596| 3643
nasa7 2 2 2 2| 210( 1716
mdljdp2 2 5/ 15| 35| 821| 848
waveb 2| 14| 72| 177| 1222| 3896
tomcatv 3 6| 12| 14| 372| 1318
ora 3 6| 13| 24| 396| 1791

reason that these approximations are successful is the
relatively high locality of branch instructions. This
fact is illustrated in Table 4. These figures repre-
sent the distribution of unique basic blocks during
execution. The “E-x” column presents the number
of blocks that occupy @ percent of the benchmark’s
execution. For example, of the 1323 branches in eqn-
tott, only 502 are actually executed. Of these, only
one branch accounts for 25% of the execution, and
two branches for 50% of the execution. This table
shows that most of the benchmarks exercise only a
very small number of dynamic branches for the ma-
jority of their execution.

4.1 Performance of two-level profiling

Results for the two-level dirty-bit scheme are pre-
sented in Table 5. The columns labeled T' = y%
are for a code explosion cutoff threshold of y%. The
trace selection error i1s remarkably low, even for a
T = 0.1% cutoff. Several of the floating-point bench-
marks achieve zero error. These benchmarks have a
very low number of long-life dynamic branches, as
shown in Table 4. The sources of the error are ex-
plained by the distribution of arc weight error, shown
in Figure 6°. Notice that the majority of the differ-
ence in arc weights occurs for blocks that comprise
less than 1% of the execution. This is true for all
the benchmarks. This shows that the majority of
the error for hardware profiling occurs for the lightly-
executed blocks.

The code explosion cutoff threshold has a large ef-
fect on the error. Lower cutoff thresholds produce

60nly a subset of benchmarks are shown to simplify the
graph, but their behavior is typical.

higher error for all schemes. This is because a hard-
ware buffer only captures the most-frequently exe-
cuted branches. Seldom-executed nodes and arcs will
be poorly represented in the buffer. When the thresh-
old is 3% to 5%, the error is zero in almost all of the
cases. Two exceptions are integer benchmark com-
press and the floating-point benchmark tomcatv. For
both these benchmarks, majority of the error is due
to differences in two to three arc weights between the
profiles.

Table 5: Two level (dirty-bit) - trace selection error.

Trace selection error (percent)
Benchmark|[T = 0.1%|T = 1%|T = 3%|T =5%
espresso 16.46 2.31 0 0
xlisp 12.23 5.69 0 0
eqntott 3.95 3.64 3.64 0
compress 16.16 15.31 6.12 6.12
sC 15.37 7.36 0 0
gcc 9.09 0 0 0
doduc 2.19 0 0 0
nasa’ 0.21 0 0 0
mdljdp2 3.80 2.93 0 0
waved 5.60 4.64 0 0
tomcatv 17.87| 17.87| 17.87| 17.87
ora 0.02 0 0 0
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Figure 5: Two-level (dirty-bit): Distribution of arc
weight error.

Closer examination of the error for all benchmarks
suggests that the errors in trace selection have the
effect of reducing the scope of the profile-based opti-
mizations. Specifically, in compress a trace composed
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of blocks 33-36-37-38 in the actual profile was split
into two traces between blocks 36 and 37 in the es-
timated profile. This occurred because of an error in
the estimated arc frequency between blocks 36 and
37. In this case the weight of this arc was less than
the trace selection threshold, preventing the trace to
grow beyond block 36.

The primary reason that tomcatv experiences such
high error is its lack of voluntary context switches
(e.g., system calls). Because of this, the buffer is
dumped only when the quantum expires. In the inte-
ger benchmarks, system calls are relatively frequent,
causing a higher sampling rate. The effect of sam-
pling the buffer more frequently than once a context
switch is examined below in Section 4.3. Increasing
the sampling rate reduces error without significant
execution overhead”.

Table 6: Two level (marker-bit) - trace selection error.

Trace selection error (percent)
Benchmark||T = 0.1%|T = 1%|T = 3%|T =5%
espresso 12.67 2.31 0 0
xlisp 7.75 3.39 0 0
eqntott 3.95 3.64 3.64 0
compress 16.16 15.31 6.12 6.12
sC 8.46 6.40 0 0
gcc 2.39 0 0 0
doduc 1.21 0 0 0
nasa’ 0.21 0 0 0
mdljdp2 3.80 2.93 0 0
waved 2.32 2.32 0 0
tomcatv 17.87| 17.87| 17.87| 17.87
ora 0 0 0 0

Implementation of the marker-bit scheme decreases
trace selection error over dirty-bit for the majority of
the benchmarks. For example, espresso drops from
16.46% to 12.67%. The marker improves the accu-
racy for lightly-executed basic blocks by increasing
the accuracy of arc weights. This can be seen by
comparing the marker-bit arc weight error distribu-
tion (Figure 6) to the distribution for the dirty-bit
scheme (Figure 5). Observe that the error for lightly-
weighted blocks has been significantly reduced, es-
pecially for the region between 107° and 0.001 (the
pronounced error crest in Figure 5).

The marker-bit scheme does not help in all
cases. This is especially true when the error-causing
branches executed fairly frequently. This 1s the case
for compress, espresso and mdljdp2.

"The execution overhead is approximately 0.55%.
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Figure 6: Two-level (marker-bit): Distribution of arc
weight error.

4.2 Performance of one-level profiling

Profiling using one-level branch prediction hardware
is often less accurate than two-level because the hard-
ware contains a less-sophisticated measure of branch
history. This results in a higher error (see Table 77).
The benchmarks that perform poorly for two-level,
perform poorly here as well. The arc weight error
distribution (Figure 7) demonstrates why this is true.
Even though the overall shape of the graph resembles
the other two, there is a higher concentration of arc
weight error between block weights 0.1 (10%) and 0.3
(30%). Because of this, some blocks that are rela-
tively frequently accessed get incorrectly selected.

It is interesting to note that in some cases the one-
level profiling is more accurate than the two-level
schemes. This can be seen for benchmarks such as
sc, compress, or egntott. This is a consequence of es-
timating the block weight accurately. The weights
are estimated using the techniques outlined in Ta-
ble 2 of the previous section. This method predicts a
branch’s execution frequency based on how many in-
structions were executed since the last buffer dump.
For the two-level schemes, the analog of this count
is the width of the history register. This count satu-
rates at 12, when the entire history register contains
valid entries.

4.3 The effects of sampling rate on error

The results above show a relatively high error for
benchmarks that sample the buffer only on quan-
tum expiration. The worst case of this is the tomecatv
benchmark. The effect of making the sampling rate
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Table 7: One-level - trace selection error (percent).

Table 8: The effects of sampling rate on error (tom-
catv).

Sampling Two-level (marker-bit)
rate T = 0.1%|T = 1%|T = 3%|T =5%
4x 17.87 17.87] 17.87 17.87
8% 17.87 17.87] 17.87 17.87
16X 0 0 0 0
Two-level (dirty-bit

T =0.1%|T = 1%|T = 3%|T = 5%
4x 17.87 17.87] 17.87 17.87
8% 17.87 17.87] 17.87 17.87
16X 0 0 0 0

One-level

T =0.1%|T = 1%|T = 3%|T = 5%
4x 24.53 24.34| 24.34| 24.34
8% 19.85 19.85 17.90 17.90
16X 13.22 13.04| 13.04 13.04

Trace selection error
Benchmark||T = 0.1%|T = 1%|T = 3%|T =5%
espresso 18.49 5.51 0.02 0
xlisp 8.51 2.30 0 0
eqntott 3.66 3.64 3.64 0
compress 11.92 10.89 2.65 2.65
sc 3.46 1.14 0 0
gcc 5.99 0 0 0
doduc 2.86 0.14 0 0
nasa7 0.42 0.12 0.06 0
mdljdp2 2.80 2.20 0 0
waveb 7.01 6.06 0.07 0.07
tomcatv 25.28 25.19| 24.34| 24.34
ora 0.02 0 0 0
100
eantort
dnaggg D
% vt -
) Poher 1imt
S 60
g 40 i
g
20 B R g
e i . ‘ 2 Ty ¥
16-07  16-06  16.05  0.0001 0.001 .01 o1 : 1
Bl ock wei ght (log scale)

Figure 7: One-level: Distribution of arc weight error.

more frequent than the quantum are a reduction in
error. This 1s presented in Table 8.

The error drops to zero for the two-level schemes
when the sampling rate is increased to dump the
buffer 16 times more frequently than the normal con-
text switching rate. This is an important result, since
it indicates a fast sampling rate can reduce even the
highest error. Although the one-level approach im-
proves with sampling rate, it does not go to zero. In
general, if the scope of optimizations is limited due
to trace selection error, the hardware buffer can be
sampled more frequently.

Increasing the sampling rate does not appreciably
affect execution time. For example, on a Pentium-
based AT&T server the nominally hardware-profiled
tomcatv takes 54.2 sec to execute, whereas interrupt-
ing tomcatv 16 times more frequently takes 54.5 sec

to execute®. The reason is that a buffer dump is not
a full context switch. No change of context occurs.
Sampling rate can be increased without significant
performance impact, provided there is kernel support.
The only performance degradation comes from flush-
ing the buffer.

5 Concluding Remarks

This paper has presented a method for obtaining
profile information without significant run-time slow-
down (e.g., 0.4%-4.6%). This makes the compile-
use-recompile approach presented here is much easier
for software vendors than the traditional compile-run-
recompile method of profiling. Using our techniques,
software vendors can supply profiled versions of ap-
plications to alpha- and beta-testers, later collecting
the profiles for final profiled optimizations. No sam-
ple suite of inputs is required. The longer the profiled
version remains in the field, the higher the probability
that the profiles match day-to-day use. Without the
need for input sets, profiling can be used to optimize
interactive, real-time, and system software packages.

All of the features required to use our techniques
are already present in commercial processors. Most
of these processors have branch target buffers, many
that employ two-bit counter predictors. The trace se-
lection error for these schemes is quite small. When
the error does occur, it has the effect of limiting the
scope of the optimization, which has few detrimental
effects. It 1s important to note that the experimental

8Fach of these experiments was run immediately after a
reboot and the results are reproducible.
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results are for a single run of each benchmark. The
profiles are likely to converge after multiple runs, re-
ducing the error still further.

Future superscalars will require branch prediction
techniques more sophisticated than one-level BTB’s,
such as two-level approaches. Two schemes were pre-
sented to add hardware profiling to two-level mech-
anisms. Both schemes perform well for frequently-
executed blocks. In addition, the marker-bit scheme
performs well for moderately-executed blocks. The
hardware overhead required for this scheme is mini-
mal (specifically: one additional bit per HRT entry).

In general, the techniques presented here signifi-
cantly reduce the inconvenience of profiling. With
contemporary microarchitectures driven increasingly
by compiler support, hardware-based profiling is im-
portant for continued improvements in processor per-
formance.
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