
Specifying Representations of Machine InstructionsNORMAN RAMSEYUniversity of VirginiaandMARY F. FERN�ANDEZAT&T LabsWe present SLED, a Speci�cation Language for Encoding and Decoding, which describes ab-stract, binary, and assembly-language representations of machine instructions. Guided by a SLEDspeci�cation, the New Jersey Machine-Code Toolkit generates bit-manipulating code for use inapplications that process machine code. Programmers can write such applications at an assembly-language level of abstraction, and the toolkit enables the applications to recognize and emit thebinary representations used by the hardware. SLED is suitable for describing both CISC and RISCmachines; we have speci�ed representations of MIPS R3000, SPARC, Alpha, and Intel Pentiuminstructions, and toolkit users have written speci�cations for the Power PC and Motorola 68000.The article includes representative excerpts from our SPARC and Pentium speci�cations. SLEDuses four elements; �elds and tokens describe parts of instructions; patterns describe binary repre-sentations of instructionsor groups of instructions; and constructorsmap between the abstract andbinary levels. By combining the elements in di�erent ways, SLED supports machine-independentimplementations of machine-level concepts like conditional assembly, span-dependent instructions,relocatable addresses, object code, sections, and relocation. SLED speci�cations can be checkedautomatically for consistency with existing assemblers. The implementation of the toolkit islargely determined by our representations of patterns and constructors. We use a normal formthat facilitates construction of encoders and decoders. The article describes the normal form andits use. The toolkit has been used to help build several applications. We have built a retargetabledebugger and a retargetable, optimizing linker. Colleagues have built a dynamic code generator,a decompiler, and an execution-time analyzer. The toolkit generates e�cient code; for example,the linker emits binary up to 15% faster than it emits assembly language, making it 1.7{2 timesfaster to produce an a.out directly than by using the assembler.Categories and Subject Descriptors: C.0 [Computer Systems Organization]: General|sys-tems speci�cation methodology; D.3.2 [Programming Languages]: Language Classi�cations|specialized application languages; D.3.4 [Programming Languages]: Processors|translatorwriting systems and compiler generatorsGeneral Terms: LanguagesAdditional Key Words and Phrases: Compiler generation, decoding, encoding, machine code,machine description, object code, relocationThis work has been funded by a Fannie and John Hertz Fellowship, an AT&T Ph.D. Fellowship,an IBM Graduate Research Fellowship, and by Bellcore.Authors' addresses: N. Ramsey, Department of Computer Science, University of Virginia, Char-lottesville, VA 22903; email nr@cs.virginia.edu; M. F. Fern�andez, AT&T Labs | Research, 180Park Avenue, Florham Park, NJ 07932-0971; email m�@research.att.com.Permission to make digital/hard copy of all or part of this material without fee is grantedprovided that the copies are not made or distributed for pro�t or commercial advantage, theACM copyright/server notice, the title of the publication, and its date appear, and notice is giventhat copying is by permission of the Association for Computing Machinery, Inc. (ACM). To copyotherwise, to republish, to post on servers, or to redistribute to lists requires prior speci�cpermission and/or a fee.c
 1997 ACM digits-dashes-and-slashes $priceACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997, Pages 492-524.

Specifying Representations of Machine Instructions � 4931. INTRODUCTIONThis article describes SLED|Speci�cation Language for Encoding and Decoding|and its implementation in The New Jersey Machine-Code Toolkit. SLED spec�ca-tions de�ne mappings between symbolic, assembly-language, and binary represen-tations of machine instructions. We have speci�ed representations of MIPS R3000,SPARC, Alpha, and Intel Pentium instructions; toolkit users have written speci�-cations for the Power PC and Motorola 68000. The speci�cations are simple, whichmakes it practical to use the toolkit to write applications for multiple architectures.The toolkit uses SLED speci�cations to help programmers write applications thatprocess machine code|assemblers, disassemblers, code generators, tracers, pro�l-ers, and debuggers. The toolkit lets programmers encode and decode machineinstructions symbolically. Guided by a SLED speci�cation, it transforms symbolicmanipulations into bit manipulations.Traditional applications that process machine code include compilers, assemblers,linkers, and debuggers. Newer applications include pro�ling and tracing tools [Balland Larus 1992; Cmelik and Keppel 1994], testing tools [Hastings and Joyce 1992],protection enforcers [Wahbe et al. 1993], run-time code generators [George et al.1994], and link-time optimizers [Fern�andez 1995; Srivastava and Wall 1993]. Thereare even some frameworks for creating applications that manipulate executable�les, although none that work on more than one machine [Johnson 1990; Larusand Schnarr 1995; Srivastava and Eustace 1994]. Graham et al. [1995] describeauxiliary information needed to facilitate machine-code manipulations; they reportsupport for the MIPS and SPARC architectures.A few applications avoid machine code by using assembly language, e.g., manyUnix compilers emit assembly language, not object code. It is not always practical,however, to use an assembler, e.g., when generating code at run time or addinginstrumentation after code generation. Some machine-code applications can beduplicated by source-code transformation; such applications usually work on manymachines, but they cannot be used as often as applications that work on objectcode, because source code is not always available. Our toolkit makes it easier tobuild applications and frameworks that work with object code and therefore canbe used on any executable �le.Applications that cannot use an assembler currently implement encoding anddecoding by hand. Di�erent ad hoc techniques are used for di�erent architectures.The task is not intellectually demanding, but it is error prone; bit-manipulatingcode usually harbors lingering bugs. Our toolkit automates encoding and decoding,providing a single, reliable technique that can be used on a variety of architectures.It is intended less to support traditional compilation than to support nontraditionaloperations like rewriting executable �les or run-time code generation.Applications use the toolkit for encoding, decoding, or both. For example, as-semblers encode; disassemblers decode; and some pro�lers do both. All applicationswork with streams of instructions. Decoding applications use matching statementsto read instructions from a stream and identify them. A matching statement islike a case statement, except its alternatives are labeled with patterns that matchinstructions or sequences of instructions. Encoding applications call C proceduresgenerated by the toolkit. These procedures encode instructions and emit themACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

494 � Ramsey and Fern�andezinto a stream, e.g., the SPARC call fnegs(r2, r7) emits the word 0x8fa000a2.Streams can take many forms; for example, a debugger can treat the text segmentof a target process as an instruction stream. The toolkit's library provides a repre-sentation of streams that should be convenient for many encoding applications.The toolkit has four parts. The translator takes a programwith embedded match-ing statements and translates these statements into ordinary code. It handles pro-grams written in C or Modula-3 [Nelson 1991]. The generator generates encodingand relocation procedures in C. These procedures call code in the library. Thelibrary implements both instruction streams and relocatable addresses, which referto locations within the streams. The checker checks speci�cations for consistencywith existing assemblers. The translator, generator, and checker need an instruc-tion speci�cation; encoding procedures and checking code are generated from thespeci�cation, and matching statements can match the instructions or parts thereofde�ned in the speci�cation. The library is machine independent.The SLED speci�cation language is simple, and it is designed so that speci�ca-tions can resemble instruction descriptions found in architecture manuals. SLEDuses a single, bidirectional construct to describe both encoding and decoding, sotheir consistency is guaranteed. The toolkit checks speci�cations for unused con-structs, underspeci�ed instructions, and internal inconsistencies. An instruction en-coding can be speci�ed with modest e�ort; our Alpha, MIPS, SPARC, and Pentiumspeci�cations are 118, 127, 193, and 460 lines. The SLED speci�cation language isthe primary subject of this article.Simplicity in speci�cation is more than a personal preference. Simple speci�-cations are more likely to be correct, and correct speci�cations are more valuableif they can be used in a variety of applications. To make the toolkit simple andgeneral, we avoid describing the semantics of instructions, because too often se-mantic information is both hard to get right and of use only to a single application.Instead, SLED focuses describing an abstract representation of instructions and onautomating the translation to and from that abstract representation.We have personal experience with two applications that use the toolkit. mld, aretargetable, optimizing linker [Fern�andez 1995], uses the toolkit to encode instruc-tions and emit executable �les. ldb [Ramsey 1992; Ramsey and Hanson 1992], aretargetable debugger, uses the toolkit to decode instructions and to implementbreakpoints. Others have used the toolkit to help develop a run-time code gen-erator, a decompiler, an execution-time analyzer [Braun 1996], and an optimizingcompiler for object-oriented languages [Dean et al. 1996].Using the toolkit reduces retargeting e�ort and makes code more reliable. Forexample, ldb's disassembler for the MIPS requires less than 100 lines of code, andmld has replaced 450 lines of hand-written MIPS code with generated encoding andrelocation procedures. By hiding shift and mask operations, by replacing case state-ments with matching statements, and by checking speci�cations for consistency,the toolkit reduces the possibility of error. The toolkit can speed up applicationsthat would otherwise have to generate assembly language instead of binary code.For example, mld creates executable �les 1.7 to 2 times faster when using toolkit-generated encoding procedures than when using assembly language and calling anative assembler. To realize such speedups without the toolkit, mld would needhand-written encoding and relocation procedures for each target architecture.ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

Specifying Representations of Machine Instructions � 495The primary contribution of our work is the SLED speci�cation language, whichis expressive enough to write clear, concise, and reusable speci�cations of instructionrepresentations for a variety of widely used architectures. Our processor for thesespeci�cations derives code for both encoding and decoding problems, eliminating asigni�cant source of retargeting e�ort. Our model of machine instructions makesseveral machine-level concepts general enough to be speci�ed or implemented ina machine-independent way. These concepts include conditional assembly, span-dependent instructions, relocatable addresses, object code, sections, and relocation.Most of this article is devoted to SLED. We begin with an extended example:a speci�cation for a representative subset of the SPARC instruction set. Thisexample shows how a typical speci�cation is structured and how SLED is usedidiomatically. We then cover the details of syntax, semantics, and implementation,followed by smaller examples from our Pentium speci�cation, which show CISCaddressing modes and variable-sized operands. We explain how applications usethe code generated by the toolkit, and we conclude with a discussion of relatedwork and an evaluation of the toolkit and its speci�cation language.2. SPECIFYING INSTRUCTION REPRESENTATIONSTo illustrate SLED, we specify a subset of the SPARC instruction set. The illustra-tion is drawn from our complete, annotated speci�cation of the SPARC [Ramseyand Fern�andez 1994a]. It includes the SPARC's integer instructions, but it omits
oating-point instructions, several types of load and store, and many syntheticinstructions. Before beginning the illustration, we explain the elements of the spec-i�cation language and our strategy for using the language to describe a machine.Because machine instructions do not always �t in a machine word, the toolkitworks with streams of instructions, not individual instructions. An instructionstream is like a byte stream, except that the units may be \tokens" of any size,not just 8-bit bytes. An instruction is a sequence of one or more tokens, so \tokenstream" might be a more precise term. Tokens may come in any number of classes,which help distinguish di�erent parts of complex instructions. For example, aPentium instruction might include several 8-bit pre�xes, an 8-bit opcode, 8-bitformat bytes, and a 16-bit immediate operand. Most likely, the pre�xes and opcodewould be tokens from the same class, but the format bytes and operand would befrom di�erent classes.Each token is partitioned into �elds; a �eld is a contiguous range of bits withina token. Fields contain opcodes, operands, modes, or other information. Tokensof a single class may be partitioned in more than one way. Patterns constrain thevalues of �elds; they may constrain �elds in a single token or in a sequence of tokens.Patterns describe binary representations of instructions, groups of instructions, orparts of instructions. For example, simple patterns can be used to specify opcodes,and more complex patterns can be used to specify addressing modes or to specifya group of three-operand arithmetic instructions.Constructors connect abstract, binary, and assembly-language representations ofinstructions. At an abstract level, an instruction is a function (the constructor)applied to a list of operands. An operand may be as simple as a single �eld, oras complex as a set of �elds taken from several tokens in sequence. Applying theconstructor produces a pattern that gives the instruction's binary representation,ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

496 � Ramsey and Fern�andezwhich is typically a sequence of tokens. Each constructor is also associated with afunction that produces a string, which is the instruction's assembly-language repre-sentation. Speci�cation writers use constructors to de�ne an abstract equivalent ofan assembly language. Application programmers use constructors to emit instruc-tions, by calling procedures derived from constructor speci�cations, and to decodeinstructions, by using constructors in matching statements to match instructionsand extract their operands.Machine designers might expect binary representations to be untyped. We havefound it useful to associate type information with binary representations or withfragments of binary representations, for the same reason that programming lan-guages do so|to help detect and prevent errors. The classes of tokens are liketypes. We also require that each constructor have a type. We provide a pre-de�ned, anonymous type for constructors that produce whole instructions, andspeci�cation writers may introduce more constructor types. We typically use suchtypes to describe e�ective addresses or structured operands. When used in thisway, the constructor type corresponds to the \operand class" of Cattell [1980], andeach constructor of the type corresponds to one \access mode." The toolkit mapsconstructor types onto types in the code it generates, which helps �nd errors inapplication code as well as in speci�cations.To describe a machine, we begin by specifying tokens and �elds, which are thebasic components of instructions. Next come patterns that specify opcodes andgroups of related opcodes, then constructors that specify structured operands, likee�ective addresses. Having speci�ed opcodes and operands, we de�ne constructorsthat specify instructions. When possible, we specify many constructors conciselyby using \opcode patterns," which group related instructions.Many architecture manuals use the term \synthetic" to describe instructionsthat are supported by an assembler, but not directly by the hardware. The assem-bler synthesizes such instructions by using special cases or combinations of otherinstructions. SLED speci�cations can include synthetic instructions, for which bi-nary representations are given by applying previously de�ned constructors. Wetypically specify synthetic instructions in a separate �le, since they are useful onlyin some applications.The rest of this section gives excerpts from our speci�cation of the SPARC.We have engineered SLED's syntax to foster resemblances between speci�cationsand architecture manuals, and we refer to relevant pages of the SPARC manual[SPARC International 1992] by page number. When concatenated, the excerptsform a complete SLED speci�cation for a subset of the SPARC architecture. Thespeci�cation is included in the toolkit's source distribution.We use bit numbers to specify the positions of �elds within tokens. Since di�erentmanuals use di�erent conventions, the toolkit supports both little-endian and big-endian bit numberings. The SPARC manual uses the little-endian numbering.bit 0 is least significantArchitecture manuals usually have informal �eld speci�cations. For example, the�elds for some SPARC load instructions are [SPARC International 1992, p. 90]:op rd op3 rs1 i simm1331 30 29 25 24 19 18 14 13 12 0ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

Specifying Representations of Machine Instructions � 497fields declarations give the locations and sizes of �elds. The declaration belowde�nes the �elds used in all SPARC instructions. The �rst line de�nes the �elds inthe picture above. The remaining lines de�ne all the other �elds used in the SPARCmanual, even those used only in
oating-point instructions, which are otherwiseomitted from this article.fields of itoken (32)op 30:31 rd 25:29 op3 19:24 rs1 14:18 i 13:13 simm13 0:12disp30 0:29 op2 22:24 imm22 0:21 a 29:29 cond 25:28 disp22 0:21asi 5:12 rs2 0:4 opf 5:13 fd 25:29 cd 25:29 fs1 14:18 fs2 0:4We often want to give auxiliary information about some �elds, which we do withfieldinfo directives. This directive gives mnemonic names to the two possiblevalues of the a �eld.fieldinfo a is [names ["" ",a"]]a is the \annul" bit, and the toolkit uses its names below to help derive the namesof branch constructors.Architecture manuals often de�ne opcodes in tables. The SPARC manual uses ahierarchy of tables; we show speci�cations for several. Tables F-1 and F-2 [SPARCInternational 1992, p. 227] are speci�ed bypatterns[TABLE_F2 call TABLE_F3 TABLE_F4] is op = {0 to 3}[unimp _ Bicc _ sethi _ fbfcc cbccc] is TABLE_F2 & op2 = {0 to 7}The expressions in braces generate lists of patterns, and each pattern name in thebracketed list is bound to the corresponding pattern on the right. For example,call is bound to the pattern op = 1, and Bicc is bound to op = 0 & op2 = 2.Bindings to the wildcard \ " are ignored. The second line of the excerpt correspondsto Table F-1, but the identi�er TABLE F1 does not appear, because there are noreferences to Table F-1 from other tables.Table F-3 [SPARC International 1992, p. 228] de�nes opcodes for integer arith-metic; it is speci�ed bypatterns[add addcc taddcc wrxxxand andcc tsubcc wrpsror orcc taddcctv wrwimxor xorcc tsubcctv wrtbrsub subcc mulscc fpop1andn andncc sll fpop2orn orncc srl cpop1xnor xnorcc sra cpop2addx addxcc rdxxx jmpl_ _ rdpsr rettumul umulcc rdwim ticcsmul smulcc rdtbr flushsubx subxcc _ save_ _ _ restoreudiv udivcc _ _sdiv sdivcc _ _]isTABLE_F3 & op3 = { 0 to 63 columns 4 }ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

498 � Ramsey and Fern�andezThe toolkit can handle opcode tables in row-major or column-major form. The ex-pression {0 to 63 columns 4} generates the integers from 0 to 63 in the sequence(0; 16; 32; 48;1;17;33; : : : ; 63), so that, for example, addcc is bound to the patternop = 2 & op3 = 16, e�ectively using a column-major numbering.Table F-4 [SPARC International 1992, p. 229] de�nes the load and store opcodes;it is speci�ed by[ld lda ldf ldcldub lduba ldfsr ldcsrlduh lduha _ _ldd ldda lddf lddcst sta stf stcstb stba stfsr stcsrsth stha stdfq stdcqstd stda stdf stdc_ _ _ _ldsb ldsba _ _ldsh ldsha _ __ _ _ __ _ _ _ldstub ldstuba _ __ _ _ _swap swapa _ _]isTABLE_F4 & op3 = {0 to 63 columns 4}Most operands to instructions are �elds or integers, but some operands, like ef-fective addresses, have more structure. We use typed constructors to de�ne suchoperands. The address operands [SPARC International 1992, p. 84] have four pos-sible formats:constructorsdispA rs1 + simm13! : Address is i = 1 & rs1 & simm13absoluteA simm13! : Address is i = 1 & rs1 = 0 & simm13indexA rs1 + rs2 : Address is i = 0 & rs1 & rs2indirectA rs1 : Address is i = 0 & rs2 = 0 & rs1Each line speci�es a constructor by giving its opcode, operands, type, and pattern.Usually, as here, the opcode is simply the constructor's name. The plus signs amongthe operands indicate the preferred rendering of these constructors in assemblylanguage. The operand speci�cation simm13! indicates a signed integer operanddestined for �eld simm13. Each of these constructors has type Address, which ise�ectively a disjoint union type containing an element for each constructor. Weuse the Address type below to specify operands of constructors for load and storeinstructions. When a �eld name is used as a pattern, as is rs1 on the right-handside of the dispA constructor, it is an abbreviation for the more verbose patternrs1 = rs1, which forces the �eld rs1 to be equal to the operand named rs1. Thisabbreviation appears frequently because operands are often placed directly in �elds.We also use typed constructors to specify \register or immediate" operands:constructorsrmode rs2 : reg_or_imm is i = 0 & rs2imode simm13! : reg_or_imm is i = 1 & simm13ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

Specifying Representations of Machine Instructions � 499Architecture manuals often group de�nitions of related instructions, like the load-integer instructions in the SPARC manual [SPARC International 1992, p. 90]. Weuse disjunctions of patterns to represent such groupings, which can make speci�ca-tions more concise. The speci�cationpatterns loadg is ldsb | ldsh | ldub | lduh | ld | ldstub | swapconstructorsloadg [Address], rdde�nes a group of untyped constructors, one for each general-purpose load instruc-tion. The speci�cation demonstrates two features of SLED: opcode expansion andimplicit patterns. When the pattern loadg is given as the opcode in a constructorspeci�cation, it is expanded into individual disjuncts, and the construct is equiva-lent to repeated speci�cations of ldsb, ldsh, etc. Omitting the right-hand side tellsthe toolkit to compute a pattern by conjoining the opcode and all the operands.This idiom is ubiquitous in speci�cations of RISC machines. Finally, the squarebrackets and comma indicate assembly-language syntax.These examples show how di�erent elements of the speci�cation interact. Theconstructor type Address is an abstraction representing \addressing mode." Thefour constructors of that type specify the di�erent operands of addressing modes aswell as their representations. The type Address is used in the loadg speci�cation,so the load constructors take a �rst operand that represents an addressing mode.That operand must be the result of applying one of the four constructors of typeAddress de�ned above. For example, to load register %l0 from a location on thestack, a compiler might make the call loadg(dispA(r fp, -12), r l0). Thisexample assumes that r fp and r l0 are suitably de�ned constants.We use the same techniques to specify the logical, shift, and arithmetic instruc-tions, which take two register operands and one operand of type reg or imm. Thelast line speci�es 38 constructors at once:patternslogical is and | andcc | andn | andncc| or | orcc | orn | orncc| xor | xorcc | xnor | xnorccshift is sll | srl | sraarith is add | addcc | addx | addxcc | taddcc| sub | subcc | subx | subxcc | tsubcc| umul | smul | umulcc | smulcc | mulscc| udiv | sdiv | udivcc | sdivcc| save | restore | taddcctv | tsubcctvalu is arith | logical | shiftconstructorsalu rs1, reg_or_imm, rdUsing reg or imm as an operand means that the second operand to any of theseconstructors must have been produced by applying either the imode constructor orthe rmode constructor de�ned above.ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

500 � Ramsey and Fern�andezThe �rst column of Table F-7 [SPARC International 1992, p. 231] de�nes branchopcodes:patternsbranch is any of[bn be ble bl bleu bcs bneg bvs ba bne bg bge bgu bgeu bpos bvc],which is Bicc & cond = {0 to 15}This compound binding is a notational abbreviation that relieves us from writingthe names in square brackets (\bn be. . . ") twice. It both de�nes these names andmakes branch stand for the pattern matching any of them.To specify the branch instructions, we need two more features of SLED: relocat-able operands and sets of equations. Designating an operand as relocatable meansits value may be unknown at encoding time:relocatable addrIf an application tries to encode an instruction with such an operand, and if theoperand's value is unknown, the encoding procedure emits a placeholder for theinstruction, together with a relocation closure that can be used to overwrite theplaceholder when the missing value becomes known [Ramsey 1996a]. The mostcommon example of such an instruction is a branch to an unknown label.For convenience, we choose an invalid instruction as a placeholder. Because theexecution of an invalid instruction causes a fault, it is easy to detect applicationbugs that cause placeholders to be executed:placeholder for itoken is unimp & imm22 = 0xbadAlthough the target address is an operand to a branch, it is not found in any �eldof the instruction; instead, it is computed by adding a displacement to the programcounter. The equation in curly braces shows the relationship, which is taken fromSPARC International [1992, pp. 119{120]:constructorsbranch^a addr { addr = L + 4 * disp22! } is L: branch & disp22 & aThe label L refers to the location of the instruction, and the exclamation point isa sign-extension operator. The toolkit solves the equation so that the encodingprocedure can compute disp22 in terms of addr and the program counter. Thetoolkit expands the 16 alternatives for branch and the two alternatives for a, sothis line speci�es 32 constructors.We specify synthetic instructions by applying the constructors that correspondto the instructions from which they are synthesized. Here are de�nitions of bset(bit set) and dec (decrement) [SPARC International 1992, p. 86]:constructorsbset reg_or_imm, rd is or(rd, reg_or_imm, rd)dec val!, rd is sub(rd, imode(val), rd)The patterns on the right-hand sides are notated as constructor applications.Some synthetic instructions may stand for more than one instruction sequence,depending on the values of operands. We specify such instructions by puttingalternative branches on the right-hand side of a constructor speci�cation. Eachbranch may have its own set of equations. The toolkit encodes the �rst possibleACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

Specifying Representations of Machine Instructions � 501branch whose equations have a solution and whose operand values �t in the �eldsto which they are bound. For example, the synthetic instruction set [SPARCInternational 1992, p. 84] expands to a single instruction when possible, but requirestwo in the general case:constructorssethi val!, rd is sethi & rd & imm22 = val@[10:31]set val!, rdwhen { val@[0:9] = 0 } is sethi(val, rd)otherwise is or(0, imode(val), rd)otherwise is sethi(val, rd); or(rd, imode(val@[0:9]), rd)The bit-extraction operator, @[low:high], extracts the bits in the positions fromlow to high. The �rst branch, sethi, can be encoded whenever the least-signi�cant10 bits of val are zero. The second branch works when imode(val) can be encoded,i.e., when val �ts in 13 signed bits. The �nal branch can always be encoded.3. SLED SYNTAX AND SEMANTICSNow that we have illustrated SLED with an extended example, we present its syntaxand semantics in detail. We also describe the toolkit's internal representation inenough detail so that our techniques could be used in other systems.SLED solves not only the intellectual problem of describing instruction repre-sentations, but also several practical problems in the generation of encoding anddecoding applications. Throughout this section, we associate language constructswith problems that they solve, and we identify constructs that are motivated bythe special needs of encoding, decoding, or other applications.To describe syntax, we use an EBNF grammar with standard metasymbols for�sequences	, �optional constructs�, and �alternative �� choices�.We use large metasymbols to help distinguish them from literals. Terminal symbolsgiven literally appear in typewriter font. Other terminal symbols and all nonter-minals appear in italic font. Excerpts from the grammar always begin with thename of a nonterminal followed by the) (\produces") symbol.Speci�cation is the grammatical start symbol for SLED speci�cations. Withina speci�cation, de�nitions must appear before uses, but otherwise the parts of aspeci�cation may appear in any order; so a speci�cation is a list of spec:speci�cation) �spec	3.1 Tokens and �eldsThe toolkit supports both little-endian and big-endian bit numberings.spec) bit 0 is �most �� least� significantThe default numbering makes bit 0 the least-signi�cant bit.fields declarations specify how to divide tokens into �elds. One fields dec-laration is given for each class of tokens; only �elds named in the declaration canbe extracted from tokens of that class. Each �eld appears in tokens of exactly oneclass. The fields declaration binds �eld names to bit ranges and speci�es thenumber of bits in tokens of its class. The toolkit generates the shifts and masksACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

502 � Ramsey and Fern�andezneeded to manipulate the value of a �eld in a token. The fields syntax is asfollows:spec) fields of class-name (width) ��eld-name low-bit :high-bit	Field values are always unsigned; storing signed values in �elds requires the explicitsign-extension operator, a post�x exclamation point. For example, this operatoris applied to the displacement �eld disp22 in the de�nition of the SPARC branchconstructors. We make all �eld values unsigned because implicit sign extension canbe confusing|people reading speci�cations should not have to remember which�elds are signed and which are unsigned. Explicit sign extension also supports theuse of the same �eld in di�erent contexts with or without sign extension.Fields solve the problem of specifying binary representations at the lowest level.They o�er several advantages over bit strings, a more usual alternative. To makea token from bit strings, the strings must be concatenated in the right order; theorder of �elds is implicit in their declarations. One cannot assign the wrong numberof bits to a �eld, and the toolkit detects cases in which �elds overlap or leave gaps.When instructions vary in size, more than one class of tokens may be needed.On the Intel Pentium, instructions are composed of 8-, 16- and 32-bit tokens, whichmust be given di�erent classes because they are of di�erent sizes. It can even beuseful to put tokens of the same size in di�erent classes. For example, the Pentiumuses a \ModR/M" byte to specify addressing modes and an \SIB" byte to identifyindex registers [Intel Corporation 1993, p. 26-3]:ModR/M mod reg/opcode r/m7 6 5 3 2 0SIB ss index base7 6 5 3 2 0The fields declarations for these bytes arefields of ModRM (8) mod 6:7 reg_opcode 3:5 r_m 0:2fields of SIB (8) ss 6:7 index 3:5 base 0:2Dividing tokens into classes helps detect errors in speci�cations. For example,putting the ModR/M and SIB tokens in di�erent classes ensures that a user cannotmistakenly match both a mod �eld and an index �eld in the same byte.One could also divide SPARC tokens into classes, e.g., by using a di�erent classfor each instruction format. One would have to de�ne several replicas of �elds that,like op, are common to multiple formats, because each �eld belongs to exactly oneclass. We judge that the extra e�ort would not pay o�; the toolkit checks that the�elds used in instructions partition the instructions' tokens, and this check seemsadequate to detect errors on machines like the SPARC.SLED speci�cations can include information about the names of �eld values andabout the way �elds are expected to be used in an application. The syntax used isas follows:spec) fieldinfo ��eld-speci�er is [��eld-item]	�eld-speci�er) �eld-name j [��eld-name]ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

Specifying Representations of Machine Instructions � 503�eld-item) sparse [binding �, binding]j names [�Ident �� String]j checked j unchecked j guaranteedbinding) �Ident �� String� = integersparse and names specify names of �elds. names is used when all values havenames; sparse is used otherwise. Naming �eld values solves no single problem; thenames are used in a variety of ways. The most unusual use may be SLED's use of�eld names in constructor speci�cations; when �elds are used to specify constructoropcodes, the names of the values become part of the names of constructors. Forexample, our SPARC speci�cation uses the names "" and ",a" for the values 0 and 1of the a �eld, and these names become part of the names of branch constructors.The toolkit also uses the names when generating encoding procedures that emitassembly language and when generating disassemblers. Finally, the toolkit cangenerate tables of �eld names so applications can print names of �eld values.The other information about �elds helps solve the problem of generating e�cientencoders. The toolkit normally checks �eld values at encoding time to be sure theycan be represented in the number of bits available. These safety checks are neededonly when �eld values are supplied by an application; no safety checks are gener-ated when the toolkit can infer that values are representable. The checks can be�ne-tuned using the checked, unchecked, and guaranteed attributes of �elds. Ap-plication writers unwilling to pay for a compare and branch can designate �elds asunchecked, in which case encoding procedures do not check their values but simplymask out high bits so tokens are not corrupted by bogus values. Those unwillingto pay even the cost of masking can designate �elds as guaranteed, in which casetheir values are used without checking or masking; the application guarantees thatthe value �ts. For example, code generators typically guarantee �elds denoting reg-isters, since the register allocator can easily ensure that register numbers fall in theproper range. Such a guarantee could be added to our SPARC example by writingfieldinfo [rs1 rs2 rd fs1 fs2 fd cd] is [guaranteed]Fields are checked by default.3.2 PatternsPatterns constrain both the division of streams into tokens and the values ofthe �elds in those tokens. When instructions are decoded, patterns in matchingstatements identify interesting inputs; for example, a pattern can be de�ned thatmatches any branch instruction. When instructions are encoded, patterns in themachine speci�cation specify what tokens are written into the stream.Patterns are composed from constraints on �elds. A constraint �xes the values a�eld may have. Constraints come in two forms: range constraints and �eld bindings.Range constraints are used when the values permitted in a �eld are known statically.Range constraints are represented internally in the form lo � f < hi , forcing thevalue of the �eld to fall in a range. The external syntax is more restrictive; it requiresthat the �eld name be to the left of a single relational operator. The general formcan be obtained by conjoining two constraints on the same �eld. The restrictedACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

504 � Ramsey and Fern�andezsyntax presents no burden in practice, because almost all range constraints use arange that contains one value, and we write them with an equals sign, e.g., op = 1.Field bindings are used when the value of a �eld is not known until encodingtime. A �eld binding forces a �eld to be equal to a value computed dynamically, andthe dynamic computation is represented as an expression containing free variables.Field bindings are also written with equals signs.Patterns are composed by conjunction (&), concatenation (;), and disjunction (|).They can also be computed by applying constructors. The syntax for patterns isas follows:pattern) name name of pattern, �eld, or constructor typej �eld-name rel-op expr Constrains or binds �eldj opcode (arguments) Constructor applicationj pattern pat-op pattern Conjoins, concatenates, disjoins patternsj some class-name Matches a single token of the class namedj label-name : pattern Labels patternj pattern ... Less restrictive conjunctionj ... pattern Less restrictive conjunctionPatterns and their composition are most easily understood by looking at the rulesfor matching patterns. Patterns are tested for matching against sequences of tokens;the special pattern epsilon matches the empty sequence. For each constraint, thetoolkit checks the �eld named therein to see if it falls in the range speci�ed in arange constraint or is equal to the value bound in a �eld binding.Patterns can be combined by conjunction, concatenation, or disjunction. Whenp and q are patterns, a conjunction \p & q" matches if both p and q match. Wetypically use conjunction to constrain multiple �elds within a single token. Aconcatenation \p; q" matches if p matches an initial sequence of tokens and if qmatches the following tokens. We typically use concatenation to build up patternsmatching sequences of more than one token, for example, to match e�ective ad-dresses on the Pentium. A disjunction \p | q" matches if either p or q matches.We typically use disjunction to group patterns for instructions that are related,e.g., to group the SPARC integer-arithmetic instructions.The wildcard constraint \some class" matches any token of class class; for exam-ple, on the SPARC, \some itoken" matches any 32-bit token.The labeled pattern L: p matches whenever p matches, and it binds the identi-�er L to the location in the instruction stream where p matches.The ellipsis has no e�ect on matching, but it relaxes restrictions on conjunction,as described below.Patterns solve the intellectual problem of describing binary representations. Eachcomposition operator addresses a di�erent need. Conjunction speci�es how val-ues in �elds are combined to form tokens. Concatenation describes representa-tions containing multiple tokens in sequence. Disjunction describes alternatives.Concatenation and disjunction operators are found in regular expressions. Un-like regular expressions, patterns do not have a Kleene closure (repetition) op-erator. This omission, together with the ability to examine �elds in any order,ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

Specifying Representations of Machine Instructions � 505Component Contains. . . combined with Matches when. . .Pattern (disjunction) disjuncts | any disjunct matchesDisjunct (sequence) sequents ; each sequent matches a tokenSequent (conjunction) constraints & token satis�es every constraintRange constraint lo � f < hi �eld falls within rangeField binding f = expression alwaysFig. 1. Some components of the normal form of patterns.distinguishes the problem of matching patterns from the problem of matchingregular expressions.Representing Patterns. This section presents a detailed description of the toolkit'srepresentation of patterns. Studying the details of the representation is the bestway to understand the meanings of patterns and the pattern operators and to un-derstand the utility of patterns in generating encoders and decoders. The detailscan be confusing, because we use similar but not identical list structures at severallevels, and because the structures play di�erent roles in di�erent contexts. Sugges-tive terminology helps distinguish structures and roles at each level.Patterns are represented in a disjunctive normal form. The normal form has athree-level structure; the levels correspond to the three ways to combine patterns.Figure 1 shows the components of the normal form, the terminology used to referto them, and the rules for matching them. We use several synonyms for eachcomponent, changing synonyms as we shift our focus from the component's role onits own to the component's relationship with the component above.Every pattern is represented as a disjunction, that is, a list of alternatives. Anempty list is permitted, even though the empty disjunction never matches.1 Eachdisjunct, or alternative, is a sequence. Each item in a sequence is a conjunctionof constraints. A pattern matches a sequence of tokens when one of its disjuncts(alternatives) matches. That disjunct matches a sequence of tokens when everysequent (conjunction) matches the corresponding token. The empty sequence, de-noted by epsilon, always matches, consuming no tokens. Finally, a conjunctionmatches a token if the token satis�es all of the constraints in the conjunction. Eachconjunction applies to a particular class of tokens, and all the constraints in theconjunction must constrain �elds from that class. The empty conjunction, which isdenoted by some class, is permitted; it matches any token of the associated class.We de�ne the shape of a sequence to be the list of token classes associated withthe conjunctions of that sequence. Encoding and decoding choose a particulardisjunct (sequence) to emit or match, and the shape of the sequence determineswhich tokens are emitted or matched when that sequence is encoded or decoded.We can de�ne simple constraints and the pattern operators in terms of the normalform of patterns. It is not hard to show that these de�nitions, combined with therules for matching in normal form, imply the matching properties described above.The normal form of a simple constraint is a pattern with a single disjunct, whichis a sequence of length 1, in which the single sequent contains the constraint. (Awildcard constraint has a form in which the sequent contains no constraints, i.e.,1One can obtain an empty disjunction by conjoining mutually exclusive constraints.ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

506 � Ramsey and Fern�andezit is the empty conjunction.) The normal forms of p | q and p; q are straightfor-ward. We form p | q by concatenating the disjuncts of p and q to form one largedisjunction. We form p; q by distributing concatenation over disjunction; and weconcatenate two sequences by concatenating their sequents.We also form p & q by distributing over disjunction, but the rules for conjoiningtwo sequences are more complicated. The basic rule is that the sequences to beconjoined must have the same shape, i.e., they must be the same length, and theclasses associated with corresponding sequents must be the same. For example,all of the conjunctions in the SPARC example operate on sequences of length 1,and each sequent comes from the itoken class. The Pentium is more complicated.For example, the pattern mod = 0 & r m = 5 is permitted, because both conjunctsconstrain �elds from the ModRM class. The pattern mod = 0 & index = 2 is notpermitted, because mod is from the ModRM class, but index is from the SIB class.We conjoin two sequences of identical shape by conjoining their individual sequents,elementwise. Conjoining two sequents simply means conjoining their constraints; ifboth sequents constrain the same �eld, their conjunction constrains the �eld to liein the intersection of the two ranges.The basic rule for conjunction is too restrictive on a machine like the Pentium,in which e�ective addresses of varying shapes must be conjoined with opcodes ofa �xed shape. If the shape of one sequence is a pre�x of the shape of another, wecan conjoin two sequences elementwise until we run out of elements in the shortersequence, and then we can take the remaining elements from the longer sequenceunmodi�ed. A similar technique works when one sequence is a su�x of another.If the toolkit used pre�xes or su�xes automatically, it might silently accept anunintended, incorrect conjunction, so it uses them only when told to do so. Thespeci�cation writer uses an ellipsis (\...") before or after any pattern to liberalizeconjunctions with that pattern. The pattern p & q ... is de�ned whenever q'sshape is a pre�x of p's shape. q is conjoined with the pre�x of p whose shape matchesits shape, and the rest of p is concatenated to the result. Similarly, p & ... q isde�ned whenever q's shape is a su�x of p's shape, and the patterns are aligned atthe end instead of the beginning. The ellipsis has the e�ect of making a pattern\lose its shape" where the ellipsis appears; so p ... & ... q is never legal, becausep ... has no well-de�ned su�x, and ... q has no well-de�ned pre�x.The restrictions on conjunction, with or without the ellipsis, guarantee that eachdisjunct in a valid pattern corresponds to a sequence of tokens. The toolkit uses thisinvariant to generate both encoders and decoders. These rules prohibit \mixing"tokens of di�erent classes; in each instruction, each sequence of bits comes from atoken of a unique class.Conditions and Names. Free variables may appear not only in �eld bindings, butalso in conditions associated with a pattern. No conditions appear in the grammarfor patterns; instead, conditions are implicit in other parts of the speci�cation andare associated with patterns in the toolkit's internal representation. For example,encoding of a �eld binding is subject to the condition that the computed value �tin the �eld; the condition becomes part of the pattern in which the �eld bindingappears. Internally, this condition is derived from an operator that narrows a valueto �t in the number of bits available. The toolkit uses a signed narrow for sign-ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

Specifying Representations of Machine Instructions � 507Component Contains Matches when. . . To encode. . .Pattern disjuncts, name Any disjunct matches. Encode �rst disjunct withsatis�ed conditions.Disjunct conditions,sequents+labels,ellipses, name Conditions are satis�ed, andeach sequent matches. Encode each sequent as onetoken.Sequent constraints,�eld bindings Constraints and bindingsmatch. Set �elds of token usingconstraints and bindings;emit token.Label Always matches; bindsidenti�er to location. Not encoded, but may beused in equations.Rangeconstraint lo � f < hi ,lo & hi constant Field value falls in range. If range has one element, set�eld.Field binding f = expression Always matches; equatesexpression to value of �eld. Set �eld to value ofexpression.Fig. 2. Normal form of patterns, with matching and encoding rules.extended �elds and an unsigned narrow for other �elds. From the unsigned narrow,the toolkit derives the condition 0 � f < 2n, for a value f put into a �eld of n bits.From the signed narrow, the toolkit derives the condition�2n�1 � f < 2n�1. Otherconditions may be derived from equations in a constructor de�nition. For example,most RISC branch instructions are described by equations that have solutions onlyunder the condition that the target address di�ers from the program counter by amultiple of the word size.We associate conditions with each disjunct. Although conditions could be asso-ciated with each constraint or each sequent, the disjunct is a better choice, becauseit is the largest component of a pattern that must be matched in its entirety. Thedisjunct is also the natural place to put conditions associated with constructor def-initions. For example, the binary representation of a SPARC branch instructionis represented by a pattern of one disjunct; the disjunct includes the condition(addr �L) mod 4 = 0, where L represents the location of the instruction, and addrrepresents the target address of the branch instruction.Both patterns and disjuncts have names. A pattern's name can be used wherevera pattern is expected. Disjunct names are used to compute constructors' nameswhen patterns are used in constructor opcodes.Figure 2 shows the full representation of patterns, together with the rules formatching and encoding them. As an example, the alu pattern from the SPARCspeci�cation has 38 disjuncts and the name alu. The �rst disjunct has no condi-tions, one sequent, no labels, no ellipses, and the name add. The single sequent ofthat disjunct is a sequent of class itoken. It has two range constraints, 2 � op < 3and 0 � op3 < 1, and no �eld bindings.Using and Naming Patterns. Patterns are used in speci�cations in two ways.Opcodes are de�ned by binding names to pattern values, which contain no �eldbindings and are computed statically. Constructors and matching statements arede�ned using pattern expressions, which may contain free variables whose valuesare not known until encoding or decoding time. Such variables must be operandsof the constructor; that is, they must be bound by the constructor's de�nition.ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

508 � Ramsey and Fern�andezThe patterns declaration binds names to pattern values; pattern expressionsare used in constructor de�nitions and matching statements, which are describedbelow. Pattern bindings are typically used to de�ne opcodes and to group relatedopcodes, e.g., they are used to de�ne the SPARC opcodes. Their syntax isspec) patterns �pattern-binding	pattern-binding) pattern-name is patternj [�pattern-name] is patternj pattern-name is any of [�pattern-name],which is patternPatterns bound to the special name \ " are ignored. Such patterns may correspondto unused opcodes, as in Table F-3 in the SPARC example. A pattern binding canbind one name to one pattern or each of a list of names to one of a list of patterns.Lists of patterns are created by using generating expressions in constraints. Gen-erating expressions are modeled on expressions in Icon, which can produce morethan one value [Griswold and Griswold 1990]. They are ranges or lists:generating-expression) { lo to hi �columns n �} j [�integer]The values generated are enumerated in left-to-right LIFO order. For example,the SPARC example's declaration for Table F-1 binds the names TABLE F2, call,TABLE F3, and TABLE F4 to the patterns op = 0, op = 1, op = 2, and op = 3,respectively.3.3 ConstructorsA constructor maps a list of operands to a pattern, which stands for the binaryrepresentation of an operand or instruction. Typed constructors produce operands;untyped constructors produce instructions. Because most manuals describe instruc-tions in terms of their assembly-language syntax, we designed constructor speci�-cations to resemble that syntax. A constructor speci�cation begins with an opcodeand a list of operands. It also gives a type and zero or more \branches," whichdesignate possible representations.spec) constructors �constructor	constructor) opcode �operand	 � : type-name � �branches�A constructor without explicit branches is given the representation obtained byconjoining the opcode with the operands.The type of a constructor determines how the corresponding encoding procedurecan be used. Although a constructor with no explicit type is called \untyped," infact it has a prede�ned, anonymous type|the type of instructions. Correspond-ing encoding procedures emit instructions. The encoding procedures for explicitlytyped constructors produce values that can be used as operands to other construc-tors, as described below.Opcodes are tricky. They can be simple strings, or they can be combinations ofstrings, pattern names, and �eld names, which are expanded to de�ne multipleconstructors with one speci�cation. For example, the SPARC alu constructorACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

Specifying Representations of Machine Instructions � 509speci�cation expands the alu pattern to de�ne 34 constructors at once. Compoundopcodes are formed by joining strings or names using the ^ symbol.opcode) opname �^ opname	An opname can be the name of a �eld or pattern, or it can be an unbound nameor a string. Unbound names mean the same as strings; for example, in the SPARCexample, because the opname dispA is not previously de�ned, it is equivalent to"dispA". This notational convenience means that the names of constructors seldomneed to be quoted.When any opname is the name of a pattern or �eld, the toolkit expands opcodesby enumerating the disjuncts of patterns and the named values of �elds. For ex-ample, the toolkit expands the branch^a opcode by expanding the pattern branchto the 16 disjuncts named in its de�nitions, and it expands the �eld a to the twonamed values "" and ",a". The SPARC example's single constructor de�nition ofbranch^a is therefore equivalent to a series of 32 de�nitions:constructors"bn" addr { addr = L + 4 * disp22! } is L: bn & disp22 & a = 0"bn,a" addr { addr = L + 4 * disp22! } is L: bn & disp22 & a = 1..."bvc,a" addr { addr = L + 4 * disp22! } is L: bvc & disp22 & a = 1Because architecture manuals often use the same name to refer both to an opcodeand to its instruction, we put constructors in a separate name space, so the samename can be used to refer both to constructors and to patterns.Operands may be �elds, integers, or patterns. Field and integer operands maybe signed or unsigned, and they may be designated relocatable. Pattern-valuedoperands must result from applying constructors of a designated type. Operandtypes are distinguished by their names; an operand is a �eld or pattern if its nameis that of a �eld or a constructor type, and it is an integer otherwise.The type of an operand determines how its name can be used on the right-handside of a constructor. Integer operands can be used only in integer expressions,which appear in �eld bindings. Field operands can be used as integers, but theycan also be used as patterns, in which case the �eld name stands for the patternbinding that �eld to the corresponding operand, as shown in the SPARC example.Finally, pattern-valued operands can be used only as patterns.A list of operands may be decorated with spaces, commas, brackets, quotedstrings, and other punctuation. The punctuation represents assembly-languagesyntax, and the toolkit uses it to generate encoding procedures that emit assemblylanguage and to generate a grammar that recognizes assembly language.Constructors solve several intellectual problems. They give an abstract structureto an instruction set, they connect that structure both to binary representationsand to assembly language, and they formalize instructions as functions mappingoperands to binary representations. An instruction set's abstract structure comesfrom the types of the constructors and their operands. This structure is isomor-phic to a grammar in which the start nonterminal corresponds to the anonymoustype \instruction," and in which each explicit constructor type corresponds to anadditional nonterminal. Each constructor corresponds to a production in which theconstructor's type appears on the left-hand side, and its operands appear on theACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

510 � Ramsey and Fern�andezright. The terminal symbols of the grammar are the operands that are �elds, inte-gers, or relocatable addresses. The patterns on the right-hand sides of constructorde�nitions are equivalent to synthesized attributes of the grammar. Field names,constructor names, and punctuation de�ne an assembly-language representationthat is implicit in every constructor de�nition, and these representations are alsoequivalent to synthesized attributes of the grammar.Relocatable addresses are not essential to the intellectual task of specifying rep-resentations; instead, they support separate compilation in encoding applications.Any �eld or integer operand can be designated relocatable byspec) relocatable �identi�er	For example, the addr operand of the SPARC branch constructor is declared relo-catable. Labels that appear in constructors' patterns are also relocatable. Applica-tions typically use relocatable addresses to refer to locations bound after encoding,at link time. Allowing any operand to be relocatable simpli�es implementationof applications that usually emit assembly language. For example, it simpli�esconstruction of mld's code generators, because it enables automatic translation ofexisting assembly-emitting code generators into mld's binary-emitting code gener-ators. Without the ability to make any operand relocatable, large parts of mld'scode generators would have to be written by hand.When a constructor that uses relocatable operands is applied, it checks to see iftheir values are known (e.g., they have been assigned absolute addresses). If so,it treats them as ordinary integers and emits the instruction. Otherwise, it emitsplaceholder patterns and creates a relocation closure [Ramsey 1996a]. The appli-cation holds the closure until the addresses on which it depends become known, atwhich point it applies the closure to overwrite the placeholder with the correct en-coding of the instruction. Alternatively, the toolkit provides a machine-independentrepresentation that can be used to write the closure to a �le, from which anotherapplication could read and apply it.Placeholder patterns are associated with token classes:spec) placeholder for class-name is patternThe toolkit uses the shape of a constructor's pattern to compute its placeholder, sothe placeholder is the same size as the relocated instruction that will overwrite it.The branches of a constructor speci�cation contain equations and patterns. Thepatterns specify binary representations, and the equations relate the constructor'soperands to the variables used in the patterns.branches) �{ equations }� �is pattern�j �when { equations } is pattern �� otherwise is pattern	When a constructor has a single branch, the pattern can be omitted, in which caseit is taken to be the conjunction of the constructor's opcode with its operands.The ability to specify multiple branches supports conditional assembly, as withthe SPARC set constructor. When encoding, the toolkit emits the �rst branch forwhich all conditions are satis�ed. As explained above, conditions are satis�ed when(1) all values bound to �elds �t in those �elds and (2) all equations used in theACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

Specifying Representations of Machine Instructions � 511branch have solutions. When decoding, the toolkit matches any of the branches.Otherwise is syntactic sugar for when { }.Equations express relationships between operands and �elds. As written, theyrelate sums of terms with integer coe�cients. Terms include �eld and integervariables, from which one can extract bits by n@[lo:hi]. One can also sign-extend a variable or extracted bits with the post�x exclamation point, as shownin the descriptions of the SPARC branch constructors. Equations may includeinequalities, which become conditions attached to disjuncts of a branch's pat-tern. Conditions may also arise from solving equations; for example, the condition(addr � L) mod 4 = 0, which is attached to the patterns in the SPARC branchconstructors, is derived from the equation for those constructors. All conditionsmust be satis�ed for the constructor to be matched or encoded.The toolkit uses a simple equation solver [Ramsey 1996b]. To encode, the toolkittakes operands as known and solves for �elds. To decode, the toolkit takes �eldsas known and solves for operands.Constructors are represented essentially as lambda terms mapping operands topatterns. The results of solving equations are represented in the patterns as condi-tions or as expressions in �eld bindings, so the only free variables in a constructor'spattern are the constructor's operands. Constructors with multiple branches, likethe set constructor in the SPARC example, result in patterns with multiple dis-juncts. The encoding procedure associated with the constructor emits the �rstdisjunct whose conditions are known to be satis�ed. If a condition depends onthe value of an unknown relocatable operand, the toolkit conservatively assumesthat the eventual value may not satisfy the condition, and it moves on to the nextdisjunct. If all disjuncts depend on relocatable operands, the toolkit uses the �-nal disjunct. This technique, while safe, is unsuitable for emitting span-dependentinstructions; for example, it uses the most general representation for all forwardbranches. We believe that standard techniques for resolving span-dependent in-structions [Szymanski 1978] can be applied to our speci�cations.3.4 Matching Statements and DecodingDecoding applications use the toolkit's matching statements. Matching statementsprovide a notation for writing instruction recognizers that are e�cient and easilyunderstood. Matching statements resemble ordinary case statements, but theirarms are labeled with patterns. The �rst arm whose pattern matches is executed.The syntax for matching statements ismatching-statement) match code to�| pattern �{ equations }� �[name]� => code	�else code�endmatchThe terminal symbol code stands for a fragment of Modula-3 or C code. The codenext to match evaluates to a location in an instruction stream. The representationof the instruction stream is implicit in code templates supplied by the applicationwriter, as described below. Each arm may include equations that must be satis�edfor the arm to match. A name in square brackets is bound to the name of theACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

512 � Ramsey and Fern�andezPROCEDURE Follow(m:Memory.T; pc:Word.T):FollowSet.T =BEGINmatch pc to| nonbranch; L: epsilon => RETURN FollowSet.T{L};| call(target) => RETURN FollowSet.T{target};| branch^a(target) &(ba | fba | cba) => RETURN FollowSet.T{target};| branch^a(target); L: epsilon => RETURN FollowSet.T{L, target};| jmpl(dispA(rs1, simm13), rd) => RETURN FollowSet.T{GetReg(m,rs1)+simm13};| jmpl(indexA(rs1, rs2), rd) => RETURN FollowSet.T{GetReg(m,rs1)+GetReg(m,rs2)};| some itoken => Error.Fail("unrecognized instruction");endmatchEND Follow;Fig. 3. Matching statement used for control-
ow analysis of SPARC instructions.pattern that matched. If an arm's pattern matches, the code on the right-hand sideof => is executed.Matching-statement is itself a grammatical start symbol; it cannot be derivedfrom speci�cation. When generating decoders, the toolkit's translator reads a spec-i�cation from one �le, then transforms a di�erent �le containing one or morematch-ing statements.In a matching statement, every free variable in a pattern is a binding instance;the toolkit computes a value for each such variable, and the values can be usedin the host-language code on the right-hand side of the arm labeled by the pat-tern. Free variables associated with typed constructors are bound to locations inthe instruction stream. The generated decoder converts such bound locations tointegers.Matching statements can be embedded in programs written in Modula-3 or in C.The toolkit's translator acts as a simple preprocessor|it �nds embedded matchingstatements and rewrites them into pure Modula-3 or C code.Matching statements make an application's decoding code clear and concise.For example, ldb, a retargetable debugger for ANSI C, uses matching statementsto implement control-
ow analysis. Most of ldb's breakpoint implementation ismachine independent; the only machine-dependent part is the analysis of control
ow [Ramsey 1994a]. Figure 3 shows a simpli�ed version of the SPARC codein ldb's breakpoint implementation, omitting subtleties associated with delayedbranches. This code �nds which instructions could be executed immediately afteran instruction at which a breakpoint has been planted [Ramsey 1994a]. After anordinary instruction, the only instruction that can follow is its inline successor, ascomputed by the �rst arm of the matching statement. FollowSet.T{L} is a setof addresses containing the single element L, which is the location of the successorinstruction. Calls and unconditional branches also have only one instruction intheir \follow set," but conditional branches have two. The two jmpl patternsare indirect jumps through registers; the GetReg procedure gets the value in theregister in order to compute the target address. The matching statement in Figure 3expands to nested case statements totaling about 90 lines of Modula-3 code. TheACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

Specifying Representations of Machine Instructions � 513count does not convey the di�culty of writing the code by hand, because thetoolkit eliminates unnecessary tests by combining seemingly unrelated opcodes ifthey result in execution of the same code.Application writers can use any representation of instruction streams; in par-ticular, the toolkit does not constrain the application to use integers to representlocations. An application writer speci�es a representation by supplying the toolkitwith four code fragments: the data type used to represent locations, a templateused to add an integer o�set to a location, a template used to convert a location toan unsigned integer, and a template used to fetch a token of a speci�ed width froma location. The templates are speci�ed byspec) fetch �width �� any� using templatej address type is templatej address add using templatej address to integer using templateThe template symbols stand for quoted strings containing fragments of Modula-3 orC code mixed with escape sequences that stand for addresses, widths, and o�sets.Widths are measured in bits; o�sets are measured in units of pc unit bits:spec) pc unit bits widthThis size must evenly divide the width of every token; the default size is 8 bits.The toolkit builds a decision tree for each matching statement. The decision treechecks all applicable range constraints while examining each �eld at most once. Ifpatterns in two arms use the same range constraints but have di�erent conditions,the toolkit checks conditions sequentially, but this situation is rare. The toolkit triesto minimize the number of tests needed to identify an arm. No polynomial-timealgorithm is known for this problem, and even though the toolkit builds decisiontrees at tool-compile time, it would take too long to generate and evaluate allpossible decision trees. Our heuristics yield trees that are at least as good as treeswe would write by hand.4. SPECIFYING CISC INSTRUCTIONSTools may work well for RISC architectures without being very useful for CISCarchitectures. To demonstrate the utility of our speci�cation language, we show twocomplex aspects of our Pentium speci�cation: addressing modes and variable-sizedoperands. Figure 4 shows constructor speci�cations for the Pentium's addressingmodes. We have given each constructor the type Eaddr, which we have chosen torepresent e�ective addresses. Values of type Eaddr are used as operands to untypedconstructors, as shown below. Again, the brackets and asterisks in the speci�cationare punctuation indicating suggested assembly-language syntax. Figure 5 depictsthe structures of the patterns used in Figure 4.E�ective addresses begin with a one-byte ModR/M token, which contains anaddressing mode and a register. In indexed modes, the ModR/M token is followedby a one-byte SIB token, which holds index and base registers and a scale factor ss.ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

514 � Ramsey and Fern�andezconstructorsReg reg : Eaddr is mod = 3 & r_m = regIndir [reg] : Eaddr {reg != 4, reg != 5} is mod = 0 & r_m = regDisp8 d![reg] : Eaddr {reg != 4, d = i8! } is mod = 1 & r_m = reg; i8Disp32 d![reg] : Eaddr {reg != 4} is mod = 2 & r_m = reg; i32 = dAbs32 a : Eaddr is mod = 0 & r_m = 5; i32 = aconstructorsIndex [base][index * ss] : Eaddr { index != 4, base != 5 } ismod = 0 & r_m = 4; index & base & ssIndex8 d![base][index * ss] : Eaddr { index != 4, d = i8! } ismod = 1 & r_m = 4; index & base & ss; i8Index32 d![base][index * ss] : Eaddr { index != 4 } ismod = 2 & r_m = 4; index & base & ss; i32 = dShortIndex d![index * ss] : Eaddr { index != 4 } ismod = 0 & r_m = 4; index & base = 5 & ss; i32 = dFig. 4. Constructor de�nitions for the Pentium's 32-bit addressing modes.mod r mReg reg 3 � � � regIndir [reg] 0 � � � regDisp8 d[reg] 1 � � � reg i8 = dDisp32 d[reg] 2 � � � reg i32 = dAbs32 a 0 � � � 5 i32 = aIndex [base][index*ss] 0 � � � 4 ss index baseIndex8 d[base][index*ss] 1 � � � 4 ss index base i8 = dIndex32 d[base][index*ss] 2 � � � 4 ss index base i32 = dShortIndex d[index*ss] 0 � � � 4 ss index 5 i32 = dFig. 5. Tokens used in the Pentium's 32-bit addressing modes. Token sizes are not to scale.Finally, some modes take immediate displacements [Intel Corporation 1993, Tables26-2 to 26-4]. The tokens and �elds used in e�ective addresses are as follows:fields of ModRM (8) mod 6:7 reg_opcode 3:5 r_m 0:2fields of SIB (8) ss 6:7 index 3:5 base 0:2fields of I8 (8) i8 0:7fields of I16 (16) i16 0:15fields of I32 (32) i32 0:31The �elds i8, i16, and i32 occupy whole tokens.We de�ne constructors of type Eaddr to create e�ective addresses in 32-bit mode.The �rst group of constructors speci�es the nonindexed addressing modes. Thesimplest mode is encoded by mod = 3; it is a register-direct mode that can referto any of the machine's 8 general registers. The next 3 modes are register-indirectmodes with no displacement, 8-bit displacement, and 32-bit displacement. The 8-bit displacement is computed by sign-extending the i8 �eld. Semicolons separateModR/M tokens from the displacement tokens that follow.ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

Specifying Representations of Machine Instructions � 515The inequality reg != 5 shows that r m may not take the value 5 in simpleindirect mode. Instead of denoting indirect use of the base pointer, which is theregister normally encoded by 5, the combination mod = 0 & r m = 5 encodes a32-bit absolute mode. The inequality reg != 4 shows that the value 4 may notbe used to encode indirect use of the stack pointer, which is the register normallyencoded by 4. This value is used instead to encode the indexed modes, which usean SIB token as well as the ModR/M token.The indexed modes are the second group in Figures 4 and 5. The ModR/M tokenin which r m = 4 is followed by an SIB token. The stack pointer may not be usedas an index register (index != 4). Depending on the value of mod in the ModR/Mtoken, the SIB token may end the address, or an 8-bit or 32-bit displacement mayfollow. Finally, \mod = 0 & base = 5" denotes an indexed address with no baseregister and a 32-bit displacement.None of the addressing modes speci�es a value for the reg opcode (middle) �eldof the ModR/M token. This �eld is not part of the e�ective address; depending onthe instruction, it can be part of the opcode, or it can denote a register operand.E�ective addresses are used by conjoining them with a pattern that constrainsreg opcode; the resulting pattern speci�es every bit of the ModR/M token. Weneed the ellipsis operator to make the conjunction work. Even though e�ectiveaddresses have several di�erent shapes, all the shapes begin with ModRM, so it islegal to write Eaddr & p ... whenever p's shape is ModRM. The move-byte andmove-byte-immediate instructions show the use of the ellipsis:constructorsMOV^"mrb" Eaddr, reg is MOV & Eb.Gb; Eaddr & reg_opcode = reg ...MOV.Eb.Ib Eaddr, i8! is MOV.Eb.Ib; Eaddr & reg_opcode = 0 ...; i8Our speci�cations of the Pentium's opcodes, which are not shown in this article,mimic the tables in the manual [Intel Corporation 1993]. The manual uses familiesof opcodes (ADD, MOV, etc.) that are distinguished by su�xes indicating the locationsand sizes of the destination and source operands. The su�x \Eb,Gb" indicatesthat the destination is given by an e�ective address, that the source is in a general-purpose register, and that both source and destination operand are one byte wide.In many cases, as with \MOV Eb,Gb", we specify the operation and the su�xseparately, then conjoin them to get an opcode, thereby writingm+n speci�cationsinstead of m � n speci�cations. The \Eb,Ib" su�x, which uses an immediateoperand as the source, cannot use this scheme, so we specify the full opcode asMOV.Eb.Ib.The Pentium uses an unusual method of identifying the sizes of operands. Mostinstructions come in three variants: one each for 8-bit, 16-bit, and 32-bit operands.Typically the 8-bit variant has a distinct opcode, but the 16- and 32-bit variantsshare an opcode and are distinguished by the presence or absence of an instructionpre�x. We specify an \object varying" pattern as a sequence that is empty or thatcontains the pre�xpatterns ow is OpPrefixod is epsilonov is ow | odACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

516 � Ramsey and Fern�andezwhere ow is mnemonic for \object word" and od for \object doubleword." Thisspeci�cation assumes that the hardware codes for 32-bit doubleword operands bydefault; the alternate assumption could be speci�ed by exchanging the de�nitionsof od and ow. To specify both the 16- and 32-bit variants of the memory-to-registermove instruction, we writeconstructorsMOV^"mr"^ov Eaddr, reg is ov; MOV & Ev.Gv; Eaddr & reg_opcode = reg ...This speci�cation di�ers from the move-byte speci�cation in that we have used thesu�x \Ev,Gv", which codes for operands of either word or longword (\variable")size, depending on the presence or absence of a pre�x. The pattern ov expands tothe pre�x for the 16-bit variant and to the empty sequence for the 32-bit variant.When immediate operands are used, all three variants must have separate spec-i�cations, because the operands are di�erent sizes. The 8-bit move-immediate in-struction appears above; the remaining variants are speci�ed byconstructorsMOV.Eb.Iv^ow Eaddr, i16! isow; MOV.Ev.Iv; Eaddr & reg_opcode = 0 ...; i16MOV.Eb.Iv^od Eaddr, i32! isod; MOV.Ev.Iv; Eaddr & reg_opcode = 0 ...; i32Again, only one of these instructions has a pre�x, since od stands for the emptysequence.Two features of SLED exist only to enable the description of CISC machines.One, the ability to de�ne tokens of di�erent sizes and classes, is used only todescribe the Pentium and the Motorola 68000. The other, the ability to formsequences of tokens, is used in both CISC and RISC speci�cations, but we haveused it only rarely in RISC speci�cations, typically to synthesize \instructions"from multi-instruction sequences.Owen C. Braun's description of the 68000 [Braun 1996] exposes several shortcom-ings of SLED. Some addressing modes have di�erent representations, depending onwhere they are used; currently, they must be associated with distinct sets of con-structors of distinct types. For example, a compiler writer must call one of twoprocedures to encode a register-direct mode, depending on whether it is to be thesource or the destination operand of a move instruction. Not all of the 68000's ad-dressing modes are valid in all instructions; there are several di�erent subsets, suchas the \data-alterable" modes, for example. Our (incomplete) speci�cation of theDSP56000 exhibits similar problems. These problems can be handled by de�ningmultiple sets of constructors, but the resulting speci�cations are ugly and di�cultto maintain.We are considering two extensions that would help improve speci�cations of the68000 and the DSP56000 and would help specify address pre�xes on the Pentium.One would enable us to attach multiple pattern-valued attributes to constructorsand to use di�erent attributes to specify alternate representations or parts of rep-resentations. Another would support simple speci�cation of subsets of typed con-structors, which we could use to specify restrictions on addressing modes. In bothcases, we believe that simpli�cations in CISC speci�cations will justify the extracomplexity in SLED. Because we have not implemented these extensions, we con-sider the details beyond the scope of this article.ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

Specifying Representations of Machine Instructions � 5175. IMPLEMENTATIONThe toolkit's translator, generator, and checker are combined in a single Icon pro-gram [Griswold and Griswold 1990] of about 10,000 lines. We omit the detailsof the implementation, but we do explain what the implementation does, what itassumes, and how the toolkit's library supports those assumptions.For each matching statement, the toolkit generates an e�cient decoder usingnested case statements. These decoders manipulate instruction streams using thecode templates supplied by the application writer. Because the decoders need onlywhat is in the templates, they are isolated from other properties of the decodingapplication, including byte order. They are also independent of any generatedencoders and of the toolkit's library.The toolkit creates an encoding procedure from each constructor in a speci�ca-tion. Procedures that come from typed constructors are useful only for producingoperands to be passed to other encoding procedures. In particular, such proceduresnever have side e�ects; they return values. Procedures generated from untyped con-structors do have side e�ects; they emit instructions. If the constructor's patternhas no disjunct whose conditions are satis�ed, the encoding procedure calls an errorhandler supplied by the application. Here are signatures for the C procedures thatare generated from the Address constructor dispA and the untyped constructorldsb, which appear in the SPARC example:Address_Instance dispA(unsigned rs1, int simm13);void ldsb(Address_Instance Address, unsigned rd);The result of dispA could be used as the �rst argument to ldsb.Normal encoding procedures emit binary representations, as determined by theencoding rules in Figure 2. The toolkit can also generate \encoding" proceduresthat emit assembly language. The assembly language is usually inferred from punc-tuation in constructor speci�cations, but it is possible to specify assembly syntaxseparately, as described in the toolkit's reference manual [Ramsey and Fern�andez1994b]. This ability is useful when several assembly languages are in common usefor a single architecture, as is the case for the Pentium.The toolkit can generate direct or indirect interfaces to encoding procedures.Indirect interfaces use interface records|structures containing function pointers.Applications can choose binary or assembly language at run time by using a pointerto the appropriate interface record.Binary encoding procedures have side e�ects on a global instruction stream.When values of relocatable operands are not available, they also create relocationinformation in the form of closures. The encoding procedures make certain assump-tions about instruction streams and relocatable operands. Here we enumerate theassumptions and explain the implementations in the toolkit's library, which satisfythe assumptions.A relocatable address represents the value of a relocatable operand. It is anabstraction with two operations: force and known. Force takes a relocatable addressand produces an (integer) absolute address. Known tells whether force can beapplied. Generated encoding procedures use known to decide whether to emittokens or to create relocation closures, and they use force to get the values of theoperands themselves.ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

518 � Ramsey and Fern�andezAn instruction stream holds tokens emitted by encoding procedures. It has alocation counter that marks the location of the next token to be emitted. Like re-locatable addresses, the location counter supports the known and force operations.Encoding procedures assume that they can manipulate the location counter andthat they can call emitters to put tokens into the instruction stream. Emitterswrite bits and advance the location counter. The library includes a little-endianemitter, a big-endian emitter, and two emitters that use the native byte order ofthe host machine, or an application can supply its own emitters. One of the nativeemitters is faster than the other, but it requires that the location counter alwaysbe aligned on a multiple of the token size.Most encoding applications need a richer model of instruction stream than thatassumed by the toolkit's encoding procedures. The toolkit's library provides re-locatable blocks, which implement the instruction-stream abstraction. They alsosupport many other operations, including changing blocks and locations, assigningaddresses to blocks, emitting tokens into blocks, and writing blocks into �les ormemory. An application can use any number of relocatable blocks, and it can emittokens into a block before the block's address has been assigned. For example, aUNIX assembler might use three blocks, one each for the code, initialized data,and uninitialized data sections. The assembler would let the linker determine andassign the addresses of those blocks.A label, which points to a location in a relocatable block, provides the basicknown and force operations.2 The toolkit does not associate names with labels;applications can use any method to name and �nd labels. For more
exibility, thelibrary also provides an implementation of relocatable addresses that represents anaddress as the sum of a label and a signed o�set. This representation is adequate forapplications like compilers and linkers. Authors of other applications can use moresophisticated representations (e.g., linear expressions over addresses and labels)without changing the code generated by the toolkit.The toolkit needs little support from applications. Applications' primary obliga-tions are to manage memory and to supply or select code for fetching and storingtokens. Encoding applications must supply a routine that the library uses to allo-cate memory for closures, labels, and relocatable blocks. Saving, applying, writing,and discarding closures are also the application's responsibility. In return, theapplication can choose its own policies for allocating memory and for managingclosures. The toolkit is careful not to require large blocks of contiguous memory,not even to store large relocatable blocks. Finally, the toolkit provides no code toassociate names with relocatable blocks, labels, or other abstractions; applicationsmust supply their own.The toolkit generates e�cient code. When safety checks are elided, each encodingprocedure executes about a dozen instructions. Generated decoders test each �eldat most once, and they test them in an order that quickly identi�es the right armof the matching statement.The toolkit's generator can detect many internal inconsistencies in speci�cations,but it cannot identify speci�cations that are internally consistent but do not match2This \label" is di�erent from the labels introduced by the L: p construct, although both kindsserve the same function.ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

Specifying Representations of Machine Instructions � 519a target machine. There are several ways to write such incorrect speci�cations, forexample, by getting operand order wrong or by interchanging names in an opcodetable. The toolkit's checker [Fern�andez and Ramsey 1996] �nds inconsistencies be-tween the mapping speci�ed in SLED and the mapping implemented by a trusted,independent assembler. The checker exploits the generator's ability to create en-coding procedures for both binary and assembly representations. It exercises eachconstructor at least once, emitting both representations. The trusted assemblertranslates the assembly into binary, and the checker compares the two binary rep-resentations. If they are identical, the toolkit's speci�cation is probably consistentwith the assembler; if not, the toolkit and the assembler encode some instructiondi�erently, and there is probably an error in the speci�cation. A disassembler,which can be generated by the toolkit, makes it easier to �nd the source of theerror.6. RELATED WORKFerguson [1966] describes the \meta-assembler," which creates assemblers for newarchitectures. A meta-assembler works not from a declarative machine descriptionbut frommacros that pack �elds into words and emit them; it is essentially a macroprocessor with bit-manipulation operators and special support for di�erent integerrepresentations.Most architecture-description languages emphasize the instruction semantics nec-essary for building tools that verify and simulate an instruction set, not the encodingand decoding descriptions necessary for building tools that process machine code.Wick [1975] describes a tool that generates assemblers based on descriptionswritten in a modi�ed form of ISP [Bell and Newell 1971]. His work investigatesa di�erent part of the design space; his machine descriptions are complex andcomprehensive. For example, they describe machine organization (e.g., registers)and instruction semantics as well as instruction encoding.LISAS [Cook and Harcourt 1994] is another speci�cation language that includesdistinct semantic and syntactic descriptions. It speci�es binary representations bymapping sequences of named �elds onto sequence of bits, a technique that workswell for RISC machines, but is awkward for CISC.The nML speci�cation language [Fauth et al. 1995] uses an attribute grammarto specify instruction sets. The underlying grammar, without attributes, shouldbe the same as the grammar induced by our constructors and their types. Forspeci�cation, nML uses \OR-rules" and \AND-rules." The OR-rules are sums.They correspond to our constructor types when viewed as disjoint unions, and theyalso correspond to alternatives in a grammar. The AND-rules are products. Theycorrespond to Cartesian products of operands of our constructors, and they alsocorrespond to sequences of symbols in a production of a grammar.nML and SLED use di�erent notations and types to associate information withinstruction sets. nML uses synthesized attributes to represent register-transfersemantics, assembly-language syntax, and binary representations. Writers can in-troduce extra attributes to represent things like addressing modes. The values ofattributes may be integers, character strings, bit strings, or \register-transfer se-quences." Binary representations are represented as bit strings. Attribute valuesare speci�ed by writing explicit attribute equations for every production in theACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

520 � Ramsey and Fern�andezgrammar, and they can be computed using C-like arithmetic functions, a printf-like formatting function, and a special notation for register-transfer sequences. AnnML description can be used to build a simulator, which includes an instruction de-coder, and a code generator, which includes a binary encoder. Using nML attributeequations to build an encoder appears straightforward, but the authors seem not tohave published a description of how they invert the equations to produce a decoder.SLED provides a more concise and less error-prone way of specifying binaryrepresentations than nML's binary-string attributes. SLED's generating expres-sions and constructor opcodes make it easy to specify many representations with fewinteger literals. Using patterns instead of bit strings relieves the speci�cation writerfrom having to get the �elds in the right order, and it helps the toolkit detect missingand duplicate �elds. Finally, SLED speci�cations resemble architecture manuals;nML speci�cations do not. Our ideas could be exploited in the nML frameworkby including the pattern sublanguage (tokens, �elds, and patterns) in nML and us-ing pattern-valued attributes to specify binary representations. Conversely, nML'sideas could be exploited in our framework by adding nML's register-transfer sub-language and by permitting users to attach arbitrary attributes to constructors andtheir operands. We expect that named, pattern-valued attributes would help usersdescribe machines like the 68000 and DSP56000.The GNU assembler provides assembly and disassembly for many targets, butdi�erent techniques are applied ad hoc to support di�erent architectures [Elsneret al. 1993]. For example, Pentium instructions are recognized by hand-written Ccode, but MIPS instructions are recognized by selecting a mask and a sample from atable, applying the mask to the word in question, then comparing the result againstthe sample. On both targets, operands are recognized by short programs writtenfor abstract machines, but a di�erent abstract machine is used for each target.Another set of abstract machines is used to encode instructions during assembly.The implementations of the abstract machines contain magic numbers and hand-written bit operations. The programs interpreted by the abstract machines arerepresented as strings, and they appear to have been written by hand.Larus and Schnarr [1995] use a machine description related to ours to providemachine-independent primitives that query instructions. The syntactic part of theirmachine description is derived from a subset of our language having only �elds andpatterns. They have added semantic information by associating register-transfersemantics with particular pattern names. From this combined syntactic and se-mantic information, the spawn tool generates classi�ers that put instructions intocategories like jump, call, store, invalid, etc. It �nds the registers that each instruc-tion reads and writes, and it generates C++ code to replicate such computationsas �nding target addresses. The descriptions used by spawn are both more andless powerful than ours. The semantic information makes it possible to derive avariety of predicates and transformations that are indispensable for instrument-ing object code. The limited syntactic speci�cation assumes there is only a singletoken (the \current instruction"), and it has no notion comparable to construc-tor, which makes it more di�cult to understand how speci�cations are factored.Finally, spawn descriptions do not support encoding; instrumenters must providepreencoded \snippets" of machine code. The encoding is done by standalone com-pilers or assemblers, and the snippets are extracted from the resulting object code.ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

Specifying Representations of Machine Instructions � 521In spirit, our work is like ASN.1 [International Organization for Standardization1987], which is used to create symbolic descriptions of messages in network pro-tocols, but there are many di�erences. ASN.1 data can be encoded in more thanone way, and in principle, writers of ASN.1 speci�cations are uninterested in thedetails of the encoding. ASN.1 encodings are byte-level, not bit-level encodings;ASN.1 contains an \escape hatch" (OCTET STRING) for strings of bytes in whichindividual bits may represent di�erent values. Finally, ASN.1 is far more complexthan our language; for example, it contains constructs that represent structuredvalues like sequences, records, and unions, that describe optional, default, or re-quired elements of messages, and that distinguish between tagged and \implicit"encodings of data.7. EVALUATIONFor code generation in traditional compilers, the toolkit is somewhat less suitablethan a vendor's assembler. The toolkit does not easily support standard, machine-dependent formats for relocatable object code, and it does not provide optimizationsthat vendors may build into assemblers, like MIPS instruction scheduling.SLED evolved from a simpler language used to recognize RISC instructions in aretargetable debugger [Ramsey 1992, Appendix B]. That language had �eld con-straints and patterns built with conjunction and disjunction, but no concatenationand no constructors. There was no notion of instruction stream; instructions werevalues that �t in a machine word. We extended that language to specify encodingprocedures by writing a constructor name and a list of �eld operands to be con-joined. This extension su�ced to describe all of the MIPS and most of the SPARC,and we used it to generate encoding procedures for mld. It could not, however,describe all of the SPARC, and it was completely unable to describe the Pentium,even after we added concatenation to the pattern operators. Two changes solvedall our problems: making patterns explicit on the right-hand sides of constructorspeci�cations and using constructor types to permit patterns as operands. We thenrealized there was no reason to restrict constructors to specifying encoding proce-dures, so we made it possible to apply constructors both in pattern de�nitions andin matching statements, yielding SLED as described in this article.Patterns are a simple yet powerful way to describe binary representations. Fieldconstraints, conjunction, and concatenation are all found in architecture manuals,and together they can describe any instruction on any of the four machines we havespeci�ed, as well as four other machines whose speci�cations are incomplete orhave been written by our users. Patterns are not limited to traditional instructionsets in which opcode and operand are clearly separated; the machines we havedescribed use instruction formats in which opcode bits are scattered throughoutthe instruction. Disjunction does not make it possible to specify new instructions,but it improves speci�cations by making it possible to combine descriptions ofrelated instructions. By removing the need to specify each instruction individually,disjunction eliminates a potential source of error.Constructor speci�cations provide clean, abstract representations of instructionsand their operands, and they connect these abstractions to binary representationsand to assembly language. Equations, though seldom used, are needed to describeinstructions like relative branches, whose assembly-level operands di�er from theirACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

522 � Ramsey and Fern�andezmachine-level �elds. Equations can also express restrictions on operands, which arepart of the de�nitions of some architectures, like the Intel Pentium.We maximize SLED's expressive power by minimizing restrictions on the waypatterns, constructors, and equations can be combined. For example, patterns andconstructors can be used in each other's de�nitions, which makes it possible tofactor complex architectures like the Pentium. Equations in constructor speci�-cations are used for both encoding and decoding, and equations can also be usedin matching statements. Because the elements of SLED work together, it is hardto see how the language could be simpli�ed without destroying it. The simplicityof the speci�cations and the checking done by the toolkit combine to give userscon�dence in the correctness of the generated code.8. AVAILABILITYVersion 0.5 of the toolkit implements SLED as described in this article, except thatinteger operands of constructors are always signed. It is available by anonymousftp from ftp.cs.princeton.edu in directory pub/toolkit. The toolkit also has a homepage at http://www.cs.princeton.edu/software/toolkit.9. PRODUCTION NOTEWe prepared this article using the noweb tools for literate programming [Ramsey1994b]. The examples have been extracted from this article and run through thetoolkit, and they work with version 0.5.ACKNOWLEDGEMENTSThe editor and anonymous referees suggested a restructuring that helped improvethe article. We are especially grateful for Referee 2's thorough reading and pointersto related work.REFERENCESBall, T. and Larus, J. R. 1992. Optimally pro�ling and tracing programs. In Conference Recordof the 19th Annual ACM Symposium on Principles of Programming Languages. Albuquerque,NM, 59{70.Bell, C. G. and Newell, A. 1971. Computer Structures: Readings and Examples. McGraw-Hill,New York.Braun, O. C. 1996. Retargetability issues in worst-case timing analysis of embedded systems.Bachelor's thesis, Dept of Computer Science, Princeton University.Cattell, R. G. G. 1980. Automatic derivation of code generators from machine descriptions.ACM Transactions on Programming Languages and Systems 2, 2 (Apr.), 173{190.Cmelik, B. and Keppel, D. 1994. Shade: A fast instruction-set simulator for execution pro�ling.In Proceedings of the 1994 ACM SIGMETRICS Conference on Measurement and Modeling ofComputer Systems. 128{137.Cook, T. and Harcourt, E. 1994. A functional speci�cation language for instruction set archi-tectures. In Proceedings of the 1994 International Conference on Computer Languages. 11{19.Dean, J.,DeFouw, G.,Grove, D., Litvinov, V., and Chambers, C. 1996. Vortex: An optimizingcompiler for object-oriented languages. OOPSLA '96 Conference Proceedings, in SIGPLANNotices 31, 10 (Oct.), 83{100.Elsner, D., Fenlason, J., et al. 1993. Using as: the GNU Assembler. Free Software Foundation.Fauth, A., Praet, J. V., and Freericks, M. 1995. Describing instruction set processors usingnML. In The European Design and Test Conference. 503{507.ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

Specifying Representations of Machine Instructions � 523Fern�andez, M. F. and Ramsey, N. 1996. Automatic checking of instruction speci�cations. Tech.rep., AT&T Research. July. Submitted to ICSE 1997.Ferguson, D. E. 1966. The evolution of the meta-assembly program. Communications of theACM 9, 3, 190{193.Fern�andez, M. F. 1995. Simple and e�ective link-time optimization of Modula-3 programs.Proceedings of the ACM SIGPLAN '95 Conference on Programming Language Design andImplementation, in SIGPLAN Notices 30, 6 (June), 103{115.George, L., Guillame, F., and Reppy, J. H. 1994. A portable and optimizing back end for theSML/NJ compiler. In 5th International Conference on Compiler Construction. 83{97.Graham, S. L., Lucco, S., and Wahbe, R. 1995. Adaptable binary programs. In Proceedings ofthe 1995 USENIX Technical Conference. New Orleans, LA, 315{325.Griswold, R. E. and Griswold, M. T. 1990. The Icon Programming Language, Second ed.Prentice Hall, Englewood Cli�s, NJ.Hastings, R. and Joyce, B. 1992. Purify: Fast detection of memory leaks and access errors. InProceedings of the Winter USENIX Conference. San Francisco, CA, 125{136.Intel Corporation 1993. Architecture and Programming Manual. Intel Corporation, MountProspect, IL.International Organization for Standardization 1987. Information Processing | Open SystemsInterconnection | Speci�cation of Abstract Syntax Notation One (ASN.1). International Or-ganization for Standardization. ISO 8824 (CCITT X.208).Johnson, S. C. 1990. Postloading for fun and pro�t. In Proceedings of the Winter USENIXConference. 325{330.Larus, J. R. and Schnarr, E. 1995. EEL: machine-independent executable editing. Proceedingsof the ACM SIGPLAN '95 Conference on Programming Language Design and Implementation,in SIGPLAN Notices 30, 6 (June), 291{300.Nelson, G., Ed. 1991. Systems Programming with Modula-3. Prentice Hall, Englewood Cli�s,NJ.Ramsey, N. 1992. A retargetable debugger. Ph.D. thesis, Princeton University, Department ofComputer Science. Also Technical Report CS-TR-403-92.Ramsey, N. 1994a. Correctness of trap-based breakpoint implementations. In Proceedings of the21st ACM Symposium on the Principles of Programming Languages. Portland, OR, 15{24.Ramsey, N. 1994b. Literate programming simpli�ed. IEEE Software 11, 5 (Sept.), 97{105.Ramsey, N. 1996a. Relocatingmachine instructions by currying. ACM SIGPLAN '96 Conferenceon Programming Language Design and Implementation, in SIGPLAN Notices 31, 5 (May),226{236.Ramsey, N. 1996b. A simple solver for linear equations containingnonlinear operators. Software|Practice & Experience 26, 4 (Apr.), 467{487.Ramsey, N. and Fern�andez, M. F. 1994a. New Jersey Machine-Code Toolkit architecture spec-i�cations. Tech. Rep. TR-470-94, Department of Computer Science, Princeton University. Oct.Ramsey, N. and Fern�andez, M. F. 1994b. New Jersey Machine-Code Toolkit reference manual.Tech. Rep. TR-471-94, Department of Computer Science, Princeton University. Oct.Ramsey, N. and Hanson, D. R. 1992. A retargetable debugger. ACM SIGPLAN '92 Conferenceon Programming Language Design and Implementation, in SIGPLAN Notices 27, 7 (July),22{31.SPARC International 1992. The SPARC Architecture Manual, Version 8. SPARC International,Englewood Cli�s, NJ.Srivastava, A. and Eustace, A. 1994. ATOM: A system for building customized programanalysis tools. Proceedings of the ACM SIGPLAN '94 Conference on Programming LanguageDesign and Implementation, in SIGPLAN Notices 29, 6 (June), 196{205.Srivastava, A. and Wall, D. W. 1993. A practical system for intermodule code optimization.Journal of Programming Languages 1, 1{18. Also available as WRL Research Report 92/6,December 1992.Szymanski, T. G. 1978. Assembling code for machines with span-dependent instructions. Com-munications of the ACM 21, 4 (Apr.), 300{308.ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

524 � Ramsey and Fern�andezWahbe, R., Lucco, S., Anderson, T. E., and Graham, S. L. 1993. E�cient software-based faultisolation. In Proceedings of the Fourteenth ACM Symposium on Operating System Principles.203{216.Wick, J. D. 1975. Automatic generation of assemblers. Ph.D. thesis, Yale University.Received December 1995; revised August 1996; accepted October 1996

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

