
PROCEEDING OF THE 1994 27TH ANNUALINTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE, NOV. 30{DEC. 2 (SAN JOSE, CA)Using Branch Handling Hardware to Support Pro�le-Driven OptimizationThomas M. Conte� Burzin A. Patel� J. Stan Coxy�Department of Electrical and Computer Engineering yDatabase and Compiler TechnologyUniversity of South Carolina AT&T Global Information SolutionsColumbia, South Carolina 29205 Columbia, South Carolina 29170AbstractPro�le-based optimizations can be used for instruc-tion scheduling, loop scheduling, data preloading,function in-lining, and instruction cache performanceenhancement. However, these techniques have notbeen embraced by software vendors because programsinstrumented for pro�ling run 2{30 times slower, anawkward compile-run-recompile sequence is required,and a test input suite must be collected and validatedfor each program. This paper proposes using existingbranch handling hardware to generate pro�le infor-mation in real time. Techniques are presented forboth one-level and two-level branch hardware organi-zations. The approach produces high accuracy withsmall slowdown in execution (0.4%{4.6%). This al-lows a program to be pro�led while it is used, elim-inating the need for a test input suite. This prac-tically removes the inconvenience of pro�ling. Withcontemporary processors driven increasingly by com-piler support, hardware-based pro�ling is importantfor high-performance systems.1 IntroductionAdvanced compilers perform optimizations acrossblock boundaries to increase instruction-level paral-lelism, enhance resource usage and improve cacheperformance. Many of these methods, such as tracescheduling [1], and superblock scheduling [2], eitherrely on or can bene�t from information about dy-namic program behavior. For example, traditional0

optimizations enhance performance by an additional15% when combined with pro�le-driven superblockformation [2]. Other examples include data preload-ing [3], improved function in-lining [4], and improvedinstruction cache performance [5].There are several drawbacks to pro�le-driven op-timizations. Many of the techniques can result incode size explosion if they are performed too aggres-sively. Dynamic basic block execution frequencies canbe used to reduce this phenomenon. More problem-atic is the task of pro�ling itself. Obtaining pro-�le data through software methods can be complexand time consuming, requiring additional steps in thecompilation process. The usual method employed is acompile-run-recompile sequence. First, the programis compiled with pro�ling probes placed within eachbasic block1. The program is then run using severaldi�erent test inputs. The resulting pro�le data is usedto drive a pro�le-based compilation of the originalprogram.Execution of the pro�led version of the program isslow. With some methods, the pro�led version runs30 times slower than the optimized program. At best,a pro�ling program can be expected to run two timesslower. In addition, test inputs need to be carefullychosen [6],[7].Static estimation solves some of the problems re-lated to gathering pro�le data [8]. However, thesetechniques are not as accurate as pro�ling [6],[7].When used for superblock scheduling, static estimatesachieve approximately 50% of the speedup that pro-�ling can achieve [9].Many commercial microprocessors, such as thePentium series [10] and the PowerPC 604 [11], in-corporate some form of branch handling hardware.This paper proposes using existing branch handlinghardware, along with OS support, to obtain pro�leinformation. Using this, the slowdown for pro�ling is1The pro�ling probes are extra instructions which log theexecution of a basic block at run time. Page 1



imperceptible (e.g., 0.4%{4.6% increase). This allowsan application to be deployed in the �eld and later re-trieved for pro�le-based recompilation. Since it cap-tures actual usage, it solves the problem of obtainingvalid test inputs for pro�ling. It also allows pro�lingof real-time applications and system software. Usingdynamic information improves the accuracy of statictechniques. In general, the techniques presented inthis paper solve many of the problems with pro�lingand expand the usefulness of pro�le-driven optimiza-tion.The following section reviews several hardwarebranch prediction mechanisms, along with publishedmechanisms that out-perform those currently imple-mented. Methods for deriving pro�le informationfrom hardware are discussed in the third section. Al-though these methods are less accurate than full-edged pro�ling, they are signi�cantly more accuratethan static estimates. Metrics to measure this er-ror are discussed in Section 3.4. The fourth sectionpresents experimental results and discusses the trade-o�s between the various schemes. The paper closeswith recommendations for hardware-supported pro-�ling, many of which can be implemented today inexisting systems.2 Branch Prediction and Pro�lingThere are several contemporary dynamic branch pre-diction mechanisms that have been implemented incommercial processors. This section briey reviewsthese schemes. A graph representation for pro�le in-formation is also presented, along with two methodsfor grouping basic blocks into larger structures.2.1 Contemporary branch handling mecha-nismsThere are two classes of branch prediction methods:one-level and two-level schemes. One-level schemesuse the address of the branch instruction to indexinto a branch target bu�er (BTB), which contains asmall state machine for predicting the outcome of abranch. When the branch completes execution theactual outcome is used to update the state machine.Figure 1 depicts this process. The most commonstate machine for one-level schemes is the two-bitcounter predictor, described in [12]. This predictoris implemented in several contemporary processors.The nominal size for the one-level branch predictionbu�er is between 512 and 1024 entries. Our experi-ments show that the two-bit counter, when used witha 1024-entry BTB, achieves a branch prediction ac-curacy of 90% on-average across the SPEC92 bench-
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History Register Table Pattern TableFigure 2: Two-level branch prediction.and Patt [13],[14] and we will use their nomenclaturehere. The �rst level bu�er is termed the history regis-ter table (HRT). The HRT is b bits wide and stores asequential, binary string of the branch's history, using0 for not-taken and 1 for taken branches2. A predic-tion is made by indexing into the HRT, then using thehistory string to index into a second table, the patterntable (PT). The PT stores the state of a small statemachine used to predict the branch. This decouplesthe branch prediction from the address of the branchinstruction. The e�ect of this decoupling is dramatic.Yeh's algorithm can achieve 96% branch predictionaccuracy for SPEC92 benchmarks [13],[14]. As of to-day, Yeh's algorithm has not been implemented inany commercially available microprocessor. However,the needs of wide-issue superscalars will likely drivefuture implementations of this branch predictor.2.2 Weighted control ow graphsPro�le-driven optimizations use a structure known asa weighted control ow graph (WCFG), which is a2The \PAs" scheme with a 1024-entryHRT (b = 12) is usedin this paper. Page 2



directed graph with basic-blocks as nodes. Arcs in aWCFG are due to one of two occurrences: either acode label or a branch instruction. An unweightedCFG for each function can be determined staticallyby the compiler.A WCFG can be used to form larger groupings ofblocks, which in turn can be used to enhance thescope of optimization and scheduling. Examples ofthese structures include Fisher's traces [1], and theIMPACT project superblocks [2]. Chang, et al. re-port a speedup of 15% when superblocks were usedto extend the scope of traditional optimizations [2]Superblock formation and trace selection both usethe same heuristics to form traces. Superblocks di�erfrom traces in the method for providing �x-up codefor o�-trace/superblock execution and tail duplica-tion [2],[9],[15]. Either method results in signi�cantcode size explosion. To limit this explosion, a thresh-old is placed on the execution frequency of a block. Ifa block's frequency is below this threshold, it is notconsidered for trace membership. (This is discussedin more detail in Section 3.4 below).There are several methods of recording pro�le in-formation. One method is to insert extra code atthe beginning of each basic block that records theblock id in a bu�er. This bu�er is then parsed intoa WCFG, either periodically during execution, or af-ter program completes execution. One example isthe Spike pro�ler, which is built into the back end ofGNU CC [16]. A disadvantage is its slowdown, whichis approximately 30 times for Spike.Another method used by AT&T Global Informa-tion Solutions in their commercial compilers is arc-based pro�ling. In this method, a transition block isadded to the code to record the execution along anarc [17]. The target of the branch is changed to thisnew transition block, and an unconditional branch tothe original destination is added to the end of thetransition block. A table of all possible arcs is addedto the object code by the compiler. An instructionto increment an arc's table entry is placed inside thetransition block. When implemented, arc-based pro-�ling results in a slowdown by a factor of two. Of thepro�ling approaches, arc-based pro�ling is the bestsuited to hardware adaptation.2.3 The drawbacks of software pro�lingAlthough the bene�ts of pro�le-driven optimizationare large, there are many drawbacks to collectingpro�les in software. The most severe is executionslowdown over unpro�led code. Slowdown is morethan a minor inconvenience. Experience at AT&TGlobal Information Solutions has shown that slow-

down is the major reason why pro�le-driven optimiza-tions have not been adopted by the user community.Real-time applications such as kernels and embed-ded systems are excluded from the bene�ts of pro�le-driven optimizations. Long-running applications suchas database systems are often excluded from pro�lingas well.Another problem of pro�ling is the selection of in-puts for the pro�ling task. Programs that are highlydata-dependent, such as a sort routine (simple) or adatabase application (complex), have branches thatare sensitive to user inputs. If the inputs are notselected carefully, the pro�le will not reect actualusage. Validating pro�ling is di�cult without a largescale study of user habits. In the absence of this,pro�ling is typically done using a large set of inputs,further increasing the time required for accurate pro-�ling.A third problem with pro�ling is the method forits use. A program must be compiled with pro�l-ing enabled, run using the test inputs, and then re-compiled. For small programs, this is not di�cult.For large systems, such as OS kernels or commer-cial database applications, this requires signi�cant al-teration of Make�le scripts [18]. A large amount ofman-hours is invested in these scripts. For this rea-son, software vendors are hesitant to adopt any pro�ledriven optimizations.Ball and Larus have developed a set of heuristics todetermine which arcs are more likely to be traversedin a CFG [8]. An extension to these that estimatesnode weights is presented in [19]. Such static heuris-tics can be used to solve many of the problems ofpro�ling, but with less accurate results. For exam-ple, when static estimates are used to predict branchdirections, the inaccuracies of the predictions are ap-proximately twice that of pro�led information [19].3 Using Branch Prediction Hardware forPro�lingThe goal of this paper is to demonstrate that the con-tents of hardware branch bu�ers can be used to addweights to a statically-built CFG. Most commercialprocessors allow the serial scan-out of state informa-tion for testing purposes. In addition to this, severalprocessors implement kernel-mode instructions forreading branch hardware bu�ers directly. Hardwareimplementations typically include target address in-formation along with prediction information. Thecombination of the target address (the destination ofthe arc), the bu�er tag (the source of the arc), andthe prediction information (the arc's weight), fullyspecify an arc in the WCFG. Page 3



The speci�c procedure for producing a WCFG isas follows: (1) A program is compiled with a specialidenti�er token (magic number), indicating it con-tains a table of CFG arcs. (2) During execution, thekernel periodically reads the bu�er and uses its con-tents to increment the arc counters. This period maybe at every context switch, or more frequently. (3)On exit, the arc table is updated on disk. Whenbranch hardware for pro�ling was implemented us-ing a Pentium-based AT&T server system, resultsshow an imperceptible di�erence in execution timebetween programs modi�ed in this way and unmod-i�ed, traditionally-optimized programs. This slow-down is shown in Table 1 for �ve of the SPECint92benchmarks. The maximum is for espresso, with aslowdown of just under 5%.Table 1: Slowdown due to hardware pro�ling.HardwareUnpro�led pro�led Slow-Benchmark time (sec) time (sec) downcompress 95.6 98.4 0.8%eqntott 31.7 31.9 0.6%espresso 45.4 47.6 4.6%gcc 110.2 114.0 3.3%xlisp 91.4 91.8 0.4%3.1 Code adjustments to support arc-basedpro�lingThere are two adjustments that need to be madeto convert hardware branch information into arcweights. Indirect jumps can produce blocks withmore than two outgoing arcs, reducing the one-to-one mapping between a bu�er entry and an arc. Thetwo primary sources of indirect jumps in C are dueto call-through-pointers and switch statements. Call-through-pointers are not problematic, since trace se-lection is traditionally performed on a per-functionbasis. Switch statements can be converted into achain of if statements. The performance lost fromthis conversion is later regained when the cases of theswitch are sorted according to execution weight. Theside-e�ect of this conversion is an increased branchtarget address predictability.The second adjustment concerns code labels. Basicblocks formed due to code-labels are never allocatedentries in the hardware bu�er. A solution to thisproblem is to use the structure of the static graph topropagate pro�le information to these blocks. Thiscan be done when the program is recompiled, and

does not need to be done at execution time.3.2 Two-level pro�lingSlight modi�cations are required to adapt two-levelschemes for the recording of arc weights. Since thesebu�ers store a history of branch behavior, countingthe number of 1's in a history register and dividingby the register width can be used to estimate theweight of an arc (we will refer to this as dumping thehistory register). After a history register is dumped,it must be updated in some fashion so that its con-tents are not over-counted at the next dumping point.Since dumping the bu�er may occur at context switchpoints, there is no point in preserving the contents ofthe history registers. For these reasons, the historyregisters are initialized to 0 after being dumped3.Zeroing the history registers does not solve theproblem of over-counting an arc's weight. Entriesof `0' in the registers signify not-taken (fall-through)branches. A mechanism is needed that determineswhich `0's are due to actual execution and which areleft over from the last bu�er dump. Several tech-niques were experimented with, including markingeach history with a dirty bit. In the dirty bit scheme,extra bits are added, one per history entry. Thesebits are cleared at each dump point. When a branchindexes into a history register, the bit is set. Sincethe HRT is a cache-like structure, it will contain atag store. The \dirty" state can be marked by stor-ing an invalid, impossible tag value for the historyregister entry. Thus, a dirty bit can be implementedwith little hardware modi�cation.For frequently-encountered branches, the dirty bitscheme will produce accurate results. However, ifa branch is encountered infrequently, the `0' entriesfrom the bu�er dump may still remain in a register,even though the dirty bit is set. This can increase theerror for moderate-to-lightly visited basic blocks. Theresults in the following section support this claim.Another scheme is to use a marker bit to recordthe boundary between the valid and invalid branchhistories, as illustrated in Figure 3. After each dump,the registers are zeroed and the LSB of each registeris set to `1' (i.e., `00 � � �01'). As the branch updatesits history, this bit shifts to the left. An extra fullbit is maintained in the MSB of the register. Whenfull bit = 1, the entire contents of the register aretreated as valid at a dump point. Otherwise, onlythe positions to the right of the leading `1' in theregister are valid (i.e., if `00 � � �01xxxx', then only3Our experiments show that this causes negligible change inthe prediction accuracy. This is because context switches willnormally result in a partial or near-total ush of the bu�er.Page 4



the xxxx bits are valid). To complete this scheme,the full bit is zeroed at each dump point. Note thatthe marker bit is not wasted space. The entire historyregister holds a valid history once the full bit is set.Therefore, only one additional bit per history entry isrequired, regardless of the length of the HRT entries.
History Register Table
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Figure 3: The marker bit modi�cation to Yeh's algo-rithm for arc weight calculation.3.3 One-level pro�lingModi�cation of one-level schemes is less complicated,but also less accurate. Some indicator of the valid-ity of a branch history is still required. For one-levelschemes, this can be implemented using a dirty bit.As with the two-level schemes, this can be imple-mented without any modi�cation if the BTB main-tains a tag store.The inaccuracy for one-level schemes is a result ofusing a two-bit counter to estimate the number oftimes a branch is taken or not-taken. As with the two-level scheme, several approaches were tried until onewas found that achieved highly accurate performance.This scheme relies on the ability to keep a count of thetotal number of instructions executed since the lasthistory dump. This is relatively easy since most mod-ern processors have on-chip performance monitoringhardware to record such information4. Given that Ninstructions were executed, the compiler (and hence4In the absence of monitoring hardware, an approximationcan be obtained using the bu�er sampling rate and the proces-sor's CPI rating.

the dumping routine) can approximate the averagenumber of instructions per basic block, �B. Then, ifd entries in the BTB are dirty, each entry is assumedto be touched ŵ = N=( �B � d) times. This value isthen used to translate the two-bit counter value intoincrements to the arc counters. This translation ispresented in Table 2. The reason for the success ofthese approximations is discussed in Section 4 below.Table 2: Approximations used to convert BTB entriesinto arc weights.Counter Value Arc to Incrementvalue interpretation increment value00 strongly not-taken fall-through 2ŵ01 weakly not-taken fall-through ŵ10 weakly taken target ŵ11 strongly taken target 2ŵ(where ŵ = N=( �B � d))3.4 Comparing pro�lesValidation of hardware pro�ling is done by compar-ing traditionally-generated pro�les (actual pro�les) tohardware-generated pro�les (estimated pro�les). Onemethod for this is to perform trace selection on boththe actual and the estimated pro�les and compare theresults. An example of trace selection is illustrated inFigure 4. Graph (a) is annotated with the actual pro-�le information, whereas graph (b) is the hardware-generated pro�le. Traces are formed using an arctrace selection threshold of 60% to group blocks [15].Code explosion is avoided by not extending traces toblocks with low weights. This is implemented as athreshold, T . Values of T = 0.1%, 1%, 3% and 5%are considered below.The metric for trace selection error is introducedusing the example of Figure 4. In the actual graph(graph (a)), basic blocks 1, 7, 11 and 13 are groupedtogether to form a trace. Due to errors in the weightsof outgoing arcs for block 7, the blocks 1, 7, 8 and 9are grouped to form a trace in the estimated graph.The error for block 7 is due to the di�erence inarc weights between the two graphs. The transitionfrom block 7 to 8 will occur 0:15 � 0:1 = 1:5% ofthe total execution time. Similarly, the transitionfrom 7 to 11 will occur 0:15 � 0:9 = 13:5% of thetime. (Since the actual graph contains the real exe-cution frequencies of the program, these frequenciesare used.) Hence, the transition from 7 to 11 occu-pies a higher percentage of the total execution. Thetrace in graph (b) incorrectly assumes the transitionof 7 to 8 is more likely. This assumption is wrongPage 5
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Estimated (hardware−generated) graphFigure 4: Trace selection example.for 13:5%� 1:5% = 12% of the execution. The �gureof 12% is therefore the percentage of execution timethat the incorrect trace membership will be exercised.In general, the trace selection error is the total per-centage of execution time that incorrect trace mem-bership is exercised due to errors in the estimatedpro�le. The trace selection error (TSE is formallyspeci�ed by taking Wi to be the normalized weight(or, execution frequency) of block i. Let wij be thenormalized weight of the arc from block i to blockj. The trace selection error is calculated using thefollowing procedure:1. TSE = 02. forall blocks i 2WCFG(actual) do:(a) j  trace successor(WCFG(actual); i)(b) k trace successor(WCFG(estimate); i)(c) if j 6= k then TSE  TSE + Wi �jwij �wikj3. enddo

Another method for comparison is the distributionof arc weight error versus block weights. This metricis useful since it shows where the trace selection erroris occurring. The distribution is calculated by com-puting the maximum di�erences between the actualand the estimated arc weights for each category ofblock frequencies5 . Let ŵij be the weight from i toj in the estimated (hardware-generated) pro�le, andwij be the weight for the actual pro�le. De�ne themaximum di�erence to be,�wi = maxj2succ(i) jwij � ŵijj : (1)Then the (unnormalized) distribution function is,farcs(W ) = Xis.t.Wi=W �wi; (2)or the sum of the maximum arc di�erences for eachblock with weight W . The distribution of arc weighterror provides good insight into the performance ofthe techniques, as is shown in the next section.4 Experimental resultsThe three schemes for hardware-based pro�ling weretested using benchmarks from the original SPEC92benchmark suite as test workloads. Results are pre-sented here for all the integer and an equal num-ber of oating-point benchmarks (see Table 3). TheTable 3: SPEC92 benchmarks used for evaluation.Class Benchmark Inputespresso cps.inxlisp li-input.lspInteger eqntott int pri 3.eqncompress insc loada1gcc tree.idoduc doducinFloating- nasa7 |point mdljdp2 mdlj2.datwave5 |tomcatv |ora paramsbenchmarks are compiled using the GNU C com-piler with all optimizations enabled. The FORTRANoating-point benchmarks are �rst converted fromFORTRAN to C.Several approximations are made in the previoussection to extract arc weights from hardware. One5The maximum di�erence is used in order to avoid over-counting a single error. For example, there is a 4% di�erencefor two arcs with weights 40%/60% (actual) vs. 44%/56% (es-timate), not an 8% di�erence. Page 6



Table 4: Dynamic basic block distribution.Basic BlocksBench- Totalmark E-25 E-50 E-90 E-99 E-100 staticespresso 15 49 225 842 2838 7582xlisp 10 34 119 264 1058 3138eqntott 1 2 6 34 502 1323compress 2 5 17 21 135 432sc 2 7 52 135 1529 4634gcc 72 348 2610 6535 14382 34347doduc 1 7 283 468 1596 3643nasa7 2 2 2 2 210 1716mdljdp2 2 5 15 35 821 848wave5 2 14 72 177 1222 3896tomcatv 3 6 12 14 372 1318ora 3 6 13 24 396 1791reason that these approximations are successful is therelatively high locality of branch instructions. Thisfact is illustrated in Table 4. These �gures repre-sent the distribution of unique basic blocks duringexecution. The \E-x" column presents the numberof blocks that occupy x percent of the benchmark'sexecution. For example, of the 1323 branches in eqn-tott, only 502 are actually executed. Of these, onlyone branch accounts for 25% of the execution, andtwo branches for 50% of the execution. This tableshows that most of the benchmarks exercise only avery small number of dynamic branches for the ma-jority of their execution.4.1 Performance of two-level pro�lingResults for the two-level dirty-bit scheme are pre-sented in Table 5. The columns labeled T = y%are for a code explosion cuto� threshold of y%. Thetrace selection error is remarkably low, even for aT = 0:1% cuto�. Several of the oating-point bench-marks achieve zero error. These benchmarks have avery low number of long-life dynamic branches, asshown in Table 4. The sources of the error are ex-plained by the distribution of arc weight error, shownin Figure 66. Notice that the majority of the di�er-ence in arc weights occurs for blocks that compriseless than 1% of the execution. This is true for allthe benchmarks. This shows that the majority ofthe error for hardware pro�ling occurs for the lightly-executed blocks.The code explosion cuto� threshold has a large ef-fect on the error. Lower cuto� thresholds produce6Only a subset of benchmarks are shown to simplify thegraph, but their behavior is typical.

higher error for all schemes. This is because a hard-ware bu�er only captures the most-frequently exe-cuted branches. Seldom-executed nodes and arcs willbe poorly represented in the bu�er. When the thresh-old is 3% to 5%, the error is zero in almost all of thecases. Two exceptions are integer benchmark com-press and the oating-point benchmark tomcatv. Forboth these benchmarks, majority of the error is dueto di�erences in two to three arc weights between thepro�les.Table 5: Two level (dirty-bit) - trace selection error.Trace selection error (percent)Benchmark T = 0.1% T = 1% T = 3% T = 5%espresso 16.46 2.31 0 0xlisp 12.23 5.69 0 0eqntott 3.95 3.64 3.64 0compress 16.16 15.31 6.12 6.12sc 15.37 7.36 0 0gcc 9.09 0 0 0doduc 2.19 0 0 0nasa7 0.21 0 0 0mdljdp2 3.80 2.93 0 0wave5 5.60 4.64 0 0tomcatv 17.87 17.87 17.87 17.87ora 0.02 0 0 0
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Figure 5: Two-level (dirty-bit): Distribution of arcweight error.Closer examination of the error for all benchmarkssuggests that the errors in trace selection have thee�ect of reducing the scope of the pro�le-based opti-mizations. Speci�cally, in compress a trace composedPage 7



of blocks 33-36-37-38 in the actual pro�le was splitinto two traces between blocks 36 and 37 in the es-timated pro�le. This occurred because of an error inthe estimated arc frequency between blocks 36 and37. In this case the weight of this arc was less thanthe trace selection threshold, preventing the trace togrow beyond block 36.The primary reason that tomcatv experiences suchhigh error is its lack of voluntary context switches(e.g., system calls). Because of this, the bu�er isdumped only when the quantum expires. In the inte-ger benchmarks, system calls are relatively frequent,causing a higher sampling rate. The e�ect of sam-pling the bu�er more frequently than once a contextswitch is examined below in Section 4.3. Increasingthe sampling rate reduces error without signi�cantexecution overhead7.Table 6: Two level (marker-bit) - trace selection error.Trace selection error (percent)Benchmark T = 0.1% T = 1% T = 3% T = 5%espresso 12.67 2.31 0 0xlisp 7.75 3.39 0 0eqntott 3.95 3.64 3.64 0compress 16.16 15.31 6.12 6.12sc 8.46 6.40 0 0gcc 2.39 0 0 0doduc 1.21 0 0 0nasa7 0.21 0 0 0mdljdp2 3.80 2.93 0 0wave5 2.32 2.32 0 0tomcatv 17.87 17.87 17.87 17.87ora 0 0 0 0Implementation of the marker-bit scheme decreasestrace selection error over dirty-bit for the majority ofthe benchmarks. For example, espresso drops from16.46% to 12.67%. The marker improves the accu-racy for lightly-executed basic blocks by increasingthe accuracy of arc weights. This can be seen bycomparing the marker-bit arc weight error distribu-tion (Figure 6) to the distribution for the dirty-bitscheme (Figure 5). Observe that the error for lightly-weighted blocks has been signi�cantly reduced, es-pecially for the region between 10�5 and 0:001 (thepronounced error crest in Figure 5).The marker-bit scheme does not help in allcases. This is especially true when the error-causingbranches executed fairly frequently. This is the casefor compress, espresso and mdljdp2.7The execution overhead is approximately 0.55%.
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Figure 6: Two-level (marker-bit): Distribution of arcweight error.4.2 Performance of one-level pro�lingPro�ling using one-level branch prediction hardwareis often less accurate than two-level because the hard-ware contains a less-sophisticated measure of branchhistory. This results in a higher error (see Table ??).The benchmarks that perform poorly for two-level,perform poorly here as well. The arc weight errordistribution (Figure 7) demonstrates why this is true.Even though the overall shape of the graph resemblesthe other two, there is a higher concentration of arcweight error between block weights 0.1 (10%) and 0.3(30%). Because of this, some blocks that are rela-tively frequently accessed get incorrectly selected.It is interesting to note that in some cases the one-level pro�ling is more accurate than the two-levelschemes. This can be seen for benchmarks such assc, compress, or eqntott. This is a consequence of es-timating the block weight accurately. The weightsare estimated using the techniques outlined in Ta-ble 2 of the previous section. This method predicts abranch's execution frequency based on how many in-structions were executed since the last bu�er dump.For the two-level schemes, the analog of this countis the width of the history register. This count satu-rates at 12, when the entire history register containsvalid entries.4.3 The e�ects of sampling rate on errorThe results above show a relatively high error forbenchmarks that sample the bu�er only on quan-tum expiration. The worst case of this is the tomcatvbenchmark. The e�ect of making the sampling ratePage 8



Table 7: One-level - trace selection error (percent).Trace selection errorBenchmark T = 0.1% T = 1% T = 3% T = 5%espresso 18.49 5.51 0.02 0xlisp 8.51 2.30 0 0eqntott 3.66 3.64 3.64 0compress 11.92 10.89 2.65 2.65sc 3.46 1.14 0 0gcc 5.99 0 0 0doduc 2.86 0.14 0 0nasa7 0.42 0.12 0.06 0mdljdp2 2.80 2.20 0 0wave5 7.01 6.06 0.07 0.07tomcatv 25.28 25.19 24.34 24.34ora 0.02 0 0 0
0

20

40

60

80

100

1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

A
r
c
 
w
e
i
g
h
t
 
e
r
r
o
r
 
(
%
)

Block weight (log scale)

espresso
eqntott

gcc
dnasa7
mdljdp2
wave5

upper limit
lower limit

Figure 7: One-level: Distribution of arc weight error.more frequent than the quantum are a reduction inerror. This is presented in Table 8.The error drops to zero for the two-level schemeswhen the sampling rate is increased to dump thebu�er 16 times more frequently than the normal con-text switching rate. This is an important result, sinceit indicates a fast sampling rate can reduce even thehighest error. Although the one-level approach im-proves with sampling rate, it does not go to zero. Ingeneral, if the scope of optimizations is limited dueto trace selection error, the hardware bu�er can besampled more frequently.Increasing the sampling rate does not appreciablya�ect execution time. For example, on a Pentium-based AT&T server the nominally hardware-pro�ledtomcatv takes 54.2 sec to execute, whereas interrupt-ing tomcatv 16 times more frequently takes 54.5 sec

Table 8: The e�ects of sampling rate on error (tom-catv).Sampling Two-level (marker-bit)rate T = 0.1% T = 1% T = 3% T = 5%4� 17.87 17.87 17.87 17.878� 17.87 17.87 17.87 17.8716� 0 0 0 0Two-level (dirty-bit)T = 0.1% T = 1% T = 3% T = 5%4� 17.87 17.87 17.87 17.878� 17.87 17.87 17.87 17.8716� 0 0 0 0One-levelT = 0.1% T = 1% T = 3% T = 5%4� 24.53 24.34 24.34 24.348� 19.85 19.85 17.90 17.9016� 13.22 13.04 13.04 13.04to execute8 . The reason is that a bu�er dump is nota full context switch. No change of context occurs.Sampling rate can be increased without signi�cantperformance impact, provided there is kernel support.The only performance degradation comes from ush-ing the bu�er.5 Concluding RemarksThis paper has presented a method for obtainingpro�le information without signi�cant run-time slow-down (e.g., 0.4%{4.6%). This makes the compile-use-recompile approach presented here is much easierfor software vendors than the traditional compile-run-recompile method of pro�ling. Using our techniques,software vendors can supply pro�led versions of ap-plications to alpha- and beta-testers, later collectingthe pro�les for �nal pro�led optimizations. No sam-ple suite of inputs is required. The longer the pro�ledversion remains in the �eld, the higher the probabilitythat the pro�les match day-to-day use. Without theneed for input sets, pro�ling can be used to optimizeinteractive, real-time, and system software packages.All of the features required to use our techniquesare already present in commercial processors. Mostof these processors have branch target bu�ers, manythat employ two-bit counter predictors. The trace se-lection error for these schemes is quite small. Whenthe error does occur, it has the e�ect of limiting thescope of the optimization, which has few detrimentale�ects. It is important to note that the experimental8Each of these experiments was run immediately after areboot and the results are reproducible. Page 9
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