A Semantics for Shape

C. Barry Jay ~

Abstract

Shapely types separate data, represented by lists, from shape, or structure. This separation
supports shape polymorphism, where operations are defined for arbitrary shapes, and shapely
operations, for which the shape of the result is determined by that of the input, permitting
static shape checking. The shapely types are closed under the formation of fixpoints, and
hence include the usual algebraic types of lists, trees, etc. They also include other standard
data structures such as arrays, graphs and records.

1 Introduction

The values of a shapely type are uniquely determined by their shape and their data. The shape
can be thought of as a structure with holes or positions, into which data elements (stored in a list)
can be inserted. The use of shape in computing is widespread, but till now 1t has not, apparently,
been the subject of independent study. The body of the paper presents a semantics for shape,
based on elementary ideas from category theory. First, let us consider some examples and possible
applications. Three classes of examples are inductive types, arrays and records.

All inductive types are shapely. For example, a tree with leaves of type A has shape given
by the corresponding unlabelled tree, and data given by its list of leaves (in, say, left-to-right
order). Shape also provides another approach to the semantics of parametric polymorphism. Of
particular interest for the inductive types is the existence of shape polymorphism (see below) in
which a program can be used with arbitrary shapes.

This representation of inductive types also supports greater use of parallelism, since the data
is held in a list. W.F. McColl writes of the language GPL : “Such [inductive] types have been
deliberately excluded from GPL since they often lead to representations for which it is hard to
obtain high degrees of concurrency.” [McC94].

The shape of an array 1s its size. For a matrix this is a pair of natural numbers. More generally,
the arrays of dimension k& have shape given by a k-tuple, while arrays of arbitrary dimension have
shapes given by lists of numbers. Unlike the inductive types, the representation of the shape is
very small compared to that of the data, and tends to be quite stable. Hence, shape analysis (see
below) may yield substantial benefits in error detection or optimisation, particularly in parallel
programming,

Function types are not shapely in general. This may account for some of the tension between
the use of higher-order functions and that of arrays. For example, the core of the type systems
underlying many sequential functional languages, e.g. [MT91, HPJW92], does not support array
types. By contrast, parallel functional languages must emphasise arrays, and so often compromise
the function types, e.g. by restricting them to be first-order as in Sisal [FCO90], or second-order,
using, say, skeletons [Col93]. Shape theory may provide a context in which to explore the trade-offs.

Sparse arrays are also shapely. They can be represented by a list of position-data pairs; the
list of positions is the shape. Symbolic computation, as used in Gauss-Jordan elimination, uses
the shape to try to minimise the number of non-zero entries [DERS6].

Graphs which have a given order on the nodes can be represented as sparse matrices. More
directly, their shapes are unlabelled graphs, i.e. relations.

*School of Computing Sciences, University of Technology, Sydney, PO Box 123 Broadway, 2007, Australia.

Programming based on shape would allow the graph, or topology, of a problem to be handled
explicitly, instead of being embedded within the structure of a sparse array. Then shape poly-
morphism would support code re-use despite varying geometries. Also, the processor architecture
may be expressible in the same terms, so that compilation could be expressed as a mapping of the
shape of the problem onto the shape of the processor.

The shape of a record is the set of its fields (represented as an ordered list). Since records
are fundamental to both databases and to object-oriented programming, it may well clarify their
semantics. For example, in database theory, missing fields are recorded in the shape. In object-
oriented languages, e.g. Eiffel [Mey94], container classes are designed to represent shape.

Having considered a variety of shapes, let us consider how they might be used. Three appli-
cations are: code re-use, error-detection and optimisation. The latter two are collectively called
shape analysis. While examining them, we will consider whether existing languages and type
systems are capable of expressing the desired benefits.

1.1 Shape Polymorphism

Shape polymorphism is a novel form of parametric polymorphism which allows operations to be
parametrised over shapes; rather than over data. Consider the operation map which applies a
function to each element of a list. In existing functional languages, its type 1is

(a—=f)—a list—f list

where o and may range over any types. This data polymorphism allows the data (o and) to
vary, but uses a fixed shape, 1ist. Shape polymorphism fixes the data, but allows the shape to
vary, so that, for types A and B, instances of map include

(A>B)—>Atree—>Btree

and
(A>B)—>Amatrix—Bmatrix .

In each case map f applies f to the data (the leaves or entries), while leaving the shape fixed.

Shape polymorphic operations need not fix the shape; the shape S may be replaced by some-
thing constructed from it, such as Sx.S.

It is common for both kinds of parametric polymorphism to co-exist, as for map, but neither
implies the other: appending of lists is data polymorphic but not shape polymorphic, while map-
ping of a particular function (e.g. square root) may be shape polymorphic without being data
polymorphic.

Shape polymorphism will have several benefits. It will allow operations to be used with ar-
bitrary shapes, including those defined by the user. In array-based languages, it will liberate
function definition from issues of size and dimension. In record types, adaptation for missing and
additional fields in records can be handled automatically.

Shape polymorphism is not supported in type system F [GLT89] which underlies the dominant
functional languages. In the extension F1 of F, the shape could be viewed as a connective F' : Q—
which maps types to types (e.g. maps A to trees of A). Then a possible type for map is:

VF : Q-QVXY (X-Y)>(FX—FY) .

However, this type is empty. One difficulty is that connectives may be contravariant, in which
case the natural type for map would be VXY.(X—=Y)—=(FY—>FX) . More fundamentally, there
is no single algorithm for map in F that will work for all connectives (even the covariant ones).
The existence of this meaningful (but uninhabited) type for map means that its type can be
checked, but the algorithm used to implement it must depend on the type, so that the poly-
morphism is ad hoc, rather than parametric. If map is supported through type classes, as in
Haskell [HPJW92] and Gofer [Jon94], the algorithm is supplied by the user. In Charity [CF92]

the algorithm is inferred automatically from the type.

A parametrically polymorphic version of map (and of fold) has been implemented in P2 [Jay95]
for the polynomial types (built using products and sums) and their fixpoints, such as lists and
trees. A language for all inductive types, such as forests, is currently under construction. It seems
likely that some shape polymorphism could be incorporated into existing functional languages.

Some approximations to shape polymorphism can be found in existing languages. Array lan-
guages in which nested arrays are represented by their shape and a flat array, e.g. VCODE [BC90]
and Qnial [JG89] allow operations over a variety of shape classes. Object-oriented languages with
container classes [Mey94] can support shape polymorphic mapping; a routine for performing map f
over a variety of containers is given by:

from
start
until
off
loop
item.f
forth
end

1.2 Shape Analysis

Some computations require a high degree of interaction between the data and the shape, e.g. in
graph reduction. However, there is a large class of operations in which the interaction is minimal,
or even non-existent.

Sometimes the shape of the result i1s determined by the shape of the arguments, without
reference to the input data, though the data of the result may depend on the shape. This is
common in data parallel computation [Ski94] and in systolic array computations [Kun82]. For
such shapely operations it is possible to compute all of the intermediate shapes, as well as that of
the result, before examining the data.

This phase-distinction [HMM90] is similar to that occuring in static type checking. As there,
we can expect early error detection, before computation on the data begins. The compiler will
generate shape constraints from the program, simplifying them where possible. Occasionally, the
constraints will be shown to be unsatisfiable, and the error reported before any input is considered.
Otherwise, when inputs are provided, their shapes must be shown to satisfy the constraints before
the data is processed, e.g. the matrix dimensions must match before multiplication i1s attempted.

An additional benefit is that knowledge of the shapes of all the intermediate values can be
used to optimise large-scale computations, which is particularly important for parallel process-
ing. Shapes carry size information with them, so that some load balancing can be pre-determined.
Also, shapes may allow complexity estimates to be made for various sub-tasks, leading to improved
scheduling, or determination of non-deterministic algorithms. For example, symbolic computa-
tion on sparse matrices manipulates the positions of the non-zero entries to maximise efficiency
[DERSG].

Even when operations are not shapely, the separation of shape from data may be useful in run-
time algorithms. For example, the optimal matrix parenthetisation problem [Ka94, Chapter 9.4.1]
uses the shapes alone. Again, when a task (and its data) is split so that it can be shared between
two processors, it may be desirable to transmit the smaller portion of data, whose size is easily
computed from the shape.

1.3 The Semantics

This work is based on the results reported in [JC94].

The setting is a locos, a lextensive category [CLW93] with list objects. (Although this setting
is quite weak (e.g. cartesian closure and subobject classifiers are not assumed) the assumption of
all finite limits is not reasonable computationally, and can probably be weakened.

The characterisation of the shapely type constructors F' uses pullbacks such as:

§
FA A

_
#

LA

N .

arity

That is, values of type F'A are uniquely represented by a shape (of type S) and some data (of
type LA) where the length of the data list equals the arity of the shape. The construction of
FA is functorial in A and § is a natural transformation. F inherits many of the properties
of the list functor; it is a shapely functor. Similarly, the definition of § by a pullback confers
additional properties on it, making it a shapely (natural) transformation. The shapely functors
and transformations form an attractive setting, which is explored below.

The data could be represented by other structures, such as lazy lists, streams and multi-sets,
with varying degrees of success. The emphasis on finite lists is justified by the main theorem of the
paper, which asserts that the shapely types are closed under the formation of fixpoints. Hence,
the theorem establishes the existence of the inductive types, such as trees, from that of lists alone.

The proof is based on the observation that inputs to sequential computers are given by lists,
which are parsed to produce values of fixpoint type. This algorithm, together with those for
recognition of the language, and for folding, or reduction, out of it, are instances of a single
operation on lists. This link from fixpoint types to parsing i1s not an accident, but a witness to
the link from parsing to context-free grammars. Another link is that data storage (in a shape)
becomes equivalent to data entry (using a language, Section 5).

1.4 Towards a shapely type system

There are some open questions about how a type system might be built upon this semantics. One
method would represent types exactly as they appear in the semantics, as pullbacks. That 1s,
values would be represented by a shape and a data list, subject to the constraint that the arity of
the shape equals the length of the list. This constraint on inputs must be checked by the compiler,
and would involve techniques similar to those used in shape analysis. It is not yet clear what
limitations should be imposed on the shape and arity to make this feasible.

A shapely type can be represented as a dependent type, i.e. a sigma type:

ES:SAG(S)

whose values are given by a shape s : S and some data, of type A (where a is the arity).

Of course there are languages that support dependent types, e.g. the Calculus of Constructions
[CHS88], but the dependence of types on values means that type-checking is performed at run-time,
whereas it is our intent that type (and shape) checking be performed as early as possible, preferably
during compilation.

Another possibility arises if the lists LA can be represented as X,y A” (which is really a type
of vectors). Then we can represent the shapely type by the power series

En:NSn x A"

where 5, represents all shapes having arity n. This approach emphasises the connections with
polynomial types [Jay95] and also with combinatorics, particularly the theory of species [Joy81].
For example, if S represents tree shapes then S, is the number of trees with n leaves, or if S
represents all possible arrays, then S, is the number of factorisations of n. Unfortunately, this
approach is unlikely to be useful algorithmically, since the arity is a poor discriminator among
shapes.

The paper is structured as follows. Section 1 is the introduction; Section 2 reviews the categor-
ical setting, and establishes some notation and lemmas; Sections 3-7 introduce shapely functors,
transformations and types, shape polymorphism, and shape analysis; Section 8 constructs initial
algebras, or fixpoints; and Section 9 draws conclusions.

2 Locoses

The types and operations are modelled by the objects and arrows of a category C. It must have
lists (and the underlying products and coproducts required to define them) and enough pullbacks
to work with shapes. Specifying such a class of pullbacks (as was done for the Boolean categories of
[Man92]) at this stage would impose an unwelcome burden so, to simplify slightly, we will assume
that we have all pullbacks, and work in a lextensive category [CLW93] which has all list objects,
i.e. a locos [Coc90]. Being extensive is equivalent to requiring that all coproduct diagrams have
disjoint (monomorphic) inclusions, and are stable under pulling back. Examples include the usual
semantic categories, including those of sets, bottomless complete partial orders, or even topological
spaces, any one of which will suffice to illustrate the ideas below.

Let us fix some notation. If f : C—A and g : C—B are morphisms then (f,¢) : C—>AxB is
their pairing. The left and right projections from the product are 74 p and 71'1473 (respectively).
The unique morphism to the terminal object is !4 : A—1. The symmetry for the product is
denoted c4 p : AxB—BxA. Dually, the coproduct inclusions are given by ¢4 p : A=A+ B and
y g BoA+ B If f: A—C and g : B—>C then their case analysis is given by [f,¢] : A+ B—C.
The functors IT,Y : C"—C denote chosen n-fold products and coproducts, respectively, and A :
C—C" is the diagonal functor.

The distributive law is witnessed by a natural isomorphism

dapc: Ax(B+ C)=(AxB) + (AxC)

whose inverse is [1dx¢, idx./].

Subscripts on natural transformations will be omitted unless required to disambiguate an
expression.

A pullback 1s a commuting square

P B
_
p g
A C
f

such that, for every pair of morphism « : X—A and y : X— B such that f oz = g o y there is a
unique morphism z : X—P such that poz = 2 and go z = y. When C' = 1 the pullback 1s Ax B
and z = (x,y). The same pairing notation will be used in the general case.

The list constructor is a functor L : C—C. Its constructors are:

nil : 1—LA
cons : AxLA—LA

Further, for any choice of objects B and C', and morphisms z : B—C and h : AXC'—C there is a
unique morphism foldr(z, h) : LAxB—C' (called foldright of x and h) that makes the following

diagram commute:

(nil, id) consxid
B LAXB «——— AXLAXB
foldr(xz,h) idxfoldr(x, h)
x
C < AxC .
; X

It follows that [nil, cons] : 14+ (AxLA)—LA is an isomorphism, which expresses LA as a coprod-
uct.

From these primitives we can construct the usual family of list operations, whose notation is
a mixture of the list notation of [BW88] and categorical notation for monads:

Lf : LA—LB ismap f for f: A—B
: LA->N is the length map !
n : A—=LA makes singleton lists

@ : LAxLA—LA is append
snoc : LAXA—LA appends a singleton
poo LPA—=LA flattens a list of lists
g : LA—LB is g o Lg which extends
g : A—LB to act on lists.

L1 1s a natural numbers object N with zero 0 and successor S given by nil and cons respectively.
Then 1 = one and @ = + is addition and g : LN—N is summation. Let Eq be the equality on
N. Many elementary results about lists in locoses can be found in [Jay93b].

The lemma which concludes this section will be needed to prove the main theorem below.
Define shunt : LAXLA—LAXLA to be

[(id,nil), snocxid)
LAxLA

LAXLA= LA+ (LAXAXLA)

where the isomorphism is given by the coproduct decomposition of the second list and the dis-

tributive law. Then
split : NxLA—LAXLA

is given by foldr((nil, id), shunt). It divides a list into two segments, whose first, initial segment,
has length given by the first projection (if the list is long enough). Define

take = wosplit: NxLA—LA
drop = n'osplit: NxLA—LA.

Lemma 2.1 The following equations hold:

@osplit =
splito(#om, @ = id.

Hence, we have a pullback:

(Fom, @)

LAxLA NxLA

_

Eqo (m, # o take)

1 bool .
true

Proof Both sides of the first equation equal foldr(id, id). The second is proved similarly.
Given z : X— N x LA for which Eq o (r, take) o # = true then the induced morphism into the
pullback is split o . That @ o splitox = 7’ o x follows from the first equation above while

#omosplitoxr = Fotakeox

= mox

follows from the assumption about x. The induced morphism into LAxLA is unique since
(# o m,@) is a monomorphism by the second equation above.
O

3 Shapely Functors

Shapely functors will be defined using two properties of the list functor, its strength [Koc72] and
stability, which we will now review.

Construct my as
(nil, id) consxid

B LAXB «—— AXLAXB
70 idx
L(AxB)x B AXL(AxB)x B

where h = (cons o (idxc), 7). Define the strength of L to be T4 p = mo 1 : LAXB—L(AXB).
In Sets it maps {[a;], b) to [{a;, b)]. Tt allows parameters to be introduced to a list.

Let us generalise. If A = (Ag,..., Ap_1) is an object of C™ and B is an object of C, then
define AxB = (Agx B, ..., An_1xB).

A strong functor is a functor F' : (" —C equipped with a natural transformation
TAB . FAXB%F(AXB)

called its strength which satisfies the usual associativity and unicity axioms. These ensure that
the result is independent of whether parameters are introduced one at a time, or as a tuple.

More generally still, a strength for F' : C""—C" is given by a strength for each of its projections
onto C.

The list functor preserves all pullbacks, i.e. is stable [Coc90]. Tt does not preserve products,
however. The terminal object is mapped to the natural numbers object N which represents the
length (or shape) of lists. Also, we can construct a binary product as a pullback over 1 and then
apply L to get:

/

L(AxB) LB
L #
LA N .

#

This induces an isomorphism
zip: LAX 4 LB—L(AXB) .

from the canonical choice of pullback (indicated by x4) into L(Ax B).
Definition 3.1 Let F : C™—C™ be a functor with a given strength 7. Then it is a shapely functor

if F' is a stable functor. Then F'1 is the object of F'-shapes and # = F!: FA—F'1 is the shape of
FA. Also zip : FAxx FB—F(AxB) is the canonical isomorphism.

As all finite limits can be constructed from pullbacks and the terminal object 1, it follows that
shapely functors preserve as many finite limits as possible while having a non-trivial shape. Here
are some examples of shapely functors.

Example 3.2 If FX = K is a constant functor then it is shapely.

Example 3.3 The coproduct functor 4+ : C*—C has strength given by the distributive law. Its
stability follows directly from extensivity.

Example 3.4 The product functor x : C*—C has strength given by the canonical morphism:
(Ax A Yx B=(Ax B)x (A'xB) .
Stability follows since products commute with all finite limits.

Example 3.5 Composites of shapely functors are shapely: if (F, o) : A=B and (G, 7) : B—C are
shapely functors then GG o F' is shapely. Stability is immediate, while the strength is given by:

GFAxB — v G(FAxB) 2% GF(AxB) .

Example 3.6 If (F, o) : A—=B and (G, 7) : A—=C are shapely then so is (F,) : A=BxC with its
strength having components ¢ and 7. Stability reduces to that of /' and G separately.

Example 3.7 Combining the last two results, we see that if F,G : A—B are both shapely, then
soare '+ G =+ o(F,G) and FxG = x o (F,G).

Example 3.8 The list functor is shapely.

Now let us consider some alternatives to lists as a means of storing data. Some of these functors
preserve the terminal object, as well as pullbacks. Usually, such additional properties are to be
welcomed, but now the object of shapes is trivial, as is the resulting shape theory. Here are two
examples.

Example 3.9 Let SA be the streams (or infinite lists) of A’s. They are given by the final co-
algebra [Hag83] for the functor Ax (—). That is, for each co-algebra o : C'—=Ax C there is a unique
co-algebra homomorphism C'—SA. It follows that S has a strength, and S preserves all finite
limits. Every stream has the same (infinite) length.

Example 3.10 Let X be an object such that the exponential (or function type) AX exists for
all objects A. The functor (—)% is strong, and preserves all limits since it is a right adjoint.
Combining this with lists yields the shapely functors (L—)* and L(—%*).

Here are some alternatives to lists with non-trivial shapes.

Example 3.11 Let L°° A be the object of finite and infinite lists, i.e. the final co-algebra for the
functor F.X = 14+ AxX. Its shapeliness follows directly from its definition. Its shape object is
N which in Sets is N U {o0}.

Example 3.12 Let BA be the bags or multi-sets of elements of A. Then B is shapely, but
B1 = N so that bags have the same shapes as lists. In other words, the shape does not record
the multiplicities of the elements, since these dependent on the data. For this we must turn to the
next example.

Example 3.13 Let W be an object (of weights). We can define weighted lists by the functor
L(Wx—) whose object of shapes is LW. If W = N is used to represent multiplicities, then we
have an approximation to bags in which the same element may appear twice within a bag. If the
weights are positions, then we have, say, a sparse matrix. Note that the weights in L(WW x A) may
be considered as part of either the shape or the data. Hence, the shape must be given explicitly.

Here are a couple of non-examples.

Example 3.14 The covariant functor P; : Sets—Sets which constructs finite sets of elements
does not preserve pullbacks. Pr1 = 2 merely determines whether a set is empty or not, which is
too little information.

Example 3.15 The functor X(=) is contravariant, and so cannot be shapely. Example 3.10

showed how exponentials could be used to construct shapely functors. The functor yxT s
covariant but it does not always preserve pullbacks, e.g. X =Y = 2 in Sets.

4 Shapely Transformations

A strong natural transformation (F, o)=(G, 7) between strong functors is a natural transformation
a : F=(G that commutes with the strengths. That is:

id
FAxB 2422 GaxB
o2 T
F(AxB) G(AxB) .
XA XB

A natural transformation « : F'=G is cartesian if, for every morphism f : A— B, the following
square 1s a pullback:

FA—2 L Ga
_
Ff Gf
FB GB .
ap

Finally, a cartesian, strong natural transformation « : (¥,)=(G, 7) between shapely functors
is a shapely transformation, in which case F' 1s shapely over G by «.

Example 4.1 Coproduct inclusions are shapely; the strength is given by the distributive law,
and cartesian-ness follows from extensivity of the coproduct. Hence type constructors, such as
nil and cons are shapely.

Example 4.2 Projections from the product x : C*—C, though strong, are never shapely. (Not
all transformations of interest are shapely!) Instead, given f: A—>C and g : B—>D we have the
pullback

AxD A
|

fxid f

CxD C

T
which shows that the transformation 7 : (=) x D=-id : C—C is cartesian. That is, 74 p is shapely
in A and 7 p is shapely in B.

Example 4.3 If o : F=G and 3 : F=H are shapely transformations, then their pairing (o,) :
F=GxH is. Similarly, if « : F=H and 8 : G=H are shapely, then so is [a, 3] : F + G=H.

Theorem 4.4 Let C be a locos. The powers of C, and the corresponding shapely functors and
shapely transformations between them, form a 2-category with respect to the usual operations.

Proof Ifa: (F,0)=(G,7)and 3: (G, 7)=(H,p) are shapely then so is o« : F=H (whose
components are (o a)g = faoaa. If a: F1=Fs and § : G1=G5 are shapely then so is their
horizontal composite Sxa : G1 F1=GoFs (whose components are given by (S*a)a = Bp,a0G1a4).
In each case, strength and cartesian-ness follow by pasting. a

Proposition 4.5 Let F': C2—C be a shapely functor and let G, H : C—C be any functors. Suppose
that for each object B the transformation s g @ F(A, B)=GA is cartesian in A, and for each
object A the transformation fa g : F(A, B)>HB is cartesian in B. Then

(aoap,Ban): F(A B)»GAxHB

1s cartesian in both A and B.
Proof Consider a commuting square:

(z,y)

X GAxHB
z GgxHh
F(A' B GA'xHB' .

(@, 0)

Then z and z induce a unique morphism z' : X—F (A, B') by the cartesian-ness of . Similarly y
and z induce a morphism y' : X—>F(A’, B). Now the commutativity of

x/

X

F(A, B

y F(g,1id)

F(A', B) F(A', B')

F(id, h)
and the stability of F' induce the desired morphism X—F (A, B). O
Theorem 4.6 If o : F=G and § : HxG=G are shapely transformations, then

ya = foldr(aa, Ba) : LHAXFA—-GA

15 a shapely transformation.
Proof Adapt the proof of the special case [Jay93a, Theorem 2.6]. a

Hence the main operation by which new operations are constructed preserves shapeliness. For
example, @ = foldr(nil, cons) and y = foldr(nil, @) are shapely, as is 7y. However 74 p = momy
is shapely in A but not B.

The following lemma shows how strength and cartesian-ness interact.

Theorem 4.7 If o : F=G is cartesian and (G, 1) is shapely then there is a unique strength o for
F such that (F,0) and « are both shapely.

Proof If F has a strength ¢ that makes « strong then Fig. 1 must commute. Since the square
is a pullback, this determines ¢ uniquely. Conversely, this pullback can be used to define o whose
desired properties are all inherited from 7. a

10

axid

FAxB GAxB

F(AxB) — G(AxB)
Fr Gr

FA GA

Figure 1: The strength of F'.

Corollary 4.8 There is an equivalence between functors shapely over (G,) and morphisms into

its shape G'1.
Proof If o : (F,0)=(G, 1) is shapely then oy : F1—=G1 is the desired morphism. Conversely,

given a : S—G1 define a functor F' by the pullback:

FA— L Ga
_

#

S G1.

a

The action of F' extends to a functor as follows: given f : A—B then # o Gf equals # which
implies that the pullback defining F'A can be constructed in stages, as in Fig. 2.

FA—2 L Ga

Ff Gf

G1

Figure 2: Cartesian-ness of a.

The equations for functoriality all follow directly from the universal properties, and the cartes-
ian-ness of « is immediate from the diagram. Now the theorem shows that 7' and « are shapely.

The constructions are inverse (up to isomorphism). a

11

5 Shapely Types

A functor F' : C—C which is shapely over lists is a shapely type constructor. More generally, a
functor F : C™—C" is a shapely type constructor if it is shapely over AIIL.

The latter functor may need some unravelling. The list functor on C"™ acts on each component,
separately. Hence, if A = (Ay,..., Ap_1) is an object of C™ then

IILA = LAQX R XLAm_1 .

Then A makes one copy of this for each component of C".
Thus, if F' = (Fy,...,F,—1) and § = (6°,...,d"71) is the given shapely transformation then
there are pullbacks:

)

FA LA
|

#

F1 N

52’

§% is also known as the ith arity of F'1. The significance of this pullback is that values of type F'A
are given by a shape (of type F'1) and some data (of type IILA) for each ¢, such that the arity of
the shape equals the amount of data supplied. In other words, shapes can be thought of as having
fixed numbers of holes or entries of each type, which must be filled in by data.

Corollary 4.8 shows that shapely type constructors can be specified by giving their shape with
its arity. Let us consider a single example in some detail.

Trees with labelled leaves and nodes are described by:

(leaves,nodes)

Ty(A, B) LAXLB
_
X
TZ(lal) NxN .

(leaves,nodes)

The shape of a tree is the corresponding unlabelled tree. It is worth emphasising here that
pullbacks are only defined up to isomorphism, so that they only provide a specification of an
object, not an implementation. This level of abstraction can be a real benefit, but unanswered
questions can remain. In the current case, the pullback does not determine whether the list
of leaves represents them in left-to-right or right-to-left order, or in some more arcane fashion.
This issue will only be resolved when the constructors for the type are given, which in turn are
determined by their action at the level of shapes.

For notational simplicity, we will illustrate this by trees T'A with leaves of type A but unlabelled
nodes. Define leaf 4 : A—>T'A as in Fig. 3.

If the leaves are listed from left-to-right then node, is given by Fig. 4. The number of leaves
in the result is the sum of those in the sub-trees, while the lists of leaves must be appended. Note
that if leaves were to represent the leaves from right to left then the order of the lists must be
swapped before appending. Thus, the choice of @ for the node constructor fixes the representation
of the leaves.

Of course, these constructions all depend on the prior existence of the shape, its arity and
constructors. The existence of such inductive types in an arbitrary locos will be established in
Subsection 8.3. Here are some examples which are not inductive types.

Example 5.1 Languages generated by a grammar are shapely, with the data given by lists of
terminal symbols, and the shape given by the production.

12

A LA
. leafu w
o
TA LA
- {
1 — N #
one
leafl\« :Ld\«
T1 N
leaves
Figure 3: leaf.
(TA)? (LA)?
"'.nOdeA \g
"
TA LA
-
(T1)? —— | —— N*? #
nodel\« }\
T1 N

leaves

Figure 4: node.

Example 5.2 Define the matrices M A with entries of type A by the following pullback:

entries

MA LA
_
#
NxN N .
*

That is, a matrix is a list with a given factorisation of its length. The underlying shape of a matrix
is its dimensions. Corollary 4.8 shows that M and entries are shapely. Matrix multiplication,
and general operations of linear algebra can all be produced from this definition [Jay93a].

Example 5.3 Arrays of dimension k generalise the matrices. They are constructed from the arity
N*—N which computes the product of the sizes. The types of arrays of all possible dimension
have shapes given by lists of numbers LN. The length of the list determines the dimensionality
of the array. The usual array operations of updating, etc. can be defined using operations on the
data list, using the shape to determine the necessary positions.

Banger and Skillicorn [BS93] give a categorical semantics for arrays, which are represented by
their dimensions and a stream. The lack of a constraint linking sizes and data limits the potential
for error-checking.

13

Manes [Man92] interprets matrices as the morphisms of a category, whose objects are sizes.
The result 1s a universe of matrices, without distinguishing the matrices as one data type among
many.

Example 5.4 Sparse arrays can be represented as a list of position-datum pairs, the result of
zipping a position list, the shape, with a data list.

Example 5.5 The underlying shape of a graph is an unlabelled graph or relation. There is no
canonical order on the nodes of a graph (or elements of a set), so that one must be imposed. Then
a relation can be represented as a symmetric boolean matrix. A more efficient representation uses
an upper triangular matrix. Thus relations (on finite orders) are given by the following pullback

J

R L2

_
#

choose2

where choose2 maps n to n(n — 1)/2. It follows that # : R—N determines the number of nodes,
and # o ¢ determines the number of edges in an unlabelled graph.
Thus graphs with nodes of type A and edges of type B are given by the pullback:

G(A, B
(J)

LAxLB

X

R—» NxN .
#F oo

Note that once an order has been chosen for the nodes then there is an implicit order on the edges.
There is a second means of representing these graphs, where the shape is given by the number
of nodes:

G(A, B)

LAXL(B +1)

X

NxN
(id, choose2)
Now there is an “edge” between any pair of nodes, but those labelled by +/ : 1—B + 1 are only
dummy edges. The result is a sparse matrix with dummy labels whenever there is no edge.
Directed graphs are handled the same way, except that there are now n? possible edges. For
directed multi-graphs it is necessary to have an order on the edges connecting a single pair of
vertices. Then for each pair of nodes there is a list of labels. One representation is

Gam(A, B) LAXLLB
#xH
N NxN

(id, s)

where s is the squaring function.

14

Example 5.6 Consider records whose field names are of type X. Assume that the fields have
a canonical order (e.g. lexicographic). For simplicity, assume that all the fields must have the
same type. The shape of a record is the finite set of its fields, with arity given by cardinality.
We can represent such a set by a list of fields, in correct order. Then the data list represents the
values assigned to the fields. When there are several types of data then X must be partitioned
into subobjects consisting of fields that must have the same type. The usual operations of adding,
deleting and changing fields can be defined using the properties of pullbacks.

Example 5.7 Weighted lists are shapely over lists in the obvious way. Hence, any functor shapely
over weighted lists is automatically shapely over lists.

Example 5.8 Shapely type constructors are closed under composition. If « : F=L and 7 : G=L
are shapely type constructors then

Bra)a pry_#a

GI'A LA

makes G'F' a shapely type constructor. For example, trees of arrays form a shapely type.

Let us consider what happens if lists are replaced by one of the other candidates for data
storage presented in the previous section. The last example above shows that neither weighted
lists nor graphs add anything new.

Example 5.9 Consider a shapely natural transformation « : F’= B over the bag functor. Values
in F'A are determined by a shape, and by a bag of data, but the only connection between them
is that the number of items in the bag equals the arity of the shape. This does not seem very
interesting.

Example 5.10 If G preserves the terminal object then any shapely natural transformation « :
F=G makes F' isomorphic to F1xG(—) since the pullback defining o reduces to a product di-
agram. That is, there 1s no constraint linking the shape and the data. For example, matrices
which are infinite in both dimensions have no shape; they are isomorphic to streams. Similarly,
necessarily infinite trees have non-trivial shapes, but the data is always a stream; there is a shape
but no constraint.

Example 5.11 If the data is stored in a lazy list L A then we can construct lazy data types
such as lazy trees, whose shapes are given by possibly infinite trees, and lazy arrays, which may
be infinite in some (or all) dimensions. Of course, some care must be taken in choosing the order
of the entries in the data list.

The definition of shapely types is based on the image of a structure with holes in which
different types of data can be stored; this i1s represented by functors which are shapely over a
product ITLA = LAgx LAsx ... x LA, —1 of lists, one for each type of data. An alternative image,
to be exploited below, takes data entry as the primitive notion. That is, an input string is of type

LXA=L(Ac+ ...+ Am—-1)

where the data of different types may be mixed together. This leads to the consideration of
functors which are shapely over LY instead of IIL. Both intuitions are useful, so which is to
be preferred? Fortunately, the resulting notions of shapeliness are equivalent, as the following
proposition shows.

Proposition 5.12 IIL and LY are each shapely over the other.
Proof Clearly, there is shapely natural transformation I1.= LY. given by

1L
LA, —5 TILS(A;) — LY(A;)

15

where ¢} is the kth inclusion to the sum, and « is the m-fold append of the lists. As each of these
transformations is shapely, so i1s the result.

Conversely, a list whose entries are of all the different types can be filtered to produce a tuple
of lists whose entries are all of the same type. Define the natural transformation checky p by:

[cons, 7]

LA .

(A+ B)xLA —e (AxLA) + (BxLA)

It is shapely in A whence k1 = foldr(nil, check) is, too. This can be generalised to define the
shapely transformation x; : LY A— LA; which strips from a list all entries which are not from A;.
Then the obvious m-fold generalisation of Proposition 4.5 shows that

k= {(Kk;): LE=TIL

is a shapely transformation. a

6 Shape Polymorphism

The separation of data from shape in shapely types allows operations to be defined by giving their
action on each part separately, as occurred in defining the node operation on trees. Parametric
polymorphism arises when one of these operations can be given independently of the types involved
for the other. One version of this, data polymorphism is already well understood. It occurs when
the action on the shape is independent of the data. An example of this i1s given by the balancing
of a binary tree in Fig. 5 where the shape is fixed to be binary trees, but the data may be of any

type.

TA LA
" baly \\iil
T
TA LA
- {
Tl —— | — N #
ba]}« :E\
T1 N

leaves

Figure 5: Balancing a tree.

The other form of parametric polymorphism, called shape polymorphism is completely new. In
this case the data is fixed while the shape can vary. For example, summing the data values fixes
the data type to be the numbers N but can be defined for any shape, as in Fig. 6.

Of course, 1t often happens that data and shape polymorphism co-exist; the canonical example
is map. Typically, it is only applied to lists, but can be defined quite generally, as in Fig. 7, since
the shape remains fixed while the data changes. It has been implemented for a large class of
inductive types in P2 [Jay95].

It is not yet clear what an appropriate class of shape polymorphic operations might be. Other
shape polymorphic operations include zip : FAxxFB—F(AxB) and the strength 7 as well as
the basic operations such as projections and inclusions.

Other examples are the pointwise operators introduced by example in [Jon90] and defined in
[Jay93a]. These iterate an endomorphism at each entry in a shape. The number of iterations at
each entry is determined by a weight on the shape i.e. a morphism F1—FN. Particular shapes

16

FN LN
sum W‘O sum
%

N { LN
Fl— | — N 4
. N

1 N

one

Figure 6: Summing over a shapely type.

FA LA
“Ff \L‘f
B t LB
Fl— | — = N #
N N
Fl1 N

Figure 7: Shape polymorphic map.

may have special weights (e.g. one can weight each leaf in a tree by its depth) but weights on lists
yield shape polymorphic operations. Examples include weighting each entry by the length of the
list, or by its position. When the discrete Fourier transform is defined using pointwise operators
(ibid.) then it is seen to be shape polymorphic.

7 Calculating with shape

Interaction between shape and data in a computation may be a major consideration (e.g. in graph
reduction) or be non-existent (e.g. when mapping). The less interaction there is, the greater the
benefits of separating one from the other. The simplest case is when there is no interaction.
Though few in number, such operations are used often, e.g. map, zip.

More realistically, we would like to be able to perform all shape computations before looking
at the data, though the shape could influence the data. For example, the size of an array may
appear as a parameter in the data calculations, as in the Fourier transform. These are the shapely
operations. Semantically, they are given by operations f : FA—GB between shapely types, for
which there is an operation u : F1—G1 between their shapes such that the following diagram

17

commutes:

ra—L . cn

#

F1 Gl .
u

For example, consider the decomposition of a tree into either a leaf or a pair of sub-trees:

~ id 4 §2 @
TA A—i—(Zél)zi»A—i—(LJA)ZMLA
T1 14 (T1)) ——— 1+ N*?

~ (D id + 42 [one, +]

The shape of the result is determined by that of the input, but in order to know where to break
the list of leaves, the number n of leaves in the left sub-tree is required. Shape processing would
add the computed value of n to the environment prior to the data-processing.

If a program is built from shapely operations then all of the intermediate shapes can be
performed before considering any data. Such information can be used to optimise run-time code,
e.g. by performing load balancing or determining communication patterns. For example, symbolic
computation is an important technique in optimising Gauss-Jordan elimination on sparse matrices,
since a bad choice of pivots may dramatically increase the number of non-zero entries in the array.
The structure of the shape (such as the depth of a tree) may even be useful in making complexity
estimates.

Even when the shape depends on the data, their separation may be productive, if the benefits
obtained from having the shape outweigh the overheads of maintainingit. For example, consider a
distributed divide-and-conquer algorithm in which one part of the divided problem must be passed
to another processor. The choice of part may be easy if the shapes are known.

8 Initial Algebras

The main purpose of this section is to show how the existence of lists can be used to infer the
presence of all the other inductive types, constructed as initial algebras for shapely type construc-
tors. The underlying intuition is that an inductive type 7" can be identified as a language in some
alphabet Q. That 1s, T is a sub-object of L2 which is distinguished by a recogniser, represented by
a morphism x : LQ—bool which maps 7" to true and all else to false. The situation is captured
by the following pullback:

T LQ
|
X
1 bool .

true

Here true is represented by ¢ : 1—+141 = 2. The recogniser x will be constructed using techniques
from parsing.

8.1 Endofunctors

The theory of context-free languages and parsing 1s typically introduced without considering much
data. For example, the language of trees is handled by considering the problem of matching

18

brackets, 1.e. of identifying unlabelled trees. We will mimic this approach, by first considering
shapely endofunctors.

Let 6 : F=L make I' a shapely type constructor. An F-algebra is given by an object C' and
an F-action v : FC—=C. If v : FFy—Fy makes Fjy an initial F-algebra then there is a unique
F-algebra homomorphism foldy : Fy—C.

Define 2 = F'1. Then LS represents words in Polish notation and the initial algebra Fjy will
be the sub-object of LQ of well-formed words. For example, if FX = 1+ XxX then Fy = T1
is the unlabelled binary trees and Q = 2 = {l n} where [represents a leaf, and n represents a
node. For example, ninll represents a tree whose left branch is a leaf, and whose right branch is
the smallest possible tree with a node.

While trying to recognise well-formed expressions (elements of Fy) it is necessary to keep track
of how many well-formed sub-expressions have already been produced. This will be done using a
morphism x; : LQ—LOXN which maps a word v to a pair (w, n) where n represents the number
of well-formed expressions found, and w is that part of v which could not be parsed. Then the
initial algebra can be given by:

Fy ¢ LQ
|
X1
LOxN .

_
(nil, one)

That is, if x; parses everything and produces a single expression then the string represents an
expression in Fy. (Then y is given by composing x1 with the appropriate test LQx N—bool.)

Actually, x1 i1s a special case of the operation x¢ : LQ—LQ X LC which can be defined for any
F-algebra (C,v) (e.g. the terminal object). Instead of just producing the number of well-formed
expressions, x¢ constructs their images in C' under fold ~.

8.2 Parsing

Before constructing y¢ let us preview some of its uses. First, the restriction of y¢ to Fy will yield
fold~y : Fp—C'. Second, when C is itself Fyy then xp, : LQ—LQx LFy is the standard notion of a
parser, since Fy is the type of parse trees. In short, from y¢ is derived both the recogniser and
parser for the initial algebra, and also the algebra homomorphisms fold v out of it. For these
reasons, we will generalise the usual terminology, and call x¢ a parser.

Lemma 8.1 The test Eqo (m, take) o (§x1d) : 2x LC—bool recognises the subobject

(1dx@) o ({(#,0)yxid) : FOxLCO—=QxLC . (1)
Proof First show that the following diagram is a pullback:
(idx@) o ({(#,d)xid)

FCOXLC Qx LC
_
dxid dxid
LOxLC NxLC .
8 #on,@) .
Then paste it to that in Lemma 2.1. a

The test just constructed picks out those pairs where the arity of the 2 is no greater than the
length of the list. Then there are enough resources to construct something of type F'C' with a list

19

of C’s left over. Let +/ : QC—Qx LC be the pullback of this test along false. Then we can define
(o QX LO—=LOAXLC to be:

[(nil, conso (yx1id)}), (pxid) o]

(FCxLC)+QC LOXLC .

In words, the action of (¢ is as follows. If the arity of the shape is no more than the length of
the list, then take enough of the list to form something of type F'C', apply 7 and cons the result
onto the remaining list; the list of €2’s is nil. If the arity exceeds the length then make the shape
a singleton list, and leave that of C’s alone.

From (¢ we can construct an action 8¢ : Qx LQXLCO—LOx LC as follows. Decompose its
source as (Qx LC) 4+ (QxQx LQx LC) (by splitting L along nil and cons) and then

0c = [(c,cons o (idXcons)xid] .

The sense is that if the middle component is not nil then the “parse” has already failed, so just
cons the new €2 onto the existing list. Otherwise, apply (¢. Finally, x¢ = foldr({nil, nil), f¢).

Lemma 8.2 If h: (C,v)—=(C",v') is an F-algebra homomorphism then
(idxLh)oxc = xp -

Hence, Fy can be constructed in stages, as in Fig. 8.

Fo LQ
|
h: Xc
v .
1
o e rol e
idx#
1 LOXN

(nil, one)

Figure 8: The initial algebra.

Proof Clearly @ is a functor and ¢/ is a natural transformation. Hence (, 6 and x are natural
with respect to F-algebra homomorphisms. a

A couple of lemmas will be required before proving that Fy is an initial F-algebra with A =
fold~ the unique algebra homomorphism to C'.

Lemma 8.3 x¢ o ¢* = (nil, Lh) : LFy—LOx LC.
Proof It suffices to show that both sides of the equation are foldright of (nil,nil) and
foldr(id,f¢) o (¢x1id). The nil case is trivial. The cons case for the left-hand-side is in Fig. 9.
The comparable diagram for the right-hand side is in Fig. 10. All of its cells commute, except
the left-hand cell on the lower edge. To resolve this, a digression is required.
The lower edge of this cell is foldr((nil, id), f¢) now denoted by f. The following equations
may be proved in sequence, using elementary arguments.

x = fo{id,nil)
fol = ¢

20

cons

LFy = Fox LFy
o* idx¢*
' @ ¢xid '
L) < LOX L Fox L2
Xc idXyxc idXyxc
Y Y
LOxLC - LOXLOXLC = - Fox LOxLC
foldr(id,f¢) xid
Figure 9: Representing y¢ o ¢*.
cons

LFy = Fox LFy

Lh idx Lh

cons hxid '
LC < CxLC Fox LC

(nil, n)xid oxid
. Xcxid) o
(nil, id) LOAXLOXLC <———— LOXLC idx(nil, id)
idx (nil, id)
idx@
Y Y
LOxLC LOxLOxLC Fox LOx LC

foldr(id, f¢)

Figure 10: Representing (nil, Lh).

fol = @o(idx[)

fof = f

fox = «x
fo(idx@)o (fxid) = fo(idx@)

xid

It follows that both sides of the lemma are fixed by post-composing with f. Hence, it suffices
to show that the recalcitrant cell commutes upon post-composition with f. Now

fo(idx@) o (xx1id)

fo(idx@) o (fo{id,nil)xid)

fo(idx@) o (fxid) o ({id,nil)xid)
fo(idx@) o ({(id,nil)xid)
f

21

The following lemma shows how to de-parse, i.e. reverse the parse into Fy. For notational
clarity, the subscript Fyy will be contracted to 0 from now on, e.g. xr, becomes xg.

Lemma 8.4 @o (idx¢*) o xo = idrq.
Proof The commutativity of the lower square in Fig. 11 follows by a case analysis of the

definition of ;. O
LQ cons Ox L9
X0 idxxo
6 '
LOx LF, QOx LOx LF,
@o (idx¢™) idx @ o (idx¢*)
Y
LQ QxLQ
cons

Figure 11: De-parsing.

Now let us return to the F-algebra structure of Fy. Consider Fig. 12. Lemma 8.3 implies the
commutativity of its rear face. The right and bottom faces commute by the definitions of x and 6.
Hence, there is an induced F-action 4y that makes h a homomorphism. (Of course, the definition
of vy and its action is not dependent on the particular choice of C'| since we can always work over

the algebra C'=1.)

rry 0 g 249 0000
.'~.ij cons
5
Fh Fo ¢ L9
|
h idXyxc
' i1,d
po AL Ox LOx LC Ye
v fc
Y Y
C - LOxLC
(nil,n)

Figure 12: The action of the initial algebra.

It remains to prove its uniqueness. Let h : (Fo,v0)—=(C,v) be any F-algebra homomorphism.
Then foldy = h o foldyy by Fig. 13. Hence it suffices to prove that foldy, = id.

22

Fy L
foldyo X0

Y . 1

po L0
|

h idx Lh
Y

LOxLC

(nil,m)
Figure 13: Factorisation of A.

Now
pofoldyy = @o (idx¢*)o(nil,n)ofoldyy
= @o(idx¢")oxpo¢
= ¢

where the last equation holds by Lemma 8.4. Hence foldyy = id since ¢ is a monomorphism.

8.3 The General Case

The construction of Fjy in the previous section shows how to build particular types, but in order
to obtain type constructors we must construct initial algebras in a parametrised fashion.

A functor F : C™ xC"—=C" can be used to represent a system of (parametrised) domain equa-
tions [SP82], whose solution is can be found by constructing, for each object A in €™, an initial
algebra a4 @ F(A, FTA)—FTA for the functor F(A,—).

For example, if F(A, X) = A+ XxX then FTA = TA is the binary trees on A; the leaf and
node constructors are given by the coproduct inclusions

A — F(ATA) <«— TAxTA

followed by the structure morphism for the initial algebra.
If such initial algebras always exist, then [T extends to a functor whose action on f : A8 is
the F'(A, —)-algebra homomorphism induced by the action:
F(f, id
Fa, ptp) T34 g prgy 9B, prg
Further, if 8 : F{id, G)=G : C"—=C" is a natural transformation, then the unique algebra
homomorphisms induce a natural transformation gt : F1=G.

Theorem 8.5 If I' : C"' xC"—C" is a shapely type constructor then FT exists and is one, too.
Further, if B : F{id, G)=G : C"—C" is a shapely transformation, then so is 37.
Proof F is determined by its projections onto C which are all shapely over I1L. By the Bekic
Lemma, we can treat these individually, or, equivalently, assume that n = 1. Then for each object
Ain C™ the initial algebra FTA for F(A, —) is constructed as above.

That F'T is shapely over AIIL will be a consequence of the second part of the theorem applied
to the composite transformation /3

s
F(A,AIILA) — AIIL(A, AIILA) — AIILA

23

where § makes I’ shapely over AIIL and the second transformation is built from natural isomor-
phisms, p, @ and the transformation (LII;) : LIIL=TILL which is shapely by Proposition 4.5.
Hence, 81 : FT=AILL is shapely as required.

Some additional notation will clarify the proof of the second assertion, that 37 is shapely.
Define Q(_y = F(—, 1) so that Q4 = F(A, 1) etc. Observe that the following square is a pullback

QfXLQfXLGf
QAXLQAXLGA e — QB XLQB x LGB
HGA HGB
LOsaxLGA LOQpx LGB
ax L < LGS Bx

so that 6 1s cartesian, and in fact is shapely. Hence y¢ is also shapely, by Theorem 4.6.
For each morphism f : A—B in " we must show that the left-hand square of

Fi B
Fta ! FiB ¢ ILOg
_
A gL XGB
GA GB LOpx LGB
Gf (nil, n)

is a pullback. As the right-hand square i1s a pullback by definition, it suffices to observe that the
outer square is one. But this can be re-drawn as:

A LO
Ftq_? L, !

LQp

gt Xaa XaB

GA——— + QX LGA —» [QpxLGB .
(nil,p) AT Q= LGf P

The strength for F'T is defined in Fig. 14 using the defining pullback for FT(Ax B) and the
strength of L4 x LG A. Its right face commutes because x¢ is strong. Taking GA = 1 shows that
the strength for F'T does not depend on 3. The diagram also shows that § is strong, and so is
shapely.

O

Note that the theorem asserts that if F is shapely over lists then so is FT. It does not establish
the stronger conjecture, that if F' is merely shapely then so is F'T. This is because the proof of
shapeliness, like that of existence for F'T relies on a parsing argument.

9 Conclusions

A semantic notion of shape has been presented, and used to prove that, under mild assumptions,
the existence of lists is enough to establish the existence of all the other inductive types, such as
trees. It also indicates how shape polymorphic operations, e.g. mapping, can be introduced for
such types.

Of much broader significance is that the same semantic notion embraces many of the other
fundamental data types, such as arrays, graphs and records, which are not inductive types, and
hence outside the core of many languages.

24

dAxid

(FTA)x B LQaxB
T YGgaxid T
“ pAXB
Btxid F1(AxB) LQyxp
GA' (nil, n)xid '
(GAYxB L2y xLGAXB XG(AXB)
5T
T T
Y
G(AxB) (il) LO,« g X LG(AXB)

Figure 14: The strength for FTA.

A type system, and programming language, based on shape should yield many further benefits,
including shape polymorphism, the detection of shape errors, and optimisation of run-time code
based on shape analysis of the inputs.

Acknowledgements

I would like to thank the anonymous referees, and D. Clarke, J. Crossley, J. Edwards, D. Mahler
and M. Sekanina for their constructive criticism.

References

[BCY0] G.E. Blelloch and S. Chatterjee. VCODE: A data-parallel intermediate language. In
Proceedings of the 3rd Symposium on the Frontiers of Massively Parallel Computation,
pages 471-480, October 1990.

[BS93] C.R. Banger and D.B. Skillicorn. A foundation for theories of arrays. Queen’s Univer-
sity, Canada, 1993.

[BW88] R. Bird and P. Wadler. Introduction to Functional Programming. International Series
in Computer Science. Prentice Hall, 1988.

[CF92] J.R.B. Cockett and T. Fukushima. About charity. Technical Report 92/480/18,
University of Calgary, 1992.

25

[CHSS]

[CTW93]

[Coc90]

[Col93]

[DERS6]

[FCO90]

[GL TS89

[Hag83]

[HMM90]

[HPJW92]

[Jay93a)

[Jay93b]

[Jay95]

[JC94]

[IG89]

[Jon90]

[Jon94]

[Joy81]

T. Coquand and G. Huet. The calculus of constructions. Information and Computation,

73(2/3), 1988.

A. Carboni, S. Lack, and R.F.C. Walters. Introduction to extensive and distributive
categories. Journal of Pure and Applied Algebra, 84:145-158, 1993.

J.R.B. Cockett. List-aritmetic distributive categories: locoi. Journal of Pure and

Applied Algebra, 66:1-29, 1990.

M. Cole. Parallel programming, list homomorphisms and the maximum segment sum
problem. In D. Trystram, editor, Proceedings of Parco 93, Advances in Parallel Com-
puting. Elsevier, 1993.

[.S. Duff, A M. Erisman, and J.K. Reid. Direct Methods for Sparse Matrices. Clarendon
Press Oxford, 1986.

J.T. Feo, D.C. Cann, and R.R. Oldehoeft. A report on the sisal language project.
Journal of Parallel and Distributed Computing, 10:349-366, 1990.

J-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Tracts in Theoretical Com-
puter Science. CUP, 1989.

T. Hagino. A Categorical Programming Language. PhD thesis, University of Edin-
burgh, 1983.

R. Harper, J. Mitchell, and E. Moggi. Higher-order modules and the phase distinction.
In 17th POPL. ACM, 1990.

P. Hudak, S. Peyton-Jones, and P. Wadler. Report on the programming language
haskell: a non-strict, purely functional language. SIGPLAN Notices, 1992.

C.B. Jay. Matrices, monads and the fast fourier transform. Technical Report UTS-
SOCS-93.13, University of Technology, Sydney, 1993.

C.B. Jay. Tail recursion through universal invariants. Theoretical Computer Science,

115:151-189, 1993.

C.B. Jay. Polynomial polymorphism. In R. Kotagiri, editor, Proceedings of the
Eighteenth Australasian Computer Science Conference: Glenelg, South Australia 1-8
February, 1995, volume 17, pages 237-243. Australian Computer Science Communica-
tions, 1995.

C.B. Jay and J.R.B. Cockett. Shapely types and shape polymorphism. In D. Sannella,
editor, Programming Languages and Systems - ESOP °94: 5th European Symposium on
Programming, Edinburgh, U.K., April 1994, Proceedings, Lecture Notes in Computer
Science, pages 302-316. Springer Verlag, 1994.

M.A. Jenkins and J.I. Glasgow. A logical basis for nested array data structures. Com-
puter Languages Journal, 14(1):35-51, 1989.

G. Jones. Deriving the fast fourier transform algorithm by calculation. In Func-
tional programmang, Glasgow 1989, Springer Workshops in Computing. Springer Ver-
lag, 1990.

M. Jones. The implementation of the gofer functional programming system. Technical

Report YALEU /DCS/RR-1030, Yale University, 1994.

A. Joyal. Une théorie combinatoire des séries formelles. Advances in Mathematics,

42:1-82, 1981.

26

[Ka94] V. Kumar and all. Introduction to Parallel Computing: Design and Analysis of Algo-
rithms. The Benjamin/Cummings Publishing Company, Inc., 1994.

[Koc72] A. Kock. Strong functors and monoidal monads. Archiv der Mathematik, 23, 1972.
[Kun82] H.T. Kung. Why systolic architectures? IFEE Computer, 15(1):37-46, January 1982.

[Man92] E. Manes. Predicate Transformer Semantics, volume 33 of Cambridge Tracts in The-
oretical Computer Science. Cambridge University Press, 1992.

[McC94] W.F. McColl. BSP Programming. In Proceedings DIMACS Workshop on Specification
of Parallel Algorithms, 1994.

[Mey94] B. Meyer. Fiffel: the libraries. Prentice-Hall, 1994.
[MT91] R. Milner and M. Tofte. Commentary on Standard ML. MIT Press, 1991.

[Ski94] D.B. Skillicorn. Foundations of Parallel Programming. Number 6 in Cambridge Series
in Parallel Computation. Cambridge University Press, 1994.

[SP82] M. Smith and G. Plotkin. The category-theoretic solution of recursive domain equa-
tions. STAM Journal of Computing, 11, 1982.

This article was processed using the IATEX macro package and P. Taylor’s diagrams package.

27

