
Additive Logistic Regression: a Statistical View ofBoostingJerome Friedman �Trevor Hastie �Robert Tibshirani yAugust 17, 1998AbstractBoosting (Freund & Schapire 1996, Schapire & Singer 1998) is oneof the most important recent developments in classi�cation method-ology. The performance of many classi�cation algorithms can oftenbe dramatically improved by sequentially applying them to reweightedversions of the input data, and taking a weighted majority vote of thesequence of classi�ers thereby produced. We show that this seeminglymysterious phenomenon can be understood in terms of well knownstatistical principles, namely additive modeling and maximum likeli-hood. For the two-class problem, boosting can be viewed as an ap-proximation to additive modeling on the logistic scale using maximumBernoulli likelihood as a criterion. We develop more direct approxima-tions and show that they exhibit nearly identical results to boosting.Direct multi-class generalizations based on multinomial likelihood arederived that exhibit performance comparable to other recently pro-posed multi-class generalizations of boosting in most situations, andfar superior in some. We suggest a minor modi�cation to boostingthat can reduce computation, often by factors of 10 to 50. Finally, weapply these insights to produce an alternative formulation of boostingdecision trees. This approach, based on best-�rst truncated tree induc-tion, often leads to better performance, and can provide interpretabledescriptions of the aggregate decision rule. It is also much faster com-putationally making it more suitable to large scale data mining appli-cations.�Department of Statistics, Sequoia Hall, Stanford University, Stanford California 94305;fjhf,trevorg@stat.stanford.eduyDepartment of Public Health Sciences, and Department of Statistics, University ofToronto; tibs@utstat.toronto.edu 1

1 IntroductionThe starting point for this paper is an interesting procedure called \boost-ing", which is a way of combining or boosting the performance of many\weak" classi�ers to produce a powerful \committee". Boosting was pro-posed in the machine learning literature (Freund & Schapire 1996) and hassince received much attention.While boosting has evolved somewhat over the years, we �rst describe themost commonly used version of theAdaBoost procedure (Freund & Schapire1996), which we call \Discrete" AdaBoost1. Here is a concise descriptionof AdaBoost in the two-class classi�cation setting. We have training data(x1; y1); : : : (xN ; yN) with xi a vector valued feature and yi = �1 or 1. Wede�ne F (x) =PM1 cmfm(x) where each fm(x) is a classi�er producing values�1 and cm are constants; the corresponding prediction is sign(F (x)). TheAdaBoost procedure trains the classi�ers fm(x) on weighted versions of thetraining sample, giving higher weight to cases that are currently misclassi-�ed. This is done for a sequence of weighted samples, and then the �nalclassi�er is de�ned to be a linear combination of the classi�ers from eachstage. A detailed description of Discrete Adaboost is given in the boxeddisplay titled Algorithm 1Discrete AdaBoost(Freund & Schapire 1996)1. Start with weights wi = 1=N , i = 1; : : : ; N .2. Repeat for m = 1; 2; : : : ;M :(a) Fit the classi�er fm(x) using weights wi on the training data.(b) Compute em = Ew[1(y 6=fm(x))], cm = log((1� em)=em).(c) Set wi wi exp[cm � 1(yi 6=fm(xi))]; i = 1; 2; : : : N , and renormalizeso that Piwi = 1.3. Output the classi�er sign[PMm=1 cmfm(x)]Algorithm 1: Ew represents expectation over the training data with weightsw = (w1; w2; : : : wn). At each iteration AdaBoost increases the weights of the ob-servations misclassi�ed by fm(x) by a factor that depends on the weighted trainingerror.Much has been written about the success of AdaBoost in producing1Essentially the same as AdaBoost.M1 for binary data(Freund & Schapire 1996)2

accurate classi�ers. Many authors have explored the use of a tree-basedclassi�er for fm(x) and have demonstrated that it consistently producessigni�cantly lower error rates than a single decision tree. In fact, Breiman(NIPS workshop, 1996) called AdaBoost with trees the \best o�-the-shelfclassi�er in the world" (see also Breiman (1998)). Interestingly, the testerror seems to consistently decrease and then level o� as more classi�ersare added, rather than ultimately increase. For some reason, it seems thatAdaBoost is immune to over�tting.Figure 1 shows the performance of Discrete AdaBoost on a synthetic clas-si�cation task, using an adaptation of CARTTM(Breiman, Friedman, Olshen& Stone 1984) as the base classi�er. This adaptation grows �xed-size treesin a \best-�rst" manner (see Section 7, page 32). Included in the �gure is thebagged tree (Breiman 1996) which averages trees grown on bootstrap resam-pled versions of the training data. Bagging is purely a variance-reductiontechnique, and since trees tend to have high variance, bagging often producesgood results.Early versions of AdaBoost used a resampling scheme to implementstep 2 of Algorithm 1, by weighted importance sampling from the train-ing data. This suggested a connection with bagging, and that a majorcomponent of the success of boosting has to do with variance reduction.However, boosting performs comparably well when:� a weighted tree-growing algorithm is used in step 2 rather than weightedresampling, where each training observation is assigned its weight wi.This removes the randomization component essential in bagging.� \stumps" are used for the weak learners. Stumps are single-split treeswith only two terminal nodes. These typically have low variance buthigh bias. Bagging performs very poorly with stumps (Fig. 1[top-rightpanel].)These observations suggest that boosting is capable of both bias and variancereduction, and thus di�ers fundamentally from bagging.The base classi�er in Discrete AdaBoost produces a classi�cation rulefm(x) : X 7! f�1; 1g, where X is the domain of the predictive featuresx. If the implementation of the base classi�er cannot deal with observationweights, weighted resampling is used instead. Freund & Schapire (1996),Breiman (1997) and Schapire & Singer (1998) have suggested various mod-i�cations to improve the boosting algorithms. Here we focus on a versiondue to Schapire & Singer (1998), which we call \Real AdaBoost", that uses3

Number of Terms

T
es

t E
rr

or

0 100 200 300 400

0.
0

0.
1

0.
2

0.
3

0.
4 Bagging

Discrete AdaBoost
Real AdaBoost

10 Node Trees

Number of Terms

T
es

t E
rr

or

0 100 200 300 400
0.

0
0.

1
0.

2
0.

3
0.

4

Stumps

Number of Terms

T
es

t E
rr

or

0 100 200 300 400

0.
0

0.
1

0.
2

0.
3

0.
4

100 Node Trees

Figure 1: Test error for Bagging, Discrete AdaBoost and Real AdaBoost on asimulated two-class nested spheres problem (see Section 5 on page 24.) There are2000 training data points in 10 dimensions, and the Bayes error rate is zero. Alltrees are grown \best-�rst" without pruning. The left-most iteration corresponds toa single tree.
4

real-valued \con�dence-rated" predictions rather than the f�1; 1g of Dis-crete AdaBoost. The weak learner for this generalized boosting producesa mapping fm(x) : X 7! R; the sign of fm(x) gives the classi�cation, andjfm(x)j a measure of the \con�dence" in the prediction. This real-valuedboosting tends to perform the best in our simulated examples in Fig. 1, espe-cially with stumps, although we see with 100 node trees Discrete AdaBoostovertakes Real AdaBoost after 200 iterations.Real AdaBoost(Schapire & Singer 1998)1. Start with weights wi = 1=N , i = 1; 2; : : : ; N .2. Repeat for m = 1; 2; : : : ;M :(a) Estimate the \con�dence rated" classi�er fm(x) : X 7! R andthe constant cm from the training data with weights wi.(b) Set wi wi exp[�cm � yifm(xi)]; i = 1; 2; : : : N , and renormalizeso that Piwi = 1.3. Output the classi�er sign[PMm=1 cmfm(x)]Algorithm 2: The Real AdaBoost algorithm allows for the estimator fm(x) torange over R. In the special case that fm(x) 2 f�1; 1g it reduces to AdaBoost, sinceyifm(xi) is 1 for a correct and�1 for an incorrect classi�cation. In the general casethe constant cm is absorbed into fm(x). We describe the Schapire-Singer estimatefor fm(x) in Section 3.Freund & Schapire (1996) and Schapire & Singer (1998) provide sometheory to support their algorithms, in the form of upper bounds on gen-eralization error. This theory (Schapire 1990) has evolved in the machinelearning community, initially based on the concepts of PAC learning (Kearns& Vazirani 1994), and later from game theory (Freund 1995, Breiman 1997).Early versions of boosting \weak learners" (Schapire 1990) are far simplerthan those described here, and the theory is more precise. The bounds andthe theory associated with the AdaBoost algorithms are interesting, buttend to be too loose to be of practical importance. In practice boostingachieves results far more impressive than the bounds would imply.In this paper we analyze the AdaBoost procedures from a statisticalperspective. We show that they are �tting an additive logistic regressionmodel. The AdaBoost algorithms are Newton methods for optimizing aparticular exponential loss function | a criterion which behaves much likethe log-likelihood on the logistic scale. We also derive new boosting-like5

procedures for classi�cation.In Section 2 we brie
y review additive modeling. Section 3 shows howboosting can be viewed as an additive model estimator, and proposes somenew boosting methods for the two class case. The multiclass problem isstudied in Section 4. Simulated and real data experiments are discussedin Sections 5 and 6. Our tree-growing implementation, using truncatedbest-�rst trees, is described in Section 7. Weight trimming to speed upcomputation is discussed in Section 8, and we end with a discussion inSection 9.2 Additive ModelsAdaBoost produces an additive model F (x) = PMm=1 cmfm(x), although\weighted committee" or \ensemble" sound more glamorous. Additive mod-els have a long history in statistics, and we give some examples here.2.1 Additive Regression ModelsWe initially focus on the regression problem, where the response y is quan-titative, and we are interested in modeling the mean E(Y jx) = F (x). Theadditive model has the formF (x) = pXj=1 fj(xj): (1)Here there is a separate function fj(xj) for each of the p input variablesxj . More generally, each component fj is a function of a small, pre-speci�edsubset of the input variables. The back�tting algorithm (Friedman & Stuetzle1981, Buja, Hastie & Tibshirani 1989) is a convenient modular algorithmfor �tting additive models. A back�tting update isfj(xj) E 24y �Xk 6=j fk(xk)jxj35 : (2)Any method or algorithm for estimating a function of xj can be used toobtain an estimate of the conditional expectation in (2). In particular, thiscan include nonparametric smoothing algorithms, such as local regressionor smoothing splines. In the right hand side, all the latest versions of thefunctions fk are used in forming the partial residuals. The back�tting cyclesare repeated until convergence. Under fairly general conditions, back�ttingcan be shown to converge to the minimizer of E(y�F (x))2 (Buja et al. 1989).6

2.2 Extended Additive ModelsMore generally, one can consider additive models whose elements ffm(x)gM1are functions of potentially all of the input features x. Usually, in thiscontext, the fm(x) are taken to be simple functions characterized by a setof parameters
 and a multiplier �m,fm(x) = �mb(x ;
m): (3)The additive model then becomesFM (x) = MXm=1 �mb(x ;
m): (4)For example, in single hidden layer neural networks b(x ;
) = �(
tx) where�(�) is a sigmoid function and
 parameterizes a linear combination of theinput features. In signal processing, wavelets are a popular choice with
parameterizing the location and scale of a \mother" wavelet b(x ;
). Inthese applications fb(x ;
m)gM1 are generally called \basis functions" sincethey span a function subspace.If least{squares is used as a �tting criterion, one can solve for an optimalset of parameters through a generalized back{�tting algorithm with updatesf�m;
mg argmin�;
 E 24y � Xk 6=m�kb(x ;
k)� �b(x ;
)352 (5)for m = 1; 2; : : : ;M; 1; 2; : : :. Alternatively, one can use a \greedy" forwardstepwise approachf�m;
mg argmin�;
 E [y � Fm�1(x)� �b(x ;
)]2 (6)for m = 1; 2; : : : ;M , where f�k;
kgm�11 are �xed at their corresponding so-lution values at earlier iterations. This is the approach used by Mallat &Zhang (1993) in \matching pursuit", where the b(x ;
) are selected froman over complete dictionary of wavelet bases. In the language of boosting,f(x) = �b(x ;
) would be called a \weak learner" and FM (x) (4) the \com-mittee". If decision trees were used as the weak learner the parameters
would represent the splitting variables, split points, the constants in eachterminal node, and number of terminal nodes of each tree.Note that the back{�tting procedure (5) or its greedy cousin (6) onlyrequire an algorithm for �tting a single weak learner (3) to data. This base7

algorithm is simply applied repeatedly to modi�ed versions of the originaldata ym y � Xk 6=m fk(x):In the forward stepwise procedure (6) the modi�ed output ym at the mthiteration depends only on its value ym�1 and the solution fm�1(x) at theprevious iteration ym = ym�1 � fm�1(x): (7)At each step m, the previous output values ym�1 are modi�ed (7) so thatthe previous model fm�1(x) has no explanatory power on the new outputsym. One can therefore view this as a procedure for boosting a weak learnerf(x) = �b(x ;
) to form a powerful committee FM (x) (4).2.3 Classi�cation problemsFor the classi�cation problem, we learn from Bayes theorem that all weneed is P (y = jjx), the posterior or conditional class probabilities. Onecould transfer all the above regression machinery across to the classi�cationdomain by simply noting that E(1[y=j]jx) = P (y = jjx), where 1[y=j] is the0=1 indicator variable representing class j. While this works fairly well ingeneral, several problems have been noted (Hastie, Tibshirani & Buja 1994)for constrained regression methods. The estimates are typically not con�nedto [0; 1], and severe masking problems can occur when there are more thantwo classes . A notable exception is when trees are used as the regressionmethod, and in fact this is the approach used by Breiman et al. (1984).Logistic regression is a popular approach used in statistics for overcomingthese problems. For a two class problem, the model islog P (y = 1jx)P (y = 0jx) = MXm=1 fm(x): (8)The monotone logit transformation on the left guarantees that for any valuesof F (x) =PMm=1 fm(x) 2 R, the probability estimates lie in [0; 1]; invertingwe get p(x) = P (y = 1jx) = eF (x)1 + eF (x) : (9)Here we have given a general additive form for F (x); special cases existthat are well known in statistics. In particular, linear logistic regression(McCullagh & Nelder 1989, for example) and additive logistic regression8

(Hastie & Tibshirani 1990) are popular. These models are usually �t bymaximizing the binomial log-likelihood, and enjoy all the associated asymp-totic optimality features of maximum likelihood estimation.A generalized version of back�tting (2), called \Local Scoring" in Hastie& Tibshirani (1990), can be used to �t the additive logistic model. Startingwith guesses f1(x1) : : : fp(xp), F (x) = P fk(xk) and p(x) de�ned in (9), weform the working response:z = F (x) + y � p(x)p(x)(1 � p(x)) : (10)We then apply back�tting to the response z with observation weights p(x)(1�p(x)) to obtain new fk(xk). This process is repeated until convergence. Theforward stage-wise version (6) of this procedure bears a close similarity tothe LogitBoost algorithm described later in the paper.3 Boosting | an Additive Logistic Regression ModelIn this section we show that the boosting algorithms are stage-wise esti-mation procedures for �tting an additive logistic regression model. Theyoptimize an exponential criterion which to second order is equivalent tothe binomial log-likelihood criterion. We then propose a more standardlikelihood-based boosting procedure.3.1 An Exponential CriterionConsider minimizing the criterionJ(F) = E(e�yF (x)) (11)for estimation of F (x).2 Lemma 1 shows that the function F (x) that mini-mizes J(F) is the symmetric logistic transform of P (y = 1jx)Lemma 1 E(e�yF (x)) is minimized atF (x) = 12 log P (y = 1jx)P (y = �1jx) : (12)Hence2E represents expectation; depending on the context, this may be an L2 populationexpectation, or else a sample average. Ew indicates a weighted expectation.9

P (y = 1jx) = eF (x)e�F (x) + eF (x) (13)P (y = �1jx) = e�F (x)e�F (x) + eF (x) : (14)ProofWhile E entails expectation over the joint distribution of y and x, it issu�cient to minimize the criterion conditional on x.E �e�yF (x)jx� = P (y = 1jx)e�F (x) + P (y = �1jx)eF (x)@E �e�yF (x)jx�@F (x) = �P (y = 1jx)e�F (x) + P (y = �1jx)eF (x)Setting the derivative to zero the result follows. 2The usual logistic transform does not have the factor 12 as in (12); bymultiplying the numerator and denominator in (13) by eF (x), we get theusual logistic model p(x) = e2F (x)1 + e2F (x) (15)Hence the two models are equivalent up to a factor 2..Corollary 1 If E is replaced by averages over regions of x where F (x) isconstant (as in the terminal node of a decision tree), the same result appliesto the sample proportions of y = 1 and y = �1.In proposition 1 we show that the Discrete AdaBoost increments in Algo-rithm 1 are Newton-style updates for minimizing the exponential criterion.Many terms are typically required, since at each stage a rather crude approx-imation is used in place of conditional expectation. Because of Lemma 1, theresulting algorithm can be interpreted as a stage-wise estimation procedurefor �tting an additive logistic regression model.
10

Proposition 1 The Discrete AdaBoost algorithm �ts an additive logistic re-gression model by using adaptive Newton updates for minimizing E(e�yF (x)).ProofLet J(F) = E[e�yF (x)]. Suppose we have a current estimate F (x) andseek an improved estimate F (x) + cf(x). For �xed c (and x), we expandJ(F (x) + cf(x)) to second order about f(x) = 0J(F + cf) = E[e�y(F (x)+cf(x))]� E[e�yF (x)(1� ycf(x) + c2f(x)2=2)]Minimizing pointwise with respect to f(x) 2 f�1; 1g, we �ndf̂(x) = argminf Ew(1� ycf(x) + c2f(x)2=2jx)= argminf Ew[(y � cf(x))2jx] (16)= argminf Ew[(y � f(x))2jx] (17)where w(yjx) = exp(�yF (x))=E exp(�yF (x)), and (17) follows from (16) byconsidering the two possible choices for f(x). Thus minimizing a quadraticapproximation to the criterion leads to a weighted least-squares choice off(x) 2 f�1; 1g, and this constitutes the Newton step.Given f̂(x) 2 f�1; 1g, we can directly minimize J(F + cf̂) to determinec: ĉ = argminc Ewe�cyf̂(x)= 12 log 1� eewhere e = Ew[1[y 6=f̂(x)]]. Note that c can be negative if the weak learnerdoes worse than 50%, in which case it automatically reverses the polarity.Combining these steps we get the update for F (x)F (x) F (x) + 12 log 1� ee f̂(x)In the next iteration the new contribution ĉf̂(x) to F (x) augments theweights: w(yjx) w(yjx) � e�ĉf̂(x)y;11

followed by a normalization. Since yf̂(x) = 2� 1[y 6=f̂(x)]� 1, we see that theupdate is equivalent tow(yjx) w(yjx) � exp�log�1� ee � 1[y 6=f̂(x)]�Thus the function and weight updates are identical to those used in DiscreteAdaBoost. 2Parts of this derivation for AdaBoost can be found in Breiman (1997)and Schapire & Singer (1998), but without reference to additive logisticregression models.This L2 version of AdaBoost translates naturally to a data version usingtrees. The weighted least squares criterion is used to grow the tree-basedclassi�er f̂(x), and given f̂(x), the constant c is based on the weightedtraining error.Note that after each Newton step, the weights change, and hence thetree con�guration will change as well. This adds an adaptive twist to theNewton algorithm.Corollary 2 After each update to the weights, the weighted misclassi�ca-tion error of the most recent weak learner is 50%.ProofThis follows by noting that the c that minimizes J(F + cf) satis�es@J(F + cf)@c = �E[e�y(F (x)+cf(x))yf(x)] = 0 (18)The result follows since yf(x) is 1 for a correct and �1 for an incorrectclassi�cation. 2Schapire & Singer (1998) give the interpretation that the weights are up-dated to make the new weighted problem maximally di�cult for the nextweak learner.The Discrete AdaBoost algorithm expects the tree or other \weak learn-er" to deliver a classi�er f(x) 2 f�1; 1g. We now show that the RealAdaBoost algorithm uses the weighted probability estimates in the termi-nal nodes of the tree to update the additive logistic model, rather than theclassi�cations themselves. Again we derive the population algorithm, andthen apply it to data. 12

Proposition 2 The Real AdaBoost algorithm �ts an additive logistic re-gression model by stage-wise optimization of J(F) = E[e�yF (x)]ProofSuppose we have a current estimate F (x) and seek an improved estimateF (x) + f(x) by minimizing J(F (x) + f(x)) at each x.J(F (x) + f(x)) = E(e�yF (x)e�yf(x)jx)= e�f(x)E[e�yF (x)1[y=1]jx] + ef(x)E[e�yF (x)1[y=�1]jx]Dividing through by E[e�yF (x)jx] and setting the derivative wrt f(x) to zerowe get f̂(x) = 12 log Ew[1[y=1]jx]Ew[1[y=�1]jx] (19)= 12 log Pw(y = 1jx)Pw(y = �1jx) (20)where w(yjx) = exp(�yF (x))=E(exp(�yF (x))jx).Careful examination of Schapire & Singer (1998) shows that this updatematches theirs (and the cm in Algorithm 2 are redundant.) The weights getupdated by w(yjx) w(yjx) � e�yf̂(x) 2The algorithm as presented would stop after one iteration. In practice weuse crude approximations to conditional expectation, and hence many stepsare required.Corollary 3 At the optimal F (x), the weighted conditional mean of y is 0.ProofIf F (x) is optimal, we have@J(F (x))F (x) = �Ee�yF (x)y = 0 (21)2We can think of the weights as providing an alternative to residuals for thebinary classi�cation problem. At the optimal function F , there is no furtherinformation about F in the weighted conditional distribution of y. If thereis, we use it to update F . 13

At iteration M in either the Discrete or Real AdaBoost algorithms, wehave composed an additive function of the formF (x) = MXm=1 fm(x) (22)where each of the components are found in a greedy forward stage-wisefashion, �xing the earlier components. Our term \stage-wise" refers to asimilar approach in Statistics:� Variables are included sequentially in a stepwise regression.� The coe�cients of variables already included receive no further adjust-ment.3.2 Why Ee�yF (x)?So far the only justi�cation for this exponential criterion is that it has asensible population minimizer, and the algorithm described above performswell on real data. In addition� Schapire & Singer (1998) motivate e�yF (x) as a di�erentiable upper-bound to misclassi�cation error 1[yF<0] (see Fig. 2);� the AdaBoost algorithm that it generates is extremely modular, re-quiring at each iteration the retraining of a classi�er on a weightedtraining database.Let y� = (y + 1)=2, taking values 0; 1, and parametrize the binomialprobabilities by p(x) = eF (x)eF (x) + e�F (x)The expected binomial log-likelihood isE`(y�; p(x)) = E[y� log(p(x)) + (1� y�) log(1� p(x))]= �E log(1 + e�2yF (x)) (23)� The population minimizers of �E`(y�; p(x)) and Ee�yF (x) coincide.This is easily seen because the expected log-likelihood is maximized atthe true probabilities p(x) = P (y� = 1jx), which de�ne the logit F (x).By Lemma 1 we see that this is exactly the minimizer of Ee�yF (x).14

yF

Lo
ss

-2 -1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Misclassification
Shapire-Singer
Log-likelihood
Squared Error (p)
Squared Error(F)

Losses as Approximations to Misclassification Error

Figure 2: A variety of loss functions for estimating a function F (x) for classi-�cation. The horizontal axis is yF , which is negative for errors and positive forcorrect classi�cations. All the loss functions are monotone in yF . The curve la-beled \Squared Error(p)" is (y��p)2, and gives a uniformly better approximation tomisclassi�cation loss than the exponential criterion (Schapire-Singer). The curvelabeled \Squared Error(F)" is (y � F)2, and increases once yF exceeds 1, therebyincreasingly penalizing classi�cations that are \too correct".
15

In fact, the exponential criterion and the (negative) log-likelihood areequivalent to second order in a Taylor series around F = 0:�`(y�; p) � exp(�yF) + log(2) (24)Graphs of exp(�yF) and log(1+e�yF (x)) (suitably scaled) are shown inFig. 2, as a function of yF | positive values of yF imply correct clas-si�cation. Note that � exp(�yF) itself is not a proper log-likelihood,as it does not equal the log of any probability mass function on �1.� There is another way to view the criterion J(F). It is easy to showthat e�yF (x) = jy� � p(x)jpp(x)(1� p(x)) ; (25)with F (x) = log(p(x)=(1�p(x))), The right-hand side is known as theChi statistic in the statistical literature.One feature of both the exponential and log-likelihood criteria is thatthey are monotone and smooth. Even if the training error is zero, the criteriawill drive the estimates towards purer solutions (in terms of probabilityestimates).Why not estimate the fm by minimizing the squared error E(y�F (x))2?If Fm�1(x) = Pm�11 fj(x) is the current prediction, this leads to a forwardstage-wise procedure that does an unweighted �t to the response y�Fm�1(x)at step m (6). Empirically we have found that this approach works quitewell, but is dominated by those that use monotone loss criteria. We believethat the non-monotonicity of squared error loss (Fig. 2) is the reason. Cor-rect classi�cations, but with yF (x) > 1, incur increasing loss for increasingvalues of jF (x)j. This makes squared-error loss an especially poor approxi-mation to misclassi�cation error rate. Classi�cations that are \too correct"are penalized as much as misclassi�cation errors.3.3 Using the log-likelihood criterionIn this Section we explore algorithms for �tting additive logistic regressionmodels by stage-wise optimization of the Bernoulli log-likelihood. Here wefocus again on the two-class case, and will use a 0=1 response y� to representthe outcome. We represent the probability of y� = 1 by p(x), wherep(x) = eF (x)eF (x) + e�F (x) (26)Algorithm 3 gives the details. 16

LogitBoost (2 classes)1. Start with weights wi = 1=N i = 1; 2; : : : ; N , F (x) = 0 and probabilityestimates p(xi) = 12 .2. Repeat for m = 1; 2; : : : ;M :(a) Compute the working response and weightszi = y�i � p(xi)p(xi)(1 � p(xi))wi = p(xi)(1 � p(xi))(b) Estimate fm(x) by weighted least-squares �tting of z to x.(c) Update F (x) F (x) + 12fm(x) and p(x) via (26).3. Output the classi�er sign[F (x)] = sign[PMm=1 fm(x)]Algorithm 3: An adaptive Newton algorithm for �tting an additive logistic re-gression model.Proposition 3 The LogitBoost algorithm (2 classes) uses adaptive Newtonsteps for �tting an additive symmetric logistic model by maximum likelihood.ProofConsider the update F (x) + f(x) and the expected log-likelihood`(F + f) = E[2y�(F (x) + f(x))� log[1 + e2(F (x)+f(x))]: (27)Conditioning on x, we compute the �rst and second derivative at f(x) = 0:s(x) = @`(F (x) + f(x)@f(x) jf(x)=0= 2E(y� � p(x)jx) (28)H(x) = @2`(F (x) + f(x)@f(x)2 jf(x)=0= �4E(p(x)(1 � p(x))jx) (29)where p(x) is de�ned in terms of F (x). The Newton update is thenF (x) F (x)�H(x)�1s(x)17

= F (x) + 12 E(y� � p(x)jx)Ep(x)(1 � p(x))jx) (30)= F (x) + 12Ew � y� � p(x)p(x)(1� p(x)) jx� (31)where w(x) = p(x)(1 � p(x)). Equivalently, the Newton update solves theweighted least squares criterionminf(x) Ew(x) �12 y� � p(x)p(x)(1� p(x)) � f(x)�2 (32)2The population algorithm described here translates immediately to animplementation on data when E(�jx) is replaced by a regression method,such as regression trees (Breiman et al. 1984). While the role of the weightsare somewhat arti�cial in the L2 case, they are not in any implementation;w(x) is constant when conditioned on x, but the w(xi) in a terminal node ofa tree, for example, depend on the current values F (xi), and will typicallynot be constant.Sometimes the w(x) get very small in regions of (x) perceived (by F (x))to be pure|that is, when p(x) is close to 0 or 1. This can cause numericalproblems in the construction of z, and led to the following crucial imple-mentation protections:� If y� = 1, then compute z = y��pp(1�p) as 1p . Since this number canget large if p is small, threshold this ratio at zmax. The particularvalue chosen for zmax is not crucial; we have found empirically thatzmax 2 [2; 4] works well. Likewise, if y� = 0, compute z = �1(1�p) witha lower threshold of �zmax.� Enforce a lower threshold on the weights: w = max(w; 2�machine-zero).3.4 Optimizing Ee�yF (x) by Newton steppingThe L2 Real Adaboost procedure (Algorithm 2) optimizes Ee�y(F (x)+f(x))exactly with respect to f at each iteration. Here we explore a \gentler"version that instead takes adaptive Newton steps much like the LogitBoostalgorithm just described.Proposition 4 The Gentle AdaBoost algorithm uses adaptive Newton stepsfor minimizing Ee�yF (x). 18

Gentle AdaBoost1. Start with weights wi = 1=N , i = 1; 2; : : : ; N , F (x) = 0.2. Repeat for m = 1; 2; : : : ;M :(a) Estimate fm(x) by weighted least-squares �tting of y to x.(b) Update F (x) F (x) + fm(x)(c) Update wi wie�yifm(xi) and renormalize.3. Output the classi�er sign[F (x)] = sign[PMm=1 fm(x)]Algorithm 4: A modi�ed version of the Real AdaBoost algorithm, using Newtonstepping rather than exact optimization at each stepProof @J(F (x) + f(x))@f(x) jf(x)=0 = �E(e�yF (x)yjx)@2J(F (x) + f(x))@f(x)2 jf(x)=0 = E(e�yF (x)jx) since y2 = 1Hence the Newton update isF (x) F (x) + E(e�yF (x)yjx)E(e�yF (x)jx)= F (x) +Ew(yjx)where w(yjx) = e�yF (x)E(e�yF (x)jx) 2The main di�erence between this and the Real AdaBoost algorithm ishow it uses its estimates of the weighted class probabilities to update thefunctions. Here the update is fm(x) = Pw(y = 1jx) � Pw(y = �1jx), ratherthan half the log-ratio as in (20): fm(x) = 12 log Pw(y=1jx)Pw(y=�1jx) . Log-ratios canbe numerically unstable, leading to very large updates in pure regions, whilethe update here lies in the range [�1; 1]. Empirical evidence suggests (seeSection 6) that this more conservative algorithm has similar performance toboth the Real AdaBoost and LogitBoost algorithms, and often outperformsthem both, especially when stability is an issue.19

There is a strong similarity between the updates for the Gentle AdaBoostalgorithm and those for the LogitBoost algorithm. Let P = P (y = 1jx), andp(x) = eF (x)eF (x)+e�F (x) . ThenE(e�yF (x)yjx)E(e�yF (x)jx) = e�F (x)P � eF (x)(1� P)e�F (x)P + eF (x)(1� P)= P � p(x)(1� p(x))P + p(x)(1� P) (33)The analogous expression for LogitBoost from (30) is12 P � p(x)p(x)(1 � p(x)) (34)At p(x) � 12 these are nearly the same, but they di�er as the p(x) becomeextreme. For example, if P � 1 and p(x) � 0, (34) blows up, while (33) isabout 1 (and always falls in [�1; 1].)4 Multiclass proceduresHere we explore extensions of boosting to classi�cation with multiple classes.We start o� by proposing a natural generalization of the two-class symmet-ric logistic transformation, and then consider speci�c algorithms. In thiscontext Schapire & Singer (1998) de�ne J responses yj for a J class prob-lem, each taking values in f�1; 1g. Similarly the indicator response vectorwith elements y�j is more standard in the statistics literature. Assume theclasses are mutually exclusive.De�nition 1 For a J class problem let pj(x) = P (yj = 1jx). We de�ne thesymmetric multiple logistic transformationFj(x) = log pj(x)� 1J JXk=1 log pk(x) (35)Equivalently, pj(x) = eFj(x)PJk=1 eFk(x) ; PJk=1 Fk(x) = 0 (36)The centering condition in (36) is for numerical stability only; it simply pinsthe Fj down, else we could add an arbitrary constant to each Fj and the20

probabilities remain the same. The equivalence of these two de�nitions iseasily established, as well as the equivalence with the two-class case.Schapire & Singer (1998) provide several generalizations of AdaBoost forthe multiclass case; we describe their AdaBoost.MH algorithm (see boxedAlgorithm 5), since it seemed to dominate the others in their empiricalstudies. We then connect it to the models presented here. We will refer toAdaBoost.MH (Schapire & Singer 1998)The original N observations are expanded into N � J pairs((xi; 1); yi1); ((xi; 2); yi2); : : : ; ((xi; J); yiJ); i = 1; : : : ; N: Here yij isthe response for class jth for observation i.1. Start with weights wij = 1=NJ , i = 1; : : : ; N; j = 1; : : : ; J .2. Repeat for m = 1; 2; : : : ;M :(a) Estimate the \con�dence rated" classi�er fm(x; j) : (X �(1; : : : ; J)) 7! R from the training data with weights wij.(b) Set wij wij exp[�yijfm(xi; j)]; i = 1; 2; : : : ; N; j = 1; : : : ; J ,and renormalize so that Pi;j wij = 1.3. Output the classi�er argmaxjF (x; j) where F (x; j) =Pm fm(x; j).Algorithm 5: The AdaBoost.MH algorithm converts the J class problem intothat of estimating a 2 class classi�er on a training set J times as large, with anadditional \feature" de�ned by the set of class labels.the augmented variable in Algorithm 5 as the \class" variable C. We makea few observations:� The L2 version of this algorithm minimizes PJj=1Ee�yjFj(x), whichis equivalent to running separate L2 boosting algorithms on each ofthe J problems of size N obtained by partitioning the N � J samplesin the obvious fashion. This is seen trivially by �rst conditioning onC = j, and then xjC = j, when computing conditional expectations.� The same is almost true for their tree-based algorithm. We see thisbecause1. If the �rst split is on C | either a J-nary split if permitted,or else J � 1 binary splits | then the sub-trees are identical toseparate trees grown to each of the J groups. This will always bethe case for the �rst tree. 21

2. If a tree does not split on C anywhere on the path to a terminalnode, then that node returns a function fm(x; j) = gm(x) thatcontributes nothing to the classi�cation decision. However, aslong as a tree includes a split on C at least once on every path toa terminal node, it will make a contribution to the classi�er forall input feature values.The advantage/disadvantage of building one large tree using class labelas an additional input feature is not clear. No motivation is provided.We therefore implement AdaBoost.MH using the more traditional di-rect approach of building J separate trees to minimizePJj=1Ee�yjFj(x)We have thus shownProposition 5 The AdaBoost.MH algorithm for a J-class problem �ts Juncoupled additive logistic models, Gj(x) = 12 log pj(x)=(1 � pj(x)), eachclass against the rest.In principal this parametrization is �ne, since Gj(x) is monotone in pj(x).However, we are estimating the Gj(x) in an uncoupled fashion, and thereis no guarantee that the implied probabilities sum to 1. We give someexamples where this makes a di�erence, and AdaBoost.MH performs morepoorly than an alternative coupled likelihood procedure.Schapire and Singer's AdaBoost.MH was also intended to cover situa-tions where observations can belong to more than one class. The \MH"represents \Multi-Label Hamming", Hamming loss being used to measurethe errors in the space of 2J possible class labels. In this context �tting aseparate classi�er for each label is a reasonable strategy. However, Schapireand Singer also propose using AdaBoost.MH when the class labels are mu-tually exclusive, which is the focus in this paper.Algorithm 6 is a natural generalization of algorithm 3 for �tting theJ-class logistic regression model (36).Proposition 6 The LogitBoost algorithm (J classes) uses adaptive quasi-Newton steps for �tting an additive symmetric logistic model by maximum-likelihoodWe sketch an informal proof.Proof� We �rst give the L2 score and Hessian for the Newton algorithm cor-responding to a standard multi-logit parametrizationGj(x) = log P (y�j = 1jx)P (y�J = 1jx)22

LogitBoost (J classes)1. Start with weights wij = 1=N , i = 1; : : : ; N; j = 1; : : : ; J , Fj(x) = 0and pj(x) = 1=J 8j.2. Repeat for m = 1; 2; : : : ;M :(a) Repeat for j = 1; : : : ; J :i. Compute working responses and weights in the jth classzij = y�ij � pj(xi)pj(xi)(1� pj(xi))wij = pj(xi)(1� pj(xi))ii. Estimate fmj(x) by a weighted least-squares �t of zij to xi(b) Set fmj(x) J�1J (fmj(x) � 1J PJk=1 fmk(x)), and Fj(x) Fj(x) + fmj(x)(c) Update pj(x) via (36).3. Output the classi�er argmaxjFj(x)Algorithm 6: An adaptive Newton algorithm for �tting an additive multiplelogistic regression model.

23

with GJ(x) = 0 (and the choice of J for the base class is arbitrary).The expected conditional log-likelihood is`(G+ g) = J�1Xj=1 E(y�j jx)(Gj(x) + gj(x))� log(1 + J�1Xk=1 eGk(x)+gk(x))sj(x) = E(y�j � pj(x)jx); j = 1; : : : ; J � 1Hj;k(x) = �pj(x)(�jk � pk(x)); j; k = 1; : : : ; J � 1� Our quasi-Newton update amounts to using a diagonal approximationto the Hessian, producing updates:gj(x) E(y�j � pj(x)jx)pj(x)(1� pj(x)) ; j = 1; : : : ; J � 1� To convert to the symmetric parametrization, we would note that gJ =0, and set fj(x) = gj(x)� 1J PJk=1 gk(x). However, this procedure couldbe applied using any class as the base, not just the Jth. By averagingover all choices for the base class, we get the updatefj(x) = �J � 1J � E(y�j � pj(x)jx)pj(x)(1� pj(x)) � 1J JXk=1 E(y�k � pk(x)jx)pk(x)(1 � pk(x))! 2For more rigid parametric models and full Newton stepping, this sym-metrization would be redundant. With quasi-Newton steps and adaptive(tree based) models, the symmetrization removes the dependence on thechoice of the base class.5 Simulation studiesIn this section the four
avors of boosting outlined above are applied toseveral arti�cially constructed problems. Comparisons based on real dataare presented in Section 6.An advantage of comparisons made in a simulation setting is that allaspects of each example are known, including the Bayes error rate and thecomplexity of the decision boundary. In addition, the population expectederror rates achieved by each of the respective methods can be estimated toarbitrary accuracy by averaging over a large number of di�erent trainingand test data sets drawn from the population. The four boosting methodscompared here are 24

DAB: Discrete AdaBoost | Algorithm 1.RAB: Real AdaBoost | Algorithm 2.LB: LogitBoost | Algorithms 3 and 6.GAB: Gentle AdaBoost | Algorithm 4.DAB, RAB and GAB handle multiple classes using the AdaBoost.MH ap-proach.In an attempt to di�erentiate performance, all of the simulated examplesinvolve fairly complex decision boundaries. The ten input features for allexamples are randomly drawn from a ten-dimensional standard normal dis-tribution x � N10(0; I). For the �rst three examples the decision boundariesseparating successive classes are nested concentric ten-dimensional spheresconstructed by thresholding the squared-radius from the originr2 = 10Xj=1x2j : (37)Each class Ck (1 � k � K) is de�ned as the subset of observationsCk = fxi j tk�1 � r2i < tkg (38)with t0 = 0 and tK =1. The ftkgK�11 for each example were chosen so as toput approximately equal numbers of observations in each class. The trainingsample size is N = K �1000 so that approximately 1000 training observationsare in each class. An independently drawn test set of 10000 observationswas used to estimate error rates for each training set. Averaged results overten such independently drawn training/test set combinations were used forthe �nal error rate estimates. The corresponding statistical uncertainties(standard errors) of these �nal estimates (averages) are approximately aline width on each plot.Figure 3 [top-left] compares the four algorithms in the two-class (K = 2)case using a two{terminal node decision tree (\stump") as the base classi�er.Shown is error rate as a function of number of boosting iterations. The upper(black) line represents DAB and the other three nearly coincident lines arethe other three methods (dotted red = RAB, short-dashed green = LB, andlong-dashed blue=GAB)3. Note that the somewhat erratic behavior of DAB,3Colors are visible in the online version of this paper:http://stat.stanford.edu/�trevor/Papers/boost.ps25

Number of Terms

T
es

t E
rr

or

0 200 400 600 800

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Discrete AdaBoost
Real AdaBoost
LogitBoost
Gentle AdaBoost

Stumps - 2 Classes

Number of Terms

T
es

t E
rr

or

0 200 400 600 800

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Eight Node Trees - 2 Classes

Number of Terms

T
es

t E
rr

or

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

Stumps - 3 Classes

Number of Terms

T
es

t E
rr

or

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

Stumps - 5 Classes

Additive Decision Boundary

Figure 3: Additive Decision Boundary. In all panels except the the top right, thesolid curve (representing discrete AdaBoost) lies alone above the other three curves.
26

especially for less that 200 iterations, is not due to statistical uncertainty.For less than 400 iterations LB has a minuscule edge, after that it is a deadheat with RAB and GAB. DAB shows substantially inferior performancehere with roughly twice the error rate at all iterations.Figure 3 [lower-left] shows the corresponding results for three classes(K = 3) again with two{terminal node trees. Here the problem is moredi�cult as represented by increased error rates for all four methods, buttheir relationship is roughly the same: the upper (black) line represents DABand the other three nearly coincident lines are the other three methods. Thesituation is somewhat di�erent for larger number of classes. Figure 3 [lower-right] shows results for K = 5 which are typical for K � 4: As before, DABincurs much higher error rates than all the others, and RAB and GAB havenearly identical performance. However, the performance of LB relative toRAB and GAB has changed. Up to about 40 iterations it has the same errorrate. From 40 to about 100 iterations LB's error rates are slightly higherthan the other two. After 100 iterations the error rate for LB continues toimprove whereas that for RAB and GAB level o�, decreasing much moreslowly. By 800 iterations the error rate for LB is 0.19 whereas that for RABand GAB is 0.32. Speculation as to the reason for LB's performance gainin these situations is presented below.In the above examples a stump was used as the base classi�er. Onemight expect the use of larger trees would do better for these rather complexproblems. Figure 3 [top-right] shows results for the two{class problem, hereboosting trees with eight terminal nodes. These results can be compared tothose for stumps in Fig. 3 [top-left]. Initially, error rates for boosting eightnode trees decrease much more rapidly than for stumps, with each successiveiteration, for all methods. However, the error rates quickly level o� and im-provement is very slow after about 100 iterations. The overall performanceof DAB is much improved with the bigger trees, coming close to that of theother three methods. As before RAB, GAB, and LB exhibit nearly identicalperformance. Note that at each iteration the eight{node tree model con-sists of four{times the number of additive terms as does the correspondingstump model. This is why the error rates decrease so much more rapidlyin the early iterations. In terms of model complexity (and training time),a 100 iteration model using eight-terminal node trees is equivalent to a 400iteration stump model .Comparing the top-two panels in Fig. 3 one sees that for RAB, GAB,and LB the error rate using the bigger trees (.072) is in fact 33% higher thanthat for stumps (.054) at 800 iterations, even though the former is four timesmore complex. This seemingly mysterious behavior is easily understood by27

examining the nature of the decision boundary separating the classes. TheBayes decision boundary between two classes is the set:�x : log P (y = 1jx)P (y = �1jx) = 0� (39)or simply fx : B(x) = 0g. To approximate this set it is su�cient to estimatethe logit B(x), or any monotone transformation of B(x), as closely as possi-ble. As discussed above, boosting produces an additive logistic model whosecomponent functions are represented by the base classi�er. With stumps asthe base classi�er, each component function has the formfm(x) = cLm1[xj�tm] + cRm1[xj>tm] (40)= fm(xj) (41)if the mth stump chose to split on coordinate j. Here tm is the split-point,and cLm and cRm are the weighted means of the response in the left and rightterminal nodes. Thus the model produced by boosting stumps is additivein the original features F (x) = pXj=1 gj(xj): (42)where gj(xj) adds together all those stumps involving xj (and is 0 if noneexist).Examination of (37) and (38) reveals that an optimal decision boundaryfor the above examples is also additive in the original features; fj(xj) =x2j+const: Thus, in the context of decision trees, stumps are ideally matchedto these problems; larger trees are not needed. However boosting largertrees need not be counter productive in this case if all of the splits in eachindividual tree are made on the same predictor variable. This would alsoproduce an additive model in the original features (42). However, due tothe forward greedy stage-wise strategy used by boosting, this is not likely tohappen if the decision boundary function involves more than one predictor;each individual tree will try to do its best to involve all of the importantpredictors. Owing to the nature of decision trees, this will produce modelswith interaction e�ects; most terms in the model will involve products inmore than one variable. Such non-additive models are not as well suitedfor approximating truly additive decision boundaries such as (37) and (38).This is re
ected in increased error rate as observed in Fig. 3.The above discussion also suggests that if the decision boundary sepa-rating pairs of classes were inherently non-additive in the predictors, then28

Number of Terms

T
es

t E
rr

or

0 200 400 600 800

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

DAB
RAB
LB
GAB

Stumps - 2 Classes

Number of Terms

T
es

t E
rr

or

0 200 400 600 800

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Four Node Trees - 2 Classes

Number of Terms

T
es

t E
rr

or

0 200 400 600 800

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Eight Node Trees - 2 Classes

Non-Additive Decision Boundary

Figure 4: Interactive Decision Boundary
29

boosting stumps would be less advantageous than using larger trees. A treewith m terminal nodes can produce basis functions with a maximum inter-action order of min(m � 1; p) where p is the number of predictor features.These higher order basis functions provide the possibility to more accuratelyestimate those B(x) with high order interactions. The purpose of the nextexample is to verify this intuition. There are two classes (K = 2) and 5000training observations with the fxig50001 drawn from a ten-dimensional nor-mal distribution as in the previous examples. Class labels were randomlyassigned to each observation with log-oddslog� Pr[y = 1 jx]Pr[y = �1 jx]� = 10 6Xj=1xj 1 + 6Xl=1(�1)lxl! :Approximately equal numbers of observations are assigned to each of thetwo classes, and the Bayes error rate is 0.046. The decision boundary forthis problem is a complicated function of the �rst six predictor variablesinvolving all of them in second order interactions of equal strength. As inthe above examples, test sets of 10000 observations was used to estimateerror rates for each training set, and �nal estimates were averages over tenreplications.Figure 4 [top-left] shows test-error rate as a function of iteration numberfor each of the four boosting methods using stumps. As in the previousexamples, RAB and GAB track each other very closely. DAB begins veryslowly, being dominated by all of the others until around 180 iterations,where it passes below RAB and GAB. LB mostly dominates, having thelowest error rate until about 650 iterations. At that point DAB catches upand by 800 iterations it may have a very slight edge. However, none of theseboosting methods perform well with stumps on this problem, the best errorrate being 0:35.Figure 4 [top-right] shows the corresponding plot when four terminalnode trees are boosted. Here there is a dramatic improvement with allof the four methods. For the �rst time there is some small di�erentiationbetween RAB and GAB. At nearly all iterations the performance rankingis LB best, followed by GAB, RAB, and DAB in order. At 800 iterationsLB achieves an error rate of 0:134. Figure 4 [lower-left] shows results wheneight terminal node trees are boosted. Here, error rates are generally furtherreduced with LB improving the least (0:130), but still dominating. Theperformance ranking among the other three methods changes with increasingiterations; DAB overtakes RAB at around 150 iterations and GAB at about230 becoming fairly close to LB by 800 iterations with an error rate of 0:138.30

Although limited in scope, these simulation studies suggest several trends.They explain why boosting stumps can sometimes be superior to using largertrees, and suggest situations where this is likely to be the case; that is whendecision boundaries B(x) can be closely approximated by functions that areadditive in the original predictor features. When higher order interactionsare required stumps exhibit poor performance. These examples illustratethe close similarity between RAB and GAB. In all cases the di�erence inperformance between DAB and the others decreases when larger trees andmore iterations are used, sometimes overtaking the others. More generally,relative performance of these four methods depends on the problem at handin terms of the nature of the decision boundaries, the complexity of the baseclassi�er, and the number of boosting iterations.The superior performance of LB in Fig. 3 [lower-right] appears to bea consequence of the multi{class logistic model (Algorithm 6). All of theother methods use the asymmetric AdaBoost.MH strategy (Algorithm 5)of building separate two{class models for each individual class against thepooled complement classes. Even if the decision boundaries separating allclass pairs are relatively simple, pooling classes can produce complex deci-sion boundaries that are di�cult to approximate (Friedman 1996). By con-sidering all of the classes simultaneously, the symmetric multi{class modelis better able to take advantage of simple pairwise boundaries when theyexist (Hastie & Tibshirani 1998). As noted above, the pairwise boundariesinduced by (37) and (38) are simple when viewed in the context of additivemodeling, whereas the pooled boundaries are more complex; they cannot bewell approximated by functions that are additive in the original predictorvariables.The decision boundaries associated with these examples were deliber-ately chosen to be geometrically complex in an attempt to illicit performancedi�erences among the methods being tested. Such complicated boundariesare not likely to often occur in practice. Many practical problems involvecomparatively simple boundaries (Holte 1993); in such cases performancedi�erences will still be situation dependent, but correspondingly less pro-nounced.6 Some experiments with dataIn this section we show the results of running the four �tting methods:LogitBoost, Discrete AdaBoost, Real AdaBoost, and Gentle AdaBoost ona collection of datasets from the UC-Irvine machine learning archive, plus31

a popular simulated dataset. The base learner is a tree in each case, witheither 2 or 8 terminal nodes. For comparison, a single CART decision treewas also �t, with the tree size determined by 5-fold cross-validation.The datasets are summarized in Table 1. The test error rates are shownin Table 2 for the smaller datasets, and in Table 3 for the larger ones. Thevowel, sonar, satimage and letter datasets come with a pre-speci�ed testset. The waveform data is simulated, as described in (Breiman et al. 1984).For the others, 5-fold cross-validation was used to estimate the test error.It is di�cult to discern trends on the small data sets (Table 2) becauseall but quite large observed di�erences in performance could be attributedto sampling
uctuations. On the vowel, breast cancer, ionosphere,sonar, and waveform data, purely additive stump models seem to performcomparably to the larger (eight-node) trees. The glass data seems to bene�ta little from larger trees. There is no clear di�erentiation in performanceamong the boosting methods.On the larger data sets (Table 3) clearer trends are discernible. For thesatimage data the eight-node tree models are only slightly, but signi�cantly,more accurate than the purely additive models. For the letter data thereis no contest. Boosting stumps is clearly inadequate. There is no cleardi�erentiation among the boosting methods for eight-node trees. For thestumps, LogitBoost, Real AdaBoost, and Gentle AdaBoost have comparableperformance, distinctly superior to Discrete Adaboost. This is consistentwith the results of the simulation study (Section 5).Except perhaps for Discrete AdaBoost, the real data examples fail todemonstrate performance di�erences between the various boosting methods.This is in contrast to the simulated data sets of Section 5. There LogitBoostgenerally dominated, although often by a small margin. The inability ofthe real data examples to discriminate may re
ect statistical di�culties inestimating subtle di�erences with small samples. Alternatively, it may bethat the their underlying decision boundaries are all relatively simple (Holte1993) so that all reasonable methods exhibit similar performance.7 Additive Logistic TreesIn most applications of boosting the base classi�er is considered to be a prim-itive, repeatedly called by the boosting procedure as iterations proceed. Theoperations performed by the base classi�er are the same as they would be inany other context given the same data and weights. The fact that the �nalmodel is going to be a linear combination of a large number of such classi�ers32

Table 1: Datasets used in the experimentsData set # Train # Test # Inputs # Classesvowel 528 462 10 11breast cancer 699 5-fold CV 9 2ionosphere 351 5-fold CV 34 2glass 214 5-fold CV 10 7sonar 210 5-fold CV 60 2waveform 300 5000 21 3satimage 4435 2000 36 6letter 16000 4000 16 26is not taken into account. In particular, when using decision trees, the sametree growing and pruning algorithms are generally employed. Sometimes al-terations are made (such as no pruning) for programming convenience andspeed.When boosting is viewed in the light of additive modeling, however, thisgreedy approach can be seen to be far from optimal in many situations. Asdiscussed in Section 5 the goal of the �nal classi�er is to produce an accurateapproximation to the decision boundary function B(x). In the context ofboosting, this goal applies to the �nal additive model, not to the individualterms (base classi�ers) at the time they were constructed. For example, itwas seen in Section 5 that if B(x) was close to being additive in the originalpredictive features, then boosting stumps was optimal since it produced anapproximation with the same structure. Building larger trees increased theerror rate of the �nal model because the resulting approximation involvedhigh order interactions among the features. The larger trees optimized errorrates of the individual base classi�ers, given the weights at that step, andeven produced lower unweighted error rates in the early stages. But, aftera su�cient number of boosts, the stump based model achieved superiorperformance.More generally, one can consider an expansion of the of the decisionboundary function in a functional ANOVA decomposition (Friedman 1991)B(x) =Xj fj(xj) +Xj;k fjk(xj ; xk) +Xj;k;l fjkl(xj ; xk; xl) + ::: (43)The �rst sum represents the closest function to B(x) that is additivein the original features, the �rst two represent the closest approximationinvolving at most two{feature interactions, the �rst three represent three{33

Table 2: Test error rates on small real examplesMethod 2 Terminal Nodes 8 Terminal NodesIterations 50 100 200 50 100 200Vowel CART error= .642LogitBoost .532 .524 .511 .517 .517 .517Real AdaBoost .565 .561 .548 .496 .496 .496Gentle AdaBoost .556 .571 .584 .515 .496 .496Discrete AdaBoost .563 .535 .563 .511 .500 .500Breast CART error= .045LogitBoost .028 .031 .029 .034 .038 .038Real AdaBoost .038 .038 .040 .032 .034 .034Gentle AdaBoost .037 .037 .041 .032 .031 .031Discrete AdaBoost .042 .040 .040 .032 .035 .037Ion CART error= .076LogitBoost .074 .077 .071 .068 .063 .063Real AdaBoost .068 .066 .068 .054 .054 .054Gentle AdaBoost .085 .074 .077 .066 .063 .063Discrete AdaBoost .088 .080 .080 .068 .063 .063Glass CART error= .400LogitBoost .266 .257 .266 .243 .238 .238Real AdaBoost .276 .247 .257 .234 .234 .234Gentle AdaBoost .276 .261 .252 .219 .233 .238Discrete AdaBoost .285 .285 .271 .238 .234 .243Sonar CART error= .596LogitBoost .231 .231 .202 .163 .154 .154Real AdaBoost .154 .163 .202 .173 .173 .173Gentle AdaBoost .183 .183 .173 .154 .154 .154Discrete AdaBoost .154 .144 .183 .163 .144 .144Waveform CART error= .364LogitBoost .196 .195 .206 .192 .191 .191Real AdaBoost .193 .197 .195 .185 .182 .182Gentle AdaBoost .190 .188 .193 .185 .185 .186Discrete AdaBoost .188 .185 .191 .186 .183 .183
34

Table 3: Test error rates on larger data examples.Method Terminal Iterations FractionNodes 20 50 100 200Satimage CART error = .148LogitBoost 2 .140 .120 .112 .102Real AdaBoost 2 .148 .126 .117 .119Gentle AdaBoost 2 .148 .129 .119 .119Discrete AdaBoost 2 .174 .156 .140 .128LogitBoost 8 .096 .095 .092 .088Real AdaBoost 8 .105 .102 .092 .091Gentle AdaBoost 8 .106 .103 .095 .089Discrete AdaBoost 8 .122 .107 .100 .099Letter CART error = .124LogitBoost 2 .250 .182 .159 .145 .06Real AdaBoost 2 .244 .181 .160 .150 .12Gentle AdaBoost 2 .246 .187 .157 .145 .14Discrete AdaBoost 2 .310 .226 .196 .185 .18LogitBoost 8 .075 .047 .036 .033 .03Real AdaBoost 8 .068 .041 .033 .032 .03Gentle AdaBoost 8 .068 .040 .030 .028 .03Discrete AdaBoost 8 .080 .045 .035 .029 .03

35

feature interactions, and so on. If B(x) can be accurately approximatedby such an expansion, truncated at low interaction order, then allowing thebase classi�er to produce higher order interactions can reduce the accuracyof the �nal boosted model. In the context of decision trees, higher orderinteractions are produced by deeper trees.In situations where the true underlying decision boundary function ad-mits a low order ANOVA decomposition, one can take advantage of thisstructure to improve accuracy by restricting the depth of the base deci-sion trees to be not much larger than the actual interaction order of B(x).Since this is not likely to be known in advance for any particular problem,this maximum depth becomes a \meta-parameter" of the procedure to beestimated by some model selection technique, such as cross-validation.One can restrict the depth of an induced decision tree by using its stan-dard pruning procedure, starting from the largest possible tree, but requiringit to delete enough splits to achieve the desired maximum depth. This canbe computationally wasteful when this depth is small. The time required tobuild the tree is proportional to the depth of the largest possible tree be-fore pruning. Therefore, dramatic computational savings can be achieved bysimply stopping the growing process at the maximum depth, or alternativelyat a maximum number of terminal nodes. The standard heuristic argumentsin favor of growing large trees and then pruning do not apply in the contextof boosting. Shortcomings in any individual tree can be compensated bytrees grown later in the boosting sequence.If a truncation strategy based on number of terminal nodes is to beemployed, it is necessary to de�ne an order in which splitting takes place. Weadopt a \best-�rst" strategy. An optimal split is computed for each currentlyterminal node. The node whose split would achieve the greatest reduction inthe tree building criterion is then actually split. This increases the numberof terminal nodes by one. This continues until a maximum number M ofterminal notes is induced. Standard computational tricks can be employedso that inducing trees in this order requires no more computation than otherorderings commonly used in decision tree induction.The truncation limit M is applied to all trees in the boosting sequence.It is thus a meta{parameter of the entire boosting procedure. An optimalvalue can be estimated through standard model selection techniques such asminimizing cross-validated error rate of the �nal boosted model. We referto this combination of truncated best{�rst trees, with boosting, as \addi-tive logistic trees" (ALT). This is the procedure used in all of the simulatedand real examples. One can compare results on the latter (Tables 2 and 3)to corresponding results reported by Dietterich (1998, Table 1) on common36

f(x1) f(x2) f(x3) f(x4) f(x5)

f(x6) f(x7) f(x8) f(x9) f(x10)

Coordinate Functions for Additive Logistic Trees

Figure 5: Coordinate functions for the additive logistic tree obtained by boostingwith stumps, for the two-class nested sphere example from Section 5.data sets. Error rates achieved by ALT with very small truncation valuesare seen to compare quite favorably with other committee approaches us-ing much larger trees at each boosting step. Even when error rates are thesame, the computational savings associated with ALT can be quite impor-tant in data mining contexts where large data sets cause computation timeto become an issue.Another advantage of low order approximations is model visualization.In particular, for models additive in the input features (42), the contribu-tion of each feature xj can be viewed as a graph of gj(xj) plotted againstxj . Figure 5 shows such plots for the ten features of the two{class nestedspheres example of Fig. 3. The functions are shown for the �rst class con-centrated near the origin; the corresponding functions for the other class arethe negatives of these functions.The plots in Fig. 5 clearly show that the contribution to the log-oddsof each individual feature is approximately quadratic, which matches thegenerating model (37) and (38).When there are more than two classes plots similar to Fig. 5 can bemade for each class, and analogously interpreted. Higher order interactionsmodels are more di�cult to visualize. If there are at most two{feature inter-actions, the two{variable contributions can be visualized using contour orperspective mesh plots. Beyond two-feature interactions, visualization tech-niques are even less e�ective. Even when non-interaction (stump) modelsdo not achieve the highest accuracy, they can be very useful as descriptivestatistics owing to the interpretability of the resulting model.37

8 Weight trimmingIn this section we propose a simple idea and show that it can dramatically re-duce computation for boosted models without sacri�cing accuracy. Despiteits apparent simplicity this approach does not appear to be in common use.At each boosting iteration there is a distribution of weights over the train-ing sample. As iterations proceed this distribution tends to become highlyskewed towards smaller weight values. A larger fraction of the training sam-ple becomes correctly classi�ed with increasing con�dence, thereby receivingsmaller weights. Observations with very low relative weight have little im-pact on training of the base classi�er; only those that carry the dominantproportion of the weight mass are in
uential. The fraction of such highweight observations can become very small in later iterations. This suggeststhat at any iteration one can simply delete from the training sample thelarge fraction of observations with very low weight without having muche�ect on the resulting induced classi�er. However, computation is reducedsince it tends to be proportional to the size of the training sample, regardlessof weights.At each boosting iteration, training observations with weight wi less thana threshold wi < t(�) are not used to train the classi�er. We take the valueof t(�) to be the �th quantile of the weight distribution over the trainingdata at the corresponding iteration. That is, only those observations thatcarry the fraction 1 � � of the total weight mass are used for training.Typically � 2 [0:01; 0:1] so that the data used for training carries from 90 to99 percent of the total weight mass. Note that the weights for all trainingobservations are recomputed at each iteration. Observations deleted at aparticular iteration may therefore re-enter at later iterations if their weightssubsequently increase relative to other observations.Figure 6 [left panel] shows test-error rate as a function of iteration num-ber for the letter recognition problem described in Section 6, here usingGentle AdaBoost and eight node trees as the base classi�er. Two error ratecurves are shown. The black solid one represents using the full trainingsample at each iteration (� = 0), whereas the blue dashed curve representsthe corresponding error rate for � = 0:1: The two curves track each othervery closely especially at the later iterations. Figure 6 [right panel] showsthe corresponding fraction of observations used to train the base classi�er asa function of iteration number. Here the two curves are not similar. With� = 0:1 the number of observations used for training drops very rapidlyreaching roughly 5% of the total at 20 iterations. By 50 iterations it is downto about 3% where it stays throughout the rest of the boosting procedure.38

Number of Terms

T
es

t E
rr

or

0 100 200 300 400

0.
1

0.
2

0.
3

Number of Terms

P
er

ce
nt

 T
ra

in
in

g
D

at
a

U
se

d

0 100 200 300 400

0
20

40
60

80
10

0

Figure 6: The left panel shows the test error for the letter recognition problemas a function of iteration number. The black solid curve uses all the trainingdata, the blue dashed curve uses a subset based on weight thresholding. Theright panel shows the percent of training data used for both approaches. Theupper curve steps down, because training can stop for an entire class if it is�t su�ciently well (see text).

39

Thus, computation is reduced by over a factor of 30 with no apparent lossin classi�cation accuracy. The reason why sample size in this case decreasesfor � = 0 after 150 iterations, is that if all of the observations in a particularclass are classi�ed correctly with very high con�dence (Fk > 15 + log(N))training for that class stops, and continues only for the remaining classes.At 200 iterations, 10 classes remained of the original 26 classes.The last column labeled fraction in Table 3 shows the average fractionof observations used in training the base classi�ers over the 200 iterations,for all boosting methods and tree sizes. For eight-node trees, all methodsbehave as shown in Fig. 6. With stumps, LogitBoost uses considerably lessdata than the others and is thereby correspondingly faster.This is a genuine property of LogitBoost that sometimes gives it an ad-vantage with weight trimming. Unlike the other methods, the LogitBoostweights wi = pi(1 � pi) do not in any way involve the class outputs yi;they simply measure nearness to the currently estimated decision boundaryFM (x) = 0. Discarding small weights thus retains only those training obser-vations that are estimated to be close to the boundary. For the other threeprocedures the weight is monotone in �yiFM (xi). This gives highest weightto currently misclassi�ed training observations, especially those far from theboundary. If after trimming the fraction of observations remaining is lessthan the error rate, the subsample passed to the base learner will be highlyunbalanced containing very few correctly classi�ed observations. This imbal-ance seems to inhibit learning. No such imbalance occurs with LogitBoostsince near the decision boundary, correctly and misclassi�ed observationsappear in roughly equal numbers.As this example illustrates, very large reductions in computation forboosting can be achieved by this simple trick. A variety of other examples(not shown) exhibit similar behavior with all boosting methods. Note thatother committee approaches to classi�cation such as bagging (Breiman 1996)and randomized trees (Dietterich 1998), while admitting parallel implemen-tations, cannot take advantage of this approach to reduce computation.9 Concluding remarksIn order to understand a learning procedure statistically it is necessary toidentify two important aspects: its structural model and its error model.The former is most important since it determines the function space ofthe approximator, thereby characterizing the class of functions that can beaccurately approximated with it. The error model speci�es the distribution40

of random departures of sampled data from the structural model. It therebyde�nes the criterion to be optimized in the estimation of the structuralmodel.We have shown that the structural model for boosting is additive on thelogistic scale with the base learner providing the additive components. Thisunderstanding alone explains many of the properties of boosting. It is nosurprise that a large number of such (jointly optimized) components de�nesa much richer class of learners than one of them alone. It reveals that inthe context of boosting all base learners are not equivalent, and there isno universally best choice over all situations. As illustrated in Section 5the base learners need to be chosen so that the resulting additive expansionmatches the particular decision boundary encountered. Even in the limitedcontext of boosting decision trees the interaction order, as characterized bythe number of terminal nodes, needs to be chosen with care. Purely additivemodels induced by decision stumps are sometimes, but not always, the best.However, we conjecture that boundaries involving very high order interac-tions will rarely be encountered in practice. This motivates our additivelogistic trees (ALT) procedure described in Section 7.The error model for two-class boosting is the obvious one for binaryvariables, namely the Bernoulli distribution. We show that the AdaBoostprocedures maximize a criterion that is closely related to expected log{Bernoulli likelihood, having the identical solution in the distributional (L2)limit of in�nite data. We derived a more direct procedure for maximizingthis log-likelihood (LogitBoost) and show that it exhibits properties nearlyidentical to those of Real AdaBoost.In the multi-class case, the AdaBoost procedures maximize a separateBernoulli likelihood for each class versus the others. This is a natural choiceand is especially appropriate when observations can belong to more thanone class (Schapire & Singer 1998). In the more usual setting of a uniqueclass label for each observation, the symmetric multinomial distribution isa more appropriate error model. We develop a multi-class LogitBoost pro-cedure that maximizes the corresponding log-likelihood by quasi-Newtonstepping. We show through simulated examples that there exist settingswhere this approach leads to superior performance, although none of thesesituations seems to have been encountered in the set of real data examplesused for illustration; the performance of both approaches had quite similarperformance over these examples.The concepts developed in this paper suggest that there is very little, ifany, connection between (deterministic) weighted boosting and other (ran-domized) ensemble methods such as bagging (Breiman 1996) and random-41

ized trees (Dietterich 1998). In the language of least squares regression, thelatter are purely \variance" reducing procedures intended to mitigate insta-bility, especially that associated with decision trees. Boosting on the otherhand seems fundamentally di�erent. It appears to be a purely \bias" reduc-ing procedure, intended to increase the
exibility of stable (highly biased)weak learners by incorporating them in a jointly �tted additive expansion.The distinction becomes less clear when boosting is implemented by �niterandom importance sampling instead of weights. The advantages/disadvantagesof introducing randomization into boosting by drawing �nite samples is notclear. If there turns out to be an advantage with randomization in some sit-uations, then the degree of randomization, as re
ected by the sample size,is an open question. It is not obvious that the common choice of using thesize of the original training sample is optimal in all (or any) situations.One fascinating issue not covered in this paper is the fact that boosting,whatever
avor, seldom seems to over�t, no matter how many terms areincluded in the additive expansion. Some possible explanations are:� As the LogitBoost iterations proceed, the overall impact of changes in-troduced by fm(x) reduces. Only observations with appreciable weightdetermine the new functions | those near the decision boundary. Byde�nition these observations have F (x) near zero and can be a�ectedby changes, while those in pure regions have large values of jF (x)j areare less likely to be modi�ed.� The stage-wise nature of the boosting algorithms do not allow thefull collection of parameters to be jointly �t, and thus have far lowervariance than the full parameterization might suggest. In the Machine-Learning literature this is explained in terms of VC dimension of theensemble compared to that of each weak learner.� Classi�ers are hurt less by over�tting than other function estimators(e.g. the famous risk bound of the 1-nearest-neighbor classi�er (Cover& Hart 1967)).Whatever the explanation, the empirical evidence is strong; the introduc-tion of boosting by Schapire, Freund and colleagues has brought an excitingand important set of new ideas to the table.AcknowledgementsWe thank Andreas Buja for alerting us to the recent work on text classi�ca-tion at AT&T laboratories, and Bogdan Popescu for illuminating discussions42

on PAC learning theory. Jerome Friedman was partially supported by theDepartment of Energy under contract number DE-AC03-76SF00515 and bygrant DMS-9764431 of the National Science Foundation. Trevor Hastie waspartially supported by grants DMS-9504495 and DMS-9803645 from the Na-tional Science Foundation, and grant ROI-CA-72028-01 from the NationalInstitutes of Health. Robert Tibshirani was supported by the Natural Sci-ences and Engineering Research Council of Canada.ReferencesBreiman, L. (1996), `Bagging predictors', Machine Learning 26 .Breiman, L. (1997), Prediction games and arcing algorithms, Technical Re-port Technical Report 504, Statistics Department, University of Cali-fornia, Berkeley. Submitted to Neural Computing.Breiman, L. (1998), Combining predictors, Technical report, Statistics De-partment, University of California, Berkeley.Breiman, L., Friedman, J., Olshen, R. & Stone, C. (1984), Classi�cationand Regression Trees, Wadsworth, Belmont, California.Buja, A., Hastie, T. & Tibshirani, R. (1989), `Linear smoothers and additivemodels (with discussion)', Annals of Statistics 17, 453{555.Cover, T. & Hart, P. (1967), `Nearest neighbor pattern classi�cation', Proc.IEEE Trans. Inform. Theory pp. 21{27.Dietterich, T. (1998), `An experimental comparison of three methods forconstructing ensembles of decision trees: bagging, boosting, and ran-domization', Machine Learning ?, 1{22.Freund, Y. (1995), `Boosting a weak learning algorithm by majority', Infor-mation and Computation 121(2), 256{285.Freund, Y. & Schapire, R. (1996), Experiments with a new boosting algo-rithm, in `Machine Learning: Proceedings of the Thirteenth Interna-tional Conference', pp. 148{156.Friedman, J. (1991), `Multivariate adaptive regression splines (with discus-sion)', Annals of Statistics 19(1), 1{141.43

Friedman, J. (1996), Another approach to polychotomous classi�cation,Technical report, Stanford University.Friedman, J. & Stuetzle, W. (1981), `Projection pursuit regression', Journalof the American Statistical Association 76, 817{823.Hastie, T. & Tibshirani, R. (1990), Generalized Additive Models, Chapmanand Hall.Hastie, T. & Tibshirani, R. (1998), `Classi�cation by pairwise coupling',Annals of Statistics . (to appear).Hastie, T., Tibshirani, R. & Buja, A. (1994), `Flexible discriminant analysisby optimal scoring', Journal of the American Statistical Association89, 1255{1270.Holte, R. (1993), `Very simple classi�cation rules perform well on most com-monly used datasets', Machine Learning 11, 63{90.Kearns, M. & Vazirani, U. (1994), An Introduction to Computational Learn-ing Theory, MIT Press.Mallat, S. & Zhang, Z. (1993), `Matching pursuits with time-frequency dic-tionaries', IEEE Transactions on Signal Processing 41, 3397{3415.McCullagh, P. & Nelder, J. (1989), Generalized Linear Models, Chapmanand Hall.Schapire, R. (1990), `The strength of weak learnability', Machine Learning5(2), 197{227.Schapire, R. & Singer, Y. (1998), Improved boosting algorithms usingcon�dence-rated predictions, in `Proceedings of the Eleventh AnnualConference on Computational Learning Theory'.

44

