
A Semantic Model of Reference Counting and its AbstractionPaul HudakYale UniversityDepartment of Computer ScienceBox 2158 Yale StationNew Haven, CT 065201 IntroductionMost interpreters for functional languages (as well as Lisp) employ at some level in the implemen-tation a notion of sharing, whether manifested indirectly through an environment or directly viapointers. Sharing is essential to an e�cient implementation, saving time by not recomputing values,and saving space by having only one copy of each value. From the perspective of lambda calculus,sharing arises whenever a beta-reduction results in substitution for more than one occurrence of aparticular bound variable.Although sharing is pervasive at the implementation level, it is rarely seen expressed in anyformal context. This is unfortunate, since knowing certain sharing properties of a program atcompile time allows one to perform a variety of useful optimizations. Perhaps the most importantof these arises in languages supporting aggregate data structures that are updated \functionally,"where knowing that an aggregate has only one reference allows the update to be done destructivelyrather than by copying [6, 8, 11]. A special case of this situation arises in the construction ofsemantics-directed compilers, where knowing sharing properties of store arguments is crucial togenerating e�cient code[10]. Other optimizations include eliminating reference count operationsdetermined to be extraneous, performing \compile-time garbage collection" of objects whose extentcan be determined statically[1], stack-allocating instead of heap-allocating activation records, andreusing activation records in tail-recursive calls.In this paper we present a precise semantic model of reference counting for an applicative-orderinterpreter of a �rst-order functional language. Although a reference count is an operational con-cept, its semantics is expressed in a conventional denotational style. We also present an abstractionof (or approximation to) the model over �nite domains, with a decideable inferencing algorithm.We demonstrate the usefulness of the abstraction by applying it to some non-trivial programs thatcan be optimized based on the inferred reference counts.The methodology that we use to model reference counts is also interesting in its own right, sinceit demonstrates some useful ideas about semantic program analysis. In particular, it demonstrateshow a \non-standard" semantics may be \lifted" denotationally and expressed just as precisely as aThis research was supported in part by the National Science Foundation under Grants DCR-8403304 and DCR-8451415, and a Faculty Development Award from IBM. A preliminary version of this paper appeared in the Proceed-ings of the ACM Symposium on Lisp and Functional Programming, August 1986, pp. 351-363.1

standard semantics. It also represents a classical use of abstract interpretation [3, 8], demonstratingthe utility of that approach even on a non-standard semantics. Finally, perhaps the most interestingaspect of the methodology, we introduce the notion of a collecting interpretation of expressionswhich allows one to infer properties of \program points" rather than functions as a whole.2 PreliminariesWe adopt the following conventional notation. Double brackets are used to surround syntacticobjects, as in E [[exp]]. Square brackets are used for environment update, as in env[e=x]. Thenotation env[ei=xi] is shorthand for env[e1=x1 : : : en=xn], where the subscript bounds are inferredfrom context. Similarly, \new" environments are created by [e1=x1 : : : en=xn], being shorthand for?[e1=x1 : : :en=xn]. Angle brackets are used for tupling, as in he1; e2; e3i. The notation A� ! Bdenotes the domain B + (A ! B) + (A! A ! B) + � � �. P (S) denotes the powerset of S. Whennecessary, domains are assumed to be chain-complete partial orders with a unique least element(i.e., \pointed" cpos). We write \d 2 D = Exp" to de�ne the domain (or set) D with \canonical"element d, and whose bottom element is denoted ?D.Our language takes the form of mutually-recursive �rst-order recursion equations with constants.Its abstract syntax is given by:c; p 2 Con (constants)x 2 Bv (bound variables)f 2 Fv (function variables)body; e 2 Exp wheree ::= c j x j p(e1 : : : en) j f(e1 : : : en) (expressions)pr 2 Prog wherepr ::= f f1(x11 : : : x1k1) = body1f2(x21 : : : x2k2) = body2: : :fn(xn1 : : :xnkn) = bodyng (programs)For the remainder of the paper we generally ignore the di�ering numbers of arguments to functions,and refer to a \generic" function as having n arguments.A standard semantics for this language can be given as follows: LetD be some suitable domain ofbasic values, and de�ne two environments, one for bound variables, the other for function variables:fve 2 Fve = Fv ! D� ! Dbve 2 Bve = Bv ! DNow de�ne a semantic function Ep that gives meaning to programs, and a function E that gives2

meaning to expressions in a given bound and function variable environment:Ep : Prog ! FveE : Exp! Fve! Bve! DK : Con! D� ! D (assumed given)Ep[[ffi(x1:::xn) = bodyig]] = fve whererecfve = [strict(�y1:::yn: E [[bodyi]] fve [yj=xj]) = fi]E [[c]] fve bve = K[[c]]E [[x]] fve bve = bve[[x]]E [[p(e1:::en)]] fve bve = K[[p]] (E [[e1]] fve bve) : : :(E [[en]] fve bve)E [[fi(e1:::en)]] fve bve = fve[[fi]](E [[e1]] fve bve) : : :(E [[en]] fve bve)where �y1:::yn:exp is assumed to be just exp when n = 0, and strict is a function that \stricti�es"its functional argument.1Note that the meaning of a program is the meaning of its top-level functions, which we capturethrough Ep in the environment fve. For simplicity we assume that the �rst function f1 takesno arguments, and a program is \run" by calling f1. More speci�cally, to run a program pr =[[ffi(x1:::xn) = bodyig]] is to evaluate Ep pr [[f1]].3 A Formal Semantics of Reference CountingThere are two operational notions whose understanding helps clarify the semantics of referencecounting.First, an object needed in more than one place is typically handled by an interpreter in one oftwo ways: either the object itself is copied, or a pointer to the object is copied. We refer to thesetwo methods as pass-by-value and pass-by-reference, respectively.2 It is our goal to keep track ofhow many copies of a given pointer are \active" at any given time during program execution { thatnumber is referred to as the reference count of the object they point to.We shall ignore the rationale for using either pass-by-value or pass-by-reference, except to pointout that some values can be represented as compactly as a pointer, and can thus be copied as easilyas copying a pointer. Other values may occupy several words of memory and are thus better sharedusing pointers.The second operational notion is that a reference count operation is in essence a form of side-e�ect, and thus we should expect our semantics to require techniques similar to those for dealingwith side-e�ects in a conventional language. In particular, we should expect to need a store, whereasin a standard interpretation, such as that given earlier, a simple bound variable environment withno store su�ces.1That is, (strictf) is a function just like f but that returns ? if applied to any argument that is ?. It is similarto Stoy's use of the same function [12].2These terms have traditionally been used to describe parameter-passing mechanisms in procedure calls, but herewe attribute the term to the objects themselves. 3

To see that a reference count operation is a form of side-e�ect, consider the expression E = \ifpred then con else alt", where each subexpression has one occurrence of x. If there are no otherreferences to x, its reference count can be thought of as 3 prior to the evaluation of E. But oncex is used in pred its reference count will be 2, and once pred is completely evaluated either conor alt can be discarded, so the reference count will be 1. Eventually x will be used in evaluatingeither con or alt, at which point the count drops to 0. This behavior is clearly not \referentiallytransparent," and resembles a variable being side-e�ected.Our model distinguishes only between pass-by-value and pass-by-reference objects; typical ex-amples of the former include booleans and small integers, and of the latter include lists and arrays.To make our presentation more concrete we shall assume one particular type of each, and theirassociated operators: the domain of integers with a standard set of operators, and the domain ofarrays with the operators new array and update. The call new array(n) returns a one-dimensionalarray of length n whose elements are all nil, and update(a; i; x) returns an array just like a butwhose ith element is x. For simplicty we restrict each element x to be pass-by-value.3.1 Semantic DomainsInt non� negative integersLoc = Int + fnoneg locationsRc = Int reference countsBve = Bv ! Loc bound variable environmentsSt = Loc! Rc storesFve = Fv ! Loc� ! St! (Loc� St) function variable environmentsLocations and reference counts are modelled using the standard at domain of non-negativeintegers. A bound variable environment maps bound variables to locations in the store. In astandard semantics a store would map locations to values in some standard domain, but for ourpurposes a store maps locations to reference counts, since that is all we are interested in. It is ourintent that a store st 2 St \emulate" the real store of an interpreter, in that no cells are allocatedin st unless they would have been in the interpreter's store. Unused, or \free" elements in the storecan be recognized as those whose reference count is zero.Elements of Fve give meaning to top-level functions in the program, analogous to Fve in thestandard semantics.3.2 Semantic FunctionsThe operational semantics that we wish to capture can be summarized as follows: A programbegins with an empty store. As the program executes, certain operators (such as new array andupdate) cause the allocation of new cells in the store whose initial reference count is one. Sharingresults when an object is passed as an argument in a function call, since there may be more thanone occurrence of the corresponding formal parameter. Upon a function call, the arguments areevaluated from left to right, and then the body of the function is evaluated with a new boundvariable environment and updated store. The updated store is obtained by increasing the reference4

count of each actual parameter that is a location by the number of occurrences of the correspondingformal parameter in the body of the function. Reference counts are ultimately decremented asoccurrences of formal parameters are encountered and \used." This includes a special dereferencingmechanism for unevaluated arms of conditionals.Let us now make all this precise. We introduce the following semantic functions:Rp : Prog ! FveR : Exp! Fve! Bve! St! (Loc� St)K : Con! Exp� ! Fve! Bve! St! (Loc� St)D : Exp! Bve ! St! StR[[exp]] fve bve st returns a pair, hloc; st0i, which is interpreted as follows: st0 is the modi�edstore that results from evaluating exp in bve and st. If exp evaluates to a pass-by-reference object,then st0(loc) contains the value (i.e., reference count) of exp; otherwise loc = none, meaning exp ispass-by-value. Note that the evaluation of a single expression may induce an arbitrary number ofchanges to the store as each subexpression is evaluated.K is used in the de�nition of R, and describes the behavior of primitive functions, which returnin this semantics the same kind of object as R. K uses D to give meaning to the conditional if ;i.e., to \dereference" the unevaluated arm. Whereas R mimics the evaluation of an expression, Dmimics the dereferencing of an expression, which in turn might dereference other (sub)expressions.Thus D[[exp]] bve st returns the store st0 that results from dereferencing exp.3.3 Auxiliary FunctionsWe de�ne the following auxiliary functions to simplify the semantics: dec and inc are used todecrement and increment, respectively, the reference count of a location in a store, alloc is used toallocate a new location in a store, and inc st is used to create the new store in which a functionbody is to be evaluated. More formally:dec st loc = if (loc = none) then st else st[(st(loc)� 1)=loc]inc st loc = if (loc = none) then st else st[(st(loc) + 1)=loc]alloc st = let loc = �rst location in st such that st(loc) = 0in hloc; st[1=loc]iinc st st i loc1:::locn = let #xj = number of occurrences of xj in bodyircj = st(locj) + #xj � 1; j = 1:::nin st[rcj=locj]Note that inc st increments the reference count of each actual location by one less than the numberof occurrences of the corresponding formal parameter. This is an optimization based on the wayinc st is used, which should become clear shortly.5

3.4 Semantic EquationsThe intuitive ideas described in Section 3.2 can now be expressed formally through Rp and R:Rp[[ffi(x1:::xn) = bodyig]] = fve whererecfve = [strict(� loc1:::locn st: let st0 = inc st st i loc1:::locnin R[[bodyi]] fve [locj=xj] st0) = fi]R[[c]] fve bve st = hnone; stiR[[x]] fve bve st = hbve[[x]]; stiR[[p(e1:::en)]] fve bve st = K[[p]][[e1]]:::[[en]] fve bve stR[[f(e1:::en)]] fve bve st = let hloc1; st1i = R[[e1]] fve bve sthloc2; st2i = R[[e2]] fve bve st1: : :hlocn; stni = R[[en]] fve bve stn�1in fve[[f]] loc1:::locn stnNote that after all of the arguments in a call are evaluated, each has a reference count of at leastone { this is because the call itself still has a \handle" on them. This handle is released once thefunction body begins execution, which is why inc st increments the reference counts by one lessthan the number of bound variable occurrences. Thus if there are no occurrences of xj then theobject it is bound to will have its reference count decremented (since #xj � 1 = �1), which isprecisely the intent.What remains to be de�ned is the behavior of each primitive function. Throughout this paperwe will express, for each semantics introduced, the meaning of three \canonical" primitive functions:the conditional if (which normally only evaluates one of its arms), arithmetic + (the canonicalstrict operator with left-to-right evaluation of its arguments), and update (the canonical \locationgenerator"). Thus K is de�ned by:K[[if]] p c a fve bve st = let hloc; st0i = R p fve bve stin if Oracle(p) then (R c fve bve (D a bve st0))else (R a fve bve (D c bve st0))D[[c]] bve st = stD[[x]] bve st = dec st bve[[x]]D[[p(e1:::en)]] bve st = D[[en]] bve (::: (D[[e2]] bve (D[[e1]] bve st)))D[[f(e1:::en)]] bve st = D[[en]] bve (::: (D[[e2]] bve (D[[e1]] bve st)))The predicate is evaluated; if it is true, the alternate is dereferenced and the consequent is evaluated;otherwise the consequent is dereferenced and the alternate is evaluated. Note that the call toOraclecould be replaced with a call to E and suitable environments in the standard semantics. The oracleitself is used only for convenience, to avoid cluttering up this semantics with the standard one.K[[+]] e1 e2 fve bve st = let hloc1; st1i = R e1 fve bve stin R e2 fve bve st1The arguments are evaluated left-to-right. For simplicity we assume programs to be \well-typed,"and thus the arguments to and the result of the call to + are pass-by-value, so no dereferencing of6

the store is required.K[[update]] a i x fve bve st = let hloc1; st1i = R a fve bve sthloc2; st2i = R i fve bve st1hloc3; st3i = R x fve bve st2in alloc (dec st3 loc1)The to-be-updated array a, index i, and new element x are evaluated, in that order. Then a new,updated array with reference count one is created using alloc. Note that loc1's reference count isnot decremented until both i and x are evaluated, because it is only then that the update to a canbe made.4 Abstract Interpretation of Reference CountingThe semantics presented thus far is exact, and thus evaluating a particular reference count maynot terminate, any more than a program in the standard semantics would. For use by a compilerwe must choose a suitable abstraction (i.e., approximation) that will guarantee termination yetstill provide useful information about the true reference counts. For us a suitable abstraction isone in which the inferred reference count is at least as great as the true one; i.e., we wish toerr on the side of thinking there are more pointers to an object than there actually are. In thissection we methodically develop such an abstraction in which: (1) the base domains are abstractedto powersets of �nite approximations, (2) the primitive functions are abstracted similarly, (3) anabstract interpretation is thus induced on Rp and R, and �nally (4) a collecting interpretation ofexpressions is developed.4.1 PreliminariesTo set up things to come, we �rst give alternative versions of Rp and R in which:� We assume that every expression in a program has a unique label. An expression expwith label lab is written lab:exp, and the syntactic functions expr and label are de�nedby: expr[[lab:exp]] = exp, and label[[lab:exp]] = lab. Using labels allows us to distinguishdi�erent occurrences of the same bound variable (or common subexpression), which will berequired in Section 5.� We use powersets to allow an expression to have multiple values (i.e., locations). This will beneeded to express the abstract behavior of the conditional.With these two changes in mind, the new functions, which we call R̂p, R̂, K̂ and D̂, are de�ned by:R̂p : Prog ! FveR̂ : Label! Fve! Bve! St! P (Aloc� St)K̂ : Con! Label� ! Fve! Bve! St! P (Aloc� St)D̂ : Label! Bve ! St! St7

where, for the moment, we leave the domains Aloc and Src unde�ned.R̂p[[ffi(x1:::xn) = bodyig]] = fve whererecfve = [strict(� loc1:::locn st: let st0 = inc st st i loc1:::locnin R̂ label[[bodyi]] fve [locj=xj] st0) = fi]R̂ lab fve bve st = case expr(lab) of[[c]] : fhnone; stig[[x]] : fhbve[[x]]; stig[[p(e1:::en)]] : K̂[[p]] label[[e1]]:::label[[en]] bve st[[f(e1:::en)]] : Sffve[[f]] loc1:::locn stn j hloc1; st1i 2 R̂ label[[e1]] fve bve st;hloc2; st2i 2 R̂ label[[e2]] fve bve st1;: : :hlocn; stni 2 R̂ label[[en]] fve bve stn�1gD̂ lab bve st = case expr(lab) of[[c]] : st[[x]] : dec st bve[[x]][[p(e1:::en)]] : D̂ label[[en]] bve (::: (D̂ label[[e2]] bve (D̂ label[[e1]] bve st)))[[f(e1:::en)]] : D̂ label[[en]] bve (::: (D̂ label[[e2]] bve (D̂ label[[e1]] bve st)))If Aloc and Src are interpreted as just Loc and Rc, respectively (as de�ned earlier), and K̂is imagined to be a function that suitably \mimics" K, then these equations yield a semanticsfunctionally equivalent to that given earlier, since K̂ would be deterministic and thus R̂ and K̂would always return singleton sets. Our goal, of course, is to interpret the equations for R̂p andR̂ over abstract domains and likewise de�ne an abstract version of K̂. This is done in the next twosections.4.2 Abstract DomainsThe domain of sticky reference counts is de�ned by:Src = f0; 1; : : : ; maxrc;1gwhere maxrc is an arbitrary positive integer. The idea is that if a reference count ever exceedsmaxrc, it \jumps" to in�nity and \sticks" there, never to decrease again.3 Justi�cation for usingthis domain comes from empirical studies (at least of Lisp programs [2]) that indicate that objectsare generally not shared very much, so that choosing a suitably high value for maxrc will givefairly accurate results most of the time. As with Rc, Src is a at domain. We de�ne the followingprimitive operations on the elements:x� n = if (x+ n > maxrc) then 1 else (x+ n)x	 n = if (x =1) then 1 else (x� n)3This same idea is often used in implementations that try to save space by using a small, �xed-size reference count�eld. 8

which capture the \stickiness" property described above. We assume that the auxiliary functionsdec, inc, and inc st are rede�ned to use these new operations.Similarly, the domain of bounded locations is de�ned by:ALoc = fnone; 1; 2; : : : ; maxlocgwhere maxloc is the total number of occurrences of calls to primitive functions that generate newlocations (such as update and new array). The idea here is that each such occurrence of a \locationgenerator" can be approximated by an operator that generates the same location every time it iscalled. For convenience we assume that each occurrence of such a primitive operator op carries withit its unique location as a subscript, as in oploc. ALoc is a at domain, where none is the bottomelement and the others are pairwise incomparable.Although we have found ALoc to be suitable for most needs, better approximations to thedomain of locations are possible. For example, one might give a unique location for each operatoroccurrence and call to the function containing that occurrence. That is, suppose opi is an occurrenceof op in the body of f . Then the location returned by a call to opi depends on which occurrence ofa call to f gave rise to it. For example, if maxloc is as de�ned above, and fj is the jth occurrenceof a call to f , then one way to compute such a location is simply i+ j �maxloc.4The above two abstract domains induce the following remaining ones:Bve = Bv ! AlocSt = Aloc! SrcFve = Fv ! Aloc� ! St! P (Aloc� St)and these induce the following types on R̂p, R̂, K̂, and D̂, as stated earlier:R̂p : Prog ! FveR̂ : Label! Fve! Bve! St! P (Aloc� St)K̂ : Con! Label� ! Fve! Bve! St! P (Aloc� St)D̂ : Label! Bve ! St! StNote that a powerset is used to model the multiple outcomes in (Aloc � St). Thus if one of thepossible outcomes is ? this will not be detected (unless it is the only possible outcome, in whichcase the result will be fg). If reasoning about possible termination is important, then a suitablepowerdomain construction could be used, but this is an unnecessary complication for our purposes.4.3 Abstract PrimitivesR̂p, R̂ and D̂ as de�ned in Section 4.1 now capture our desired abstraction, but we have theremaining task of giving an abstract interpretation of primitive functions, captured in the de�nition4Note that this can be viewed as a \second-order" approximation, and that even higher order approximations canbe imagined, such as calls to functions which call functions which call primitive operators (which would be \third-order"), and so on. At the other extreme, a \zero-order" approximation would be one in which the store had justone location that every operator shared! 9

of K̂: K̂[[if]] lp lc la fve bve st = let S = R̂ lp fve bve stin Sf (R̂ lc fve bve (D̂ la bve st0))[(R̂ la fve bve (D̂ lc bve st0)) j hloc; st0i 2 SgK̂[[+]] l1 l2 fve bve st = SfR̂ l2 fve bve st1 j hloc1; st1i 2 R̂ l1 fve bve stgK̂[[updateloc]] la li lx fve bve st = fhloc; st03i j hloc1; st1i 2 R̂ la fve bve st;hloc2; st2i 2 R̂ li fve bve st1;hloc3; st3i 2 R̂ lx fve bve st2;st03 = inc (dec st3 loc1) loc gNote that (1) the conditional no longer makes an appeal to the oracle { instead, both outcomesof the predicate are considered equally likely, and thus the values returned from the alternate andconsequent are joined together; (2) + remains essentially unchanged; and (3) instead of a call toalloc, the new location generated by update is simply its subscript, as described earlier, whosereference count is increased by one.5 A Collecting Interpretation of Reference Counts5.1 IntroductionUnfortunately, R̂p and R̂ are not exactly what we want! We'd rather point to an expression exp in aprogram pr and answer the following question: \What are the reference counts of all possible valuesthat exp could have during program execution?" The most obvious way to gather this data wouldbe to completely construct (R̂p pr) using �xpoint iteration as described in the proof of Theorem1, and then explicitly build a caching function to remember the values returned by all calls to R̂when the program pr is \run." Although this technique is feasible, it may be intractable in that R̂is a very large function for typical programs.A better approach is to directly write a recursive description of the desired result. More precisely,we want a function RC such that RC(lab) returns the set of all possible reference counts thatexpr(lab) could possibly evaluate to. In actuality the RC that will be de�ned below can be describedby: RC(lab) = f hbve; st; loc; st0i j (R lab fve bve st) was called during program execution;returning hloc; st0i gfrom which the aforementioned information is easily recovered. We refer to RC as a collectinginterpretation of expressions, since it \collects" all possible values that each expression might haveduring program execution.5 The general theory of such an interpretation is beyond the scope ofthis paper; more details may be found in [5]. For our purposes the following discussion su�ces: Wewill write a recursive set equation forRC(lab) whose least �xpoint (i.e., smallest set) has the general5Our use of the term collecting interpretation is somewhat non-standard, in that the normal use refers to collectingvalues in the standard semantics. Reference counts are clearly a non-standard semantics, and furthermore our primaryinterest is collecting values in an abstraction of the non-standard semantics.10

property that if values resulting from the left-to-right evaluation of arguments in a call are in thecorresponding sets of results for those arguments, then the result of calling the function on thosevalues must be in the set of results of the call. The least �xpoint of such an equation will be theempty set, of course, unless it is \primed" by requiring the set to contain the result of evaluatingthe whole program.5.2 Details of the Collecting InterpretationTo simplify the equations de�ning RC we make extensive use of a \pattern-matching" conventionthat is best explained by example: f x = fc j hx; ai 2 S1ha;�; ci 2 S2gis shorthand for: f x = fc j (9x0; a; a0; b; c) such that hx0; ai 2 S1;ha0; b; ci 2 S2;(x0 = x); (a0 = a)gThe symbol \�" essentially means \don't care."A second convention is necessary to speak about the syntactic \context" in which a labelledexpression lies. Given a label lab, context(lab) is de�ned as the immediately surrounding expressioncontaining expr(lab), or [[]] if lab is the label of the body of some function. For example, if exp =[[f(l:e)]] then context(l) = exp, and if fi is de�ned by [[fi = l:bodyi]] then context(l) = [[]].Now for the details of the collecting interpretation. The functions have types:Cache = P (Bve � St� Aloc� St)RCp : Prog ! Label! CacheRC : Label! CacheR̂0 : Label! Bve ! St! CacheK̂0 : Con! Label� ! Bve! St! Cache
11

and the equations de�ning them are:RCp[[ffi(x1:::xn) = bodyig]] = RC whererecRC lab = (primer lab) [case context(lab) of[[l:f(lab:e1 � � �)]] : SfR̂0 lab bve st j hbve; st;�;�i 2 RC lg[[f(� � � l:ei�1 lab:ei � � �)]] : SfR̂0 lab bve st j hbve;�;�; sti 2 RC l; st 6= ?g[[]] : SfR̂0 lab bve st j 9 [[fi(l1:e1 : : : ln:en)]]such that lab = label[[bodyi]];h�;�; bve; sti 2 linkargs i l1:::lng[[l:p(lab:e1 � � �)]] : SfR̂0 lab bve st j hbve; st;�;�i 2 RC lg[[p(� � �l:ei�1 lab:ei � � �)]]; where [[p]] 6= [[if]] : SfR̂0 lab bve st j hbve;�;�; sti 2 RC l; st 6= ?g[[if(l1:p; lab:c; l2:a)]] or [[if(l1:p; l2:c; lab:a)]] : SfR̂0 lab bve (D̂ l2 bve st) jhbve;�;�; sti 2 RC l1; st 6= ?gR̂0 lab bve st = case expr(lab) of[[c]] : fhbve; st; none; stig[[x]] : fhbve; st; bve[[x]]; stig[[p(l1:e1 � � � ln:en)]] : fhbve; st;?;?ig[(K̂0[[p]] l1:::ln bve st)[[fi(l1:e1 � � � ln:en)]] : fhbve; st;?;?ig[f hbve; st; loc; st00ij hbve; st; bve0; st0i 2 linkargs i l1:::ln;hbve0; st0; loc; st00i 2 RC label[[bodyi]]glinkargs i l1:::ln = fhbve; st; [locj=xj]; st0i j hbve; st; loc1; st1i 2 RC l1;hbve; st1; loc2; st2i 2 RC l2;: : :hbve; stn�1; locn; stni 2 RC ln;sti 6= ?; i = 1; :::; nst0 = inc st stn i loc1:::locngprimer lab = if (lab = label[[body1]]) then (R̂0 lab ?Bve (�loc:0)) else fgThe �fth case in the equation for RC assumes that all primitives except for [[if]] evaluate theirarguments left-to-right.To understand these equations it helps to note that, although the de�nition of RC was arrivedat in a direct manner, its construction using �xpoint iteration models precisely the behavior of acache! We begin with the �rst approximation RC0 = � lab:fg. The �rst iteration yields RC1 =primer, indicating that the program has been \started." Further iterations \simulate" the top-down execution of the (abstract) program, which eventually terminates because of monotonicityover �nite domains.Computing contributions to the \cache" for bound variables and constants is easy (representingthe \leaves" in the top-down evaluation). However for function calls we must �rst \record" the factthat the call, say R̂ lab bve st, was made by adding a tuple hbve; st;?loc;?sti to the cache, andthen continuing the evaluation top-down by evaluating the arguments and eventually the body ofthe function. h?loc;?sti can be viewed as a �rst approximation to the value of R̂ lab bve st. As in aconventional semantics this value might never be improved upon, thus reecting non-termination.12

But as with R̂, this semantics is able to indicate non-termination as a possible outcome (in agiven bve and st) only if that is the only possible outcome { powerdomains are needed for a �nerdistinction of termination.Most of the details in this semantics is concerend with \linking together" the sequential evalu-ation of arguments, and returning the ultimate value of a call back to the calling location. To aidthis, linkargs i l1:::ln returns all hbve; st; bve0; st0i such that a call to [[fi(l1:e1 � � � ln:en)]] in hbve; stiresulted in the evaluation of bodyi in hbve0; st0i. In other words, linkargs links up the stores thatresult from the evaluation of the arguments in a call.Note the similarity of R̂0 to R̂ de�ned earlier { the primary di�erence is that R̂ consulted fveto determine the result of a call, whereas R̂0 simply looks up results in the cache function RC.There is of course something missing from the above equations { the de�nition of K̂0, givenbelow: K̂0[[if]] lp lc la bve st = fhbve; st; loc2; st2i j hbve; st; loc1; st1i 2 RC lp; where((st01 = D lc bve st1) ^ (hbve; st01; loc2; st2i 2 RC la)) _((st01 = D la bve st1)^ (hbve; st01; loc2; st2i 2 RC lc));sti 6= ?; i = 1; 2gK̂0[[+]] l1 l2 bve st = fhbve; st; none; st2i j hbve; st; loc1; st1i 2 RC l1; st1 6= ?hbve; st1; loc2; st2i 2 RC l2; st2 6= ?gK̂0[[updateloc]] la li lx bve st = fhbve; st; loc; st0i j hbve; st; loc1; st1i 2 RC la;hbve; st1; loc2; st2i 2 RC li;hbve; st2; loc3; st3i 2 RC lx;sti 6= ?; i = 1; 2; 3st0 = inc (dec st3 loc1) locg6 CorrectnessTheorem 1 (Liveness) For any (�nite) program pr 2 Prog, (R̂p pr) is computable.Proof: Let fve = (R̂p pr). Label, Bve, St, and Aloc are �nite domains. Furthermore, R̂p, R̂,K̂ and D̂ are monotonic functions since they are constructed solely from monotonic operators.Therefore fve can be e�ectively computed in the standard iterative manner: start with the bottomelement fve0 = � fv loc1:::locn st: fg and iterate until the least upper bound of the chain is reached,which is guaranteed because the domains are �nite and the chain is monotonically increasing. 2Theorem 2 (Liveness) For any (�nite) program pr 2 Prog, (RCp pr) is computable.Proof: By an argument analogous to that for Theorem 1. 2We would also like to show that R̂p and R̂ form an abstraction of the standard reference countsemantics. For this purpose we wish elements of Src to be ordered by arithmetic \less-than-or-equal-to," thus forming a chain. More precisely, de�ne vrc, read \is an abstraction of," as follows:hloc; sti vrc hloc0; st0i i� st(loc) � st0(loc0)hbve; sti vrc hbve0; st0i i� (8x 2 Bv) hbve[[x]]; sti vrc hbve0[[x]]; st0iS vrc t i� (9s 2 S) s vrc t13

Theorem 3 (Safety) If hbve; sti vrc hbve0; st0i then (R̂[[exp]] fve bve st) vrc (R[[exp]] fve bve0 st0)Proof: (Outline) � and 	 are abstractions of + and �, respectively, since (x� y) vrc (x+ y) (andsimilarly for). From this it can be shown that K̂ is an abstraction of K. Then by an argumentsimilar to the proof of Mycroft's correctness theorem for abstract interpretation [8], it can be shownthat R̂p and R̂ are abstractions of Rp and R, respectively. 2Corollary: Let hloc; sti = R[[exp]] fve bve st and S = R̂[[exp]] fve bve st. Then there existshloc0; st0i 2 S such that st0(loc0) � st(loc). That is, given the same bound variable environmentand store, the abstraction yields at least one reference count whose value is greater than the trueone.As mentioned earlier, the inferred reference count information could be used in a variety ofways. One of the more important uses (and the one that originally motivated this research) is todetermine when it is safe to perform destructive updates on aggregate data structures. Such anoptimization is possible if the reference count of the aggregate is always 1 when the update is aboutto be performed. With respect to locations and reference counts, this interpreter optimization canbe formalized as follows:K[[update]] a i x bve st = let hloc1; st1i = R a bve sthloc2; st2i = R i bve st1hloc3; st3i = R x bve st2in if st3(loc1) = 1 then hloc1; st3i else alloc (dec st3 loc1)which should be contrasted against the original de�nition of K[[update]] given in Section 3.4.As stated this is a run-time optimization; but if one could infer at compile time that the test\st3(loc1) = 1" is true, then the optimization could be done at compile-time by essentially \constant-folding" the above conditional expression into hloc1; st3i. This process can be formalized using thecollecting interpretation as follows:Theorem 4 (Copy Avoidance) Consider a particular update operation u = [[update(l1:a; l2:i; l3:x)]]in program pr, and let RC = RCp pr. Then u can be done destructively if the existence of bve, loc,and sti; i = 1; 2; 3 such that: hbve; st0; loc; st1i 2 RC l1hbve; st1;�; st2i 2 RC l2hbve; st2;�; st3i 2 RC l3always implies that st3(loc) = 1.7 Examples of Copy AvoidanceWe give three examples of applying the copy avoidance optimization described in the last section.The �rst is very simple:f result() = init(new array(100); 1)init(a; i) = if i > 100 then a else init(update(a; i; 0); i+ 1) g14

which creates an array whose elements are all zero. A completely naive implementation of updatewould create a new copy of the array upon each update, thus consuming 1002 locations! Usingthe collecting interpretation, however, it can be determined through Theorem 4 that the updatecan always be done destructively. It is worth stepping through the �xpoint computation of thecache for this example to see how this is accomplished, thus allowing the reader to see how theprogram's execution is \simulated." To do this, let us �rst rewrite the above program to conformto the formal syntax, so that there is a label on each expression, the functions are renamed, andthe \location generators" are subscripted with their �xed locations:pr = [[f f1() = 1:f2(2:new array1(3:100); 4:1)f2(a; i) = 5:if(6: > (7:1; 8:100); 9:a; 10:f2(11:update2(12:a; 13:i; 14:0); 15:+ (16:i; 17:1)g]]In what follows, g1t g2, where g1; g2 2 (Label! Cache), indicates the standard least upper boundby the subset ordering; i.e., �lab: (g1 lab)[(g2 lab). Also, x 7! val is just shorthand for ?[val=x].Finally, in \anticipation" of the needed stores and environments, let:st0 = �loc:0st1 = �loc: if loc = 1 then 2 else 0st2 = �loc: if loc = 2 then 2 else 0st01 = �loc: if loc = 1 then 1 else 0st02 = �loc: if loc = 2 then 1 else 0bve1 = [1=a; none=i]bve2 = [2=a; none=i]We wish to compute RC = RCp pr. To do so, the following chain is constructed, whose leastupper bound is RC: RC0 = ?Label!Cache = �lab:fgRCi = RCi�1 t expiwhere the expi are de�ned in Figure 1, each representing one \step" in the simulation. For example,exp7 through exp10 represent �rst the call to > (i; 100) (exp7), followed by the evaluation of i and100 (exp8 and exp9), and �nally the return from the call (exp10). Note that RC37 = RC38 and isthus the least upper bound.According to Theorem 4, we now need only examine the cache at labels 12, 13, and 14. FromFigure 1 we see that these can be summarized by:12 7! fhbve1; st01; 1; st01i; hbve2; st02; 2; st02ig13 7! fhbve1; st01; none; st01i; hbve2; st02; none; st02ig14 7! fhbve1; st01; none; st01i; hbve2; st02; none; st02ig)Since st01(1) = 1 and st02(2) = 1, then according to Theorem 4 the update can be done destructively.The next example is somewhat more complex. It is the quicksort algorithm as it was initiallydescribed by Hoare [4], in which a vector of keys is recursively \side-e�ected" in a divide-and-15

exp1 = 1 7! R̂0 1 ?Bve st0 = fh?; st0;?;?igexp2 = 2 7! R̂0 2 ?Bve st0 = fh?; st0;?;?igexp3 = 3 7! R̂0 3 ?Bve st0 = fh?; st0; none; st0igexp4 = 2 7! fh?; st0; 1; st01igexp5 = 4 7! R̂0 4 ?Bve st01 = fh?; st01; none; st01igexp6 = 5 7! R̂0 5 bve1 st1 wherest1 = inc st st01 2 1 nonefh?; st0; bve1; st1ig = linkargs 2 2 4= 5 7! fhbve0; st1;?;?igexp7 = 6 7! fhbve1; st1;?;?igexp8 = 7 7! R̂0 7 bve1 st1 = fhbve1; st1; none; st1igexp9 = 8 7! fhbve1; st1; none; st1igexp10 = 6 7! fhbve1; st1; none; st1igexp11 = 9 7! R̂0 9 bve1 (D̂ 10 bve1 st1) = fhbve1; st01; 1; st01igt 10 7! R̂0 10 bve1(D̂ 9 bve1 st1) = fhbve1; st01;?;?igexp12 = (5 7! fhbve1; st1; 1; st01ig)t (11 7! fhbve1; st01;?;?ig)exp13 = (1 7! fh?; st0; 1; st01ig)t (12 7! fhbve1; st01; 1; st01ig)exp14 = 13 7! fhbve1; st01; none; st01igexp15 = 14 7! fhbve1; st01; none; st01igexp16 = 11 7! K̂0[[update2]] 12 13 14 bve1 st01 = fhbve1; st01; 2; st02igexp17 = 15 7! fhbve1; st02;?;?igexp18 = 16 7! fhbve1; st02; none; st02igexp19 = 17 7! fhbve1; st02; none; st02igexp20 = 15 7! fhbve1; st02; none; st02igexp21 = 5 7! fhbve2; st2;?;?ig where st2 = inc st st02 2 2 noneexp22 = 6 7! fhbve2; st2;?;?igexp23 = 7 7! fhbve2; st2; none; st2igexp24 = 8 7! fhbve2; st2; none; st2igexp25 = 6 7! fhbve2; st2; none; st2igexp26 = (9 7! fhbve2; st02; 2; st02ig)t (10 7! fhbve2; st02;?;?ig)exp27 = (5 7! fhbve2; st2; 2; st02ig)t (11 7! fhbve2; st02;?;?ig)exp28 = (10 7! fhbve1; st01; 2; st02ig) t (12 7! fhbve2; st02; 2; st02ig)exp29 = (5 7! fhbve1; st1; 2; st02ig)t (13 7! fhbve2; st02; none; st02ig)exp30 = (1 7! fh?; st0; 2; st02ig)t (14 7! fhbve2; st02; none; st02ig)exp31 = 11 7! fhbve2; st02; 2; st02igexp32 = 15 7! fhbve2; st02;?;?igexp33 = 16 7! fhbve2; st02; none; st02igexp34 = 17 7! fhbve2; st02; none; st02igexp35 = 15 7! fhbve2; st02; none; st02igexp36 = (5 7! fhbve2; st2;?;?ig)t (10 7! fhbve2; st02; 2; st02ig)exp37 = 5 7! fhbve2; st2; 2; st02igFigure 1: Sample Fixpoint Computation of RC16

conquer manner.6 We can express this algorithm functionally as:result() = quicksort(vector)quicksort(v) = qsort(v; 1; n)qsort(v; left; right) = if left � right then velse scanright(v; left+ 1; right; v[left]; left; right)scanright(v; l; r; pivot; left; right) = if l = r then finish(update(v; l; pivot); l; left; right)else if v[r] � pivot then scanright(v; l; r� 1; pivot; left; right)else scanleft(update(v; l; v[r]); l+ 1; r; pivot; left; right)scanleft(v; l; r; pivot; left; right) = if l = r then finish(update(v; l; pivot); l; left; right)else if v[l] � pivot then scanleft(v; l+ 1; r; pivot; left; right)else scanright(update(v; r; v[l]); l; r� 1; pivot; left; right)finish(v;mid; left; right) = qsort(qsort(v; left;mid� 1); mid+ 1; right)Except for the unaesthetic appearance of our bare-bones syntax (whose �rst-order nature requiresthat everything be \attened"), this is actually a rather elegant formulation of the algorithm, inwhich mutual recursion is used to express the alternation between scanning the vector from the leftand right.Using RCp we can infer that all of the updates in this program may be done destructively.This is quite interesting, because (1) most functional versions of quicksort use lists and consumespace proportional to n lgn, (2) the \naive" implementation of the above program consumes spaceproportional to n2 lg n, and (3) the optimized version consumes space proportional to n. A compilerusing our optimization would thus allow the �rst (to our knowledge) functional version of quicksortto match the linear space complexity of Hoare's original algorithm!The third example is the standard reference count semantics given in Section 3.4 considered asa functional program. More speci�cally, those equations can be rewritten to conform to our �rst-order syntax, and the store updates of form st[rc=loc] can be replaced with update(st; loc; rc). Oncethat is done the collecting interpretation is able to infer that all updates can be done destructively,just as the true interpreter would. So in some sense we have \boot-strapped" the analysis uponitself! This is a very encouraging result for semantics-directed compilers. A store that can beupdated destructively in this manner is said to be single-threaded, a property that can be inferredvia abstract reference counting as described here, or by a more direct (but perhaps less general)analysis as described in [10]. It is also related to the pebbling games described in [9].8 ExtensionsThere are several extensions to the analysis that should be straightforward, such as adding constantsthat may be pass-by-reference (i.e., that are initially allocated in the store), and allowing nestedequation groups or LET expressions. It should also be possible to allow arrays to contain arrays(thus generalizing lists) if one used the abstraction that any element selected from the array must beconsidered as a likely candidate for the subarray. Reasoning about the structure of such compositeobjects is more di�cult; Jones and Muchnick [7] provide such a treatment for lists.6The original \challenge" to solve this problem functionally and e�ciently was posed in January 1985 by DanielFriedman. 17

It is interesting to note that since our model has a store component, local side-e�ects may beeasily handled. However, a continuation semantics would probably be necessary to handle globalside-e�ects. A much harder extension would be the proper handling of higher-order functions andlazy evaluation. Actually it is not di�cult to give a proper reference count semantics for these(indeed we have done so for lazy evaluation), but it is di�cult to decide what a suitable (�nite)abstraction should be. We are continuing work in this area as well as in the general area of collectinginterpretations of expressions.9 AcknowledgementsThanks to Jonathan Young, Adrienne Bloss, Rich Kelsey and other members of the \WrestlingTeam" at Yale for their many helpful comments.References[1] J.M. Barth. Shifting garbage collection overhead to compile time. CACM, 20(7):513{518,1977.[2] D.W. Clark. An empirical study of list structure in lisp. CACM, 20(2):78{87, February 1977.[3] P. Cousot and R. Cousot. Abstract interpretation: a uni�ed lattice model for static analysis ofprograms by construction or approximation of �xpoints. In 4th ACM Sym. on Prin. of Prog.Lang., pages 238{252, ACM, 1977.[4] C.A.R. Hoare. Quicksort. Computing J., 5(4):10{15, April 1962.[5] P. Hudak. Collecting interpretations of expressions. Research Report 497, Yale University,Department of Computer Science, 1986.[6] P. Hudak and A. Bloss. The aggregate update problem in functional programming systems.In 12th ACM Sym. on Prin. of Prog. Lang., pages 300{314, ACM, 1985.[7] N.D. Jones and S.S. Muchnick. A exible approach to interprocedural data ow analysisand programs with recursive data structures. In 9th ACM Sym. on Prin. of Prog. Lang.,pages 66{74, ACM, January 1982.[8] A. Mycroft. Abstract Interpretation and Optimizing Transformations for Applicative Programs.PhD thesis, Univ. of Edinburgh, 1981.[9] J-C. Raoult and R. Sethi. The global storage needs of a subcomputation. In 11th ACM Sym.on Prin. of Prog. Lang., pages 148{157, ACM, January 1984.[10] D.A. Schmidt. Detecting global variables in denotational speci�cations. ACM Trans. on Prog.Lang. and Systems, 7(2):299{310, 1985. 18

[11] J. Schwarz. Verifying the safe use of destructive operations in applicative programs. In B.Robinet, editor, Program Transformations { Proc. of the 3rd Int'l Sym. on Programming,pages 395{411, Dunod Informatique, 1978.[12] J.E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming LanguageTheory. The MIT Press, Cambridge, Mass., 1977.

19

