A Semantic Model of Reference Counting and its Abstraction

Paul Hudak

Yale University
Department of Computer Science
Box 2158 Yale Station
New Haven, CT 06520

1 Introduction

Most interpreters for functional languages (as well as Lisp) employ at some level in the implemen-
tation a notion of sharing, whether manifested indirectly through an environment or directly via
pointers. Sharing is essential to an efficient implementation, saving time by not recomputing values,
and saving space by having only one copy of each value. From the perspective of lambda calculus,
sharing arises whenever a beta-reduction results in substitution for more than one occurrence of a
particular bound variable.

Although sharing is pervasive at the implementation level, it is rarely seen expressed in any
formal context. This is unfortunate, since knowing certain sharing properties of a program at
compile time allows one to perform a variety of useful optimizations. Perhaps the most important
of these arises in languages supporting aggregate data structures that are updated “functionally,”
where knowing that an aggregate has only one reference allows the update to be done destructively
rather than by copying [6, 8, 11]. A special case of this situation arises in the construction of
semantics-directed compilers, where knowing sharing properties of store arguments is crucial to
generating efficient code[10]. Other optimizations include eliminating reference count operations
determined to be extraneous, performing “compile-time garbage collection” of objects whose extent
can be determined statically[1], stack-allocating instead of heap-allocating activation records, and
reusing activation records in tail-recursive calls.

In this paper we present a precise semantic model of reference counting for an applicative-order
interpreter of a first-order functional language. Although a reference count is an operational con-
cept, its semantics is expressed in a conventional denotational style. We also present an abstraction
of (or approximation to) the model over finite domains, with a decideable inferencing algorithm.
We demonstrate the usefulness of the abstraction by applying it to some non-trivial programs that
can be optimized based on the inferred reference counts.

The methodology that we use to model reference counts is also interesting in its own right, since
it demonstrates some useful ideas about semantic program analysis. In particular, it demonstrates
how a “non-standard” semantics may be “lifted” denotationally and expressed just as precisely as a

This research was supported in part by the National Science Foundation under Grants DCR-8403304 and DCR-
8451415, and a Faculty Development Award from IBM. A preliminary version of this paper appeared in the Proceed-
ings of the ACM Symposium on Lisp and Functional Programming, August 1986, pp. 351-363.

standard semantics. It also represents a classical use of abstract interpretation [3, 8], demonstrating
the utility of that approach even on a non-standard semantics. Finally, perhaps the most interesting
aspect of the methodology, we introduce the notion of a collecting interpretation of expressions
which allows one to infer properties of “program points” rather than functions as a whole.

2 Preliminaries

We adopt the following conventional notation. Double brackets are used to surround syntactic
objects, as in EJexp]. Square brackets are used for environment update, as in env]e/z]. The
notation env|e;/x;] is shorthand for env[e;/xy ...€,/x,], where the subscript bounds are inferred
from context. Similarly, “new” environments are created by [e1/z1 ...€,/z,], being shorthand for
ller/z1...e,/,]. Angle brackets are used for tupling, as in (eq, ez, e3). The notation Ax — B
denotes the domain B+ (A — B) 4+ (A — A — B) +---. P(S) denotes the powerset of S. When
necessary, domains are assumed to be chain-complete partial orders with a unique least element
(i.e., “pointed” cpos). We write “d € D = Ezp” to define the domain (or set) D with “canonical”
element d, and whose bottom element is denoted Lp.

Our language takes the form of mutually-recursive first-order recursion equations with constants.
Its abstract syntax is given by:

c,p € Con (constants)
v € Bv (bound variables)
f € Fv (function variables)
body,e € Fzxp where
ex=c|a|pler...e,) | fler...e,) (expressions)
pr € Prog where
pro=A fi(z11...21%,) = body (programs)
f2(9621 .- -962k2) = body;

fol@py .. cxnk,) = body,}

For the remainder of the paper we generally ignore the differing numbers of arguments to functions,
and refer to a “generic” function as having n arguments.

A standard semantics for this language can be given as follows: Let D be some suitable domain of
basic values, and define two environments, one for bound variables, the other for function variables:

fve € Fve = Fv— Dx— D
bve € Bve = Bv— D

Now define a semantic function &, that gives meaning to programs, and a function & that gives

meaning to expressions in a given bound and function variable environment:

&1 Prog — Fve
£: Fep— Fve — Bve— D
K: Con— Dx — D (assumed given)

El A filzy...x,) = body;}] = fve whererec
fve = [strict(Ayy...y,. E[body;] fve [y;/x;]) / fi]

Elc]] fve bve = K[]

Elx] fve buve bve[z]
Elp(er...en)] fve bue Klp] (Eler] fve bve)...(E[en] fve bue)
Elfiler...en)]| fvebve = fuve[fi](E]ex] fve bve)...(E[en] fve bue)

where Ayy...y,.exp is assumed to be just exp when n = 0, and strict is a function that “strictifies”

its functional argument.!

Note that the meaning of a program is the meaning of its top-level functions, which we capture
through &, in the environment fve. For simplicity we assume that the first function f; takes
no arguments, and a program is “run” by calling f;. More specifically, to run a program pr =

[{fi(z1...2,) = body;}] is to evaluate &, pr [fi].

3 A Formal Semantics of Reference Counting

There are two operational notions whose understanding helps clarify the semantics of reference
counting.

First, an object needed in more than one place is typically handled by an interpreter in one of
two ways: either the object itself is copied, or a pointer to the object is copied. We refer to these
two methods as pass-by-value and pass-by-reference, respectively.? It is our goal to keep track of
how many copies of a given pointer are “active” at any given time during program execution — that
number is referred to as the reference count of the object they point to.

We shall ignore the rationale for using either pass-by-value or pass-by-reference, except to point
out that some values can be represented as compactly as a pointer, and can thus be copied as easily
as copying a pointer. Other values may occupy several words of memory and are thus better shared
using pointers.

The second operational notion is that a reference count operation is in essence a form of side-
effect, and thus we should expect our semantics to require techniques similar to those for dealing
with side-effects in a conventional language. In particular, we should expect to need a store, whereas
in a standard interpretation, such as that given earlier, a simple bound variable environment with
no store suffices.

'That is, (strictf) is a function just like f but that returns L if applied to any argument that is L. It is similar
to Stoy’s use of the same function [12].

2These terms have traditionally been used to describe parameter-passing mechanisms in procedure calls, but here
we attribute the term to the objects themselves.

To see that a reference count operation is a form of side-effect, consider the expression £ = “if
pred then con else alt”, where each subexpression has one occurrence of z. If there are no other
references to x, its reference count can be thought of as 3 prior to the evaluation of F. But once
x is used in pred its reference count will be 2, and once pred is completely evaluated either con
or alt can be discarded, so the reference count will be 1. Eventually z will be used in evaluating
either con or alt, at which point the count drops to 0. This behavior is clearly not “referentially
transparent,” and resembles a variable being side-effected.

Our model distinguishes only between pass-by-value and pass-by-reference objects; typical ex-
amples of the former include booleans and small integers, and of the latter include lists and arrays.
To make our presentation more concrete we shall assume one particular type of each, and their
associated operators: the domain of integers with a standard set of operators, and the domain of
arrays with the operators new_array and update. The call new_array(n) returns a one-dimensional
array of length n whose elements are all nil, and update(a,i,) returns an array just like a but
whose ith element is z. For simplicty we restrict each element z to be pass-by-value.

3.1 Semantic Domains

Int non L negative integers

Loc = 1Int+ {none} locations
Re = Int reference counts

Bve = Bv— Loc bound variable environments
St = Loc— Rc stores

Fve = Fv— Locx — St — (Loc x St) function variable environments

Locations and reference counts are modelled using the standard flat domain of non-negative
integers. A bound variable environment maps bound variables to locations in the store. In a
standard semantics a store would map locations to values in some standard domain, but for our
purposes a store maps locations to reference counts, since that is all we are interested in. It is our
intent that a store st € St “emulate” the real store of an interpreter, in that no cells are allocated
in st unless they would have been in the interpreter’s store. Unused, or “free” elements in the store
can be recognized as those whose reference count is zero.

Elements of Fve give meaning to top-level functions in the program, analogous to Fve in the
standard semantics.

3.2 Semantic Functions

The operational semantics that we wish to capture can be summarized as follows: A program
begins with an empty store. As the program executes, certain operators (such as new_array and
update) cause the allocation of new cells in the store whose initial reference count is one. Sharing
results when an object is passed as an argument in a function call, since there may be more than
one occurrence of the corresponding formal parameter. Upon a function call, the arguments are
evaluated from left to right, and then the body of the function is evaluated with a new bound
variable environment and updated store. The updated store is obtained by increasing the reference

count of each actual parameter that is a location by the number of occurrences of the corresponding
formal parameter in the body of the function. Reference counts are ultimately decremented as
occurrences of formal parameters are encountered and “used.” This includes a special dereferencing
mechanism for unevaluated arms of conditionals.

Let us now make all this precise. We introduce the following semantic functions:

Prog — Fuve

Exp — Fve — Bve — St — (Loc X St)

Con — FExpx — Fve — Bve — St — (Loc X St)
Fzp — Bve — St — St

S s

Rlexp] fve bve st returns a pair, (loc, st’), which is interpreted as follows: st’ is the modified
store that results from evaluating exp in bve and st. If exp evaluates to a pass-by-reference object,
then st’(loc) contains the value (i.e., reference count) of exp; otherwise loc = none, meaning exp is
pass-by-value. Note that the evaluation of a single expression may induce an arbitrary number of
changes to the store as each subexpression is evaluated.

K is used in the definition of R, and describes the behavior of primitive functions, which return
in this semantics the same kind of object as R. K uses D to give meaning to the conditional ¢ f;
i.e., to “dereference” the unevaluated arm. Whereas R mimics the evaluation of an expression, D
mimics the dereferencing of an expression, which in turn might dereference other (sub)expressions.
Thus D[exp] bve st returns the store st’ that results from dereferencing exp.

3.3 Auxiliary Functions

We define the following auxiliary functions to simplify the semantics: dec and inc are used to
decrement and increment, respectively, the reference count of a location in a store, alloc is used to
allocate a new location in a store, and inc_st is used to create the new store in which a function
body is to be evaluated. More formally:

dec st loc = if (loc = none) then st else st[(st(loc) L 1)/loc]
inc st loc = if (loc = none) then st else st[(st(loc) + 1)/loc]
alloc st = let loc = first location in st such that st(loc) =0
in (loc, st[1/loc])
inc_st st i locy...loc, = let #x; = number of occurrences of z; in body;

re; = st(locy) +#a; L1, j=1..n
in stlre;/loc;]

Note that inc_st increments the reference count of each actual location by one less than the number
of occurrences of the corresponding formal parameter. This is an optimization based on the way
inc_st is used, which should become clear shortly.

3.4 Semantic Equations

The intuitive ideas described in Section 3.2 can now be expressed formally through R, and R:

Rl {fi(z1...2,) = body;} | = fve whererec

ve = | stric ocy...loc, st. let st’ = inc_st st 1 locy...loc,
troct(A { t. let st! tstel {

in Rl[body;] fve [loc;/x;] st') / fi]

Rc] fve bve st = (none, st)
R[z] fve bve st (bve[z], st)
Rlp(er...e,)] fve bve st Klpllei]---[ex] fve bve st
R[f(e1...e,)] fre bve st = let (locy, st1) = R]e1] fve bve st
(locy, sty) = Rez] fve bve sty

(locy, st,) = Rle,] fve bve st,—1
in fve[f] locy...loc, st,

Note that after all of the arguments in a call are evaluated, each has a reference count of at least
one — this is because the call itself still has a “handle” on them. This handle is released once the
function body begins execution, which is why nc_st increments the reference counts by one less
than the number of bound variable occurrences. Thus if there are no occurrences of z; then the
object it is bound to will have its reference count decremented (since #x; L 1 = L1), which is
precisely the intent.

What remains to be defined is the behavior of each primitive function. Throughout this paper
we will express, for each semantics introduced, the meaning of three “canonical” primitive functions:
the conditional 7f (which normally only evaluates one of its arms), arithmetic 4+ (the canonical
strict operator with left-to-right evaluation of its arguments), and update (the canonical “location
generator”). Thus K is defined by:

K[iflpca fvebvest = let (loc,st’) =R p fve bve st
in if Oracle(p) then (R ¢ fve bve (D a bve st'))
else (R a fve bve (D c bve st'))
D[c] bve st = st
D[] bve st dec st bvelx]
Dlp(ey...e,)] bve st Dle.] bve (... (D[ez] bve (D[e1] bve st)))
D[f(er...en)]| bve st = Dle,] bve (... (D[ez] bve (De1] buve st)))

The predicate is evaluated; if it is true, the alternate is dereferenced and the consequent is evaluated;
otherwise the consequent is dereferenced and the alternate is evaluated. Note that the call to Oracle
could be replaced with a call to £ and suitable environments in the standard semantics. The oracle
itself is used only for convenience, to avoid cluttering up this semantics with the standard one.

K[+] e1 ez fve bve st = let {locy, st1) =R ex fve bve st
in R es fve bve sty

The arguments are evaluated left-to-right. For simplicity we assume programs to be “well-typed,”
and thus the arguments to and the result of the call to 4+ are pass-by-value, so no dereferencing of

the store is required.

Klupdate] a i x fve bve st = let (locy, st1) = R a fve bve st
(locy, stz) = R i fve bve sty
(locs, stz) = R « fve bve sty

in alloc (dec sts locy)

The to-be-updated array a, index 7, and new element x are evaluated, in that order. Then a new,
updated array with reference count one is created using alloc. Note that locy’s reference count is
not decremented until both ¢ and = are evaluated, because it is only then that the update to a can
be made.

4 Abstract Interpretation of Reference Counting

The semantics presented thus far is ezact, and thus evaluating a particular reference count may
not terminate, any more than a program in the standard semantics would. For use by a compiler
we must choose a suitable abstraction (i.e., approximation) that will guarantee termination yet
still provide useful information about the true reference counts. For us a suitable abstraction is
one in which the inferred reference count is at least as great as the true one; i.e., we wish to
err on the side of thinking there are more pointers to an object than there actually are. In this
section we methodically develop such an abstraction in which: (1) the base domains are abstracted
to powersets of finite approximations, (2) the primitive functions are abstracted similarly, (3) an
abstract interpretation is thus induced on R, and R, and finally (4) a collecting interpretation of
expressions is developed.

4.1 Preliminaries

To set up things to come, we first give alternative versions of R, and R in which:

e We assume that every expression in a program has a unique label. An expression exp
with label lab is written [ab.exp, and the syntactic functions expr and label are defined
by: expr[lab.exp] = exp, and label[lab.exp] = lab. Using labels allows us to distinguish
different occurrences of the same bound variable (or common subexpression), which will be
required in Section 5.

e We use powersets to allow an expression to have multiple values (i.e., locations). This will be
needed to express the abstract behavior of the conditional.

With these two changes in mind, the new functions, which we call 7%7 7@, K and 75, are defined by:

Prog — Fuve

Label — Fve — Bve — St — P(Aloc x St)

Con — Labelx — Fve — Bve — St — P(Aloc x St)
Label — Bve — St — St

S 2 Y

where, for the moment, we leave the domains Aloc and Srec undefined.

7Azp[[{fi(z1...z,,) = body;} | = fve whererec
fve = strict(X locy..loc, st. let st = inc_st st i locy...loc,

in R label[body;]| fve [locj/x;] st') | fi]

R lab fve bve st = case expr(lab) of
[el: {(none,st)}
[«] : {<bve[[x]], st)}
[p(er...en)] = K[p] label[ei]...label[e,] bve st
[f(er...en)]: U{fve[f] locy...loc, sty | {locy, sty) € R label[ei] fve bue st,
(locg, sty) € R label[es] fuve buve sty

(loc,,, st,) € R label[e,] fve bve st}
D lab bve st = case expr(lab) of
[e] : st
[x] : dec st bve[z]
[pler...e,)]: D labele,] bve (... (D label[eq] bve (D labele,] bue st)))
[f(er...e,)]: D labelle,] bve (... (D label[eq] bve (D labele] bue st)))

If Aloc and Src are interpreted as just Loc and Re, respectively (as defined earlier), and K
is imagined to be a function that suitably “mimics” K, then these equations yield a semantics
functionally equivalent to that given earlier, since K would be deterministic and thus R and K
would always return singleton sets. Our goal, of course, is to interpret the equations for 7% and
R over abstract domains and likewise define an abstract version of K. This is done in the next two
sections.

4.2 Abstract Domains

The domain of sticky reference counts is defined by:
Sre={0,1,...,mazxrc,o0}

where maxrc is an arbitrary positive integer. The idea is that if a reference count ever exceeds
mazre, it “jumps” to infinity and “sticks” there, never to decrease again.® Justification for using
this domain comes from empirical studies (at least of Lisp programs [2]) that indicate that objects
are generally not shared very much, so that choosing a suitably high value for mazre will give
fairly accurate results most of the time. As with Re, Srcis a flat domain. We define the following
primitive operations on the elements:

rdn = if (z+n>mazrc) then co else (2 + n)
ron = if (x =o0) then oo else (z L n)

#This same idea is often used in implementations that try to save space by using a small, fixed-size reference count

field.

which capture the “stickiness” property described above. We assume that the auxiliary functions
dec, inc, and inc_st are redefined to use these new operations.

Similarly, the domain of bounded locations is defined by:
ALoc = {none, 1,2, ..., maxloc}

where mazloc is the total number of occurrences of calls to primitive functions that generate new
locations (such as update and new_array). The idea here is that each such occurrence of a “location
generator” can be approximated by an operator that generates the same location every time it is
called. For convenience we assume that each occurrence of such a primitive operator op carries with
it its unique location as a subscript, as in opj... ALoc is a flat domain, where none is the bottom
element and the others are pairwise incomparable.

Although we have found ALoc to be suitable for most needs, better approximations to the
domain of locations are possible. For example, one might give a unique location for each operator
occurrence and call to the function containing that occurrence. That is, suppose op; is an occurrence
of op in the body of f. Then the location returned by a call to op; depends on which occurrence of
a call to f gave rise to it. For example, if maxzloc is as defined above, and f; is the jth occurrence
of a call to f, then one way to compute such a location is simply 7 + j * mazloc.*

The above two abstract domains induce the following remaining ones:

Bve = Bv — Aloc
St = Aloc— Src
Fve = Fv— Alocx — St — P(Aloc x St)

and these induce the following types on 7%7 R, K, and D, as stated earlier:

R,: Prog— Fuve

R : Label » Fve — Bve — St — P(Aloc x St)

K: Con— Labelx — Fve — Bve — St — P(Aloc x St)
D : Label - Bve — St — St

Note that a powerset is used to model the multiple outcomes in (Aloc x St). Thus if one of the
possible outcomes is L this will not be detected (unless it is the only possible outcome, in which
case the result will be {}). If reasoning about possible termination is important, then a suitable
powerdomain construction could be used, but this is an unnecessary complication for our purposes.

4.3 Abstract Primitives

7%7 R and D as defined in Section 4.1 now capture our desired abstraction, but we have the
remaining task of giving an abstract interpretation of primitive functions, captured in the definition

*Note that this can be viewed as a “second-order” approximation, and that even higher order approximations can
be imagined, such as calls to functions which call functions which call primitive operators (which would be “third-
order”), and so on. At the other extreme, a “zero-order” approximation would be one in which the store had just
one location that every operator shared!

of K:

K[if] lp lc la fve bve st = let S =R Ip fve bve st
in U{ (R lc fve bve (D la bve st'))U
(R la fve bve (D lc boe st')) | (loc,st') € S}
IC[[—I—]] l1 Iy fve bve st = U{7A€ ly fve bve sty | (locy, sty) € R 1, fuve bve st}

K[update;..] la li le fve bve st = {(loc, sth) | (locy, sty) € R la foe bve st,

(locy, sty) € R i fve bve sty,

(locs, sts) € R lx foe bve sty,

sth = inc (dec sts locy) loc }

Note that (1) the conditional no longer makes an appeal to the oracle — instead, both outcomes
of the predicate are considered equally likely, and thus the values returned from the alternate and
consequent are joined together; (2) + remains essentially unchanged; and (3) instead of a call to
alloc, the new location generated by update is simply its subscript, as described earlier, whose
reference count is increased by one.

5 A Collecting Interpretation of Reference Counts

5.1 Introduction

Unfortunately, 7% and R are not exactly what we want! We’d rather point to an expression ezp in a
program pr and answer the following question: “What are the reference counts of all possible values
that exp could have during program execution?” The most obvious way to gather this data would
be to completely construct (7A€p pr) using fixpoint iteration as described in the proof of Theorem
1, and then explicitly build a caching function to remember the values returned by all calls to R
when the program pr is “run.” Although this technique is feasible, it may be intractable in that R

is a very large function for typical programs.

A better approach is to directly write a recursive description of the desired result. More precisely,
we want a function RC such that RC(lab) returns the set of all possible reference counts that
expr(lab) could possibly evaluate to. In actuality the RC that will be defined below can be described
by:

RC (lab) = { (bve, st,loc, st'y | (R lab fve bve st) was called during program execution,
returning (loc, st’) }

from which the aforementioned information is easily recovered. We refer to RC as a collecting
interpretation of expressions, since it “collects” all possible values that each expression might have
during program execution.® The general theory of such an interpretation is beyond the scope of
this paper; more details may be found in [5]. For our purposes the following discussion suffices: We
will write a recursive set equation for RC(lab) whose least fixpoint (i.e., smallest set) has the general

50ur use of the term collecting interpretation is somewhat non-standard, in that the normal use refers to collecting
values in the standard semantics. Reference counts are clearly a non-standard semantics, and furthermore our primary
interest 1s collecting values in an abstraction of the non-standard semantics.

10

property that if values resulting from the left-to-right evaluation of arguments in a call are in the
corresponding sets of results for those arguments, then the result of calling the function on those
values must be in the set of results of the call. The least fixpoint of such an equation will be the
empty set, of course, unless it is “primed” by requiring the set to contain the result of evaluating
the whole program.

5.2 Details of the Collecting Interpretation

To simplify the equations defining RC we make extensive use of a “pattern-matching” convention
that is best explained by example:

fa={c]| (z,a) € S1
(a,L,c) € 52}

is shorthand for:
fa={c]| (32',a,d’,b,c) such that (2’ a) € 51,
(d/,;b,c) € 52,
(2’ =), (o' =a)}

The symbol “L” essentially means “don’t care.”

A second convention is necessary to speak about the syntactic “context” in which a labelled
expression lies. Given a label lab, context(lab) is defined as the immediately surrounding expression
containing expr(lab), or [] if lab is the label of the body of some function. For example, if exp =

[f(l.e)] then context(l) = exp, and if f; is defined by [f; = l.body;] then context(l) = [].

Now for the details of the collecting interpretation. The functions have types:

Cache = P(Bve x St x Aloc x St)
RC, : Prog — Label — Cache
RC : Label — Cache

R': Label — Bve — St — Cache

K':Con — Labelx — Bve — St — Cache

11

and the equations defining them are:

RC,[{fi(z1...2) = body;}] = RC whererec

RC lab = (primer lab) U case context(lab) of

[l.f(lab.ey--+)] -
[f(--l.eiy lab.e;)] :
K

[l.p(lab.ey---)] :
11, where [p] # [if]:
[if(l1.p,lab.c,lz.a)] or [if(l1.p,lz.c,lab.a)]:

[p(---l.ei—1 lab.e;--

U{R' lab bue st | (bve,st, L, L) € RC [}
U{R' lab buve st | (bve, L, L, st) € RC I, st # L}
U{R' lab bve st | A [fi(l1.1.. . ln.en)]
such that lab = label[body;],

(L, L, bve,st) € linkargs t ly...1,,}
U{R' lab bue st | (bve,st, L, L) € RC [}
U{R' lab buve st | (bve, L, L, st) € RC I, st # L}
U{R' lab bve (D Iy bve st) |

(bve, L, L st) € RC Iy, st # L}

R' lab bve st = case expr(lab) of
[e] = {(bve, st, none, st)}
[z]: {(bve,st,bve[z],st)}
[p(li.er - ln.en)]: {(bve,st, L, 1)} U (Kp] Li...l, bve st)
[fily.er - -lo.en)]: {{bve,st, L, LY} U{ (bve,st,loc, st”)
| (bve, st,bve’, st') € linkargs i ly...0,,
(bve', st' loc, st") € RC label[body;] }

linkargs @ ly...l,, = {{bve, st, [loc;/x;], st') | (bve,st,locy, sty) € RC Iy,
(bve, sty,locy, sta) € RC 1y,

(bve, st,,_1,locy, st,) € RC 1,
sti# L i=1,..,n
st = inc_st st,, i locy..loc,}

primer lab = if (lab = label[body,]) then (R’ lab Lp,. (Moc.0)) else {}

The fifth case in the equation for RC assumes that all primitives except for [if] evaluate their
arguments left-to-right.

To understand these equations it helps to note that, although the definition of RC was arrived
at in a direct manner, its construction using fixpoint iteration models precisely the behavior of a
cache! We begin with the first approximation RC® = A lab.{}. The first iteration yields RC' =
primer, indicating that the program has been “started.” Further iterations “simulate” the top-
down execution of the (abstract) program, which eventually terminates because of monotonicity
over finite domains.

Computing contributions to the “cache” for bound variables and constants is easy (representing
the “leaves” in the top-down evaluation). However for function calls we must first “record” the fact
that the call, say R lab bve st, was made by adding a tuple (bve, st, L., Lg) to the cache, and
then continuing the evaluation top-down by evaluating the arguments and eventually the body of
the function. (L., L) can be viewed as a first approximation to the value of R lab bve st. Asin a
conventional semantics this value might never be improved upon, thus reflecting non-termination.

12

But as with R, this semantics is able to indicate non-termination as a possible outcome (in a
given bve and st) only if that is the only possible outcome — powerdomains are needed for a finer
distinction of termination.

Most of the details in this semantics is concerend with “linking together” the sequential evalu-
ation of arguments, and returning the ultimate value of a call back to the calling location. To aid
this, linkargs i ly...0,, returns all (bve, st, bve’, st’) such that a call to [fi(l1.e1 - l,.€,)] in (bve, st)
resulted in the evaluation of body; in (bve’, st’). In other words, linkargs links up the stores that
result from the evaluation of the arguments in a call.

Note the similarity of R’ to R defined earlier — the primary difference is that R consulted fve
to determine the result of a call, whereas R’ simply looks up results in the cache function RC.

There is of course something missing from the above equations — the definition of K’ given

below:
K'Tif] Ip le la bve st = {(bve, st, locy, sta) | (bve, st,locy, st1) € RC Ip, where
((st} =D lc bve sty) A ((buve, st} locy, sty) € RC la)) V
((st} =D la bve sty) A ((bve, st}, locy, sty) € RC lc)),
sti# L, i=1,2)
K'[+] 1y 1y boe st = {(bve, st, none, sty) | (bve, st,locy, sty) € RC Iy, sty # L
(bve, sty,locy, sty) € RC Iy, sty # L}
K'Tupdate;..]) la li Lz bve st = {(bve, st, loc, sty | (bve, st,locy, st1) € RC la,

(bve, sty,locy, sta) € RC i,

(bve, sty, locs, sts) € RC lz,
sti# L, i=1,2,3

st = inc (dec st locy) loc}

6 Correctness

Theorem 1 (Liveness) For any (finite) program pr € Prog, (R, pr) is computable.

Proof: Let fve = (7A€p pr). Label, Bve, St, and Aloc are finite domains. Furthermore, 7%7 7@,
K and D are monotonic functions since they are constructed solely from monotonic operators.
Therefore fve can be effectively computed in the standard iterative manner: start with the bottom
element fve® = X\ fv locy...loc, st. {} and iterate until the least upper bound of the chain is reached,
which is guaranteed because the domains are finite and the chain is monotonically increasing. O

Theorem 2 (Liveness) For any (finite) program pr € Prog, (RC, pr) is computable.

Proof: By an argument analogous to that for Theorem 1. O

We would also like to show that 7% and R form an abstraction of the standard reference count
semantics. For this purpose we wish elements of Src to be ordered by arithmetic “less-than-or-
equal-to,” thus forming a chain. More precisely, define C,., read “is an abstraction of,” as follows:

(loc, st) C,. (lod,st'y iff st(loc) > st'(loc)
(bve, st) C,. (bve', sty iff (Vo € Bv) (bve[z], st) C,. (bve'[z], st’)
SC..t iff (FseS)sC..t

13

Theorem 3 (Safety) If (bve,st) C,. (bve', st’) then (Rexp] fve bve st) C,. (Rlexp] fve bve! st')

Proof: (Outline) & and & are abstractions of + and L, respectively, since (z G y) C,. (z+y) (and
similarly for &). From this it can be shown that K is an abstraction of K. Then by an argument
similar to the proof of Mycroft’s correctness theorem for abstract interpretation [8], it can be shown
that R and R are abstractions of R, and R, respectively. O

Corollary: Let (loc,st) = Rfexp] fve bve st and S = R[[exp]] fve bve st. Then there exists
(loc’, sty € S such that st’(loc’) > st(loc). That is, given the same bound variable environment
and store, the abstraction yields at least one reference count whose value is greater than the true
one.

As mentioned earlier, the inferred reference count information could be used in a variety of
ways. One of the more important uses (and the one that originally motivated this research) is to
determine when it is safe to perform destructive updates on aggregate data structures. Such an
optimization is possible if the reference count of the aggregate is always 1 when the update is about
to be performed. With respect to locations and reference counts, this interpreter optimization can
be formalized as follows:

Klupdate] a i x bve st = let (locy, st1) =R a bve st
(locg, sty) =R @ bve sty
(locs, sts) = R x bve sty

in if stz(locy) = 1 then (locy, sts) else alloc (dec sts locy)

which should be contrasted against the original definition of K[Jupdate] given in Section 3.4.
As stated this is a run-time optimization; but if one could infer at compile time that the test
“stz(locr) = 17 is true, then the optimization could be done at compile-time by essentially “constant-
folding” the above conditional expression into (locy, sts). This process can be formalized using the
collecting interpretation as follows:

Theorem 4 (Copy Avoidance) Consider a particular update operation u = [update(ly.a,ls.7,l3.2)]
in program pr, and let RC' = "RC, pr. Then u can be done destructively if the existence of bve, loc,
and st;, 1 =1,2,3 such that:

(bve, sto, loc, sty) € RC' 1y

(bve, sty, L, sty) € RC' [y

(bve, sty, L, sts) € RC I3

always implies that stz(loc) = 1.

7 Examples of Copy Avoidance

We give three examples of applying the copy avoidance optimization described in the last section.
The first is very simple:

{ result() = init(new_array(100),1)
init(a,) = if ¢ > 100 then a else init(update(a,i,0),i+ 1) }

14

which creates an array whose elements are all zero. A completely naive implementation of update
would create a new copy of the array upon each update, thus consuming 100? locations! Using
the collecting interpretation, however, it can be determined through Theorem 4 that the update
can always be done destructively. It is worth stepping through the fixpoint computation of the
cache for this example to see how this is accomplished, thus allowing the reader to see how the
program’s execution is “simulated.” To do this, let us first rewrite the above program to conform
to the formal syntax, so that there is a label on each expression, the functions are renamed, and
the “location generators” are subscripted with their fixed locations:

pr=[{ fi() = 1.f2(2.new_array;(3.100),4.1)
Fola, i) = 5.0 f(6. > (7.1,8.100), 9.a, 10. fo(1L.updates(12.a, 13.i,14.0), 15. + (16.3, 17.1)}]

In what follows, g1 U g2, where ¢1, g2 € (Label — Cache), indicates the standard least upper bound
by the subset ordering; i.e., AMlab. (g1 lab) U (g2 lab). Also, x — val is just shorthand for L[val/z].
Finally, in “anticipation” of the needed stores and environments, let:

stg = Aoc0
sty = Moc. if loc =1 then 2 else 0
sty = Aloc. if loc = 2 then 2 else 0
st} = Moc.if loc =1 then 1 else 0
st = Moc.if loc =2 then 1 else 0
bvey = [1/a,none/i]
bves = [2/a,none/i]

We wish to compute RC' = RC, pr. To do so, the following chain is constructed, whose least
upper bound is RC"
RCO = LrLabelsCache = Alab{}
RC' = RC*'Uexp;

where the exp; are defined in Figure 1, each representing one “step” in the simulation. For example,
expr through expyo represent first the call to > (¢, 100) (expr), followed by the evaluation of ¢ and
100 (expg and expg), and finally the return from the call (ezpig). Note that RC37 = RC® and is
thus the least upper bound.

According to Theorem 4, we now need only examine the cache at labels 12, 13, and 14. From
Figure 1 we see that these can be summarized by:

12 — {(bvey, st], 1, st}), (bveg, st, 2, sth) }
13 — {(bvey, st}, none, st}), (bvey, sth, none, sth) }
14 — {(bvey, sti, none, st}), (bveq, sth, none, st})})

Since st} (1) = 1 and st5(2) = 1, then according to Theorem 4 the update can be done destructively.

The next example is somewhat more complex. It is the quicksort algorithm as it was initially
described by Hoare [4], in which a vector of keys is recursively “side-effected” in a divide-and-

15

expy
expy
erps
erpy
exps
erpe

expr
erps
€T Pg
exp1o
erpr

€TP12
€TP13
€TP14
€TP15
€TP16
expir
€TP1s
€TP19
€T P20
€TPa1
€TPa2
€T P23
€T P24
€TPas
€T P26
€X P27
€TPa2g
€T P29
€T P30
€TP31
€T P32
€T P33
€T P34
€T P35
€T P36
€xpar

1 R'1 Lpye sto = {(L,sto, L, L)}

2+ R' 2 Lpye sto = {(L,sto, L, L)}

3 R'3 Lpy. sto= {(L, sto, none, stg) }

2 {(L,sty, 1,st])}

4 R4 Lpye sth = {(L, sth, none, st})}

5+ R' 5 bvey sty where

sty = incst st| 2 1 none

{(L, sto, bvey, st1)} = linkargs 2 2 4

5 {(bve', sty, L, L)}

6 — {(bvey,sty, L, 1)}

T R T bvey sty = {{bvey, st1,none, st1)}

8 — {(bvey, st1, none, st1)}

6 — {(bvey, st1, none, st1)}

9= R' 9 bvey (D 10 bvey sty) = {(bvey, st), 1,st})}

U 10 — R’ 10 bvey (D 9 bvey sty) = {(bvey, sty, L, 1)}

(5 + {(bveq, sty, 1, st))}) U (11 — {(bvey, st, L, L)})
(1— {(L, sto, 1, st})}) U (12 — {(bvey, st}, 1,st})})

13 — {(bvey, sty, none, st})}

14 — {(bvey, st}, none, st})}

11 — K'[update;] 12 13 14 bvey st} = {(bvey, st}, 2, st})}
15 — {(bvey, sth, L, 1)}

16 — {(bvey, sth, none, sth)}

17 — {(bvey, sth, none, sth)}

15 — {(bvey, sth, none, sth)}

5+ {(bvey, sta, L, L)} where sty = inc_st sth, 2 2 none

6 — {(bveg, sty, L, 1)}
7+ {(bveg, sta, none, sty)}
8 > {(bveg, sta, none, sty)}
6 — {(bveg, sta, none, sty)}
(9 — {(bveg, sth, 2, sth)}) U (10 — {(bveg, sth, L, 1)})

(5 + {(bveg, sta, 2, sth)}) U (11 — {(bveq, sth, L, 1)})

(10 — {(bveq, st], 2, sth)}) U (12 — {(bvey, sth, 2, sth)})
(5 + {(bveq, sty,2, sth)}) U (13 — {(bveq, sth, none, st})})
(1 — {(L,stg,2,sth)}) U (14 — {(bvey, sth, none, sth)})
11 — {(bveg, sth, 2, sth)}

15 — {(bveq, sth, L, 1)}

16 — {(bveq, st}, none, sth)}

17 — {(bvey, sth, none, sth)}

15 — {(bvey, st}, none, sty)}

(5 {(bveg, sta, L, L)}) U (10 — {(bveq, sth, 2, sth)})

5 {(bvey, stg, 2, sth)}

Figure 1: Sample Fixpoint Computation of RC

16

conquer manner. We can express this algorithm functionally as:

result() = quicksort(vector)
quicksort(v) = gqsort(v,1,n)
gsort(v,left,right) = if left > right then v
else scanright(v,left + 1, right, v[left],left, right)
scanright(v,l,r,pivot, left, right) = if [=r then finish(update(v,l, pivot),l,left, right)

else if v[r] > pivot then scanright(v,l,r L 1, pivot,le ft, right)
else scanle ft(update(v,l, v[r]),l+ 1,r, pivot,le ft, right)
scanle ft(v,l, r,pivot,left,right) = if | = r then finish(update(v,l, pivot),l,left, right)
else if v[l] < pivot then scanle ft(v,l+ 1,r, pivot, le ft, right)
else scanright(update(v,r,v[l]),l,r L 1, pivot,left, right)
finish(v, mid,left, right) = qsort(qsort(v,left,mid L 1), mid+ 1,right)

Except for the unaesthetic appearance of our bare-bones syntax (whose first-order nature requires
that everything be “flattened”), this is actually a rather elegant formulation of the algorithm, in
which mutual recursion is used to express the alternation between scanning the vector from the left
and right.

Using RC, we can infer that all of the updates in this program may be done destructively.
This is quite interesting, because (1) most functional versions of quicksort use lists and consume
space proportional to nlgn, (2) the “naive” implementation of the above program consumes space
proportional to n? g n, and (3) the optimized version consumes space proportional to n. A compiler
using our optimization would thus allow the first (to our knowledge) functional version of quicksort
to match the linear space complexity of Hoare’s original algorithm!

The third example is the standard reference count semantics given in Section 3.4 considered as
a functional program. More specifically, those equations can be rewritten to conform to our first-
order syntax, and the store updates of form st[rc/loc] can be replaced with update(st,loc,rc). Once
that is done the collecting interpretation is able to infer that all updates can be done destructively,
just as the true interpreter would. So in some sense we have “boot-strapped” the analysis upon
itself! This is a very encouraging result for semantics-directed compilers. A store that can be
updated destructively in this manner is said to be single-threaded, a property that can be inferred
via abstract reference counting as described here, or by a more direct (but perhaps less general)
analysis as described in [10]. It is also related to the pebbling games described in [9].

8 Extensions

There are several extensions to the analysis that should be straightforward, such as adding constants
that may be pass-by-reference (i.e., that are initially allocated in the store), and allowing nested
equation groups or LET expressions. It should also be possible to allow arrays to contain arrays
(thus generalizing lists) if one used the abstraction that any element selected from the array must be
considered as a likely candidate for the subarray. Reasoning about the structure of such composite
objects is more difficult; Jones and Muchnick [7] provide such a treatment for lists.

5The original “challenge” to solve this problem functionally and efficiently was posed in January 1985 by Daniel
Friedman.

17

It is interesting to note that since our model has a store component, local side-effects may be
easily handled. However, a continuation semantics would probably be necessary to handle global
side-effects. A much harder extension would be the proper handling of higher-order functions and
lazy evaluation. Actually it is not difficult to give a proper reference count semantics for these
(indeed we have done so for lazy evaluation), but it is difficult to decide what a suitable (finite)
abstraction should be. We are continuing work in this area as well as in the general area of collecting
interpretations of expressions.

9 Acknowledgements

Thanks to Jonathan Young, Adrienne Bloss, Rich Kelsey and other members of the “Wrestling
Team” at Yale for their many helpful comments.

References

[1] J.M. Barth. Shifting garbage collection overhead to compile time. CACM, 20(7):513-518,
1977.

[2] D.W. Clark. An empirical study of list structure in lisp. CACM, 20(2):78-87, February 1977.

[3] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In 4th ACM Sym. on Prin. of Prog.
Lang., pages 238-252, ACM, 1977.

[4] C.A.R. Hoare. Quicksort. Computing J., 5(4):10-15, April 1962.

[5] P. Hudak. Collecting interpretations of expressions. Research Report 497, Yale University,
Department of Computer Science, 1986.

[6] P. Hudak and A. Bloss. The aggregate update problem in functional programming systems.
In 12th ACM Sym. on Prin. of Prog. Lang., pages 300-314, ACM, 1985.

[7] N.D. Jones and S.S. Muchnick. A flexible approach to interprocedural data flow analysis
and programs with recursive data structures. In 9th ACM Sym. on Prin. of Prog. Lang.,
pages 66-74, ACM, January 1982.

[8] A. Mycroft. Abstract Interpretation and Optimizing Transformations for Applicative Programs.
PhD thesis, Univ. of Edinburgh, 1981.

[9] J-C. Raoult and R. Sethi. The global storage needs of a subcomputation. In 11th ACM Sym.
on Prin. of Prog. Lang., pages 148-157, ACM, January 1984.

[10] D.A. Schmidt. Detecting global variables in denotational specifications. ACM Trans. on Prog.
Lang. and Systems, 7(2):299-310, 1985.

18

[11] J. Schwarz. Verifying the safe use of destructive operations in applicative programs. In B.
Robinet, editor, Program Transformations — Proc. of the 3rd Int’l Sym. on Programming,
pages 395-411, Dunod Informatique, 1978.

[12] J.E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming Language
Theory. The MIT Press, Cambridge, Mass., 1977.

19

