Additive Logistic Regression: a Statistical View of
Boosting

JEROME FRIEDMAN *
TREVOR HASTIE *
ROBERT TIBSHIRANI !

August 17, 1998

Abstract

Boosting (Freund & Schapire 1996, Schapire & Singer 1998) is one
of the most important recent developments in classification method-
ology. The performance of many classification algorithms can often
be dramatically improved by sequentially applying them to reweighted
versions of the input data, and taking a weighted majority vote of the
sequence of classifiers thereby produced. We show that this seemingly
mysterious phenomenon can be understood in terms of well known
statistical principles, namely additive modeling and maximum likeli-
hood. For the two-class problem, boosting can be viewed as an ap-
proximation to additive modeling on the logistic scale using maximum
Bernoulli likelihood as a criterion. We develop more direct approxima-
tions and show that they exhibit nearly identical results to boosting.
Direct multi-class generalizations based on multinomial likelihood are
derived that exhibit performance comparable to other recently pro-
posed multi-class generalizations of boosting in most situations, and
far superior in some. We suggest a minor modification to boosting
that can reduce computation, often by factors of 10 to 50. Finally, we
apply these insights to produce an alternative formulation of boosting
decision trees. This approach, based on best-first truncated tree induc-
tion, often leads to better performance, and can provide interpretable
descriptions of the aggregate decision rule. It is also much faster com-
putationally making it more suitable to large scale data mining appli-
cations.

*Department of Statistics, Sequoia Hall, Stanford University, Stanford California 94305;
{jhf,trevor } @stat.stanford.edu

fDepartment of Public Health Sciences, and Department of Statistics, University of
Toronto; tibs@utstat.toronto.edu



1 Introduction

The starting point for this paper is an interesting procedure called “boost-
ing”, which is a way of combining or boosting the performance of many
“weak” classifiers to produce a powerful “committee”. Boosting was pro-
posed in the machine learning literature (Freund & Schapire 1996) and has
since received much attention.

While boosting has evolved somewhat over the years, we first describe the
most commonly used version of the AdaBoost procedure (Freund & Schapire
1996), which we call “Discrete” AdaBoost!. Here is a concise description
of AdaBoost in the two-class classification setting. We have training data
(1,y1)s- .. (N, yn) with x; a vector valued feature and y; = —1 or 1. We
define F(z) = XM ¢, fm(2) where each f,, () is a classifier producing values
+1 and ¢, are constants; the corresponding prediction is sign(F'(z)). The
AdaBoost procedure trains the classifiers f,,(z) on weighted versions of the
training sample, giving higher weight to cases that are currently misclassi-
fied. This is done for a sequence of weighted samples, and then the final
classifier is defined to be a linear combination of the classifiers from each
stage. A detailed description of Discrete Adaboost is given in the boxed
display titled Algorithm 1

Discrete AdaBoost(Freund & Schapire 1996)
1. Start with weights w; = 1/N,i=1,..., N.
2. Repeat for m=1,2,..., M:

(a) Fit the classifier f,,(x) using weights w; on the training data.

(b) Compute ey, = Ey[l(yzs, ()]s ¢m =10g((1 — em)/em)-
(c) Set w; < wjexplem - L(y, £f(xi))s © = 1,2,... N, and renormalize
so that >, w; = 1.

3. Output the classifier sign[>"M_, ¢, fn (2)]

Algorithm 1: FE,, represents expectation over the training data with weights
w = (wy,ws,...wy,). At each iteration AdaBoost increases the weights of the ob-
servations misclassified by f.,(z) by a factor that depends on the weighted training
error.

Much has been written about the success of AdaBoost in producing

!Essentially the same as AdaBoost.M1 for binary data(Freund & Schapire 1996)




accurate classifiers. Many authors have explored the use of a tree-based
classifier for f,,(z) and have demonstrated that it consistently produces
significantly lower error rates than a single decision tree. In fact, Breiman
(NIPS workshop, 1996) called AdaBoost with trees the “best off-the-shelf
classifier in the world” (see also Breiman (1998)). Interestingly, the test
error seems to consistently decrease and then level off as more classifiers
are added, rather than ultimately increase. For some reason, it seems that
AdaBoost is immune to overfitting.

Figure 1 shows the performance of Discrete AdaBoost on a synthetic clas-
sification task, using an adaptation of CART™ (Breiman, Friedman, Olshen
& Stone 1984) as the base classifier. This adaptation grows fixed-size trees
in a “best-first” manner (see Section 7, page 32). Included in the figure is the
bagged tree (Breiman 1996) which averages trees grown on bootstrap resam-
pled versions of the training data. Bagging is purely a variance-reduction
technique, and since trees tend to have high variance, bagging often produces
good results.

Early versions of AdaBoost used a resampling scheme to implement
step 2 of Algorithm 1, by weighted importance sampling from the train-
ing data. This suggested a connection with bagging, and that a major
component of the success of boosting has to do with variance reduction.

However, boosting performs comparably well when:

e a weighted tree-growing algorithm is used in step 2 rather than weighted
resampling, where each training observation is assigned its weight w;.
This removes the randomization component essential in bagging.

e “stumps” are used for the weak learners. Stumps are single-split trees
with only two terminal nodes. These typically have low variance but
high bias. Bagging performs very poorly with stumps (Fig. 1[top-right
panel].)

These observations suggest that boosting is capable of both bias and variance
reduction, and thus differs fundamentally from bagging.

The base classifier in Discrete AdaBoost produces a classification rule
fm(z) + X — {—1,1}, where & is the domain of the predictive features
x. If the implementation of the base classifier cannot deal with observation
weights, weighted resampling is used instead. Freund & Schapire (1996),
Breiman (1997) and Schapire & Singer (1998) have suggested various mod-
ifications to improve the boosting algorithms. Here we focus on a version
due to Schapire & Singer (1998), which we call “Real AdaBoost”, that uses



10 Node Trees Stumps

< . < | T
s 1 | Bagging S
— Discrete AdaBoost
Real AdaBoost
@ o
5§ ° 5§ °
In] ]
- [aV] = N
3 c 3 s
= [
= =
o o
e | o |
<) [S)
0 100 200 300 400 0 100 200 300 400
Number of Terms Number of Terms
100 Node Trees
<
o
@
E o
I
= o
3 S
fing
-
2 A
e |
o

0 100 200 300 400

Number of Terms

Figure 1: Test error for Bagging, Discrete AdaBoost and Real AdaBoost on a
simulated two-class nested spheres problem (see Section 5 on page 24.) There are
2000 training data points in 10 dimensions, and the Bayes error rate is zero. All
trees are grown “best-first” without pruning. The left-most iteration corresponds to
a single tree.



real-valued “confidence-rated” predictions rather than the {—1,1} of Dis-
crete AdaBoost. The weak learner for this generalized boosting produces
a mapping f,,(z) : X — R; the sign of f,,(z) gives the classification, and
|fm(z)| a measure of the “confidence” in the prediction. This real-valued
boosting tends to perform the best in our simulated examples in Fig. 1, espe-
cially with stumps, although we see with 100 node trees Discrete AdaBoost
overtakes Real AdaBoost after 200 iterations.

Real AdaBoost(Schapire & Singer 1998)
1. Start with weights w; =1/N,i=1,2,..., N.

2. Repeat form=1,2,.... M:

(a) Estimate the “confidence rated” classifier fp,(z) : X — R and
the constant ¢, from the training data with weights w;.

(b) Set w; < w; exp[—cm - yifm(x;)], i = 1,2,... N, and renormalize
so that ), w; = 1.

3. Output the classifier sign[>"M_, ¢, fon (2)]

Algorithm 2: The Real AdaBoost algorithm allows for the estimator fu,(z) to
range over R. In the special case that f,(x) € {—1,1} it reduces to AdaBoost, since
Yifm(x;) is 1 for a correct and—1 for an incorrect classification. In the general case
the constant c,, is absorbed into f,,(x). We describe the Schapire-Singer estimate
for fm(z) in Section 3.

Freund & Schapire (1996) and Schapire & Singer (1998) provide some
theory to support their algorithms, in the form of upper bounds on gen-
eralization error. This theory (Schapire 1990) has evolved in the machine
learning community, initially based on the concepts of PAC learning (Kearns
& Vazirani 1994), and later from game theory (Freund 1995, Breiman 1997).
Early versions of boosting “weak learners” (Schapire 1990) are far simpler
than those described here, and the theory is more precise. The bounds and
the theory associated with the AdaBoost algorithms are interesting, but
tend to be too loose to be of practical importance. In practice boosting
achieves results far more impressive than the bounds would imply.

In this paper we analyze the AdaBoost procedures from a statistical
perspective. We show that they are fitting an additive logistic regression
model. The AdaBoost algorithms are Newton methods for optimizing a
particular exponential loss function  a criterion which behaves much like
the log-likelihood on the logistic scale. We also derive new boosting-like




procedures for classification.

In Section 2 we briefly review additive modeling. Section 3 shows how
boosting can be viewed as an additive model estimator, and proposes some
new boosting methods for the two class case. The multiclass problem is
studied in Section 4. Simulated and real data experiments are discussed
in Sections 5 and 6. Our tree-growing implementation, using truncated
best-first trees, is described in Section 7. Weight trimming to speed up
computation is discussed in Section 8, and we end with a discussion in
Section 9.

2 Additive Models

AdaBoost produces an additive model F(z) = SM_, ¢,y fm(z), although
“weighted committee” or “ensemble” sound more glamorous. Additive mod-
els have a long history in statistics, and we give some examples here.

2.1 Additive Regression Models

We initially focus on the regression problem, where the response y is quan-
titative, and we are interested in modeling the mean E(Y|z) = F(z). The
additive model has the form

Fz) =" filz)). (1)
j=1

Here there is a separate function f;(z;) for each of the p input variables
z;. More generally, each component f; is a function of a small, pre-specified
subset of the input variables. The backfitting algorithm (Friedman & Stuetzle
1981, Buja, Hastie & Tibshirani 1989) is a convenient modular algorithm
for fitting additive models. A backfitting update is

fi(z;) + E [y -> fk(xk”xj-l : (2)
= J

Any method or algorithm for estimating a function of z; can be used to
obtain an estimate of the conditional expectation in (2). In particular, this
can include nonparametric smoothing algorithms, such as local regression
or smoothing splines. In the right hand side, all the latest versions of the
functions fi are used in forming the partial residuals. The backfitting cycles
are repeated until convergence. Under fairly general conditions, backfitting
can be shown to converge to the minimizer of E(y—F(z))? (Buja et al. 1989).



2.2 Extended Additive Models

More generally, one can consider additive models whose elements { f,, () }}/
are functions of potentially all of the input features x. Usually, in this
context, the f,,(z) are taken to be simple functions characterized by a set
of parameters v and a multiplier 3,,,

fm(x) = ﬁmb(x;'}/m)- (3)

The additive model then becomes

M

Fuy(z) = Z Binb(T 5 Ym)- (4)

m=1

For example, in single hidden layer neural networks b(z ;y) = o(y'z) where
o(-) is a sigmoid function and -y parameterizes a linear combination of the
input features. In signal processing, wavelets are a popular choice with ~y
parameterizing the location and scale of a “mother” wavelet b(z;vy). In
these applications {b(z;vm)} are generally called “basis functions” since
they span a function subspace.

If least squares is used as a fitting criterion, one can solve for an optimal
set of parameters through a generalized back fitting algorithm with updates

2
{Bm;ym} + arg rg’ivnE {y — Y Beblz ;) — Bb(=; 7)} (5)

k#m

form=1,2,...,M,1,2,.... Alternatively, one can use a “greedy” forward
stepwise approach

{Bns v} = argmin B [y — Fyy(2) = Bb(a " (6)

for m =1,2,..., M, where {f,v;}" ! are fixed at their corresponding so-
lution values at earlier iterations. This is the approach used by Mallat &
Zhang (1993) in “matching pursuit”, where the b(z;~y) are selected from
an over complete dictionary of wavelet bases. In the language of boosting,
f(x) = Bb(x ;) would be called a “weak learner” and Fj;(z) (4) the “com-
mittee”. If decision trees were used as the weak learner the parameters -y
would represent the splitting variables, split points, the constants in each
terminal node, and number of terminal nodes of each tree.

Note that the back—fitting procedure (5) or its greedy cousin (6) only
require an algorithm for fitting a single weak learner (3) to data. This base



algorithm is simply applied repeatedly to modified versions of the original
data
Ym —y— Y frl(@).
k#m
In the forward stepwise procedure (6) the modified output y,, at the mth
iteration depends only on its value y,, 1 and the solution f,, 1(z) at the
previous iteration

Ym = Ym-1 — fm—1(2). (7)

At each step m, the previous output values y,, 1 are modified (7) so that
the previous model f,, 1(x) has no explanatory power on the new outputs
Ym- One can therefore view this as a procedure for boosting a weak learner
f(x) = Bb(x ;) to form a powerful committee Fj;(z) (4).

2.3 Classification problems

For the classification problem, we learn from Bayes theorem that all we
need is P(y = j|z), the posterior or conditional class probabilities. One
could transfer all the above regression machinery across to the classification
domain by simply noting that E(1;,_;|z) = P(y = j|z), where 1;,_; is the
0/1 indicator variable representing class j. While this works fairly well in
general, several problems have been noted (Hastie, Tibshirani & Buja 1994)
for constrained regression methods. The estimates are typically not confined
to [0,1], and severe masking problems can occur when there are more than
two classes . A notable exception is when trees are used as the regression
method, and in fact this is the approach used by Breiman et al. (1984).

Logistic regression is a popular approach used in statistics for overcoming
these problems. For a two class problem, the model is

Ply=ta) &L
o8 B0, = 0l) = mgl fm (). (8)

The monotone logit transformation on the left guarantees that for any values

of F(z) = XM_, f.u(x) € R, the probability estimates lie in [0,1]; inverting
we get

. el (@)

p(z) =Py =1lz) = T3 oF@" (9)

Here we have given a general additive form for F'(x); special cases exist

that are well known in statistics. In particular, linear logistic regression

(McCullagh & Nelder 1989, for example) and additive logistic regression



(Hastie & Tibshirani 1990) are popular. These models are usually fit by
maximizing the binomial log-likelihood, and enjoy all the associated asymp-
totic optimality features of maximum likelihood estimation.

A generalized version of backfitting (2), called “Local Scoring” in Hastie
& Tibshirani (1990), can be used to fit the additive logistic model. Starting
with guesses fi(z1) ... fp(xp), F(z) = X fu(zr) and p(x) defined in (9), we
form the working response:

(10)

We then apply backfitting to the response z with observation weights p(x)(1—
p(z)) to obtain new fi(x). This process is repeated until convergence. The
forward stage-wise version (6) of this procedure bears a close similarity to
the LogitBoost algorithm described later in the paper.

3 Boosting — an Additive Logistic Regression Model

In this section we show that the boosting algorithms are stage-wise esti-
mation procedures for fitting an additive logistic regression model. They
optimize an exponential criterion which to second order is equivalent to
the binomial log-likelihood criterion. We then propose a more standard
likelihood-based boosting procedure.

3.1 An Exponential Criterion

Consider minimizing the criterion

J(F) = E(e ¥F'@) (11)

for estimation of F(x).2 Lemma 1 shows that the function F(x) that mini-
mizes J(F') is the symmetric logistic transform of P(y = 1|z)

Lemma 1 E(e Y7®) is minimized at
(12)

Hence

2E represents expectation; depending on the context, this may be an L, population
expectation, or else a sample average. E,, indicates a weighted expectation.



€

P=112) = — o (13)
efF(z)

Ply=—-1g) = — o (14)

e*F(fﬂ) + eF(I)
Proof
While E entails expectation over the joint distribution of y and z, it is
sufficient to minimize the criterion conditional on z.
E (efyp(w)\m) = Py=1z)e '@ 4+ Py = —1/z)e"®@
0E (e*yF(z)\x)

= —Py=1lz)e '®) 4+ P(y = —1|z)e"'®
9F (2) (y = 1z)e + P(y |z)e

Setting the derivative to zero the result follows.

O
The usual logistic transform does not have the factor 1 as in (12); by
multiplying the numerator and denominator in (13) by eF@) | we get the
usual logistic model
eQF(:n)
p(z) = T r (15)

Hence the two models are equivalent up to a factor 2..

Corollary 1 If E is replaced by averages over regions of x where F(x) is
constant (as in the terminal node of a decision tree), the same result applies
to the sample proportions of y =1 and y = —1.

In proposition 1 we show that the Discrete AdaBoost increments in Algo-
rithm 1 are Newton-style updates for minimizing the exponential criterion.
Many terms are typically required, since at each stage a rather crude approx-
imation is used in place of conditional expectation. Because of Lemma, 1, the
resulting algorithm can be interpreted as a stage-wise estimation procedure
for fitting an additive logistic regression model.

10



Proposition 1 The Discrete AdaBoost algorithm fits an additive logistic re-
gression model by using adaptive Newton updates for minimizing E(e’yF(I)).

Proof

Let J(F) = E[e ¥"(®)]. Suppose we have a current estimate F(z) and
seek an improved estimate F(z) + cf(z). For fixed ¢ (and z), we expand
J(F(x) + c¢f(z)) to second order about f(z) =0

J(F+cf) = EBlevI@+ef@)
E[e*yF(x)(l — yef(z) + ch(x)2/2)]

Minimizing pointwise with respect to f(z) € {—1,1}, we find

f(z) = argmfinEw(lfycf(m)—I—c2f(.f1:)2/2|.f1,‘)
= argmin Bty ef ()7} (16)
= wgmin B[y — (@)%l (17

where w(y|z) = exp(—yF(z))/E exp(—yF(z)), and (17) follows from (16) by
considering the two possible choices for f(x). Thus minimizing a quadratic
approximation to the criterion leads to a weighted least-squares choice of
f(x) € {—1,1}, and this constitutes the Newton step.

Given f(z) € {—1,1}, we can directly minimize J(F + ¢f) to determine
c

¢ = argminEwefcyfA(‘T)
c
1—e
e

1
— 11
9 08

where e = Ew[l[y;éf(:p)}]' Note that ¢ can be negative if the weak learner
does worse than 50%, in which case it automatically reverses the polarity.
Combining these steps we get the update for F(x)

1—e .

f(z)

1
F(z) « F(;v)+§log
e

In the next iteration the new contribution éf(z) to F(z) augments the
weights:

w(y|z) + w(y|z) - eféf(x)y’

11



followed by a normalization. Since yf(z) = 2 x Lyt fay — 1 We see that the
update is equivalent to

1—e
w(y|z) «+ w(y|z) - exp <10g (T) 1[y;éf(x)}>

Thus the function and weight updates are identical to those used in Discrete
AdaBoost.
O

Parts of this derivation for AdaBoost can be found in Breiman (1997)
and Schapire & Singer (1998), but without reference to additive logistic
regression models.

This Ly version of AdaBoost translates naturally to a data version using
trees. The weighted least squares criterion is used to grow the tree-based
classifier f(fr), and given f(fr), the constant ¢ is based on the weighted
training error.

Note that after each Newton step, the weights change, and hence the
tree configuration will change as well. This adds an adaptive twist to the
Newton algorithm.

Corollary 2 After each update to the weights, the weighted misclassifica-
tion error of the most recent weak learner is 50%.

Proof
This follows by noting that the ¢ that minimizes J(F + c¢f) satisfies

OJ(F +cf)

o~ Bl Iy f(@) = 0 (18)

The result follows since yf(x) is 1 for a correct and —1 for an incorrect
classification.

O
Schapire & Singer (1998) give the interpretation that the weights are up-
dated to make the new weighted problem maximally difficult for the next
weak learner.

The Discrete AdaBoost algorithm expects the tree or other “weak learn-
er” to deliver a classifier f(z) € {—1,1}. We now show that the Real
AdaBoost algorithm uses the weighted probability estimates in the termi-
nal nodes of the tree to update the additive logistic model, rather than the
classifications themselves. Again we derive the population algorithm, and
then apply it to data.

12



Proposition 2 The Real AdaBoost algorithm fits an additive logistic re-
gression model by stage-wise optimization of J(F) = E[e ¥F(®)]

Proof
Suppose we have a current estimate F'(z) and seek an improved estimate
F(z) + f(z) by minimizing J(F'(z) + f(z)) at each z.
J(F@) + 1) = Be e @)
e F@ Ele vl @) 1py—1y]z] + ef(I)E[e*yF(z)l[y:,u 7]

Dividing through by E[e ¥¥(*)|z] and setting the derivative wrt f(z) to zero

we get
: 1. Byl
fla) = Slog———"—-> (19)
27 By[ly——]7]
1 P,(y = 1|x)
28 Byly = 1) (20)

where w(y|z) = exp(—yF(z))/E(exp(—yF(z))|z).

Careful examination of Schapire & Singer (1998) shows that this update
matches theirs (and the ¢, in Algorithm 2 are redundant.) The weights get
updated by

w(y|r) « w(y|z) - oyl (@)

O
The algorithm as presented would stop after one iteration. In practice we
use crude approximations to conditional expectation, and hence many steps
are required.

Corollary 3 At the optimal F(x), the weighted conditional mean of y is 0.

Proof
If F(z) is optimal, we have

8J(F‘(T)) _ _EefyF(z)y =0 (21)
()

|
We can think of the weights as providing an alternative to residuals for the
binary classification problem. At the optimal function F', there is no further
information about F' in the weighted conditional distribution of y. If there
is, we use it to update F'.

13



At iteration M in either the Discrete or Real AdaBoost algorithms, we
have composed an additive function of the form

M
F(z) =) fm(z) (22)

where each of the components are found in a greedy forward stage-wise
fashion, fixing the earlier components. Our term “stage-wise” refers to a
similar approach in Statistics:

e Variables are included sequentially in a stepwise regression.

e The coefficients of variables already included receive no further adjust-
ment.

3.2 Why Ee ¥/(®)?

So far the only justification for this exponential criterion is that it has a
sensible population minimizer, and the algorithm described above performs
well on real data. In addition

e Schapire & Singer (1998) motivate e ¥F(®) a5 a differentiable upper-
bound to misclassification error 1, ¢ (see Fig. 2);

e the AdaBoost algorithm that it generates is extremely modular, re-
quiring at each iteration the retraining of a classifier on a weighted
training database.

Let y* = (y + 1)/2, taking values 0,1, and parametrize the binomial
probabilities by

eF (@)

p(z) = @) 1 ¢ F@)

The expected binomial log-likelihood is

El(y*,p(z)) = E[y"log(p(z)) + (1 —y*)log(l — p(z))]
= —Elog(l+ e 2vF@) (23)

e The population minimizers of —E/(y*, p(z)) and Ee ¥¥(*) coincide.
This is easily seen because the expected log-likelihood is maximized at
the true probabilities p(z) = P(y* = 1|z), which define the logit F(z).
By Lemma 1 we see that this is exactly the minimizer of Ee ¥F(@),

14



Losses as Approximations to Misclassification Error

3 | \;\\\\ \\
\\;\ \ —— Misclassification
o \\\\\ \ Shapire-Singer
< \ — Log-likelihood
\ AN R Squared Error (p)
o \ N ——— Squared Error(F)
o~ AN

Loss
15
1

S
o \ \\\\ //’
o | ~_ - I,
o
T T T T T
-2 -1 0 1 2

Figure 2: A wvariety of loss functions for estimating a function F(x) for classi-
fication. The horizontal azis is yF, which is negative for errors and positive for
correct classifications. All the loss functions are monotone in yF. The curve la-
beled “Squared Error(p)” is (y* —p)?, and gives a uniformly better approzimation to
misclassification loss than the exponential criterion (Schapire-Singer). The curve
labeled “Squared Error(F)” is (y — F)?, and increases once yF exceeds 1, thereby
increasingly penalizing classifications that are “too correct”.

15



In fact, the exponential criterion and the (negative) log-likelihood are
equivalent to second order in a Taylor series around F' = 0:

—L(y*,p) = exp(—yF) + log(2) (24)

Graphs of exp(—yF) and log(14e~¥¥(®)) (suitably scaled) are shown in
Fig. 2, as a function of yF'  positive values of yF imply correct clas-
sification. Note that —exp(—yF') itself is not a proper log-likelihood,
as it does not equal the log of any probability mass function on +1.

e There is another way to view the criterion J(F). It is easy to show
that

efyF(:ﬂ) _ ‘y* 7p(.7;)| (25)
p(@) (1 = p(@))’
with F(z) = log(p(x)/(1—p(x))), The right-hand side is known as the
Chi statistic in the statistical literature.

One feature of both the exponential and log-likelihood criteria is that
they are monotone and smooth. Even if the training error is zero, the criteria
will drive the estimates towards purer solutions (in terms of probability
estimates).

Why not estimate the f,,, by minimizing the squared error E(y— F(z))%?
If Foq(z) = X7 ! f(2) is the current prediction, this leads to a forward
stage-wise procedure that does an unweighted fit to the response y—F},, 1 (z)
at step m (6). Empirically we have found that this approach works quite
well, but is dominated by those that use monotone loss criteria. We believe
that the non-monotonicity of squared error loss (Fig. 2) is the reason. Cor-
rect classifications, but with yF'(z) > 1, incur increasing loss for increasing
values of |F(z)|. This makes squared-error loss an especially poor approxi-
mation to misclassification error rate. Classifications that are “too correct”
are penalized as much as misclassification errors.

3.3 Using the log-likelihood criterion

In this Section we explore algorithms for fitting additive logistic regression
models by stage-wise optimization of the Bernoulli log-likelihood. Here we
focus again on the two-class case, and will use a 0/1 response y* to represent
the outcome. We represent the probability of y* = 1 by p(z), where
el'(x)
p(z) = @) p o F@ (26)

Algorithm 3 gives the details.

16



LogitBoost (2 classes)

1. Start with weights w; = 1/Ni=1,2,..., N, F(z) = 0 and probability

estimates p(z;) = 3.

2. Repeat for m=1,2,..., M:

(a) Compute the working response and weights

L= Y —pla)
' p(zi)(1 — p(zi))
w; = p(x;)(1 - p(zi))

(b) Estimate f,,(z) by weighted least-squares fitting of z to z.
(¢) Update F(z) < F(z) + 3 fm(z) and p(z) via (26).

3. Output the classifier sign[F (z)] = sign[>M_; fn ()]

Algorithm 3: An adaptive Newton algorithm for fitting an additive logistic re-
gression model.

Proposition 3 The LogitBoost algorithm (2 classes) uses adaptive Newton
steps for fitting an additive symmetric logistic model by maximum likelihood.

Proof
Consider the update F(z) + f(z) and the expected log-likelihood
UF + f) = E[2y"(F(z) + f(z)) — log[l + ¢+ )], (27)

Conditioning on z, we compute the first and second derivative at f(z) = 0:

I (x) + f (x)

e) = T o
= 2E( — p(x)|a) (28)
Hiz) — 825(1;(];77(12; .f(-’lf‘)|f($):0
— 4B — p(@))]) (29)

where p(z) is defined in terms of F'(z). The Newton update is then

F(z) « F(z)— H(z) 's(x)

17




| Bl pla)la)
2 Bp(e) (1 p())|7)
py el (V@)
= F@)+ 58 () (31)

where w(z) = p(z)(1 — p(z)). Equivalently, the Newton update solves the
weighted least squares criterion

= F(z)+ (30)

. 1 y*—px) g
i B (§p(x)(1 @) ("”)> (2)

|

The population algorithm described here translates immediately to an
implementation on data when E(-|z) is replaced by a regression method,
such as regression trees (Breiman et al. 1984). While the role of the weights
are somewhat artificial in the Ly case, they are not in any implementation;
w(z) is constant when conditioned on z, but the w(z;) in a terminal node of
a tree, for example, depend on the current values F'(z;), and will typically
not be constant.

Sometimes the w(z) get very small in regions of (z) perceived (by F(x))
to be pure—that is, when p(x) is close to 0 or 1. This can cause numerical
problems in the construction of z, and led to the following crucial imple-
mentation protections:

e If y* = 1, then compute z = % as %. Since this number can

get large 1f p is small, threshold this ratio at zmaz. The particular
value chosen for zmaz is not crucial; we have found empirically that
zmaz € [2,4] works well. Likewise, if y* = 0, compute z = with
a lower threshold of —zmaz.

~1
(1-p)
e Enforce a lower threshold on the weights: w = max(w, 2x machine-zero).

3.4 Optimizing Fe ¥"®) by Newton stepping

The Ly Real Adaboost procedure (Algorithm 2) optimizes Ee ¥(¥(#)+f(2))
exactly with respect to f at each iteration. Here we explore a “gentler”
version that instead takes adaptive Newton steps much like the LogitBoost
algorithm just described.

Proposition 4 The Gentle AdaBoost algorithm uses adaptive Newton steps
for minimizing Ee v,

18



Gentle AdaBoost
1. Start with weights w; =1/N,i=1,2,...,N, F(z) =0.
2. Repeat for m=1,2,..., M:

(a) Estimate f,,(z) by weighted least-squares fitting of y to x.
(b) Update F(x) < F(z) + fm(z)

(c) Update w; + wie ¥ifm(@) and renormalize.

3. Output the classifier sign[F (z)] = sign[S"M_, fn ()]

Algorithm 4: A modified version of the Real AdaBoost algorithm, using Newton
stepping rather than exact optimization at each step

Proof
OJ(F(x) + f(=x CuF(z
( (a?)(x)'f(T))f<z>—o = Byl
82
J(};(;U()x;f(x)) f@)=0 = E(e*yF(I)\:r) since 2 = 1

Hence the Newton update is

B V" @ya)
E(e vF(@)|x)
= F(z) + Ey(ylz)

F(z) « F(z)+

where

wlyle) = Frry
O

The main difference between this and the Real AdaBoost algorithm is
how it uses its estimates of the weighted class probabilities to update the
functions. Here the update is f,,(x) = Py(y = 1|z) — P,(y = —1|z), rather
than half the log-ratio as in (20): fm(z) = 3 log %. Log-ratios can
be numerically unstable, leading to very large updates in pure regions, while
the update here lies in the range [—1,1]. Empirical evidence suggests (see
Section 6) that this more conservative algorithm has similar performance to
both the Real AdaBoost and LogitBoost algorithms, and often outperforms

them both, especially when stability is an issue.

19




There is a strong similarity between the updates for the Gentle AdaBoost
algorithm and those for the LogitBoost algorithm. Let P = P(y = 1|z), and

eF(z)
() = FGierm- Then

E(e P yl ) _ e "WP " - P)
E(evF@)|z) e Fl@ P—I—e 2)(1 — P)
(1 =p(z))P +p(z)(1 - P)
The analogous expression for LogitBoost from (30) is

2p(a)(1 - p(x))

At p(z) =~ % these are nearly the same, but they differ as the p(z) become
extreme. For example, if P =~ 1 and p(z) ~ 0, (34) blows up, while (33) is
about 1 (and always falls in [—1,1].)

4 Multiclass procedures

Here we explore extensions of boosting to classification with multiple classes.
We start off by proposing a natural generalization of the two-class symmet-
ric logistic transformation, and then consider specific algorithms. In this
context Schapire & Singer (1998) define J responses y; for a J class prob-
lem, each taking values in {—1,1}. Similarly the indicator response vector
with elements y;‘ is more standard in the statistics literature. Assume the
classes are mutually exclusive.

Definition 1 For a J class problem let pj(z) = P(y; = 1|z). We define the
symmetric multiple logistic transformation

Fj(z) = log p;(« Z log pi (= (35)

Equivalently,
Fj(x) S

pj(z) = ST R Yi=1 Fr(z) =0 (36)
The centering condition in (36) is for numerical stability only; it simply pins
the F; down, else we could add an arbitrary constant to each F; and the

20



probabilities remain the same. The equivalence of these two definitions is
easily established, as well as the equivalence with the two-class case.
Schapire & Singer (1998) provide several generalizations of AdaBoost for
the multiclass case; we describe their AdaBoost. MH algorithm (see boxed
Algorithm 5), since it seemed to dominate the others in their empirical
studies. We then connect it to the models presented here. We will refer to

AdaBoost.MH (Schapire & Singer 1998)
The original N observations are expanded into N X J pairs

(w3, 1), yi), (245 2), yi2), - (i )y yia), @ = 1,...,N. Here y;; is
the response for class jth for observation 1.

1. Start with weights w;; =1/NJ,i=1,....N, j=1,...,J.
2. Repeat for m=1,2,..., M:

(a) Estimate the “confidence rated” classifier fp,(z,7) : (X X
(1,...,J)) — R from the training data with weights w;;.

(b) Set Wi $— Wij exp[—yijfm(:vi,j)], 1 =1,2,...,N, 3 =1,...,J,
and renormalize so that }; jwi; = 1.

3. Output the classifier argmax,;F(z, j) where F(z,j) = 3., fm(,7)-

Algorithm 5: The AdaBoost. MH algorithm converts the J class problem into
that of estimating a 2 class classifier on a training set J times as large, with an
additional “feature” defined by the set of class labels.

the augmented variable in Algorithm 5 as the “class” variable C. We make
a few observations:

e The Loy version of this algorithm minimizes Z]‘-Izl Ee%ti(®)  which
is equivalent to running separate Lo boosting algorithms on each of
the J problems of size IV obtained by partitioning the IV x J samples
in the obvious fashion. This is seen trivially by first conditioning on
C = j, and then z|C = j, when computing conditional expectations.

e The same is almost true for their tree-based algorithm. We see this
because

1. If the first split is on C either a J-nary split if permitted,
or else J — 1 binary splits — then the sub-trees are identical to
separate trees grown to each of the J groups. This will always be
the case for the first tree.

21




2. If a tree does not split on C anywhere on the path to a terminal
node, then that node returns a function f,,(z,7) = gm(z) that
contributes nothing to the classification decision. However, as
long as a tree includes a split on C' at least once on every path to
a terminal node, it will make a contribution to the classifier for
all input feature values.

The advantage/disadvantage of building one large tree using class label
as an additional input feature is not clear. No motivation is provided.
We therefore implement AdaBoost.MH using the more traditional di-
rect approach of building J separate trees to minimize Z;’:l EeviFi(z)

We have thus shown

Proposition 5 The AdaBoost. MH algorithm for a J-class problem fits J
uncoupled additive logistic models, G;(z) = %logpj(z)/(1 — pj(z)), each
class against the rest.

In principal this parametrization is fine, since Gj(z) is monotone in p;(z).
However, we are estimating the G () in an uncoupled fashion, and there
is no guarantee that the implied probabilities sum to 1. We give some
examples where this makes a difference, and AdaBoost.MH performs more
poorly than an alternative coupled likelihood procedure.

Schapire and Singer’s AdaBoost.MH was also intended to cover situa-
tions where observations can belong to more than one class. The “MH”
represents “Multi-Label Hamming”, Hamming loss being used to measure
the errors in the space of 27 possible class labels. In this context fitting a
separate classifier for each label is a reasonable strategy. However, Schapire
and Singer also propose using AdaBoost.MH when the class labels are mu-
tually exclusive, which is the focus in this paper.

Algorithm 6 is a natural generalization of algorithm 3 for fitting the
J-class logistic regression model (36).

Proposition 6 The LogitBoost algorithm (J classes) uses adaptive quasi-
Newton steps for fitting an additive symmetric logistic model by maximum-

likelihood

We sketch an informal proof.
Proof

e We first give the Ly score and Hessian for the Newton algorithm cor-
responding to a standard multi-logit parametrization
Ply; = 1]x)

G R =T

22



LogitBoost (J classes)

1. Start with weights w;; = 1/N,i=1,...,N, j=1,...,J, Fj(z) =0

and p;(z) =1/J Vj.
2. Repeat form=1,2,.... M :

(a) Repeat for j=1,...,J:

i. Compute working responses and weights in the jth class

Yij — pj(zi)
pj(zi) (1 — pj(xs))
wij = pilzi)(1 = pj(zi))

Zij =

ii. Estimate fy,;(2) by a weighted least-squares fit of z;; to z;
J—1

(b) Set funj (@) — 27 (fmi(@) — 550, frnle)), and Fy(o) «
Fj(z) + fmj(z)
(c) Update pj(z) via (36).

3. Output the classifier argmax; Fj(z)

Algorithm 6: An adaptive Newton algorithm for fitting an additive multiple
logistic regression model.

23




with Gj(z) = 0 (and the choice of J for the base class is arbitrary).
The expected conditional log-likelihood is

J—1 J-1
UG +g) =Y E(y}12)(G)(@) + gj(z)) —log(1 + Y eFr@)Fon)
j=1 k=1
si(z) = Ely; —pjl)|z), j=1,...,J -1
Hjr(z) = —pj(x)(6x —pr(2)), g k=1,...,J -1

e Our quasi-Newton update amounts to using a diagonal approximation
to the Hessian, producing updates:

E(y; —pj(z)lz)
pj(z)(1 — pj(x))

e To convert to the symmetric parametrization, we would note that g; =
0, and set f;(z) = g;(z)— 3 S1_, gx(z). However, this procedure could
be applied using any class as the base, not just the Jth. By averaging
over all choices for the base class, we get the update

L (I=1\ (Bl —pi)ls) 1T E(y;’é—pk(ivﬂx))
ff(‘ﬂ)—( 7 ><pj(x)(1—pj(x)) 7 2 pela) (1 - pe(a)

O

For more rigid parametric models and full Newton stepping, this sym-

metrization would be redundant. With quasi-Newton steps and adaptive

(tree based) models, the symmetrization removes the dependence on the
choice of the base class.

5 Simulation studies

In this section the four flavors of boosting outlined above are applied to
several artificially constructed problems. Comparisons based on real data
are presented in Section 6.

An advantage of comparisons made in a simulation setting is that all
aspects of each example are known, including the Bayes error rate and the
complexity of the decision boundary. In addition, the population expected
error rates achieved by each of the respective methods can be estimated to
arbitrary accuracy by averaging over a large number of different training
and test data sets drawn from the population. The four boosting methods
compared here are

24



DAB: Discrete AdaBoost — Algorithm 1.

RAB: Real AdaBoost  Algorithm 2.
LB: LogitBoost  Algorithms 3 and 6.

GAB: Gentle AdaBoost  Algorithm 4.

DAB, RAB and GAB handle multiple classes using the AdaBoost.MH ap-
proach.

In an attempt to differentiate performance, all of the simulated examples
involve fairly complex decision boundaries. The ten input features for all
examples are randomly drawn from a ten-dimensional standard normal dis-
tribution z ~ N'9(0, I). For the first three examples the decision boundaries
separating successive classes are nested concentric ten-dimensional spheres
constructed by thresholding the squared-radius from the origin

r? = > 7‘3 (37)

Each class C (1 <k < K) is defined as the subset of observations
Ck = {xz ‘ tp1 < 7”Z~2 < tk} (38)

with tg = 0 and tx = co. The {t;}} ' for each example were chosen so as to
put approximately equal numbers of observations in each class. The training
sample size is N = K -1000 so that approximately 1000 training observations
are in each class. An independently drawn test set of 10000 observations
was used to estimate error rates for each training set. Averaged results over
ten such independently drawn training/test set combinations were used for
the final error rate estimates. The corresponding statistical uncertainties
(standard errors) of these final estimates (averages) are approximately a
line width on each plot.

Figure 3 [top-left] compares the four algorithms in the two-class (K = 2)
case using a two terminal node decision tree (“stump”) as the base classifier.
Shown is error rate as a function of number of boosting iterations. The upper
(black) line represents DAB and the other three nearly coincident lines are
the other three methods (dotted red = RAB, short-dashed green = LB, and
long-dashed blue=GAB)3. Note that the somewhat erratic behavior of DAB,

#Colors are visible in the online version of this paper:
http://stat.stanford.edu/~trevor/Papers/boost.ps

25



Additive Decision Boundary

Stumps - 2 Classes Eight Node Trees - 2 Classes
n n
o o
— Discrete AdaBoost
g» Y Real AdaBoost g B
| LogitBoost
‘\ — —  Gentle AdaBoost
. o |l . «© ]|
S © | e i
i | i ‘
oo oo l
o o
- -
c <
o o
[SHE [SEE
0 200 400 600 800 0 200 400 600 800
Number of Terms Number of Terms
Stumps - 3 Classes Stumps - 5 Classes
©
®
©o
e A
©o
e A
5 % 5
= o =
] i < |
3 3 e
(o] (o]
= [
N
o N
8
o o
(S (S
0 200 400 600 800 0 200 400 600 800
Number of Terms Number of Terms

Figure 3: Additive Decision Boundary. In all panels except the the top right, the
solid curve (representing discrete AdaBoost) lies alone above the other three curves.

26



especially for less that 200 iterations, is not due to statistical uncertainty.
For less than 400 iterations LB has a minuscule edge, after that it is a dead
heat with RAB and GAB. DAB shows substantially inferior performance
here with roughly twice the error rate at all iterations.

Figure 3 [lower-left] shows the corresponding results for three classes
(K = 3) again with two—terminal node trees. Here the problem is more
difficult as represented by increased error rates for all four methods, but
their relationship is roughly the same: the upper (black) line represents DAB
and the other three nearly coincident lines are the other three methods. The
situation is somewhat different for larger number of classes. Figure 3 [lower-
right] shows results for K = 5 which are typical for K > 4. As before, DAB
incurs much higher error rates than all the others, and RAB and GAB have
nearly identical performance. However, the performance of LB relative to
RAB and GAB has changed. Up to about 40 iterations it has the same error
rate. From 40 to about 100 iterations LB’s error rates are slightly higher
than the other two. After 100 iterations the error rate for LB continues to
improve whereas that for RAB and GAB level off, decreasing much more
slowly. By 800 iterations the error rate for LB is 0.19 whereas that for RAB
and GAB is 0.32. Speculation as to the reason for LB’s performance gain
in these situations is presented below.

In the above examples a stump was used as the base classifier. One
might expect the use of larger trees would do better for these rather complex
problems. Figure 3 [top-right] shows results for the two—class problem, here
boosting trees with eight terminal nodes. These results can be compared to
those for stumps in Fig. 3 [top-left]. Initially, error rates for boosting eight
node trees decrease much more rapidly than for stumps, with each successive
iteration, for all methods. However, the error rates quickly level off and im-
provement is very slow after about 100 iterations. The overall performance
of DAB is much improved with the bigger trees, coming close to that of the
other three methods. As before RAB, GAB, and LB exhibit nearly identical
performance. Note that at each iteration the eight node tree model con-
sists of four—times the number of additive terms as does the corresponding
stump model. This is why the error rates decrease so much more rapidly
in the early iterations. In terms of model complexity (and training time),
a 100 iteration model using eight-terminal node trees is equivalent to a 400
iteration stump model .

Comparing the top-two panels in Fig. 3 one sees that for RAB, GAB,
and LB the error rate using the bigger trees (.072) is in fact 33% higher than
that for stumps (.054) at 800 iterations, even though the former is four times
more complex. This seemingly mysterious behavior is easily understood by

27



examining the nature of the decision boundary separating the classes. The
Bayes decision boundary between two classes is the set:

 Ply=1m)
{.7: : logm = 0} (39)

or simply {z : B(z) = 0}. To approximate this set it is sufficient to estimate
the logit B(z), or any monotone transformation of B(x), as closely as possi-
ble. As discussed above, boosting produces an additive logistic model whose
component functions are represented by the base classifier. With stumps as
the base classifier, each component function has the form

fm(@) = e lia,<tn] + Cnliz >t (40)
fm(T]) (41)

if the mth stump chose to split on coordinate j. Here t,, is the split-point,
and c and c£ are the weighted means of the response in the left and right

terminal nodes. Thus the model produced by boosting stumps is additive
in the original features

Fz) =Y gj(z)). (42)
j=1

where g;(z;) adds together all those stumps involving z; (and is 0 if none
exist).

Examination of (37) and (38) reveals that an optimal decision boundary
for the above examples is also additive in the original features; f;(z;) =
’I‘? +const. Thus, in the context of decision trees, stumps are ideally matched
to these problems; larger trees are not needed. However boosting larger
trees need not be counter productive in this case if all of the splits in each
individual tree are made on the same predictor variable. This would also
produce an additive model in the original features (42). However, due to
the forward greedy stage-wise strategy used by boosting, this is not likely to
happen if the decision boundary function involves more than one predictor;
each individual tree will try to do its best to involve all of the important
predictors. Owing to the nature of decision trees, this will produce models
with interaction effects; most terms in the model will involve products in
more than one variable. Such non-additive models are not as well suited
for approximating truly additive decision boundaries such as (37) and (38).
This is reflected in increased error rate as observed in Fig. 3.

The above discussion also suggests that if the decision boundary sepa-
rating pairs of classes were inherently non-additive in the predictors, then

28



Test Error

Test Error

0.5

0.4

0.3

0.2

0.1

0.0

0.5

0.4

0.3

0.2

0.1

0.0

Non-Additive Decision Boundary

Stumps - 2 Classes

—— DAB
"""" RAB

LB
— — GAB

Test Error

200

Eight Node Trees - 2 Classes

400 600

Number of Terms

800

200

400 600

Number of Terms

800

0.5

0.4

0.3

0.2

0.1

0.0

Four Node Trees - 2 Classes

200 400 600 800

Number of Terms

Figure 4: Interactive Decision Boundary

29



boosting stumps would be less advantageous than using larger trees. A tree
with m terminal nodes can produce basis functions with a maximum inter-
action order of min(m — 1,p) where p is the number of predictor features.
These higher order basis functions provide the possibility to more accurately
estimate those B(z) with high order interactions. The purpose of the next
example is to verify this intuition. There are two classes (K = 2) and 5000
training observations with the {z;}3%%" drawn from a ten-dimensional nor-
mal distribution as in the previous examples. Class labels were randomly
assigned to each observation with log-odds

Priy=1lal Y _ o5, (1451 )
s sy ==iip) =0 (1)

Approximately equal numbers of observations are assigned to each of the
two classes, and the Bayes error rate is 0.046. The decision boundary for
this problem is a complicated function of the first six predictor variables
involving all of them in second order interactions of equal strength. As in
the above examples, test sets of 10000 observations was used to estimate
error rates for each training set, and final estimates were averages over ten
replications.

Figure 4 [top-left] shows test-error rate as a function of iteration number
for each of the four boosting methods using stumps. As in the previous
examples, RAB and GAB track each other very closely. DAB begins very
slowly, being dominated by all of the others until around 180 iterations,
where it passes below RAB and GAB. LB mostly dominates, having the
lowest error rate until about 650 iterations. At that point DAB catches up
and by 800 iterations it may have a very slight edge. However, none of these
boosting methods perform well with stumps on this problem, the best error
rate being 0.35.

Figure 4 [top-right] shows the corresponding plot when four terminal
node trees are boosted. Here there is a dramatic improvement with all
of the four methods. For the first time there is some small differentiation
between RAB and GAB. At nearly all iterations the performance ranking
is LB best, followed by GAB, RAB, and DAB in order. At 800 iterations
LB achieves an error rate of 0.134. Figure 4 [lower-left] shows results when
eight terminal node trees are boosted. Here, error rates are generally further
reduced with LB improving the least (0.130), but still dominating. The
performance ranking among the other three methods changes with increasing
iterations; DAB overtakes RAB at around 150 iterations and GAB at about
230 becoming fairly close to LB by 800 iterations with an error rate of 0.138.

30



Although limited in scope, these simulation studies suggest several trends.
They explain why boosting stumps can sometimes be superior to using larger
trees, and suggest situations where this is likely to be the case; that is when
decision boundaries B(z) can be closely approximated by functions that are
additive in the original predictor features. When higher order interactions
are required stumps exhibit poor performance. These examples illustrate
the close similarity between RAB and GAB. In all cases the difference in
performance between DAB and the others decreases when larger trees and
more iterations are used, sometimes overtaking the others. More generally,
relative performance of these four methods depends on the problem at hand
in terms of the nature of the decision boundaries, the complexity of the base
classifier, and the number of boosting iterations.

The superior performance of LB in Fig. 3 [lower-right] appears to be
a consequence of the multi—class logistic model (Algorithm 6). All of the
other methods use the asymmetric AdaBoost.MH strategy (Algorithm 5)
of building separate two—class models for each individual class against the
pooled complement classes. Even if the decision boundaries separating all
class pairs are relatively simple, pooling classes can produce complex deci-
sion boundaries that are difficult to approximate (Friedman 1996). By con-
sidering all of the classes simultaneously, the symmetric multi class model
is better able to take advantage of simple pairwise boundaries when they
exist (Hastie & Tibshirani 1998). As noted above, the pairwise boundaries
induced by (37) and (38) are simple when viewed in the context of additive
modeling, whereas the pooled boundaries are more complex; they cannot be
well approximated by functions that are additive in the original predictor
variables.

The decision boundaries associated with these examples were deliber-
ately chosen to be geometrically complex in an attempt to illicit performance
differences among the methods being tested. Such complicated boundaries
are not likely to often occur in practice. Many practical problems involve
comparatively simple boundaries (Holte 1993); in such cases performance
differences will still be situation dependent, but correspondingly less pro-
nounced.

6 Some experiments with data

In this section we show the results of running the four fitting methods:
LogitBoost, Discrete AdaBoost, Real AdaBoost, and Gentle AdaBoost on
a collection of datasets from the UC-Irvine machine learning archive, plus

31



a popular simulated dataset. The base learner is a tree in each case, with
either 2 or 8 terminal nodes. For comparison, a single CART decision tree
was also fit, with the tree size determined by 5-fold cross-validation.

The datasets are summarized in Table 1. The test error rates are shown
in Table 2 for the smaller datasets, and in Table 3 for the larger ones. The
vowel, sonar, satimage and letter datasets come with a pre-specified test
set. The waveform data is simulated, as described in (Breiman et al. 1984).
For the others, 5-fold cross-validation was used to estimate the test error.

It is difficult to discern trends on the small data sets (Table 2) because
all but quite large observed differences in performance could be attributed
to sampling fluctuations. On the vowel, breast cancer, ionosphere,
sonar, and waveform data, purely additive stump models seem to perform
comparably to the larger (eight-node) trees. The glass data seems to benefit
a little from larger trees. There is no clear differentiation in performance
among the boosting methods.

On the larger data sets (Table 3) clearer trends are discernible. For the
satimage data the eight-node tree models are only slightly, but significantly,
more accurate than the purely additive models. For the letter data there
is no contest. Boosting stumps is clearly inadequate. There is no clear
differentiation among the boosting methods for eight-node trees. For the
stumps, LogitBoost, Real AdaBoost, and Gentle AdaBoost have comparable
performance, distinctly superior to Discrete Adaboost. This is consistent
with the results of the simulation study (Section 5).

Except perhaps for Discrete AdaBoost, the real data examples fail to
demonstrate performance differences between the various boosting methods.
This is in contrast to the simulated data sets of Section 5. There LogitBoost
generally dominated, although often by a small margin. The inability of
the real data examples to discriminate may reflect statistical difficulties in
estimating subtle differences with small samples. Alternatively, it may be
that the their underlying decision boundaries are all relatively simple (Holte
1993) so that all reasonable methods exhibit similar performance.

7 Additive Logistic Trees

In most applications of boosting the base classifier is considered to be a prim-
itive, repeatedly called by the boosting procedure as iterations proceed. The
operations performed by the base classifier are the same as they would be in
any other context given the same data and weights. The fact that the final
model is going to be a linear combination of a large number of such classifiers

32



Table 1: Datasets used in the experiments

Data set # Train # Test # Inputs +# Classes
vowel 528 462 10 11
breast cancer 699 5-fold CV 9 2
ionosphere 351 5-fold CV 34 2
glass 214 5-fold CV 10 7
sonar 210 5-fold CV 60 2
waveform 300 5000 21 3
satimage 4435 2000 36 6
letter 16000 4000 16 26

is not taken into account. In particular, when using decision trees, the same
tree growing and pruning algorithms are generally employed. Sometimes al-
terations are made (such as no pruning) for programming convenience and
speed.

When boosting is viewed in the light of additive modeling, however, this
greedy approach can be seen to be far from optimal in many situations. As
discussed in Section 5 the goal of the final classifier is to produce an accurate
approximation to the decision boundary function B(z). In the context of
boosting, this goal applies to the final additive model, not to the individual
terms (base classifiers) at the time they were constructed. For example, it
was seen in Section 5 that if B(x) was close to being additive in the original
predictive features, then boosting stumps was optimal since it produced an
approximation with the same structure. Building larger trees increased the
error rate of the final model because the resulting approximation involved
high order interactions among the features. The larger trees optimized error
rates of the individual base classifiers, given the weights at that step, and
even produced lower unweighted error rates in the early stages. But, after
a sufficient number of boosts, the stump based model achieved superior
performance.

More generally, one can consider an expansion of the of the decision
boundary function in a functional ANOVA decomposition (Friedman 1991)

B(z) = filz;) + > fielwj,zn) + Y finle, ve, @) + . (43)
J

gk gkl

The first sum represents the closest function to B(z) that is additive
in the original features, the first two represent the closest approximation
involving at most two feature interactions, the first three represent three

33



Table 2: Test error rates on small real examples

Method 2 Terminal Nodes 8 Terminal Nodes
Iterations 50 100 200 | 50 100 200
Vowel CART error= .642
LogitBoost 532 524 511 | 517 517 517
Real AdaBoost 565 561 548 | 496  .496 .496
Gentle AdaBoost 556 571 584 | 515 496 .496
Discrete AdaBoost 563 .535 563 | 511 .500 .500
Breast CART error= .045
LogitBoost .028 .031 .029 | .034 .038 .038
Real AdaBoost .038 .038 .040 | .032 .034 .034
Gentle AdaBoost .037  .037 .041 | .032 .031 .031
Discrete AdaBoost .042  .040 .040 | .032 .035 .037
Ion CART error= .076
LogitBoost 074 .077 .071 | .068 .063 .063
Real AdaBoost .068 .066 .068 | .054 .054 .054
Gentle AdaBoost .085 .074 .077 | .066 .063 .063
Discrete AdaBoost .088  .080 .080 | .068 .063 .063
Glass CART error= .400
LogitBoost 266 257 266 | .243  .238 .238
Real AdaBoost 276 247 257 | 234 234 234
Gentle AdaBoost 276 261 252 | 219  .233 .238
Discrete AdaBoost 285  .285 271 | 238 234 243
Sonar CART error= .596
LogitBoost 231 .231 202 | 163 .154 154
Real AdaBoost 154 163 202 | 173 173 173
Gentle AdaBoost 183 .183 173 | 154 154 154
Discrete AdaBoost 154 144 183 | 163 .144 144
Waveform CART error= .364
LogitBoost 196 195 206 | 192 191 191
Real AdaBoost 193 197 195 | (185 1182 182
Gentle AdaBoost 190 .188 193 | 185 185 .186
Discrete AdaBoost 188  .185 191 | (186 .183 183

34



Table 3: Test error rates on larger data exzamples.

Method Terminal Iterations Fraction
Nodes 20 50 100 200

Satimage CART error = .148

LogitBoost 2 140 .120 112 .102

Real AdaBoost 2 148 126 117 119

Gentle AdaBoost 2 .148 129 119  .119

Discrete AdaBoost 2 174 156 140  .128

LogitBoost 8 .096 .095 .092 .088

Real AdaBoost 8 .105 .102 .092 .091

Gentle AdaBoost 8 106 .103 .095 .089

Discrete AdaBoost 8 .122 107 .100  .099

Letter CART error = .124

LogitBoost 2 .250 .182 .159  .145 .06

Real AdaBoost 2 .244 181 .160 .150 12

Gentle AdaBoost 2 .246 187 157  .145 .14

Discrete AdaBoost 2 310 .226 .196 .185 .18

LogitBoost 8 .075 .047 .036 .033 .03

Real AdaBoost 8 .068 .041 .033 .032 .03

Gentle AdaBoost 8 .068 .040 .030 .028 .03

Discrete AdaBoost 8 .080 .045 .035 .029 .03

35



feature interactions, and so on. If B(z) can be accurately approximated
by such an expansion, truncated at low interaction order, then allowing the
base classifier to produce higher order interactions can reduce the accuracy
of the final boosted model. In the context of decision trees, higher order
interactions are produced by deeper trees.

In situations where the true underlying decision boundary function ad-
mits a low order ANOVA decomposition, one can take advantage of this
structure to improve accuracy by restricting the depth of the base deci-
sion trees to be not much larger than the actual interaction order of B(z).
Since this is not likely to be known in advance for any particular problem,
this maximum depth becomes a “meta-parameter” of the procedure to be
estimated by some model selection technique, such as cross-validation.

One can restrict the depth of an induced decision tree by using its stan-
dard pruning procedure, starting from the largest possible tree, but requiring
it to delete enough splits to achieve the desired maximum depth. This can
be computationally wasteful when this depth is small. The time required to
build the tree is proportional to the depth of the largest possible tree be-
fore pruning. Therefore, dramatic computational savings can be achieved by
simply stopping the growing process at the maximum depth, or alternatively
at a maximum number of terminal nodes. The standard heuristic arguments
in favor of growing large trees and then pruning do not apply in the context
of boosting. Shortcomings in any individual tree can be compensated by
trees grown later in the boosting sequence.

If a truncation strategy based on number of terminal nodes is to be
employed, it is necessary to define an order in which splitting takes place. We
adopt a “best-first” strategy. An optimal split is computed for each currently
terminal node. The node whose split would achieve the greatest reduction in
the tree building criterion is then actually split. This increases the number
of terminal nodes by one. This continues until a maximum number M of
terminal notes is induced. Standard computational tricks can be employed
so that inducing trees in this order requires no more computation than other
orderings commonly used in decision tree induction.

The truncation limit M is applied to all trees in the boosting sequence.
It is thus a meta—parameter of the entire boosting procedure. An optimal
value can be estimated through standard model selection techniques such as
minimizing cross-validated error rate of the final boosted model. We refer
to this combination of truncated best first trees, with boosting, as “addi-
tive logistic trees” (ALT). This is the procedure used in all of the simulated
and real examples. One can compare results on the latter (Tables 2 and 3)
to corresponding results reported by Dietterich (1998, Table 1) on common

36



Coordinate Functions for Additive Logistic Trees

f(x1) f(x2) f(x3) f(x4) f(x5)

f(x6) f(x7) f(x8) f(x9) f(x10)

Figure 5: Coordinate functions for the additive logistic tree obtained by boosting
with stumps, for the two-class nested sphere example from Section 5.

data sets. Error rates achieved by ALT with very small truncation values
are seen to compare quite favorably with other committee approaches us-
ing much larger trees at each boosting step. Even when error rates are the
same, the computational savings associated with ALT can be quite impor-
tant in data mining contexts where large data sets cause computation time
to become an issue.

Another advantage of low order approximations is model visualization.
In particular, for models additive in the input features (42), the contribu-
tion of each feature z; can be viewed as a graph of g;(z;) plotted against
zj. Figure 5 shows such plots for the ten features of the two-class nested
spheres example of Fig. 3. The functions are shown for the first class con-
centrated near the origin; the corresponding functions for the other class are
the negatives of these functions.

The plots in Fig. 5 clearly show that the contribution to the log-odds
of each individual feature is approximately quadratic, which matches the
generating model (37) and (38).

When there are more than two classes plots similar to Fig. 5 can be
made for each class, and analogously interpreted. Higher order interactions
models are more difficult to visualize. If there are at most two-feature inter-
actions, the two variable contributions can be visualized using contour or
perspective mesh plots. Beyond two-feature interactions, visualization tech-
niques are even less effective. Even when non-interaction (stump) models
do not achieve the highest accuracy, they can be very useful as descriptive
statistics owing to the interpretability of the resulting model.

37



8 Weight trimming

In this section we propose a simple idea and show that it can dramatically re-
duce computation for boosted models without sacrificing accuracy. Despite
its apparent simplicity this approach does not appear to be in common use.
At each boosting iteration there is a distribution of weights over the train-
ing sample. As iterations proceed this distribution tends to become highly
skewed towards smaller weight values. A larger fraction of the training sam-
ple becomes correctly classified with increasing confidence, thereby receiving
smaller weights. Observations with very low relative weight have little im-
pact on training of the base classifier; only those that carry the dominant
proportion of the weight mass are influential. The fraction of such high
weight observations can become very small in later iterations. This suggests
that at any iteration one can simply delete from the training sample the
large fraction of observations with very low weight without having much
effect on the resulting induced classifier. However, computation is reduced
since it tends to be proportional to the size of the training sample, regardless
of weights.

At each boosting iteration, training observations with weight w; less than
a threshold w; < ¢(f3) are not used to train the classifier. We take the value
of t(8) to be the Sth quantile of the weight distribution over the training
data at the corresponding iteration. That is, only those observations that
carry the fraction 1 — 8 of the total weight mass are used for training.
Typically 8 € [0.01,0.1] so that the data used for training carries from 90 to
99 percent of the total weight mass. Note that the weights for all training
observations are recomputed at each iteration. Observations deleted at a
particular iteration may therefore re-enter at later iterations if their weights
subsequently increase relative to other observations.

Figure 6 [left panel] shows test-error rate as a function of iteration num-
ber for the letter recognition problem described in Section 6, here using
Gentle AdaBoost and eight node trees as the base classifier. Two error rate
curves are shown. The black solid one represents using the full training
sample at each iteration (8 = (), whereas the blue dashed curve represents
the corresponding error rate for § = 0.1. The two curves track each other
very closely especially at the later iterations. Figure 6 [right panel] shows
the corresponding fraction of observations used to train the base classifier as
a function of iteration number. Here the two curves are not similar. With
B = 0.1 the number of observations used for training drops very rapidly
reaching roughly 5% of the total at 20 iterations. By 50 iterations it is down
to about 3% where it stays throughout the rest of the boosting procedure.

38



o
S |
—
k5t
™
o 2 2 -
8
5 A
o o |
TR 2 ©
S £
7 £
o s o |
= = <
c
S 8 Q|
(]
o
o |
0 100 200 300 400 0 100 200 300 400
Number of Terms Number of Terms

Figure 6: The left panel shows the test error for the letter recognition problem
as a function of iteration number. The black solid curve uses all the training
data, the blue dashed curve uses a subset based on weight thresholding. The
right panel shows the percent of training data used for both approaches. The
upper curve steps down, because training can stop for an entire class if it is
fit sufficiently well (see text).

39



Thus, computation is reduced by over a factor of 30 with no apparent loss
in classification accuracy. The reason why sample size in this case decreases
for B = 0 after 150 iterations, is that if all of the observations in a particular
class are classified correctly with very high confidence (Fj > 15 + log(N))
training for that class stops, and continues only for the remaining classes.
At 200 iterations, 10 classes remained of the original 26 classes.

The last column labeled fraction in Table 3 shows the average fraction
of observations used in training the base classifiers over the 200 iterations,
for all boosting methods and tree sizes. For eight-node trees, all methods
behave as shown in Fig. 6. With stumps, LogitBoost uses considerably less
data than the others and is thereby correspondingly faster.

This is a genuine property of LogitBoost that sometimes gives it an ad-
vantage with weight trimming. Unlike the other methods, the LogitBoost
weights w; = p;(1 — p;) do not in any way involve the class outputs y;;
they simply measure nearness to the currently estimated decision boundary
Fyr(z) = 0. Discarding small weights thus retains only those training obser-
vations that are estimated to be close to the boundary. For the other three
procedures the weight is monotone in —y; Fj (z;). This gives highest weight
to currently misclassified training observations, especially those far from the
boundary. If after trimming the fraction of observations remaining is less
than the error rate, the subsample passed to the base learner will be highly
unbalanced containing very few correctly classified observations. This imbal-
ance seems to inhibit learning. No such imbalance occurs with LogitBoost
since near the decision boundary, correctly and misclassified observations
appear in roughly equal numbers.

As this example illustrates, very large reductions in computation for
boosting can be achieved by this simple trick. A variety of other examples
(not shown) exhibit similar behavior with all boosting methods. Note that
other committee approaches to classification such as bagging (Breiman 1996)
and randomized trees (Dietterich 1998), while admitting parallel implemen-
tations, cannot take advantage of this approach to reduce computation.

9 Concluding remarks

In order to understand a learning procedure statistically it is necessary to
identify two important aspects: its structural model and its error model.
The former is most important since it determines the function space of
the approximator, thereby characterizing the class of functions that can be
accurately approximated with it. The error model specifies the distribution

40



of random departures of sampled data from the structural model. It thereby
defines the criterion to be optimized in the estimation of the structural
model.

We have shown that the structural model for boosting is additive on the
logistic scale with the base learner providing the additive components. This
understanding alone explains many of the properties of boosting. It is no
surprise that a large number of such (jointly optimized) components defines
a much richer class of learners than one of them alone. It reveals that in
the context of boosting all base learners are not equivalent, and there is
no universally best choice over all situations. As illustrated in Section 5
the base learners need to be chosen so that the resulting additive expansion
matches the particular decision boundary encountered. Even in the limited
context of boosting decision trees the interaction order, as characterized by
the number of terminal nodes, needs to be chosen with care. Purely additive
models induced by decision stumps are sometimes, but not always, the best.
However, we conjecture that boundaries involving very high order interac-
tions will rarely be encountered in practice. This motivates our additive
logistic trees (ALT) procedure described in Section 7.

The error model for two-class boosting is the obvious one for binary
variables, namely the Bernoulli distribution. We show that the AdaBoost
procedures maximize a criterion that is closely related to expected log—
Bernoulli likelihood, having the identical solution in the distributional (Ls)
limit of infinite data. We derived a more direct procedure for maximizing
this log-likelihood (LogitBoost) and show that it exhibits properties nearly
identical to those of Real AdaBoost.

In the multi-class case, the AdaBoost procedures maximize a separate
Bernoulli likelihood for each class versus the others. This is a natural choice
and is especially appropriate when observations can belong to more than
one class (Schapire & Singer 1998). In the more usual setting of a unique
class label for each observation, the symmetric multinomial distribution is
a more appropriate error model. We develop a multi-class LogitBoost pro-
cedure that maximizes the corresponding log-likelihood by quasi-Newton
stepping. We show through simulated examples that there exist settings
where this approach leads to superior performance, although none of these
situations seems to have been encountered in the set of real data examples
used for illustration; the performance of both approaches had quite similar
performance over these examples.

The concepts developed in this paper suggest that there is very little, if
any, connection between (deterministic) weighted boosting and other (ran-
domized) ensemble methods such as bagging (Breiman 1996) and random-

41



ized trees (Dietterich 1998). In the language of least squares regression, the
latter are purely “variance” reducing procedures intended to mitigate insta-
bility, especially that associated with decision trees. Boosting on the other
hand seems fundamentally different. It appears to be a purely “bias” reduc-
ing procedure, intended to increase the flexibility of stable (highly biased)
weak learners by incorporating them in a jointly fitted additive expansion.
The distinction becomes less clear when boosting is implemented by finite
random importance sampling instead of weights. The advantages/disadvantages
of introducing randomization into boosting by drawing finite samples is not
clear. If there turns out to be an advantage with randomization in some sit-
uations, then the degree of randomization, as reflected by the sample size,
is an open question. It is not obvious that the common choice of using the
size of the original training sample is optimal in all (or any) situations.
One fascinating issue not covered in this paper is the fact that boosting,
whatever flavor, seldom seems to overfit, no matter how many terms are
included in the additive expansion. Some possible explanations are:

e As the LogitBoost iterations proceed, the overall impact of changes in-
troduced by f,,,(z) reduces. Only observations with appreciable weight
determine the new functions  those near the decision boundary. By
definition these observations have F'(z) near zero and can be affected
by changes, while those in pure regions have large values of |F(z)| are
are less likely to be modified.

e The stage-wise nature of the boosting algorithms do not allow the
full collection of parameters to be jointly fit, and thus have far lower
variance than the full parameterization might suggest. In the Machine-
Learning literature this is explained in terms of VC dimension of the
ensemble compared to that of each weak learner.

e Classifiers are hurt less by overfitting than other function estimators
(e.g. the famous risk bound of the 1-nearest-neighbor classifier (Cover
& Hart 1967)).

Whatever the explanation, the empirical evidence is strong; the introduc-
tion of boosting by Schapire, Freund and colleagues has brought an exciting
and important set of new ideas to the table.

Acknowledgements

We thank Andreas Buja for alerting us to the recent work on text classifica-
tion at AT&T laboratories, and Bogdan Popescu for illuminating discussions

42



on PAC learning theory. Jerome Friedman was partially supported by the
Department of Energy under contract number DE-ACO03-76SF00515 and by
grant DMS-9764431 of the National Science Foundation. Trevor Hastie was
partially supported by grants DMS-9504495 and DMS-9803645 from the Na-
tional Science Foundation, and grant ROI-CA-72028-01 from the National
Institutes of Health. Robert Tibshirani was supported by the Natural Sci-
ences and Engineering Research Council of Canada.

References

Breiman, L. (1996), ‘Bagging predictors’, Machine Learning 26 .

Breiman, L. (1997), Prediction games and arcing algorithms, Technical Re-
port Technical Report 504, Statistics Department, University of Cali-
fornia, Berkeley. Submitted to Neural Computing.

Breiman, L. (1998), Combining predictors, Technical report, Statistics De-
partment, University of California, Berkeley.

Breiman, L., Friedman, J., Olshen, R. & Stone, C. (1984), Classification
and Regression Trees, Wadsworth, Belmont, California.

Buja, A., Hastie, T. & Tibshirani, R. (1989), ‘Linear smoothers and additive
models (with discussion)’, Annals of Statistics 17, 453-555.

Cover, T. & Hart, P. (1967), ‘Nearest neighbor pattern classification’, Proc.
IEEE Trans. Inform. Theory pp. 21-27.

Dietterich, T. (1998), ‘An experimental comparison of three methods for
constructing ensembles of decision trees: bagging, boosting, and ran-
domization’, Machine Learning 7, 1-22.

Freund, Y. (1995), ‘Boosting a weak learning algorithm by majority’, Infor-
mation and Computation 121(2), 256-285.

Freund, Y. & Schapire, R. (1996), Experiments with a new boosting algo-
rithm, in ‘Machine Learning: Proceedings of the Thirteenth Interna-
tional Conference’, pp. 148-156.

Friedman, J. (1991), ‘Multivariate adaptive regression splines (with discus-
sion)’, Annals of Statistics 19(1), 1-141.

43



Friedman, J. (1996), Another approach to polychotomous classification,
Technical report, Stanford University.

Friedman, J. & Stuetzle, W. (1981), ‘Projection pursuit regression’, Journal
of the American Statistical Association 76, 817 823.

Hastie, T. & Tibshirani, R. (1990), Generalized Additive Models, Chapman
and Hall.

Hastie, T. & Tibshirani, R. (1998), ‘Classification by pairwise coupling’,
Annals of Statistics . (to appear).

Hastie, T., Tibshirani, R. & Buja, A. (1994), ‘Flexible discriminant analysis
by optimal scoring’, Journal of the American Statistical Association
89, 1255-1270.

Holte, R. (1993), ‘Very simple classification rules perform well on most com-
monly used datasets’, Machine Learning 11, 63-90.

Kearns, M. & Vazirani, U. (1994), An Introduction to Computational Learn-
ing Theory, MIT Press.

Mallat, S. & Zhang, Z. (1993), ‘Matching pursuits with time-frequency dic-
tionaries’, IEEE Transactions on Signal Processing 41, 3397 3415.

McCullagh, P. & Nelder, J. (1989), Generalized Linear Models, Chapman
and Hall.

Schapire, R. (1990), ‘The strength of weak learnability’, Machine Learning
5(2), 197 227.

Schapire, R. & Singer, Y. (1998), Improved boosting algorithms using
confidence-rated predictions, in ‘Proceedings of the Eleventh Annual
Conference on Computational Learning Theory’.

44



