
A Semantics for ShapeC. Barry Jay �AbstractShapely types separate data, represented by lists, from shape, or structure. This separationsupports shape polymorphism, where operations are de�ned for arbitrary shapes, and shapelyoperations, for which the shape of the result is determined by that of the input, permittingstatic shape checking. The shapely types are closed under the formation of �xpoints, andhence include the usual algebraic types of lists, trees, etc. They also include other standarddata structures such as arrays, graphs and records.1 IntroductionThe values of a shapely type are uniquely determined by their shape and their data. The shapecan be thought of as a structure with holes or positions, into which data elements (stored in a list)can be inserted. The use of shape in computing is widespread, but till now it has not, apparently,been the subject of independent study. The body of the paper presents a semantics for shape,based on elementary ideas from category theory. First, let us consider some examples and possibleapplications. Three classes of examples are inductive types, arrays and records.All inductive types are shapely. For example, a tree with leaves of type A has shape givenby the corresponding unlabelled tree, and data given by its list of leaves (in, say, left-to-rightorder). Shape also provides another approach to the semantics of parametric polymorphism. Ofparticular interest for the inductive types is the existence of shape polymorphism (see below) inwhich a program can be used with arbitrary shapes.This representation of inductive types also supports greater use of parallelism, since the datais held in a list. W.F. McColl writes of the language GPL : \Such [inductive] types have beendeliberately excluded from GPL since they often lead to representations for which it is hard toobtain high degrees of concurrency." [McC94].The shape of an array is its size. For a matrix this is a pair of natural numbers. More generally,the arrays of dimension k have shape given by a k-tuple, while arrays of arbitrary dimension haveshapes given by lists of numbers. Unlike the inductive types, the representation of the shape isvery small compared to that of the data, and tends to be quite stable. Hence, shape analysis (seebelow) may yield substantial bene�ts in error detection or optimisation, particularly in parallelprogramming.Function types are not shapely in general. This may account for some of the tension betweenthe use of higher-order functions and that of arrays. For example, the core of the type systemsunderlying many sequential functional languages, e.g. [MT91, HPJW92], does not support arraytypes. By contrast, parallel functional languages must emphasise arrays, and so often compromisethe function types, e.g. by restricting them to be �rst-order as in Sisal [FCO90], or second-order,using, say, skeletons [Col93]. Shape theory may provide a context in which to explore the trade-o�s.Sparse arrays are also shapely. They can be represented by a list of position-data pairs; thelist of positions is the shape. Symbolic computation, as used in Gauss-Jordan elimination, usesthe shape to try to minimise the number of non-zero entries [DER86].Graphs which have a given order on the nodes can be represented as sparse matrices. Moredirectly, their shapes are unlabelled graphs, i.e. relations.�School of Computing Sciences, University of Technology, Sydney, PO Box 123 Broadway, 2007, Australia.1

Programming based on shape would allow the graph, or topology, of a problem to be handledexplicitly, instead of being embedded within the structure of a sparse array. Then shape poly-morphism would support code re-use despite varying geometries. Also, the processor architecturemay be expressible in the same terms, so that compilation could be expressed as a mapping of theshape of the problem onto the shape of the processor.The shape of a record is the set of its �elds (represented as an ordered list). Since recordsare fundamental to both databases and to object-oriented programming, it may well clarify theirsemantics. For example, in database theory, missing �elds are recorded in the shape. In object-oriented languages, e.g. Ei�el [Mey94], container classes are designed to represent shape.Having considered a variety of shapes, let us consider how they might be used. Three appli-cations are: code re-use, error-detection and optimisation. The latter two are collectively calledshape analysis. While examining them, we will consider whether existing languages and typesystems are capable of expressing the desired bene�ts.1.1 Shape PolymorphismShape polymorphism is a novel form of parametric polymorphism which allows operations to beparametrised over shapes, rather than over data. Consider the operation map which applies afunction to each element of a list. In existing functional languages, its type is(�!�)!� list!� listwhere � and � may range over any types. This data polymorphism allows the data (� and �) tovary, but uses a �xed shape, list. Shape polymorphism �xes the data, but allows the shape tovary, so that, for types A and B, instances of map include(A!B)!A tree!B treeand (A!B)!A matrix!B matrix .In each case map f applies f to the data (the leaves or entries), while leaving the shape �xed.Shape polymorphic operations need not �x the shape; the shape S may be replaced by some-thing constructed from it, such as S�S.It is common for both kinds of parametric polymorphism to co-exist, as for map, but neitherimplies the other: appending of lists is data polymorphic but not shape polymorphic, while map-ping of a particular function (e.g. square root) may be shape polymorphic without being datapolymorphic.Shape polymorphism will have several bene�ts. It will allow operations to be used with ar-bitrary shapes, including those de�ned by the user. In array-based languages, it will liberatefunction de�nition from issues of size and dimension. In record types, adaptation for missing andadditional �elds in records can be handled automatically.Shape polymorphism is not supported in type system F [GLT89] which underlies the dominantfunctional languages. In the extension F1 of F, the shape could be viewed as a connective F :
!
which maps types to types (e.g. maps A to trees of A). Then a possible type for map is:8F :
!
:8XY:(X!Y)!(FX!FY) :However, this type is empty. One di�culty is that connectives may be contravariant, in whichcase the natural type for map would be 8XY:(X!Y)!(FY!FX) . More fundamentally, thereis no single algorithm for map in F that will work for all connectives (even the covariant ones).The existence of this meaningful (but uninhabited) type for map means that its type can bechecked, but the algorithm used to implement it must depend on the type, so that the poly-morphism is ad hoc, rather than parametric. If map is supported through type classes, as inHaskell [HPJW92] and Gofer [Jon94], the algorithm is supplied by the user. In Charity [CF92]the algorithm is inferred automatically from the type.2

A parametrically polymorphic version of map (and of fold) has been implemented in P2 [Jay95]for the polynomial types (built using products and sums) and their �xpoints, such as lists andtrees. A language for all inductive types, such as forests, is currently under construction. It seemslikely that some shape polymorphism could be incorporated into existing functional languages.Some approximations to shape polymorphism can be found in existing languages. Array lan-guages in which nested arrays are represented by their shape and a
at array, e.g. VCODE [BC90]and Qnial [JG89] allow operations over a variety of shape classes. Object-oriented languages withcontainer classes [Mey94] can support shape polymorphic mapping; a routine for performing map fover a variety of containers is given by:fromstartuntiloffloopitem.fforthend1.2 Shape AnalysisSome computations require a high degree of interaction between the data and the shape, e.g. ingraph reduction. However, there is a large class of operations in which the interaction is minimal,or even non-existent.Sometimes the shape of the result is determined by the shape of the arguments, withoutreference to the input data, though the data of the result may depend on the shape. This iscommon in data parallel computation [Ski94] and in systolic array computations [Kun82]. Forsuch shapely operations it is possible to compute all of the intermediate shapes, as well as that ofthe result, before examining the data.This phase-distinction [HMM90] is similar to that occuring in static type checking. As there,we can expect early error detection, before computation on the data begins. The compiler willgenerate shape constraints from the program, simplifying them where possible. Occasionally, theconstraints will be shown to be unsatis�able, and the error reported before any input is considered.Otherwise, when inputs are provided, their shapes must be shown to satisfy the constraints beforethe data is processed, e.g. the matrix dimensions must match before multiplication is attempted.An additional bene�t is that knowledge of the shapes of all the intermediate values can beused to optimise large-scale computations, which is particularly important for parallel process-ing. Shapes carry size information with them, so that some load balancing can be pre-determined.Also, shapes may allow complexity estimates to be made for various sub-tasks, leading to improvedscheduling, or determination of non-deterministic algorithms. For example, symbolic computa-tion on sparse matrices manipulates the positions of the non-zero entries to maximise e�ciency[DER86].Even when operations are not shapely, the separation of shape from data may be useful in run-time algorithms. For example, the optimal matrix parenthetisation problem [Ka94, Chapter 9.4.1]uses the shapes alone. Again, when a task (and its data) is split so that it can be shared betweentwo processors, it may be desirable to transmit the smaller portion of data, whose size is easilycomputed from the shape.1.3 The SemanticsThis work is based on the results reported in [JC94].The setting is a locos, a lextensive category [CLW93] with list objects. (Although this settingis quite weak (e.g. cartesian closure and subobject classi�ers are not assumed) the assumption ofall �nite limits is not reasonable computationally, and can probably be weakened.3

The characterisation of the shapely type constructors F uses pullbacks such as:FA �A - LAS#? arity- N :?#That is, values of type FA are uniquely represented by a shape (of type S) and some data (oftype LA) where the length of the data list equals the arity of the shape. The construction ofFA is functorial in A and � is a natural transformation. F inherits many of the propertiesof the list functor; it is a shapely functor. Similarly, the de�nition of � by a pullback confersadditional properties on it, making it a shapely (natural) transformation. The shapely functorsand transformations form an attractive setting, which is explored below.The data could be represented by other structures, such as lazy lists, streams and multi-sets,with varying degrees of success. The emphasis on �nite lists is justi�ed by the main theorem of thepaper, which asserts that the shapely types are closed under the formation of �xpoints. Hence,the theorem establishes the existence of the inductive types, such as trees, from that of lists alone.The proof is based on the observation that inputs to sequential computers are given by lists,which are parsed to produce values of �xpoint type. This algorithm, together with those forrecognition of the language, and for folding, or reduction, out of it, are instances of a singleoperation on lists. This link from �xpoint types to parsing is not an accident, but a witness tothe link from parsing to context-free grammars. Another link is that data storage (in a shape)becomes equivalent to data entry (using a language, Section 5).1.4 Towards a shapely type systemThere are some open questions about how a type system might be built upon this semantics. Onemethod would represent types exactly as they appear in the semantics, as pullbacks. That is,values would be represented by a shape and a data list, subject to the constraint that the arity ofthe shape equals the length of the list. This constraint on inputs must be checked by the compiler,and would involve techniques similar to those used in shape analysis. It is not yet clear whatlimitations should be imposed on the shape and arity to make this feasible.A shapely type can be represented as a dependent type, i.e. a sigma type:�s:SAa(s)whose values are given by a shape s : S and some data, of type Aa(s) (where a is the arity).Of course there are languages that support dependent types, e.g. the Calculus of Constructions[CH88], but the dependence of types on values means that type-checking is performed at run-time,whereas it is our intent that type (and shape) checking be performed as early as possible, preferablyduring compilation.Another possibility arises if the lists LA can be represented as �n:NAn (which is really a typeof vectors). Then we can represent the shapely type by the power series�n:NSn�Anwhere Sn represents all shapes having arity n. This approach emphasises the connections withpolynomial types [Jay95] and also with combinatorics, particularly the theory of species [Joy81].For example, if S represents tree shapes then Sn is the number of trees with n leaves, or if Srepresents all possible arrays, then Sn is the number of factorisations of n. Unfortunately, thisapproach is unlikely to be useful algorithmically, since the arity is a poor discriminator amongshapes. 4

The paper is structured as follows. Section 1 is the introduction; Section 2 reviews the categor-ical setting, and establishes some notation and lemmas; Sections 3{7 introduce shapely functors,transformations and types, shape polymorphism, and shape analysis; Section 8 constructs initialalgebras, or �xpoints; and Section 9 draws conclusions.2 LocosesThe types and operations are modelled by the objects and arrows of a category C. It must havelists (and the underlying products and coproducts required to de�ne them) and enough pullbacksto work with shapes. Specifying such a class of pullbacks (as was done for the Boolean categories of[Man92]) at this stage would impose an unwelcome burden so, to simplify slightly, we will assumethat we have all pullbacks, and work in a lextensive category [CLW93] which has all list objects,i.e. a locos [Coc90]. Being extensive is equivalent to requiring that all coproduct diagrams havedisjoint (monomorphic) inclusions, and are stable under pulling back. Examples include the usualsemantic categories, including those of sets, bottomless complete partial orders, or even topologicalspaces, any one of which will su�ce to illustrate the ideas below.Let us �x some notation. If f : C!A and g : C!B are morphisms then hf; gi : C!A�B istheir pairing. The left and right projections from the product are �A;B and �0A;B (respectively).The unique morphism to the terminal object is !A : A!1. The symmetry for the product isdenoted cA;B : A�B!B�A. Dually, the coproduct inclusions are given by �A;B : A!A + B and�0A;B : B!A+B. If f : A!C and g : B!C then their case analysis is given by [f; g] : A+B!C.The functors �;� : Cn!C denote chosen n-fold products and coproducts, respectively, and � :C!Cn is the diagonal functor.The distributive law is witnessed by a natural isomorphismdA;B;C : A�(B + C)!(A�B) + (A�C)whose inverse is [id��; id��0].Subscripts on natural transformations will be omitted unless required to disambiguate anexpression.A pullback is a commuting square P q - BAp? f - C?gsuch that, for every pair of morphism x : X!A and y : X!B such that f � x = g � y there is aunique morphism z : X!P such that p � z = x and q � z = y. When C = 1 the pullback is A�Band z = hx; yi. The same pairing notation will be used in the general case.The list constructor is a functor L : C!C. Its constructors are:nil : 1!LAcons : A�LA!LAFurther, for any choice of objects B and C, and morphisms x : B!C and h : A�C!C there is aunique morphism foldr(x; h) : LA�B!C (called foldright of x and h) that makes the following5

diagram commute: B hnil; idi- LA�B � cons�id A�LA�BHHHHHHHHHHHx jC?foldr(x; h)� h A�C .?id�foldr(x; h)It follows that [nil; cons] : 1+(A�LA)!LA is an isomorphism, which expresses LA as a coprod-uct.From these primitives we can construct the usual family of list operations, whose notation isa mixture of the list notation of [BW88] and categorical notation for monads:Lf : LA!LB is map f for f : A!B# : LA!N is the length map !� : A!LA makes singleton lists@ : LA�LA!LA is appendsnoc : LA�A!LA appends a singleton� : L2A!LA
attens a list of listsg� : LA!LB is � � Lg which extendsg : A!LB to act on lists.L1 is a natural numbers object N with zero 0 and successor S given by nil and cons respectively.Then � = one and @ = + is addition and � : LN!N is summation. Let Eq be the equality onN . Many elementary results about lists in locoses can be found in [Jay93b].The lemma which concludes this section will be needed to prove the main theorem below.De�ne shunt : LA�LA!LA�LA to beLA�LA �= LA + (LA�A�LA) [hid; nili; snoc�id]- LA�LAwhere the isomorphism is given by the coproduct decomposition of the second list and the dis-tributive law. Then split : N�LA!LA�LAis given by foldr(hnil; idi; shunt). It divides a list into two segments, whose �rst, initial segment,has length given by the �rst projection (if the list is long enough). De�netake = � � split : N�LA!LAdrop = �0 � split : N�LA!LA .Lemma 2.1 The following equations hold:@ � split = �0split � h# � �;@i = id .Hence, we have a pullback: LA�LA h# � �;@i - N�LA1? true - bool .?Eq � h�;# � takei6

Proof Both sides of the �rst equation equal foldr(id; id). The second is proved similarly.Given x : X!N�LA for which Eq � h�; takei � x = true then the induced morphism into thepullback is split � x. That @ � split � x = �0 � x follows from the �rst equation above while# � � � split � x = # � take � x= � � xfollows from the assumption about x. The induced morphism into LA�LA is unique sinceh# � �;@i is a monomorphism by the second equation above. 23 Shapely FunctorsShapely functors will be de�ned using two properties of the list functor, its strength [Koc72] andstability, which we will now review.Construct �0 as B hnil; idi- LA�B � cons�id A�LA�BHHHHHHHHHHHhnil; idi jL(A�B)�B?�0 � h A�L(A�B)�B?id��0where h = hcons � (id�c); �0i. De�ne the strength of L to be �A;B = � � �0 : LA�B!L(A�B).In Sets it maps h[ai]; bi to [hai; bi]. It allows parameters to be introduced to a list.Let us generalise. If A = (A0; : : : ; Am�1) is an object of Cm and B is an object of C, thende�ne A�B = (A0�B; : : : ; Am�1�B).A strong functor is a functor F : Cm!C equipped with a natural transformation�A;B : FA�B!F (A�B)called its strength which satis�es the usual associativity and unicity axioms. These ensure thatthe result is independent of whether parameters are introduced one at a time, or as a tuple.More generally still, a strength for F : Cm!Cn is given by a strength for each of its projectionsonto C.The list functor preserves all pullbacks, i.e. is stable [Coc90]. It does not preserve products,however. The terminal object is mapped to the natural numbers object N which represents thelength (or shape) of lists. Also, we can construct a binary product as a pullback over 1 and thenapply L to get: L(A�B) L�0- LBLAL�? # - N .?#This induces an isomorphism zip : LA�#LB!L(A�B) .from the canonical choice of pullback (indicated by �#) into L(A�B).De�nition 3.1 Let F : Cm!Cn be a functor with a given strength � . Then it is a shapely functorif F is a stable functor. Then F1 is the object of F -shapes and # = F ! : FA!F1 is the shape ofFA. Also zip : FA�#FB!F (A�B) is the canonical isomorphism.7

As all �nite limits can be constructed from pullbacks and the terminal object 1, it follows thatshapely functors preserve as many �nite limits as possible while having a non-trivial shape. Hereare some examples of shapely functors.Example 3.2 If FX = K is a constant functor then it is shapely.Example 3.3 The coproduct functor + : C2!C has strength given by the distributive law. Itsstability follows directly from extensivity.Example 3.4 The product functor � : C2!C has strength given by the canonical morphism:(A�A0)�B!(A�B)�(A0�B) :Stability follows since products commute with all �nite limits.Example 3.5 Composites of shapely functors are shapely: if (F; �) : A!B and (G; �) : B!C areshapely functors then G � F is shapely. Stability is immediate, while the strength is given by:GFA�B �- G(FA�B) G�- GF (A�B) .Example 3.6 If (F; �) : A!B and (G; �) : A!C are shapely then so is hF;Gi : A!B�C with itsstrength having components � and � . Stability reduces to that of F and G separately.Example 3.7 Combining the last two results, we see that if F;G : A!B are both shapely, thenso are F +G = + � hF;Gi and F�G = � � hF;Gi.Example 3.8 The list functor is shapely.Now let us consider some alternatives to lists as a means of storing data. Some of these functorspreserve the terminal object, as well as pullbacks. Usually, such additional properties are to bewelcomed, but now the object of shapes is trivial, as is the resulting shape theory. Here are twoexamples.Example 3.9 Let SA be the streams (or in�nite lists) of A's. They are given by the �nal co-algebra [Hag83] for the functor A�(�). That is, for each co-algebra � : C!A�C there is a uniqueco-algebra homomorphism C!SA. It follows that S has a strength, and S preserves all �nitelimits. Every stream has the same (in�nite) length.Example 3.10 Let X be an object such that the exponential (or function type) AX exists forall objects A. The functor (�)X is strong, and preserves all limits since it is a right adjoint.Combining this with lists yields the shapely functors (L�)X and L(�X).Here are some alternatives to lists with non-trivial shapes.Example 3.11 Let L1A be the object of �nite and in�nite lists, i.e. the �nal co-algebra for thefunctor FX = 1 + A�X. Its shapeliness follows directly from its de�nition. Its shape object isN1 which in Sets is N [f1g.Example 3.12 Let BA be the bags or multi-sets of elements of A. Then B is shapely, butB1 = N so that bags have the same shapes as lists. In other words, the shape does not recordthe multiplicities of the elements, since these dependent on the data. For this we must turn to thenext example.Example 3.13 Let W be an object (of weights). We can de�ne weighted lists by the functorL(W��) whose object of shapes is LW . If W = N is used to represent multiplicities, then wehave an approximation to bags in which the same element may appear twice within a bag. If theweights are positions, then we have, say, a sparse matrix. Note that the weights in L(W�A) maybe considered as part of either the shape or the data. Hence, the shape must be given explicitly.8

Here are a couple of non-examples.Example 3.14 The covariant functor Pf : Sets!Sets which constructs �nite sets of elementsdoes not preserve pullbacks. Pf1 = 2 merely determines whether a set is empty or not, which istoo little information.Example 3.15 The functor X(�) is contravariant, and so cannot be shapely. Example 3.10showed how exponentials could be used to construct shapely functors. The functor Y X(�) iscovariant but it does not always preserve pullbacks, e.g. X = Y = 2 in Sets.4 Shapely TransformationsA strong natural transformation (F; �))(G; �) between strong functors is a natural transformation� : F)G that commutes with the strengths. That is:FA�B �A�id- GA�BF (A�B)�? �A�B- G(A�B) .?�A natural transformation � : F)G is cartesian if, for every morphism f : A!B, the followingsquare is a pullback: FA �A- GAFBFf? �B- GB .?GfFinally, a cartesian, strong natural transformation � : (F; �))(G; �) between shapely functorsis a shapely transformation, in which case F is shapely over G by �.Example 4.1 Coproduct inclusions are shapely; the strength is given by the distributive law,and cartesian-ness follows from extensivity of the coproduct. Hence type constructors, such asnil and cons are shapely.Example 4.2 Projections from the product � : C2!C, though strong, are never shapely. (Notall transformations of interest are shapely!) Instead, given f : A!C and g : B!D we have thepullback A�D � - AC�Df�id? � - C?fwhich shows that the transformation � : (�)�D)id : C!C is cartesian. That is, �A;B is shapelyin A and �0A;B is shapely in B.Example 4.3 If � : F)G and � : F)H are shapely transformations, then their pairing h�; �i :F)G�H is. Similarly, if � : F)H and � : G)H are shapely, then so is [�; �] : F +G)H.9

Theorem 4.4 Let C be a locos. The powers of C, and the corresponding shapely functors andshapely transformations between them, form a 2-category with respect to the usual operations.Proof If � : (F; �))(G; �) and � : (G; �))(H; �) are shapely then so is � � � : F)H (whosecomponents are (� � �)A = �A � �A. If � : F1)F2 and � : G1)G2 are shapely then so is theirhorizontal composite ��� : G1F1)G2F2 (whose components are given by (���)A = �F2A�G1�A).In each case, strength and cartesian-ness follow by pasting. 2Proposition 4.5 Let F : C2!C be a shapely functor and let G;H : C!C be any functors. Supposethat for each object B the transformation �A;B : F (A;B)!GA is cartesian in A, and for eachobject A the transformation �A;B : F (A;B)!HB is cartesian in B. Thenh�A;B; �A;Bi : F (A;B)!GA�HBis cartesian in both A and B.Proof Consider a commuting square:X hx; yi- GA�HBF (A0; B0)z? h�; �i- GA0�HB0 .?Gg�HhThen x and z induce a unique morphism x0 : X!F (A;B0) by the cartesian-ness of �. Similarly yand z induce a morphism y0 : X!F (A0; B). Now the commutativity ofX x0 - F (A;B0)F (A0; B)y0? F (id; h)- F (A0; B0)?F (g; id)and the stability of F induce the desired morphism X!F (A;B). 2Theorem 4.6 If � : F)G and � : H�G)G are shapely transformations, then
A = foldr(�A; �A) : LHA�FA!GAis a shapely transformation.Proof Adapt the proof of the special case [Jay93a, Theorem 2.6]. 2Hence the main operation by which new operations are constructed preserves shapeliness. Forexample, @ = foldr(nil; cons) and � = foldr(nil;@) are shapely, as is �0. However �A;B = ���0is shapely in A but not B.The following lemma shows how strength and cartesian-ness interact.Theorem 4.7 If � : F)G is cartesian and (G; �) is shapely then there is a unique strength � forF such that (F; �) and � are both shapely.Proof If F has a strength � that makes � strong then Fig. 1 must commute. Since the squareis a pullback, this determines � uniquely. Conversely, this pullback can be used to de�ne � whosedesired properties are all inherited from � . 210

FA�B ��id- GA�B@@@@@�RAAAAAAAAAAA� U @@@@@� RF (A�B) �- G(A�B)FA?F� � - GA?G�Figure 1: The strength of F .Corollary 4.8 There is an equivalence between functors shapely over (G; �) and morphisms intoits shape G1.Proof If � : (F; �))(G; �) is shapely then �1 : F1!G1 is the desired morphism. Conversely,given a : S!G1 de�ne a functor F by the pullback:FA �A- GAS#? a - G1 .?#The action of F extends to a functor as follows: given f : A!B then # � Gf equals # whichimplies that the pullback de�ning FA can be constructed in stages, as in Fig. 2.FA �A- GAFBFf? �B- GB?GfS#? a - G1?#Figure 2: Cartesian-ness of �.The equations for functoriality all follow directly from the universal properties, and the cartes-ian-ness of � is immediate from the diagram. Now the theorem shows that F and � are shapely.The constructions are inverse (up to isomorphism). 211

5 Shapely TypesA functor F : C!C which is shapely over lists is a shapely type constructor. More generally, afunctor F : Cm!Cn is a shapely type constructor if it is shapely over ��L.The latter functor may need some unravelling. The list functor on Cm acts on each componentseparately. Hence, if A = (A0; : : : ; Am�1) is an object of Cm then�LA = LA0� : : :�LAm�1 :Then � makes one copy of this for each component of Cn.Thus, if F = hF0; : : : ; Fn�1i and � = h�0; : : : ; �n�1i is the given shapely transformation thenthere are pullbacks: FA �i- �LAF1#? �i- Nm :?#�i1 is also known as the ith arity of F1. The signi�cance of this pullback is that values of type FAare given by a shape (of type F1) and some data (of type �LA) for each i, such that the arity ofthe shape equals the amount of data supplied. In other words, shapes can be thought of as having�xed numbers of holes or entries of each type, which must be �lled in by data.Corollary 4.8 shows that shapely type constructors can be speci�ed by giving their shape withits arity. Let us consider a single example in some detail.Trees with labelled leaves and nodes are described by:T2(A;B) hleaves; nodesi- LA�LBT2(1; 1)#? hleaves; nodesi- N�N .?#�#The shape of a tree is the corresponding unlabelled tree. It is worth emphasising here thatpullbacks are only de�ned up to isomorphism, so that they only provide a speci�cation of anobject, not an implementation. This level of abstraction can be a real bene�t, but unansweredquestions can remain. In the current case, the pullback does not determine whether the listof leaves represents them in left-to-right or right-to-left order, or in some more arcane fashion.This issue will only be resolved when the constructors for the type are given, which in turn aredetermined by their action at the level of shapes.For notational simplicity, we will illustrate this by trees TA with leaves of type A but unlabellednodes. De�ne leafA : A!TA as in Fig. 3.If the leaves are listed from left-to-right then nodeA is given by Fig. 4. The number of leavesin the result is the sum of those in the sub-trees, while the lists of leaves must be appended. Notethat if leaves were to represent the leaves from right to left then the order of the lists must beswapped before appending. Thus, the choice of @ for the node constructor �xes the representationof the leaves.Of course, these constructions all depend on the prior existence of the shape, its arity andconstructors. The existence of such inductive types in an arbitrary locos will be established inSubsection 8.3. Here are some examples which are not inductive types.Example 5.1 Languages generated by a grammar are shapely, with the data given by lists ofterminal symbols, and the shape given by the production.12

A � - LA.......leafAR @@@idRTA - LA1? one- N?@@@leaf1R @@@idRT1? leaves - N?#Figure 3: leaf.(TA)2 - (LA)2.......nodeAR @@@@RTA - LA(T1)2? - N2?@@@node1R @@@+RT1? leaves - N?#Figure 4: node.Example 5.2 De�ne the matrices MA with entries of type A by the following pullback:MA entries- LAN�N#? � - N .?#That is, a matrix is a list with a given factorisation of its length. The underlying shape of a matrixis its dimensions. Corollary 4.8 shows that M and entries are shapely. Matrix multiplication,and general operations of linear algebra can all be produced from this de�nition [Jay93a].Example 5.3 Arrays of dimension k generalise the matrices. They are constructed from the arityNk!N which computes the product of the sizes. The types of arrays of all possible dimensionhave shapes given by lists of numbers LN . The length of the list determines the dimensionalityof the array. The usual array operations of updating, etc. can be de�ned using operations on thedata list, using the shape to determine the necessary positions.Banger and Skillicorn [BS93] give a categorical semantics for arrays, which are represented bytheir dimensions and a stream. The lack of a constraint linking sizes and data limits the potentialfor error-checking. 13

Manes [Man92] interprets matrices as the morphisms of a category, whose objects are sizes.The result is a universe of matrices, without distinguishing the matrices as one data type amongmany.Example 5.4 Sparse arrays can be represented as a list of position-datum pairs, the result ofzipping a position list, the shape, with a data list.Example 5.5 The underlying shape of a graph is an unlabelled graph or relation. There is nocanonical order on the nodes of a graph (or elements of a set), so that one must be imposed. Thena relation can be represented as a symmetric boolean matrix. A more e�cient representation usesan upper triangular matrix. Thus relations (on �nite orders) are given by the following pullbackR � - L2N#?choose2- N?#where choose2 maps n to n(n� 1)=2. It follows that # : R!N determines the number of nodes,and # � � determines the number of edges in an unlabelled graph.Thus graphs with nodes of type A and edges of type B are given by the pullback:G(A;B) - LA�LBR? h#; � �#i- N�N :?#�#Note that once an order has been chosen for the nodes then there is an implicit order on the edges.There is a second means of representing these graphs, where the shape is given by the numberof nodes: G(A;B) - LA�L(B + 1)N? hid; choose2i - N�N?#�#Now there is an \edge" between any pair of nodes, but those labelled by �0 : 1!B + 1 are onlydummy edges. The result is a sparse matrix with dummy labels whenever there is no edge.Directed graphs are handled the same way, except that there are now n2 possible edges. Fordirected multi-graphs it is necessary to have an order on the edges connecting a single pair ofvertices. Then for each pair of nodes there is a list of labels. One representation isGdm(A;B) - LA�LLBN? hid; si- N�N?#�#where s is the squaring function. 14

Example 5.6 Consider records whose �eld names are of type X. Assume that the �elds havea canonical order (e.g. lexicographic). For simplicity, assume that all the �elds must have thesame type. The shape of a record is the �nite set of its �elds, with arity given by cardinality.We can represent such a set by a list of �elds, in correct order. Then the data list represents thevalues assigned to the �elds. When there are several types of data then X must be partitionedinto subobjects consisting of �elds that must have the same type. The usual operations of adding,deleting and changing �elds can be de�ned using the properties of pullbacks.Example 5.7 Weighted lists are shapely over lists in the obvious way. Hence, any functor shapelyover weighted lists is automatically shapely over lists.Example 5.8 Shapely type constructors are closed under composition. If � : F)L and � : G)Lare shapely type constructors thenGFA (� ��)A- LLA �A- LAmakes GF a shapely type constructor. For example, trees of arrays form a shapely type.Let us consider what happens if lists are replaced by one of the other candidates for datastorage presented in the previous section. The last example above shows that neither weightedlists nor graphs add anything new.Example 5.9 Consider a shapely natural transformation � : F)B over the bag functor. Valuesin FA are determined by a shape, and by a bag of data, but the only connection between themis that the number of items in the bag equals the arity of the shape. This does not seem veryinteresting.Example 5.10 If G preserves the terminal object then any shapely natural transformation � :F)G makes F isomorphic to F1�G(�) since the pullback de�ning � reduces to a product di-agram. That is, there is no constraint linking the shape and the data. For example, matriceswhich are in�nite in both dimensions have no shape; they are isomorphic to streams. Similarly,necessarily in�nite trees have non-trivial shapes, but the data is always a stream; there is a shapebut no constraint.Example 5.11 If the data is stored in a lazy list L1A then we can construct lazy data typessuch as lazy trees, whose shapes are given by possibly in�nite trees, and lazy arrays, which maybe in�nite in some (or all) dimensions. Of course, some care must be taken in choosing the orderof the entries in the data list.The de�nition of shapely types is based on the image of a structure with holes in whichdi�erent types of data can be stored; this is represented by functors which are shapely over aproduct �LA = LA0�LA2� : : :�LAm�1 of lists, one for each type of data. An alternative image,to be exploited below, takes data entry as the primitive notion. That is, an input string is of typeL�A = L(A0 + : : :+ Am�1)where the data of di�erent types may be mixed together. This leads to the consideration offunctors which are shapely over L� instead of �L. Both intuitions are useful, so which is tobe preferred? Fortunately, the resulting notions of shapeliness are equivalent, as the followingproposition shows.Proposition 5.12 �L and L� are each shapely over the other.Proof Clearly, there is shapely natural transformation �L)L� given by�LAk �L�k- �L�(Ai) a- L�(Ai)15

where �k is the kth inclusion to the sum, and a is the m-fold append of the lists. As each of thesetransformations is shapely, so is the result.Conversely, a list whose entries are of all the di�erent types can be �ltered to produce a tupleof lists whose entries are all of the same type. De�ne the natural transformation checkA;B by:(A +B)�LA d- (A�LA) + (B�LA) [cons; �0]- LA .It is shapely in A whence �1 = foldr(nil; check) is, too. This can be generalised to de�ne theshapely transformation �i : L�A!LAi which strips from a list all entries which are not from Ai.Then the obvious m-fold generalisation of Proposition 4.5 shows that� = h�ii : L�)�Lis a shapely transformation. 26 Shape PolymorphismThe separation of data from shape in shapely types allows operations to be de�ned by giving theiraction on each part separately, as occurred in de�ning the node operation on trees. Parametricpolymorphismarises when one of these operations can be given independently of the types involvedfor the other. One version of this, data polymorphism is already well understood. It occurs whenthe action on the shape is independent of the data. An example of this is given by the balancingof a binary tree in Fig. 5 where the shape is �xed to be binary trees, but the data may be of anytype. TA - LA.......balAR @@@idRTA - LAT1? - N?@@@bal1R @@@idRT1? leaves - N?#Figure 5: Balancing a tree.The other form of parametric polymorphism, called shape polymorphism is completely new. Inthis case the data is �xed while the shape can vary. For example, summing the data values �xesthe data type to be the numbers N but can be de�ned for any shape, as in Fig. 6.Of course, it often happens that data and shape polymorphism co-exist; the canonical exampleis map. Typically, it is only applied to lists, but can be de�ned quite generally, as in Fig. 7, sincethe shape remains �xed while the data changes. It has been implemented for a large class ofinductive types in P2 [Jay95].It is not yet clear what an appropriate class of shape polymorphic operations might be. Othershape polymorphic operations include zip : FA�#FB!F (A�B) and the strength � as well asthe basic operations such as projections and inclusions.Other examples are the pointwise operators introduced by example in [Jon90] and de�ned in[Jay93a]. These iterate an endomorphism at each entry in a shape. The number of iterations ateach entry is determined by a weight on the shape i.e. a morphism F1!FN . Particular shapes16

FN - LN.......sumR @@@� � sumRN � - LNF1? - N?@@@R @@@idR1? one - N?#Figure 6: Summing over a shapely type.FA - LA.......FfR @@@LfRFB - LBF1? - N?@@@idR @@@idRF1? - N?#Figure 7: Shape polymorphic map.may have special weights (e.g. one can weight each leaf in a tree by its depth) but weights on listsyield shape polymorphic operations. Examples include weighting each entry by the length of thelist, or by its position. When the discrete Fourier transform is de�ned using pointwise operators(ibid.) then it is seen to be shape polymorphic.7 Calculating with shapeInteraction between shape and data in a computation may be a major consideration (e.g. in graphreduction) or be non-existent (e.g. when mapping). The less interaction there is, the greater thebene�ts of separating one from the other. The simplest case is when there is no interaction.Though few in number, such operations are used often, e.g. map, zip.More realistically, we would like to be able to perform all shape computations before lookingat the data, though the shape could in
uence the data. For example, the size of an array mayappear as a parameter in the data calculations, as in the Fourier transform. These are the shapelyoperations. Semantically, they are given by operations f : FA!GB between shapely types, forwhich there is an operation u : F1!G1 between their shapes such that the following diagram17

commutes: FA f - GBF1#? u - G1 :?#For example, consider the decomposition of a tree into either a leaf or a pair of sub-trees:TA '- A+ (TA)2 id+ �2- A+ (LA)2 [�;@]- LAT1? '- 1 + (T1)2? id+ �2- 1 +N2? [one;+]- N .?The shape of the result is determined by that of the input, but in order to know where to breakthe list of leaves, the number n of leaves in the left sub-tree is required. Shape processing wouldadd the computed value of n to the environment prior to the data-processing.If a program is built from shapely operations then all of the intermediate shapes can beperformed before considering any data. Such information can be used to optimise run-time code,e.g. by performing load balancing or determining communication patterns. For example, symboliccomputation is an important technique in optimisingGauss-Jordan elimination on sparse matrices,since a bad choice of pivots may dramatically increase the number of non-zero entries in the array.The structure of the shape (such as the depth of a tree) may even be useful in making complexityestimates.Even when the shape depends on the data, their separation may be productive, if the bene�tsobtained from having the shape outweigh the overheads of maintaining it. For example, consider adistributed divide-and-conquer algorithm in which one part of the divided problem must be passedto another processor. The choice of part may be easy if the shapes are known.8 Initial AlgebrasThe main purpose of this section is to show how the existence of lists can be used to infer thepresence of all the other inductive types, constructed as initial algebras for shapely type construc-tors. The underlying intuition is that an inductive type T can be identi�ed as a language in somealphabet
. That is, T is a sub-object of L
 which is distinguished by a recogniser, represented bya morphism � : L
!bool which maps T to true and all else to false. The situation is capturedby the following pullback: T - L
1? true- bool .?�Here true is represented by � : 1!1+1 = 2. The recogniser � will be constructed using techniquesfrom parsing.8.1 EndofunctorsThe theory of context-free languages and parsing is typically introduced without considering muchdata. For example, the language of trees is handled by considering the problem of matching18

brackets, i.e. of identifying unlabelled trees. We will mimic this approach, by �rst consideringshapely endofunctors.Let � : F)L make F a shapely type constructor. An F -algebra is given by an object C andan F -action
 : FC!C. If
0 : FF0!F0 makes F0 an initial F -algebra then there is a uniqueF -algebra homomorphism fold
 : F0!C.De�ne
 = F1. Then L
 represents words in Polish notation and the initial algebra F0 willbe the sub-object of L
 of well-formed words. For example, if FX = 1 + X�X then F0 = T1is the unlabelled binary trees and
 �= 2 �= fl; ng where l represents a leaf, and n represents anode. For example, nlnll represents a tree whose left branch is a leaf, and whose right branch isthe smallest possible tree with a node.While trying to recognise well-formed expressions (elements of F0) it is necessary to keep trackof how many well-formed sub-expressions have already been produced. This will be done using amorphism �1 : L
!L
�N which maps a word v to a pair hw; ni where n represents the numberof well-formed expressions found, and w is that part of v which could not be parsed. Then theinitial algebra can be given by: F 0 � - L
1?hnil; onei- L
�N .?�1That is, if �1 parses everything and produces a single expression then the string represents anexpression in F0. (Then � is given by composing �1 with the appropriate test L
�N!bool.)Actually, �1 is a special case of the operation �C : L
!L
�LC which can be de�ned for anyF -algebra (C;
) (e.g. the terminal object). Instead of just producing the number of well-formedexpressions, �C constructs their images in C under fold
.8.2 ParsingBefore constructing �C let us preview some of its uses. First, the restriction of �C to F0 will yieldfold
 : F0!C. Second, when C is itself F0 then �F0 : L
!L
�LF0 is the standard notion of aparser, since F0 is the type of parse trees. In short, from �C is derived both the recogniser andparser for the initial algebra, and also the algebra homomorphisms fold
 out of it. For thesereasons, we will generalise the usual terminology, and call �C a parser.Lemma 8.1 The test Eq � h�; takei � (��id) :
�LC!bool recognises the subobject(id�@) � (h#; �i�id) : FC�LC!
�LC : (1)Proof First show that the following diagram is a pullback:FC�LC (id�@) � (h#; �i�id)-
�LCLC�LC��id? h# � �;@i - N�LC .?��idThen paste it to that in Lemma 2.1. 2The test just constructed picks out those pairs where the arity of the
 is no greater than thelength of the list. Then there are enough resources to construct something of type FC with a list19

of C's left over. Let �0 : QC!
�LC be the pullback of this test along false. Then we can de�ne�C :
�LC!L
�LC to be:(FC�LC) +QC [hnil; cons � (
�id)i; (��id) � �0]- L
�LC .In words, the action of �C is as follows. If the arity of the shape is no more than the length ofthe list, then take enough of the list to form something of type FC, apply
 and cons the resultonto the remaining list; the list of
's is nil. If the arity exceeds the length then make the shapea singleton list, and leave that of C's alone.From �C we can construct an action �C :
�L
�LC!L
�LC as follows. Decompose itssource as (
�LC) + (
�
�L
�LC) (by splitting L
 along nil and cons) and then�C = [�C ; cons � (id�cons)�id] .The sense is that if the middle component is not nil then the \parse" has already failed, so justcons the new
 onto the existing list. Otherwise, apply �C . Finally, �C = foldr(hnil; nili; �C).Lemma 8.2 If h : (C;
)!(C 0;
0) is an F -algebra homomorphism then(id�Lh) � �C = �D .Hence, F0 can be constructed in stages, as in Fig. 8.F 0 � - L
Ch?......... hnil; �Ci- L
�LC?�C1?hnil; onei- L
�N?id�#Figure 8: The initial algebra.Proof Clearly Q is a functor and �0 is a natural transformation. Hence �; � and � are naturalwith respect to F -algebra homomorphisms. 2A couple of lemmas will be required before proving that F0 is an initial F -algebra with h =fold
 the unique algebra homomorphism to C.Lemma 8.3 �C � �� = hnil; Lhi : LF0!L
�LC.Proof It su�ces to show that both sides of the equation are foldright of hnil; nili andfoldr(id; �C) � (��id). The nil case is trivial. The cons case for the left-hand-side is in Fig. 9.The comparable diagram for the right-hand side is in Fig. 10. All of its cells commute, exceptthe left-hand cell on the lower edge. To resolve this, a digression is required.The lower edge of this cell is foldr(hnil; idi; �C) now denoted by f . The following equationsmay be proved in sequence, using elementary arguments.� = f � hid; nilif � � = �20

LF0 � cons F0�LF0L
��?� @ L
�L
 � ��id F0�L
?id���L
�LC�C? �foldr(id; �C) L
�L
�LCid��C? � ��id F0�L
�LC?id��CFigure 9: Representing �C � ��.LF0 � cons F0�LF0LCLh?� cons C�LC � h�id F0�LCid�Lh?������������hnil; �i�id ��������������idL
�LC�LC ��C�id L
�LC������������id�@L
�LChnil; idi? foldr(id; �C) - L
�L
�LCid�hnil; idi? ���id F0�L
�LCid�hnil; idi?Figure 10: Representing hnil; Lhi.f � � = � � (id�f)f � f = ff � � = �f � (id�@) � (f�id) = f � (id�@) .It follows that both sides of the lemma are �xed by post-composing with f . Hence, it su�cesto show that the recalcitrant cell commutes upon post-composition with f . Nowf � (id�@) � (��id) = f � (id�@) � (f � hid; nili�id)= f � (id�@) � (f�id) � (hid; nili�id)= f � (id�@) � (hid; nili�id)= f . 221

The following lemma shows how to de-parse, i.e. reverse the parse into F0. For notationalclarity, the subscript F0 will be contracted to 0 from now on, e.g. �F0 becomes �0.Lemma 8.4 @ � (id���) � �0 = idL
.Proof The commutativity of the lower square in Fig. 11 follows by a case analysis of thede�nition of �0. 2L
 � cons
�L
L
�LF0�0? � �0
�L
�LF0?id��0L
@ � (id���)?� cons
�L
?id�@ � (id���)Figure 11: De-parsing.Now let us return to the F -algebra structure of F0. Consider Fig. 12. Lemma 8.3 implies thecommutativity of its rear face. The right and bottom faces commute by the de�nitions of � and �.Hence, there is an induced F -action
0 that makes h a homomorphism. (Of course, the de�nitionof
0 and its action is not dependent on the particular choice of C, since we can always work overthe algebra C = 1.) FF0 h#; �i-
�LF0 id���-
�L
..............
0R @@@@@consRF 0 � - L
FCFh? h#; nil; �i -
�L
�LC?id��C@@@@@
 R @@@@@�C RCh? hnil; �i - L
�LC?�CFigure 12: The action of the initial algebra.It remains to prove its uniqueness. Let h : (F0;
0)!(C;
) be any F -algebra homomorphism.Then fold
 = h � fold
0 by Fig. 13. Hence it su�ces to prove that fold
0 = id.22

F 0 � - L
F 0fold
0? hnil; �i- L
�LF0?�0Ch? hnil; �i- L
�LC?id�LhFigure 13: Factorisation of h.Now � � fold
0 = @ � (id���) � hnil; �i � fold
0= @ � (id���) � �0 � �= �where the last equation holds by Lemma 8.4. Hence fold
0 = id since � is a monomorphism.8.3 The General CaseThe construction of F0 in the previous section shows how to build particular types, but in orderto obtain type constructors we must construct initial algebras in a parametrised fashion.A functor F : Cm�Cn!Cn can be used to represent a system of (parametrised) domain equa-tions [SP82], whose solution is can be found by constructing, for each object A in Cm, an initialalgebra �A : F (A;F yA)!F yA for the functor F (A;�).For example, if F (A;X) = A +X�X then F yA = TA is the binary trees on A; the leaf andnode constructors are given by the coproduct inclusionsA - F (A; TA) � TA�TAfollowed by the structure morphism for the initial algebra.If such initial algebras always exist, then F y extends to a functor whose action on f : A!B isthe F (A;�)-algebra homomorphism induced by the action:F (A;F yB) F (f; id)- F (B;F yB) �B- F yB .Further, if � : F hid; Gi)G : Cm!Cn is a natural transformation, then the unique algebrahomomorphisms induce a natural transformation �y : F y)G.Theorem 8.5 If F : Cm�Cn!Cn is a shapely type constructor then F y exists and is one, too.Further, if � : F hid; Gi)G : Cm!Cn is a shapely transformation, then so is �y.Proof F is determined by its projections onto C which are all shapely over �L. By the BekicLemma, we can treat these individually, or, equivalently, assume that n = 1. Then for each objectA in Cm the initial algebra F yA for F (A;�) is constructed as above.That F y is shapely over ��L will be a consequence of the second part of the theorem appliedto the composite transformation �F (A;��LA) �- ��L(A;��LA) - ��LA23

where � makes F shapely over ��L and the second transformation is built from natural isomor-phisms, �;@ and the transformation hL�ii : L�L)�LL which is shapely by Proposition 4.5.Hence, �y : F y)��L is shapely as required.Some additional notation will clarify the proof of the second assertion, that �y is shapely.De�ne
(�) = F (�; 1) so that
A = F (A; 1) etc. Observe that the following square is a pullback
A�L
A�LGA
f�L
f�LGf-
B�L
B�LGBL
A�LGA�GA? L
f�LGf - L
B�LGB?�GBso that �G is cartesian, and in fact is shapely. Hence �G is also shapely, by Theorem 4.6.For each morphism f : A!B in Cm we must show that the left-hand square ofF yA F yf- F yB �B - L
BGA�yA? Gf- GB�yB? hnil; �i- L
B�LGB?�GBis a pullback. As the right-hand square is a pullback by de�nition, it su�ces to observe that theouter square is one. But this can be re-drawn as:F yA �A - L
A L
f - L
BGA�yA? hnil; �i- L
A�LGA�GA? L
f�LGf- L
B�LGB .?�GBThe strength for F y is de�ned in Fig. 14 using the de�ning pullback for F y(A�B) and thestrength of L
A�LGA. Its right face commutes because �G is strong. Taking GA = 1 shows thatthe strength for F y does not depend on �. The diagram also shows that �y is strong, and so isshapely. 2Note that the theorem asserts that if F is shapely over lists then so is F y. It does not establishthe stronger conjecture, that if F is merely shapely then so is F y. This is because the proof ofshapeliness, like that of existence for F y, relies on a parsing argument.9 ConclusionsA semantic notion of shape has been presented, and used to prove that, under mild assumptions,the existence of lists is enough to establish the existence of all the other inductive types, such astrees. It also indicates how shape polymorphic operations, e.g. mapping, can be introduced forsuch types.Of much broader signi�cance is that the same semantic notion embraces many of the otherfundamental data types, such as arrays, graphs and records, which are not inductive types, andhence outside the core of many languages. 24

(F yA)�B �A�id - L
A�B........................� R @@@@@@@@� RF y(A�B) �A�B -�GA�id L
A�B(GA)�B�y�id? hnil; �i�id - L
A�LGA�B?@@@@@@@@� R @@@@@@@@� RG(A�B)?�y hnil; �i - L
A�B�LG(A�B)?�G(A�B)Figure 14: The strength for F yA.A type system, and programming language, based on shape should yield many further bene�ts,including shape polymorphism, the detection of shape errors, and optimisation of run-time codebased on shape analysis of the inputs.AcknowledgementsI would like to thank the anonymous referees, and D. Clarke, J. Crossley, J. Edwards, D. Mahlerand M. Sekanina for their constructive criticism.References[BC90] G.E. Blelloch and S. Chatterjee. VCODE: A data-parallel intermediate language. InProceedings of the 3rd Symposium on the Frontiers of Massively Parallel Computation,pages 471{480, October 1990.[BS93] C.R. Banger and D.B. Skillicorn. A foundation for theories of arrays. Queen's Univer-sity, Canada, 1993.[BW88] R. Bird and P. Wadler. Introduction to Functional Programming. International Seriesin Computer Science. Prentice Hall, 1988.[CF92] J.R.B. Cockett and T. Fukushima. About charity. Technical Report 92/480/18,University of Calgary, 1992. 25

[CH88] T. Coquand and G. Huet. The calculus of constructions. Information and Computation,73(2/3), 1988.[CLW93] A. Carboni, S. Lack, and R.F.C. Walters. Introduction to extensive and distributivecategories. Journal of Pure and Applied Algebra, 84:145{158, 1993.[Coc90] J.R.B. Cockett. List-aritmetic distributive categories: locoi. Journal of Pure andApplied Algebra, 66:1{29, 1990.[Col93] M. Cole. Parallel programming, list homomorphisms and the maximum segment sumproblem. In D. Trystram, editor, Proceedings of Parco 93, Advances in Parallel Com-puting. Elsevier, 1993.[DER86] I.S. Du�, A.M. Erisman, and J.K. Reid. Direct Methods for Sparse Matrices. ClarendonPress Oxford, 1986.[FCO90] J.T. Feo, D.C. Cann, and R.R. Oldehoeft. A report on the sisal language project.Journal of Parallel and Distributed Computing, 10:349{366, 1990.[GLT89] J-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Tracts in Theoretical Com-puter Science. CUP, 1989.[Hag83] T. Hagino. A Categorical Programming Language. PhD thesis, University of Edin-burgh, 1983.[HMM90] R. Harper, J. Mitchell, and E. Moggi. Higher-order modules and the phase distinction.In 17th POPL. ACM, 1990.[HPJW92] P. Hudak, S. Peyton-Jones, and P. Wadler. Report on the programming languagehaskell: a non-strict, purely functional language. SIGPLAN Notices, 1992.[Jay93a] C.B. Jay. Matrices, monads and the fast fourier transform. Technical Report UTS-SOCS-93.13, University of Technology, Sydney, 1993.[Jay93b] C.B. Jay. Tail recursion through universal invariants. Theoretical Computer Science,115:151{189, 1993.[Jay95] C.B. Jay. Polynomial polymorphism. In R. Kotagiri, editor, Proceedings of theEighteenth Australasian Computer Science Conference: Glenelg, South Australia 1{3February, 1995, volume 17, pages 237{243. Australian Computer Science Communica-tions, 1995.[JC94] C.B. Jay and J.R.B. Cockett. Shapely types and shape polymorphism. In D. Sannella,editor, Programming Languages and Systems - ESOP '94: 5th European Symposium onProgramming, Edinburgh, U.K., April 1994, Proceedings, Lecture Notes in ComputerScience, pages 302{316. Springer Verlag, 1994.[JG89] M.A. Jenkins and J.I. Glasgow. A logical basis for nested array data structures. Com-puter Languages Journal, 14(1):35{51, 1989.[Jon90] G. Jones. Deriving the fast fourier transform algorithm by calculation. In Func-tional programming, Glasgow 1989, Springer Workshops in Computing. Springer Ver-lag, 1990.[Jon94] M. Jones. The implementation of the gofer functional programming system. TechnicalReport YALEU /DCS/RR-1030, Yale University, 1994.[Joy81] A. Joyal. Une th�eorie combinatoire des s�eries formelles. Advances in Mathematics,42:1{82, 1981. 26

[Ka94] V. Kumar and all. Introduction to Parallel Computing: Design and Analysis of Algo-rithms. The Benjamin/Cummings Publishing Company, Inc., 1994.[Koc72] A. Kock. Strong functors and monoidal monads. Archiv der Mathematik, 23, 1972.[Kun82] H. T. Kung. Why systolic architectures? IEEE Computer, 15(1):37{46, January 1982.[Man92] E. Manes. Predicate Transformer Semantics, volume 33 of Cambridge Tracts in The-oretical Computer Science. Cambridge University Press, 1992.[McC94] W.F. McColl. BSP Programming. In Proceedings DIMACS Workshop on Speci�cationof Parallel Algorithms, 1994.[Mey94] B. Meyer. Ei�el: the libraries. Prentice-Hall, 1994.[MT91] R. Milner and M. Tofte. Commentary on Standard ML. MIT Press, 1991.[Ski94] D.B. Skillicorn. Foundations of Parallel Programming. Number 6 in Cambridge Seriesin Parallel Computation. Cambridge University Press, 1994.[SP82] M. Smith and G. Plotkin. The category-theoretic solution of recursive domain equa-tions. SIAM Journal of Computing, 11, 1982.

This article was processed using the LaTEX macro package and P. Taylor's diagrams package.27

