Studying the ML Module System in HOL

ELsA GUNTER! and SAVI MAHARAJ?

Y ATET Bell Laboratories, 600 Mountain Ave., Murray Hill, N.J. 07974, USA. email: elsa@research.att.com
2LFCS, University of Edinburgh, Edinburgh EH9 3JZ, UK. email: sym@dcs.ed.ac.uk

In an earlier project [9] the dynamic semantics of the Core of Standard ML (SML)
was encoded in the HOL theorem-prover. We extend this by adding the dynamic
Module system. We then develop a possible dynamic semantics for a Module
system with higher-order functors and encode this as well. Next we relate these
two semantics via embeddings and projections and discuss how we can use these
to prove that evaluation in the proposed system is a conservative extension, in an
appropriate sense, of evaluation in the SML Module system.

1. INTRODUCTION

This paper describes an application of the HOL
theorem-prover [2, 7] to the problem of reasoning about
the semantics of a programming language. The lan-
guage in question is Standard ML (SML), which con-
sists of a strongly-typed, higher-order, functional pro-
gramming language (with some imperative constructs),
plus a system of modules which allow structuring and
information hiding. We shall refer to these two parts
as the Core and the Modules, respectively. SML is par-
ticularly suitable for our purpose because it has been
given a concise formal semantics [6]. This semantics is
presented in a Natural Semantics style [3] which makes
it relatively easy to reason about it mathematically and
to translate it into a mathematical formalism such as
the language of HOL. The size of SML — for example
the number of different phrase classes in its grammar,
and the number of inference rules in its operational se-
mantics — means that there is a great advantage to
be gained in the use of a theorem prover for automat-
ing the tedious inductive proofs of the properties of the
language.

The semantics of SML is given in The Definition of
Standard ML [6], which we shall refer to as the Defini-
tion. It 1s divided into four parts, giving the static and
then the dynamic semantics of first the Core and then
the Modules. Roughly speaking, static semantics con-
cerns well-typedness and certain well-formedness con-
straints for modules, while dynamic semantics concerns
the evaluation of terms under the assumption that static
properties have already been checked.

We make use of earlier work [9] by Myra VanInwegen
and Elsa Gunter who encoded the dynamic semantics of
Core SML in HOL and then formally verified the fact
that dynamic evaluation is deterministic. (A similar
project carried out by Donald Syme [8] could conceiv-
ably have been used instead.) The encoding is done via
definitions and derived properties, as opposed to using

an axiomatisation. This approach necessitates the use
of a theorem prover with a higher-order language, but
was chosen because it provides induction principles —
powerful tools for proving meta-theoretic properties of
the semantics as a whole. (Instead of only being able to
prove consequences of individual inference rules, we can
also show properties such as determinism that concern
the totality of the inference rules.) These can then be
used to prove facts about evaluation that could not be
proved otherwise. Examples of these are negative facts
such as that certain expressions do not evaluate. Our
approach also has the advantage that it automatically
preserves the consistency of the logic, i.e. it does not
introduce the possibility of proving a false statement,
whereas the axiomatic approach requires special princi-
ples for the particular extensions desired.

In our project we build upon the previous work by
adding the dynamic semantics of the SML Module sys-
tem. We then propose a speculative dynamic semantics
for an extension of SML with higher-order functors. A
functor, in SML, is a parameterised program module,
whose parameter is a non-parameterised module called
a structure. The point of the extension is to allow func-
tors to take other functors as arguments. Work has been
done on the (considerably more complicated) static se-
mantics of this extension [1] but, to the best of our
knowledge, this is the first time a dynamic semantics
has been written down. By presenting this semantics
within a theorem prover we gain assistance in proving
theorems that give confidence in the proposed seman-
tics. Such theorems include that the extended Module
system is, in a sense which we shall define, a conser-
vative extension of the original system. To clarify the
presentation in this paper we shall use a simplified ver-
sion of SML in which we omit, among other things, the
constructs for dealing with persistent state and with
exceptions for error handling. However, in the formal
encoding we treat the full language.

In Section 2 we describe the fragments of SML syn-

. L~ -

-~ v -~ . - PN

2 ELsa GuNTER! and Savi MAHARAT?

tax and semantics concerned with dynamic evaluation
of Modules, and discuss the way in which we represent
these in HOL. In Section 3 we present our proposed ex-
tended Module system and discuss various issues that
arise in deciding upon a semantics for this system. We
then describe the HOL encoding of the extended sys-
tem. In Section 4 we discuss how to state and prove
that the proposed system is a conservative extension
of Modules. Finally we give our concluding remarks in
Section 5..

2. MOD-ML
Basic Components of the Definition

The constructs which make up the SML Module sys-
tem are called structures, signatures, and functors. A
structure is a code module: it encapsulates a sequence
of declarations of variables or other structures. The
identifiers declared inside a structure can be referred
to from outside by use of long identifiers, e.g. S.x.
Fig. 1. shows a small structure S which contains a vari-
able x and an structure SS. Signatures are specifications
or views of structures. New structures can be formed
by using signatures to form smaller versions (i.e. hav-
ing fewer components) of existing structures, a process
called thinning. In the figure, S is thinned by the sig-
nature SIG to produce a smaller structure T containing
only x. A functor is a parameterised structure, whose
parameter is specified by a signature. The output of a
functor may optionally be constrained by a signature,
as in Fig. 1. Functors may be applied to structures to
form new structures.

Syntax The dynamic semantics uses a reduced syn-
tax for SML in which information that is not relevant
to evaluation has been removed. An abbreviated list-
ing of the abstract syntax classes for Modules include
those for the Core and is shown in Fig. 2. Structures
(strezp,- - -,strbind) can contain Core declarations and
structure declarations and can be built up from other
structures and functors (through application) in vari-
ous ways. Signatures (valdesc, ---, sigdec) can spec-
ify values and structures and can be formed in several
ways, including extracting the signatures from a list of
structures (OPENspec). Functors (funbind, fundec) are
defined by binding a functor identifier to a structure
identifier and signature, which together specify the in-
put to the functor, an optional output signature (in the
figure, optional syntactic elements are enclosed within
angle brackets), structure expression which makes up
the functor body.

Semantic objects The Definition gives the mean-
ings of programs of the Module system in terms of se-
mantic objects which we show in Fig. 3. The notation

Fin(X) and X 8 Y is used for finite subsets and fi-
nite functions, respectively. Top declarations are evalu-
ated with respect to a basis, which contains information
about previously declared modules. The result of the
evaluation is itself a new basis. Structure declarations
evaluate to give environments (Env) which contain in-
formation about the variables and structures contained
in the declared structure. Coincidentally, these envi-
ronments are the same as those used in Core evalua-
tion (the structure information is needed to evaluate
long identifiers). Signature bodies (Spec) are evaluated
to interfaces (Int) which contain information needed to
later thin structures to fit the signature. This includes
the names of variables and the internal interface envi-
ronment. A functor is evaluated to a functor closure
consisting of an identifier and interface for the functor
argument, an interface for thinning the output if sup-
plied, the structure expression that comprises the func-
tor body, and a copy of the basis in which applications
of the functor are to be evaluated.

Functions on the semantic objects The semantics
makes use of various auxiliary functions which operate
upon the semantic objects. These include functions for
looking up identifiers in the various environments and
bases, written as e.g. G(sigid); projecting the compo-
nents of semantic objects, denoted by e.g. E of B; in-
jecting objects as components of larger objects, written
as e.g. F in Basis, which denotes the basis ({},{}, E);
updating environments and bases, written as e.g. G
+ {sigid — I}. Functions are lifted in the obvious way
to operate on larger objects which contain the domain
of the function as a component. For example, one can
look up signature identifiers in bases by looking them
up in the SigEnv component.

The semantics of OPENspec, which allows a signa-
ture to be formed by extracting the signatures from a
list of structures, demands a special function to perform
this extraction. The structures are evaluated to produce
environments, and then from each environment we must
extract an interface. This is done by the function Inter
: Env — Int defined as:

Inter (SE,VE) = (IE, domain VE)
where
IE = {strid — Inter E ; SE (strid) = E}.

That is, for structure environments, the interface we ex-
tract is the set of mappings from the strids they contain
to interfaces for the envs they associate with the strids.
For variable environments the extracted interfaces are
just the sets of identifiers they contain.

Another important function, |: Env x Int — Env,
thins an environment to fit a given interface. This is
needed whenever a signature is explicitly given to a
structure. It is defined by:

. L~ -

-~ v -~ . - PN

STUDYING THE ML MobDULE SysTEM IN HOL

structure S =
signature SIG = sig val x :

struct val x = 6
int end

structure T:SIG = S
functor F (Arg:SIG):SIG = struct val x = Arg.x end
structure U = F(S)

var
dec

strid
longvar
longstrid

sigid
funid

strezp

strdec

strbind
valdesc
strdesc
spec

sigezxp
sighbind
sigdec

funbind

fundec

top

E e
SE €
VE ¢

vE
Ic

IE €
Gc

IB €
FCe

FE €
Bc

FIGURE 1. SML Module system examples
2= VAR string
u= (omitted)
:= STRID string
u= stridy.---.stridp.var (n >0

n
)

u= stridy.---.strid,.strid (n > 0)
= SIGID string
::= FUNID string
2= STRUCTstrexp strdec |

LONGSTRIDstrexp longstrid |

APPstrexp funid strezp |

LETstrexp strdec strezp
= DECstrdec dec |
STRUCTUREstrdec strbind
LOCALstrdec strdec strdec |
EMPTYstrdec |
SEQstrdec strdec strdec
BINDstrbind strid (sigezp) strezp (strbind)
::= VARvaldesc var
::= STRIDstrdesc strid sigezp
VAlLspec valdesc |
STRUCTURESspec strdesc |
LOCALspec spec spec |
OPENspec longstrid; - - - longstrid, (n > 1) |
INCLUDEspec sigid; - - - sigid, (n > 1) |
EMPTYspec | SEQspec spec spec
SI1Gsigexp spec | SIGIDsigexp sigid
u= BINDsigbind sigid sigezp {sigbind)
SIGNATUREsigdec sigbind |
EMPTYsigdec |
SEQsigdec sigdec sigdec
BINDfunbind funid strid sigezp (sigezp) strexp (funbind)
FUNCTORfundec funbind |
EMPTYfundec
SEQfundec fundec fundec
2= STRDEC strdec | SIGDEC sigdec | FUNDEC fundec

FIGURE 2.

Modules abstract syntax

Env = StrEnv x VarEnv
StrEnv = strid ﬁ—“) Env

VarEnv = var 23 Val

Val = (omitted)

Int = IntEnv x Fin(var)

IntEnv = strid 3 Int

SigEnv = sigid % Int

IntBasis = SigEnv x IntEnv

FunctorClosure = (strid x Int) x (strezp (x Int)) x Basis
FunEnv = funid 5% FunctorClosure

Basis = FunEnv x SigEnv x Env

FIGURE 3.

structure SS = struct end end

(Core)
(Core)
structure identifier (Core)
(Core)
(Core)

environment (
structure env. (Core

value environment

Modules semantic objects

variable
declaration (Core

long variable (Core

long structure identifier (Core

signature identifier
functor identifier
structure expression

structure declaration

structure binding
value description
structure description
specification

signature expression
signature binding
signature declaration

functor binding
functor declaration

top declaration

Core

Core
value (Core
interface

)
)
)
)

interface environment

signature environment

interface basis

functor closure

functor environment

basis

PN

4 ELsa GuNTER! and Savi MAHARAT?

(SE,VE) | (IE,vars) = (SE',VE')
where

SE' = {strid — E | I ; SE(strid) = E and
IE(strid) = I}

and VE' is formed by restricting the domain of VE to
vars.

The evaluation relations The main part of the se-
mantics consists of inference rules that define evaluation
relations by which the phrase classes are related to the
semantic objects. We shall not give these in detail here.

Encoding the Semantics in HOL

We encode the semantics of the Module system in HOL
and call the resulting package of definitions Mod-ML.
We shall write the names of Mod-ML types and terms
in teletype font. Mod-ML is an extension of the sys-
tem HOL-ML [9] which is an encoding of the dynamic
semantics of a large subset of the Core language of SML
(reals and I/O were omitted). The whole of HOL-ML
must be loaded into HOL in order for Mod-ML to be
loaded.

Syntax The logic supported by the HOL system con-
tains an extensible system of types. We added new
types to this collection to represent each of the Mod-
ules phrase classes. First we separated out the phrase
classes into groups whose members happen to be mutu-
ally recursive with each other. By defining these groups
separately so as to avoid unnecessary mutual recursion
among the types we were able to simplify the presenta-
tion of our definitions, theorems and inductive proofs.
Next, to make the type definitions, we used a package
developed by Elsa Gunter and Healfdene Goguen which
supports simultaneously mutually recursive and nested
recursive definitions of types. An example of the lat-
ter is a pair of mutually recursive types, S and T, say,
where one of the constructors of S takes as an argument
a value of type (T list). This package both extends and
depends upon a previous package for mutual recursion
developed by Elsa Gunter and Myra Vanlnwegen and
first used in the development of HOL-ML.

We re-use various techniques developed for HOL-
ML: optional arguments to constructors in the gram-
mar are encoded by defining a polymorphic type ’a
option (here ’a is a HOL type variable) with the con-
structors NONE and SOME °a; the lists of identifiers used
by OPENspec and INCLUDEspec are represented by
defining a type ’a nonemptylist. For long identifiers
we define a new type ’a long.

Semantic objects and functions To encode the se-
mantic objects we must make choices about the repre-
sentation of finite sets and finite function spaces. The
HOL system is well supplied with libraries containing
definitions and theories about useful mathematical ob-
Jjects, including sets, lists, and pairs. To represent finite
sets we use the library’s (possibly infinite) sets, since we
are free to add finiteness later as a hypothesis to theo-
rems which require it. For finite functions we use lists
of pairs of the appropriate identifier and value types.
When we encode functions that are intended to operate
on finite function spaces we are always careful to ensure
that the lists are maintained in lexicographical order by
identifiers. Qur aim here is to make the list structure
transparent so that we adequately represent finite func-
tions.

Evaluation To complete the encoding we define the
evaluation relations which say how syntactic terms eval-
uate to the appropriate semantic object. For those
phrase classes that form individual recursive types we
use the HOL command new_inductive definition to
define the evaluation relation. This command defines
a relation from a family of rules that give an induc-
tive description of the relation. Unfortunately it is ca-
pable of defining only a single relation, not a mutu-
ally recursive family of such relations. Therefore for
phrase classes that form a nested or mutually recur-
sive group, and thus have evaluation relations defined
by mutual recursion, we must do the corresponding
job by hand. For example, the phrase classes strezp,
strdec and strbind form a mutually recursive group.
To define their evaluation relations, we first define an
evaluation-relation predicate for the group. This predi-
cate, ModML _eval _structures_pred is defined over pos-
sible evaluation relations for the three phrase classes,
and is true if the possible evaluation relations satisfy all
the rules for evaluating the three phrase classes. Then
we define each evaluation relation as the logical intersec-
tion of all relations that satisfy the evaluation-relation
predicate. For example, the evaluation relation for str-
ezp is defined as (simplified):

eval_strexp strexp:strexp B:basis E:env =
V e_strexp e_strdec e_strbind.
ModML_eval structures_pred
e_strexp e strdec e_strbind =
e_strexp strexp B E

Defining the evaluation relations in this manner has
the advantage that it gives us an induction principle
for proving facts about them. The last thing we do is
to prove that each evaluation relation satisfies the ap-
propriate evaluation-relation predicate. HOL provides
us with a number of built-in tactics (SML functions
which operate on proof goals) for doing proofs and tac-
ticals for composing tactics into SML functions which

-~ v -~ . - PN

STUDYING THE ML MobDULE SysTEM IN HOL 5

embody powerful proof strategies. To prove the above
property, and also to derive the induction principles,
we used two tactics which were a concise composition
of built-in tactics parameterised by the definitions.

3. HIGHER ORDER FUNCTORS

It has been proposed (Section 8.5 of [5], [1]) to extend
SML by allowing functors to take functors as arguments
and to be declared within structures (and therefore to
be specified in signatures). A possible static semantics
[1] has been outlined for these “higher-order” functors.
Here we use HOL to work out what the dynamic se-
mantics of this extension should be, and then to explore
the relationship between the extended system and the
original system. For readability we present the new se-
mantics in the informal notation used in the Definition,
but we should like to stress that this semantics was de-
veloped within HOL.

Syntax In deciding upon a syntax for the extended
language, we have been motivated by the desire to make
it easy to define the relationship between the extension
and the original language. We made no changes to the
Core language. Changes to the grammar of the Module
system are listed in Fig. 4 and explained here.

Structure expressions (strezp) We now have long fu-
nids, referring to functors declared within structures,
and we can apply these to form new structures.

Module declarations (moddec) Functor declarations
are now to be treated as a special kind of struc-
ture declaration, so to support this we amalgamate
these two phrase classes into a new class of module
declarations. There exists a Core SML declaration
(open) by which the variable and structure declara-
tions within a structure can be exposed to the top
level. When we extend to higher-order functors we
choose to keep this syntax with its original semantics
— which means that it does not expose the functors
within a structure. To allow these to be exposed we
add a module level declaration, OPENmoddec which
exposes all variable, structure, and functor bindings.

Specifications (spec) Functors can now be specified
in signatures. This is done by giving a funid for the
whole functor, a strid and signature for the input
structure, and a signature for the output structure.

Functor bindings (funbind) It seems to be an omis-
sion in the SML grammar that no syntax is supplied
for rebinding a functor to another functor identifier.
We remedy this since we think this is a useful lan-
guage feature, as it can be used to give top-level
names to functors declared within structures, and to
rebind functors passed through a functor’s parame-
ter.

Top declarations (top) The change here reflects the
fact that structure declarations and functor declara-
tions have been combined.

Semantic objects The main difficulty in deciding
upon semantic objects is determining what environ-
ments should be. As has been mentioned, environ-
ments play a dual role in the dynamic semantics of the
SML Module system. They give the values associated
with long identifiers during the evaluation of Core ex-
pressions, and they are themselves the values returned
by the evaluation of structure expressions. SML struc-
tures contain only structure declarations and Core dec-
larations, and it happens that this is precisely the in-
formation needed for Core evaluation. However, once
we allow functors within structure bodies, the situa-
tion changes. The environment returned by evaluating
a structure now must contain information about the
functors declared within the structure. Core evaluation
has no use for this new information. Therefore, we are
faced with two alternatives: either use environments in
the Core semantics which have excess information, or
define two kinds of environment, one for Core evalua-
tion (the one we already have), and one for structure
values. We decided to take the second option in this
paper, but in future work we intend to encode both ap-
proaches and prove that they are essentially the same.

The choice to have two different kinds of environment
has some ramifications. One of these is the need, which
we have noted before, for two different kinds of open
declarations: one which throws away functor informa-
tion (for the Core language) and one which exposes it
(for the Module system). Another consequence is that
we must define how to cut a Module-level environment
down to a Core-level environment to enable the passing
of evaluation between the Module system and the Core.
We shall use the notation E of ME for this function. Its
definition is straightforward. Another straight-forward
function is the lifting of a Core environment to a Module
environment, denoted by F in ModEnv.

The semantic objects for higher-order functors are
those defined in Fig. 5, plus the classes SigEnv, Func-
torClosure and FunEnv which remain unchanged from
Fig. 3, plus the Core semantic objects.

Interfaces (Int) Interfaces are prescriptions for how
to thin the view of a structure. Since structures may
now contain functors, interfaces must now prescribe
how to thin the view of a functor. Therefore they
contain a new component: a functor interface envi-
ronment.

Structure Interface Environments (StrIntEnv)
These are the equivalent of interface environments in
SML. We have renamed them to reflect their func-
tion in the semantics of higher-order functors.

Functor Interface Environments (FunIntEnv)
These contain interface information to be used in

-~ v -~ . - PN

6 ELsa GuNTER! and Savi MAHARAT?

OPENmoddec longstrid; - - -longstrid, (n > 1) | EMPTYmoddec | SEQmoddec moddec moddec |

strexp = (as in Fig. 1) | APPstrexp longfunid strezp | (as in Fig. 1)

moddec = DECmoddec dec | STRUCTUREmoddec strbind | LOCALmoddec moddec moddec |
FUNCTORmoddec funbind

spec u= (asin Fig. 1) | FUNCTORspec funid strid sigezp sigezp

funbind = (asin Fig. 1) | REBINDfunbind funid longfunid

top 2= MODDEC moddec | SIGDEC sigdec

FIGURE 4.

I€¢ Int = FunIntEnv X StrIntEnv X Fin(var)

SIE ¢ StrIntEnv = strid 52 Int
FIE €¢ FunlntEnv = funid 58 Tnt
IB € IntBasis = FunIntEnv x SigEnv x StrIntEnv
MF ¢ ModEnv = FunEnv x ModStrEnv x VarEnv
MSE ¢ ModStrEnv = strid ﬁ—“) ModEnv
B ¢ Basis = SigEnv x ModEnv

FIGURE 5.

thinning functors. The nature of this information is
discussed at length later.

Interface Bases (IntBasis) These now have a new
component: a functor interface environment.

Module-level environments (ModEnv) These are
the environments obtained as the result of evaluat-
ing structures. Since structures can contain functors,
these environments contain a functor environment
(FunEnv) component. In the rest of this paper we
will refer to these objects as “environments” unless
there is a possibility of confusion with Core-level en-
vironments.

Module-level structure environments (Mod-
StrEnv) These are the Module-level counterparts of
the Core-level structure environments (StrEnv).

Bases (Basis) Bases no longer need to contain a sepa-
rate functor environment since this has been moved
into the ModEnv component.

Functions on semantic objects Most of the pro-
jection, injection, and modification functions on the
new semantic objects can be defined by straightforward
changes to the corresponding functions in the SML se-
mantics. Here we describe those functions that are sig-
nificantly different:

Extracting interfaces Interfaces and environ-
ments now contain information about functors, so we
must change the definition of Inter which extracts an
interface from an environment. The new definition is as

follows:
Inter (FE, MSE, VE) = (FIE, SIE, domain VE)
where

FIE = {funid — Inter_funclos FC ;
FE (funid) = FC}

Abstract syntax for higher-order functors (additions and changes)

Semantic objects for higher-order functors (additions and changes)

and, as before,
SIE = {strid — Inter ME ; MSE (strid) = ME}

This is fine, except that we have not defined In-
ter_funclos yet. Inter_funclos is a significant complica-
tion that arises in the dynamic semantics of the higher-
order Module system but is not present in the orig-
inal system. Inter_funclos extracts interface informa-
tion from a functor closure. For reasons we will explain
later, the only interface information that is required for
a functor is the interface of its output structure. If the
functor closure is explicitly constrained (i.e., it arose
from a functor that was provided with an output sig-
nature), then Inter_funclos returns the supplied output
interface. However, if the original functor was uncon-
strained, then an output interface must be calculated
from the structure expression that forms the body of
the functor. This means we must define how to ex-
tract an interface from an arbitrary structure expres-
sion. Now we are on a slippery slope, because struc-
ture expressions can contain every other category in
the grammar, except top declarations. Therefore, we
must define the contribution of each grammatical cat-
egory (except top declarations) to interfaces. Making
these definitions is long and tedious, and we omit any
further discussion of how it is done. It is worth com-
menting that using automated assistance to type-check
the terms in our definitions and to warn us of any cases
we had missed did speed the process of making the def-
initions and increased our confidence that we had made
them correctly.

This complication does not arise in the SML mod-
ules system because environments there do not contain
functor closures, and hence do not contain structure ex-
pressions.

Let us reflect for a moment on which feature of the
language necessitates the function Inter and all the

. L~ -

-~ v -~ . - PN

STUDYING THE ML MobDULE SysTEM IN HOL 7

other interface-extraction functions it requires. An in-
terface is the semantic equivalent of a signature expres-
sion. An environment is the semantic equivalent of a
structure expression. So when do we syntactically ex-
press the act of turning a structure into a signature?
This occurs when we open a structure within a signa-
ture (viz. OPENspec). This is intended to add the sig-
nature of the structure to the signature containing the
OPENspec. One might reasonably ask if this is a desir-
able language feature. However, this language feature
is clearly present in the Definition, so we felt we would
not be carrying out the task of extending the specifica-
tion if we chose to omit it.

Thinning environments Interfaces become more
complicated in the setting of higher-order Modules be-
cause they must contain information concerning how to
thin the view of a functor. In Fig. 5 we defined inter-
faces but did not explain how we decided what their
functor components should be. We do so here.

Functor closures are thinned by functor specifications
(i.e. specs of the form FUNCTORspec funid strid sig-
ezp sigezp). Functor specifications provide us with two
interfaces (signatures): one describing the input taken
by a functor and another describing the structure pro-
duced by a functor. We must decide when thinning a
functor, whether, for each of the interfaces, we should
keep keep the old view or use the given interface to ob-
tain a new view. The first choice is whether to replace
the first interface of the functor closure by the (larger)
first interface of the functor specification or use its exist-
ing interface. If we choose to replace the first interface
with the first one in the functor specification, this has
the effect of guaranteeing that the functor body will
recelve a larger environment with more bindings from
its input structure. This means that when the functor
body is evaluated, more values will be looked up in the
input environment. The second choice is whether to re-
place the second interface of the functor closure by the
(smaller) second interface of the functor specification.
When functors thinned in this manner are applied, the
resulting environment will have fewer components than
those produced by applying the unthinned versions.

We believe that in the first instance the right choice
is to use the existing the interface, whereas in the sec-
ond instance the right choice is to replace the interface.
Replacing the first interface can result in the wrong en-
vironment being used for final computations. Consider
the example below, in which we use a possible concrete
syntax to improve readability.

val x = b
functor F(I:sig end) =
struct open I val z = x end
signature SIG =
sig functor F(I:sig val x : int end)
: sig val z:int end

end
structure A& = struct functor F = F end
structure B:SIG = A
structure I = struct val x = 6 end
structure A1 = A.F(I)
structure A2 = B.F(I)
val test = (Al.z = A2.z)

If we replace the orginal input interface by the one given
by the thinning signature, we find that A1.z = 5 and
A2.z = 6, when it should be the case that A1l.z =5 =
A2.z. For computing z, F requires the x in the top-level
environment be used, and this should remain the case
if we subsequently thin F. Thinning should change only
the visibility of identifiers, not the underlying computa-
tions, and hence not the environments used for identi-
fier lookup. If we keep the orginal input interface, both
A1.z and A2.z would have the value 5, as expected.

We therefore chose to record in the functor interface
only the second (i.e. output) interface provided by a
functor specification, and to thin functor closures by
replacing only their output interfaces. Here is the defi-
nition of how to thin an environment:

(FE, MSE, VE) | (FIE, SIE, vars) =
(FE', MSE', VE')

where

FE' = { funid — ((strid, I), (strezp, I3), B) ;
FE (funid) = ((strid, I), (strezp, I), B) and
FIE (funid) = I }

and, as in SML,

MSE' = {strid— ME|I ; MSE (strid) = ME and
SIE (strid) = 1}

and VE' is obtained by restricting the domain of VE
to vars.

Evaluation In general we obtain the evaluation rules
for the new language by modifying the rules of SML to
work with the new semantic objects and functions in
the obvious way. Many of the changes are trivial and
we shall not describe them here. We must also add new
rules to deal with the syntax we have added and make
significant changes to some other rules. We list these in
Fig. 6 and explain their meanings here, giving pointers
to relevant rules in the Definition for readers who have
access to a copy.

1. This rule defines how to evaluate the application of
a longfunid to a strezp. [Replaces rule 162.]

2. This rule shows how to evaluate a Core declaration in
a basis B: we must first extract a Core environment
from B, use this to evaluate the declaration, and
then lift the resulting Core environment to a Module
environment for the final result. [Replaces rule 164.]

. L~ -

-~ v -~ . - PN

8 ELsa GuNTER! and Savi MAHARAT?

3. This rule gives the semantics of the Module-level
open declaration. [Insert after rule 166.]

4. This rule shows how to evaluate a functor declaration
as a specific instance of a module declaration. [Insert
after rule 168.]

5. This rule describes how to evaluate a functor speci-
fication. [Insert after rule 183].

6. This rule gives the semantics of rebinding a functor
to a new identifier. [Insert after rule 187.]

Encoding higher-order functors We encode the
new semantics into HOL by the same techniques used
to encode the semantics of SML Modules. The encod-
ing is called HOF-ML. Some of the new phrase classes
and semantic objects are identical to the old ones, so for
these we simply re-use the types used to encode these in
Mod-ML. Some types have to be redefined despite be-
ing apparently unchanged, because they happen to be
in mutual recursion with a type that has been changed.
We distinguish the names of the HOF-ML constructors
and types that have been redefined by appending _h to
them. Thus, for example, the type representing HOF-
ML structure descriptions is strdesc_h with construc-
tor STRIDstrdesc_h. We do this because we want to
have both Mod-ML and HOF-ML present in HOL to-
gether so that we can prove theorems about the rela-
tionship between them.

4. RELATING THE TWO SEMANTICS

So far we have described the encoding of two possible
Module systems to extend the Core language of SML.
But what is the rigorous connection between them? It
is our claim that the system specified by HOF-ML is a
conservative extension of the system specified by Mod-
ML (and the Definition).

Before we can discuss how to prove such a result, we
must state exactly what we are trying to prove. Re-
call that top declarations are evaluated within a ba-
sis to produce another basis. We want to prove that
there is a function embed_top mapping top declarations
of Mod-ML into top declarations of HOF-ML, a func-
tion embed basis mapping Mod-ML bases into HOF-
ML bases, and a function proj_basis_h mapping HOF-
ML bases back to Mod-ML bases, such that both of the
following conditions hold:

® For every top declaration top and pair of bases B
and By of Mod-ML,

eval_top top By Boy
holds if and only if

eval top.h (embed_top top) (embed basis Bj)
(embed basis Bs)

also holds.

® For each basis B and top declaration top of Mod-ML,
and basis By, of HOF-ML, if

eval top.h (embed_top top) (embed basis B) By
holds, then

eval_top top B (proj_basis_h By)
also holds.

Informally, the first condition says that an evaluation
performed in Mod-ML is still valid when translated into
HOF-ML. The second condition states that to evaluate
a top declaration of Mod-ML, it suffices to translate into
HOF-ML, evaluate there and translate the result back.
This statement of conservative extension focuses on top
declarations and bases. However, just to define the
functions embed _top, embed basis, and proj_basis.h,
we need to define the corresponding functions for all cat-
egories of syntax and semantics in Mod-ML and HOF-
ML.

Embedding Mod-ML in HOF-ML Embedding
the syntax of Mod-ML into that of HOF-ML is gen-
erally straightforward. Some phrase classes, such as
identifiers are embedded by the identity function since
they are represented by the same HOL types in both
Mod-ML and HOF-ML. We give the flavour of the em-
bedding by showing three of the clauses for Mod-ML
structure expressions, declarations and bindings:

embed_strexp (STRUCTstrexp strdec) =
STRUCTstrexp_h (embed_strdec strdec)
embed_strdec (STRUCTUREstrdec strbind) =
STRUCTUREmoddec_h (embed_strbind strbind)
embed_strbind (BINDstrbind strid strexp) =
BINDstrbind_h strid (embed_strexp strexp)

The only clause whose embedding is not trivial is
APPstrexp. There the functor identifier that is applied
must be lifted to a long functor identifier. Both functor
and structure declarations are mapped to the appropri-
ate kinds of HOF-ML Module declarations. Similarly,
top-level functor declarations must be mapped to top-
level Module declarations. The embeddings are trivial
for all other cases. Defining an embedding of the se-
mantic objects of Mod-ML into those of HOF-ML is
also easy.

Projecting HOF-ML back to Mod-ML It might
appear that we only need to project the semantic ob-
jects of HOF-ML into Mod-ML, and can forget about
the syntax, since the conservativity result only uses the
projection of semantic objects (bases, to be precise).
Unfortunately, this is not so. To project bases we need
to project functor environments, and hence functor clo-
sures. To project functor closures we need to project
structure expressions — syntax. With the exception of
this dependency, the definition of the projection func-
tions for the semantic objects is straightforward. The
only complication is that when we project a basis we

-~ v -~ . - PN

STUDYING THE ML MobDULE SysTEM IN HOL 9

Bt strezp = ME/p‘

B (longfunid) = (strid : I, strezp’(: I'}, B')

B |- strezp = ME,

B' + {strid — ME{|I} | strezp’ = ME,

Bt longfunid(strezp) = ME2{([I") (1)

‘B F moddec = ME/p‘

E of (ME of B) - dec = E'

2
Bt dec = E' in Modenv (2)

‘B F moddec = ME/p‘

B(longstrid,) = ME, ---

B(longstrid,)) = ME,

B |- open longstrid, --- longstrid, = ME,+---+ ME, (3)

‘B F moddec = ME/p‘

B | funbind = FE

B | functor funbind = FFE in ModEnv

IB &~ spec => 1

IB |- sigezp = I

IB + {strid — I } - sigezp' = I,

IB |+ functor funid(strid:sigezp):sigezp’ = {funid — I} in Int

| B - funbind = FE|

B (longfunid) = funclos

B F funid = longfunid = {funid — funclos} (6)

FIGURE 6. Evaluation rules for higher-order functors

must first pull the environment it contains into its con-
stituent parts to access the functor environment and the
structure environment and project them to acquire the
corresponding components of a basis in Mod-ML.

We do not need to project all HOF-ML syntax back
into Mod-ML; we only need those syntax classes that
can be involved in bases. This simplifies the process
somewhat. In particular, we never actually have to
project functor declarations back to Mod-ML, because
any functor declaration occurring in an HOF-ML basis
came from a functor declaration internal to a structure
expression, and therefore cannot correspond to any-
thing in Mod-ML. It is fortunate that we may ignore
functor declarations, for if we had to project them,
we would have to deal with the fact that embeddings
of sequences of empty functor declarations are indis-
tinguishable from embeddings of sequences of empty
structure declarations. This problem does not arise for
us. All projection functions that we actually need have
straightforward definitions.

Throughout the definitions of the embedding and
projection functions, just as with the functions for ex-
tracting interfaces, we relied heavily on the package for
nested mutually recursive types, and its support for gen-
erating definitions for functions from mutually recursive
specifications over those types.

Proving Conservativity Although the result relat-
ing the evaluation of top declarations in the two Module

systems mentioned above is our main statement of con-
servative extension, in order to prove it we need to prove
corresponding results for all layers of the evaluation re-
lations. In the formal proof, we simplified the process
by first showing the corresponding results for signature
expressions, descriptions, and specifications, and then
working up through the syntax classes.

To further simplify the process, we show each of the
two parts of the main conservativity theorem separately.
Moreover, we split the first condition into the two halves
of the equivalence, and we use the second condition to
show the second half of the first condition.

The forward half of the first condition follows in a
straightforward manner from the induction principles
for the evaluation rules in Mod-ML and from the rules
themselves, once we have proved a large number of easy
lemmas stating that the embedding functions commute
with the semantic operations such as identifier lookup
and function update.

To prove the second condition, we must first coerce
it into a form suitable for use with the induction princi-
ples for evaluation in HOF-ML. For example, the second
condition for the syntax class top becomes:

V top-h By By . eval top.h toph By By =
V top B. ((top.h = embed_top top) A
(By, = embed basis B)) =
eval top top B (proj.basish By)

Once we perform this transformation, we can apply the
induction principle to reduce the problem to showing

. L~ -

-~ v -~ . - PN

10 ELsa GuNTER! and Savi MAHARAT?

that the conclusion of the resulting implication holds for
all the evaluation rules. Unfortunately, this result does
not follow from induction; we need to prove a stronger
result. In order to show the previous result, it turns out
that we need to know that the result of embedding the
projected value is the same as the original value before
projection. This is not true in general, but happens
to be true of the results of evaluations of expressions
embedded from Mod-ML. This fact must be added to
the conclusion of the second condition before we can
proceed by induction. Thus, the second condition is
transformed to
V toph By Bp.eval toph toph By By =
V top B. ((top-h = embed_top top) A
(B, = embed basis B)) =
(embed basis (proj-basish By)=B}) A
(eval_top top B (proj.-basis.h By))

It was non-trivial to prove that embedding the result of
projecting such a value yields the same value.

Finally, to prove the second half of the first condition
from the second condition, it suffices to show that, if
we embed a basis and then project, we end up where
we started. It is too much to expect that such a result
would hold for the entirety of Mod-ML, since empty
structure declarations and empty functor declarations
both get mapped to empty module declarations. How-
ever, the result holds for all the syntax and semantic
classes involved in the range of the projection functions
used in the statement of conservativity.

To show all the results discussed above, we have vari-
ous tools at our disposal, including structural induction
and case analysis over both the syntax and the seman-
tics; rewriting with theorems that state the distinctness
of all the constructors; rewriting with the equations that
give the recursive “definitions” of the embedding and
projection functions, the functions for extracting inter-
faces, etc. Moreover, by proving the results in a bottom-
up fashion, starting with the earliest syntax classes, we
have the results for these classes at our disposal when
proving the later results.

While there is a great deal of regularity involved in
carrying out the proofs of the different layers of the first
half of the first condition, it is not apparent at present
that we could write a general-purpose tactic that would
automatically prove all of them. Each case seems to
have just enough that is distinct about it to require in-
teractive guidance. The second condition has a fairly
involved proof and we can see no way to develop a
general-purpose tactic to prove results of that kind.

5. CONCLUSION

We have described how we used the HOL theorem
prover to specify the dynamic aspects of a higher-order
Module system for SML, and then to relate it to the
SML Module system specification. It is our belief that
this task is too large to be easily managed by hand,

the Definition notwithstanding. Using the expressive-
ness of HOL, the packages built into it, and packages
we added to it, we were able to formulate the spec-
ification with the theorem prover as fast or possibly
faster than we could do it by hand. Moreover, we have
received some assurances that our specification makes
sense from the type-checking of the terms, the checks
that no clauses were omitted from our function defini-
tions, and other checks that were performed automati-
cally by HOL. Most importantly, by encoding the speci-
fication in a theorem prover, we are now able to formally
prove facts about the specification and about programs
written in complying implementations.

Not only did we receive benefits from the theorem
prover, but the theorem prover also received benefits
from us. The specification task has motivated us to im-
prove HOL’s handling of mutually recursive types, and
to write a general-purpose package for defining mutually
recursive families of relations and deriving the appro-
priate induction principles. All of these benefits were
made possible by the combination in HOL of an ex-
pressive language in which much general mathematics
can be developed, with an open yet secure system which
allows users to develop theorem-proving methodologies
to suit their particular needs.

REFERENCES

[1] MacQueen, D.B. and Tofte, M. (1994) A Semantics for
Higher-Order Functors. In: European Symposium on
Programming, 1994. Springer-Verlag.

[2] Gordon, M.J.C. and Melham, T. (1993) Introduction to
HOL. Cambridge University Press.

[3] Kahn, G. Natural semantics. In Proceedings of the
Symposium on Theoretical Aspects of Computer Sci-
ence, pages 22-39. Springer-Verlag, 1987.

[4] Melham, T.F. (1992) A Package for Inductive Relation
Definitions in HOL. In: Proceedings of the 1991 Inter-
national Workshop on the HOL Theorem Proving Sys-
tem and its Applications IEEE Computer Society Press.
Pages 350-357.

[5] Milner, R. and Tofte, M. (1991) Commentary on Stan-
dard ML. The MIT Press, Cambridge, Mass.

[6] Milner, R. and Tofte, M. and Harper, R. (1990) The
Definition of Standard ML. The MIT Press, Cambridge,
Mass.

[7] Slind, K. An implementation of higher order logic.
Master’s thesis, University of Calgary, Department of
Computer Science, December 1990.

[8] Syme, D. Reasoning with the formal definition of Stan-
dard ML in HOL. In Higher Order Logic Theorem
Proving and Its Applications,Lecture Notes in Com-
puter Science 780, pages 43—60. Springer-Verlag, Febru-
ary 1994.

[9] VanInwegen, M. and Gunter, E. (1994) HOL-ML.
ibid. pages 61-73.

. L~ -

-~ v -~ . - PN

