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Abstract

Mutual exclusion and concurrency are two fundamental and essentially
opposite features in distributed systems. However, in some applications
such as Computer Supported Cooperative Work (CSCW) we have found
it necessary to impose mutual exclusion on different groups of processes in
accessing a resource, while allowing processes of the same group to share
the resource. To our knowledge, no such design issue has been previously
raised in the literature.

In this paper we address this issue by presenting a new problem,
called Congenial Talking Philosophers, to model group mutual exclu-
sion. We also propose several criteria to evaluate solutions of the prob-
lem and to measure their performance. Finally, we provide an efficient
and highly concurrent distributed algorithm for the problem in a shared-
memory model where processes communicate by reading from and writing
to shared variables. The distributed algorithm meets the proposed crite-
ria, and has performance similar to some naive but centralized solutions

to the problem.
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1 Introduction

Mutual exclusion and concurrency are two fundamental issues in distributed
systems. Mutual exclusion guarantees exclusive access to a common resource
to one of a set of competing processes, while concurrency allows processes to
share a resource to increase system performance. In spite of their contradictory
nature, in some applications such as Computer Supported Cooperative Work
(CSCW) we have found it necessary to guarantee mutual exclusion while still
exploiting a certain degree of concurrency.

For example, consider a video-conferencing system with an electronic white
board. A user can use this white board to post information that she/he would
like to share with others. All the information posted on the white board will be
seen by all users currently online. Thus, when a group of users uses the system
to discuss some issue, another group of users whose interests conflict with the
first group must be excluded from using the system. On the other hand, when
some user is using in the system, we wish to encourage discussion by allowing
more users with the same interest to use the system. Thus, a design which
involves both mutual exclusion and concurrency is required.

As another example, consider several users working on a project that has
some large data objects stored on a secondary memory device (such as a CD
jukebox). When a user needs to access a data object, the data object is loaded
from the device to a cache buffer. To increase performance, once a data object
is loaded it will remain in the buffer until another data object is requested.
So while a data object resides in the buffer, users that need to work on this
data object are allowed to access the buffer concurrently, and users that need
a different data object have to wait until no user is working on the data object
currently in the buffer. That is, users with the same interests can concurrently
access the buffer, while users with different interests must be excluded from
accessing the buffer.

Although many systems may require that processes of the same group share
a resource while processes of different groups use the resource exclusively, to
our knowledge, group mutual exclusion has not been previously raised in the
literature. Note that we do not require processes of the same group to synchro-
nize in order to access the resource. Problems concerning synchronous group
mutual exclusion, where a set of processes must synchronize in order to access
a resource or a process must possess all needed resources in order to continue,
have been addressed by Chandy and Misra [7, 8].

In this paper we present a problem, called Congenial Talking Philosophers,



to model group mutual exclusion. The problem concerns a set of n philosophers
which spend their time thinking alone and talking in fora. Given that there
is only one meeting room (the critical section), a philosopher attempting to
attend a forum can succeed only if the meeting room is empty (and in this case
the philosopher starts the forum), or some philosopher interested in the same
forum is already in the meeting room (and in this case the philosopher joins the
ongoing forum). The challenge is to design an algorithm for the philosophers to
ensure that a philosopher attempting to attend a forum will eventually succeed,
while at the same time encouraging philosophers interested in the same forum
to be in the meeting room simultaneously. In this paper we focus on solutions in
the shared-memory model, where processes communicate by reading from and
writing to shared variables. Solutions based on message passing are considered
in a separate paper [16].

The Congenial Talking Philosophers problem is related to some fundamental
problems in distributed systems. For example, by dedicating one forum to each
philosopher, the problem is reduced to n-process mutual exclusion where only
one process can be in the critical section at a time. The problem can also be
reduced to the Readers and Writers problem [9] where a shared object can be
concurrently read by different processes, while writing alone must be mutually
exclusive. To do so, we can employ a READ operation (forum) for all processes
(philosophers) in the system, and a unique WRITE operation for each individual
one. A process attempting to read the shared object then requests the READ
operation to access the object, while it requests its own WRITE operation
when it wishes to update the object. Thus the Congenial Talking Philosophers
problem is more general than the two classical problems.

Note that resolving conflicts between READ/WRITE and WRITE/WRITE
operations while facilitating concurrency among READ operations is the cen-
tral topic of database concurrency control (see, e.g., [11, 21, 19, 18, 5, 26, 2]).
Despite the similar objective, the Congenial Talking Philosophers problem tar-
gets the construction of a low-level mechanism to support operation execution.
In contrast, database concurrency control typically uses such mechanisms (e.g.,
locking) to ensure serializability at the transaction level.

Intuitively, a maximal degree of concurrency can be achieved if philosophers
are allowed to attend a forum while some philosopher with the same interest
is occupying the meeting room. However, given that each philosopher indepen-
dently determines when it will be interested in a forum and how long it will
stay in a forum (although it can only spend a finite amount of time in the fo-

rum), such a degree of concurrency cannot be achieved if we are also to ensure a



bounded delay on the time a philosopher spends in waiting for a forum. This is
because otherwise two philosophers interested in the same forum may repeatedly
enter the meeting room, thus blocking a third philosopher waiting for a different
forum indefinitely. So the challenge of the problem lies in the exploitation of
a high degree of concurrency in attending a forum while ensuring a minimum
delay for the philosophers waiting for a different forum.

Indeed, the problem is much more difficult than we originally had thought.
Figure 4 in Section 5 gives the final version of our main algorithm, which consists
of only 13 lines of statements. In the process of designing the algorithm, we
made several mistakes, some of which were quite subtle and occurred only in
the presence of concurrency. We also discovered several performance trade-
offs concurrency vs. waiting time by simply reversing the execution order of
two statements which looks irrelevant at first glance! We shall present some of
the findings in our discussion of the algorithm.

The rest of the paper is organized as follows. Section 2 presents the Congenial
Talking Philosophers problem in more detail, and proposes criteria that can be
used to evaluate solutions of the problem and to measure their performance.
For comparison, we first offer some simple but centralized solutions in Section 3.
Section 4 then presents a fully distributed solution where philosophers may only
attend two fora, and Section 5 generalizes the solution to an arbitrary number
of fora. Section 6 discusses related work and concludes.

2 The Congenial Talking Philosophers Problem

We consider a set of n philosophers pg, p1, ... ,pn—1 which spend their time ei-
ther thinking alone or talking in fora. The philosophers may like to hold m
different fora Fgy,Fq,... ,F,,_1 but, due to the capacity of the meeting room,
only one forum can be held at a time. However, more than one philosopher can
be in a forum simultaneously. Initially, all the philosophers are thinking. When
a philosopher is tired of thinking, it chooses a forum to attend. We assume
that when a philosopher attends a forum, it spends an unpredictable but finite
amount of time in the forum. After a philosopher leaves a forum, it returns
to thinking.! We say that a forum is in session if some philosopher is in the

forum. The Congenial Talking Philosophers problem consists of the following

IThroughout the paper, “in a forum” is used synonymously with “in the meeting room.”
Likewise, “to attend/leave a forum” is synonymous with “to enter/exit the meeting room.”



requirements:2

mutual exclusion: if some philosopher is in a forum, then no other philoso-

pher can be in a different forum at the same time.

bounded delay: a philosopher attempting to attend a forum will eventually
succeed.

We are seeking solutions that facilitate concurrent entering, meaning that
if some philosophers are interested in a forum and no philosopher is interested
in a different forum, then the philosophers can concurrently enter the meeting
room to hold the forum. As discussed in Section 1, the n-process mutual ex-
clusion problem is a special case of Congenial Talking Philosophers in which
only one philosopher may attend each forum. Obviously, it would be overkill
to solve Congenial Talking Philosophers using solutions for n-process mutual
exclusion (e.g., [10, 6, 22]). So a reasonable solution for the problem must allow
philosophers to share the meeting room when no one is interested in a different
forum.

The concurrent entering requirement, we have defined above is slightly stronger
as it requires philosophers not just to be able to be in the meeting room si-
multaneously, but to enter the meeting room concurrently. The intent of this
stronger condition is to prevent unnecessary synchronization among philoso-
phers attending a forum when no one else is interested in a different forum.
Such synchronization occurs, for example, in solutions that use a shared vari-
able to control the use of the meeting room, and philosophers access the shared
variable in a mutually exclusive style to avoid conflicts. Such solutions allow
philosophers to be in the meeting room simultaneously, but do not allow them
to enter the meeting room concurrently because of the synchronization imposed
on the philosophers in accessing the shared variable. The overhead of such so-
lutions is especially high when the number of fora the philosophers would like
to hold is relatively small compared to the number of philosophers that are
interested in each forum.

Solutions of Congenial Talking Philosophers can be evaluated by two pa-
rameters: time and concurrency. For the time parameter, we are concerned
with how long a philosopher may wait before entering a forum. Instead of using
physical time which would be system dependent and hard to analyze, we use

passages as the basic metric for evaluating time, as defined below:

2We assume finite progress for the philosophers, meaning that if a philosopher is given an
instruction then it will execute the instruction in finite but unpredictable time. Moreover, we
assume that basic machine-level instructions such as read and write to a shared variable are
executed atomically.
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Figure 1: A layout of passages.

Definition 2.1 A passage by p; through a forum F is an interval [t1, 2], where
t1 is the time p; enters the forum, and t, the time p; leaves the forum. The
passage is initiated at t1, and completed at to. The passage is ongoing at

any time in between t; and t,.

A passage by p; through a forum F is represented by (p;, F), which we refer
to as the attribute of the passage. When no confusion is possible, we use
intervals and attributes interchangeably to represent passages (where intervals
are denoted by square brackets [¢1, 2], and attributes by angle brackets (p;, F)).

Due to concurrency, passages may overlap. Therefore, an explicit count
of the total number of passages a philosopher may wait is not a good metric
for the waiting time. Instead, we measure the waiting time by counting the
minimal number of passages that are sufficient to “cover” all the passages in
consideration. For example, suppose that a philosopher p;, after requesting a
forum F, waits for the nine passages shown in Figure 1 before it can attend
F. Then, since (p2, X) is covered by (pi1,X) and (ps, X), and since (ps,Y) and
(ps,Y) are covered by (ps,Y), only the six passages (p1,X), (p3,X), (ps,Y),
(p7,Z), (ps,Z), and (py, Z) account for the delay in satisfying p;’s request.

A formal definition is given below.

Definition 2.2 Let S be a set of intervals. A subset R of S is a cover of
S if for every a € S, every time instance in « is in some § € R (that is,
V(ti,t] € Sty <t <ty = Its, ts] € Rty <t < t4). It is minimal if for
any other cover R' of S, |R| < |R'|. The dimension of S, denoted by dim(S),

is the size of a minimal cover of S.

To illustrate the definition, the set of passages shown in Figure 1 has a
minimal cover consisting of (p1, X), (ps, X), (ps,Y), (p7,Z), (ps,Z), and (py, Z),
and so has a dimension 6.

The time complexity of an algorithm for the Congenial Talking Philoso-

phers problem is measured by the maximal dimension of the set of passages a



philosopher has to wait before it can attend a forum.

Note that, still, the dimension does not necessarily truly reflect the elapsed
time. This is because in real applications consecutive passages through the crit-
ical section by different groups of processes usually require “context switches”.
For example, when a user requests a different data object in the CSCW en-
vironment, described in Section 1, the storage device has to unload the old
object and then load the new one. Since such loading and unloading are usually
time-consuming, in the Congenial Talking Philosophers problem a philosopher
waiting for more passages through the same forum may in practice need less
time than one waiting for fewer passages through different fora. The notion of
“rounds of passages” is therefore conceived to measure the number of “context
switches” (i.e., forum switches).

Definition 2.3 Let S be a set of passages through forum F. Letts; = min {t ‘ [t,t']
€ S}, and t; = max {t' ‘ [t,t'] € S}. Then, S is a round of passages through
F (or simply a round of F) if the following two conditions are satisfied:

1. No passage other than those in S is initiated in between t, and ts.

2. The last passage initiated before t; and the first passage initiated after ty,

if they exist, are for a forum other than F.

If S is a round of F, then we say that it starts at t;, and terminates at ty.

It is ongoing in between t; and ty.

In other words, a round of F is a maximal set of consecutive passages through
F. For example, the three passages (ps,Y), (ps,Y), and (ps,Y) in Figure 1
constitute a round of Y, and the three passages (p7,Z), (ps,Z), and (pg,Z)
constitute a round of Z.

The forum-switch complexity is measured by the maximum number of
rounds of passages a philosopher may wait before it can attend a forum.

For example, suppose that in the worst case p; has to wait for the following

sequence of passages before it can attend a forum:

(po, Fo), (p1,F1),(p2,Fo), ..., (P2x—1,F1)

Then, both the time complexity and the forum-switch complexity are 2k. On

the other hand, if the sequence is

(po,Fa), (p2,Fa), ..., {p2r—2,F0), (p1,F1), (w3, F1), ..., (P2x—1,F1)

where the passages through the same forum do not overlap, then the time com-
plexity is still 2k, but the forum-switch complexity is only 2. If the average



length of a passage is t and the time to perform a context switch is s, then the
total time p; has to wait in the first case above is 2k(t + s), and in the second
case is 2kt + 2s.

The degree of concurrency is defined by the maximum number of pas-
sages that can be initiated while some philosopher is in the meeting room and
another philosopher is waiting for a different forum. Intuitively, because of mu-
tual exclusion, when a philosopher p is in the meeting room no other philosopher
interested in a different forum can use the meeting room. Given that a philoso-
pher p decides on its own how long it will use the meeting room, better resource
utilization can be achieved if we allow more philosophers interested in the same
forum to share the meeting room with p. So a higher degree of concurrency
implies better resource utilization.

Concurrency may also be measured in other ways, for example, by the max-
imum number of philosophers that can be in the meeting room simultaneously.
However, if the problem definition allows & philosophers to hold a forum F, then
most solutions that facilitate concurrent entering would probably allow, in the
best case, k philosophers to be in F simultaneously. So this is not a useful metric
for concurrency.

Because we do not assume any lower or upper bounds on the time a philoso-
pher spends in a meeting room (except that the time is finite), it is possible
for an algorithm to achieve a virtually “unbounded” degree of concurrency. For
example, if an algorithm is such that while some p; is in the meeting room any
other p; interested in the same forum can enter the meeting room, then since
there is no limit on how quickly p; will finish the forum and re-request the forum,
p; may enter/re-enter the meeting room any number of times. Although this
number is finite, it is not bounded by any predetermined constant. Note that
this does not contradict bounded delay as p; will eventually leave the meeting

room. For a more detailed example, see the following section.

3 Some Simple Centralized Solutions

A simple solution can be obtained by employing a concierge to schedule fora.
The concierge periodically inspects philosophers’ states to see if anyone is inter-
ested in a forum, and then adopts some scheduling policy to guarantee mutual

exclusion, bounded delay, and concurrent entering®. For example, if no forum is

30ne could argue that the algorithm does not facilitate concurrent entering because the
concierge has to observe philosophers’ states in some sequential order. So when philosophers
are ready for the same forum, their entries to the forum cannot be truly concurrent as the



currently in session, the concierge can schedule the first waiting philosopher it
has seen to start a forum. All philosophers that are also ready for the same fo-
rum also start the forum simultaneously, and philosophers that are interested in
different fora are queued. While a forum is in session, the concierge can choose
a fixed philosopher as a reference so that while the reference philosopher stays
in the forum, every other philosopher attempting to attend the forum can do
so. Once the reference philosopher leaves the forum, if some other philosopher
is waiting for a different forum, then the “door” to the forum is closed and no
other philosopher can join the forum; otherwise, a new reference philosopher
is chosen. Note that bounded delay can be guaranteed because the reference
philosopher can only spend a finite amount of time in a forum. The complete
algorithm, which we refer to as CTP-C (an abbreviation for Congenial Talking
Philosophers-Centralized), can be found in [15].

It is easy to see that CTP-C offers an unbounded degree of concurrency. This
is because while a reference philosopher is in a forum, another philosopher can
repeatedly attend the forum, leave the forum, and become interested again in
the forum. The analysis of the algorithm’s forum-switch complexity and time
complexity is somewhat tedious and details have been provided in [15]. For
comparison with our distributed algorithm, we summarize the result here: after
a philosopher p; requests Fy, it waits for at most m+ 1 rounds of passages before
a round of Fy, is initiated in which it can make a passage through Fy, where m
is the number of fora the philosophers may like to hold. For each such round,
the dimension of the passages in the round is O(n), where n is the total number
of philosophers. That is, CTP-C has forum-switch complexity m + 1, and time
complexity O(n - m).

The algorithm can be made more distributed by employing a concierge for
each forum. To ensure mutual exclusion, a token is shared by the concierges.
A concierge must possess the token before scheduling any philosopher to attend
a forum, and it must keep the token until all philosophers have left the forum.
To increase concurrency, a concierge may allow a philosopher to re-attend the
forum while it possesses the token. To also guarantee bounded delay, a refer-
ence philosopher can be chosen similarly to CTP-C to control forum admission.
Competition for the token among the concierges can be solved by calling an m-
process mutual exclusion algorithm. The complete code of the new algorithm,
which we refer to as CTP-SD (SD for Semi-Distributed), can also be found
in [15].

order depends on how the concierge observes their readiness. The situation is similar in the
following algorithm where a concierge is employed for each forum.



Like CTP-C, the use of reference philosophers also allows CTP-SD to claim
an unbounded degree of concurrency. Unlike CTP-C, however, the forum-switch
complexity and time complexity depend on the fairness notion guaranteed by
the underlying m-process mutual exclusion algorithm, and, in the worst case,
both could be unbounded! To see this, suppose that a concierge C' that manages
a forum F does not request the token until it has observed a request for F (so
that competition for the token is only among the concierges that need it). Then,
after a philosopher has requested F, depending on C’s execution speed, other
concierges may alternatively schedule an arbitrary finite number of passages
through different fora before C' requests the token. It then follows that both
the forum-switch complexity and the time complexity are unbounded. On the
other hand, the problem may be overcome by letting the token circulate among
all concierges, regardless of whether or not they have received a forum request.
Clearly, this approach is not adequate if concierges’ loads are not balanced, i.e.,
some fora are requested more often than others.

Still, CTP-SD is not fully distributed because the scheduling of entries to
the same forum is operated by a single concierge. As we have seen, a slow
concierge may cause poor time and forum-switch performance. Moreover, when
the number of possible fora m is greater than the number of philosophers n,
then we will need more active processes as opposed to CTP-C, and when m is
small, the concierges become a bottleneck as in CTP-C.

In the following sections we present a fully distributed solution for the Conge-
nial Talking Philosophers problem. The algorithm has similar time complexity
and forum-switch complexity to CTP-C, and achieves a degree of concurrency
of O(n?).

4 A Distributed Solution for Two Fora

We first present a distributed solution for the Congenial Talking Philosophers
problem with only two fora F and F. To help understand our solution, we present

it in stages.

4.1 A First Attempt

Consider the algorithm presented in Figure 2, which we refer to as CTP-Temp.
CTP-Temp uses the following variables:

e turn : (F,F); a variable shared (with read/write access) by the philoso-

phers to identify the forum that currently has priority to start. It is

10



initialized arbitrarily.

e flag : array [0..n —1] of (state, op), where flag[i] records p;’s state and the
forum it wishes to attend. There are three possible states: passive, request,
and in_cs. State passive means that the philosopher does not intend to
attend any forum; request means that the philosopher wishes to attend
some forum; and in_cs means that the philosopher has obtained a “tem-
porary” permission for its request. A philosopher in state in_cs may be
prevented from attending a forum if some other philosopher has also ob-
tained a temporary permission for its request. op ranges over F,F, and L,

where | means that no forum is requested by p;.
flag[i] can be read/written by p;, but other philosophers can only read it.

Note that although the value of each flag[i] is represented as a pair, we
require access to flag[i] to be atomic. This can be done using a straight-
forward encoding as each pair (state, op) can range over only 3 x 3 possible

values. Denoting flag[i] as a pair helps us understand its meaning.

The predicate all_passive(F) defined in Figure 2 checks if no philosopher is
interested in F, and none_in_cs(F) determines if no philosopher has obtained a
temporary permission to attend F.

As can be seen, CTP-Temp bears some similarity to Knuth’s 2-process mu-
tual exclusion algorithm [17]. It employs a variable turn to resolve the conflict
between philosophers attempting different fora. When a philosopher p; wishes
to attend a forum, say F, it checks if F has priority (i.e., turn = F), or no one
is interested in F (i.e., all_passive(F) = true). It cannot proceed until one of
the two conditions holds. Then, p; obtains a temporary permission to attend
F (line 4). To actually attend F, p; must further check if any philosopher has
obtained a temporary permission to attend F (by evaluating none_in_cs(F)). If
S0, p; gives up its temporary permission and loops back to check if F still has
priority over F or no one is interested in F. If this time no philosopher obtains a
temporary permission to attend F then p; can start F; otherwise p; must repeat
the loop. After finishing the forum, p; switches turn to F so that philosophers
interested in F will then have priority to proceed.

CTP-Temp inherits the mutual exclusion property from Knuth’s algorithm.

To see this, observe that a philosopher p; attends F only if none_in_cs(F) holds.

Since p; tests none_in_cs(F) only after it has set flag[i] to (in_cs,F), it is
never the case that another philosopher attempting F evaluates a true value
for none_in_cs(F) simultaneously. Moreover, when more than one philosopher

is in F, the switch of turn in line 7 by any one of them cannot incur a pending F

11



/* assuming p; is attempting F */

repeat
flag[i] < (request, F);
while turn # F A —all_passive(F) do skip ;
flag[i] < (in_cs,F);

until none_in_cs(F)
<< talk in F >>
turn 4— F;

flag[i] < (passive, L);

0 N O Ut W N

where
all_passive(F) =V j,j # 14,0 < j <n —1: flag[j] = (state, op) = op #F

none_in_cs(F) =V j,j #i,0 < j <n—1: flag[j] = (state, op) = (state # in_csV op = F)
Figure 2: Algorithm CTP-Temp.

because so long as some philosopher is in F its flag remains (in_cs, F), and thus
none_in_cs(F) evaluates to false. So no philosopher attempting F can skip the
loop condition in line 5 to attend F.

CTP-Temp also facilitates concurrent entering because if no philosopher has
requested F, then all_passive(F) evaluates to true. So all philosophers attempt-
ing to attend F can do so, and their entries to the forum are mutually indepen-
dent.

In the presence of concurrency, unfortunately, CTP-Temp fails to guarantee
bounded delay. To illustrate, assume that p; repeatedly wishes to attend F,
while p; repeatedly wishes to attend F. A slow philosopher p; attempting
to attend, say F, may be forever blocked in the while-loop of the algorithm
if every time when p; checks the loop condition it sees that turn = F and
all_passive (F) = false; and within the interval of two consecutive checks, p; and
p; each have completed an instance of F and F, respectively.

4.2 A Fair Solution

The unbounded delay of CTP-Temp is due to the fact that when turn = F, some
philosopher attempting to attend F will succeed, but we cannot guarantee which
philosopher will succeed. To overcome this problem, we let some philosopher

attending F “capture” all philosophers currently waiting for the same forum

12



into the forum.* Obviously, not every philosopher can capture philosophers, for
otherwise philosophers interested in F will keep entering F, thus blocking the
other forum indefinitely. Our approach is to let the first philosopher starting
a new session of F act as a captain to capture philosophers. The philosophers
that are captured into F are called the successors of the captain. Successors are
not allowed to capture philosophers to avoid possibility of livelock.

The following variable is added to assist the coordination:

e successor : array [0.n—1] of (F,F, 1), where successor|i] indicates the fo-
rum for which p; has been captured. successor[i] = L if p; is not currently
captured. It is read/write shared by all philosophers.

The algorithm, which we refer to as CTP-2, is given in Figure 3. It begins by
letting p; set its flag[i] to (request, F) to express its interest in F. To complete
the request, p; must also clear successor[i] to indicate that it is not captured by
any philosopher. Then, like CTP-Temp, p; begins a repeat-loop to test if it can
attend F. Inline 5, in addition to the two conditions turn = F and all_passive(F),
a philosopher p; exits the while-loop if it finds that it is a successor of some
other philosopher, which is determined by the condition successor[i] = F. If
p; is a successor, then it also skips the repeat-loop and enters CS to attend F.
By ‘CS’ the Critical Section we mean the program segment from line 8 to
line 13.

If p; is not a successor of any other philosopher, then like CTP-Temp, it
obtains a temporary permission to attend F if F has priority or no one else is
interested in F (line 5). To actually attend F, p; must check if no philosopher
has obtained a temporary permission to attend F (by evaluating none_in_cs(F)).
In addition, p; must also check if all successors of a previous captain interested
in F have finished F. The new predicate no_successor(F) defined in Figure 3
serves this purpose. Note that the evaluation of no_successor(F) involves, for
each p;, two accesses to p;’s variables: flag[j] and successor[j]. As shall be clear
in the analysis, the order of the two accesses is irrelevant to the correctness of
the algorithm.

It is also important to note that the condition none_in_cs(F) in line 7 must
—

be evaluated before no_successor(F). (Throughout the paper we use ¢; A ¢z to

4The idea of capturing is distantly related to that of helping from the concurrent objects
literature [14, 3]. In the construction of concurrent objects, some helping mechanisms are
devised to let processes “help” each other to make progress so that if some process makes
progress, then eventually every process does. Our capturing procedure also allows a philoso-
pher in the critical section to “help” others to enter the critical section, but the technical
details are entirely different.

13



/* assuming p; is attempting F */
1 flagli] < (request, F);

2 successor[i] + L;

3 repeat

4 flag[i] < (request, F);

5

6

while successor[i] £ F A turn # F A —all_passive(F)
flag[i] « (in_cs,F);

o skip ;

7 until successor[i] = F V (none_in_cs(F) n no_successor (F));

/* beginning of critical section */

8 if successor[i] # F then {

9 turn < F;

10 for j < 0ton—1, j #i, do /* start capturing philosophers */
11 if flag[j] € {(request, F), (in_cs,F)} then successor[j] < F; }
12 << talk in F >>

13 flagli] < (passive, L);

/* end of critical section */

where

all_passive(F) =V 34,7 #14,0 < j < n —1: flag[j] = (state, op) = op #F

none_in_cs(F) =V j,j #11,0 < j <n—1: flagj] = (state, op) = (state # in_cs V op = F)

no_successor (F) =V 4,5 #14,0 < j < n—1: flaglj] = (state, op) = —(successor[j] =F A op =F)

Figure 3: Algorithm CTP-2.
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denote the conjunction of ¢; and ¢y where ¢; is evaluated before co.) Otherwise,
mutual exclusion cannot be guaranteed (see Section 4.4).

Finally, p; must also set turn to F (line 9), and then capture philosophers
interested in the same forum. The latter is done by setting their successors to F
(lines 10-11). After exiting the forum, p; resets its flag and returns to thinking.

4.3 Analysis of CTP-2

For the purpose of analysis, we formalize the terms used in the algorithm. We
say that a philosopher p; has requested F (or more colloquially, p; is interested
in F) if p; has executed line 1 of CTP-2. To complete a request p; must also set
successor[i] to L. We say that p; has completed a request for F if it has executed
lines 1-2. The request is granted when p; exits the repeat-loop in lines 3-7. p;
is waiting for F if it has completed a request for F but the request has not yet
been granted.

Recall that the CS region refers to the program segment from line 8 to
line 13. So p; enters CS when its request is granted, and ezits CS when it
finishes line 13. A passage through CS by p; thus refers to a time interval from
the point p; enters CS to the point it leaves CS. Since the CS region is used to
implement a forum session, “a passage through CS” will be used synonymously
with “a passage through a forum” in the analysis.

In the algorithm a philosopher p; interested in F enters CS only if

1. successor[i] = F, or
2. successor[i] # F and (none_in_cs(F) A no_successor(F)) = true

In the first case we say that p; enters CS as a successor, while in the latter
case p; enters CS as a captain. Observe that p; resets successor[i] to L each
time it completes a request, and will not alter it while waiting for the request
to be granted. So for successor][i] to be F, some philosopher must have changed
successor[i] to F after p; completes its request. We say that p; captures p; if
p; writes F to successor[i] while p; is waiting for F. In this case, p, must enter
CS as a successor; p; is then called a successor of p;, and p; a captain of p;.
Note that when p; exits CS, the successor-captain relation between p; and p; is

)

broken. So when we say “p; is a successor of p;” or “p; is a captain of p;”, we
implicitly assume a passage by p; and a passage by p; to which the phrase refers.
Note further that since more than one philosopher may write F to successor]i],
p; may have more than one captain at a time.

Since more than one philosopher may enter CS as a captain simultaneously,

they may attempt to capture one another. If p; interested in F enters CS as a
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captain, but before p; executes the if-then statement in line 8 another captain p;
has written F to successor[i], then p; will not be able to capture any philosopher.
In this case we say that p; is a captain killed by p;. A captain that is not killed
by any other captain is called an effective captain. Clearly, if p; kills p;, then p;
must be an effective captain. Furthermore, although an effective captain is able
to capture successors, it may end up with no successor if no one is interested in
the same forum.

We are now ready for the analysis. We begin with mutual exclusion.

Lemma 4.1 If p; enters CS as a captain, then while it is in CS, no other p;

interested in a different forum can be in CS as a captain simultaneously.

Proof. Assume p; is interested in F. By definition of captain, p; must enter

CS with a condition none_in_cs(F) = true. Observe that p; sets its state to
in_cs before it evaluates none_in_cs(F). So when p; inspects other philosophers’
states, no p; interested in a different forum can be in state in_cs (and so can be
in CS) at this moment. Subsequently, when p; enters state in_cs to inspect p;’s
state, if p; is still in CS, p; must find that none_in_cs(F) = false and so cannot

enter CS. O

Lemma 4.2 If p; enters CS as a captain, then after it leaves CS, no other
p; interested in a different forum can enter CS as a captain until all of p;’s

successors have left CS.

Proof. Assume that p; is interested in F. For p; to enter CS as a captain, it must
evaluate both none_in_cs(F) and no_successor(F) to true, and the first predicate
must be evaluated before the second. By Lemma 4.1, to obtain none_in_cs(F) =
true p; must have left CS when p; inspects p;’s flag in the evaluation. So
when p; evaluates no_successor(F), p; must have finished capturing philosophers
(lines 10-11 of the algorithm). Let pg be a successor of p;. For distinguishing
purposes we shall use F* to denote the instance of F for which py enters CS as
a successor of p;.

For p; to evaluate no_successor(F) to true, the following must hold (note

that no particular ordering is assumed in accessing flag[k] and successor[k]):
flag[k] = (state, op) = —(successor[k] = op = F)

So there are four cases: successor[k] = L, successor[k] = F, op = 1, or
op = F. Since p; has written F* to successor|k], and since only p; can re-

set successor[k] to L (which occurs only after pj has requested another forum)

3
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the case successor[k] = L seen by p; implies that py has already finished F* and
left CS.

The case successor[k] = F implies that some philosopher p; reads op = F in
flag[k] and writes F to successor[k] after p; has written F* to successor[k]. This
implies that p; has left CS in between, as a successor of p;.

For the case op = L, recall that p; reads flag[k] after p; writes F* to
successor|k]. Moreover, since pj, is a successor of p;, pr must have completed a
request for F* before p; writes F* to successor[k]. Then we have the following
events that happen in the order listed:

e py sets flag[k] to (request, F*) and resets successor[k] to L.

e p; writes F* to successor[k].

e p; reads flag[k] = (passive, L).
Therefore, when p; finds that flag[k] = (passive, L), pr, must have already fin-
ished F* and left CS.

Finally, consider the case op = F. Similar to the above argument we can

show that for p; to read flag[k] = (state,F), p; must have finished F* and have

requested F. The lemma is then proven. O

Lemma 4.3 If p; enters CS as a successor, then it cannot capture any philoso-

pher while in CS.

Proof. By definition of successor, p; enters CS with the condition successor[i] =
F (assuming p; is interested in F). Because no philosopher can change successor]i]
to F (Lemma 4.2), successor[i] remains F in between the time p; finishes line 7

and the time it is to execute line 8. So p; skips lines 9-11 of CTP-2. O
Theorem 4.4 CTP-2 guarantees mutual exclusion.

Proof. Suppose p; interested in F enters CS as a captain. By Lemmas 4.1
and 4.2, while p; and its successors are in CS, no philosopher interested in F
can enter CS as a captain. Moreover, Lemma 4.3 implies that for a philosopher
interested in F to enter CS as a successor, some philosopher interested in F must
enter CS as a captain to capture the philosopher. So while p; and its successors
are in CS, no philosopher interested in F can enter CS as a successor, either. All
together, we have that while a philosopher is in CS (either as a captain or as a
successor), no philosopher interested in a different forum can enter CS (either

as a captain or as a successor). |
We now prove bounded delay.
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Lemma 4.5 Suppose p; enters CS as a captain. If p; enters CS as a successor
of p;j, then while p; stays in CS, p; cannot re-enter CS as a successor of p;.
Similarly, if p; enters CS as a captain killed by p;, then when p; re-enters CS
as a captain while p; is still in CS, p; cannot be killed again by p;.

Proof. This follows from the fact that p; in CS attempts to write successor[i]

only once, and p; resets successor[i] to L before it completes a request. O

The above lemma implies that a captain in a passage through F can cap-
ture/kill at most k — 1 philosophers, where k is the number of philosophers
that can potentially attend F. Moreover, since only an effective captain can
capture/kill philosophers, the lemma implies that if p; repeatedly enters CS to
attend F, then either p; or some other p; interested in F must repeatedly enter

CS as an effective captain.

Lemma 4.6 If a philosopher is waiting for a forum, then eventually some
philosopher will attend a forum.
Proof. Suppose p; has requested F. If no philosopher has requested F, then
the three Boolean conditions all_passive(F), none_in_cs(F), and no_successor (F)
evaluate to true. So p; can exit both the while-loop and the repeat-loop of the
algorithm to enter CS to attend F. So for the rest of the proof assume that
some p; has requested F. Moreover, since a philosopher spends only a finite
amount of time in CS, and since a philosopher cannot enter CS as a successor
unless some philosopher is in CS as a captain, we shall further assume that no
philosopher is currently in CS, and no philosopher will enter CS as a successor.
While p; and p; are waiting for F and F respectively, if no philosopher gets
into CS, then p; and p; must iterate through either the while-loop or the repeat-
loop of the algorithm. Since no one gets into CS, turn remains the same value,
say F (the other case is similar). So p; cannot be blocked in the while-loop. On
the other hand, p; and every other philosopher interested in F will eventually
be blocked in the while-loop because turn = F and all_passive(F) = false.
Therefore, eventually p; will evaluate none_in_cs(F) A no_successor (F) to true,

and then will exit the repeat-loop to enter CS. O

Lemma 4.7 If p; interested in F enters CS as a captain while p; is waiting for
F, then when p; starts to capture philosophers, either p; will be captured by p;,
or p; will have already entered CS.

Proof. This follows directly from the algorithm. O
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By Lemma 4.7, if a set of philosophers have completed their requests for
F, then if one of them gets to attend F, the others will also attend F before a
different, forum is established.

For the following lemma, recall Definition 2.3 that “a round of F” is a max-
imal set S of consecutive passages through F such that no passage through a
different forum is interspersed among them. It is clear that to start a round
of F some p; interested in F must enter CS as a captain, and when a round of

passages terminates, the next round of passages must be for a different forum.

Lemma 4.8 Suppose p; has completed a request for F. Then the following must
hold:

1. If a round of F is already ongoing when p; completes its request, then ei-

ther p; will attend F, or a round of F will start.
2. If a round of F starts after p; has completed the request, then p; must make

a passage through F in this round.

Proof. The second case follows directly from Lemma 4.7 and the fact that
within a round of F there must be some philosopher that enters CS as an effective
captain. (In Lemma 4.7, it is easy to see that the passages through F by p; and
p; must belong to the same round.)

For the first case, if p; remains waiting for F, then by Lemma 4.6 either
some philosopher will enter CS to start a round of F, or some philosopher will
repeatedly enter CS to attend F. If some philosopher repeatedly attends F, then
by Lemma 4.5 some philosopher interested in F must also repeatedly enter CS
as an effective captain; then by Lemma 4.7 p; will be able to attend F. So the

case is proven because p; will attend F, or a round of F will start. O

Lemma 4.9 Suppose p; is waiting for F while a round of F is ongoing. Then

eventually the round of F will terminate and a round of F will start.

Proof. While p; is waiting for F, by Lemma 4.6 either p; or some other philoso-
pher eventually attends F, or otherwise some philosopher must repeatedly attend
F. By the mutual exclusion property (Theorem 4.4), the first case implies that
the ongoing round of F will terminate and a round of F will then start.

For the second case, by Lemma 4.5 some p; interested in F must repeatedly
enter CS as an effective captain. However, this causes a contradiction because
after p; enters CS as an effective captain, it will set turn to F. turn will then
remain F until some philosopher interested in F enters CS to change turn back

to F. While turn = F and p; remains waiting for F, p; cannot re-enter CS as a
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captain. So the second case also implies that the round of F will terminate and

a round of F will start. |
Theorem 4.10 CTP-2 guarantees bounded delay.

Proof. Suppose p; has completed a request for F. Consider first that a round
of F is already ongoing when p; completes its request. Then by Case 1 of
Lemma 4.8, either p; will attend F, or a round of F will start. In the former
case, we are done. In the latter case, since p;’s request for F has not been
granted, by Lemma 4.9 the round of F will terminate and a new round of F will
start. Then by Case 2 of Lemma 4.8 p; will attend F in this new round.

Next, suppose that a round of F is ongoing when p; completes its request.
Then by Lemma 4.9 the round of F will eventually terminate and a round of F
will start. By Case 2 of Lemma 4.8 p; will attend F in this round.

If no round of passages is ongoing when p; completes its request, then by
Lemma 4.6 eventually some round of passages will start. If it is a round of F,
then by Case 2 of Lemma 4.8 p; will attend F in this round. If it is a round
of F, then by Lemma 4.9 this round of F will eventually terminate and a round
of F will start. Case 2 of Lemma 4.8 then ensures that p; will attend F in that
round. O

From the above proof, when a philosopher p; completes a request for F, it
waits for at most 2 rounds of passages before a round of F is initiated in which p;
can make a passage through F. So CTP-2’s forum-switch complexity is 2. Time
and concurrency will be analyzed in Section 5.3 when we extend the algorithm
to m fora.

Finally, it is easy to see that if no philosopher is interested in F, then every
philosopher attempting to attend F can do so, and they can attend F concur-
rently. The other case that philosophers can attend F concurrently is similar.

So CTP-2 allows concurrent entering.

4.4 Remarks

We comment here on some code of CTP-2 relating to its correctness and perfor-

mance. First, as noted in Section 4.2, the condition none_in_cs(F) in line 7 of
CTP-2 must be evaluated before no_successor(F), for otherwise mutual exclu-
sion cannot be guaranteed. To see this, assume that p; and p; wish to attend
F, while p; wishes to attend F. Assume further that turn = F. Consider the

following scenario:
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1. py sees that no philosopher is interested in F, and so it exits the while-loop

in line 5.

2. p; also exits the while-loop because turn = F. It then sets flag[i] to

(in_cs, F), finishes line 7, and enters CS.
3. p; sets its flag to (request, F) and proceeds to line 5.

4. py changes its state to in_cs and starts to evaluate the conditions in line 7.
Suppose no_successor(F) is evaluated first. Since no philosopher interested
in F is captured as a successor, py sees that no_successor(F) = true. py
then evaluates none_in_cs(F). It begins with p; and finds that p; is in

state request. So pj, continues to check p;’s flag.

5. Before py, inspects p;’s flag, p; finds that p; is also interested in F and so

it captures p;. p; then sets turn to F, finishes F, and resets its state to

passive.

6. pr now sees that p;’s state is passive and so obtains none_in_cs(F) = true.
It then exits line 7 and enters CS to attend F.

7. p; in line 5 learns that it is captured as a successor and so moves on to

attend F, yielding both F and F to be in session simultaneously.

Note that if none_in_cs(F) is evaluated first, then p; must have already cap-
tured p; when py, sees none_in_cs(F) = true. So when py, evaluates no_successor(F),
it cannot return true unless p; has finished F.

Second, the statement “turn < F” in line 9 can be moved to the end of
line 11 where p; has finished capturing philosophers, or it can even be placed
outside the if-then statement so that every philosopher entering CS will set turn
to F (which, of course, may result in many redundant assignments to turn). It
is not difficult to see that these modifications cannot affect the correctness of
the algorithm. However, we have deliberately placed the statement before the
capturing procedure to achieve optimal performance.

Intuitively, if turn is changed earlier, then fewer philosophers get a chance
to concurrently attend an ongoing forum, and so philosophers interested in a
different forum wait for less time before attending the forum. So the choice of
placing “turn < F” before or after the capturing procedure should be a matter of
trade-off between the algorithm’s time complexity and its concurrency. However,
as we shall see in Section 5.4, placing “turn < F” ahead improves the algorithm’s
time complexity, but does not affect its degree of concurrency. (This is because
the philosophers interested in F will still be able to attend F concurrently as

they will be captured by the captain executing “turn «+ F”.)
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Finally, although after p; has set flag[i] to (request, F) in line 1 it will again
execute the same assignment immediately after it enters the repeat-loop, line 1
cannot be removed. This is because the capturing procedure in line 11 involves,
for each pj;, a read from flag[j] to see if p; is interested in F and, if so, a write
to successor[j]. Between the read and the write, p; could have also entered
CS as a captain, finished F, changed flag[j] to (passive, L), and then requested
another entry to F. If we were to remove line 1 from the algorithm, then flag[j]
remains (passive, L) after p; has executed line 2. When p; finally writes F
to successor[j] and leaves CS, another p; interested in F may read turn = F,
pass line 5, see none_in_cs(F) n no_successor(F) = true, and then enter CS
to attend F. Since successor[j] = F, p; can also enter CS to attend F, thus

violating mutual exclusion.

5 A Generalized Solution

We now generalize CTP-2 to m fora Fo,Fy,... ,Fp—1.

5.1 The Algorithm

The generalized algorithm, which we refer to as CTP-m, is given in Figure 4.
Like CTP-2, a philosopher p; completes its request for Fy by changing flagli]
to (request, Fi) and resetting successor[i] to L. In CTP-2, p; must wait until
(1) some captain captures p;, (2) turn = Fy, or (3) no philosopher is interested in
a different forum. In CTP-m, however, care must be taken to avoid deadlocks.
For example, suppose two philosophers p; and p, wish to attend F; and F,
respectively, and turn is set to a third forum, say Fo. If each p; (j = 1,2) loops
on the condition “turn # F;” A “some philosopher is interested in a different
forum”, then both p; and ps; would be waiting forever. Note that the latter
condition cannot be weakened to “some philosopher is interested in the forum
specified by turn” either. This is because then both p; and p; may find that no
one is interested in Fg and then attempt to establish F; and F5 simultaneously.

To resolve this dilemma, we let the philosopher whose requesting forum is
the “closest” to the one dictated by turn proceed. This is determined by the
function nezt_op(F,), which checks all philosophers’ flags to see if any philoso-
pher has requested a forum. If so, next_op(F,) returns the first requested fo-
rum in the sequence Fy,Fgiq,... ,Fgpm—1. Otherwise, nezt_op(F,) returns F,.
(Note that throughout this paper unless stated otherwise addition and subtrac-

tion on indices of F are modulo m. Moreover, if h < g then Fy,Foyq1,... ,Fp

22



/* assuming p; is attempting Fj */
flag[i] < (request, Fi);
successor[i] < L;
repeat

1
2
3
4 flag[i] < (request, Fy);
5
6
7

while successor[i] # Fx A next_op(turn) # Fj, do skip ;
flag[i] < (in_cs, Fr);
until successor[i] = Fy
V (none_in_cs(F) A no_successor (Fy,) s (turn = Fy V all_passive(turn)));
/* beginning of critical section */
8 if successor[i] # Fr then {
9 turn < next_op(Fr41);
10 for j « 0ton—1, j#i, do /* start capturing philosophers */
11 if flag[j] € {(request,Fi), (in_cs, Fx)} then successor[j] - Fy; }
12 << talk in F >>
13 flag[i] « (passive, L);

/* end of critical section */

where
all_passive(Fy) =V 3,5 #i,0 < j <n—1: flag[j] = (state, op) = op # F,
none_in_cs(Fr) =V 35,5 #14,0 < j <n—1: flag[j] = (state, op) = (state # in_csVop = Fy)
no_successor (Fy) =V 4,5 # 0,0 < j <n—1: flag[j] = (state, op) =
=(31,1 # k : successor[j] = Fi A op = F)

/* function nezt_op(Fy) returns the first forum Fj, in the sequence Fg,Fgi1,..., */
/* Fg+m—1 such that some philosopher has requested F;, but no philosopher has */
/* requested Fq,Fg41,...,Fr_1. Note that since flag[i] is also inspected, and since */
/* pi invokes nezt_op only when it is interested in Fy, nezt_op(F4) returns Fy if no */
/* philosopher is interested in a different forum. */
1 mnest_op (Fg) == {

2 nexrt < g + m;

3 for j+ 0ton—1do {

4 let flag|j] = (state, op);

5 if op # L then {

6 let op = Fy;

7 ifl < gthen!l+ [+ m;

8 if | < nezt then nest < I; }}

9 return F..¢ (mod m);

10 }

Figure 4: Algorithm CTP-m.
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stands for the sequence Fy,Fyi1,... ,Fp_1,Fo,F1,... ,Fy.) So the exit condi-
tion nezt_op(turn) = Fj in line 5 means that from p;’s observation Fj is the
requested forum that is the closest to the one specified by turn.

When p; exits the while-loop, it changes flag[i] to (in_cs, Fy). In CTP-2, p;
exits the repeat-loop in line 7 only if it is a successor, or no philosopher interested
in a different forum is in state in_cs and all successors interested in a different
forum have left CS. In CTP-m, if p; is not a successor, we additionally require
p; to check if turn = F; or no philosopher is interested in the forum dictated by
turn. (Note that the CS region of CTP-m refers to the program segment from
line 8 to line 13.) As we shall see in Sections 5.2 and 5.4, this extra condition
together with our way of assigning turns guarantees that a philosopher waits
for at most m rounds of passages before its request is granted. Removing this
condition (i.e., turn = Fy V all_passive(turn)) from the algorithm explodes the
forum-switch complexity from O(m) to O((#)m)'

Like CTP-2, when p; enters CS, if it is not a successor then it must act
as a captain to capture philosophers interested in the same forum to enter CS.
Then, it must give the turn to other philosophers that are waiting for a different
forum. In CTP-m, the new turn is calculated by the function next_op(Fri1),
which assigns turn to the first forum in the sequence Fri1,Frio,. .., Frpm—1
for which some philosopher is waiting, or F; otherwise.

Note that unlike CTP-2 where a captain always yields turn to the other
forum, in CTP-m a captain may set turn to the same forum it has requested if it
sees that no one is interested in a different forum. In the presence of concurrency,
this may cause turn, which has been set to Fj, by some captain p; (because p;
found some philosopher interested in Fj), to be reset to Fy by a slow captain p;
(because p; evaluated next_op(Fjy1) earlier than p; and found no philosopher
interested in a forum other than Fy). As a result, more philosophers can enter
CS to attend Fy, before turn is finally set to Fj to allow other philosophers to
attend Fj. However, as we shall see in Section 5.4, the time a philosopher may
wait for its request is only slightly affected (at most by a constant factor), while
the degree of concurrency is increased by O(n). Therefore, in CTP-m we have
opted for a higher degree of concurrency by allowing a captain to set turn to
the same forum it has requested.

Moreover, one may have observed that the evaluation of next_op(turn) # Fy
in line 5 involves an access to turn, and then the inspection of philosophers’
flags. Thus it is possible that while the inspection is ongoing turn has been
changed several times already, and so a philosopher may exit the while-loop
even if its requesting forum is not the closest to the one currently specified by
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turn. However, the premature exit of the while-loop is not harmful because when
the philosopher proceeds to line 7, it will learn that either some philosopher is
already in CS or it does not have the priority to enter CS when it evaluates
“turn = Fy V all_passive(turn)”, and so it will go back to line 5 to re-evaluate
next_op(turn), which will then bring up the more up-to-date value of turn.

The evaluation of “turn = Fy V all_passive(turn)” in line 7 also involves an
access to turn and the inspection of philosophers’ flags. Unlike the situation in
line 5, turn cannot be changed by any philosopher interested in a different forum
during the evaluation. This is because the evaluation takes place only after
none_in_cs(Fy,) n no_successor(Fy) = true, which implies that no philosopher
interested in a different forum can be in CS to change turn. Note that turn may
be changed by some p; interested in Fj during the evaluation; but this cannot
cause a problem as no philosopher interested in a different forum will be able
to enter CS until p; has exited CS.

5.2 Mutual Exclusion and Bounded Delay of CTP-m

We now prove the correctness of CTP-m. Since all the terms defined in Sec-
tion 4.3 can be easily generalized to m fora, we shall use them directly in the

analysis.
Theorem 5.1 CTP-m guarantees mutual exclusion.

Proof. This can be proved similarly to Theorem 4.4 and observe that only the

exit condition

(successor[i] = F) V (none_in_cs(Fy,) A no_successor (Fy,))

of the repeat-loop of CTP-m suffices to guarantee mutual exclusion. O

We move on to prove that CTP-m guarantees bounded delay. For this we

need the following lemmas.

Lemma 5.2 Suppose p; enters CS as a captain. If p; enters CS as a successor
of p;j, then while p; stays in CS, p; cannot re-enter CS as a successor of p;.
Similarly, if p; enters CS as a captain killed by p;, then when p; re-enters CS

as a captain while p; is still in CS, p; cannot be killed again by p;.

Proof. Like Lemma 4.5, this is because p; in CS attempts to write successor|i]

only once, and p; resets successor[i] to L before it completes a new request. O
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Lemma 5.3 If a philosopher is waiting for a forum, then eventually some

philosopher will attend a forum.

Proof. We shall only outline the main idea of the proof; the rest is similar to
Lemma 4.6. Assume that no philosopher is currently in CS and no philosopher
will enter CS as a successor. So turn remains unchanged. Observe that when
one or more philosophers attempt to attend a forum, not all of them can be
blocked in the while-loop of CTP-m. This is because a philosopher p; whose
request Fy is the closest to turn (w.r.t. the ordering turn, ... ,F;,Fj1q1,...) will
obtain next_op(turn) = Fj in line 5, and so will proceed to line 7. Since Fy
is the closest to turn, the condition turn = Fj V all_passive(turn) must hold.
So if the evaluation of the Boolean condition in line 7 returns false, then some
p; interested in a different forum must have set its state to in_cs and is also
evaluating the Boolean condition in line 7. (p; must have seen a relatively old
version of turn when it evaluated nezt_op(turn) in line 5.) Then both p; and
p; will loop back to line 4. When they proceed to line 5, still, p; will not be
blocked in line 5, but p; this time will see a correct version of turn and so will
learn that its requesting forum is not the closest to turn, and so will be waiting
in line 5. Clearly, at most n — 1 philosophers can cause such a conflict situation
with p;, and all of them will eventually be blocked in line 5, after which p; will

be able to exit the loop condition in line 7 to enter CS. O

Lemma 5.4 Suppose p; has completed a request for Fr. Then the following
must hold:

1. If a round of Fy is already ongoing when p; completes its request, then
either p; will attend Fy, or a different round of passages will start.

2. If a round of Fy starts after p; has completed the request, then p; must

make a passage through Fy in this round.
Proof. The proof is similar to Lemma 4.8; we omit the details. O

Lemma 5.5 Suppose a round of Fy, is ongoing while p; is waiting for Fy, k # h.

Then the round of Fp, will eventually terminate and a new round will start.

Proof. The proof is similar to Lemma 4.9, and observe that while p; is waiting
for Fi, eventually some effective captain interested in F; must assign turn to
one of the fora Fp,1,Fp49,... ,Fx. Then every philosopher attempting to attend
F, will find next_op(turn) # Fp when it evaluates the while-loop condition of

CTP-m, and so can no longer enter CS as a captain in this round of F,. O
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Lemma 5.6 Suppose a round of F; starts while p; is waiting for Fy, | # k.
Then when the round terminates, the next round must be a round of F, for

some Fy in Fipq,Figo, ... Fg.

Proof. Since p; requests Fy before the round of F; starts, when any captain in
the round calls the function next_op(F;4+1) to assign the next turn, it must obtain
one of the fora Fj1q,F;42,... ,Fg. So right after the round terminates, turn =
F, for some Fy in Fj41,F49,...,F;. Moreover, some philosopher must have
requested F, during the execution of next_op(F;1+1). By the mutual exclusion
property, the philosopher must still be waiting for F;, when the round of F;
terminates. So right after the round of F; terminates, we have that (1) turn = F,
and (2) some philosopher is waiting for F.

To complete the proof of the lemma, we argue that the next round of passages
must be a round of F,. Observe that to start a new round of passages, say a
round of Fj, some philosopher p; must enter CS as a captain, and so it must

exit the repeat-loop of CTP-m with true on the following condition:

none_in_cs(Fp) n no_successor(Fp) A (turn = Fp, V all_passive(turn))

Note that p; can evaluate “turn = Fy, V all_passive(turn)” only after the predi-
cate “none_in_cs(Fp,) A no_successor(Fp,)” evaluates to true. That is, only after
all captains and their successors in the current round of F; have left CS. Since
while p; is evaluating “turn = Fj, V all_passive(turn)” no philosopher can be in
CS to change turn, turn remains F, during the evaluation. So if Fj, # F,, then
all_passive (turn) must evaluate to false because some philosopher has already
requested F, before the evaluation. So no philosopher can start a round of Fp

unless Fj, = F,. O

Lemma 5.7 After p; completes a request for Fy, at most m rounds of passages

can occur before a round of Fy, starts.

Proof. The lemma holds trivially if no round of passages starts after p; com-
pletes its request. So let us assume that some round of F;, starts after p; com-
pletes its request. Clearly, the lemma holds if h = k.

If h # k, then by Lemma 5.6 at most m — 2 more rounds of passages can
occur before a round of Fj, starts. Including the round of F; and the round of
passages that might already be ongoing when p; completes its request, therefore,

at most m rounds of passages can occur before a round of Fy start. a

Theorem 5.8 CTP-m guarantees bounded delay.
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Proof. Assume p; has completed a request for Fy,. While p; is waiting for Fy,
if no round of passages is ongoing, then by Lemma 5.3 some round of passages
will start. If this is a round of Fj, then by Case 2 of Lemma 5.4, p; must
make a passage through Fj in this round. If this is not a round of Fy, then
by Lemmas 5.5 and 5.7 some round of Fy eventually starts; and by Case 2 of
Lemma 5.4 p; must make a passage through Fy in this round. So p; eventually
attends Fy if no round of passages is ongoing when it completes its request.
Next, suppose some round Fj is already ongoing when p; completes its re-
quest. If h = k, then by Case 1 of Lemma 5.4 eventually either p; makes a
passage through Fj or a new round of passages will start. If h # k, then by
Lemma 5.5 a new round of passages will also start. Together with the previous
argument, we conclude that if some round of passages is already ongoing when

p; completes its request, then p; eventually attends Fy. O

By Lemmas 5.5 and 5.7 we can see that after p; completes its request for Fy,
it waits for at most m rounds of passages before a round of Fj starts in which
p; can make a passage through Fy. So CTP-m’s forum-switch complexity is m.
Of the m rounds of passages p; has been waiting, one of them must start before
p; completes its request, and the remaining m — 1 rounds must be of different

fora.

5.3 Time Complexity and Concurrency of CTP-m

We now analyze CTP-m’s time complexity and its concurrency. Recall that
“passages” are represented as non-zero length intervals. Since the analysis in-
volves handling of passages, we begin with some definitions on intervals.

Let U be a (closed) interval, and let s(U) and e(U) denote its start point
and end point, respectively. By ||U|| we mean the length of U, i.e., ||U|l =
e(U) —s(U), and by t € U we mean s(U) <t < e(U). The intersection of U
and V', denoted by U MV, is defined to be the maximum interval W such that
Vte W :te UAt eV, or L otherwise. Two intervals U and V overlap if
[TUN V] > 0. The projection of U in [ts,ts], denoted by U\zf is the interval
Unlts, ty] if U and [ts,tf] overlap, or L otherwise. If S is a set of intervals,
then S|/ = {U|! : UeS, Ul #1}75

For the proofs in this section, it is useful to recall Definition 2.2. The fol-

lowing proposition follows directly from the above definitions.

5Since we allow passages to occur concurrently, in the paper, unless stated otherwise, all

sets consisting of intervals are treated as multisets.
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Proposition 5.9 Let S be a set of intervals. Then for any t,t; < t < ty,
dim(S|}’) < dim(S[}) + dim(S|;’). Moreover, if t ¢ U for all U € S, then
dim(S];/) = dim(S!) + dim(S|;’).

As analyzed in the previous section, after p; completes a request for Fy,
it waits for at most m rounds of passages before a round of Fy is initiated in
which p; can make a passage through Fy. To analyze the time complexity, we
first determine the number of passages that may occur in each round. This is
done in the following lemma. Of course, if the round starts before p; completes
its request, then we are only concerned with the passages that occur after p;
completes its request. The time ¢4 set up in the following lemma is for this
purpose. Moreover, n;, denotes the number of philosophers that can potentially
attend Fy,.

Lemma 5.10 Suppose a round of Fy is ongoing while p; is waiting for Fy,
Fr # Fpn. Let ts = max(ts,,ts,), where ts, is the time the round of Fy starts,
and t,, the time p; completes its request for Fy., and let t; be the time the round
of Fy, terminates. Furthermore, let Sy, be the set of passages that may overlap
with the interval [ts,ts]. Then

np(np +1)2np, +1)  3np(np + 1)

Sul <
[Snl < 12 4

Proof. We begin by distinguishing between three types of passages through CS:

e a-passage: the philosopher making this passage sets turn to the same fo-

rum as its request.

e [-passage: the philosopher making this passage sets turn to a forum dif-

ferent from its request.
e -passage: the philosopher making this passage is unable to set turn.

By the algorithm, a philosopher that makes an a- or 3-passage must enter CS
as an effective captain, while a y-passage must be made by a successor or a
killed captain.

Note that since we are only concerned with passages that overlap with the
interval [ts, tf], i.e., passages in Sy, unless stated otherwise, all passages consid-
ered in the proof belong to S,. By the mutual exclusion property of CTP-m,
the philosophers making these passages are all interested in F,.

Observe that an a-passage cannot be initiated after p; has requested Fy.
This is because if p; enters CS after p; has requested F, then when p; computes
next_op(Fpy1) in line 9 of CTP-m, it must obtain a forum with an index other
than h.
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Moreover, when some p; completes a 3-passage, no other p, can initiate a 8-
passage unless another philosopher has made an a-passage to reset turn to F,.°
To see this, suppose that p; in its S-passage sets turn to Fy. If p» completes its Fp,
request before p; sets turn to Fgy, then when p; starts capturing philosophers,
either po will be captured by p; (and thus ps can only make a 7y-passage for
its request), or po must have already initiated a §-passage (and thus p.’s (-
passage cannot be initiated after p; completes its S-passage). If po completes
its request after p; has set turn to F,, then when py starts to evaluate the
condition “turn = Fp, V all_passive(turn)” in line 7, it must obtain false and so
cannot make a (-passage.

So in the absence of a-passages all S-passages must overlap. Let q1,qo, ... ,q
be the philosophers that are making these overlapping S-passages and, without
loss of generality, assume that ¢; completes its passage earlier (or at least no
later) than ¢o, which completes its passage earlier than g3, and so on. Suppose
that ¢ in its B-passage can capture at most r philosophers (and recall that none
of them can be captured more than once in the passage). Then, g;’s -passage

can result in at most r -y-passages. Moreover, none of these r philosophers

involves ¢2,...,q (and ¢) because when ¢, captures these r philosophers the
philosophers ¢o, ... , g are still in their g-passages. (Recall from the previous
discussion that ¢, ... ,q must have already initiated their S-passages when ¢

starts to capture philosophers, and they cannot complete their S-passages until
q1 has finished capturing philosophers because ¢; completes its S-passage earlier
than they do.)

Because after q; completes its 8-passage it may re-enter CS as a successor of
g2, and because after completing their y-passages the r philosophers captured
by g1 may also re-enter CS as a successor of g2, ¢»’s (-passage can result in
at most (r + 1) y-passages. In general, ¢;’s B-passage can result in at most

(r+14 — 1) y-passages. So the | 3-passages overall can result in at most

I(l-1
Z T+i—1:l'r+¥

1<i<l
v-passages. Together with the [ -passages, the total number of passages they

can generate is at most

(-1 I(l1+1
l.T+g+l:l.r+w

2 2
Given that [ + r = ny for some ny < np, the total number of passages these ny

philosophers can generate is at most ny(n, + 1)/2.

6Note that this property would not hold if line 9 is placed after line 11; that is, if a captain
sets turn after it has finished capturing philosophers. See Section 5.4.
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If some a-passage has been completed between these - and y-passages, then
a new set of overlapping B-passages may be initiated.” Since the philosopher
completing the a-passage may later re-enter CS to initiate a g-passage, by the
above argument, a total number of n,+1 philosophers can be involved in making
a new series of 8- and y-passages, resulting in at most (n, + 1)(n, + 2)/2 more
passages. Note, however, that before these (n, + 1) philosophers initiate the
new series of #- and ~y-passages, the philosopher making the a-passage may first
capture the ny philosophers to initiate an additional number of n;, ~y-passages.
So overall they can result in (n, + 1)(ny + 2)/2 + n, passages.

Similarly, if after the second series of - and ~y-passages another a-passage
has been completed, then a third series of at most (ny, + 2)(ny + 3)/2+ (np + 1)
of 8- and -passages is possible. Note that since no philosopher can initiate an
a-passage after p; has requested Fg, the previous a-passage and the current one
must be made by different philosophers.

Suppose that there are n, ongoing a-passages when p; completes its request
for Fy. Then, including the first series of w B- and y-passages, these

a-passages overall can generate at most

nb(n;+ 1) 4 Z <(m, +i)(7;b +i+1)

+nb+i1>
1<i<n,

of - and 7y-passages. Recall that n, is the maximum number of philosophers
that can be involved in the first series of §- and vy-passages. Clearly, none of
these ny philosophers can make any of the n, a-passages. So n, + ny < ny.
Therefore, the total number of a-, 8-, and y-passages that can be initiated after
p; completes a request for F; but before the current round of F;, terminates,
plus the number of passages that may be already ongoing when p; completes its

request (which, in the above discussion, are the n, a-passages), is at most

ny(np + 1) (np+1i)(np +4+1)
w3 (e

+np+i— 1) + ng
1<i<ng

np(np+1)(2np +1)  3np(n, +1)
- 12 + 4

"The philosopher making this a-passage must have obtained next_op(Fp41) = Fj, in line 9
before p; completes its request for Fy (because it does not find any philosopher interested in
a different forum), but have not yet assigned Fp to turn until g1,... , ¢ set turn to a different
forum in their §-passages.
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Note that the above bound for |Sj| is tight because we can construct a

scenario to reach this bound. To illustrate, consider the following scenario for

ny = 3:

1.

Each of pi,p2, p3, one after another, initiates an a-passage as follows: it
requests Fj, enters CS, finds that no one is interested in a different forum,

and so proceeds to obtain next_op(Fp11) = Fy.

. po completes a request for Fy.

3. p1 sets turn to Fj and then completes its a-passage.

10.
11.

12.
13.

14.
15.

16.
17.

18.

. p1 makes a (-passage as follows: it requests Fj, enters CS, sets turn to

Fi, and exits CS.

. pa sets turn to Fj, captures p; (after p; has requested another entry to

Fr), and then completes its a-passage.

. p1, as a successor of ps, makes a y-passage.

. p1 and p- respectively initiate a [-passage as follows: each requests Fy,

enters CS, and proceeds to capture philosophers.

. p1 captures none, sets turn to Fy, and completes its -passage.

. p2 captures p; (after p; has requested another entry to Fj), sets turn to

F, and completes its S-passage.
p1, as a successor of ps, makes a y-passage.

ps3 sets turn to Fp, captures p; and po (after they have requested a new

Fr), and then completes its a-passage.
p1 and po, as a successor of p3, make a y-passage respectively.

p1, P2, and p3 respectively initiate a J-passage as follows: each requests

Fp, enters CS, and proceeds to capture philosophers.
p1 captures none, sets turn to Fy, and completes its -passage.

p2 captures p; (after p; has requested another entry to Fp), sets turn to

F, and completes its S-passage.
p1, as a successor of ps, makes a y-passage.

p3 captures p; and po (after they have requested another entry to Fp,), sets

turn to Fy, and completes its S-passage.

Each of p; and p-, as a successor of p3, makes a y-passage.

Therefore, 16 passages (3 a-passages, 6 (-passages, and 7 y-passages) have

passed after pg completes a request for Fy.

Next, we compute the maximum dimension of the set of passages that may

occur in a round.
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ts max(e(A), e(Bs)) s(B1) e(B2) ts
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-~ -~
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Figure 5: Layout of the passages in Sj,.

Lemma 5.11 Suppose a round of Fy is ongoing while p; is waiting for Fy,
Fr # Fn. Let ts = max(ts,,ts,), where ts, is the time the round of Fy starts,
and t,, the time p; completes its request for Fy, and let t; be the time the round
of Fy, terminates. Furthermore, let Sy, be the set of passages that overlap with
the interval [ts,tr]. Then

dim(Sy,) < 2np, + 3

Proof. Let a-, 8-, and y-passages be defined as in Lemma 5.10. Let A be the
set of a-passages in Sp, and let A be the passage in A with the largest end
time. Furthermore, let B be the set of §-passages in Sy that are initiated no
earlier than e(A); i.e., VU € B: s(U) > e(A). Recall from Lemma 5.10 that all
a-passages in A4 must be initiated before p; requests Fy, and that all S-passages
in B must overlap (at a common point).

Let B; be the passage, among the passages in B, with the smallest start time,
and By be the passage with the largest end time. Since By and By overlap, they

\Zggf; (see Figure 5).

constitute a cover of Sy,

Assume first that there is some $-passage that starts before e(A). Let Bs be
such a passage with the largest end time. Assume further that e(Bs3) < s(Bj).
So there is no f-passage overlapping with [e(Bj3), s(B1)] (because for every j-
passage B' € Sy, if s(B') < e(A) then e(B’) < e(Bs), and if s(B') > e(A) then
s(B') > s(By)). Since A is the passage in A with the largest end time, there is
no a- and fB-passage overlapping with [max(e(A4),e(Bs)), s(B1)].

Consider the maximum number of y-passages that can be interspersed be-
tween [max(e(A),e(Bs)),s(B1)]. Let Cy and Cy be any two -y-passages that
overlap with the interval [max(e(A), e(Bs)),s(B1)]. (See Figure 5 again.) We
argue that C; and C cannot be made by the same philosopher. This is because
if 1 and €5 were made by the same philosopher, say p;, then C; and C5 must

not overlap. Without loss of generality assume that e(Cy) < s(Cy). Then some
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captain, while making an a- or f-passage, must have captured or killed p; in
[e(Cy),s(C2)]. This then contradicts the fact that no a- and f-passage may
overlap with [max(e(A4),e(Bs)), s(B1)].

Furthermore, let U be one of the two passages A and Bz with the largest
end time. Since no philosopher makes an a- or -passage in [max(e(A), e(Bs)),
s(B1)], after a philosopher completes U, it cannot make a y-passage in the
interval. So no ~-passage overlapping with [max(e(A),e(Bs)),s(B1)] can be
made by the philosopher that completes U.

The above argument implies that at most (n, — 1) y-passages can over-
lap with [max(e(A), e(Bs)),s(B1)]. Since no a- or B-passage can overlap with

[max(e(A), e(B3)), s(B1)], a minimal cover of Sp|*?")

’ max(e(A),e(B3)) has size at most

. .. A)e(B
ny — 1. Moreover, since A and B3 overlap, a minimal cover of Sh\:ax(e( ).e(Ba)

has size at most two if e(Bs) > e(A), and has size one otherwise. Together
e(B2)
maz(e(A),e(Bs))

Proposition 5.9, therefore, dim(8h|fs(Bz)) <mnp+ 3.

In the above we assumed that e(B3) < s(By). If e(Bs) > s(B;), then A
and Bj together constitute a cover of Sh\fs(Bl). So dim(Sh\fs(BQ)) < 4. If no
[-passage in Sy, starts before e(A), then by the above argument we can see that

() has size one and a minimal cover of SHZE?;) has

with the fact that a minimal cover of S| has size at most 2, by

.. e
a minimal cover of Spl;

size at most (n, — 1). So dim(8h|fs(Bz)) < np + 2. Since np, > 1, in any case,
dim(S,[{P?) < ny + 3.

Similarly, we can show that at most (n, — 1) y-passages can overlap with
[e(B2),ts]. Since no a- or f-passage can overlap with [e(Bs), tf], dim(8h|i’232)) <
np—1. By Proposition 5.9 and the above argument that dim(S, \58(82)) < np+3,
we have that dim(Sy|;") < 2np + 2.

We have considered the case that there exist two passages A and B such
that: A is the passage, among the set of a-passages in Sy, (i.e., set A), with the
largest end time, and B is a [(-passage initiated no earlier than e(A4). If there
is no B-passage, or all -passages in Sj, are initiated earlier than e(A), then by
a similar reasoning we can show that at most (n, — 1) y-passages can overlap
with [t,t¢], where t = maz{e(U) : U is an a- or f-passage in Sp}. Together
with the fact that dim(Ss|; ) < 2, we have dim(Sy[;’) < nj, + 1.

If there is no a-passage (i.e., A = (}) but there is some (3-passage in Sp,, then
let By be the set of B-passages in S;, that are initiated at or before tg, and By
be the set of J-passages that are initiated after t;. Note that the passages in
Bs must overlap. Let t; = max{e(U) |U € By} if By # 0, and #; = ¢, otherwise.
Furthermore, let t» = min{s(U)|U € By} and t3 = max{e(U)|U € By} if
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By # 0, and ty = t3 = t; otherwise. Analogous to the above analysis, we
can show that dim(Sp[;!) < 1, dim(Sy|;?) < np — 1, dim(S,i?) < 2, and
dim(Sy|y!) < np — 1. So dim(S, ') < 2np + 1.

If there is no a- and [-passage in S, then at most (n, — 1) vy-passages can
overlap with [ts,¢f] (these passages must be resulted from some early a- and
B-passages that occur before p; completes its request). So dim(8h|§f) <np—1.

To summarize, dim(S|;’) < 2ny+2. Since dim(Sy) = dim(Sp|f*), where
tmin = min{s(U) |U € Sp} and tpmax = max{e(U)|U € Sy}, by Proposition 5.9
dim(S;,) < dim(Sp[l ) + dim(S,[}) + dim(S,
passages overlapping with [ts,1;] may be initiated before t;, and all passages
) <1land
i) = 0. Therefore, dim(S;) < 2nj, + 3. 0

i;w*)_ Observe that some

overlapping with [ts, %] must be completed before t;. So dim(S,
dim(Sy,

Note that in the above lemma if dim(Sy,) = 2ny, + 3 then there must be
some ongoing a-passage when p; completes its request for Fi. This means that
the round of Fj, must have already started when p; completes its request. On
the other hand, if the round starts after p; has completed its request, then no
a-passage can occur in this round (because any effective captain must have seen
pi’s request when it is in line 9 of CTP-m, and so cannot set turn to Fp). As a
result, there is no passage between [ts, s(B)] in Figure 5. So a minimal cover

of Sy, has size at most ny, + 1. We therefore have the following two corollaries.

Corollary 5.12 Suppose a round of Fy, starts before p; completes a request for
Fi, Fi # Fpn. Let ts be the time p; completes the request, and let ty be the time
the round terminates. Moreover, let Sy be the set of passages that overlap with
the interval [ts,t7]. Then

dim(S,) < 2nj, + 3

Corollary 5.13 Suppose a round of Fy, starts after p; has completed a request
for Fi, Fi # Fp. Let ts be the time the round starts, and let ty be the time it
terminates. Moreover, let S be the set of passages that overlap with the interval
[ts,t¢]. Then

dim(Sy) <np+1

The above corollaries concern the case Fy # Fj. The case Fp, = Fj is
considered below.

Lemma 5.14 Suppose a round of Fy starts before p; completes its request for

Fr. Suppose further that p; does not make a passage for its request in this round.

35



Let t; be the time p; completes its request, and let ty be the time this round of
Fr terminates. Moreover, let Sy be the set of passages that overlap with the
interval [ts,t7]. Then

dim(Sy) < ny

Proof. If no non-y-passage (i.e., a- or f-passages) overlaps with [t,,t7], then
at most ny — 1 vy-passages can overlap with [ts,1f] (as none of the y-passages
can be made by p;). So dim(S) = dim(Sk\Z) <ng—1.

If some non-y-passage made by, say p;, overlaps with [ts, %], then if the
passage starts after p; has completed its request, then either p; will capture p;
or p; will have already entered CS before p; attempts to capture it. Since by the
lemma assumption p; does not make a passage in this round, if there is any non-
~-passage overlapping with [ts, t¢], then it must be initiated before p; completes
its request. Let A be the non-y-passage, among the non-y-passages that overlap
with [ts,tf], with the largest end time. By the proof of Lemma 5.11 it can be
seen that at most (ny —2) y-passages can overlap with [e(A),t¢]. (Note that none
of these y-passages and A can be made by p;.) So dim(Sy, \Z’EA)) < ng—2. Since

dim(S;) < dim(S[;)) + dim(Se|!/ ), where ti = min{s(U)|U € S},

dim(Sk) <2+4np—2=ny.
To summarize, in either case dim(Sy) < ny,. |

Theorem 5.15 (Time Complexity) Lett, be the time a philosopher p; com-
pletes its request for Fi., and t, be the time the request is granted (i.e., the time
p; initiates a passage through Fr). Moreover, let S be the set of passages that
overlap with [t,,t,] and that must be completed before p; can initiate its passage.
Then

dim(S) < max {ng, 2n; +3:1<j#k<m} + Z n; +1
1<j<m, j#k

Proof. By Lemma 5.7, p; waits for at most m rounds of passages before a round
of Fy, is initiated in which it can make a passage through F;. These include the
round of passages that is already ongoing when p; completes its request. By the
proof, the m — 1 rounds of passages that start after p; has completed its request
must, all be different, and none of them is a round of Fi. So by Corollary 5.13,
a minimal cover of the set of passages occurring in these m — 1 rounds has size
at most ) e, g (M +1).

Consider the round of passages that is already ongoing when p; completes
its request. By Corollary 5.12 and Lemma 5.14, a minimal cover of the set of
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passages in S that occur in this round has size at most max {ng, 2n; +3:1 <
j#k<m).

After these m rounds of passages, a round of Fj must follow, and by Case 2
of Lemma 5.4 p; must make a passage through Fj in this round. Note that
because the passages in this round are for the same forum, p; needs not wait for
any of them to complete in order to initiate its own passage. So by definition
of § no passage in S comes from this round. Therefore,

dim(S) < max {n, 2n; +3:1<j#k<m} + Z n;+1
1<j<m,j#k

O

Since np < n, the time complexity is O(m - n). Note that in measuring
dim(S) above we only consider passages that must be completed before p; can
initiate its passage; that is, we do not count those with which p;’s passage may
proceed concurrently.

We now consider the concurrency of CTP-m, and recall that the degree of
concurrency is measured by the maximum number of passages that can be ini-
tiated while a passage is ongoing and some philosopher is waiting for a different
forum. Lemmas 5.10 and 5.11 imply that the degree of concurrency of CTP-m is
at least O(n?). However, as shown below CTP-m can actually provide a degree

of concurrency up to O(n}).

Theorem 5.16 (Concurrency) Suppose p; is in Fy and p; is waiting for Fy,
k # h. Then the number of passages that can still be initiated before p; leaves
Fp is at most
np(np +1)2np, + 1) np(ny — 3)
12 + 4

Proof. Recall from the proof of Lemma 5.10 that among the % +

3""(27"“) passages in Sy, np of them are a-passages initiated before p; com-
np(np+1)(2np+1) np(np—3)
12 + 1

pletes its request, of them are (- and y-passages

initiated after p; completes its request but before the last of the n;, a-passages

nh (nh+1)
2

terminates, and the rest are - and y-passages initiated after all the

a-passages terminate. So while the last a-passage is ongoing and p; is waiting
np(np+1)(2np+1) + np(np—3)
12 4

for Fi, at most more passages can be initiated. O

By comparing CTP-m with the simple centralized algorithm CTP-C pre-
sented in Section 3, we see that they have similar forum-switch complexity (m
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for CTP-m, and m + 1 for CTP-C); also both have time complexity O(m - n).
However, CTP-C allows a virtually unbounded degree of concurrency (through
the use of a centralized mechanism), while CTP-m can reach only O(n?) (in a
fully distributed setting).

5.4 Remarks

We comment on some nontrivial design choices made for CTP-m. First, let us re-
consider Lemma 5.10. In the absence of a-passages the size of Sj, in Lemma 5.10
can be reduced to np(ny + 1)/2. In the algorithm a-passages occur because we
allow a captain, upon seeing that no philosopher is interested in a different fo-
rum, to set turn to the same forum as its request. If we change line 9 of CTP-m
so that a captain will always set turn to a different forum (as in the case of
CTP-2), then a-passages are not possible. In this case, however, a minimal
cover of S, in Lemma 5.11 may still contain nj, + 1 passages (2 overlapping
B-passages and (nj — 1) y-passages). So the time complexity of Theorem 5.15 is
not affected by any order of magnitude. However, the degree of concurrency will
then drop to O(n}). Therefore, in CTP-m we have opted for a higher degree
of concurrency by allowing a philosopher to set turn to the same forum as its
request.

Moreover, the order of execution of setting turn (line 9) and capturing
philosophers (lines10-11) may also affect the time complexity. To see this, recall
that in the proof of Lemma 5.11 all S-passages that are initiated no earlier than
e(A), i.e., the passages in B, must overlap (at a common point). So it takes at
most two passages to cover the passages in B. If a philosopher sets turn after
it captures philosophers, then the 3-passages in B do not necessarily overlap
(thereby increasing the time complexity). This is because a philosopher p; may
enter CS as a captain (assuming that p; is interested in Fj and turn = Fp),
capture philosophers, and then find that some philosopher is interested in a dif-
ferent forum F,. Before p; sets turn to F,, another p; interested in Fj, may have
already read turn in line 7. Suppose p; then sets turn to F, and exits CS before
p; compares the value it has read (i.e., Fj,) with the forum Fj it has requested
(i.e., before p; tests the predicate turn = Fj, in line 7). Then when p; finds that
turn is (actually, was) Fj and enters CS, p, has already left CS, and so their
[B-passages do not overlap.

A more significant boost to CTP-m’s performance is by the extra clause
“turn = Fy V all_passive(turn)” added to line 7 that a philosopher checks to see
if it can enter CS. It is important to note that Lemma 5.6 would not hold if
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this clause is dropped from line 7. This is because a philosopher p; interested

in a forum F; may have already proceeded to line 6 when a round of F; starts.

When the round of F; terminates, if this clause is removed, then p; may “sneak”

into CS even if turn # Fp and some other philosopher is waiting for the forum

specified by turn. As a result, the number of rounds of passages p; needs to wait

before it enters CS in Lemma 5.7 (i.e., the algorithm’s forum-switch complexity)

would be much more than m.

To illustrate, assume m = 4 and turn = Fy. Counsider the following scenario.

1.

10.

11.

8

p3 requests F3, finds that no one is interested in Fg, F;, and F», and so it

exits the while-loop and proceeds to line 6 (but has not yet executed line 6).

. p2 requests Fo, finds that no one is interested in Fg and F;, and so also

proceeds to line 6.

. p1 requests Fy, finds that no one is interested in Fy, and so also proceeds

to line 6.

. po requests Fq.

_ PR
. ps “sneaks” into CS (because none_in_cs(F3) A no_successor(Fs3) evalu-

ates to true). It then sets turn to Fp and exits CS. Then p3 requests
another entry to Fj.

p2 “sneaks” into CS. It then sets turn to F3 and exits CS. Then p,
requests another entry to Fs.

ps finds that turn = F3 and so it proceeds to enter CS. It then sets turn

to Fp, exits CS, and requests another entry to Fj.
p1 “sneaks” into CS. It then sets turn to Fy and exits CS.

po finds that turn = F5 and so it proceeds to enter CS. It then sets turn
to F3 and exits CS.

ps finds that turn = F3 and so it proceeds to enter CS. It then sets turn
to Fg and exits CS.

po now finds that turn = Fg and so it proceeds to enter CS.

Therefore, before py enters CS, the following 6 rounds of passages have bypassed:

F5,F5,F3,FT, Fa, F3, where F represents a round of F; initiated by a philosopher

that “sneaks” into CS. The scenario can be extended to m = 5 so that py waits

for the following rounds of passages before it enters CS to attend Fq:

FZ:F;:F47F;7F37F47FI7F27F27F§7F4

8Thanks to Wen-Jian Tsai for coming up with this scenario.
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Note that ps can sneak into F4 twice because the evaluation of next_op(turn) in
line 5 requires an access to turn and then an access to each philosopher’s flag,
and no particular ordering is assumed in accessing the flags. As a result, after
p1 sneaks into CS to establish a round of F; and sets turn to Fy (because py has
requested another entry to Fy), ps can start to evaluate nezt_op(turn) in line 5.
When p4 learns that turn = Fo, it may later find that no one is interested in Fj
and Fy (because po has already finished Fs), and so proceeds to line 6 waiting to
sneak into CS. Similarly, ps can sneak into F3 after p; has set turn to Fo because
when p3 reads turn = F», it may later find that no philosopher is interested in
F., and so obtains nezt_op(turn) = F3 in line 5. So it can also proceed to line 6
waiting to sneak into CS.

Let ax denote the number of rounds of passages py may wait before it enters
CS for the setting where the philosophers may like to hold & different fora. We
leave the reader to show that the scenario can be generalized so that a; satisfies

the following recurrence relation:”

Ap—1 + ap_o + 2 k>2
ap = 1 k=2
0 k=1

Solving this recurrence relation we have

Lo 535 1+
™10 2

_ 3\/5
10

-5

(L2 220

-2

Thus, an exponential number of rounds may pass before a philosopher’s request
is granted!

As mentioned earlier in Section 4.1, our algorithm is based on Knuth’s al-
gorithm for 2-process mutual exclusion [17]. When generalizing to n-process,
Knuth’s algorithm suffers an exponential number of overtakes: a process waits
for 2"~ —1 entries to CS before it enters CS. The exponential bound is reduced
to linear by Eisenberg and McGuire [10] by properly assigning the turn variable
when a process exits CS. As illustrated above, CTP-m’s forum-switch complex-
ity (which corresponds to the above “overtakes” complexity when the Congenial

Talking Philosophers problem is reduced to n-process mutual exclusion) could

%It helps to see the recurrence relation by renaming fora using the new index mapping:
F; — Fmm—1—;. As a result, the turn is now assigned in a decreasing order F;,F;_1,F;_a,...
instead of an increasing order F;, F;11,F;12,.... Accordingly, in the above scenario for m = 4,
po now waits for the following 6 rounds of passages Fg, F],Fo,F3, F1,Fo before it enters CS.
For m = 5, the sequence becomes Fg,F7,Fo,F3,F1,Fo,F5,F2,F5, F],Fo, and for m = 6, the
sequence is Fg,F}, Fo,F5,F1,Fo,F5,Fa,Fg,F],Fo,F}, F3,F5,F1,Fo, F5,F1,Fo.
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also blow up to exponential if not properly designed. Unlike Eisenberg and
McGuire’s approach, we let a philosopher, prior to entering CS, check an addi-

tional condition to see if its forum is the most appropriate one to start.

6 Related Work and Conclusions

We have presented the Congenial Talking Philosophers problem to model group
mutual exclusion in which resources can be shared by processes of the same
group but the sharing cannot be done across groups. Although the problem
occurs naturally in applications such as CSCW, to our knowledge, it has not
been addressed in the literature thus far.

We have also presented an efficient and highly concurrent distributed algo-
rithm CTP-m to solve the Congenial Talking Philosophers problem. In terms
of forum-switch complexity, when a philosopher requests a forum, it waits for
at most m rounds of passages before it attends the forum, where m is the total
number of fora in the system. Within each round of passages, at most O(np)
passages suffice to cover all the passages that occur within the round, where nj
is the total number of philosophers that may potentially attend Fj. So the time
complexity is O(m-n). In terms of concurrency, while a philosopher p; occupies
the meeting room and some other p; is waiting for a different forum, CTP-m
can admit O(n?) entries to the meeting room to join the ongoing forum with p;.

For comparison, we have presented two algorithms, one centralized and the
other semi-distributed, for the Congenial Talking Philosophers problem. Both
algorithms are able to claim a virtually unbounded degree of concurrency by
using a centralized mechanism to monitor philosophers’ states. The centralized
mechanism, however, also makes them more vulnerable to faults. In particular,
the semi-distributed algorithm may result in unbounded time and forum-switch
complexity. Even for the centralized algorithm, its time and forum-switch com-
plexity is approximately the same as our distributed solution.

As discussed in Section 2, the Congenial Talking Philosophers problem is
more general than the conventional n-process mutual exclusion and the Readers
and Writers problems. Our algorithm CTP-m also offers an appealing solution
for these problems. For n-process mutual exclusion, a process waits for at most
n passages before it enters the critical section. Note that this includes the
one that is already ongoing when the process makes its request for the critical
section. So, after a process requests the critical section, at most n — 1 entries to
the critical section may proceed before the process, which is obviously a lower

bound for the mutual exclusion problem. (For a survey of mutual exclusion
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algorithms see [24, 4, 25, 20].) For the Readers and Writers problem, a wait-
free approach is usually adopted within the realm of shared memory to allow
concurrent reading while writing [23, 13]. In this approach, n+ 1 extra copies of
the shared object are used to allow the readers to keep track of the most recent
version of the shared object. CTP-m, on the other hand, allows concurrent
reading without introducing extra copies of the shared object, but it does not
allow concurrent reading while writing.

A generalization of n-process mutual exclusion that allows at most [ processes
to be in the critical section simultaneously (known as the [-exclusion problem)
has been proposed by Fisher, et al. [12], and subsequently studied by Afek, et
al. [1]. However, there is no direct connection between the [-exclusion problem
and the Congenial Talking Philosophers problem in the sense that the solution
for one problem cannot be straightforwardly applied to the other.

In light of the [-exclusion problem, Congenial Talking Philosophers can be
further generalized to model “I-forum exclusion”, where there are [ meeting
rooms for the philosophers and so at most [ fora can be in session simultane-
ously. This new problem can be applied in situations in which a resource can be
shared by processes of the same group but not by processes of different groups,
and [ copies of the resource are available. This generalized problem can be easily
reduced to the three fundamental problems: n-process mutual exclusion, Read-
ers and Writers, and [-exclusion, but not vice versa. It is therefore interesting to
see how this more general problem can be solved efficiently and in a distributed
manner. Other future work includes studying various bounds of the Congenial
Talking Philosophers problem, such as time, concurrency, and the number of

variables required.
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