
Asyn
hronous Group Mutual Ex
lusion�Yuh-Jzer Joungyjoung�

ms.ntu.edu.twDepartment of Information ManagementNational Taiwan UniversityTaipei, TaiwanAbstra
tMutual ex
lusion and 
on
urren
y are two fundamental and essentiallyopposite features in distributed systems. However, in some appli
ationssu
h as Computer Supported Cooperative Work (CSCW) we have foundit ne
essary to impose mutual ex
lusion on di�erent groups of pro
esses ina

essing a resour
e, while allowing pro
esses of the same group to sharethe resour
e. To our knowledge, no su
h design issue has been previouslyraised in the literature.In this paper we address this issue by presenting a new problem,
alled Congenial Talking Philosophers, to model group mutual ex
lu-sion. We also propose several 
riteria to evaluate solutions of the prob-lem and to measure their performan
e. Finally, we provide an eÆ
ientand highly 
on
urrent distributed algorithm for the problem in a shared-memory model where pro
esses 
ommuni
ate by reading from and writingto shared variables. The distributed algorithm meets the proposed 
rite-ria, and has performan
e similar to some naive but 
entralized solutionsto the problem.�An extended abstra
t of the paper appeared in Pro
eedings of the 17th Annual ACMSymposium on Prin
iples of Distributed Computing, pp. 51-60 (Puerto Vallarta, Mexi
o,June 28{July 2, 1998). This resear
h was supported in part by the National S
ien
e Coun
il,Taipei, Taiwan, under Grants NSC 85-2213-E-002-059, NSC 86-2213-E-002-053, and NSC 87-2218-E-002-050, and by the 1997 Resear
h Award of College of Management, National TaiwanUniversity.yThe author is 
urrently visiting Laboratory for Computer S
ien
e, Massa
husetts Instituteof Te
hnology (1999-2000). 1



1 Introdu
tionMutual ex
lusion and 
on
urren
y are two fundamental issues in distributedsystems. Mutual ex
lusion guarantees ex
lusive a

ess to a 
ommon resour
eto one of a set of 
ompeting pro
esses, while 
on
urren
y allows pro
esses toshare a resour
e to in
rease system performan
e. In spite of their 
ontradi
torynature, in some appli
ations su
h as Computer Supported Cooperative Work(CSCW) we have found it ne
essary to guarantee mutual ex
lusion while stillexploiting a 
ertain degree of 
on
urren
y.For example, 
onsider a video-
onferen
ing system with an ele
troni
 whiteboard. A user 
an use this white board to post information that she/he wouldlike to share with others. All the information posted on the white board will beseen by all users 
urrently online. Thus, when a group of users uses the systemto dis
uss some issue, another group of users whose interests 
on
i
t with the�rst group must be ex
luded from using the system. On the other hand, whensome user is using in the system, we wish to en
ourage dis
ussion by allowingmore users with the same interest to use the system. Thus, a design whi
hinvolves both mutual ex
lusion and 
on
urren
y is required.As another example, 
onsider several users working on a proje
t that hassome large data obje
ts stored on a se
ondary memory devi
e (su
h as a CDjukebox). When a user needs to a

ess a data obje
t, the data obje
t is loadedfrom the devi
e to a 
a
he bu�er. To in
rease performan
e, on
e a data obje
tis loaded it will remain in the bu�er until another data obje
t is requested.So while a data obje
t resides in the bu�er, users that need to work on thisdata obje
t are allowed to a

ess the bu�er 
on
urrently, and users that needa di�erent data obje
t have to wait until no user is working on the data obje
t
urrently in the bu�er. That is, users with the same interests 
an 
on
urrentlya

ess the bu�er, while users with di�erent interests must be ex
luded froma

essing the bu�er.Although many systems may require that pro
esses of the same group sharea resour
e while pro
esses of di�erent groups use the resour
e ex
lusively, toour knowledge, group mutual ex
lusion has not been previously raised in theliterature. Note that we do not require pro
esses of the same group to syn
hro-nize in order to a

ess the resour
e. Problems 
on
erning syn
hronous groupmutual ex
lusion, where a set of pro
esses must syn
hronize in order to a

essa resour
e or a pro
ess must possess all needed resour
es in order to 
ontinue,have been addressed by Chandy and Misra [7, 8℄.In this paper we present a problem, 
alled Congenial Talking Philosophers ,2



to model group mutual ex
lusion. The problem 
on
erns a set of n philosopherswhi
h spend their time thinking alone and talking in fora. Given that thereis only one meeting room (the 
riti
al se
tion), a philosopher attempting toattend a forum 
an su

eed only if the meeting room is empty (and in this 
asethe philosopher starts the forum), or some philosopher interested in the sameforum is already in the meeting room (and in this 
ase the philosopher joins theongoing forum). The 
hallenge is to design an algorithm for the philosophers toensure that a philosopher attempting to attend a forum will eventually su

eed,while at the same time en
ouraging philosophers interested in the same forumto be in the meeting room simultaneously. In this paper we fo
us on solutions inthe shared-memory model, where pro
esses 
ommuni
ate by reading from andwriting to shared variables. Solutions based on message passing are 
onsideredin a separate paper [16℄.The Congenial Talking Philosophers problem is related to some fundamentalproblems in distributed systems. For example, by dedi
ating one forum to ea
hphilosopher, the problem is redu
ed to n-pro
ess mutual ex
lusion where onlyone pro
ess 
an be in the 
riti
al se
tion at a time. The problem 
an also beredu
ed to the Readers and Writers problem [9℄ where a shared obje
t 
an be
on
urrently read by di�erent pro
esses, while writing alone must be mutuallyex
lusive. To do so, we 
an employ a READ operation (forum) for all pro
esses(philosophers) in the system, and a unique WRITE operation for ea
h individualone. A pro
ess attempting to read the shared obje
t then requests the READoperation to a

ess the obje
t, while it requests its own WRITE operationwhen it wishes to update the obje
t. Thus the Congenial Talking Philosophersproblem is more general than the two 
lassi
al problems.Note that resolving 
on
i
ts between READ/WRITE and WRITE/WRITEoperations while fa
ilitating 
on
urren
y among READ operations is the 
en-tral topi
 of database 
on
urren
y 
ontrol (see, e.g., [11, 21, 19, 18, 5, 26, 2℄).Despite the similar obje
tive, the Congenial Talking Philosophers problem tar-gets the 
onstru
tion of a low-level me
hanism to support operation exe
ution.In 
ontrast, database 
on
urren
y 
ontrol typi
ally uses su
h me
hanisms (e.g.,lo
king) to ensure serializability at the transa
tion level.Intuitively, a maximal degree of 
on
urren
y 
an be a
hieved if philosophersare allowed to attend a forum while some philosopher with the same interestis o

upying the meeting room. However, given that ea
h philosopher indepen-dently determines when it will be interested in a forum and how long it willstay in a forum (although it 
an only spend a �nite amount of time in the fo-rum), su
h a degree of 
on
urren
y 
annot be a
hieved if we are also to ensure a3



bounded delay on the time a philosopher spends in waiting for a forum. This isbe
ause otherwise two philosophers interested in the same forum may repeatedlyenter the meeting room, thus blo
king a third philosopher waiting for a di�erentforum inde�nitely. So the 
hallenge of the problem lies in the exploitation ofa high degree of 
on
urren
y in attending a forum while ensuring a minimumdelay for the philosophers waiting for a di�erent forum.Indeed, the problem is mu
h more diÆ
ult than we originally had thought.Figure 4 in Se
tion 5 gives the �nal version of our main algorithm, whi
h 
onsistsof only 13 lines of statements. In the pro
ess of designing the algorithm, wemade several mistakes, some of whi
h were quite subtle and o

urred only inthe presen
e of 
on
urren
y. We also dis
overed several performan
e trade-o�s|
on
urren
y vs. waiting time|by simply reversing the exe
ution order oftwo statements whi
h looks irrelevant at �rst glan
e! We shall present some ofthe �ndings in our dis
ussion of the algorithm.The rest of the paper is organized as follows. Se
tion 2 presents the CongenialTalking Philosophers problem in more detail, and proposes 
riteria that 
an beused to evaluate solutions of the problem and to measure their performan
e.For 
omparison, we �rst o�er some simple but 
entralized solutions in Se
tion 3.Se
tion 4 then presents a fully distributed solution where philosophers may onlyattend two fora, and Se
tion 5 generalizes the solution to an arbitrary numberof fora. Se
tion 6 dis
usses related work and 
on
ludes.2 The Congenial Talking Philosophers ProblemWe 
onsider a set of n philosophers p0; p1; : : : ; pn�1 whi
h spend their time ei-ther thinking alone or talking in fora. The philosophers may like to hold mdi�erent fora F0;F1; : : : ;Fm�1 but, due to the 
apa
ity of the meeting room,only one forum 
an be held at a time. However, more than one philosopher 
anbe in a forum simultaneously. Initially, all the philosophers are thinking. Whena philosopher is tired of thinking, it 
hooses a forum to attend. We assumethat when a philosopher attends a forum, it spends an unpredi
table but �niteamount of time in the forum. After a philosopher leaves a forum, it returnsto thinking.1 We say that a forum is in session if some philosopher is in theforum. The Congenial Talking Philosophers problem 
onsists of the following1Throughout the paper, \in a forum" is used synonymously with \in the meeting room."Likewise, \to attend/leave a forum" is synonymous with \to enter/exit the meeting room."
4



requirements:2mutual ex
lusion: if some philosopher is in a forum, then no other philoso-pher 
an be in a di�erent forum at the same time.bounded delay: a philosopher attempting to attend a forum will eventuallysu

eed.We are seeking solutions that fa
ilitate 
on
urrent entering, meaning thatif some philosophers are interested in a forum and no philosopher is interestedin a di�erent forum, then the philosophers 
an 
on
urrently enter the meetingroom to hold the forum. As dis
ussed in Se
tion 1, the n-pro
ess mutual ex-
lusion problem is a spe
ial 
ase of Congenial Talking Philosophers in whi
honly one philosopher may attend ea
h forum. Obviously, it would be overkillto solve Congenial Talking Philosophers using solutions for n-pro
ess mutualex
lusion (e.g., [10, 6, 22℄). So a reasonable solution for the problem must allowphilosophers to share the meeting room when no one is interested in a di�erentforum.The 
on
urrent entering requirement we have de�ned above is slightly strongeras it requires philosophers not just to be able to be in the meeting room si-multaneously, but to enter the meeting room 
on
urrently. The intent of thisstronger 
ondition is to prevent unne
essary syn
hronization among philoso-phers attending a forum when no one else is interested in a di�erent forum.Su
h syn
hronization o

urs, for example, in solutions that use a shared vari-able to 
ontrol the use of the meeting room, and philosophers a

ess the sharedvariable in a mutually ex
lusive style to avoid 
on
i
ts. Su
h solutions allowphilosophers to be in the meeting room simultaneously, but do not allow themto enter the meeting room 
on
urrently be
ause of the syn
hronization imposedon the philosophers in a

essing the shared variable. The overhead of su
h so-lutions is espe
ially high when the number of fora the philosophers would liketo hold is relatively small 
ompared to the number of philosophers that areinterested in ea
h forum.Solutions of Congenial Talking Philosophers 
an be evaluated by two pa-rameters: time and 
on
urren
y . For the time parameter, we are 
on
ernedwith how long a philosopher may wait before entering a forum. Instead of usingphysi
al time|whi
h would be system dependent and hard to analyze, we usepassages as the basi
 metri
 for evaluating time, as de�ned below:2We assume �nite progress for the philosophers, meaning that if a philosopher is given aninstru
tion then it will exe
ute the instru
tion in �nite but unpredi
table time. Moreover, weassume that basi
 ma
hine-level instru
tions su
h as read and write to a shared variable areexe
uted atomi
ally. 5



0 5 10 15 20 25 30pppppppppppppppppppppppppp
pi requests F

pppppppppppppppppppppppppp
pi attends F� -hp1;Xi� -hp3;Xi� -hp2;Xi � -hp5;Yi� -hp6;Yi� -hp4;Yi � -hp7;Zi� -hp8;Zi� -hp9;Zi

Figure 1: A layout of passages.De�nition 2.1 A passage by pi through a forum F is an interval [t1; t2℄, wheret1 is the time pi enters the forum, and t2 the time pi leaves the forum. Thepassage is initiated at t1, and 
ompleted at t2. The passage is ongoing atany time in between t1 and t2.A passage by pi through a forum F is represented by hpi;Fi, whi
h we referto as the attribute of the passage. When no 
onfusion is possible, we useintervals and attributes inter
hangeably to represent passages (where intervalsare denoted by square bra
kets [t1; t2℄, and attributes by angle bra
kets hpi;Fi).Due to 
on
urren
y, passages may overlap. Therefore, an expli
it 
ountof the total number of passages a philosopher may wait is not a good metri
for the waiting time. Instead, we measure the waiting time by 
ounting theminimal number of passages that are suÆ
ient to \
over" all the passages in
onsideration. For example, suppose that a philosopher pi, after requesting aforum F, waits for the nine passages shown in Figure 1 before it 
an attendF. Then, sin
e hp2;Xi is 
overed by hp1;Xi and hp3;Xi, and sin
e hp5;Yi andhp6;Yi are 
overed by hp4;Yi, only the six passages hp1;Xi, hp3;Xi, hp4;Yi,hp7;Zi, hp8;Zi, and hp9;Zi a

ount for the delay in satisfying pi's request.A formal de�nition is given below.De�nition 2.2 Let S be a set of intervals. A subset R of S is a 
over ofS if for every � 2 S, every time instan
e in � is in some � 2 R (that is,8 [t1; t2℄ 2 S : t1 � t � t2 ) 9 [t3; t4℄ 2 R; t3 � t � t4). It is minimal if forany other 
over R0 of S, jRj � jR0j. The dimension of S, denoted by dim(S),is the size of a minimal 
over of S.To illustrate the de�nition, the set of passages shown in Figure 1 has aminimal 
over 
onsisting of hp1;Xi, hp3;Xi, hp4;Yi, hp7;Zi, hp8;Zi, and hp9;Zi,and so has a dimension 6.The time 
omplexity of an algorithm for the Congenial Talking Philoso-phers problem is measured by the maximal dimension of the set of passages a6



philosopher has to wait before it 
an attend a forum.Note that, still, the dimension does not ne
essarily truly re
e
t the elapsedtime. This is be
ause in real appli
ations 
onse
utive passages through the 
rit-i
al se
tion by di�erent groups of pro
esses usually require \
ontext swit
hes".For example, when a user requests a di�erent data obje
t in the CSCW en-vironment des
ribed in Se
tion 1, the storage devi
e has to unload the oldobje
t and then load the new one. Sin
e su
h loading and unloading are usuallytime-
onsuming, in the Congenial Talking Philosophers problem a philosopherwaiting for more passages through the same forum may in pra
ti
e need lesstime than one waiting for fewer passages through di�erent fora. The notion of\rounds of passages" is therefore 
on
eived to measure the number of \
ontextswit
hes" (i.e., forum swit
hes).De�nition 2.3 Let S be a set of passages through forum F. Let ts = min�t �� [t; t0℄2 S	, and tf = max�t0 �� [t; t0℄ 2 S	. Then, S is a round of passages throughF (or simply a round of F) if the following two 
onditions are satis�ed:1. No passage other than those in S is initiated in between ts and tf .2. The last passage initiated before ts and the �rst passage initiated after tf ,if they exist, are for a forum other than F.If S is a round of F, then we say that it starts at ts, and terminates at tf .It is ongoing in between ts and tf .In other words, a round of F is a maximal set of 
onse
utive passages throughF. For example, the three passages hp4;Yi, hp5;Yi, and hp6;Yi in Figure 1
onstitute a round of Y, and the three passages hp7;Zi, hp8;Zi, and hp9;Zi
onstitute a round of Z.The forum-swit
h 
omplexity is measured by the maximum number ofrounds of passages a philosopher may wait before it 
an attend a forum.For example, suppose that in the worst 
ase pi has to wait for the followingsequen
e of passages before it 
an attend a forum:hp0;F0i; hp1;F1i; hp2;F0i; : : : ; hp2k�1;F1iThen, both the time 
omplexity and the forum-swit
h 
omplexity are 2k. Onthe other hand, if the sequen
e ishp0;F0i; hp2;F0i; : : : ; hp2k�2;F0i; hp1;F1i; hp3;F1i; : : : ; hp2k�1;F1iwhere the passages through the same forum do not overlap, then the time 
om-plexity is still 2k, but the forum-swit
h 
omplexity is only 2. If the average7



length of a passage is t and the time to perform a 
ontext swit
h is s, then thetotal time pi has to wait in the �rst 
ase above is 2k(t+ s), and in the se
ond
ase is 2kt+ 2s.The degree of 
on
urren
y is de�ned by the maximum number of pas-sages that 
an be initiated while some philosopher is in the meeting room andanother philosopher is waiting for a di�erent forum. Intuitively, be
ause of mu-tual ex
lusion, when a philosopher p is in the meeting room no other philosopherinterested in a di�erent forum 
an use the meeting room. Given that a philoso-pher p de
ides on its own how long it will use the meeting room, better resour
eutilization 
an be a
hieved if we allow more philosophers interested in the sameforum to share the meeting room with p. So a higher degree of 
on
urren
yimplies better resour
e utilization.Con
urren
y may also be measured in other ways, for example, by the max-imum number of philosophers that 
an be in the meeting room simultaneously.However, if the problem de�nition allows k philosophers to hold a forum F, thenmost solutions that fa
ilitate 
on
urrent entering would probably allow, in thebest 
ase, k philosophers to be in F simultaneously. So this is not a useful metri
for 
on
urren
y.Be
ause we do not assume any lower or upper bounds on the time a philoso-pher spends in a meeting room (ex
ept that the time is �nite), it is possiblefor an algorithm to a
hieve a virtually \unbounded" degree of 
on
urren
y. Forexample, if an algorithm is su
h that while some pi is in the meeting room anyother pj interested in the same forum 
an enter the meeting room, then sin
ethere is no limit on how qui
kly pj will �nish the forum and re-request the forum,pj may enter/re-enter the meeting room any number of times. Although thisnumber is �nite, it is not bounded by any predetermined 
onstant. Note thatthis does not 
ontradi
t bounded delay as pi will eventually leave the meetingroom. For a more detailed example, see the following se
tion.3 Some Simple Centralized SolutionsA simple solution 
an be obtained by employing a 
on
ierge to s
hedule fora.The 
on
ierge periodi
ally inspe
ts philosophers' states to see if anyone is inter-ested in a forum, and then adopts some s
heduling poli
y to guarantee mutualex
lusion, bounded delay, and 
on
urrent entering3. For example, if no forum is3One 
ould argue that the algorithm does not fa
ilitate 
on
urrent entering be
ause the
on
ierge has to observe philosophers' states in some sequential order. So when philosophersare ready for the same forum, their entries to the forum 
annot be truly 
on
urrent as the8




urrently in session, the 
on
ierge 
an s
hedule the �rst waiting philosopher ithas seen to start a forum. All philosophers that are also ready for the same fo-rum also start the forum simultaneously, and philosophers that are interested indi�erent fora are queued. While a forum is in session, the 
on
ierge 
an 
hoosea �xed philosopher as a referen
e so that while the referen
e philosopher staysin the forum, every other philosopher attempting to attend the forum 
an doso. On
e the referen
e philosopher leaves the forum, if some other philosopheris waiting for a di�erent forum, then the \door" to the forum is 
losed and noother philosopher 
an join the forum; otherwise, a new referen
e philosopheris 
hosen. Note that bounded delay 
an be guaranteed be
ause the referen
ephilosopher 
an only spend a �nite amount of time in a forum. The 
ompletealgorithm, whi
h we refer to as CTP-C (an abbreviation for Congenial TalkingPhilosophers-Centralized), 
an be found in [15℄.It is easy to see that CTP-C o�ers an unbounded degree of 
on
urren
y. Thisis be
ause while a referen
e philosopher is in a forum, another philosopher 
anrepeatedly attend the forum, leave the forum, and be
ome interested again inthe forum. The analysis of the algorithm's forum-swit
h 
omplexity and time
omplexity is somewhat tedious and details have been provided in [15℄. For
omparison with our distributed algorithm, we summarize the result here: aftera philosopher pi requests Fk, it waits for at most m+1 rounds of passages beforea round of Fk is initiated in whi
h it 
an make a passage through Fk, where mis the number of fora the philosophers may like to hold. For ea
h su
h round,the dimension of the passages in the round is O(n), where n is the total numberof philosophers. That is, CTP-C has forum-swit
h 
omplexity m+ 1, and time
omplexity O(n �m).The algorithm 
an be made more distributed by employing a 
on
ierge forea
h forum. To ensure mutual ex
lusion, a token is shared by the 
on
ierges.A 
on
ierge must possess the token before s
heduling any philosopher to attenda forum, and it must keep the token until all philosophers have left the forum.To in
rease 
on
urren
y, a 
on
ierge may allow a philosopher to re-attend theforum while it possesses the token. To also guarantee bounded delay, a refer-en
e philosopher 
an be 
hosen similarly to CTP-C to 
ontrol forum admission.Competition for the token among the 
on
ierges 
an be solved by 
alling an m-pro
ess mutual ex
lusion algorithm. The 
omplete 
ode of the new algorithm,whi
h we refer to as CTP-SD (SD for Semi-Distributed), 
an also be foundin [15℄.order depends on how the 
on
ierge observes their readiness. The situation is similar in thefollowing algorithm where a 
on
ierge is employed for ea
h forum.9



Like CTP-C, the use of referen
e philosophers also allows CTP-SD to 
laiman unbounded degree of 
on
urren
y. Unlike CTP-C, however, the forum-swit
h
omplexity and time 
omplexity depend on the fairness notion guaranteed bythe underlying m-pro
ess mutual ex
lusion algorithm, and, in the worst 
ase,both 
ould be unbounded! To see this, suppose that a 
on
ierge C that managesa forum F does not request the token until it has observed a request for F (sothat 
ompetition for the token is only among the 
on
ierges that need it). Then,after a philosopher has requested F, depending on C's exe
ution speed, other
on
ierges may alternatively s
hedule an arbitrary �nite number of passagesthrough di�erent fora before C requests the token. It then follows that boththe forum-swit
h 
omplexity and the time 
omplexity are unbounded. On theother hand, the problem may be over
ome by letting the token 
ir
ulate amongall 
on
ierges, regardless of whether or not they have re
eived a forum request.Clearly, this approa
h is not adequate if 
on
ierges' loads are not balan
ed, i.e.,some fora are requested more often than others.Still, CTP-SD is not fully distributed be
ause the s
heduling of entries tothe same forum is operated by a single 
on
ierge. As we have seen, a slow
on
ierge may 
ause poor time and forum-swit
h performan
e. Moreover, whenthe number of possible fora m is greater than the number of philosophers n,then we will need more a
tive pro
esses as opposed to CTP-C, and when m issmall, the 
on
ierges be
ome a bottlene
k as in CTP-C.In the following se
tions we present a fully distributed solution for the Conge-nial Talking Philosophers problem. The algorithm has similar time 
omplexityand forum-swit
h 
omplexity to CTP-C, and a
hieves a degree of 
on
urren
yof O(n3).4 A Distributed Solution for Two ForaWe �rst present a distributed solution for the Congenial Talking Philosophersproblem with only two fora F and F. To help understand our solution, we presentit in stages.4.1 A First AttemptConsider the algorithm presented in Figure 2, whi
h we refer to as CTP-Temp.CTP-Temp uses the following variables:� turn : (F;F); a variable shared (with read/write a

ess) by the philoso-phers to identify the forum that 
urrently has priority to start. It is10



initialized arbitrarily.� 
ag : array [0::n�1℄ of hstate ; opi, where 
ag [i℄ re
ords pi's state and theforum it wishes to attend. There are three possible states: passive ; request ,and in 
s . State passive means that the philosopher does not intend toattend any forum; request means that the philosopher wishes to attendsome forum; and in 
s means that the philosopher has obtained a \tem-porary" permission for its request. A philosopher in state in 
s may beprevented from attending a forum if some other philosopher has also ob-tained a temporary permission for its request. op ranges over F;F, and ?,where ? means that no forum is requested by pi.
ag [i℄ 
an be read/written by pi, but other philosophers 
an only read it.Note that although the value of ea
h 
ag [i℄ is represented as a pair, werequire a

ess to 
ag [i℄ to be atomi
. This 
an be done using a straight-forward en
oding as ea
h pair hstate; opi 
an range over only 3�3 possiblevalues. Denoting 
ag [i℄ as a pair helps us understand its meaning.The predi
ate all passive(F) de�ned in Figure 2 
he
ks if no philosopher isinterested in F, and none in 
s(F) determines if no philosopher has obtained atemporary permission to attend F.As 
an be seen, CTP-Temp bears some similarity to Knuth's 2-pro
ess mu-tual ex
lusion algorithm [17℄. It employs a variable turn to resolve the 
on
i
tbetween philosophers attempting di�erent fora. When a philosopher pi wishesto attend a forum, say F, it 
he
ks if F has priority (i.e., turn = F), or no oneis interested in F (i.e., all passive(F) = true). It 
annot pro
eed until one ofthe two 
onditions holds. Then, pi obtains a temporary permission to attendF (line 4). To a
tually attend F, pi must further 
he
k if any philosopher hasobtained a temporary permission to attend F (by evaluating none in 
s(F)). Ifso, pi gives up its temporary permission and loops ba
k to 
he
k if F still haspriority over F or no one is interested in F. If this time no philosopher obtains atemporary permission to attend F then pi 
an start F; otherwise pi must repeatthe loop. After �nishing the forum, pi swit
hes turn to F so that philosophersinterested in F will then have priority to pro
eed.CTP-Temp inherits the mutual ex
lusion property from Knuth's algorithm.To see this, observe that a philosopher pi attends F only if none in 
s(F) holds.Sin
e pi tests none in 
s(F) only after it has set 
ag [i℄ to hin 
s ;Fi, it isnever the 
ase that another philosopher attempting F evaluates a true valuefor none in 
s(F) simultaneously. Moreover, when more than one philosopheris in F, the swit
h of turn in line 7 by any one of them 
annot in
ur a pending F11



/* assuming pi is attempting F */1 repeat2 
ag [i℄ hrequest ;Fi;3 while turn 6= F ^ :all passive(F) do skip ;4 
ag [i℄ hin 
s ;Fi;5 until none in 
s(F)6 << talk in F >>7 turn  F;8 
ag [i℄ hpassive ;?i;whereall passive(F) � 8 j; j 6= i; 0 � j � n� 1 : 
ag [j℄ = hstate ; opi ) op 6= Fnone in 
s(F) � 8 j; j 6= i; 0 � j � n� 1 : 
ag [j℄ = hstate ; opi ) (state 6= in 
s _ op = F)Figure 2: Algorithm CTP-Temp.be
ause so long as some philosopher is in F its 
ag remains hin 
s ;Fi, and thusnone in 
s(F) evaluates to false . So no philosopher attempting F 
an skip theloop 
ondition in line 5 to attend F.CTP-Temp also fa
ilitates 
on
urrent entering be
ause if no philosopher hasrequested F, then all passive(F) evaluates to true. So all philosophers attempt-ing to attend F 
an do so, and their entries to the forum are mutually indepen-dent.In the presen
e of 
on
urren
y, unfortunately, CTP-Temp fails to guaranteebounded delay. To illustrate, assume that pi repeatedly wishes to attend F,while pj repeatedly wishes to attend F. A slow philosopher pk attemptingto attend, say F, may be forever blo
ked in the while-loop of the algorithmif every time when pk 
he
ks the loop 
ondition it sees that turn = F andall passive(F) = false ; and within the interval of two 
onse
utive 
he
ks, pj andpi ea
h have 
ompleted an instan
e of F and F, respe
tively.4.2 A Fair SolutionThe unbounded delay of CTP-Temp is due to the fa
t that when turn = F, somephilosopher attempting to attend F will su

eed, but we 
annot guarantee whi
hphilosopher will su

eed. To over
ome this problem, we let some philosopherattending F \
apture" all philosophers 
urrently waiting for the same forum12



into the forum.4 Obviously, not every philosopher 
an 
apture philosophers, forotherwise philosophers interested in F will keep entering F, thus blo
king theother forum inde�nitely. Our approa
h is to let the �rst philosopher startinga new session of F a
t as a 
aptain to 
apture philosophers. The philosophersthat are 
aptured into F are 
alled the su

essors of the 
aptain. Su

essors arenot allowed to 
apture philosophers to avoid possibility of livelo
k.The following variable is added to assist the 
oordination:� su

essor : array [0::n�1℄ of (F;F;?), where su

essor [i℄ indi
ates the fo-rum for whi
h pi has been 
aptured. su

essor [i℄ = ? if pi is not 
urrently
aptured. It is read/write shared by all philosophers.The algorithm, whi
h we refer to as CTP-2, is given in Figure 3. It begins byletting pi set its 
ag [i℄ to hrequest ;Fi to express its interest in F. To 
ompletethe request, pi must also 
lear su

essor [i℄ to indi
ate that it is not 
aptured byany philosopher. Then, like CTP-Temp, pi begins a repeat-loop to test if it 
anattend F. In line 5, in addition to the two 
onditions turn = F and all passive(F),a philosopher pi exits the while-loop if it �nds that it is a su

essor of someother philosopher, whi
h is determined by the 
ondition su

essor [i℄ = F. Ifpi is a su

essor, then it also skips the repeat-loop and enters CS to attend F.By `CS'|the Criti
al Se
tion|we mean the program segment from line 8 toline 13.If pi is not a su

essor of any other philosopher, then like CTP-Temp, itobtains a temporary permission to attend F if F has priority or no one else isinterested in F (line 5). To a
tually attend F, pi must 
he
k if no philosopherhas obtained a temporary permission to attend F (by evaluating none in 
s(F)).In addition, pi must also 
he
k if all su

essors of a previous 
aptain interestedin F have �nished F. The new predi
ate no su

essor(F) de�ned in Figure 3serves this purpose. Note that the evaluation of no su

essor(F) involves, forea
h pj , two a

esses to pj 's variables: 
ag [j℄ and su

essor [j℄. As shall be 
learin the analysis, the order of the two a

esses is irrelevant to the 
orre
tness ofthe algorithm.It is also important to note that the 
ondition none in 
s(F) in line 7 mustbe evaluated before no su

essor(F). (Throughout the paper we use 
1 !̂ 
2 to4The idea of 
apturing is distantly related to that of helping from the 
on
urrent obje
tsliterature [14, 3℄. In the 
onstru
tion of 
on
urrent obje
ts, some helping me
hanisms aredevised to let pro
esses \help" ea
h other to make progress so that if some pro
ess makesprogress, then eventually every pro
ess does. Our 
apturing pro
edure also allows a philoso-pher in the 
riti
al se
tion to \help" others to enter the 
riti
al se
tion, but the te
hni
aldetails are entirely di�erent. 13



/* assuming pi is attempting F */1 
ag [i℄ hrequest ;Fi;2 su

essor [i℄ ?;3 repeat4 
ag [i℄ hrequest ;Fi;5 while su

essor [i℄ 6= F ^ turn 6= F ^ :all passive(F) do skip ;6 
ag [i℄ hin 
s ;Fi;7 until su

essor [i℄ = F _ (none in 
s(F) !̂ no su

essor (F));/* beginning of 
riti
al se
tion */8 if su

essor [i℄ 6= F then f9 turn  F;10 for j  0 to n� 1, j 6= i, do /* start 
apturing philosophers */11 if 
ag [j℄ 2 fhrequest ;Fi; hin 
s ;Fig then su

essor [j℄ F; g12 << talk in F >>13 
ag [i℄ hpassive;?i;/* end of 
riti
al se
tion */whereall passive(F) � 8 j; j 6= i; 0 � j � n� 1 : 
ag [j℄ = hstate ; opi ) op 6= Fnone in 
s(F) � 8 j; j 6= i; 0 � j � n� 1 : 
ag [j℄ = hstate ; opi ) (state 6= in 
s _ op = F)no su

essor (F) � 8 j; j 6= i; 0 � j � n� 1 : 
ag [j℄ = hstate ; opi ) :(su

essor [j℄ = F ^ op = F)Figure 3: Algorithm CTP-2.
14



denote the 
onjun
tion of 
1 and 
2 where 
1 is evaluated before 
2.) Otherwise,mutual ex
lusion 
annot be guaranteed (see Se
tion 4.4).Finally, pi must also set turn to F (line 9), and then 
apture philosophersinterested in the same forum. The latter is done by setting their su

essors to F(lines 10-11). After exiting the forum, pi resets its 
ag and returns to thinking.4.3 Analysis of CTP-2For the purpose of analysis, we formalize the terms used in the algorithm. Wesay that a philosopher pi has requested F (or more 
olloquially, pi is interestedin F) if pi has exe
uted line 1 of CTP-2. To 
omplete a request pi must also setsu

essor [i℄ to ?. We say that pi has 
ompleted a request for F if it has exe
utedlines 1-2. The request is granted when pi exits the repeat-loop in lines 3-7. piis waiting for F if it has 
ompleted a request for F but the request has not yetbeen granted.Re
all that the CS region refers to the program segment from line 8 toline 13. So pi enters CS when its request is granted, and exits CS when it�nishes line 13. A passage through CS by pi thus refers to a time interval fromthe point pi enters CS to the point it leaves CS. Sin
e the CS region is used toimplement a forum session, \a passage through CS" will be used synonymouslywith \a passage through a forum" in the analysis.In the algorithm a philosopher pi interested in F enters CS only if1. su

essor [i℄ = F, or2. su

essor [i℄ 6= F and (none in 
s(F) !̂ no su

essor(F)) = trueIn the �rst 
ase we say that pi enters CS as a su

essor , while in the latter
ase pi enters CS as a 
aptain. Observe that pi resets su

essor [i℄ to ? ea
htime it 
ompletes a request, and will not alter it while waiting for the requestto be granted. So for su

essor [i℄ to be F, some philosopher must have 
hangedsu

essor [i℄ to F after pi 
ompletes its request. We say that pj 
aptures pi ifpj writes F to su

essor [i℄ while pi is waiting for F. In this 
ase, pi must enterCS as a su

essor; pi is then 
alled a su

essor of pj , and pj a 
aptain of pi.Note that when pi exits CS, the su

essor-
aptain relation between pi and pj isbroken. So when we say \pi is a su

essor of pj" or \pj is a 
aptain of pi", weimpli
itly assume a passage by pi and a passage by pj to whi
h the phrase refers.Note further that sin
e more than one philosopher may write F to su

essor [i℄,pi may have more than one 
aptain at a time.Sin
e more than one philosopher may enter CS as a 
aptain simultaneously,they may attempt to 
apture one another. If pi interested in F enters CS as a15




aptain, but before pi exe
utes the if-then statement in line 8 another 
aptain pjhas written F to su

essor [i℄, then pi will not be able to 
apture any philosopher.In this 
ase we say that pi is a 
aptain killed by pj . A 
aptain that is not killedby any other 
aptain is 
alled an e�e
tive 
aptain. Clearly, if pj kills pi, then pjmust be an e�e
tive 
aptain. Furthermore, although an e�e
tive 
aptain is ableto 
apture su

essors, it may end up with no su

essor if no one is interested inthe same forum.We are now ready for the analysis. We begin with mutual ex
lusion.Lemma 4.1 If pi enters CS as a 
aptain, then while it is in CS, no other pjinterested in a di�erent forum 
an be in CS as a 
aptain simultaneously.Proof. Assume pi is interested in F. By de�nition of 
aptain, pi must enterCS with a 
ondition none in 
s(F) = true. Observe that pi sets its state toin 
s before it evaluates none in 
s(F). So when pi inspe
ts other philosophers'states, no pj interested in a di�erent forum 
an be in state in 
s (and so 
an bein CS) at this moment. Subsequently, when pj enters state in 
s to inspe
t pi'sstate, if pi is still in CS, pj must �nd that none in 
s(F) = false and so 
annotenter CS. 2Lemma 4.2 If pi enters CS as a 
aptain, then after it leaves CS, no otherpj interested in a di�erent forum 
an enter CS as a 
aptain until all of pi'ssu

essors have left CS.Proof. Assume that pi is interested in F. For pj to enter CS as a 
aptain, it mustevaluate both none in 
s(F) and no su

essor(F) to true, and the �rst predi
atemust be evaluated before the se
ond. By Lemma 4.1, to obtain none in 
s(F) =true pi must have left CS when pj inspe
ts pi's 
ag in the evaluation. Sowhen pj evaluates no su

essor(F), pi must have �nished 
apturing philosophers(lines 10-11 of the algorithm). Let pk be a su

essor of pi. For distinguishingpurposes we shall use F� to denote the instan
e of F for whi
h pk enters CS asa su

essor of pi.For pj to evaluate no su

essor(F) to true, the following must hold (notethat no parti
ular ordering is assumed in a

essing 
ag [k℄ and su

essor [k℄):
ag [k℄ = hstate ; opi ) :(su

essor [k℄ = op = F)So there are four 
ases: su

essor [k℄ = ?, su

essor [k℄ = F, op = ?, orop = F. Sin
e pi has written F� to su

essor [k℄, and sin
e only pk 
an re-set su

essor [k℄ to ? (whi
h o

urs only after pk has requested another forum),16



the 
ase su

essor [k℄ = ? seen by pj implies that pk has already �nished F� andleft CS.The 
ase su

essor [k℄ = F implies that some philosopher pl reads op = F in
ag [k℄ and writes F to su

essor [k℄ after pi has written F� to su

essor [k℄. Thisimplies that pk has left CS in between, as a su

essor of pi.For the 
ase op = ?, re
all that pj reads 
ag [k℄ after pi writes F� tosu

essor [k℄. Moreover, sin
e pk is a su

essor of pi, pk must have 
ompleted arequest for F� before pi writes F� to su

essor [k℄. Then we have the followingevents that happen in the order listed:� pk sets 
ag [k℄ to hrequest ;F�i and resets su

essor [k℄ to ?.� pi writes F� to su

essor [k℄.� pj reads 
ag [k℄ = hpassive ;?i.Therefore, when pj �nds that 
ag [k℄ = hpassive ;?i, pk must have already �n-ished F� and left CS.Finally, 
onsider the 
ase op = F. Similar to the above argument we 
anshow that for pj to read 
ag [k℄ = hstate ;Fi, pk must have �nished F� and haverequested F. The lemma is then proven. 2Lemma 4.3 If pi enters CS as a su

essor, then it 
annot 
apture any philoso-pher while in CS.Proof. By de�nition of su

essor, pi enters CS with the 
ondition su

essor [i℄ =F (assuming pi is interested in F). Be
ause no philosopher 
an 
hange su

essor [i℄to F (Lemma 4.2), su

essor [i℄ remains F in between the time pi �nishes line 7and the time it is to exe
ute line 8. So pi skips lines 9-11 of CTP-2. 2Theorem 4.4 CTP-2 guarantees mutual ex
lusion.Proof. Suppose pi interested in F enters CS as a 
aptain. By Lemmas 4.1and 4.2, while pi and its su

essors are in CS, no philosopher interested in F
an enter CS as a 
aptain. Moreover, Lemma 4.3 implies that for a philosopherinterested in F to enter CS as a su

essor, some philosopher interested in F mustenter CS as a 
aptain to 
apture the philosopher. So while pi and its su

essorsare in CS, no philosopher interested in F 
an enter CS as a su

essor, either. Alltogether, we have that while a philosopher is in CS (either as a 
aptain or as asu

essor), no philosopher interested in a di�erent forum 
an enter CS (eitheras a 
aptain or as a su

essor). 2We now prove bounded delay. 17



Lemma 4.5 Suppose pj enters CS as a 
aptain. If pi enters CS as a su

essorof pj, then while pj stays in CS, pi 
annot re-enter CS as a su

essor of pj .Similarly, if pi enters CS as a 
aptain killed by pj, then when pi re-enters CSas a 
aptain while pj is still in CS, pi 
annot be killed again by pj.Proof. This follows from the fa
t that pj in CS attempts to write su

essor [i℄only on
e, and pi resets su

essor [i℄ to ? before it 
ompletes a request. 2The above lemma implies that a 
aptain in a passage through F 
an 
ap-ture/kill at most k � 1 philosophers, where k is the number of philosophersthat 
an potentially attend F. Moreover, sin
e only an e�e
tive 
aptain 
an
apture/kill philosophers, the lemma implies that if pi repeatedly enters CS toattend F, then either pi or some other pj interested in F must repeatedly enterCS as an e�e
tive 
aptain.Lemma 4.6 If a philosopher is waiting for a forum, then eventually somephilosopher will attend a forum.Proof. Suppose pi has requested F. If no philosopher has requested F, thenthe three Boolean 
onditions all passive(F), none in 
s(F), and no su

essor(F)evaluate to true. So pi 
an exit both the while-loop and the repeat-loop of thealgorithm to enter CS to attend F. So for the rest of the proof assume thatsome pj has requested F. Moreover, sin
e a philosopher spends only a �niteamount of time in CS, and sin
e a philosopher 
annot enter CS as a su

essorunless some philosopher is in CS as a 
aptain, we shall further assume that nophilosopher is 
urrently in CS, and no philosopher will enter CS as a su

essor.While pi and pj are waiting for F and F respe
tively, if no philosopher getsinto CS, then pi and pj must iterate through either the while-loop or the repeat-loop of the algorithm. Sin
e no one gets into CS, turn remains the same value,say F (the other 
ase is similar). So pi 
annot be blo
ked in the while-loop. Onthe other hand, pj and every other philosopher interested in F will eventuallybe blo
ked in the while-loop be
ause turn = F and all passive(F) = false .Therefore, eventually pi will evaluate none in 
s(F) !̂ no su

essor(F) to true,and then will exit the repeat-loop to enter CS. 2Lemma 4.7 If pj interested in F enters CS as a 
aptain while pi is waiting forF, then when pj starts to 
apture philosophers, either pi will be 
aptured by pj ,or pi will have already entered CS.Proof. This follows dire
tly from the algorithm. 218



By Lemma 4.7, if a set of philosophers have 
ompleted their requests forF, then if one of them gets to attend F, the others will also attend F before adi�erent forum is established.For the following lemma, re
all De�nition 2.3 that \a round of F" is a max-imal set S of 
onse
utive passages through F su
h that no passage through adi�erent forum is interspersed among them. It is 
lear that to start a roundof F some pj interested in F must enter CS as a 
aptain, and when a round ofpassages terminates, the next round of passages must be for a di�erent forum.Lemma 4.8 Suppose pi has 
ompleted a request for F. Then the following musthold:1. If a round of F is already ongoing when pi 
ompletes its request, then ei-ther pi will attend F, or a round of F will start.2. If a round of F starts after pi has 
ompleted the request, then pi must makea passage through F in this round.Proof. The se
ond 
ase follows dire
tly from Lemma 4.7 and the fa
t thatwithin a round of F there must be some philosopher that enters CS as an e�e
tive
aptain. (In Lemma 4.7, it is easy to see that the passages through F by pi andpj must belong to the same round.)For the �rst 
ase, if pi remains waiting for F, then by Lemma 4.6 eithersome philosopher will enter CS to start a round of F, or some philosopher willrepeatedly enter CS to attend F. If some philosopher repeatedly attends F, thenby Lemma 4.5 some philosopher interested in F must also repeatedly enter CSas an e�e
tive 
aptain; then by Lemma 4.7 pi will be able to attend F. So the
ase is proven be
ause pi will attend F, or a round of F will start. 2Lemma 4.9 Suppose pi is waiting for F while a round of F is ongoing. Theneventually the round of F will terminate and a round of F will start.Proof. While pi is waiting for F, by Lemma 4.6 either pi or some other philoso-pher eventually attends F, or otherwise some philosopher must repeatedly attendF. By the mutual ex
lusion property (Theorem 4.4), the �rst 
ase implies thatthe ongoing round of F will terminate and a round of F will then start.For the se
ond 
ase, by Lemma 4.5 some pj interested in F must repeatedlyenter CS as an e�e
tive 
aptain. However, this 
auses a 
ontradi
tion be
auseafter pj enters CS as an e�e
tive 
aptain, it will set turn to F. turn will thenremain F until some philosopher interested in F enters CS to 
hange turn ba
kto F. While turn = F and pi remains waiting for F, pj 
annot re-enter CS as a19




aptain. So the se
ond 
ase also implies that the round of F will terminate anda round of F will start. 2Theorem 4.10 CTP-2 guarantees bounded delay.Proof. Suppose pi has 
ompleted a request for F. Consider �rst that a roundof F is already ongoing when pi 
ompletes its request. Then by Case 1 ofLemma 4.8, either pi will attend F, or a round of F will start. In the former
ase, we are done. In the latter 
ase, sin
e pi's request for F has not beengranted, by Lemma 4.9 the round of F will terminate and a new round of F willstart. Then by Case 2 of Lemma 4.8 pi will attend F in this new round.Next, suppose that a round of F is ongoing when pi 
ompletes its request.Then by Lemma 4.9 the round of F will eventually terminate and a round of Fwill start. By Case 2 of Lemma 4.8 pi will attend F in this round.If no round of passages is ongoing when pi 
ompletes its request, then byLemma 4.6 eventually some round of passages will start. If it is a round of F,then by Case 2 of Lemma 4.8 pi will attend F in this round. If it is a roundof F, then by Lemma 4.9 this round of F will eventually terminate and a roundof F will start. Case 2 of Lemma 4.8 then ensures that pi will attend F in thatround. 2From the above proof, when a philosopher pi 
ompletes a request for F, itwaits for at most 2 rounds of passages before a round of F is initiated in whi
h pi
an make a passage through F. So CTP-2's forum-swit
h 
omplexity is 2. Timeand 
on
urren
y will be analyzed in Se
tion 5.3 when we extend the algorithmto m fora.Finally, it is easy to see that if no philosopher is interested in F, then everyphilosopher attempting to attend F 
an do so, and they 
an attend F 
on
ur-rently. The other 
ase that philosophers 
an attend F 
on
urrently is similar.So CTP-2 allows 
on
urrent entering.4.4 RemarksWe 
omment here on some 
ode of CTP-2 relating to its 
orre
tness and perfor-man
e. First, as noted in Se
tion 4.2, the 
ondition none in 
s(F) in line 7 ofCTP-2 must be evaluated before no su

essor(F), for otherwise mutual ex
lu-sion 
annot be guaranteed. To see this, assume that pi and pj wish to attendF, while pk wishes to attend F. Assume further that turn = F. Consider thefollowing s
enario: 20



1. pk sees that no philosopher is interested in F, and so it exits the while-loopin line 5.2. pi also exits the while-loop be
ause turn = F. It then sets 
ag [i℄ tohin 
s ;Fi, �nishes line 7, and enters CS.3. pj sets its 
ag to hrequest ;Fi and pro
eeds to line 5.4. pk 
hanges its state to in 
s and starts to evaluate the 
onditions in line 7.Suppose no su

essor(F) is evaluated �rst. Sin
e no philosopher interestedin F is 
aptured as a su

essor, pk sees that no su

essor(F) = true. pkthen evaluates none in 
s(F). It begins with pj and �nds that pj is instate request . So pk 
ontinues to 
he
k pi's 
ag.5. Before pk inspe
ts pi's 
ag, pi �nds that pj is also interested in F and soit 
aptures pj . pi then sets turn to F, �nishes F, and resets its state topassive .6. pk now sees that pi's state is passive and so obtains none in 
s(F) = true.It then exits line 7 and enters CS to attend F.7. pj in line 5 learns that it is 
aptured as a su

essor and so moves on toattend F, yielding both F and F to be in session simultaneously.Note that if none in 
s(F) is evaluated �rst, then pi must have already 
ap-tured pj when pk sees none in 
s(F) = true. So when pk evaluates no su

essor(F),it 
annot return true unless pj has �nished F.Se
ond, the statement \turn  F" in line 9 
an be moved to the end ofline 11 where pi has �nished 
apturing philosophers, or it 
an even be pla
edoutside the if-then statement so that every philosopher entering CS will set turnto F (whi
h, of 
ourse, may result in many redundant assignments to turn). Itis not diÆ
ult to see that these modi�
ations 
annot a�e
t the 
orre
tness ofthe algorithm. However, we have deliberately pla
ed the statement before the
apturing pro
edure to a
hieve optimal performan
e.Intuitively, if turn is 
hanged earlier, then fewer philosophers get a 
han
eto 
on
urrently attend an ongoing forum, and so philosophers interested in adi�erent forum wait for less time before attending the forum. So the 
hoi
e ofpla
ing \turn  F" before or after the 
apturing pro
edure should be a matter oftrade-o� between the algorithm's time 
omplexity and its 
on
urren
y. However,as we shall see in Se
tion 5.4, pla
ing \turn  F" ahead improves the algorithm'stime 
omplexity, but does not a�e
t its degree of 
on
urren
y. (This is be
ausethe philosophers interested in F will still be able to attend F 
on
urrently asthey will be 
aptured by the 
aptain exe
uting \turn  F".)21



Finally, although after pi has set 
ag [i℄ to hrequest ;Fi in line 1 it will againexe
ute the same assignment immediately after it enters the repeat-loop, line 1
annot be removed. This is be
ause the 
apturing pro
edure in line 11 involves,for ea
h pj , a read from 
ag [j℄ to see if pj is interested in F and, if so, a writeto su

essor [j℄. Between the read and the write, pj 
ould have also enteredCS as a 
aptain, �nished F, 
hanged 
ag [j℄ to hpassive ;?i, and then requestedanother entry to F. If we were to remove line 1 from the algorithm, then 
ag [j℄remains hpassive ;?i after pj has exe
uted line 2. When pi �nally writes Fto su

essor [j℄ and leaves CS, another pk interested in F may read turn = F,pass line 5, see none in 
s(F) !̂ no su

essor(F) = true, and then enter CSto attend F. Sin
e su

essor [j℄ = F, pj 
an also enter CS to attend F, thusviolating mutual ex
lusion.5 A Generalized SolutionWe now generalize CTP-2 to m fora F0;F1; : : : ;Fm�1.5.1 The AlgorithmThe generalized algorithm, whi
h we refer to as CTP-m, is given in Figure 4.Like CTP-2, a philosopher pi 
ompletes its request for Fk by 
hanging 
ag [i℄to hrequest ;Fki and resetting su

essor [i℄ to ?. In CTP-2, pi must wait until(1) some 
aptain 
aptures pi, (2) turn = Fk , or (3) no philosopher is interested ina di�erent forum. In CTP-m, however, 
are must be taken to avoid deadlo
ks.For example, suppose two philosophers p1 and p2 wish to attend F1 and F2respe
tively, and turn is set to a third forum, say F0. If ea
h pj (j = 1; 2) loopson the 
ondition \turn 6= Fj" ^ \some philosopher is interested in a di�erentforum", then both p1 and p2 would be waiting forever. Note that the latter
ondition 
annot be weakened to \some philosopher is interested in the forumspe
i�ed by turn" either. This is be
ause then both p1 and p2 may �nd that noone is interested in F0 and then attempt to establish F1 and F2 simultaneously.To resolve this dilemma, we let the philosopher whose requesting forum isthe \
losest" to the one di
tated by turn pro
eed. This is determined by thefun
tion next op(Fg), whi
h 
he
ks all philosophers' 
ags to see if any philoso-pher has requested a forum. If so, next op(Fg) returns the �rst requested fo-rum in the sequen
e Fg ;Fg+1; : : : ;Fg+m�1. Otherwise, next op(Fg) returns Fg .(Note that throughout this paper unless stated otherwise addition and subtra
-tion on indi
es of F are modulo m. Moreover, if h < g then Fg ;Fg+1; : : : ;Fh22



/* assuming pi is attempting Fk */1 
ag [i℄ hrequest ;Fki;2 su

essor [i℄ ?;3 repeat4 
ag [i℄ hrequest ; Fki;5 while su

essor [i℄ 6= Fk ^ next op(turn) 6= Fk do skip ;6 
ag [i℄ hin 
s ;Fki;7 until su

essor [i℄ = Fk_ (none in 
s(Fk) !̂ no su

essor (Fk) !̂ (turn = Fk _ all passive(turn)));/* beginning of 
riti
al se
tion */8 if su

essor [i℄ 6= Fk then f9 turn  next op(Fk+1);10 for j  0 to n� 1, j 6= i, do /* start 
apturing philosophers */11 if 
ag [j℄ 2 fhrequest ;Fki; hin 
s ;Fkig then su

essor [j℄ Fk; g12 << talk in Fk >>13 
ag [i℄ hpassive ;?i;/* end of 
riti
al se
tion */whereall passive(Fg) � 8 j; j 6= i; 0 � j � n� 1 : 
ag [j℄ = hstate ; opi ) op 6= Fgnone in 
s(Fk) � 8 j; j 6= i; 0 � j � n�1 : 
ag [j℄ = hstate ; opi ) (state 6= in 
s_op = Fk)no su

essor (Fk) � 8 j; j 6= i; 0 � j � n� 1 : 
ag [j℄ = hstate ; opi ):(9 l; l 6= k : su

essor [j℄ = Fl ^ op = Fl)/*/*/*/*/* fun
tion next op(Fg) returns the �rst forum Fh in the sequen
e Fg;Fg+1; : : : ,Fg+m�1 su
h that some philosopher has requested Fh but no philosopher hasrequested Fg;Fg+1; : : : ; Fh�1. Note that sin
e 
ag [i℄ is also inspe
ted, and sin
epi invokes next op only when it is interested in Fk, next op(Fg) returns Fk if nophilosopher is interested in a di�erent forum. */*/*/*/*/1 next op (Fg) :: f2 next  g +m;3 for j  0 to n� 1 do f4 let 
ag [j℄ = hstate ; opi;5 if op 6= ? then f6 let op = Fl;7 if l < g then l l+m;8 if l < next then next  l; gg9 return Fnext (mod m);10 g Figure 4: Algorithm CTP-m.23



stands for the sequen
e Fg ;Fg+1; : : : ;Fm�1;F0;F1; : : : ;Fh.) So the exit 
ondi-tion next op(turn) = Fk in line 5 means that from pi's observation Fk is therequested forum that is the 
losest to the one spe
i�ed by turn.When pi exits the while-loop, it 
hanges 
ag [i℄ to hin 
s ;Fki. In CTP-2, piexits the repeat-loop in line 7 only if it is a su

essor, or no philosopher interestedin a di�erent forum is in state in 
s and all su

essors interested in a di�erentforum have left CS. In CTP-m, if pi is not a su

essor, we additionally requirepi to 
he
k if turn = Fk or no philosopher is interested in the forum di
tated byturn. (Note that the CS region of CTP-m refers to the program segment fromline 8 to line 13.) As we shall see in Se
tions 5.2 and 5.4, this extra 
onditiontogether with our way of assigning turns guarantees that a philosopher waitsfor at most m rounds of passages before its request is granted. Removing this
ondition (i.e., turn = Fk _ all passive(turn)) from the algorithm explodes theforum-swit
h 
omplexity from O(m) to O(( 1+p52 )m)!Like CTP-2, when pi enters CS, if it is not a su

essor then it must a
tas a 
aptain to 
apture philosophers interested in the same forum to enter CS.Then, it must give the turn to other philosophers that are waiting for a di�erentforum. In CTP-m, the new turn is 
al
ulated by the fun
tion next op(Fk+1),whi
h assigns turn to the �rst forum in the sequen
e Fk+1;Fk+2; : : : ;Fk+m�1for whi
h some philosopher is waiting, or Fk otherwise.Note that unlike CTP-2 where a 
aptain always yields turn to the otherforum, in CTP-m a 
aptain may set turn to the same forum it has requested if itsees that no one is interested in a di�erent forum. In the presen
e of 
on
urren
y,this may 
ause turn, whi
h has been set to Fh by some 
aptain pi (be
ause pifound some philosopher interested in Fh), to be reset to Fk by a slow 
aptain pj(be
ause pj evaluated next op(Fk+1) earlier than pi and found no philosopherinterested in a forum other than Fk). As a result, more philosophers 
an enterCS to attend Fk before turn is �nally set to Fh to allow other philosophers toattend Fh. However, as we shall see in Se
tion 5.4, the time a philosopher maywait for its request is only slightly a�e
ted (at most by a 
onstant fa
tor), whilethe degree of 
on
urren
y is in
reased by O(n). Therefore, in CTP-m we haveopted for a higher degree of 
on
urren
y by allowing a 
aptain to set turn tothe same forum it has requested.Moreover, one may have observed that the evaluation of next op(turn) 6= Fkin line 5 involves an a

ess to turn, and then the inspe
tion of philosophers'
ags. Thus it is possible that while the inspe
tion is ongoing turn has been
hanged several times already, and so a philosopher may exit the while-loopeven if its requesting forum is not the 
losest to the one 
urrently spe
i�ed by24



turn. However, the premature exit of the while-loop is not harmful be
ause whenthe philosopher pro
eeds to line 7, it will learn that either some philosopher isalready in CS or it does not have the priority to enter CS when it evaluates\turn = Fk _ all passive(turn)", and so it will go ba
k to line 5 to re-evaluatenext op(turn), whi
h will then bring up the more up-to-date value of turn.The evaluation of \turn = Fk _ all passive(turn)" in line 7 also involves ana

ess to turn and the inspe
tion of philosophers' 
ags. Unlike the situation inline 5, turn 
annot be 
hanged by any philosopher interested in a di�erent forumduring the evaluation. This is be
ause the evaluation takes pla
e only afternone in 
s(Fk) !̂ no su

essor(Fk) = true, whi
h implies that no philosopherinterested in a di�erent forum 
an be in CS to 
hange turn. Note that turn maybe 
hanged by some pj interested in Fk during the evaluation; but this 
annot
ause a problem as no philosopher interested in a di�erent forum will be ableto enter CS until pi has exited CS.5.2 Mutual Ex
lusion and Bounded Delay of CTP-mWe now prove the 
orre
tness of CTP-m. Sin
e all the terms de�ned in Se
-tion 4.3 
an be easily generalized to m fora, we shall use them dire
tly in theanalysis.Theorem 5.1 CTP-m guarantees mutual ex
lusion.Proof. This 
an be proved similarly to Theorem 4.4 and observe that only theexit 
ondition(su

essor [i℄ = Fk) _ (none in 
s(Fk) !̂ no su

essor(Fk))of the repeat-loop of CTP-m suÆ
es to guarantee mutual ex
lusion. 2We move on to prove that CTP-m guarantees bounded delay. For this weneed the following lemmas.Lemma 5.2 Suppose pj enters CS as a 
aptain. If pi enters CS as a su

essorof pj, then while pj stays in CS, pi 
annot re-enter CS as a su

essor of pj .Similarly, if pi enters CS as a 
aptain killed by pj, then when pi re-enters CSas a 
aptain while pj is still in CS, pi 
annot be killed again by pj.Proof. Like Lemma 4.5, this is be
ause pj in CS attempts to write su

essor [i℄only on
e, and pi resets su

essor [i℄ to ? before it 
ompletes a new request. 225



Lemma 5.3 If a philosopher is waiting for a forum, then eventually somephilosopher will attend a forum.Proof. We shall only outline the main idea of the proof; the rest is similar toLemma 4.6. Assume that no philosopher is 
urrently in CS and no philosopherwill enter CS as a su

essor. So turn remains un
hanged. Observe that whenone or more philosophers attempt to attend a forum, not all of them 
an beblo
ked in the while-loop of CTP-m. This is be
ause a philosopher pi whoserequest Fk is the 
losest to turn (w.r.t. the ordering turn; : : : ;Fj ;Fj+1; : : : ) willobtain next op(turn) = Fk in line 5, and so will pro
eed to line 7. Sin
e Fkis the 
losest to turn, the 
ondition turn = Fk _ all passive(turn) must hold.So if the evaluation of the Boolean 
ondition in line 7 returns false , then somepj interested in a di�erent forum must have set its state to in 
s and is alsoevaluating the Boolean 
ondition in line 7. (pj must have seen a relatively oldversion of turn when it evaluated next op(turn) in line 5.) Then both pi andpj will loop ba
k to line 4. When they pro
eed to line 5, still, pi will not beblo
ked in line 5, but pj this time will see a 
orre
t version of turn and so willlearn that its requesting forum is not the 
losest to turn, and so will be waitingin line 5. Clearly, at most n� 1 philosophers 
an 
ause su
h a 
on
i
t situationwith pi, and all of them will eventually be blo
ked in line 5, after whi
h pi willbe able to exit the loop 
ondition in line 7 to enter CS. 2Lemma 5.4 Suppose pi has 
ompleted a request for Fk. Then the followingmust hold:1. If a round of Fk is already ongoing when pi 
ompletes its request, theneither pi will attend Fk, or a di�erent round of passages will start.2. If a round of Fk starts after pi has 
ompleted the request, then pi mustmake a passage through Fk in this round.Proof. The proof is similar to Lemma 4.8; we omit the details. 2Lemma 5.5 Suppose a round of Fh is ongoing while pi is waiting for Fk, k 6= h.Then the round of Fh will eventually terminate and a new round will start.Proof. The proof is similar to Lemma 4.9, and observe that while pi is waitingfor Fk , eventually some e�e
tive 
aptain interested in Fh must assign turn toone of the fora Fh+1;Fh+2; : : : ;Fk. Then every philosopher attempting to attendFh will �nd next op(turn) 6= Fh when it evaluates the while-loop 
ondition ofCTP-m, and so 
an no longer enter CS as a 
aptain in this round of Fh. 226



Lemma 5.6 Suppose a round of Fl starts while pi is waiting for Fk, l 6= k.Then when the round terminates, the next round must be a round of Fg forsome Fg in Fl+1;Fl+2; : : : ;Fk.Proof. Sin
e pi requests Fk before the round of Fl starts, when any 
aptain inthe round 
alls the fun
tion next op(Fl+1) to assign the next turn, it must obtainone of the fora Fl+1;Fl+2; : : : ;Fk. So right after the round terminates, turn =Fg for some Fg in Fl+1;Fl+2; : : : ;Fk. Moreover, some philosopher must haverequested Fg during the exe
ution of next op(Fl+1). By the mutual ex
lusionproperty, the philosopher must still be waiting for Fg when the round of Flterminates. So right after the round of Fl terminates, we have that (1) turn = Fg ,and (2) some philosopher is waiting for Fg .To 
omplete the proof of the lemma, we argue that the next round of passagesmust be a round of Fg . Observe that to start a new round of passages, say around of Fh, some philosopher pj must enter CS as a 
aptain, and so it mustexit the repeat-loop of CTP-m with true on the following 
ondition:none in 
s(Fh) !̂ no su

essor(Fh) !̂ (turn = Fh _ all passive(turn))Note that pj 
an evaluate \turn = Fh _ all passive(turn)" only after the predi-
ate \none in 
s(Fh) !̂ no su

essor(Fh)" evaluates to true. That is, only afterall 
aptains and their su

essors in the 
urrent round of Fl have left CS. Sin
ewhile pj is evaluating \turn = Fh _ all passive(turn)" no philosopher 
an be inCS to 
hange turn, turn remains Fg during the evaluation. So if Fh 6= Fg , thenall passive(turn) must evaluate to false be
ause some philosopher has alreadyrequested Fg before the evaluation. So no philosopher 
an start a round of Fhunless Fh = Fg . 2Lemma 5.7 After pi 
ompletes a request for Fk, at most m rounds of passages
an o

ur before a round of Fk starts.Proof. The lemma holds trivially if no round of passages starts after pi 
om-pletes its request. So let us assume that some round of Fh starts after pi 
om-pletes its request. Clearly, the lemma holds if h = k.If h 6= k, then by Lemma 5.6 at most m � 2 more rounds of passages 
ano

ur before a round of Fk starts. In
luding the round of Fh and the round ofpassages that might already be ongoing when pi 
ompletes its request, therefore,at most m rounds of passages 
an o

ur before a round of Fk start. 2Theorem 5.8 CTP-m guarantees bounded delay.27



Proof. Assume pi has 
ompleted a request for Fk. While pi is waiting for Fk,if no round of passages is ongoing, then by Lemma 5.3 some round of passageswill start. If this is a round of Fk, then by Case 2 of Lemma 5.4, pi mustmake a passage through Fk in this round. If this is not a round of Fk, thenby Lemmas 5.5 and 5.7 some round of Fk eventually starts; and by Case 2 ofLemma 5.4 pi must make a passage through Fk in this round. So pi eventuallyattends Fk if no round of passages is ongoing when it 
ompletes its request.Next, suppose some round Fh is already ongoing when pi 
ompletes its re-quest. If h = k, then by Case 1 of Lemma 5.4 eventually either pi makes apassage through Fk or a new round of passages will start. If h 6= k, then byLemma 5.5 a new round of passages will also start. Together with the previousargument, we 
on
lude that if some round of passages is already ongoing whenpi 
ompletes its request, then pi eventually attends Fk . 2By Lemmas 5.5 and 5.7 we 
an see that after pi 
ompletes its request for Fk,it waits for at most m rounds of passages before a round of Fk starts in whi
hpi 
an make a passage through Fk . So CTP-m's forum-swit
h 
omplexity is m.Of the m rounds of passages pi has been waiting, one of them must start beforepi 
ompletes its request, and the remaining m � 1 rounds must be of di�erentfora.5.3 Time Complexity and Con
urren
y of CTP-mWe now analyze CTP-m's time 
omplexity and its 
on
urren
y. Re
all that\passages" are represented as non-zero length intervals. Sin
e the analysis in-volves handling of passages, we begin with some de�nitions on intervals.Let U be a (
losed) interval, and let s(U) and e(U) denote its start pointand end point, respe
tively. By kUk we mean the length of U , i.e., kUk =e(U) � s(U), and by t 2 U we mean s(U) � t � e(U). The interse
tion of Uand V , denoted by U u V , is de�ned to be the maximum interval W su
h that8 t 2 W : t 2 U ^ t 2 V , or ? otherwise. Two intervals U and V overlap ifkU u V k > 0. The proje
tion of U in [ts; tf ℄, denoted by U jtfts , is the intervalU u [ts; tf ℄ if U and [ts; tf ℄ overlap, or ? otherwise. If S is a set of intervals,then S jtfts = fU jtfts : U 2 S; U jtfts 6= ?g.5For the proofs in this se
tion, it is useful to re
all De�nition 2.2. The fol-lowing proposition follows dire
tly from the above de�nitions.5Sin
e we allow passages to o

ur 
on
urrently, in the paper, unless stated otherwise, allsets 
onsisting of intervals are treated as multisets.28



Proposition 5.9 Let S be a set of intervals. Then for any t; ts � t � tf ,dim(Sjtfts ) � dim(Sjtts) + dim(Sjtft ). Moreover, if t 62 U for all U 2 S, thendim(Sjtfts ) = dim(Sjtts ) + dim(Sjtft ).As analyzed in the previous se
tion, after pi 
ompletes a request for Fk,it waits for at most m rounds of passages before a round of Fk is initiated inwhi
h pi 
an make a passage through Fk . To analyze the time 
omplexity, we�rst determine the number of passages that may o

ur in ea
h round. This isdone in the following lemma. Of 
ourse, if the round starts before pi 
ompletesits request, then we are only 
on
erned with the passages that o

ur after pi
ompletes its request. The time ts set up in the following lemma is for thispurpose. Moreover, nh denotes the number of philosophers that 
an potentiallyattend Fh.Lemma 5.10 Suppose a round of Fh is ongoing while pi is waiting for Fk,Fk 6= Fh. Let ts = max(ts1 ; ts2), where ts1 is the time the round of Fh starts,and ts2 the time pi 
ompletes its request for Fk, and let tf be the time the roundof Fh terminates. Furthermore, let Sh be the set of passages that may overlapwith the interval [ts; tf ℄. ThenjShj � nh(nh + 1)(2nh + 1)12 + 3nh(nh + 1)4Proof. We begin by distinguishing between three types of passages through CS:� �-passage: the philosopher making this passage sets turn to the same fo-rum as its request.� �-passage: the philosopher making this passage sets turn to a forum dif-ferent from its request.� 
-passage: the philosopher making this passage is unable to set turn.By the algorithm, a philosopher that makes an �- or �-passage must enter CSas an e�e
tive 
aptain, while a 
-passage must be made by a su

essor or akilled 
aptain.Note that sin
e we are only 
on
erned with passages that overlap with theinterval [ts; tf ℄, i.e., passages in Sh, unless stated otherwise, all passages 
onsid-ered in the proof belong to Sh. By the mutual ex
lusion property of CTP-m,the philosophers making these passages are all interested in Fh.Observe that an �-passage 
annot be initiated after pi has requested Fk.This is be
ause if pj enters CS after pi has requested Fk, then when pj 
omputesnext op(Fh+1) in line 9 of CTP-m, it must obtain a forum with an index otherthan h. 29



Moreover, when some p1 
ompletes a �-passage, no other p2 
an initiate a �-passage unless another philosopher has made an �-passage to reset turn to Fh.6To see this, suppose that p1 in its �-passage sets turn to Fg . If p2 
ompletes its Fhrequest before p1 sets turn to Fg, then when p1 starts 
apturing philosophers,either p2 will be 
aptured by p1 (and thus p2 
an only make a 
-passage forits request), or p2 must have already initiated a �-passage (and thus p2's �-passage 
annot be initiated after p1 
ompletes its �-passage). If p2 
ompletesits request after p1 has set turn to Fg , then when p2 starts to evaluate the
ondition \turn = Fh _ all passive(turn)" in line 7, it must obtain false and so
annot make a �-passage.So in the absen
e of �-passages all �-passages must overlap. Let q1; q2; : : : ; qlbe the philosophers that are making these overlapping �-passages and, withoutloss of generality, assume that q1 
ompletes its passage earlier (or at least nolater) than q2, whi
h 
ompletes its passage earlier than q3, and so on. Supposethat q1 in its �-passage 
an 
apture at most r philosophers (and re
all that noneof them 
an be 
aptured more than on
e in the passage). Then, q1's �-passage
an result in at most r 
-passages. Moreover, none of these r philosophersinvolves q2; : : : ; ql (and q1) be
ause when q1 
aptures these r philosophers thephilosophers q2; : : : ; ql are still in their �-passages. (Re
all from the previousdis
ussion that q2; : : : ; ql must have already initiated their �-passages when q1starts to 
apture philosophers, and they 
annot 
omplete their �-passages untilq1 has �nished 
apturing philosophers be
ause q1 
ompletes its �-passage earlierthan they do.)Be
ause after q1 
ompletes its �-passage it may re-enter CS as a su

essor ofq2, and be
ause after 
ompleting their 
-passages the r philosophers 
apturedby q1 may also re-enter CS as a su

essor of q2, q2's �-passage 
an result inat most (r + 1) 
-passages. In general, qi's �-passage 
an result in at most(r + i� 1) 
-passages. So the l �-passages overall 
an result in at mostX1� i� l r + i� 1 = l � r + l(l� 1)2
-passages. Together with the l �-passages, the total number of passages they
an generate is at mostl � r + l(l � 1)2 + l = l � r + l(l+ 1)2Given that l + r = nb for some nb � nh, the total number of passages these nbphilosophers 
an generate is at most nb(nb + 1)=2.6Note that this property would not hold if line 9 is pla
ed after line 11; that is, if a 
aptainsets turn after it has �nished 
apturing philosophers. See Se
tion 5.4.30



If some �-passage has been 
ompleted between these �- and 
-passages, thena new set of overlapping �-passages may be initiated.7 Sin
e the philosopher
ompleting the �-passage may later re-enter CS to initiate a �-passage, by theabove argument, a total number of nb+1 philosophers 
an be involved in makinga new series of �- and 
-passages, resulting in at most (nb + 1)(nb + 2)=2 morepassages. Note, however, that before these (nb + 1) philosophers initiate thenew series of �- and 
-passages, the philosopher making the �-passage may �rst
apture the nb philosophers to initiate an additional number of nb 
-passages.So overall they 
an result in (nb + 1)(nb + 2)=2 + nb passages.Similarly, if after the se
ond series of �- and 
-passages another �-passagehas been 
ompleted, then a third series of at most (nb+2)(nb+3)=2+ (nb +1)of �- and 
-passages is possible. Note that sin
e no philosopher 
an initiate an�-passage after pi has requested Fk, the previous �-passage and the 
urrent onemust be made by di�erent philosophers.Suppose that there are na ongoing �-passages when pi 
ompletes its requestfor Fk. Then, in
luding the �rst series of nb(nb+1)2 �- and 
-passages, these�-passages overall 
an generate at mostnb(nb + 1)2 + X1� i�na� (nb + i)(nb + i+ 1)2 + nb + i� 1�of �- and 
-passages. Re
all that nb is the maximum number of philosophersthat 
an be involved in the �rst series of �- and 
-passages. Clearly, none ofthese nb philosophers 
an make any of the na �-passages. So na + nb � nh.Therefore, the total number of �-, �-, and 
-passages that 
an be initiated afterpi 
ompletes a request for Fk but before the 
urrent round of Fh terminates,plus the number of passages that may be already ongoing when pi 
ompletes itsrequest (whi
h, in the above dis
ussion, are the na �-passages), is at mostnb(nb + 1)2 + X1� i�na� (nb + i)(nb + i+ 1)2 + nb + i� 1�+ na� nh(nh + 1)(2nh + 1)12 + 3nh(nh + 1)4 27The philosopher making this �-passage must have obtained next op(Fh+1) = Fh in line 9before pi 
ompletes its request for Fk (be
ause it does not �nd any philosopher interested ina di�erent forum), but have not yet assigned Fh to turn until q1; : : : ; ql set turn to a di�erentforum in their �-passages. 31



Note that the above bound for jShj is tight be
ause we 
an 
onstru
t as
enario to rea
h this bound. To illustrate, 
onsider the following s
enario fornh = 3:1. Ea
h of p1; p2; p3, one after another, initiates an �-passage as follows: itrequests Fh, enters CS, �nds that no one is interested in a di�erent forum,and so pro
eeds to obtain next op(Fh+1) = Fh.2. p0 
ompletes a request for Fk .3. p1 sets turn to Fh and then 
ompletes its �-passage.4. p1 makes a �-passage as follows: it requests Fh, enters CS, sets turn toFk, and exits CS.5. p2 sets turn to Fh, 
aptures p1 (after p1 has requested another entry toFh), and then 
ompletes its �-passage.6. p1, as a su

essor of p2, makes a 
-passage.7. p1 and p2 respe
tively initiate a �-passage as follows: ea
h requests Fh,enters CS, and pro
eeds to 
apture philosophers.8. p1 
aptures none, sets turn to Fk, and 
ompletes its �-passage.9. p2 
aptures p1 (after p1 has requested another entry to Fh), sets turn toFk, and 
ompletes its �-passage.10. p1, as a su

essor of p2, makes a 
-passage.11. p3 sets turn to Fh, 
aptures p1 and p2 (after they have requested a newFh), and then 
ompletes its �-passage.12. p1 and p2, as a su

essor of p3, make a 
-passage respe
tively.13. p1; p2; and p3 respe
tively initiate a �-passage as follows: ea
h requestsFh, enters CS, and pro
eeds to 
apture philosophers.14. p1 
aptures none, sets turn to Fk, and 
ompletes its �-passage.15. p2 
aptures p1 (after p1 has requested another entry to Fh), sets turn toFk, and 
ompletes its �-passage.16. p1, as a su

essor of p2, makes a 
-passage.17. p3 
aptures p1 and p2 (after they have requested another entry to Fh), setsturn to Fk, and 
ompletes its �-passage.18. Ea
h of p1 and p2, as a su

essor of p3, makes a 
-passage.Therefore, 16 passages (3 �-passages, 6 �-passages, and 7 
-passages) havepassed after p0 
ompletes a request for Fk.Next, we 
ompute the maximum dimension of the set of passages that mayo

ur in a round. 32



ppppppppppppppppppppppppppppp
pppppts

ppppppppppppppppppppppppppppp
ppppptf

ppppppppppppppppppppppppppppp
pppppmax(e(A); e(B3))

ppppppppppppppppppppppppppppp
ppppps(B1)

ppppppppppppppppppppppppppppp
pppppe(B2)

0 5 10 15 20 25 30 35� -� -pppp� -B3� -� -A � -� -B2pppp� -B1� -� -B�-C1 �-C2�-C �-C3 �-C4
Figure 5: Layout of the passages in Sh.Lemma 5.11 Suppose a round of Fh is ongoing while pi is waiting for Fk,Fk 6= Fh. Let ts = max(ts1 ; ts2), where ts1 is the time the round of Fh starts,and ts2 the time pi 
ompletes its request for Fk, and let tf be the time the roundof Fh terminates. Furthermore, let Sh be the set of passages that overlap withthe interval [ts; tf ℄. Then dim(Sh) � 2nh + 3Proof. Let �-, �-, and 
-passages be de�ned as in Lemma 5.10. Let A be theset of �-passages in Sh, and let A be the passage in A with the largest endtime. Furthermore, let B be the set of �-passages in Sh that are initiated noearlier than e(A); i.e., 8U 2 B : s(U) � e(A). Re
all from Lemma 5.10 that all�-passages in A must be initiated before pi requests Fk, and that all �-passagesin B must overlap (at a 
ommon point).Let B1 be the passage, among the passages in B, with the smallest start time,and B2 be the passage with the largest end time. Sin
e B1 and B2 overlap, they
onstitute a 
over of Shje(B2)s(B1) (see Figure 5).Assume �rst that there is some �-passage that starts before e(A). Let B3 besu
h a passage with the largest end time. Assume further that e(B3) < s(B1).So there is no �-passage overlapping with [e(B3); s(B1)℄ (be
ause for every �-passage B0 2 Sh, if s(B0) < e(A) then e(B0) � e(B3), and if s(B0) � e(A) thens(B0) � s(B1)). Sin
e A is the passage in A with the largest end time, there isno �- and �-passage overlapping with [max(e(A); e(B3)); s(B1)℄.Consider the maximum number of 
-passages that 
an be interspersed be-tween [max(e(A); e(B3)); s(B1)℄. Let C1 and C2 be any two 
-passages thatoverlap with the interval [max(e(A); e(B3)); s(B1)℄. (See Figure 5 again.) Weargue that C1 and C2 
annot be made by the same philosopher. This is be
auseif C1 and C2 were made by the same philosopher, say pj , then C1 and C2 mustnot overlap. Without loss of generality assume that e(C1) < s(C2). Then some33




aptain, while making an �- or �-passage, must have 
aptured or killed pj in[e(C1); s(C2)℄. This then 
ontradi
ts the fa
t that no �- and �-passage mayoverlap with [max(e(A); e(B3)); s(B1)℄.Furthermore, let U be one of the two passages A and B3 with the largestend time. Sin
e no philosopher makes an �- or �-passage in [max(e(A); e(B3)),s(B1)℄, after a philosopher 
ompletes U , it 
annot make a 
-passage in theinterval. So no 
-passage overlapping with [max(e(A); e(B3)); s(B1)℄ 
an bemade by the philosopher that 
ompletes U .The above argument implies that at most (nh � 1) 
-passages 
an over-lap with [max(e(A); e(B3)); s(B1)℄. Sin
e no �- or �-passage 
an overlap with[max(e(A); e(B3)); s(B1)℄, a minimal 
over of Shjs(B1)max(e(A);e(B3)) has size at mostnh� 1. Moreover, sin
e A and B3 overlap, a minimal 
over of Shjmax(e(A);e(B3))tshas size at most two if e(B3) > e(A), and has size one otherwise. Togetherwith the fa
t that a minimal 
over of Shje(B2)max(e(A);e(B3)) has size at most 2, byProposition 5.9, therefore, dim(Shje(B2)ts ) � nh + 3.In the above we assumed that e(B3) < s(B1). If e(B3) � s(B1), then Aand B3 together 
onstitute a 
over of Shjs(B1)ts . So dim(Shje(B2)ts ) � 4. If no�-passage in Sh starts before e(A), then by the above argument we 
an see thata minimal 
over of Shje(A)ts has size one and a minimal 
over of Shjs(B1)e(A) hassize at most (nh � 1). So dim(Shje(B2)ts ) � nh + 2. Sin
e nh � 1, in any 
ase,dim(Shje(B2)ts ) � nh + 3.Similarly, we 
an show that at most (nh � 1) 
-passages 
an overlap with[e(B2); tf ℄. Sin
e no �- or �-passage 
an overlap with [e(B2); tf ℄, dim(Shjtfe(B2)) �nh�1. By Proposition 5.9 and the above argument that dim(Shje(B2)ts ) � nh+3,we have that dim(Shjtfts ) � 2nh + 2.We have 
onsidered the 
ase that there exist two passages A and B su
hthat: A is the passage, among the set of �-passages in Sh (i.e., set A), with thelargest end time, and B is a �-passage initiated no earlier than e(A). If thereis no �-passage, or all �-passages in Sh are initiated earlier than e(A), then bya similar reasoning we 
an show that at most (nh � 1) 
-passages 
an overlapwith [t; tf ℄, where t = maxfe(U) : U is an �- or �-passage in Shg. Togetherwith the fa
t that dim(Shjtts) � 2, we have dim(Shjtfts ) � nh + 1.If there is no �-passage (i.e., A = ;) but there is some �-passage in Sh, thenlet B1 be the set of �-passages in Sh that are initiated at or before ts, and B2be the set of �-passages that are initiated after ts. Note that the passages inB2 must overlap. Let t1 = maxfe(U) jU 2 B1g if B1 6= ;, and t1 = ts otherwise.Furthermore, let t2 = minfs(U) jU 2 B2g and t3 = maxfe(U) jU 2 B2g if34



B2 6= ;, and t2 = t3 = t1 otherwise. Analogous to the above analysis, we
an show that dim(Shjt1ts) � 1, dim(Shjt2t1) � nh � 1, dim(Shjt3t2) � 2, anddim(Shjtft3 ) � nh � 1. So dim(Shjtfts ) � 2nh + 1.If there is no �- and �-passage in Sh, then at most (nh � 1) 
-passages 
anoverlap with [ts; tf ℄ (these passages must be resulted from some early �- and�-passages that o

ur before pi 
ompletes its request). So dim(Shjtfts ) � nh�1.To summarize, dim(Shjtfts ) � 2nh+2. Sin
e dim(Sh) = dim(Shjtmaxtmin ), wheretmin = minfs(U) jU 2 Shg and tmax = maxfe(U) jU 2 Shg, by Proposition 5.9dim(Sh) � dim(Shjtstmin) + dim(Shjtfts ) + dim(Shjtmaxtf ). Observe that somepassages overlapping with [ts; tf ℄ may be initiated before ts, and all passagesoverlapping with [ts; tf ℄ must be 
ompleted before tf . So dim(Shjtstmin) � 1 anddim(Shjtmaxtf ) = 0. Therefore, dim(Sh) � 2nh + 3. 2Note that in the above lemma if dim(Sh) = 2nh + 3 then there must besome ongoing �-passage when pi 
ompletes its request for Fk. This means thatthe round of Fh must have already started when pi 
ompletes its request. Onthe other hand, if the round starts after pi has 
ompleted its request, then no�-passage 
an o

ur in this round (be
ause any e�e
tive 
aptain must have seenpi's request when it is in line 9 of CTP-m, and so 
annot set turn to Fh). As aresult, there is no passage between [ts; s(B1)℄ in Figure 5. So a minimal 
overof Sh has size at most nh + 1. We therefore have the following two 
orollaries.Corollary 5.12 Suppose a round of Fh starts before pi 
ompletes a request forFk, Fk 6= Fh. Let ts be the time pi 
ompletes the request, and let tf be the timethe round terminates. Moreover, let Sh be the set of passages that overlap withthe interval [ts; tf ℄. Then dim(Sh) � 2nh + 3Corollary 5.13 Suppose a round of Fh starts after pi has 
ompleted a requestfor Fk, Fk 6= Fh. Let ts be the time the round starts, and let tf be the time itterminates. Moreover, let Sh be the set of passages that overlap with the interval[ts; tf ℄. Then dim(Sh) � nh + 1The above 
orollaries 
on
ern the 
ase Fk 6= Fh. The 
ase Fk = Fh is
onsidered below.Lemma 5.14 Suppose a round of Fk starts before pi 
ompletes its request forFk. Suppose further that pi does not make a passage for its request in this round.35



Let ts be the time pi 
ompletes its request, and let tf be the time this round ofFk terminates. Moreover, let Sk be the set of passages that overlap with theinterval [ts; tf ℄. Then dim(Sk) � nkProof. If no non-
-passage (i.e., �- or �-passages) overlaps with [ts; tf ℄, thenat most nk � 1 
-passages 
an overlap with [ts; tf ℄ (as none of the 
-passages
an be made by pi). So dim(Sk) = dim(Sk jtfts ) � nk � 1.If some non-
-passage made by, say pj , overlaps with [ts; tf ℄, then if thepassage starts after pi has 
ompleted its request, then either pj will 
apture pior pi will have already entered CS before pj attempts to 
apture it. Sin
e by thelemma assumption pi does not make a passage in this round, if there is any non-
-passage overlapping with [ts; tf ℄, then it must be initiated before pi 
ompletesits request. Let A be the non-
-passage, among the non-
-passages that overlapwith [ts; tf ℄, with the largest end time. By the proof of Lemma 5.11 it 
an beseen that at most (nk�2) 
-passages 
an overlap with [e(A); tf ℄. (Note that noneof these 
-passages and A 
an be made by pi.) So dim(Sk jtfe(A)) � nk�2. Sin
edim(Sk) � dim(Sk je(A)tmin ) + dim(Skjtfe(A)), where tmin = minfs(U) jU 2 Skg,dim(Sk) � 2 + nk � 2 = nk.To summarize, in either 
ase dim(Sk) � nk. 2Theorem 5.15 (Time Complexity) Let tr be the time a philosopher pi 
om-pletes its request for Fk, and tg be the time the request is granted (i.e., the timepi initiates a passage through Fk). Moreover, let S be the set of passages thatoverlap with [tr; tg ℄ and that must be 
ompleted before pi 
an initiate its passage.Thendim(S) � max fnk; 2nj + 3 : 1 � j 6= k � mg + 0� X1�j�m;j 6=k nj + 11AProof. By Lemma 5.7, pi waits for at mostm rounds of passages before a roundof Fk is initiated in whi
h it 
an make a passage through Fk. These in
lude theround of passages that is already ongoing when pi 
ompletes its request. By theproof, the m�1 rounds of passages that start after pi has 
ompleted its requestmust all be di�erent, and none of them is a round of Fk . So by Corollary 5.13,a minimal 
over of the set of passages o

urring in these m� 1 rounds has sizeat most P1�j�m;j 6=k(nj + 1).Consider the round of passages that is already ongoing when pi 
ompletesits request. By Corollary 5.12 and Lemma 5.14, a minimal 
over of the set of36



passages in S that o

ur in this round has size at most max fnk; 2nj + 3 : 1 �j 6= k � mg.After these m rounds of passages, a round of Fk must follow, and by Case 2of Lemma 5.4 pi must make a passage through Fk in this round. Note thatbe
ause the passages in this round are for the same forum, pi needs not wait forany of them to 
omplete in order to initiate its own passage. So by de�nitionof S no passage in S 
omes from this round. Therefore,dim(S) � max fnk; 2nj + 3 : 1 � j 6= k � mg + 0� X1�j�m;j 6=k nj + 11A 2Sin
e nh � n, the time 
omplexity is O(m � n). Note that in measuringdim(S) above we only 
onsider passages that must be 
ompleted before pi 
aninitiate its passage; that is, we do not 
ount those with whi
h pi's passage maypro
eed 
on
urrently.We now 
onsider the 
on
urren
y of CTP-m, and re
all that the degree of
on
urren
y is measured by the maximum number of passages that 
an be ini-tiated while a passage is ongoing and some philosopher is waiting for a di�erentforum. Lemmas 5.10 and 5.11 imply that the degree of 
on
urren
y of CTP-m isat least O(n2h). However, as shown below CTP-m 
an a
tually provide a degreeof 
on
urren
y up to O(n3h).Theorem 5.16 (Con
urren
y) Suppose pj is in Fh and pi is waiting for Fk,k 6= h. Then the number of passages that 
an still be initiated before pj leavesFh is at most nh(nh + 1)(2nh + 1)12 + nh(nh � 3)4Proof. Re
all from the proof of Lemma 5.10 that among the nh(nh+1)(2nh+1)12 +3nh(nh+1)4 passages in Sh, nh of them are �-passages initiated before pi 
om-pletes its request, nh(nh+1)(2nh+1)12 + nh(nh�3)4 of them are �- and 
-passagesinitiated after pi 
ompletes its request but before the last of the nh �-passagesterminates, and the rest nh(nh+1)2 are �- and 
-passages initiated after all the�-passages terminate. So while the last �-passage is ongoing and pi is waitingfor Fk, at most nh(nh+1)(2nh+1)12 + nh(nh�3)4 more passages 
an be initiated. 2By 
omparing CTP-m with the simple 
entralized algorithm CTP-C pre-sented in Se
tion 3, we see that they have similar forum-swit
h 
omplexity (m37



for CTP-m, and m+ 1 for CTP-C); also both have time 
omplexity O(m � n).However, CTP-C allows a virtually unbounded degree of 
on
urren
y (throughthe use of a 
entralized me
hanism), while CTP-m 
an rea
h only O(n3) (in afully distributed setting).5.4 RemarksWe 
omment on some nontrivial design 
hoi
es made for CTP-m. First, let us re-
onsider Lemma 5.10. In the absen
e of �-passages the size of Sh in Lemma 5.10
an be redu
ed to nh(nh +1)=2. In the algorithm �-passages o

ur be
ause weallow a 
aptain, upon seeing that no philosopher is interested in a di�erent fo-rum, to set turn to the same forum as its request. If we 
hange line 9 of CTP-mso that a 
aptain will always set turn to a di�erent forum (as in the 
ase ofCTP-2), then �-passages are not possible. In this 
ase, however, a minimal
over of Sh in Lemma 5.11 may still 
ontain nh + 1 passages (2 overlapping�-passages and (nh�1) 
-passages). So the time 
omplexity of Theorem 5.15 isnot a�e
ted by any order of magnitude. However, the degree of 
on
urren
y willthen drop to O(n2h). Therefore, in CTP-m we have opted for a higher degreeof 
on
urren
y by allowing a philosopher to set turn to the same forum as itsrequest.Moreover, the order of exe
ution of setting turn (line 9) and 
apturingphilosophers (lines10-11) may also a�e
t the time 
omplexity. To see this, re
allthat in the proof of Lemma 5.11 all �-passages that are initiated no earlier thane(A), i.e., the passages in B, must overlap (at a 
ommon point). So it takes atmost two passages to 
over the passages in B. If a philosopher sets turn afterit 
aptures philosophers, then the �-passages in B do not ne
essarily overlap(thereby in
reasing the time 
omplexity). This is be
ause a philosopher pl mayenter CS as a 
aptain (assuming that pl is interested in Fh and turn = Fh),
apture philosophers, and then �nd that some philosopher is interested in a dif-ferent forum Fg . Before pl sets turn to Fg , another pj interested in Fh may havealready read turn in line 7. Suppose pl then sets turn to Fg and exits CS beforepj 
ompares the value it has read (i.e., Fh) with the forum Fh it has requested(i.e., before pj tests the predi
ate turn = Fh in line 7). Then when pj �nds thatturn is (a
tually, was) Fh and enters CS, pl has already left CS, and so their�-passages do not overlap.A more signi�
ant boost to CTP-m's performan
e is by the extra 
lause\turn = Fk _ all passive(turn)" added to line 7 that a philosopher 
he
ks to seeif it 
an enter CS. It is important to note that Lemma 5.6 would not hold if38



this 
lause is dropped from line 7. This is be
ause a philosopher pj interestedin a forum Fh may have already pro
eeded to line 6 when a round of Fl starts.When the round of Fl terminates, if this 
lause is removed, then pj may \sneak"into CS even if turn 6= Fh and some other philosopher is waiting for the forumspe
i�ed by turn. As a result, the number of rounds of passages pi needs to waitbefore it enters CS in Lemma 5.7 (i.e., the algorithm's forum-swit
h 
omplexity)would be mu
h more than m.To illustrate, assumem = 4 and turn = F0. Consider the following s
enario.81. p3 requests F3, �nds that no one is interested in F0;F1, and F2, and so itexits the while-loop and pro
eeds to line 6 (but has not yet exe
uted line 6).2. p2 requests F2, �nds that no one is interested in F0 and F1, and so alsopro
eeds to line 6.3. p1 requests F1, �nds that no one is interested in F0, and so also pro
eedsto line 6.4. p0 requests F0.5. p3 \sneaks" into CS (be
ause none in 
s(F3) !̂ no su

essor(F3) evalu-ates to true). It then sets turn to F0 and exits CS. Then p3 requestsanother entry to F3.6. p2 \sneaks" into CS. It then sets turn to F3 and exits CS. Then p2requests another entry to F2.7. p3 �nds that turn = F3 and so it pro
eeds to enter CS. It then sets turnto F0, exits CS, and requests another entry to F3.8. p1 \sneaks" into CS. It then sets turn to F2 and exits CS.9. p2 �nds that turn = F2 and so it pro
eeds to enter CS. It then sets turnto F3 and exits CS.10. p3 �nds that turn = F3 and so it pro
eeds to enter CS. It then sets turnto F0 and exits CS.11. p0 now �nds that turn = F0 and so it pro
eeds to enter CS.Therefore, before p0 enters CS, the following 6 rounds of passages have bypassed:F�3;F�2;F3;F�1, F2;F3, where F�i represents a round of Fi initiated by a philosopherthat \sneaks" into CS. The s
enario 
an be extended to m = 5 so that p0 waitsfor the following rounds of passages before it enters CS to attend F0:F�4;F�3;F4;F�2;F3;F4;F�1;F2;F�4;F�3;F48Thanks to Wen-Jian Tsai for 
oming up with this s
enario.39



Note that p4 
an sneak into F4 twi
e be
ause the evaluation of next op(turn) inline 5 requires an a

ess to turn and then an a

ess to ea
h philosopher's 
ag ,and no parti
ular ordering is assumed in a

essing the 
ags. As a result, afterp1 sneaks into CS to establish a round of F1 and sets turn to F2 (be
ause p2 hasrequested another entry to F2), p4 
an start to evaluate next op(turn) in line 5.When p4 learns that turn = F2, it may later �nd that no one is interested in F3and F2 (be
ause p2 has already �nished F2), and so pro
eeds to line 6 waiting tosneak into CS. Similarly, p3 
an sneak into F3 after p1 has set turn to F2 be
ausewhen p3 reads turn = F2, it may later �nd that no philosopher is interested inF2, and so obtains next op(turn) = F3 in line 5. So it 
an also pro
eed to line 6waiting to sneak into CS.Let ak denote the number of rounds of passages p0 may wait before it entersCS for the setting where the philosophers may like to hold k di�erent fora. Weleave the reader to show that the s
enario 
an be generalized so that ak satis�esthe following re
urren
e relation:9ak = 8><>: ak�1 + ak�2 + 2 k > 21 k = 20 k = 1Solving this re
urren
e relation we haveam = 5 + 3p510 (1 +p52 )m + 5� 3p510 (1�p52 )m � 2Thus, an exponential number of rounds may pass before a philosopher's requestis granted!As mentioned earlier in Se
tion 4.1, our algorithm is based on Knuth's al-gorithm for 2-pro
ess mutual ex
lusion [17℄. When generalizing to n-pro
ess,Knuth's algorithm su�ers an exponential number of overtakes: a pro
ess waitsfor 2n�1�1 entries to CS before it enters CS. The exponential bound is redu
edto linear by Eisenberg and M
Guire [10℄ by properly assigning the turn variablewhen a pro
ess exits CS. As illustrated above, CTP-m's forum-swit
h 
omplex-ity (whi
h 
orresponds to the above \overtakes" 
omplexity when the CongenialTalking Philosophers problem is redu
ed to n-pro
ess mutual ex
lusion) 
ould9It helps to see the re
urren
e relation by renaming fora using the new index mapping:Fi �! Fm�1�i . As a result, the turn is now assigned in a de
reasing order Fi;Fi�1;Fi�2 ; : : :instead of an in
reasing order Fi;Fi+1;Fi+2; : : : . A

ordingly, in the above s
enario form = 4,p0 now waits for the following 6 rounds of passages F�0 ;F�1 ;F0;F�2 , F1;F0 before it enters CS.For m = 5, the sequen
e be
omes F�0;F�1 ;F0;F�2;F1;F0;F�3;F2;F�0;F�1;F0, and for m = 6, thesequen
e is F�0 ;F�1;F0;F�2 ;F1;F0;F�3 ;F2;F�0 ;F�1;F0;F�4;F3;F�0 ;F�1;F0;F�2;F1;F0.40



also blow up to exponential if not properly designed. Unlike Eisenberg andM
Guire's approa
h, we let a philosopher, prior to entering CS, 
he
k an addi-tional 
ondition to see if its forum is the most appropriate one to start.6 Related Work and Con
lusionsWe have presented the Congenial Talking Philosophers problem to model groupmutual ex
lusion in whi
h resour
es 
an be shared by pro
esses of the samegroup but the sharing 
annot be done a
ross groups. Although the problemo

urs naturally in appli
ations su
h as CSCW, to our knowledge, it has notbeen addressed in the literature thus far.We have also presented an eÆ
ient and highly 
on
urrent distributed algo-rithm CTP-m to solve the Congenial Talking Philosophers problem. In termsof forum-swit
h 
omplexity, when a philosopher requests a forum, it waits forat most m rounds of passages before it attends the forum, where m is the totalnumber of fora in the system. Within ea
h round of passages, at most O(nh)passages suÆ
e to 
over all the passages that o

ur within the round, where nhis the total number of philosophers that may potentially attend Fh. So the time
omplexity is O(m �n). In terms of 
on
urren
y, while a philosopher pi o

upiesthe meeting room and some other pj is waiting for a di�erent forum, CTP-m
an admit O(n3) entries to the meeting room to join the ongoing forum with pi.For 
omparison, we have presented two algorithms, one 
entralized and theother semi-distributed, for the Congenial Talking Philosophers problem. Bothalgorithms are able to 
laim a virtually unbounded degree of 
on
urren
y byusing a 
entralized me
hanism to monitor philosophers' states. The 
entralizedme
hanism, however, also makes them more vulnerable to faults. In parti
ular,the semi-distributed algorithm may result in unbounded time and forum-swit
h
omplexity. Even for the 
entralized algorithm, its time and forum-swit
h 
om-plexity is approximately the same as our distributed solution.As dis
ussed in Se
tion 2, the Congenial Talking Philosophers problem ismore general than the 
onventional n-pro
ess mutual ex
lusion and the Readersand Writers problems. Our algorithm CTP-m also o�ers an appealing solutionfor these problems. For n-pro
ess mutual ex
lusion, a pro
ess waits for at mostn passages before it enters the 
riti
al se
tion. Note that this in
ludes theone that is already ongoing when the pro
ess makes its request for the 
riti
alse
tion. So, after a pro
ess requests the 
riti
al se
tion, at most n� 1 entries tothe 
riti
al se
tion may pro
eed before the pro
ess, whi
h is obviously a lowerbound for the mutual ex
lusion problem. (For a survey of mutual ex
lusion41



algorithms see [24, 4, 25, 20℄.) For the Readers and Writers problem, a wait-free approa
h is usually adopted within the realm of shared memory to allow
on
urrent reading while writing [23, 13℄. In this approa
h, n+1 extra 
opies ofthe shared obje
t are used to allow the readers to keep tra
k of the most re
entversion of the shared obje
t. CTP-m, on the other hand, allows 
on
urrentreading without introdu
ing extra 
opies of the shared obje
t, but it does notallow 
on
urrent reading while writing.A generalization of n-pro
ess mutual ex
lusion that allows at most l pro
essesto be in the 
riti
al se
tion simultaneously (known as the l-ex
lusion problem)has been proposed by Fisher, et al. [12℄, and subsequently studied by Afek, etal. [1℄. However, there is no dire
t 
onne
tion between the l-ex
lusion problemand the Congenial Talking Philosophers problem in the sense that the solutionfor one problem 
annot be straightforwardly applied to the other.In light of the l-ex
lusion problem, Congenial Talking Philosophers 
an befurther generalized to model \l-forum ex
lusion", where there are l meetingrooms for the philosophers and so at most l fora 
an be in session simultane-ously. This new problem 
an be applied in situations in whi
h a resour
e 
an beshared by pro
esses of the same group but not by pro
esses of di�erent groups,and l 
opies of the resour
e are available. This generalized problem 
an be easilyredu
ed to the three fundamental problems: n-pro
ess mutual ex
lusion, Read-ers and Writers, and l-ex
lusion, but not vi
e versa. It is therefore interesting tosee how this more general problem 
an be solved eÆ
iently and in a distributedmanner. Other future work in
ludes studying various bounds of the CongenialTalking Philosophers problem, su
h as time, 
on
urren
y, and the number ofvariables required.A
knowledgments. I would like to thank Wen-Jian Tsai for providingsome initial thoughts on the algorithms. He also provided many useful 
om-ments during the preparation of the manus
ript. I would also like to thankJen-Yi Liao for 
oining the term \Congenial Talking Philosophers" for our prob-lem. His original suggestion was \Congenial Dining Philosophers" for the diningproblem where there is only one dining table, and philosophers interested in thesame style of food, e.g., Chinese, Fren
h, or Italian, 
an 
ome to the table toshare the food. Last, but not least, I would like to thank Mark Moir and theanonymous referees for their valuable 
omments, and Idit Keidar and Paul Attiefor proofreading the paper.
42



Referen
es[1℄ Yehuda Afek, D. Dolev, Eli Gafni, M. Merritt, and N. Shavit. A bounded�rst-in, �rst-enabled solution to the `-ex
lusion problem. ACM Transa
-tions on Programming Languages and Systems, 16(3):939{953, May 1994.[2℄ Divyakant Agrawal, Amr El Abbadi, and A. E. Lang. The performan
eof proto
ols based on lo
ks with ordered sharing. IEEE Transa
tions onKnowledge and Data Engineering, 6(5):805{818, O
tober 1994.[3℄ James H. Anderson and Mark Moir. Universal 
onstru
tions for large ob-je
ts. IEEE Transa
tions on Parallel and Distributed Systems, 2000. Toappear.[4℄ M. Ben-Ari. Prin
iples of Con
urrent and Distributed Programming. En-glewood Cli�s NJ: Prenti
e-Hall, 1990.[5℄ P. A. Bernstein, V. Hadzila
os, and N. Goodman. Con
urren
y Controland Re
overy in Database. Addison-Wesley, 1987.[6℄ James E. Burns. Mutual ex
lusion with linear waiting using binary sharedvariables. ACM SIGACT News, 10(2):42{47, summer 1978.[7℄ K. Mani Chandy and Jayadev Misra. The drinking philosophers problem.ACM Transa
tions on Programming Languages and Systems, 6(4):632{646,O
tober 1984.[8℄ K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Foun-dation, Chapter 14: Committee Coordination. Addison-Wesley, 1988.[9℄ P. J. Courtois, F. Heymans, and D. L. Parnas. Con
urrent 
ontrol withreaders and writers. Communi
ations of the ACM, 14(10):667{668, O
tober1971.[10℄ M. A. Eisenberg and M. R. M
Guire. Further 
omments on Dijkstra's
on
urrent programming 
ontrol problem. Communi
ations of the ACM,15(11):999, November 1972.[11℄ K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions of
onsisten
y and predi
ate lo
ks in a data base system. Communi
ations ofthe ACM, 19(11):624{633, November 1976.
43



[12℄ Mi
hael J. Fis
her, Nan
y A. Lyn
h, James E. Burns, and Allan Borodin.Resour
e allo
ation with immunity to limited pro
ess failure (preliminaryreport). In 20th Annual Symposium on Foundations of Computer S
ien
e,pages 234{254, San Juan, Puerto Ri
o, 29{31 O
tober 1979. IEEE.[13℄ Mauri
e Herlihy. Wait-free syn
hronization. ACM Transa
tions on Pro-gramming Languages and Systems, 13(1):124{149, January 1991.[14℄ Mauri
e Herlihy. A methodology for implementing highly 
on
urrentobje
ts. ACM Transa
tions on Programming Languages and Systems,15(5):745{770, November 1993.[15℄ Yuh-Jzer Joung. Asyn
hronous group mutual ex
lusion. Te
hni
al re-port, Department of Information Management, National Taiwan Univer-sity, Taipei, Taiwan, 1998.[16℄ Yuh-Jzer Joung. The 
ongenial talking philosophers problem in 
omputernetworks (extended abstra
t). In Pro
eedings of the 13th International Sym-posium on DIStributed Computing (DISC99), Le
ture Notes in ComputerS
ien
e 1693, pages 195{209. Springer, 1999.[17℄ D. E. Knuth. Additional 
omments on a problem in 
on
urrent program-ming 
ontrol. Communi
ations of the ACM, 9(5):321{322, May 1966.[18℄ Henry F. Korth. Lo
king primitives in a database system. Journal of theACM, 30(1):55{79, January 1983.[19℄ H. T. Kung and John T. Robinson. On optimisti
 methods for 
on
urren
y
ontrol. ACM Transa
tions on Database Systems, 6(2):213{226, June 1981.[20℄ Nan
y A. Lyn
h. Distributed Algorithms. Morgan-Kaufmann, 1996.[21℄ Christos H. Papadimitriou. The serializability of 
on
urrent database up-dates. Journal of the ACM, 26(4):631{653, O
tober 1979.[22℄ G. L. Peterson. Myths about the mutual ex
lusion problem. InformationPro
essing Letters, 12(3):115{116, June 1981.[23℄ G. L. Peterson. Con
urrent reading while writing. ACM Transa
tions onProgramming Languages and Systems, 5(1):46{55, January 1983.[24℄ Mi
hel Raynal. Algorithms for Mutual Ex
lusion. MIT Press, Cambridge,MA, 1986. 44



[25℄ A. Silbers
hatz and P. Galvin. Operating System Con
epts. Addison-Wesley, fourth edition, 1994.[26℄ William E. Weihl. Lo
al atomi
ity properties: Modular 
on
urren
y 
ontrolfor abstra
t data types. ACM Transa
tions on Programming Languages andSystems, 11(2):249{283, April 1989.

45


