
Studying the ML Module System in HOLElsa Gunter1 and Savi Maharaj21AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, N.J. 07974, USA. email: elsa@research.att.com2LFCS, University of Edinburgh, Edinburgh EH9 3JZ, UK. email: svm@dcs.ed.ac.ukIn an earlier project [9] the dynamic semantics of the Core of Standard ML (SML)was encoded in the HOL theorem-prover. We extend this by adding the dynamicModule system. We then develop a possible dynamic semantics for a Modulesystem with higher-order functors and encode this as well. Next we relate thesetwo semantics via embeddings and projections and discuss how we can use theseto prove that evaluation in the proposed system is a conservative extension, in anappropriate sense, of evaluation in the SML Module system.1. INTRODUCTIONThis paper describes an application of the HOLtheorem-prover [2, 7] to the problem of reasoning aboutthe semantics of a programming language. The lan-guage in question is Standard ML (SML), which con-sists of a strongly-typed, higher-order, functional pro-gramming language (with some imperative constructs),plus a system of modules which allow structuring andinformation hiding. We shall refer to these two partsas the Core and the Modules, respectively. SML is par-ticularly suitable for our purpose because it has beengiven a concise formal semantics [6]. This semantics ispresented in a Natural Semantics style [3] which makesit relatively easy to reason about it mathematically andto translate it into a mathematical formalism such asthe language of HOL. The size of SML | for examplethe number of di�erent phrase classes in its grammar,and the number of inference rules in its operational se-mantics | means that there is a great advantage tobe gained in the use of a theorem prover for automat-ing the tedious inductive proofs of the properties of thelanguage.The semantics of SML is given in The De�nition ofStandard ML [6], which we shall refer to as the De�ni-tion. It is divided into four parts, giving the static andthen the dynamic semantics of �rst the Core and thenthe Modules. Roughly speaking, static semantics con-cerns well-typedness and certain well-formedness con-straints for modules, while dynamic semantics concernsthe evaluation of terms under the assumption that staticproperties have already been checked.We make use of earlier work [9] by Myra VanInwegenand Elsa Gunter who encoded the dynamic semantics ofCore SML in HOL and then formally veri�ed the factthat dynamic evaluation is deterministic. (A similarproject carried out by Donald Syme [8] could conceiv-ably have been used instead.) The encoding is done viade�nitions and derived properties, as opposed to using

an axiomatisation. This approach necessitates the useof a theorem prover with a higher-order language, butwas chosen because it provides induction principles |powerful tools for proving meta-theoretic properties ofthe semantics as a whole. (Instead of only being able toprove consequences of individual inference rules, we canalso show properties such as determinism that concernthe totality of the inference rules.) These can then beused to prove facts about evaluation that could not beproved otherwise. Examples of these are negative factssuch as that certain expressions do not evaluate. Ourapproach also has the advantage that it automaticallypreserves the consistency of the logic, i.e. it does notintroduce the possibility of proving a false statement,whereas the axiomatic approach requires special princi-ples for the particular extensions desired.In our project we build upon the previous work byadding the dynamic semantics of the SML Module sys-tem. We then propose a speculative dynamic semanticsfor an extension of SML with higher-order functors. Afunctor, in SML, is a parameterised program module,whose parameter is a non-parameterised module calleda structure. The point of the extension is to allow func-tors to take other functors as arguments. Work has beendone on the (considerably more complicated) static se-mantics of this extension [1] but, to the best of ourknowledge, this is the �rst time a dynamic semanticshas been written down. By presenting this semanticswithin a theorem prover we gain assistance in provingtheorems that give con�dence in the proposed seman-tics. Such theorems include that the extended Modulesystem is, in a sense which we shall de�ne, a conser-vative extension of the original system. To clarify thepresentation in this paper we shall use a simpli�ed ver-sion of SML in which we omit, among other things, theconstructs for dealing with persistent state and withexceptions for error handling. However, in the formalencoding we treat the full language.In Section 2 we describe the fragments of SML syn-The Computer Journal, Vol. 36, No. 5, 1993

2 Elsa Gunter1 and Savi Maharaj2tax and semantics concerned with dynamic evaluationof Modules, and discuss the way in which we representthese in HOL. In Section 3 we present our proposed ex-tended Module system and discuss various issues thatarise in deciding upon a semantics for this system. Wethen describe the HOL encoding of the extended sys-tem. In Section 4 we discuss how to state and provethat the proposed system is a conservative extensionof Modules. Finally we give our concluding remarks inSection 5..2. MOD-MLBasic Components of the De�nitionThe constructs which make up the SML Module sys-tem are called structures, signatures, and functors. Astructure is a code module: it encapsulates a sequenceof declarations of variables or other structures. Theidenti�ers declared inside a structure can be referredto from outside by use of long identi�ers, e.g. S.x.Fig. 1. shows a small structure S which contains a vari-able x and an structure SS. Signatures are speci�cationsor views of structures. New structures can be formedby using signatures to form smaller versions (i.e. hav-ing fewer components) of existing structures, a processcalled thinning. In the �gure, S is thinned by the sig-nature SIG to produce a smaller structure T containingonly x. A functor is a parameterised structure, whoseparameter is speci�ed by a signature. The output of afunctor may optionally be constrained by a signature,as in Fig. 1. Functors may be applied to structures toform new structures.Syntax The dynamic semantics uses a reduced syn-tax for SML in which information that is not relevantto evaluation has been removed. An abbreviated list-ing of the abstract syntax classes for Modules includethose for the Core and is shown in Fig. 2. Structures(strexp,� � �,strbind) can contain Core declarations andstructure declarations and can be built up from otherstructures and functors (through application) in vari-ous ways. Signatures (valdesc, � � �, sigdec) can spec-ify values and structures and can be formed in severalways, including extracting the signatures from a list ofstructures (OPENspec). Functors (funbind, fundec) arede�ned by binding a functor identi�er to a structureidenti�er and signature, which together specify the in-put to the functor, an optional output signature (in the�gure, optional syntactic elements are enclosed withinangle brackets), structure expression which makes upthe functor body.Semantic objects The De�nition gives the mean-ings of programs of the Module system in terms of se-mantic objects which we show in Fig. 3. The notation

Fin(X) and X �n! Y is used for �nite subsets and �-nite functions, respectively. Top declarations are evalu-ated with respect to a basis, which contains informationabout previously declared modules. The result of theevaluation is itself a new basis. Structure declarationsevaluate to give environments (Env) which contain in-formation about the variables and structures containedin the declared structure. Coincidentally, these envi-ronments are the same as those used in Core evalua-tion (the structure information is needed to evaluatelong identi�ers). Signature bodies (Spec) are evaluatedto interfaces (Int) which contain information needed tolater thin structures to �t the signature. This includesthe names of variables and the internal interface envi-ronment. A functor is evaluated to a functor closureconsisting of an identi�er and interface for the functorargument, an interface for thinning the output if sup-plied, the structure expression that comprises the func-tor body, and a copy of the basis in which applicationsof the functor are to be evaluated.Functions on the semantic objects The semanticsmakes use of various auxiliary functions which operateupon the semantic objects. These include functions forlooking up identi�ers in the various environments andbases, written as e.g. G(sigid); projecting the compo-nents of semantic objects, denoted by e.g. E of B ; in-jecting objects as components of larger objects, writtenas e.g. E in Basis, which denotes the basis (fg; fg; E);updating environments and bases, written as e.g. G+ fsigid 7! Ig. Functions are lifted in the obvious wayto operate on larger objects which contain the domainof the function as a component. For example, one canlook up signature identi�ers in bases by looking themup in the SigEnv component.The semantics of OPENspec, which allows a signa-ture to be formed by extracting the signatures from alist of structures, demands a special function to performthis extraction. The structures are evaluated to produceenvironments, and then from each environment we mustextract an interface. This is done by the function Inter: Env ! Int de�ned as:Inter (SE,VE) = (IE , domain VE)where IE = fstrid 7! Inter E ; SE (strid) = Eg.That is, for structure environments, the interface we ex-tract is the set of mappings from the strids they containto interfaces for the envs they associate with the strids.For variable environments the extracted interfaces arejust the sets of identi�ers they contain.Another important function, #: Env � Int ! Env,thins an environment to �t a given interface. This isneeded whenever a signature is explicitly given to astructure. It is de�ned by:The Computer Journal, Vol. 36, No. 5, 1993

Studying the ML Module System in HOL 3structure S = struct val x = 6 structure SS = struct end endsignature SIG = sig val x : int endstructure T:SIG = Sfunctor F (Arg:SIG):SIG = struct val x = Arg.x endstructure U = F(S) FIGURE 1. SML Module system examplesvar ::= VAR string variable (Core)dec ::= (omitted) declaration (Core)strid ::= STRID string structure identi�er (Core)longvar ::= strid1.� � �.stridn.var (n � 0) long variable (Core)longstrid ::= strid1.� � �.stridn.strid (n � 0) long structure identi�er (Core)sigid ::= SIGID string signature identi�erfunid ::= FUNID string functor identi�erstrexp ::= STRUCTstrexp strdec | structure expressionLONGSTRIDstrexp longstrid |APPstrexp funid strexp |LETstrexp strdec strexpstrdec ::= DECstrdec dec | structure declarationSTRUCTUREstrdec strbindLOCALstrdec strdec strdec |EMPTYstrdec |SEQstrdec strdec strdecstrbind ::= BINDstrbind strid hsigexpi strexp hstrbindi structure bindingvaldesc ::= VARvaldesc var value descriptionstrdesc ::= STRIDstrdesc strid sigexp structure descriptionspec ::= VALspec valdesc | speci�cationSTRUCTUREspec strdesc |LOCALspec spec spec |OPENspec longstrid1 � � � longstridn (n � 1) |INCLUDEspec sigid1 � � � sigidn (n � 1) |EMPTYspec | SEQspec spec specsigexp ::= SIGsigexp spec | SIGIDsigexp sigid signature expressionsigbind ::= BINDsigbind sigid sigexp hsigbindi signature bindingsigdec ::= SIGNATUREsigdec sigbind | signature declarationEMPTYsigdec |SEQsigdec sigdec sigdecfunbind ::= BINDfunbind funid strid sigexp hsigexpi strexp hfunbindi functor bindingfundec ::= FUNCTORfundec funbind | functor declarationEMPTYfundecSEQfundec fundec fundectop ::= STRDEC strdec | SIGDEC sigdec | FUNDEC fundec top declarationFIGURE 2. Modules abstract syntaxE 2 Env = StrEnv � VarEnv environment (Core)SE 2 StrEnv = strid �n! Env structure env. (Core)VE 2 VarEnv = var �n! Val value environment (Core)v 2 Val = (omitted) value (Core)I 2 Int = IntEnv � Fin(var) interfaceIE 2 IntEnv = strid �n! Int interface environmentG 2 SigEnv = sigid �n! Int signature environmentIB 2 IntBasis = SigEnv � IntEnv interface basisFC 2 FunctorClosure = (strid � Int) � (strexp h� Inti) � Basis functor closureFE 2 FunEnv = funid �n! FunctorClosure functor environmentB 2 Basis = FunEnv � SigEnv � Env basisFIGURE 3. Modules semantic objectsThe Computer Journal, Vol. 36, No. 5, 1993

4 Elsa Gunter1 and Savi Maharaj2(SE,VE) # (IE,vars) = (SE 0,VE 0)whereSE 0 = fstrid 7! E # I ; SE (strid) = E andIE (strid) = I gand VE 0 is formed by restricting the domain of VE tovars.The evaluation relations The main part of the se-mantics consists of inference rules that de�ne evaluationrelations by which the phrase classes are related to thesemantic objects. We shall not give these in detail here.Encoding the Semantics in HOLWe encode the semantics of the Module system in HOLand call the resulting package of de�nitions Mod-ML.We shall write the names of Mod-ML types and termsin teletype font. Mod-ML is an extension of the sys-tem HOL-ML [9] which is an encoding of the dynamicsemantics of a large subset of the Core language of SML(reals and I/O were omitted). The whole of HOL-MLmust be loaded into HOL in order for Mod-ML to beloaded.Syntax The logic supported by the HOL system con-tains an extensible system of types. We added newtypes to this collection to represent each of the Mod-ules phrase classes. First we separated out the phraseclasses into groups whose members happen to be mutu-ally recursive with each other. By de�ning these groupsseparately so as to avoid unnecessary mutual recursionamong the types we were able to simplify the presenta-tion of our de�nitions, theorems and inductive proofs.Next, to make the type de�nitions, we used a packagedeveloped by Elsa Gunter and Healfdene Goguen whichsupports simultaneously mutually recursive and nestedrecursive de�nitions of types. An example of the lat-ter is a pair of mutually recursive types, S and T, say,where one of the constructors of S takes as an argumenta value of type (T list). This package both extends anddepends upon a previous package for mutual recursiondeveloped by Elsa Gunter and Myra VanInwegen and�rst used in the development of HOL-ML.We re-use various techniques developed for HOL-ML: optional arguments to constructors in the gram-mar are encoded by de�ning a polymorphic type 'aoption (here 'a is a HOL type variable) with the con-structors NONE and SOME 'a; the lists of identi�ers usedby OPENspec and INCLUDEspec are represented byde�ning a type 'a nonemptylist. For long identi�erswe de�ne a new type 'a long.

Semantic objects and functions To encode the se-mantic objects we must make choices about the repre-sentation of �nite sets and �nite function spaces. TheHOL system is well supplied with libraries containingde�nitions and theories about useful mathematical ob-jects, including sets, lists, and pairs. To represent �nitesets we use the library's (possibly in�nite) sets, since weare free to add �niteness later as a hypothesis to theo-rems which require it. For �nite functions we use listsof pairs of the appropriate identi�er and value types.When we encode functions that are intended to operateon �nite function spaces we are always careful to ensurethat the lists are maintained in lexicographical order byidenti�ers. Our aim here is to make the list structuretransparent so that we adequately represent �nite func-tions.Evaluation To complete the encoding we de�ne theevaluation relations which say how syntactic terms eval-uate to the appropriate semantic object. For thosephrase classes that form individual recursive types weuse the HOL command new inductive definition tode�ne the evaluation relation. This command de�nesa relation from a family of rules that give an induc-tive description of the relation. Unfortunately it is ca-pable of de�ning only a single relation, not a mutu-ally recursive family of such relations. Therefore forphrase classes that form a nested or mutually recur-sive group, and thus have evaluation relations de�nedby mutual recursion, we must do the correspondingjob by hand. For example, the phrase classes strexp,strdec and strbind form a mutually recursive group.To de�ne their evaluation relations, we �rst de�ne anevaluation-relation predicate for the group. This predi-cate, ModML eval structures pred is de�ned over pos-sible evaluation relations for the three phrase classes,and is true if the possible evaluation relations satisfy allthe rules for evaluating the three phrase classes. Thenwe de�ne each evaluation relation as the logical intersec-tion of all relations that satisfy the evaluation-relationpredicate. For example, the evaluation relation for str-exp is de�ned as (simpli�ed):eval strexp strexp:strexp B:basis E:env =8 e strexp e strdec e strbind.ModML eval structures prede strexp e strdec e strbind)e strexp strexp B EDe�ning the evaluation relations in this manner hasthe advantage that it gives us an induction principlefor proving facts about them. The last thing we do isto prove that each evaluation relation satis�es the ap-propriate evaluation-relation predicate. HOL providesus with a number of built-in tactics (SML functionswhich operate on proof goals) for doing proofs and tac-ticals for composing tactics into SML functions whichThe Computer Journal, Vol. 36, No. 5, 1993

Studying the ML Module System in HOL 5embody powerful proof strategies. To prove the aboveproperty, and also to derive the induction principles,we used two tactics which were a concise compositionof built-in tactics parameterised by the de�nitions.3. HIGHER ORDER FUNCTORSIt has been proposed (Section 8.5 of [5], [1]) to extendSML by allowing functors to take functors as argumentsand to be declared within structures (and therefore tobe speci�ed in signatures). A possible static semantics[1] has been outlined for these \higher-order" functors.Here we use HOL to work out what the dynamic se-mantics of this extension should be, and then to explorethe relationship between the extended system and theoriginal system. For readability we present the new se-mantics in the informal notation used in the De�nition,but we should like to stress that this semantics was de-veloped within HOL.Syntax In deciding upon a syntax for the extendedlanguage, we have been motivated by the desire to makeit easy to de�ne the relationship between the extensionand the original language. We made no changes to theCore language. Changes to the grammar of the Modulesystem are listed in Fig. 4 and explained here.Structure expressions (strexp) We now have long fu-nids, referring to functors declared within structures,and we can apply these to form new structures.Module declarations (moddec) Functor declarationsare now to be treated as a special kind of struc-ture declaration, so to support this we amalgamatethese two phrase classes into a new class of moduledeclarations. There exists a Core SML declaration(open) by which the variable and structure declara-tions within a structure can be exposed to the toplevel. When we extend to higher-order functors wechoose to keep this syntax with its original semantics| which means that it does not expose the functorswithin a structure. To allow these to be exposed weadd a module level declaration, OPENmoddec whichexposes all variable, structure, and functor bindings.Speci�cations (spec) Functors can now be speci�edin signatures. This is done by giving a funid for thewhole functor, a strid and signature for the inputstructure, and a signature for the output structure.Functor bindings (funbind) It seems to be an omis-sion in the SML grammar that no syntax is suppliedfor rebinding a functor to another functor identi�er.We remedy this since we think this is a useful lan-guage feature, as it can be used to give top-levelnames to functors declared within structures, and torebind functors passed through a functor's parame-ter.

Top declarations (top) The change here reects thefact that structure declarations and functor declara-tions have been combined.Semantic objects The main di�culty in decidingupon semantic objects is determining what environ-ments should be. As has been mentioned, environ-ments play a dual role in the dynamic semantics of theSML Module system. They give the values associatedwith long identi�ers during the evaluation of Core ex-pressions, and they are themselves the values returnedby the evaluation of structure expressions. SML struc-tures contain only structure declarations and Core dec-larations, and it happens that this is precisely the in-formation needed for Core evaluation. However, oncewe allow functors within structure bodies, the situa-tion changes. The environment returned by evaluatinga structure now must contain information about thefunctors declared within the structure. Core evaluationhas no use for this new information. Therefore, we arefaced with two alternatives: either use environments inthe Core semantics which have excess information, orde�ne two kinds of environment, one for Core evalua-tion (the one we already have), and one for structurevalues. We decided to take the second option in thispaper, but in future work we intend to encode both ap-proaches and prove that they are essentially the same.The choice to have two di�erent kinds of environmenthas some rami�cations. One of these is the need, whichwe have noted before, for two di�erent kinds of opendeclarations: one which throws away functor informa-tion (for the Core language) and one which exposes it(for the Module system). Another consequence is thatwe must de�ne how to cut a Module-level environmentdown to a Core-level environment to enable the passingof evaluation between the Module system and the Core.We shall use the notation E ofME for this function. Itsde�nition is straightforward. Another straight-forwardfunction is the lifting of a Core environment to a Moduleenvironment, denoted by E in ModEnv.The semantic objects for higher-order functors arethose de�ned in Fig. 5, plus the classes SigEnv, Func-torClosure and FunEnv which remain unchanged fromFig. 3, plus the Core semantic objects.Interfaces (Int) Interfaces are prescriptions for howto thin the view of a structure. Since structures maynow contain functors, interfaces must now prescribehow to thin the view of a functor. Therefore theycontain a new component: a functor interface envi-ronment.Structure Interface Environments (StrIntEnv)These are the equivalent of interface environments inSML. We have renamed them to reect their func-tion in the semantics of higher-order functors.Functor Interface Environments (FunIntEnv)These contain interface information to be used inThe Computer Journal, Vol. 36, No. 5, 1993

6 Elsa Gunter1 and Savi Maharaj2strexp ::= (as in Fig. 1) | APPstrexp longfunid strexp | (as in Fig. 1)moddec ::= DECmoddec dec | STRUCTUREmoddec strbind | LOCALmoddec moddec moddec |OPENmoddec longstrid1 � � �longstridn (n � 1) | EMPTYmoddec | SEQmoddec moddec moddec |FUNCTORmoddec funbindspec ::= (as in Fig. 1) | FUNCTORspec funid strid sigexp sigexpfunbind ::= (as in Fig. 1) | REBINDfunbind funid longfunidtop ::= MODDEC moddec | SIGDEC sigdecFIGURE 4. Abstract syntax for higher-order functors (additions and changes)I 2 Int = FunIntEnv � StrIntEnv � Fin(var)SIE 2 StrIntEnv = strid �n! IntFIE 2 FunIntEnv = funid �n! IntIB 2 IntBasis = FunIntEnv � SigEnv � StrIntEnvME 2 ModEnv = FunEnv � ModStrEnv � VarEnvMSE 2 ModStrEnv = strid �n! ModEnvB 2 Basis = SigEnv � ModEnvFIGURE 5. Semantic objects for higher-order functors (additions and changes)thinning functors. The nature of this information isdiscussed at length later.Interface Bases (IntBasis) These now have a newcomponent: a functor interface environment.Module-level environments (ModEnv) These arethe environments obtained as the result of evaluat-ing structures. Since structures can contain functors,these environments contain a functor environment(FunEnv) component. In the rest of this paper wewill refer to these objects as \environments" unlessthere is a possibility of confusion with Core-level en-vironments.Module-level structure environments (Mod-StrEnv) These are the Module-level counterparts ofthe Core-level structure environments (StrEnv).Bases (Basis) Bases no longer need to contain a sepa-rate functor environment since this has been movedinto the ModEnv component.Functions on semantic objects Most of the pro-jection, injection, and modi�cation functions on thenew semantic objects can be de�ned by straightforwardchanges to the corresponding functions in the SML se-mantics. Here we describe those functions that are sig-ni�cantly di�erent:Extracting interfaces Interfaces and environ-ments now contain information about functors, so wemust change the de�nition of Inter which extracts aninterface from an environment. The new de�nition is asfollows:Inter (FE, MSE, VE) = (FIE, SIE, domain VE)whereFIE = ffunid 7! Inter funclos FC ;FE (funid) = FCg

and, as before,SIE = fstrid 7! Inter ME ; MSE (strid) = MEgThis is �ne, except that we have not de�ned In-ter funclos yet. Inter funclos is a signi�cant complica-tion that arises in the dynamic semantics of the higher-order Module system but is not present in the orig-inal system. Inter funclos extracts interface informa-tion from a functor closure. For reasons we will explainlater, the only interface information that is required fora functor is the interface of its output structure. If thefunctor closure is explicitly constrained (i.e., it arosefrom a functor that was provided with an output sig-nature), then Inter funclos returns the supplied outputinterface. However, if the original functor was uncon-strained, then an output interface must be calculatedfrom the structure expression that forms the body ofthe functor. This means we must de�ne how to ex-tract an interface from an arbitrary structure expres-sion. Now we are on a slippery slope, because struc-ture expressions can contain every other category inthe grammar, except top declarations. Therefore, wemust de�ne the contribution of each grammatical cat-egory (except top declarations) to interfaces. Makingthese de�nitions is long and tedious, and we omit anyfurther discussion of how it is done. It is worth com-menting that using automated assistance to type-checkthe terms in our de�nitions and to warn us of any caseswe had missed did speed the process of making the def-initions and increased our con�dence that we had madethem correctly.This complication does not arise in the SML mod-ules system because environments there do not containfunctor closures, and hence do not contain structure ex-pressions.Let us reect for a moment on which feature of thelanguage necessitates the function Inter and all theThe Computer Journal, Vol. 36, No. 5, 1993

Studying the ML Module System in HOL 7other interface-extraction functions it requires. An in-terface is the semantic equivalent of a signature expres-sion. An environment is the semantic equivalent of astructure expression. So when do we syntactically ex-press the act of turning a structure into a signature?This occurs when we open a structure within a signa-ture (viz. OPENspec). This is intended to add the sig-nature of the structure to the signature containing theOPENspec. One might reasonably ask if this is a desir-able language feature. However, this language featureis clearly present in the De�nition, so we felt we wouldnot be carrying out the task of extending the speci�ca-tion if we chose to omit it.Thinning environments Interfaces become morecomplicated in the setting of higher-order Modules be-cause they must contain information concerning how tothin the view of a functor. In Fig. 5 we de�ned inter-faces but did not explain how we decided what theirfunctor components should be. We do so here.Functor closures are thinned by functor speci�cations(i.e. specs of the form FUNCTORspec funid strid sig-exp sigexp). Functor speci�cations provide us with twointerfaces (signatures): one describing the input takenby a functor and another describing the structure pro-duced by a functor. We must decide when thinning afunctor, whether, for each of the interfaces, we shouldkeep keep the old view or use the given interface to ob-tain a new view. The �rst choice is whether to replacethe �rst interface of the functor closure by the (larger)�rst interface of the functor speci�cation or use its exist-ing interface. If we choose to replace the �rst interfacewith the �rst one in the functor speci�cation, this hasthe e�ect of guaranteeing that the functor body willreceive a larger environment with more bindings fromits input structure. This means that when the functorbody is evaluated, more values will be looked up in theinput environment. The second choice is whether to re-place the second interface of the functor closure by the(smaller) second interface of the functor speci�cation.When functors thinned in this manner are applied, theresulting environment will have fewer components thanthose produced by applying the unthinned versions.We believe that in the �rst instance the right choiceis to use the existing the interface, whereas in the sec-ond instance the right choice is to replace the interface.Replacing the �rst interface can result in the wrong en-vironment being used for �nal computations. Considerthe example below, in which we use a possible concretesyntax to improve readability.val x = 5functor F(I:sig end) =struct open I val z = x endsignature SIG =sig functor F(I:sig val x : int end): sig val z:int end

endstructure A = struct functor F = F endstructure B:SIG = Astructure I = struct val x = 6 endstructure A1 = A.F(I)structure A2 = B.F(I)val test = (A1.z = A2.z)If we replace the orginal input interface by the one givenby the thinning signature, we �nd that A1.z = 5 andA2.z = 6, when it should be the case that A1.z = 5 =A2.z. For computing z, F requires the x in the top-levelenvironment be used, and this should remain the caseif we subsequently thin F. Thinning should change onlythe visibility of identi�ers, not the underlying computa-tions, and hence not the environments used for identi-�er lookup. If we keep the orginal input interface, bothA1.z and A2.z would have the value 5, as expected.We therefore chose to record in the functor interfaceonly the second (i.e. output) interface provided by afunctor speci�cation, and to thin functor closures byreplacing only their output interfaces. Here is the de�-nition of how to thin an environment:(FE, MSE, VE) # (FIE, SIE, vars) =(FE 0, MSE 0, VE 0)whereFE 0 = f funid 7! ((strid, I), (strexp, I2), B) ;FE (funid) = ((strid, I), (strexp, I1), B) andFIE (funid) = I2 gand, as in SML,MSE 0 = fstrid 7!ME#I ;MSE (strid) = ME andSIE (strid) = I gand VE 0 is obtained by restricting the domain of VEto vars.Evaluation In general we obtain the evaluation rulesfor the new language by modifying the rules of SML towork with the new semantic objects and functions inthe obvious way. Many of the changes are trivial andwe shall not describe them here. We must also add newrules to deal with the syntax we have added and makesigni�cant changes to some other rules. We list these inFig. 6 and explain their meanings here, giving pointersto relevant rules in the De�nition for readers who haveaccess to a copy.1. This rule de�nes how to evaluate the application ofa longfunid to a strexp. [Replaces rule 162.]2. This rule shows how to evaluate a Core declaration ina basis B: we must �rst extract a Core environmentfrom B, use this to evaluate the declaration, andthen lift the resulting Core environment to a Moduleenvironment for the �nal result. [Replaces rule 164.]The Computer Journal, Vol. 36, No. 5, 1993

8 Elsa Gunter1 and Savi Maharaj23. This rule gives the semantics of the Module-levelopen declaration. [Insert after rule 166.]4. This rule shows how to evaluate a functor declarationas a speci�c instance of a module declaration. [Insertafter rule 168.]5. This rule describes how to evaluate a functor speci-�cation. [Insert after rule 183].6. This rule gives the semantics of rebinding a functorto a new identi�er. [Insert after rule 187.]Encoding higher-order functors We encode thenew semantics into HOL by the same techniques usedto encode the semantics of SML Modules. The encod-ing is called HOF-ML. Some of the new phrase classesand semantic objects are identical to the old ones, so forthese we simply re-use the types used to encode these inMod-ML. Some types have to be rede�ned despite be-ing apparently unchanged, because they happen to bein mutual recursion with a type that has been changed.We distinguish the names of the HOF-ML constructorsand types that have been rede�ned by appending _h tothem. Thus, for example, the type representing HOF-ML structure descriptions is strdesc_h with construc-tor STRIDstrdesc_h. We do this because we want tohave both Mod-ML and HOF-ML present in HOL to-gether so that we can prove theorems about the rela-tionship between them.4. RELATING THE TWO SEMANTICSSo far we have described the encoding of two possibleModule systems to extend the Core language of SML.But what is the rigorous connection between them? Itis our claim that the system speci�ed by HOF-ML is aconservative extension of the system speci�ed by Mod-ML (and the De�nition).Before we can discuss how to prove such a result, wemust state exactly what we are trying to prove. Re-call that top declarations are evaluated within a ba-sis to produce another basis. We want to prove thatthere is a function embed top mapping top declarationsof Mod-ML into top declarations of HOF-ML, a func-tion embed basis mapping Mod-ML bases into HOF-ML bases, and a function proj basis h mapping HOF-ML bases back to Mod-ML bases, such that both of thefollowing conditions hold:� For every top declaration top and pair of bases B1and B2 of Mod-ML,eval top top B1 B2holds if and only ifeval top h (embed top top) (embed basis B1)(embed basis B2)also holds.

� For each basis B and top declaration top of Mod-ML,and basis Bh of HOF-ML, ifeval top h (embed top top) (embed basis B) Bhholds, theneval top top B (proj basis h Bh)also holds.Informally, the �rst condition says that an evaluationperformed in Mod-ML is still valid when translated intoHOF-ML. The second condition states that to evaluatea top declaration of Mod-ML, it su�ces to translate intoHOF-ML, evaluate there and translate the result back.This statement of conservative extension focuses on topdeclarations and bases. However, just to de�ne thefunctions embed top, embed basis, and proj basis h,we need to de�ne the corresponding functions for all cat-egories of syntax and semantics in Mod-ML and HOF-ML.Embedding Mod-ML in HOF-ML Embeddingthe syntax of Mod-ML into that of HOF-ML is gen-erally straightforward. Some phrase classes, such asidenti�ers are embedded by the identity function sincethey are represented by the same HOL types in bothMod-ML and HOF-ML. We give the avour of the em-bedding by showing three of the clauses for Mod-MLstructure expressions, declarations and bindings:embed_strexp (STRUCTstrexp strdec) =STRUCTstrexp_h (embed_strdec strdec)embed_strdec (STRUCTUREstrdec strbind) =STRUCTUREmoddec_h (embed_strbind strbind)embed_strbind (BINDstrbind strid strexp) =BINDstrbind_h strid (embed_strexp strexp)The only clause whose embedding is not trivial isAPPstrexp. There the functor identi�er that is appliedmust be lifted to a long functor identi�er. Both functorand structure declarations are mapped to the appropri-ate kinds of HOF-ML Module declarations. Similarly,top-level functor declarations must be mapped to top-level Module declarations. The embeddings are trivialfor all other cases. De�ning an embedding of the se-mantic objects of Mod-ML into those of HOF-ML isalso easy.Projecting HOF-ML back to Mod-ML It mightappear that we only need to project the semantic ob-jects of HOF-ML into Mod-ML, and can forget aboutthe syntax, since the conservativity result only uses theprojection of semantic objects (bases, to be precise).Unfortunately, this is not so. To project bases we needto project functor environments, and hence functor clo-sures. To project functor closures we need to projectstructure expressions | syntax. With the exception ofthis dependency, the de�nition of the projection func-tions for the semantic objects is straightforward. Theonly complication is that when we project a basis weThe Computer Journal, Vol. 36, No. 5, 1993

Studying the ML Module System in HOL 9B ` strexp)ME=p B (longfunid) = (strid : I; strexp0h: I 0i; B0)B ` strexp)ME1 B0 + fstrid 7!ME1#Ig ` strexp0)ME2B ` longfunid(strexp))ME2h#I 0i (1)B ` moddec)ME=p E of (ME of B) ` dec) E0B ` dec) E0 in Modenv (2)B ` moddec)ME=p B(longstrid1) = ME1 � � � B(longstridn) = MEnB ` open longstrid1 � � � longstridn)ME1 + � � �+MEn (3)B ` moddec)ME=p B ` funbind) FEB ` functor funbind) FE in ModEnv (4)IB ` spec) I IB ` sigexp) I1 IB + fstrid 7! I1g ` sigexp0) I2IB ` functor funid(strid:sigexp):sigexp0) ffunid 7! I2g in Int (5)B ` funbind) FE B (longfunid) = funclosB ` funid = longfunid) ffunid 7! funclosg (6)FIGURE 6. Evaluation rules for higher-order functorsmust �rst pull the environment it contains into its con-stituent parts to access the functor environment and thestructure environment and project them to acquire thecorresponding components of a basis in Mod-ML.We do not need to project all HOF-ML syntax backinto Mod-ML; we only need those syntax classes thatcan be involved in bases. This simpli�es the processsomewhat. In particular, we never actually have toproject functor declarations back to Mod-ML, becauseany functor declaration occurring in an HOF-ML basiscame from a functor declaration internal to a structureexpression, and therefore cannot correspond to any-thing in Mod-ML. It is fortunate that we may ignorefunctor declarations, for if we had to project them,we would have to deal with the fact that embeddingsof sequences of empty functor declarations are indis-tinguishable from embeddings of sequences of emptystructure declarations. This problem does not arise forus. All projection functions that we actually need havestraightforward de�nitions.Throughout the de�nitions of the embedding andprojection functions, just as with the functions for ex-tracting interfaces, we relied heavily on the package fornested mutually recursive types, and its support for gen-erating de�nitions for functions frommutually recursivespeci�cations over those types.Proving Conservativity Although the result relat-ing the evaluation of top declarations in the two Module

systems mentioned above is our main statement of con-servative extension, in order to prove it we need to provecorresponding results for all layers of the evaluation re-lations. In the formal proof, we simpli�ed the processby �rst showing the corresponding results for signatureexpressions, descriptions, and speci�cations, and thenworking up through the syntax classes.To further simplify the process, we show each of thetwo parts of the main conservativity theorem separately.Moreover, we split the �rst condition into the two halvesof the equivalence, and we use the second condition toshow the second half of the �rst condition.The forward half of the �rst condition follows in astraightforward manner from the induction principlesfor the evaluation rules in Mod-ML and from the rulesthemselves, once we have proved a large number of easylemmas stating that the embedding functions commutewith the semantic operations such as identi�er lookupand function update.To prove the second condition, we must �rst coerceit into a form suitable for use with the induction princi-ples for evaluation in HOF-ML. For example, the secondcondition for the syntax class top becomes:8 top h Bh B0h: eval top h top h Bh B0h)8 top B: ((top h = embed top top) ^(Bh = embed basis B)))eval top top B (proj basis h B0h)Once we perform this transformation, we can apply theinduction principle to reduce the problem to showingThe Computer Journal, Vol. 36, No. 5, 1993

10 Elsa Gunter1 and Savi Maharaj2that the conclusion of the resulting implication holds forall the evaluation rules. Unfortunately, this result doesnot follow from induction; we need to prove a strongerresult. In order to show the previous result, it turns outthat we need to know that the result of embedding theprojected value is the same as the original value beforeprojection. This is not true in general, but happensto be true of the results of evaluations of expressionsembedded from Mod-ML. This fact must be added tothe conclusion of the second condition before we canproceed by induction. Thus, the second condition istransformed to8 top h Bh B0h: eval top h top h Bh B0h)8 top B: ((top h = embed top top) ^(Bh = embed basis B)))(embed basis (proj basis h B0h) = B0h) ^(eval top top B (proj basis h B0h))It was non-trivial to prove that embedding the result ofprojecting such a value yields the same value.Finally, to prove the second half of the �rst conditionfrom the second condition, it su�ces to show that, ifwe embed a basis and then project, we end up wherewe started. It is too much to expect that such a resultwould hold for the entirety of Mod-ML, since emptystructure declarations and empty functor declarationsboth get mapped to empty module declarations. How-ever, the result holds for all the syntax and semanticclasses involved in the range of the projection functionsused in the statement of conservativity.To show all the results discussed above, we have vari-ous tools at our disposal, including structural inductionand case analysis over both the syntax and the seman-tics; rewriting with theorems that state the distinctnessof all the constructors; rewriting with the equations thatgive the recursive \de�nitions" of the embedding andprojection functions, the functions for extracting inter-faces, etc. Moreover, by proving the results in a bottom-up fashion, starting with the earliest syntax classes, wehave the results for these classes at our disposal whenproving the later results.While there is a great deal of regularity involved incarrying out the proofs of the di�erent layers of the �rsthalf of the �rst condition, it is not apparent at presentthat we could write a general-purpose tactic that wouldautomatically prove all of them. Each case seems tohave just enough that is distinct about it to require in-teractive guidance. The second condition has a fairlyinvolved proof and we can see no way to develop ageneral-purpose tactic to prove results of that kind.5. CONCLUSIONWe have described how we used the HOL theoremprover to specify the dynamic aspects of a higher-orderModule system for SML, and then to relate it to theSML Module system speci�cation. It is our belief thatthis task is too large to be easily managed by hand,

the De�nition notwithstanding. Using the expressive-ness of HOL, the packages built into it, and packageswe added to it, we were able to formulate the spec-i�cation with the theorem prover as fast or possiblyfaster than we could do it by hand. Moreover, we havereceived some assurances that our speci�cation makessense from the type-checking of the terms, the checksthat no clauses were omitted from our function de�ni-tions, and other checks that were performed automati-cally by HOL. Most importantly, by encoding the speci-�cation in a theorem prover, we are now able to formallyprove facts about the speci�cation and about programswritten in complying implementations.Not only did we receive bene�ts from the theoremprover, but the theorem prover also received bene�tsfrom us. The speci�cation task has motivated us to im-prove HOL's handling of mutually recursive types, andto write a general-purpose package for de�ning mutuallyrecursive families of relations and deriving the appro-priate induction principles. All of these bene�ts weremade possible by the combination in HOL of an ex-pressive language in which much general mathematicscan be developed, with an open yet secure system whichallows users to develop theorem-proving methodologiesto suit their particular needs.REFERENCES[1] MacQueen, D.B. and Tofte, M. (1994) A Semantics forHigher-Order Functors. In: European Symposium onProgramming, 1994. Springer-Verlag.[2] Gordon, M.J.C. and Melham, T. (1993) Introduction toHOL. Cambridge University Press.[3] Kahn, G. Natural semantics. In Proceedings of theSymposium on Theoretical Aspects of Computer Sci-ence, pages 22{39. Springer-Verlag, 1987.[4] Melham, T.F. (1992) A Package for Inductive RelationDe�nitions in HOL. In: Proceedings of the 1991 Inter-national Workshop on the HOL Theorem Proving Sys-tem and its Applications IEEE Computer Society Press.Pages 350-357.[5] Milner, R. and Tofte, M. (1991) Commentary on Stan-dard ML. The MIT Press, Cambridge, Mass.[6] Milner, R. and Tofte, M. and Harper, R. (1990) TheDe�nition of StandardML. The MIT Press, Cambridge,Mass.[7] Slind, K. An implementation of higher order logic.Master's thesis, University of Calgary, Department ofComputer Science, December 1990.[8] Syme, D. Reasoning with the formal de�nition of Stan-dard ML in HOL. In Higher Order Logic TheoremProving and Its Applications,Lecture Notes in Com-puter Science 780, pages 43{60. Springer-Verlag, Febru-ary 1994.[9] VanInwegen, M. and Gunter, E. (1994) HOL-ML.ibid. pages 61{73.The Computer Journal, Vol. 36, No. 5, 1993

