
Telos: Representing Knowledge About Information SystemsJohn Mylopoulos, Alex Borgida,Matthias Jarke and Manolis KoubarakisDepartment of Computer ScienceUniversity of TorontoWe describe Telos, a language intended to support the development of information systems.The design principles for the language are based on the premise that information system devel-opment is knowledge-intensive and that the primary responsibility of any language intended forthe task is to be able to formally represent the relevant knowledge. Accordingly, the proposed lan-guage is founded on concepts from knowledge representation. Indeed, the language is appropriatefor representing knowledge about a variety of worlds related to an information system, such asthe subject world (application domain), usage world (user models, environments), system world(software requirements, design), and development world (teams, methodologies).The paper introduces the features of the language through examples, focusing on those pro-vided for describing meta-concepts that can then be used to describe knowledge relevant to aparticular information system. Telos' features include: an object-centered framework which sup-ports aggregation, generalization and classi�cation; a novel treatment of attributes; an explicitrepresentation of time; and facilities for specifying integrity constraints and deductive rules. Ac-tual applications of the language are reviewed through further examples and a formalization ofthe language is sketched.

1 IntroductionLanguage facilities have been a key vehicle for advances in software productivity since the introduc-tion of assembler in the early '50s, the �rst high level programming languages in the mid-50s, andthe languages supporting encapsulation/modularization in the 70's. But programming accountsfor only a small fraction of the total e�ort and cost of producing a software system.This paper describes a language that is intended to support software engineers in the develop-ment of information systems throughout the software lifecycle. This language is not a programminglanguage. Following the example of a number of other software engineering projects, our workis based on the premise that information system development is knowledge-intensive and thatthe primary responsibility of any language intended to support this task is to be able to formallyrepresent the relevant knowledge.1 Accordingly, the proposed language is founded on conceptsfrom knowledge representation [12]. Indeed, the language is viewed as a knowledge representationlanguage appropriate for representing knowledge about an information system. This viewpointleads to an eclectic approach on what mathematical concepts are relevant to software developmentand a rationalization of why some notations are more signi�cant than others.How is a knowledge representation language di�erent from other types of languages, such asprogrammingor design languages, formal languages or natural languages? According to [12] (pagesxiv{xv): In order to have an explicit knowledge base, a system must rely on some well-speci�ed language for encoding its beliefs. That role is played by a knowledge rep-resentation language. Beyond that, in just about all imaginable cases of interest, asystem will be concerned with more than just the literal set of sentences (or frames, orproduction rules, or whatever) representing what it knows. A representation systemmust also provide access to facts implicit in the knowledge base. In other words, arepresentation component must perform automatic inferences for its user.The ingredients then of a knowledge representation language include a (formal) notation, anda deductive mechanism for drawing inferences from a body of statements (the knowledge base)represented in that notation2. In addition, there is a need to assign some sort of \meaning" tostatements { the semantics of the notation; this meaning must be respected by the deductiveprocess. Finally, to be e�ective in large projects, a knowledge representation language must o�erfacilities to structure and organize the knowledge base.1See [47] for a survey of knowledge-based software engineering projects.2There is a tension between the increased \expressive power" of a notation { the ability to express certain factsand make certain kinds of deductions { and the complexity of the computations involved.1

The language presented in this paper is called Telos3. Like any useful language, Telos hasbeen shaped by its subject matter. But what knowledge needs to be represented about an in-formation system? To begin with, knowledge about the environment within which the systemwill function and how the system is expected to interact with that environment. Second, thekind of information the system will be expected to store and the meaning of that informationwith respect to its intended subject matter. Third, knowledge about the design and implemen-tation of the information system, which can be used during initial system development as well asduring system maintenance. Fourth, knowledge about design decisions that led to the particulardesign/implementation, along with appropriate justi�cations that relate these decisions to per-formance or other non-functional requirements. Finally, information on the development processitself that led to the system, including the methodology used, the team of developers involved,di�erent system versions and the like. Our work is based on the premise that all this, and other,knowledge about an information system is useful during its initial development, subsequent de-ployment and use, maintenance and reuse. This, rather ambitious, viewpoint is grounded in ourown experiences within the ESPRIT project DAIDA which is concerned with the construction ofa complete information system development environment [34].To deal with these ideas, and to meet some of the goals of a good KR language, Telos providesa number of novel facilities: representing and reasoning about (possibly incomplete) temporalknowledge; particularly general forms of conceptual structuring mechanisms such as generalizationand classi�cation; supporting linguistic extensions through the de�nition of meta-attributes, inorder to cope with the multitude of subject matters. Also, Telos adapts concepts from deductivedatabases [24] for query processing and integrity enforcement. In keeping with general principlesof good language design, attempts were also made to maintain uniformity and simplicity.Telos has evolved from RML (a requirements modeling language developed in a doctoral disser-tation by Greenspan [25]), and later CML (described and formalized in [52]). The major di�erencebetween RML and CML is that the latter adopts a more sophisticated data structure for represent-ing knowledge, and supports the representation of complex temporal knowledge and the de�nitionof meta-concepts. Telos, on the other hand, is a \cleaned-up" version of CML, both from a lan-guage de�nition and an implementation perspective, which has been implemented and tested witha variety of knowledge representation tasks related to information system development. It hasbeen used both in the LOKI and DAIDA projects and the section on applications of the languagesis based on those experiences.The paper is organized as follows. Section 2 presents and motivates the basic features of3From the Greek word ����o& which means end; the object aimed at in an e�ort; purpose.2

the language. In section 3, the nature and applications of metaclasses is investigated throughexamples. Section 4 surveys some of the applications that have been considered in the contextof information system development. The formalization of Telos is reviewed in section 5, whilesection 6 discusses related work. Finally, section 7 summarizes the contributions of the languageand suggests directions for further research.2 Features of TelosTelos provides facilities for constructing, querying and updating structured knowledge bases (KBs).The operations TELL, UNTELL, and RETELL are o�ered to extend or modify a KB while the opera-tions RETRIEVE and ASK can be used to access it. This section introduces Telos and illustrates itsuse.2.1 Structured Knowledge BasesA Telos knowledge base consists of structured objects built out of two kinds of primitive units:individuals and attributes. Individuals are intended to represent entities (concrete ones such asJohn, or abstract ones such as Person), while attributes represent binary relationships betweenentities or other relationships. An important and distinctive feature of Telos is that individualsand attributes are treated uniformly by the mechanisms for structuring a KB; they are collectivelyreferred to by the term \proposition".Every attribute p consists of a source, a label and a destination, which can be retrieved throughthe functions from(p), label(p) and to(p). An attribute proposition will be represented forthe moment by a 3-tuple, e.g., [Martin; age;35].Propositions (individual or attribute) are organized along three dimensions, referred to in theliterature as the aggregation, classi�cation and generalization dimensions [31].Structured/aggregate objects consist of collections of attributes that have a common propositionas source. For example, the individual Martin may aggregate the cluster of propositions{Martin, [Martin, age, 35], [Martin, homeAddr, `21 Elm Avenue'],[Martin, workAddr, `10 King's College Road']}This indicates, among others, that Martin has two (momentarily unrelated) attributes with la-bels homeAddr and workAddr, and values `21 Elm Avenue' and `10 King's College Road'respectively. Attributes may also represent abstract relationships such as [Person, address,GeographicLocation], intended to represent the concept of address relationships between per-sons and geographic locations. 3

The classi�cation dimension calls for each proposition to be an instance of one or more genericpropositions or classes. Classes are themselves propositions, and therefore instances of other, moreabstract classes. In this way both Person and [Person, address, GeographicLocation] areclasses, with individual instances which are particular individuals and relationships respectively(e.g., Martin and [Martin, homeAddr, `21 Elm Avenue']. Generally, propositions are classi�edinto tokens { propositions having no instances and intended to represent concrete entities in thedomain of discourse, simple classes { propositions having only tokens as instances, metaclasses {having only simple classes as instances, metametaclasses, and so on. This classi�cation de�nes anunbounded linear hierarchy of planes of ever more abstract propositions.There are also !-classes with instances along more than one such plane. For example, theclass Proposition has all propositions as instances while Class has all generic propositions asinstances. Figure 1 shows the structure of the classi�cation dimension, with sample propositionsat various levels.Instantiation is treated as a form of weak typing mechanism: the classes of which a structuredobject is an instance determine the kinds of attributes it can have and the properties it must satisfy.For example, by virtue of being an instance of Person, Martin can have attributes that are in-stances of [Person, address, GeographicLocation]. Such attributes can have arbitrary labels,such as homeAddr and workAddr, but their values must be instances of GeographicLocation.Classes can be specialized along generalization or ISA hierarchies For example, Person mayhave subclasses such as Professor, Student, and TeachingAssistant. The classes may form apartial order, rather than a tree. Note that IsA hierarchies are orthogonal to the classi�cationdimension: all these classes could be instances of PersonClass. As discussed later, non-tokenattributes of a class are inherited by more specialized ones, and inheritance is strict rather thandefault.2.1.1 Interacting with a Knowledge Base: An ExampleConsider the problem of developing an Information System to support organizing internationalscienti�c conferences. As part of the requirements model, the designer needs to describe theentities about which information will be maintained, such as papers, authors, conferences and thelike. The following TELL operation introduces an object to model a paper submitted to, say, anIFIP World Congress [42]: 4

Figure 1: A simple semantic net5

TELL TOKEN martian IN Paper WITHauthorfirstAuthor: Stanley;: LaSalle;: Wongtitle:`The MARTIAN system'ENDThis operation de�nes a token with external identi�er paper and several associated attributes4.The IN clause speci�es the classes of which martian is an instance, while the WITH clause introducesmartian's attributes. For example, the �rst attribute has label firstAuthor and is an instance ofan attribute class which has source Paper and label author (the latter is denoted by the attributecategory author). The second attribute has no external label and it is an instance of the sameattribute class; this attribute is going to acquire a system-generated label.Continuing with the requirements model, we can use TELL to de�ne generic concepts whichdetermine the database schema. Thus, the class Paper (which is an instance of the built-in classSimpleClass) has associated a number of attribute classes:TELL CLASS Paper IN SimpleClass WITHattributeauthor: Person;referee: Person;title: String;pages: 1..100ENDAs indicated earlier, a class de�nition prescribes the attributes that can be associated with itsinstances: martian can have author, referee, title and page attributes because it is an in-stance of some class (i.e., Paper) that has attribute classes using these labels. Moreover, [martian,firstAuthor, Stanley] is an instance of [Paper, author, Person] in exactly the same sensethat martian is an instance of Paper.Once Paper has been de�ned, one can introduce specializations, such as InvitedPaper usingthe ISA clause of class de�nitions:4Each Telos proposition has a unique internal identi�er and zero or more external identi�ers that can be usedin Telos expressions to refer to that proposition. 6

TELL CLASS AcceptedPaper IN SimpleClass ISA Paper WITHattributepages: 1..15session: ConfProgrammeSessionENDAcceptedPaper inherits all attributes from Paper and adds a session attribute, to indicate theprogramme session during which the accepted paper will be presented. It also re�nes the restrictionon page length to indicate that published papers can only be up to 15 pages long.A token may now be de�ned which instantiates more than one of these classes. For example, ifwe also have a class ReceivedFinalVersion of papers which have been received in camera-readyform, we can add to martian additional information related to these aspects:TELL TOKEN martian IN AcceptedPaper, ReceivedFinalVersion WITHsession: applicationsIdateReceived: 1989/2/3ENDNote that martian can have attributes \induced" by the attribute classes of AcceptedPaper andReceivedFinalVersion. In the case of an attribute appearing in both classes, the value must beconsistent with both class de�nitions.Concerning the interaction of subclass and instance-of hierarchies, we have, as usual, thatinstances of a class are also instances of its superclasses. In other words, if A ISA B and C INA, then C IN B. For representational structures that fully support classi�cation (and thereforeo�er the dimension illustrated in Figure 1) the reader may wonder whether A ISA B and B IN Cimplies A IN C. For Telos, this implication is not supported because there seem to be cases whereit is unwarranted. Consider, for example, the binary relations Spouse and Wife. Obviously WifeISA Spouse and Spouse IN SymmetricRelation. However, we do not want to conclude here thatWife IN SymmetricRelation.2.2 Representation of Temporal KnowledgeMost application domains are not static: they exhibit a history of changes through time. A Telosmodel of a domain captures the full history of its evolution, rather than just the latest snap-shot. For this, Telos adapts a framework for representing and reasoning with temporal knowledge7

proposed in [2]. This representation is based on the notion of an time interval, where seven ex-clusive temporal relations (equals, meets, before, overlaps, during, starts, ends) andtheir inverses are used to characterize all possible relationships of two intervals on a linear timeline. Thus, in contrast to temporal databases [50], Telos can represent incomplete informationabout time, e.g., a paper having been submitted sometime before 1989/2/2. Telos' modi�cationsof this approach include (i) slight changes to the de�nitions of the thirteen temporal relation-ships, mostly dictated by language design considerations; (ii) incorporation of temporal constants,such as conventional dates and times (e.g., 1988/12/7 denoting December 7, 1988), semi-in�niteintervals having conventional dates or times as one endpoint (e.g., 1986/10/25..*), the in�niteinterval Alltime and the special interval Now denoting the current system time; (iii) restrictingthe power of temporal assertions that can be told to the system.With such a framework on hand, it is possible to represent temporal information as shown bythe following revised de�nition of martian:TELL TOKEN martian IN Paper (at 1986/10..*) WITHauthorfirstAuthor: Stanley (at 1986/10..*);: LaSalle (at 1987/1..*);: Wong (before 1987/5)title: `The MARTIAN system'ENDThis operation introduces the token martian in the knowledge base (we suppose it was not therealready). The IN clause makes martian an instance of the class paper for an unbounded timeinterval starting October 1986. Similarly, the WITH clause asserts that Stanley is the �rst authorof martian during the interval 1986/10..*, LaSalle is an author during the interval 1987/1..*while Wong was an author for some time before May 1987 (but we do not know the exact time).The corresponding attribute propositions (now 4-tuples) are shown below.[martian, firstAuthor, Stanley, 1986/10..*][martian, ..., LaSalle, 1987/1..*][martian, ..., Wong, T32]Henceforth, every attribute proposition p has a duration component which can be accessed withthe expression when(p).The history of the application domain can be modeled by augmenting KB facts with a history8

time i.e., an interval representing the time during which these facts are true in the applicationdomain. History time is useful not only for tokens but also for generic propositions: for example,the de�nition \personal deduction" in an Income Tax Act, may only apply for this year.A KB records essentially the beliefs of the system, which may be distinct from the actual stateof the world at that time. So, for example, the title of a paper might have been changed in March,but the KB is only told of it in May. Or we may make a correction to some previously told fact.Just like it represents the full history of an application domain, Telos also records the full historyof its beliefs. For this reason, Telos represents belief times; these are intervals associated with everyproposition in the knowledge base, which commence (technically speaking costart) at the timewhen the operation responsible for the creation of the corresponding proposition was committed.All belief time intervals are assumed to be semi-in�nite until the system is informed otherwise.So, once the system has been TELLed something, it keeps believing it, until it is explicitly requiredto revise its beliefs. The operations UNTELL or RETELL (see section 2.5) will cause precisely suchbelief revision. Thus, system beliefs \persist" until they are explicitly revised. Similar facilitieshave been proposed by [50] for temporal databases.The syntax of the language, illustrated by the above example, is restricted in the sense thatit only allows a single temporal relationship to appear in each of the temporal components of agiven de�nition. This is in contrast with Allen's original framework where sets of relationshipswere allowed between time intervals (e.g., PaulsDateOfBirth (before during) 1975 in orderto express further kinds of incomplete knowledge. Thus, after a series of de�nitions such asthat for martian, in Telos two intervals t1, t2 are either unrelated (i.e., any of the thirteentemporal relationships may hold between them) or are related through exactly one relationship.The reasons for this expressive retreat are strictly pragmatic: verifying the consistency of a networkof temporal relations for Allen's algebra is NP-hard, as is computing all the consequences of anetwork. However, reasoning with certain subsets of the framework, including the one adoptedhere, is tractable [55].2.3 Rules and ConstraintsA typed �rst order assertion sublanguage is o�ered as means for specifying integrity constraintsand deductive rules. Well-formed formulas of this language are special objects in the Telos ontologyand are allowed to appear quoted as attribute values of propositions. For example, the integrityconstraint of the de�nition below ensures that an author cannot referee her own paper, while thedeductive rule states that an author address is also a reply address.9

TELL CLASS Paper IN SimpleClass WITHintegrityConstraint:$ (8y=Person)(y 2 this:author =) :(9t=Time) y 2 this:referee [at t]) $deductiveRule:$ (8x=Paper)(8z=Address)(z 2 x:author:address =) z 2 x:replyAddress) $ (at Alltime)ENDNote that deductive rules are constrained to be in a simple form to improve e�ciency: the an-tecedent of the rule must be a conjunction of atomic formulas and the consequent must be a singlepositive atomic formula.The assertion language is naturally integrated with the existing framework by treating Telosclasses as ranges for quanti�ers. From a computational point of view, this choice o�ers some ofthe advantages associated with sorted logics [22]. The following functions manipulate attributesand their values:� The dot function x.l [r1 t1] evaluates to the set of values of the attributes of propositionx which belong to the attribute class labeled l during intervals which are in relation r1 witht1.� The hat function x^l [r1 t1] evaluates to the set of values of the attributes of propositionx with label l during an interval which is in relation r1 with t1.� The bar function x|l [r1 t1] evaluates to the set of attribute propositions with source xwhich are instances of the attribute class labeled l during intervals which are in relation r1with t1.� The exclamation mark function x!l [r1 t1] evaluates to the set of attribute propositionswith source x, label l and duration which is in relation r1 with t1.The time constraint in the above functions are optional: if they are absent, appropriate defaultsare adopted by the system. Figure 2 shows the situation for the example in section 2.2. Finally, thespecial identi�er this is used as follows: an assertion �(this) de�ned on class C is an abbreviationfor (8x=C)�(x).Rules and constraints can be given history time intervals like any other attribute values, corre-sponding to periods during which the assertions hold in the knowledge base. Rules and constraintscan also refer to history time explicitly. Integrity constraints must also be given a belief time:10

martian.author [during 1987/1] = {Stanley, LaSalle}martian.author [before 1988] = {Stanley, LaSalle, Wong}Figure 2: Examples of the use of the dot function11

the time period during which the beliefs of the system are constrained. For example, if the aboveoperation was processed on December 5, 1988, the integrity constraint included would enforce inevery belief state after December 5, 1988 that no instance of the class Author can be an authorand a referee of the same paper5. These features can be exploited for activating and de-activatingrules and constraints during certain times. In this way, we get facilities similar to triggers ordeamons of active databases.2.4 Querying the Knowledge BaseTelos o�ers the operations RETRIEVE and ASK for querying the knowledge base. RETRIEVE uses onlytemporal and structural information to answer queries, while ASK uses all the knowledge available.RETRIEVE is a much more e�cient operation, since only a few built-in inferences (e.g., inheritance)are performed. Both operations can be used either to prove that a closed formula of the assertionlanguage follows from the knowledge base, or to �nd the propositions in the knowledge base thatmake a given formula true.ASK : LaSalle 2 martian:author [over 1988] BELIEVED at 1989=1=1ASK x=Author : x 2 martian:author TRUE at 1987 BELIEVED at 1989=1=1For example, when the above queries are evaluated against the current knowledge base, the systemreturns yes and fStanley, LaSalleg respectively.Queries can refer to history time explicitly (e.g., �rst query above). Alternatively, the optionalclause TRUE can be used to provide default history time for all unquali�ed atomic formulas in thequery. The BELIEVED clause identi�es the belief times which are of interest to the user. When itis not present, the belief time is assumed to be Now (i.e., the currently held beliefs are queried).2.5 Updating the Knowledge BaseThe operations UNTELL and RETELL allow one to update the system's beliefs about certain his-torical relationships. As indicated already, updated information is not explicitly deleted from theknowledge base. Instead, the belief time intervals associated with such updated information areterminated.The UNTELL operation can be used to specify that some of the instantiation, specialization,or attribute relationships of a proposition no longer hold. Suppose, for example, that Stanley5Since no belief time is given for this integrity constraint, it is assumed that it constrains every belief state ofthe system from the time it was processed and on. 12

changed his mind about authoring the Martian system on November 20th, 1986 and no longerwants his name associated with the paper. The following operation e�ects this update:UNTELL martian WITHauthor: Stanley (at 1986/11/20..?)As a consequence, if this operation was processed on December 9, 1989, its e�ect is to makethe system believe as of December 9, 1989 that Stanley ceased being an author of martian onNovember 20, 1986 (though it remembers him as an author in earlier belief states). Now theanswers to the queriesASK x=Author : x 2 martian:author TRUE at 1986=11=19 BELIEVED at 1989=12=10ASK x=Author : x 2 martian:author TRUE at 1986=11=21 BELIEVED at 1989=12=10will be fStanleyg and the empty set respectively.The RETELL operations amounts to a database update and can be semantically treated asthe composition of an UNTELL and a TELL operation. Through RETELL, the user can specify, forinstance, that somebody's address changed.3 Model Extensions Through MetaclassesCompared to other semantic models or knowledge representation languages, Telos appears toprovide few features for capturing the semantics of applications. This section is intended toillustrate that additional structure can be introduced for particular categories of propositionsthrough the mechanisms already o�ered by Telos. The �rst-class status of attributes and theability to de�ne attribute classes and metaclasses plays a particularly important role. Our pointis that a relatively sparse framework can be used to accomplish a great deal.Let us consider again the IFIP Conference example. Conference organization involves manydi�erent kinds of documents, including various classes of papers, letters, announcements, memosand the like. To de�ne common properties that various document classes have, we may wantto introduce attribute metaclasses which support grouping of document attributes according totheir semantic, deductive or other properties. One way to introduce these attribute metaclassesis through the metaclass DocumentClass: 13

TELL CLASS DocumentClass IN MetaClass WITHattributesource: AgentClass;content: SimpleClass;destination: AgentClass;typicalTurnaroundTime: TimePeriod IN SimpleClassENDIn this example, source, content and destination are labels of attribute metaclasses whichmay be instantiated for DocumentClass instances6. In this case, their e�ect is to group togethersemantically similar attributes, such as the attributes that describe the content of a document (e.g.,title, abstract, keywords, text and so on) or the destination of a document (zero or more recipients,location/a�liation of the destination(s) and so on). The attribute label typicalTurnaroundTimespeci�es a typical value for the length of time it takes for a document to be prepared and sentto its destination (say, one day for a letter, one month for a paper). Note that instances oftypicalTurnaroundTime are tokens and represent speci�c facts about their generic sources. OtherDocumentClass attributes, on the other hand, indicate the kinds of (attribute) classes that may beassociated with a document class. DocumentClass may also have arbitrary constraints expressedthrough assertions on its instances { document classes, such as Paper or Letter. Thus, metaclassesconstitute an important facility in the de�nition of generic objects, one that cannot be simulatedby the use of the generalization hierarchy.7The de�nition of the class Paper might now be re�ned asTELL CLASS Paper IN DocumentClass WITHsourceauthor: Personcontenttitle: String...turnaroundTime: 4weeksEND6To help the reader, we use identi�ers ending with \-Class" for metaclasses.7The grouping of conceptually related attributes illustrated above could also have been accomplished by theintroduction of generalization hierarchies for attributes themselves, as in KL-ONE: title, abstract, etc. are morespecialized roles than content. However, as we shall soon see, attribute classes provide additional facilities | suchas abbreviating constraints | that cannot be achieved by attribute hierarchies.14

Here, the attribute (class) [Paper, author, Person] is an instance of [DocumentClass, source,SimpleClass], in a similarway that [martian, firstAuthor, Stanley] is an instance of [Paper,author, Person]. Thus attribute metaclasses can be thought of as categories for generic at-tributes associated with a class.As another example of use of attribute metaclasses, consider constraints on attribute valueswhich are built-in in several semantic data models. One such constraint, let us call it the Singleconstraint, restricts an attribute to (at most) a single value. To de�ne it, we introduce the attributemetaclass Single whose instances are singleton attribute classes8.TELL CLASS SingleCOMPONENTS [Class, single, Class]IN AttributeClass, MetaClass WITHintegrityConstraint:$ (8u=Single)(8p; q=Proposition)(p in u ^ q in u ^ from(p) = from(q) ^when(p) overlaps when(q) =) p = q) $ENDLiterally, the above assertion states that for every instance of Single, say u (that is an attributeclass), there are no two distinct instances p and q (these are attribute instances) with commonsource and overlapping times. Once this class has been de�ned, it can be exploited, throughinstantiation, to constrain the attributes of any other class, such as Paper:singletitle: StringIf now martian is an instance of Paper, with a title speci�ed bytitle:`The Martian system'then the constraint in Single refers to attribute propositions like[martian, ..., `The MARTIAN system']which are instances of [Paper, title, String], and decrees that there cannot be two suchpropositions with identical sources. Figure 3 illustrates the situation.8The clause COMPONENTS gives the source, label and destination of this attribute class.15

Figure 3: The constraint Single on attribute titleSimilarly, one can de�ne an attribute metaclass Necessary whose integrity constraint assuresthat each instance of some class for which the attribute is necessary, has at least one value forthat attribute [40].3.1 Talking about AssertionsTo increase the extensibility of the language, we provide a way to talk about assertions. Theresulting technique allows meta-level reasoning and is very powerful; we have however exploitedthis power only in de�ning attribute metaclasses.We introduce the predicate Holds which is true whenever its argument is an assertion thatfollows from the KB. Recall that assertions appear in the KB, quoted, as parts of propositions:[Paper; : : : ; \(8x=Paper)(8y=Person) : : :"; Alltime]:In the de�nition of metaclasses, it is often useful to have constraints and rules which referto formulas of the assertion language. Let us assume, for example, that we want to de�ne anattribute metaclass PreCondition and use it for specifying preconditions for certain activities.16

TELL CLASS PreConditionCOMPONENTS [Class, preCondition, Assertion]IN AttributeClass, MetaClass WITHintegrityConstraint:$ (8p=PreCondition)(8Obj=Proposition)(8t=Time)(Obj in from(p)[at t] =) (9HTime=Time)(HTime overlaps t) ^Holds(to(p)))) $ENDThis attribute class constrains its instances to have destination components that are open asser-tions which follow from the knowledge base when their special variable Obj is bound to an instanceof the class they are associated with and HTime is bound to an interval which overlaps the lifetimeof this instantiation9.Open assertions can have at most two free variables, Obj and HTime, intended to be boundrespectively to a proposition (the subject of the assertion) and a history time10. Suppose thenthat the user speci�es:TELL CLASS Conference IN ConfEntityClass WITHattributebudget: MoneypreCondition:$ Obj:budget� 10000 [at HTime] $ENDThis operation de�nes the class Conference and asserts the proposition[Conference; : : : ; \Obj:budget� 10000 [at HTime]"; :::]in the knowledge base. This proposition becomes an instance of Precondition. Now the aboveintegrity constraint will be satis�ed if every time an instance of Conference is constructed, itsbudget value exceeds $10,000. Analogous de�nitions can be given for other attribute metaclassessuch as PostCondition, ActivationCondition and Invariant with obvious semantics [40].In general, our language enables us to de�ne metaclasses which represent concepts that areappropriate for a particular application domain. For instance, if it is deemed that the concept9Note that t overlaps t0 implies that t startsbefore t0, in addition to the implication that the two intervalshave a common subinterval.10This binding is achieved through quanti�cation in the constraint or rule which refers to the open assertion.17

of activity is useful for modeling conferences, we may want to adopt SADT's11 notions of input,output and control, referring to entities that are consumed, produced or used without state changeby an activity:TELL CLASS ActivityClass IN MetaClass WITHattributesagent: AgentClass;input: EntityClass;output: EntityClass;control: EntityClass;part: ActivityClassintegrityConstraintinputExists:$ (8p=Proposition)(8x=Token)(8t1=Time)(p in thisjinput ^ x in from(p)[at t1] =)(9q=Attribute)(9t2=Time)(q in p ^to(q) in to(p)[at t2] ^ t2 overlaps t1)) $;outputCreated: ...controlRemains: ...partDuringWhole:$ (8p=Proposition)(8x=Token)(8t1=Time)(p in thisjpart ^ x in from(p)[at t1] =) (9q=Attribute)(9t2=Time)(q in p[at t2] ^ from(q) = x ^ t2 during t1)) $;partInputConsistency: ...partOutputConsistency: ...ENDThe inputExists constraint checks that inputs exist at the start of an activity and cease to be in-stances of their respective input types before the end of an activity. Likewise, the partDuringWholeconstraint declares that components of an activity occur during the activity. Note that RML too,[25], o�ers the notion of activity de�ned above. However, RML has these notions built-in and istherefore less adaptable to applications where these notions need slight or major changes. Supposethat one wishes to base requirements modeling on the notion of role rather than that of activity,following [43]. For RML such a change of perspective amounts to a total discard. For Telos itsimply means that a di�erent set of individual and attribute metaclasses needs to be de�ned.Speci�c activities can now be modeled in the intended application domain.11SADT is the trademark of SofTech Inc. 18

A �nal example of a useful attribute metaclass is Rep. It can be used to constrain two classesto have isomorphic extensions.TELL CLASS RepCOMPONENTS [Class, rep, Class]IN AttributeClass, MetaClass WITHintegrityConstraint:$ (8x=Proposition)(x in from(this) =)(9!p=Proposition)(p in this ^ x = from(p)))^ (8y=Proposition)(y in to(this) =)(9!p=Proposition(p in this ^ y = to(p))) $ENDIn the above de�nition \9!" stands for \there exists unique". Thus if[ConferenceOrganization, ..., ConfRecord, ...]is an instance of Rep, there is a one-to-one correspondence between the instances of the twoclasses (though corresponding instances need not have identical time intervals). Rep is useful forexpressing accuracy and completeness requirements on the contents of an information system, aswe will see in the following section.4 Representing Knowledge About Information SystemsAfter obtaining a basic understanding of Telos, we can now look at its application in developingknowledge bases about software. In particular, we present examples of using Telos in describingand then applying a rather powerful metamodel for knowledge relevant to the development ofinformation systems.Traditionally, database engineering has made the (tacit) assumption that an information sys-tem is supposed to capture some excerpt of world history, and hence has concentrated on modeling(i.e., \capturing information about") the application domain. This practice provides an answerof sorts to the fundamental question \What does the information handled by my system mean?".Unfortunately, it also tends to draw attention away from a number of equally fundamental ques-tions, concerning other types of knowledge about an information system. The section begins witha basic taxonomy of distinct \subworlds" about which knowledge needs to be recorded duringthe development of an information system. The distinction between the di�erent subworlds isillustrated with de�nitions drawn from the IFIP Conference example [42].19

� The subject world is the domain about which the proposed information system is to provideinformation; this world may be an organizational environment, say a department store, orsomething completely di�erent, say a world of chemical experiments or geopolitical games.Consequently, the set of appropriate concepts for representing this world may vary consid-erably. For the purposes of our running example, the proposed information system doesmaintain information about an organizational setting. The notions of activity and entity willbe assumed to be appropriate for modeling such a world.� The system world includes speci�cations at di�erent levels of implementation detail on whatthe information system does. The nature and the number of speci�cation levels dependson the development methodology adopted. For instance, the levels may include functionalrequirements, conceptual designs and implementations. For each level, appropriate conceptsneed to be de�ned and made part of the system world metamodel. To keep our running exam-ple (somewhat) manageable, we limit the discussion of system world modeling to functionalrequirements only. As part of the system world, one may want to prescribe correspondencesbetween the information maintained by the information system and the intended subjectworld. It might be speci�ed, for instance, that the system's record of conferences is com-plete (for every conference, there is an entry in the system's records) and accurate (there areno entries in the system's records that do not correspond to an actual conference) throughthe use of attribute metaclasses such as Rep.� The usage world describes the environment within which the system is embedded. Suchdescriptions often take the form of input/output relationships, but may also include thedi�erent classes of (end) users of the intended system or the kinds of interfaces supported bythe system (represented, to a �rst approximation, as activities having the system and one ormore users as co-agents). The usage world may also include descriptions of the organizationalenvironment within which the system will function, including o�ce procedures. Advancedusage worlds may even include user modeling, e.g., what does each class of users know aboutthe subject and system worlds, how often do they use the system, and the like.� The development world focuses on the entities and activities which arise as part of the de-sign process itself. These would include the composition of the design team, responsibilitiesof each team member, design decisions, development tools, supporting documentation, etc.For example, there may be a standard procedure by which an existing version of the con-ference management system is adapted to the needs of a speci�c conference, using a speci�cdevelopment team hired by IFIP and a speci�c software development environment.20

Figure 4: Knowledge about Information Systems
21

One of the obligations of a knowledge representation system is to provide guidance on theorganization of the knowledge at hand as well as the process to be used by the knowledge engineerto build up his knowledge base. Figure 4 illustrates the basic \worlds" as well as the kindsof knowledge that might relate them. The rest of the section illustrates features of Telos bysuggesting possible ontologies for each of the above worlds, and occasionally instantiating it forthe IFIP domain. We emphasize that the discussion in this section is intended to illustrate the
exibility of Telos in modeling drastically di�erent worlds, a
exibility derived primarily from itsclassi�cation dimension and the treatment of attributes. Nevertheless, the examples presented are,in fact, based on actual application of Telos, mostly in the context of ESPRIT project DAIDA,where a complete prototype environment for information systems engineering was constructed,generally following the approach outlined here [34].4.1 The Subject WorldAn essential aspect of information system development is the characterization of the domain aboutwhich information will be maintained { a characterization which needs to be explicitly recorded.A number of di�erent general approaches could be followed in gathering and recording this infor-mation, including Structured Analysis, Entity-Relationship-Activity, etc. These approaches canbe de�ned within Telos. We could even extend them with concepts about a particular applicationdomain, e.g., accounting systems, to cover the use of standard requirements. Some real-world ex-periences with domain modeling have been gained with a commercial implementation of an earlyTelos version [29].For an example, we continue with the de�nition of a subset of the notions of RML [25] begunin section 3. As indicated earlier, RML's basic structures are loosely based on SADT [49]; thiswas motivated in part by the idea of using SADT as a graphical road map which sketches therequirements model before �lling in the more formal semantic details. RML provides the threebasic mechanisms of Activities, Entities, and Assertions. Since the latter are already available inthe Telos kernel, we need to concern ourselves only with activities and entities. The de�nition ofActivityClass presented in the previous section can be used as is. The de�nition of EntityClassfollows:
22

TELL CLASS EntityClass IN MetaClass WITHattributeproducer, consumer: ActivityClass;part, association: EntityClassintegrityConstraintproducedByProducer :$ (8x=Proposition)(x in this =)(9y=Proposition)(9p; q=Attribute)(y in this:producer ^from(p) = y ^ to(p) = x ^ p in q ^ q in y:output)) $ENDEvery instance of an entity class is produced by a producer activity. Note the (pleasing) dualitybetween entities and activities, initially o�ered in SADT.Since entities and activities per se can be seen as fundamental concepts in describing hu-man activities, and hence will appear in the other subworlds, we will in fact use the general-ization hierarchy to place EntityClass and ActivityClass in ISWorldClass, rather than justSubjectWorldClass. Returning to conference organizing, one can then start modeling the domainby considering speci�c classes of entities and activities, such as the following.TELL CLASS SubmittingAPaper IN ActivityClass WITHoutputsentIn: PaperSubmitted;submissionLetter: Letterinputprepared: PaperWrittencontrolsender: Person;recipient: Person;conference: ConferenceintegrityConstraintsamePaper: $ this.prepared = this.sentIn $;submissionOnTime: $ when(this) before this.conference.deadline $;rightRecipient: $ this.recipient = this.conference.programChair $END 23

TELL CLASS Paper IN EntityClass WITHproducerpaperwriting: Writingconsumersubmitting: SubmittingAPaperparttitle: String;pages: 1..12associationauthor: Author;conference: ConferencedeductiveRulerightconference :$ c 2 this:submitting:conference =) c 2 this:conference $ENDIn the DAIDA project, Telos-based subject world ontologies have been used to build graphicalfrontends for requirements engineering which give the developer well-known visualizations such asSADT diagrams but have a precise formal background. This formal background can be furtherexploited to integrate other views of the same information system (e.g., Entity-Relationship).4.2 The System WorldOne possible view of an Information System is as a world with its own speci�c entity and activityclasses { often called data and transactions. An important speci�c characteristic of informationsystems that their data and activity classes are often related to objects and activities in the subjectworld.Continuing our example, we use a set of system classes that follows the style of Taxis [39].System activity classes are called transactions and can have only data classes (a special kind ofentity classes) as inputs and outputs. In de�ning the representation relationship, we leave a lotof room for design decisions; for example, data classes can either represent subject world entities(e.g., data about referees and referees themselves), or traces of subject world activities (e.g., a classAuthorKitMailReceipts tracking the activity of mailing out forms to authors), or a mixture.24

TELL CLASS TransactionClass ISA ActivityClass WITHattributeinput, output: DataClassrepactivitybytransaction: ActivityClassENDTELL CLASS DataClass ISA EntityClass WITHattributeproducer, consumer: TransactionClassrepactivitybydata: ActivityClass;entitybydata: EntityClassENDGiven this speci�cation context, one can now start de�ning the model of the data base at thesemantic level, by de�ning a variety of subclasses of DataClass and TransactionClass. Thisprocess is su�ciently familiar that we will not detail it further here.4.3 The Usage WorldThe usage world model is intended to describe the man-machine interactions supported by theinformation system and the context within which they take place. Depending on the kind ofusage environment, such models have been investigated in o�ce research, computer-integratedmanufacturing and similar �elds of study which involve the integration of information technologywith its environment.A natural description of the usage world can also be given in terms of activities and entities.In fact, subject and usage world have not been traditionally distinguished. Although this isnot the place to argue the issue in full, we believe that the distinction is evident in certaindomains: e.g., contrast the world of agriculture, involving farming, weather, produce, etc., and theinformation management activities about farming which occur in the Department of Agriculture.The distinction is crucial in clarifying various, potentially con
icting needs that the informationsystem must ful�l.For the IFIP example, the subject world contains authors, paper submission, referees and thelike, whereas the usage model talks about o�ce sta� and o�ce tasks such as writing acknowledg-ments or selecting referees. Additionally, the usage model can exploit the fact that usage activities25

(both manual ones and man-machine interactions) may be constrained by plans or bureucratic pro-cedures that involve issues such as precedence, priority and security.In modeling these aspects, we shall make use of the specialization abstraction in Telos. Usageworld activity classes are specialized activity classes for which an agent is known (it can be aperson, a system, or a team composed of both persons and systems) and which can be subject tocertain precedence constraints; also, usage world activities may have to satisfy goals set by theirsupervisors, and these goals may in
uence the representation mapping between subject world andsystem world.TELL CLASS UsageActivityClass ISA ActivityClass WITHattributeagents: AgentClass;supervisor: UserClass;precedes: UsageActivityClass;goals: GoalsintegrityConstraintprecedence:$ (8preclink=Proposition)(preclink in thisjprecedes =)when(from(preclink)) before when(to(preclink))) $ENDTELL CLASS Goals ISA EntityClass ENDTELL CLASS AgentClass IN MetaClass WITHattributemember: AgentClassENDThe representational relationships between system world and subject world can be related tothe usage world by qualifying these relationships with the goals followed when determining thesystem requirements. These goals can be both functional (covering the functionality required bythe application domain) or non-functional (performance, accuracy, etc.). In Telos, this can beaccomplished quite easily by attribution of attributes, one of the unique features of the language:26

TELL CLASS TransactionClass!repbytrans IN Class!rep WITHattributemappingGoal: GoalsENDThe following is an example of one usage class de�ned:TELL CLASS WriteAcknowledgment IN UsageActivityClass WITHoutputletter: Lettercontrolsender: Person;recipient: Person;submission: SubmittingAPaperagentsletterprogram: DesignTask1supervisorprogramChair: Personprecedes: SendToRefereesintegrityConstraintchairperson:$ this.submission.conference.programChair = this.programChair $;rightpersons:$ this:sender= this:programChair^ this:recipient= this:submission:sender$;acknowledgmentWithinAWeek:$ when(this) before when(this:submission)+ 7 $ENDWe do not detail the modeling of agents at this point. A more elaborate metamodel couldincorporate some basic cognitive constraints on agents which guide the activities they participatein. It could also describe the organizational structure of agents, their access rights, etc. Telosusers have actually developed several such models, e.g., for purposes of security speci�cation, fora co-authoring system, for contract negotiation support in public construction projects, even formodeling paradigm shifts in the history of natural science.27

4.4 The Development WorldThe development world sees the information system as a design object to be worked on. Typically,the management of software development is organized in layers. Single-worker tasks involvingdetailed knowledge about individual languages, methodologies, and tools are called programming-in-the-small. Tasks involving the negotiation and coordination of multiple programmers are calledprogramming-in-the-many. In between, object management tasks such as version and con�gurationmanagement are the domain of programming-in-the-large [48]. Here, we only sketch an in-the-small and an in-the-many model.In a Telos model used intensively throughout DAIDA [16] [33] programming-in-the-small isunderstood as a set of interrelated design decisions which transform design objects into otherdesign objects, supported by design tools. Design tools are modeled by the special kinds of designdecisions they support. Design goals are a special kind of design objects which provide a rationalefor design decisions.TELL CLASS DesignObject ISA EntityClass ENDTELL CLASS DesignGoal ISA DesignObject, Goals ENDTELL CLASS DesignDecision ISA UsageActivityClass WITHattributeinput: DesignObject;output: DesignObject;agents: DesignToolgoals: DesignGoal;ENDTELL CLASS DesignTool ISA AgentClass WITHattributequalification: DesignDecisionENDFor the IFIP example, a design decision could concern the choice of a particular standardpackage for a task de�ned in the system model. This could be led by the goal of saving developmentcosts, and could have been proposed by an outside consulting �rm.More generally, design decisions may involve the re�nement of existing models, the mappings28

between various representational formalisms, the versioning of existing design objects, and thecon�guration of complex systems from reusable components. In the DAIDA project, this modelhas been used to formalize and manage the integration of multiple languages, methods, and toolsof the DAIDA environment [33]. The same model has also been used to represent a bootstrappingprocess by which an implementation of the full Telos language was derived from a small kernel[32].To organize programming-in-the-many, we start from the concept of Agent introduced in theUsage World. To this concept, we simply add a possibility that these agents can communicateabout design decisions according to some protocol.TELL CLASS ConversationClass ISA UsageActivityClass WITHattributecontent: DesignDecisionintegrityConstraint:$ size(this.agents) >= 2 $ENDThe constraint says that any conversation model should foresee at least two kinds of roles for agents;it can be satis�ed by any message protocol that knows of senders and receivers, for example.One possible instance of such a metamodel is Winograd's [56] conversation-for-action protocol.The model below specializes the topics of conversation to be formal tasks in developing softwareaccording to our in-the-small methodology. Note also the usage of multiple inheritance.TELL CLASS Message IN ConversationClass WITHagentssender: ProjectMember;recipient: ProjectTeamENDTELL CLASS Response ISA Message WITHattribute, necessaryreference: MessageintegrityConstraintpersonsright:$ this:reference:sender= this:recipient ^this:reference:recipient= this:sender $END 29

TELL CLASS MappingRequest ISA Message WITHcontentmappingtask: MappingDecisionENDTELL CLASS MappingPromise ISA Response WITHattribute, necessaryreference: MappingRequestcontent, necessarymappingtask: MappingDecisionintegrityConstrainttaskright:$ this.reference.mappingtask = this.mappingtask $ENDThis excerpt covers the �rst part of a conversation for action. The constraints say that, ifone partner promises a request put to him, this partner has (counter it or) to accept it exactlyas is. Conversation primitives such as Counter and Accept can be modeled in a similar fash-ion. In the Telos-based software information system, ConceptBase [21], the full model has beenimplemented. The implementation has been applied to several software development examples,including management of a large programming class. Figure 5 is a screendump from such a session;the graphical browser documents the status of a subcontracting conversation between a designerand a programmer concerning the redesign of a program.The design of a sophisticated Telos-speci�ed project management system which also takes intoaccount the proactive organization and reorganization of ill-structured projects is reported in [51].ConceptBase also o�ers a graphical \argument editor" which supports the real-time or asyn-chronous discussion within a distributed software development team [28]. This editor is basedon another instance of ConversationClass inspired by Toulmin's model [54], and is similar to thegIBIS tool developed by MCC [17], with the important di�erence that the topic of discussion isformally known to the system. Initial application experiences indicate that such an editor maybe a valuable tool for recording the rationales of design decisions; formal experiments to evaluatethis claim are being prepared.Note how the ConceptBase system associates di�erent shapes and colors with the metaclassesde�ned above. In Figure 5, the agents are shown in white ovals, and the aggregation of messagesin a conversation is made explicit. The
exibility of user-de�ned metaclasses in Telos requires30

Figure 5: A contracting conversation between a designer and a programmer
31

tools for interactively de�ning such mappings between knowledge base objects and their graphicalrepresentations. Formally, this mapping can be described by Telos deductive rules [32].4.5 DiscussionIn this section, we have proposed a multi-perspective approach to the representation of knowledgeabout information systems. For space reasons, we could only brie
y reference actual experienceswith using Telos for each of these perspectives and for their integration, gained by our own researchgroups as well as by industrial partners and various outside users and students. These experienceslead us to believe that a number of Telos features make it especially suitable for the task ofrepresenting knowledge about information system development.First, the by{now{standard approach of modeling a domain using objects related by attributes,grouped into classes that are organized into subclass hierarchies, provides the usual bene�ts oforganizing and abstracting information. The possibility of viewing classes as objects, themselvesgrouped into (meta)classes, allows the description itself to be structured in useful ways, as in thecase of the di�erent subworlds.The treatment of attributes as �rst-class objects has also proven very useful for two reasons.It does not force us to commit ourselves at the point of �rst de�nition of an object how it isgoing to be used since, e.g., new attributes can be associated with any Telos proposition. Further,attributes of attributes can be the most compact and natural representation for structures such asdesign dependencies (e.g., the dependency TransactionClass!repbytrans in the UsageWorld)which have to be represented much more awkwardly in other languages. We have included inthe presentation a screendump to illustrate how the structural orientation of Telos, supportedby the uniform treatment of individuals and attributes, allows a graphical representation of theknowledge base which can be usefully exploited in providing a nice user interface for developers. Inparticular, hypertext-like interfaces are natural for semantic network-style representation schemes[7], and allow developers to \navigate" through the knowledge base to explore its contents.Finally, the explicit distinction between and availability of both domain-time and development-time in Telos allows not just historical reference in the subject world, but the ability to rationalizechronologically the evolution of the software design { an important capability during softwaremaintenance, which is the most cost- and work-intensive part of the software life-cycle.In summary, our experiments as well as initial experiences by other users have shown that Teloselegantly covers many of the requirements for representing knowledge about information systems.32

5 Some Formal Aspects of the Telos SystemA formal account of a new language concisely expresses the meaning of the various languageconstructs in a thorough and organized manner. Indeed, with Telos, as with many other languages,ambiguities and inconsistencies were discovered during the process of constructing a formal accountof the language. In addition, such an account can serve as point of contact between the languagedesigners, implementors, end-users and critics.Following [13], we describe a Telos knowledge base in terms of its functional behaviour at theknowledge level for operations such as TELL and ASK. A Telos knowledge base is described inpart (though not implemented) as a collection of (historical) �rst-order theories, indexed by belieftimes12. Intuitively, each one of these theories corresponds to the beliefs of the system during sometime period (the index of the theory). Knowledge base operations are then treated as functionsde�ned over indexed theories, and other things. For details omitted in this section, see [37] and[40].Each historical theory is constructed in the following way: Start with a �rst-order logic withtypes augmented with axioms for isa, in, time entities, etc; each historical theory constructed willbe a theory in this logic. All such theories include a group of axioms which in some sense \de�ne"what is a well-formed knowledge base; in addition, every TELL operation introduces additionalaxioms. Finally,ASK operations invoke certain default assumptions to provide answers to queries.The formal account of this section o�ers a proof theory as de�nition of \consistency" and\question-answering". By translating Telos expressions into a standard �rst order logic, we get amodel theory as a bonus.5.1 Initial Theory5.1.1 The Target Language LThe language we use, L, is a �rst order logic with equality, with the additional restriction that allquanti�ers have restricted ranges. The basic types/ranges of L are Proposition, T ime and Class.For any particular knowledge base, all class names appearing in it can also be used as ranges forquanti�ers. L also contains the following predicates and function symbols:� The 5-place predicate symbol prop used to describe the components of every Telos proposi-tion formally. The �rst four arguments of prop are of type Proposition; the last argumentis of type T ime.12Since belief times are constant, they can be represented by semi-open intervals of the form [a; b) or [a;+1),where a and b are atomic point-like intervals { days in the discussion of the previous sections.33

� The 1-place function symbols from; label; to and when used to map propositions to theircomponents.� The 3-place predicate symbols in and isa used to describe instances and subclasses respec-tively. The type of in is Proposition�Class�T ime; the type of isa is Class�Class�T ime.5.1.2 AxiomsTime is axiomatized using Allen and Hayes' proposal [4], modi�ed to re
ect the Telos conventions.Other axioms in our theory include: Axiom for proposition components:(8p; x; y; z=Proposition)(8t=T ime)(prop(p; x; y; z; t) =)from(p) = x ^ label(p) = y ^ to(p) = z ^ when(p) = t)Transitivity of IsA13:(8p1; p2; p3=Class)(8t1; t2; t3=T ime) (isa(p1; p2; t1) ^ isa(p2; p3; t2) ^t3 = t1 � t2 =) isa(p1; p3; t3))Specialization Postulate: The extension of a class is a superset of the extension of any of itssubclasses.(8p1; p2; p3=Proposition)(8t1; t2; t3=T ime) (in(p1; p2; t1) ^ isa(p2; p3; t2) ^t3 = t1 � t2 =) in(p1; p3; t3))The Instantiation Constraint: if proposition p1 is an instance of proposition p2 then from(p1)must be an instance of from(p2), to(p1) must be an instance of to(p2) and when(p1) must overlapwhen(p2).(8p1; p2=Proposition)(8t1=T ime)(instanceOf(p1 ; p2; t1) =)(9t2; t3)(in(from(p1); from(p2); t2) ^ in(to(p1); to(p2); t3) ^during(t1; t2) ^ during(t1; t3) ^ overlaps(when(p1); when(p2))))5.2 Integrity Constraints and Deductive RulesIntegrity constraints and deductive rules are mapped into closed statements in the language L.This mapping provides the semantics for the terms of the assertion language in Telos. As anexample, the following is the L statement corresponding to the deductive rule from section 2.313The intersection of two time intervals t1 and t2 (i.e., the time period common to both) is denoted by t1 � t2.34

(8t=T ime)(8x; y; z; w=Proposition)(in(x; Paper; t) ^ in(y;Address; t) ^ author(x;w; t) ^address(w; z; t) =) replyAddress(x; z; t))where, in turn, a predicate such as author(x; y; t) corresponds to(9p; l; t0=Proposition)(in(p; author; t0) ^ prop(p; x; l; y; t)):To make their processing tractable, rules are restricted to a \Horn" form: < antecedent >=) < consequent >. The antecedent must be a conjunction of atomic formulas while theconsequent must be a single positive atomic formula. In addition, all the variables in the rulemust be universally quanti�ed at the beginning of the formula.Deductive rules are statements which are added to the appropriate historical theories and areused by ASK for answering queries with respect to these theories. However, integrity constraintsare statements which must be satis�ed: an integrity constraint is satis�ed if it is consistent withthe completion of the corresponding historical theory14. Otherwise, we say that the constraint isviolated.5.3 A Functional Speci�cation of the Telos SystemA Telos knowledge base is characterized in terms of two sets KB and IC. These sets are sequencesof (historical) theories indexed by belief time intervals. As we mentioned earlier, each theory inKBcorresponds to the beliefs of the system during the time period which is the index of the theory. Thetime periods are demarcated by the system clock time, and therefore form a contiguous sequenceup to the present time, Now. These beliefs are constrained by a theory in IC (with identicalindex). Knowledge bases are modi�ed and queried by the functions TELL;UNTELL;RETELLand ASK. Only TELL and ASK are presented here. The TELL operation has the functionality:TELL : KB � IC � O � T ime �! KB � ICIn addition to the objects being de�ned (O), TELL looks at the last theory in the inputknowledge base, say KBn (where n has the form [t;+1)), the corresponding set of integrityconstraints ICn, the current system time, and produces a new knowledge base where the indexof KBn and ICn has been changed to [t; s), and a new theory KB[s;+1) and an enhanced set ofintegrity constraints IC[s;+1) have been added. The new theories are produced by unioning KBn14The completion of a knowledge base KB, denoted by KB, is de�ned in the next section.35

(resp. ICn) with atomic formulas and deductive rules (resp. integrity constraints) correspondingto the de�nitions in O.The TELL operation takes e�ect only if the theories in KB[s;+1) and IC[s;+1) are consistentand if all the integrity constraints in IC[s;+1) are satis�ed. Note that because we are in �rstorder logic, the de�nition of classes resembling Russel's paradox (\all classes not members ofthemselves") simply leads to an inconsistent knowledge base. Users of Telos are therefore urgedto abide by the convention that only propositions at adjacent levels of the instantiation hierarchyshould be related by the predicate in.ASK can be functionally understood as follows:ASK : KB � Query � T ime �! AnswersASK operates on the historical theories in KB whose index overlaps the time period stated inthe BELIEVED clause of the query. Assume that there is exactly one such historical theory15. We�rst need to know the completion of that historical theory. The completion of a given theory iscomputed using the following assumptions, inspired by [45]:1. A \domain closure assumption", which states that the individuals known are all the onesthat exist, excluding time constants:(8x=Proposition):T ime(x) =) (x = c1 _ x = c2 _ : : : _ x = cn):A separate domain comprehension axiom is given for time intervals.2. The equality axioms (re
exivity, commutativity, associativity and Leibnitz's principle ofsubstitution of equal terms).3. The \unique names assumption", asserting that distinct constants are not equal. Note thatthis is not asserted for temporal terms other than the ones representing standard intervals,because in general two time intervals a and b are assumed to be equal if and only if equals(a; b)is derivable.4. The \completed theory assumption": to obtain negative information, we want to assumethat any facts about the base predicates isa; in; prop that cannot be derived from told factsor deductive rules are false. For this purpose we use the restricted form of the deductiverules to adopt a \predicate completion" technique such as considered in [45].15In the more general case, intersect the answers to the subqueries to each historical theory.36

Now if query is a closed historical query, i.e., it is of the form < jW > (where W is a �rstorder statement) thenASK(KBn; query) = 8>>>>><>>>>>: yes if KBn j=Wno if KBn j= :Wunknown if KBn 6j=Wand KBn 6j= :WIf query is an open historical query i.e., it is of the form < x1=�1; � � � ; xn=�n j W > (where Wis a �rst order formula whose only free variables are x1; : : : ; xn) thenASK(KBn ; query) = 8<: � if for every substitution �i 2 �, KBn j= W�i; if there is no substitution � such that KBn j=W�5.4 Formalizing the Holds Relation for LWe provide here a brief formal account of the Holds predicate introduced in section 3.1.16 Thepredicate was introduced to allow meta-atributes to impose additional constraints on the free vari-ables Obj and HTime, which occur in formulas that will act as preconditions, activation conditions,etc. These formulas must therefore be objects { they will appear as parts of propositions after all{ and some form of \quotation" mechanism is needed for this purpose. However, once values fromthe actual domain of discourse (propositions, times) are substituted for Obj and HTime, we wantthe formulas to be \unquoted" and veri�ed.For this purpose we encode formulas in the base language L as abstract syntax trees (Prologterms or Lisp lists in pre�x notation), assuming that for every logical and non-logical symbol ofL we have a corresponding constructor. Thus (8x)(P (x) ^ Q(x)) might be encoded asALL(X;AND(PRED(P;X); PRED(Q;X))):If the former is called formula �, then the latter is named d�e.The result is a language L0, in which quoted sentences from L are also objects. We cangive these sentences assertional power by setting up a simple predicate True, which representsthe standard model theoretic notion of truth (e.g., True(AND(A;B)) i� True(A) and True(B),while True(PRED(P;X)) i� P (x).). Alternatively, we could de�ne a predicate Provable, whichfomalizes some proof theory of the logic of L (as in [10]). Note that the special variables Obj and16We are indebted to Jim des Rivieres for clari�cations.37

HTime will not be quoted inside a formula, so that quanti�ers outside Holds can keep them intheir scope.As shown in [18], one avoids the paradoxes usually associated with this sort of encoding, bythe simple expedient of not allowing all formulas from L0 to be encoded in L0, but only those in L.We will want users to write formulas involving Holds, as illustrated by the case of PreCondition.Such formulas are however not needed as arguments to True, so we will simply disallow them inthat position, e.g., by de�ningHolds(d�e) () NoNesting(d�e) ^ True(d�e)Finally, for this construction to work properly it is necessary to have a canonical name (primi-tive or constructed) for every value in the domain of L { every value over which one can quantify.This is not an issue for propositions, of which there is only a �nite number. But time intervalshave been axiomatized according to [3], so we need some naming scheme for a countable spaceof \canonical intervals". This can be accomplished, for example, by naming intervals with pairsof integers. The actual intervals which appear in propositions are then existentially quanti�ed,and can be treated proof-theoretically according to the technique of [45]: as constants for whichthe \unique name axiom" does not hold. This allows us to learn more information about them,including the fact that some intervals are equal.6 Related WorkTelos is fundamentally a knowledge representation language, albeit one that has been speciallycrafted to facilitate the description of concepts related to the development of information systems.Thus, it is reasonable to look for related work in three general areas: Arti�cial Intelligence,Databases and Software Engineering. In each case we will concentrate on closely related approachesand in
uences rather than attempt to survey entire subareas.Telos is a language in the tradition of semantic networks. Its distinguishing marks over otherproposals is the treatment of attributes as �rst-class objects, including the device of attribute in-stantiation, the integrated representation of temporal knowledge, and the parsimonious foundationof the language resting on the single notion of \proposition".The treatment of attributes was in
uenced by [38] where \slots" are distinguished from\metaslots",analogously to attribute classes and metaclasses. Telos' treatment of attributes can be considereda generalization of this earlier e�ort. Our choice of a temporal model based on intervals, ratherthan time points has been in
uenced by [2] and [55]. Of course, the nature of the temporal com-ponent of Telos was considerably complicated by all other features that need to coexist within38

one linguistic and conceptual framework: notationally (making sure that time does not get inthe way as the user ASKs and TELLs), semantically (the meaning of history and belief times), andstructurally (o�ering time as a fourth dimension of knowledge organization in Telos) and, �nally,from an implementation viewpoint. To our knowledge, no full-
edged knowledge representationlanguage provides facilities for time that are as tightly integrated into the overall representationalframework.Finally, the integration of structural/organizational aspects of knowledge representation withassertional/deductive parts, has been advocated and implemented in various forms in precursorsystems such as Omega [5], Cake [46] and Krypton [11]. These, and other so-called \hybrid"systems, combine one or more special-purpose but e�cient reasoners with a general deductivemechanism in order to achieve better performance. For example, Krypton's terminologic compo-nent provides e�cient reasoning about concept de�nitions, which are then used by the assertionalcomponent for theorem proving. Telos does not explicitly demarcate subsystems of di�erent kinds;in fact, Telos uses the object-centered nature of the representation mechanism to structure the en-tire knowledge base, by making individuals and concepts be syntactic anchors for both generic andspeci�c facts, including formulas in the logical assertion language. On the other hand, reasoningwith time has been treated in a special way both in the language semantics and implementation,and the distinction between constraints/rules and ask/retrieve point to the existence of distinctways of using what would otherwise be �rst-order formulas.Turning to Databases, the modeling of the application world has been the focus of much workon semantic data models [31]. Telos continues in the spirit of this work by emphasizing theimportance of structuring mechanisms, including generalization, aggregation and classi�cation,which were �rst identi�ed in the context of data modeling. In fact, Telos goes further by applyingthese ideas uniformly to attributes as well as individuals. The equal treatment of individuals andrelationships dates back to the Entity-Relationship model [15], but there are many di�erencesbetween Telos and ER languages, including the presence of higher order (\meta") classes, and theabsence of n-ary relationships with built-in cardinality restrictions. The addition of a temporaldimension is a further step in the evolution of conceptual models. The distinction between the\clock" of the application world and that of the system administrators has also been made in thework on temporal databases [50].Object-oriented databases [20] are a recent development, which merge the semantic modelingconstructs with the notion of objects having an encapsulated internal state. They are particularlyuseful for CAD applications, including providing database support for Software Engineering. Forexample, the Cactis system [30] concentrates on the e�cient management of derived data |39

objects can have local attributes de�ned by functional formulas, and, interestingly, separates thede�nition of binary relationship classes from that of the object classes being related. This isused to allow increased
exibility in making changes in the schema, and resembles Telos' viewof class/individual de�nitions as being nothing but convenient collections of propositions, ratherthan monolithic wholes. The Telos implementation has not paid the same careful attention toe�ciency of updates, but on the other hand it does support temporal reasoning, a full instance-ofhierarchy, and allows attributes as �rst class citizens.Interestingly enough, the database logic F-logic [35] also treats individuals and attributes ina uniform way. Like Telos, it can express meta-queries such as \retrieve the set of all objectswhich represent the labels de�ned for a certain object". However, it does not support time anddoes not o�er an instantiation dimension (instead, it treats classes and instances as members ofthe same lattice ordered by the \de�nedness" ordering of denotational semantics). On the otherhand, F-logic o�ers a more explicit notion of complex objects and a nice way of dealing withinconsistencies.The inferential aspects of Telos, especially the distinction between integrity rules and deductiverules had been made by researchers in the �eld of Deductive Databases [23]. However, Telos' as-sertion language is di�erent from the FOL-based languages usually o�ered in deductive databases,and the propositional 4-tuple foundations of Telos are fully novel. The functional constructs in ourassertion language are reminiscent of similar constructs in the language COL [1] if the temporalarguments are omitted.Requirements modeling in Software Engineering is a third research area that has in
uencedthe development of Telos. Following the pioneering work of [6], [14] and [25], a consensus seems tohave emerged that a requirements model should include a description of the application domain inaddition to a functional speci�cation of the system itself, both expressed in an \object-centered"framework. We have already discussed in this paper the close relationship between RML [25] andTelos, while [9] discusses the relationship between RML and the work of [6] and [14].In addition to RML, the ERAE method [26] also considers a formal embedding of the temporaldimension into the requirements model, albeit using a temporal logic approach. Both ERAE andPLEXSYS [36] consider the embedding of the system in its \usage world" but neither permits thequali�cation of the \rep(resents)" relationship which is possible in Telos.More generally, the work on domain modeling for software reuse that began with [41] hasrecently produced a number of languages and systems which are intended to capture a wide rangeof information about software subdomains. A number of these systems, including the Lassiesoftware information system [19], and the Desire/Rose design recovery/reuse system [7] are built40

around languages which are explicitly based on AI knowledge representation techniques, such asframe systems and connectionist networks.There is an entire sub�eld of formal software speci�cations, and some approaches are in fact re-lated to Knowledge Representation schemes (e.g., the Plan Calculus [46]). However, these schemesare usually oriented towards the description of software components, and do not attempt to addressworld modeling, nor the representation of software development knowledge.7 SummaryThe development, use and maintenance of information systems involves a great deal of knowledge.We have classi�ed this knowledge as concerning (at least) four distinct domains of discourse:� the subject world, about which information will be stored in the information system;� the usage world, consisting of the environment within which the information system willeventually function;� the system world, of the various incarnations of the information system itself, ranging fromnon-procedural requirements speci�cations to code; and� the development world, of teams, development processes, design goals, schedules and deci-sions.The knowledge involved is both generic { the kind one learns in courses at school { and speci�c{ having to do with a particular system. Moreover, it is essential for the development process toaccumulate information concerning the relationship between the above four worlds.It seems intuitively clear that the ability to explicitly capture and manipulate these kinds ofknowledge can be helpful for many software engineering tasks (including requirements acquisition,expert support for development, maintenance and sta� training), and provides the basis for avariety of computer tools to support these activities. These expectations have been con�rmed byour experience in the DAIDA project.To support the above paradigm of knowledge-intensive software development, we need knowl-edge bases. This paper has shown how Telos can be used to build meta-models of the varioussubworlds and software engineering activities involved in developing an information system, andto populate these metamodels with speci�cations of particular software environments and devel-opment projects.Telos is an object-centered language which has a number of special features that have enhancedits utility for maintaining a software knowledge base:41

� it supports the organization of knowledge built up from \atomic facts" through the use ofclassi�cation and generalization hierarchies;� it is relatively easy to extend and customize with abbreviations by providing higher-orderclasses, including attribute meta-classes; the syntax of \attribute categories" and the under-lying simple framework of \propositions" are particularly useful;� it supports evolving views of objects and a hypertext-style browsing interface, by treatingattributions as individuals;� the consistency of the knowledge entered can be veri�ed through constraint rules, and newvalues can be inferred by triggering the evaluation of rules;� a complete \longitudinal" view of various domains can be captured because of the powerfulyet tractable model of time which has been tightly integrated into the language;� the evolution of the knowledge base can be recorded through the use of \belief" timesassociated with facts, and this can be used to support software maintenance;There have been three prototype implementations of the language, all in PROLOG, carried outat the University of Crete [53], the University of Passau [21] and SCS Hamburg [29]. In addition tothe DAIDA project, the language was/is used in a number of research projects, including ESPRITprojects LOKI [8], ITHACA [44] and MULTIWORKS [27], with generally positive feedback.In a nutshell, the contribution of Telos lies in its adaptation of ideas from knowledge repre-sentation, deductive databases and requirements modeling languages in order to o�er a languagethat can be used to tackle a broader class of modeling tasks { arising from information systemdevelopment tasks { than those attempted by other proposals.Design records for large information systems, formally or informally represented, are boundto contain millions of facts. If the reader were to accept the thesis that we can develop languagefacilities that are expressively adequate for the task at hand, it would still not be possible tomanage e�ectively such records due to the lack of suitable knowledge base management systems,e.g., ones that can manage knowledge bases with O(1M) facts, o�ering implementation techniquesfor query optimization, concurrency control and recovery. Even though unavailable yet, we believethat such facilities can and will be built in the next few years and will open the way towards moresystematic, e�ective and productive software development technologies. We also believe that thekey to such new technologies is and will continue to be the availability of all relevant knowledgeto human designers. 42

AcknowledgementsWe gratefully acknowledge the contribution of insightful ideas, suggestions and moral supportfrom Sol Greenspan (GTE Laboratories, Waltham, MA) whose thesis provided a rationale anda springboard for this research; Yannis Vassiliou, Thodoros Topaloglou, Manolis Marakakis andothers (Institute of Computer Science, Iraklion, Crete, Greece) for serving as �rst users of thelanguage; John Gallagher and Levy Solomon (SCS Technische Automation und Systeme GmbH,Hamburg, Germany), who did the �rst implementation of CML; Thomas Rose, Manfred Jeusfeldand others (University of Passau, Germany) who carried out a second implementation; as well asother members of the ESPRIT projects LOKI and DAIDA. Last, but not least, we would like tothank Lawrence Chung, Brian Nixon, Martin Stanley and other members of the Taxis group atthe University of Toronto for providing a friendly and stimulating research environment.References[1] Abiteboul, S., and Grumbach, S. COL: a Logic-based Language for Complex Objects.In Proceedings of the International Conference on Extending Data Base Technology (Venice,Italy, March 1988).[2] Allen, J. Maintaining Knowledge about Temporal Intervals. Communications of the ACM26, 11 (November 1983), 832{843.[3] Allen, J., and Hayes, P. A Common-Sense Theory of Time. In Proceedings of the NinthInternational Joint Conference on Arti�cial Intelligence (Los Angeles, CA, 1985), pp. 528{531.[4] Allen, J., and Hayes, P. Moments and Points In an Interval-Based Temporal Logic.Computational Intelligence 5 (November 1989), 225{238.[5] Attardi, G., and Simi, M. Consistency and Completeness of OMEGA, a Logic For Knowl-edge Representation. In Proceedings of IJCAI-81 (Vancouver, B.C, 1981), pp. 504{510.[6] Balzer, R., and Goldman, N. Principles of Good Software Speci�cation and Their Im-plications For Speci�cation Languages. In Proceedings of the Conference on Speci�cations forReliable Software (Boston, MA, 1979), pp. 58{67.[7] Biggerstaff, T., and Perlis, A., Eds. Software Reusability (Vol. 1 and 2). ACM Press,1989. 43

[8] Binot, J.-L., Demoen, B., Hanne, K.-H., Solomon, L., Vassiliou, Y., von Haan,W., and Wachtel, T. LOKI: A Logic Oriented Approach to Data and Knowledge BasesSupporting Natural Language Interaction. In Proceedings of the ESPRIT '88 Conference(1988), North-Holland, pp. 562{577.[9] Borgida, A., Greenspan, S. J., and Mylopoulos, J. Knowledge Representation as theBasis to Requirements Speci�cation. IEEE Computer 18, 4 (1985), 82{91.[10] Bowen, K., and Kowalski, R. Amalgamating Language and Meta-Language. In LogicProgramming, K. Clark and S. Tarnlund, Eds. Academic Press, 1982, pp. 153{172.[11] Brachman, R., Fikes, R., and Levesque, H. KRYPTON: Integrating Terminology andAssertion. In Proceedings of AAAI-83 (Washington, DC, 1983), pp. 31{35.[12] Brachman, R. J., and Levesque, H. J., Eds. Readings in Knowledge Representation.Morgan Kaufmann, 1985.[13] Brachman, R. J., and Levesque, H. J. The Knowledge Level of a KBMS. In OnKnowledge Base Management Systems, M. Brodie and J. Mylopoulos, Eds. Springer-Verlag,1986, pp. 9{12.[14] Bubenko, J. On Concepts and Strategies for Requirements and Information Analysis. InProdeedings of IFIP-80 (1980).[15] Chen, P. The entity-relationship model-Towards a uni�ed view of data. ACM Transcactionson Database Systems 1, 1 (March 1976), 9{36.[16] Chung, K., Katalagarianos, P., Marakakis, M., Mertikas, M., Mylopoulos,J., and Vassiliou, Y. From Information System Requirements to Designs: A MappingFramework. Technical Note 53, Computer Systems Research Institute, University of Toronto,November 1989.[17] Conklin, J., and Begeman, M. A hypertext tool for exploratory policy discussion. ACMTransactions on O�ce Information Systems 6, 4 (1988), 303{331.[18] des Rivi�eres, J., and Levesque, H. J. The Consistency of Syntactical Treatments ofKnowledge. In Proceedings of the 2nd Conference on Theoretical Aspects of Reasoning AboutKnowledge (Los Altos, California, 1986), J. Y. Halpern, Ed., Morgan Kaufmann Publishers,Inc., pp. 115{130. 44

[19] Devanbu, P., P., S., B., B., and R., B. A Knoweldge-Based Software Information System.In Proceedings of IJCAI-89 (1989), pp. 500{501.[20] Dittrich, K., Ed. Advances in Object-Oriented Database Systems (Proceedings of the 2ndInternational Workshop on Object-Oriented Database Systems). Lecture Notes in ComputerScience, 334, Springer Verlag, 1988.[21] Eherer, S., Jarke, M., Jeusfeld, M., Miethsam, A., and Rose, T. A Global KBMSfor Database Software Evolution: ConceptBase 2.0 User Manual. Tech. Rep. MIP-8936,University of Passau, 1989.[22] Frisch, A. A General Framework for Sorted Deduction: Fundamental Results on HybridReasoning. In Proceedings of 1st International Conference on Principles of Knowledge Repre-sentation and Reasoning (Toronto, Ontario, 1989), R. Brachman, H. Levesque, and R. Reiter,Eds., pp. 126{136.[23] Gallaire, H., Minker, J., and Nicolas, J. Logic and Databases: A Deductive Approach.ACM Computing Surveys 15, 2 (1984), 52{57.[24] Gallaire, H., and Nicolas, J.-M. How to Look at Deductive Databases. In Foundationsof Knowledge Base Management, J. Schmidt and C. Thanos, Eds. Springer Verlag, 1989,pp. 119{127.[25] Greenspan, S. J. Requirements Modelling: A Knowledge Representation Approach to Soft-ware Requirements De�nition. PhD thesis, Dept. of Computer Science, University of Toronto,1984.[26] Hagelstein, J. Declarative approach to information systems requirements. Knowledge-Based Systems 1, 4 (1988), 211{220.[27] Hahn, U., Jarke, M., Kreplin, K., Farusi, M., and Pimpinelli, F. Co-AUTHOR:a hypermedia group authoring environment. In Proceedings of the European Conference onComputer-Supported Cooperative Work (Gatwick, United Kingdom, 1989).[28] Hahn, U., Jarke, M., and T., R. Group Work in Software Projects. In Proc. IFIP WG8.4 Conference on Multi-User Applications and Interfaces (Iraklion, Crete, Greece, September1990).[29] Haidan, R., and Meyer, R. Requirements Modeling and System Speci�cation In aLogic-Based Knowledge Representation Framework. Technical Report, ESPRIT project 892(DAIDA), SCS Informationstechnik, Hamburg, Germany, 1990.45

[30] Hudson, S., and King, R. Cactis: A Self-adaptive, Concurrent Implementation of anObject-Oriented Database Management System. ACM Transactions on Database Systems14, 3 (1989), 291{321.[31] Hull, R., and King, R. Semantic Database Modelling: Survey, Applications and ResearchIssues. ACM Computing Surveys 19, 3 (1987), 201{260.[32] Jarke, M., Jeusfeld, M., and Rose, T. Software Process Modeling as a Strategy forKBMS Implementation. In Proceedings of the First Internatinal Conference on Deductive andObject-Oriented Databases (Kyoto, Japan, 1989), pp. 496{512.[33] Jarke, M., Jeusfeld, M., and Rose, T. A software process data model for knowledgeengineering in information systems. Information Systems 15, 1 (1990), 86{115.[34] Jarke, M., Mylopoulos, J., Schmidt, J., and Vassiliou, Y. Information SystemsDevelopment as Knowledge Engineering: the DAIDA Project. Technical Report, ESPRITproject 892 (DAIDA), Forthcoming.[35] Kifer, M., and Lausen, G. F-Logic: A Higher-Order Language for Reasoning aboutObjects, Inheritance, and Scheme. In Proceedings of ACM SIGMOD International Conferenceon Management of Data (1989), pp. 134{146.[36] Konsysnki, B., and Kotteman, J. Dynamic Metasystems for Information Systems De-velopment. In Prodeedings of 5th International Conference on Information Systems (1984),pp. 187{204.[37] Koubarakis, M., Mylopoulos, J., Stanley, M., and Borgida, A. Telos: Features andFormalization. Tech. Rep. KRR-TR-89-4, Dept. of Computer Science, University of Toronto,1989.[38] Kramer, B. The representation of programs in the procedural semantic network formalism.Master's thesis, Dept. of Computer Science, University of Toronto, 1980.[39] Mylopoulos, J., Bernstein, P. A., and Wong, H. K. A Language Facility for DesigningInteractive Data-intensive Applications. ACM Transactions on Database Systems 5, 2 (1980),185{207.[40] Mylopoulos, J., Borgida, A., Jarke, M., and Koubarakis, M. Telos: A Language forRepresenting Knowledge About Information Systems. Tech. Rep. KRR-TR-89-1 (Revised),Dept. of Computer Science, University of Toronto, August 1990.46

[41] Neighbors, J. Draco: A Method for Engineering Reusable Software Systems. In SoftwareReusability, T. Biggersta� and A. Perlis, Eds., vol. 1. ACM Press, 1989, pp. 295{319.[42] Olle, T., Sol, H., and A.A., V.-S., Eds. Information Systems Design Methodologies: AComparative Review. North Holland, 1982.[43] Pernici, B. Objects with Roles. In Object-Oriented Development, D. Tsichritzis, Ed. CentreUniversitaire d'Informatique, Universite de Geneve, Switzerland, 1989, pp. 75{100.[44] Profrock, A.-K., Ader, M., Muller, G., and Tsichritzis, D. ITHACA: An Overview.Tech. rep., Nixdorf Software Engineering GmbH, Berlin, 1989.[45] Reiter, R. Towards a logical reconstruction of relational database theory. In On ConceptualModelling: Perspectives from Arti�cial Intelligence, Databases and Programming Languages,M. Brodie, J. Mylopoulos, and J. Schmidt, Eds. Springer Verlag, 1984, pp. 191{233.[46] Rich, C. Knowledge Representation Languages and Predicate Calculus: How to Have YourCake and Eat it Too. In Proceedings of AAAI-82 (Pittsburgh, 1982).[47] Rich, C., and Waters, R., Eds. Arti�cial Intelligence and Software Engineering. MorganKaufmann, 1986.[48] Rose, T., and Jarke, M. A Decision-Based Con�guration Process Model. In Proceedingsof 12th International Conference on Software Engineering (Nice, France, 1990).[49] Ross, D., and Schoman, K. Structured Analysis for Requirements De�nition. IEEETransactions on Software Engineering (1977), 49{60.[50] Snodgrass, R. The Temporal Query Language TQuel. ACM Transcactions on DatabaseSystems 12, 2 (June 1987), 247{298.[51] Srinkath, R., and Jarke, M. The design of knowledge-based systems for managing ill-structured software projects. Decision Support Systems 5, 4 (1989), 425{447.[52] Stanley, M. CML: A knowledge representation language with application to requirementsmodelling. Master's thesis, Dept. of Computer Science, University of Toronto, 1986.[53] Topaloglou, T., and Koubarakis, M. Implementation of Telos: Problems and Solutions.Tech. Rep. KRR-TR-89-8, Dept. of Computer Science, University of Toronto, 1989.[54] Toulmin, S. The Uses of Argument. Cambridge University Press, 1958.47

[55] Vilain, M., Kautz, H., and van Beek, P. Constraint Propagation Algorithms for Tem-poral Reasoning: a Revised Report. In Readings in Qualitative Reasoning about PhysicalSystems, D. Weld and J. de Kleer, Eds. Morgan Kaufmann, 1989, pp. 373{381.[56] Winograd, T., and Flores, F. Understanding Computers and Cognition. Ablex Corpo-ration, 1987.

48

