
Asynhronous Group Mutual Exlusion�Yuh-Jzer Joungyjoung�ms.ntu.edu.twDepartment of Information ManagementNational Taiwan UniversityTaipei, TaiwanAbstratMutual exlusion and onurreny are two fundamental and essentiallyopposite features in distributed systems. However, in some appliationssuh as Computer Supported Cooperative Work (CSCW) we have foundit neessary to impose mutual exlusion on di�erent groups of proesses inaessing a resoure, while allowing proesses of the same group to sharethe resoure. To our knowledge, no suh design issue has been previouslyraised in the literature.In this paper we address this issue by presenting a new problem,alled Congenial Talking Philosophers, to model group mutual exlu-sion. We also propose several riteria to evaluate solutions of the prob-lem and to measure their performane. Finally, we provide an eÆientand highly onurrent distributed algorithm for the problem in a shared-memory model where proesses ommuniate by reading from and writingto shared variables. The distributed algorithm meets the proposed rite-ria, and has performane similar to some naive but entralized solutionsto the problem.�An extended abstrat of the paper appeared in Proeedings of the 17th Annual ACMSymposium on Priniples of Distributed Computing, pp. 51-60 (Puerto Vallarta, Mexio,June 28{July 2, 1998). This researh was supported in part by the National Siene Counil,Taipei, Taiwan, under Grants NSC 85-2213-E-002-059, NSC 86-2213-E-002-053, and NSC 87-2218-E-002-050, and by the 1997 Researh Award of College of Management, National TaiwanUniversity.yThe author is urrently visiting Laboratory for Computer Siene, Massahusetts Instituteof Tehnology (1999-2000). 1

1 IntrodutionMutual exlusion and onurreny are two fundamental issues in distributedsystems. Mutual exlusion guarantees exlusive aess to a ommon resoureto one of a set of ompeting proesses, while onurreny allows proesses toshare a resoure to inrease system performane. In spite of their ontraditorynature, in some appliations suh as Computer Supported Cooperative Work(CSCW) we have found it neessary to guarantee mutual exlusion while stillexploiting a ertain degree of onurreny.For example, onsider a video-onferening system with an eletroni whiteboard. A user an use this white board to post information that she/he wouldlike to share with others. All the information posted on the white board will beseen by all users urrently online. Thus, when a group of users uses the systemto disuss some issue, another group of users whose interests onit with the�rst group must be exluded from using the system. On the other hand, whensome user is using in the system, we wish to enourage disussion by allowingmore users with the same interest to use the system. Thus, a design whihinvolves both mutual exlusion and onurreny is required.As another example, onsider several users working on a projet that hassome large data objets stored on a seondary memory devie (suh as a CDjukebox). When a user needs to aess a data objet, the data objet is loadedfrom the devie to a ahe bu�er. To inrease performane, one a data objetis loaded it will remain in the bu�er until another data objet is requested.So while a data objet resides in the bu�er, users that need to work on thisdata objet are allowed to aess the bu�er onurrently, and users that needa di�erent data objet have to wait until no user is working on the data objeturrently in the bu�er. That is, users with the same interests an onurrentlyaess the bu�er, while users with di�erent interests must be exluded fromaessing the bu�er.Although many systems may require that proesses of the same group sharea resoure while proesses of di�erent groups use the resoure exlusively, toour knowledge, group mutual exlusion has not been previously raised in theliterature. Note that we do not require proesses of the same group to synhro-nize in order to aess the resoure. Problems onerning synhronous groupmutual exlusion, where a set of proesses must synhronize in order to aessa resoure or a proess must possess all needed resoures in order to ontinue,have been addressed by Chandy and Misra [7, 8℄.In this paper we present a problem, alled Congenial Talking Philosophers ,2

to model group mutual exlusion. The problem onerns a set of n philosopherswhih spend their time thinking alone and talking in fora. Given that thereis only one meeting room (the ritial setion), a philosopher attempting toattend a forum an sueed only if the meeting room is empty (and in this asethe philosopher starts the forum), or some philosopher interested in the sameforum is already in the meeting room (and in this ase the philosopher joins theongoing forum). The hallenge is to design an algorithm for the philosophers toensure that a philosopher attempting to attend a forum will eventually sueed,while at the same time enouraging philosophers interested in the same forumto be in the meeting room simultaneously. In this paper we fous on solutions inthe shared-memory model, where proesses ommuniate by reading from andwriting to shared variables. Solutions based on message passing are onsideredin a separate paper [16℄.The Congenial Talking Philosophers problem is related to some fundamentalproblems in distributed systems. For example, by dediating one forum to eahphilosopher, the problem is redued to n-proess mutual exlusion where onlyone proess an be in the ritial setion at a time. The problem an also beredued to the Readers and Writers problem [9℄ where a shared objet an beonurrently read by di�erent proesses, while writing alone must be mutuallyexlusive. To do so, we an employ a READ operation (forum) for all proesses(philosophers) in the system, and a unique WRITE operation for eah individualone. A proess attempting to read the shared objet then requests the READoperation to aess the objet, while it requests its own WRITE operationwhen it wishes to update the objet. Thus the Congenial Talking Philosophersproblem is more general than the two lassial problems.Note that resolving onits between READ/WRITE and WRITE/WRITEoperations while failitating onurreny among READ operations is the en-tral topi of database onurreny ontrol (see, e.g., [11, 21, 19, 18, 5, 26, 2℄).Despite the similar objetive, the Congenial Talking Philosophers problem tar-gets the onstrution of a low-level mehanism to support operation exeution.In ontrast, database onurreny ontrol typially uses suh mehanisms (e.g.,loking) to ensure serializability at the transation level.Intuitively, a maximal degree of onurreny an be ahieved if philosophersare allowed to attend a forum while some philosopher with the same interestis oupying the meeting room. However, given that eah philosopher indepen-dently determines when it will be interested in a forum and how long it willstay in a forum (although it an only spend a �nite amount of time in the fo-rum), suh a degree of onurreny annot be ahieved if we are also to ensure a3

bounded delay on the time a philosopher spends in waiting for a forum. This isbeause otherwise two philosophers interested in the same forum may repeatedlyenter the meeting room, thus bloking a third philosopher waiting for a di�erentforum inde�nitely. So the hallenge of the problem lies in the exploitation ofa high degree of onurreny in attending a forum while ensuring a minimumdelay for the philosophers waiting for a di�erent forum.Indeed, the problem is muh more diÆult than we originally had thought.Figure 4 in Setion 5 gives the �nal version of our main algorithm, whih onsistsof only 13 lines of statements. In the proess of designing the algorithm, wemade several mistakes, some of whih were quite subtle and ourred only inthe presene of onurreny. We also disovered several performane trade-o�s|onurreny vs. waiting time|by simply reversing the exeution order oftwo statements whih looks irrelevant at �rst glane! We shall present some ofthe �ndings in our disussion of the algorithm.The rest of the paper is organized as follows. Setion 2 presents the CongenialTalking Philosophers problem in more detail, and proposes riteria that an beused to evaluate solutions of the problem and to measure their performane.For omparison, we �rst o�er some simple but entralized solutions in Setion 3.Setion 4 then presents a fully distributed solution where philosophers may onlyattend two fora, and Setion 5 generalizes the solution to an arbitrary numberof fora. Setion 6 disusses related work and onludes.2 The Congenial Talking Philosophers ProblemWe onsider a set of n philosophers p0; p1; : : : ; pn�1 whih spend their time ei-ther thinking alone or talking in fora. The philosophers may like to hold mdi�erent fora F0;F1; : : : ;Fm�1 but, due to the apaity of the meeting room,only one forum an be held at a time. However, more than one philosopher anbe in a forum simultaneously. Initially, all the philosophers are thinking. Whena philosopher is tired of thinking, it hooses a forum to attend. We assumethat when a philosopher attends a forum, it spends an unpreditable but �niteamount of time in the forum. After a philosopher leaves a forum, it returnsto thinking.1 We say that a forum is in session if some philosopher is in theforum. The Congenial Talking Philosophers problem onsists of the following1Throughout the paper, \in a forum" is used synonymously with \in the meeting room."Likewise, \to attend/leave a forum" is synonymous with \to enter/exit the meeting room."
4

requirements:2mutual exlusion: if some philosopher is in a forum, then no other philoso-pher an be in a di�erent forum at the same time.bounded delay: a philosopher attempting to attend a forum will eventuallysueed.We are seeking solutions that failitate onurrent entering, meaning thatif some philosophers are interested in a forum and no philosopher is interestedin a di�erent forum, then the philosophers an onurrently enter the meetingroom to hold the forum. As disussed in Setion 1, the n-proess mutual ex-lusion problem is a speial ase of Congenial Talking Philosophers in whihonly one philosopher may attend eah forum. Obviously, it would be overkillto solve Congenial Talking Philosophers using solutions for n-proess mutualexlusion (e.g., [10, 6, 22℄). So a reasonable solution for the problem must allowphilosophers to share the meeting room when no one is interested in a di�erentforum.The onurrent entering requirement we have de�ned above is slightly strongeras it requires philosophers not just to be able to be in the meeting room si-multaneously, but to enter the meeting room onurrently. The intent of thisstronger ondition is to prevent unneessary synhronization among philoso-phers attending a forum when no one else is interested in a di�erent forum.Suh synhronization ours, for example, in solutions that use a shared vari-able to ontrol the use of the meeting room, and philosophers aess the sharedvariable in a mutually exlusive style to avoid onits. Suh solutions allowphilosophers to be in the meeting room simultaneously, but do not allow themto enter the meeting room onurrently beause of the synhronization imposedon the philosophers in aessing the shared variable. The overhead of suh so-lutions is espeially high when the number of fora the philosophers would liketo hold is relatively small ompared to the number of philosophers that areinterested in eah forum.Solutions of Congenial Talking Philosophers an be evaluated by two pa-rameters: time and onurreny . For the time parameter, we are onernedwith how long a philosopher may wait before entering a forum. Instead of usingphysial time|whih would be system dependent and hard to analyze, we usepassages as the basi metri for evaluating time, as de�ned below:2We assume �nite progress for the philosophers, meaning that if a philosopher is given aninstrution then it will exeute the instrution in �nite but unpreditable time. Moreover, weassume that basi mahine-level instrutions suh as read and write to a shared variable areexeuted atomially. 5

0 5 10 15 20 25 30pppppppppppppppppppppppppp
pi requests F

pppppppppppppppppppppppppp
pi attends F� -hp1;Xi� -hp3;Xi� -hp2;Xi � -hp5;Yi� -hp6;Yi� -hp4;Yi � -hp7;Zi� -hp8;Zi� -hp9;Zi

Figure 1: A layout of passages.De�nition 2.1 A passage by pi through a forum F is an interval [t1; t2℄, wheret1 is the time pi enters the forum, and t2 the time pi leaves the forum. Thepassage is initiated at t1, and ompleted at t2. The passage is ongoing atany time in between t1 and t2.A passage by pi through a forum F is represented by hpi;Fi, whih we referto as the attribute of the passage. When no onfusion is possible, we useintervals and attributes interhangeably to represent passages (where intervalsare denoted by square brakets [t1; t2℄, and attributes by angle brakets hpi;Fi).Due to onurreny, passages may overlap. Therefore, an expliit ountof the total number of passages a philosopher may wait is not a good metrifor the waiting time. Instead, we measure the waiting time by ounting theminimal number of passages that are suÆient to \over" all the passages inonsideration. For example, suppose that a philosopher pi, after requesting aforum F, waits for the nine passages shown in Figure 1 before it an attendF. Then, sine hp2;Xi is overed by hp1;Xi and hp3;Xi, and sine hp5;Yi andhp6;Yi are overed by hp4;Yi, only the six passages hp1;Xi, hp3;Xi, hp4;Yi,hp7;Zi, hp8;Zi, and hp9;Zi aount for the delay in satisfying pi's request.A formal de�nition is given below.De�nition 2.2 Let S be a set of intervals. A subset R of S is a over ofS if for every � 2 S, every time instane in � is in some � 2 R (that is,8 [t1; t2℄ 2 S : t1 � t � t2) 9 [t3; t4℄ 2 R; t3 � t � t4). It is minimal if forany other over R0 of S, jRj � jR0j. The dimension of S, denoted by dim(S),is the size of a minimal over of S.To illustrate the de�nition, the set of passages shown in Figure 1 has aminimal over onsisting of hp1;Xi, hp3;Xi, hp4;Yi, hp7;Zi, hp8;Zi, and hp9;Zi,and so has a dimension 6.The time omplexity of an algorithm for the Congenial Talking Philoso-phers problem is measured by the maximal dimension of the set of passages a6

philosopher has to wait before it an attend a forum.Note that, still, the dimension does not neessarily truly reet the elapsedtime. This is beause in real appliations onseutive passages through the rit-ial setion by di�erent groups of proesses usually require \ontext swithes".For example, when a user requests a di�erent data objet in the CSCW en-vironment desribed in Setion 1, the storage devie has to unload the oldobjet and then load the new one. Sine suh loading and unloading are usuallytime-onsuming, in the Congenial Talking Philosophers problem a philosopherwaiting for more passages through the same forum may in pratie need lesstime than one waiting for fewer passages through di�erent fora. The notion of\rounds of passages" is therefore oneived to measure the number of \ontextswithes" (i.e., forum swithes).De�nition 2.3 Let S be a set of passages through forum F. Let ts = min�t �� [t; t0℄2 S	, and tf = max�t0 �� [t; t0℄ 2 S	. Then, S is a round of passages throughF (or simply a round of F) if the following two onditions are satis�ed:1. No passage other than those in S is initiated in between ts and tf .2. The last passage initiated before ts and the �rst passage initiated after tf ,if they exist, are for a forum other than F.If S is a round of F, then we say that it starts at ts, and terminates at tf .It is ongoing in between ts and tf .In other words, a round of F is a maximal set of onseutive passages throughF. For example, the three passages hp4;Yi, hp5;Yi, and hp6;Yi in Figure 1onstitute a round of Y, and the three passages hp7;Zi, hp8;Zi, and hp9;Zionstitute a round of Z.The forum-swith omplexity is measured by the maximum number ofrounds of passages a philosopher may wait before it an attend a forum.For example, suppose that in the worst ase pi has to wait for the followingsequene of passages before it an attend a forum:hp0;F0i; hp1;F1i; hp2;F0i; : : : ; hp2k�1;F1iThen, both the time omplexity and the forum-swith omplexity are 2k. Onthe other hand, if the sequene ishp0;F0i; hp2;F0i; : : : ; hp2k�2;F0i; hp1;F1i; hp3;F1i; : : : ; hp2k�1;F1iwhere the passages through the same forum do not overlap, then the time om-plexity is still 2k, but the forum-swith omplexity is only 2. If the average7

length of a passage is t and the time to perform a ontext swith is s, then thetotal time pi has to wait in the �rst ase above is 2k(t+ s), and in the seondase is 2kt+ 2s.The degree of onurreny is de�ned by the maximum number of pas-sages that an be initiated while some philosopher is in the meeting room andanother philosopher is waiting for a di�erent forum. Intuitively, beause of mu-tual exlusion, when a philosopher p is in the meeting room no other philosopherinterested in a di�erent forum an use the meeting room. Given that a philoso-pher p deides on its own how long it will use the meeting room, better resoureutilization an be ahieved if we allow more philosophers interested in the sameforum to share the meeting room with p. So a higher degree of onurrenyimplies better resoure utilization.Conurreny may also be measured in other ways, for example, by the max-imum number of philosophers that an be in the meeting room simultaneously.However, if the problem de�nition allows k philosophers to hold a forum F, thenmost solutions that failitate onurrent entering would probably allow, in thebest ase, k philosophers to be in F simultaneously. So this is not a useful metrifor onurreny.Beause we do not assume any lower or upper bounds on the time a philoso-pher spends in a meeting room (exept that the time is �nite), it is possiblefor an algorithm to ahieve a virtually \unbounded" degree of onurreny. Forexample, if an algorithm is suh that while some pi is in the meeting room anyother pj interested in the same forum an enter the meeting room, then sinethere is no limit on how quikly pj will �nish the forum and re-request the forum,pj may enter/re-enter the meeting room any number of times. Although thisnumber is �nite, it is not bounded by any predetermined onstant. Note thatthis does not ontradit bounded delay as pi will eventually leave the meetingroom. For a more detailed example, see the following setion.3 Some Simple Centralized SolutionsA simple solution an be obtained by employing a onierge to shedule fora.The onierge periodially inspets philosophers' states to see if anyone is inter-ested in a forum, and then adopts some sheduling poliy to guarantee mutualexlusion, bounded delay, and onurrent entering3. For example, if no forum is3One ould argue that the algorithm does not failitate onurrent entering beause theonierge has to observe philosophers' states in some sequential order. So when philosophersare ready for the same forum, their entries to the forum annot be truly onurrent as the8

urrently in session, the onierge an shedule the �rst waiting philosopher ithas seen to start a forum. All philosophers that are also ready for the same fo-rum also start the forum simultaneously, and philosophers that are interested indi�erent fora are queued. While a forum is in session, the onierge an hoosea �xed philosopher as a referene so that while the referene philosopher staysin the forum, every other philosopher attempting to attend the forum an doso. One the referene philosopher leaves the forum, if some other philosopheris waiting for a di�erent forum, then the \door" to the forum is losed and noother philosopher an join the forum; otherwise, a new referene philosopheris hosen. Note that bounded delay an be guaranteed beause the referenephilosopher an only spend a �nite amount of time in a forum. The ompletealgorithm, whih we refer to as CTP-C (an abbreviation for Congenial TalkingPhilosophers-Centralized), an be found in [15℄.It is easy to see that CTP-C o�ers an unbounded degree of onurreny. Thisis beause while a referene philosopher is in a forum, another philosopher anrepeatedly attend the forum, leave the forum, and beome interested again inthe forum. The analysis of the algorithm's forum-swith omplexity and timeomplexity is somewhat tedious and details have been provided in [15℄. Foromparison with our distributed algorithm, we summarize the result here: aftera philosopher pi requests Fk, it waits for at most m+1 rounds of passages beforea round of Fk is initiated in whih it an make a passage through Fk, where mis the number of fora the philosophers may like to hold. For eah suh round,the dimension of the passages in the round is O(n), where n is the total numberof philosophers. That is, CTP-C has forum-swith omplexity m+ 1, and timeomplexity O(n �m).The algorithm an be made more distributed by employing a onierge foreah forum. To ensure mutual exlusion, a token is shared by the onierges.A onierge must possess the token before sheduling any philosopher to attenda forum, and it must keep the token until all philosophers have left the forum.To inrease onurreny, a onierge may allow a philosopher to re-attend theforum while it possesses the token. To also guarantee bounded delay, a refer-ene philosopher an be hosen similarly to CTP-C to ontrol forum admission.Competition for the token among the onierges an be solved by alling an m-proess mutual exlusion algorithm. The omplete ode of the new algorithm,whih we refer to as CTP-SD (SD for Semi-Distributed), an also be foundin [15℄.order depends on how the onierge observes their readiness. The situation is similar in thefollowing algorithm where a onierge is employed for eah forum.9

Like CTP-C, the use of referene philosophers also allows CTP-SD to laiman unbounded degree of onurreny. Unlike CTP-C, however, the forum-swithomplexity and time omplexity depend on the fairness notion guaranteed bythe underlying m-proess mutual exlusion algorithm, and, in the worst ase,both ould be unbounded! To see this, suppose that a onierge C that managesa forum F does not request the token until it has observed a request for F (sothat ompetition for the token is only among the onierges that need it). Then,after a philosopher has requested F, depending on C's exeution speed, otheronierges may alternatively shedule an arbitrary �nite number of passagesthrough di�erent fora before C requests the token. It then follows that boththe forum-swith omplexity and the time omplexity are unbounded. On theother hand, the problem may be overome by letting the token irulate amongall onierges, regardless of whether or not they have reeived a forum request.Clearly, this approah is not adequate if onierges' loads are not balaned, i.e.,some fora are requested more often than others.Still, CTP-SD is not fully distributed beause the sheduling of entries tothe same forum is operated by a single onierge. As we have seen, a slowonierge may ause poor time and forum-swith performane. Moreover, whenthe number of possible fora m is greater than the number of philosophers n,then we will need more ative proesses as opposed to CTP-C, and when m issmall, the onierges beome a bottlenek as in CTP-C.In the following setions we present a fully distributed solution for the Conge-nial Talking Philosophers problem. The algorithm has similar time omplexityand forum-swith omplexity to CTP-C, and ahieves a degree of onurrenyof O(n3).4 A Distributed Solution for Two ForaWe �rst present a distributed solution for the Congenial Talking Philosophersproblem with only two fora F and F. To help understand our solution, we presentit in stages.4.1 A First AttemptConsider the algorithm presented in Figure 2, whih we refer to as CTP-Temp.CTP-Temp uses the following variables:� turn : (F;F); a variable shared (with read/write aess) by the philoso-phers to identify the forum that urrently has priority to start. It is10

initialized arbitrarily.� ag : array [0::n�1℄ of hstate ; opi, where ag [i℄ reords pi's state and theforum it wishes to attend. There are three possible states: passive ; request ,and in s . State passive means that the philosopher does not intend toattend any forum; request means that the philosopher wishes to attendsome forum; and in s means that the philosopher has obtained a \tem-porary" permission for its request. A philosopher in state in s may beprevented from attending a forum if some other philosopher has also ob-tained a temporary permission for its request. op ranges over F;F, and ?,where ? means that no forum is requested by pi.ag [i℄ an be read/written by pi, but other philosophers an only read it.Note that although the value of eah ag [i℄ is represented as a pair, werequire aess to ag [i℄ to be atomi. This an be done using a straight-forward enoding as eah pair hstate; opi an range over only 3�3 possiblevalues. Denoting ag [i℄ as a pair helps us understand its meaning.The prediate all passive(F) de�ned in Figure 2 heks if no philosopher isinterested in F, and none in s(F) determines if no philosopher has obtained atemporary permission to attend F.As an be seen, CTP-Temp bears some similarity to Knuth's 2-proess mu-tual exlusion algorithm [17℄. It employs a variable turn to resolve the onitbetween philosophers attempting di�erent fora. When a philosopher pi wishesto attend a forum, say F, it heks if F has priority (i.e., turn = F), or no oneis interested in F (i.e., all passive(F) = true). It annot proeed until one ofthe two onditions holds. Then, pi obtains a temporary permission to attendF (line 4). To atually attend F, pi must further hek if any philosopher hasobtained a temporary permission to attend F (by evaluating none in s(F)). Ifso, pi gives up its temporary permission and loops bak to hek if F still haspriority over F or no one is interested in F. If this time no philosopher obtains atemporary permission to attend F then pi an start F; otherwise pi must repeatthe loop. After �nishing the forum, pi swithes turn to F so that philosophersinterested in F will then have priority to proeed.CTP-Temp inherits the mutual exlusion property from Knuth's algorithm.To see this, observe that a philosopher pi attends F only if none in s(F) holds.Sine pi tests none in s(F) only after it has set ag [i℄ to hin s ;Fi, it isnever the ase that another philosopher attempting F evaluates a true valuefor none in s(F) simultaneously. Moreover, when more than one philosopheris in F, the swith of turn in line 7 by any one of them annot inur a pending F11

/* assuming pi is attempting F */1 repeat2 ag [i℄ hrequest ;Fi;3 while turn 6= F ^ :all passive(F) do skip ;4 ag [i℄ hin s ;Fi;5 until none in s(F)6 << talk in F >>7 turn F;8 ag [i℄ hpassive ;?i;whereall passive(F) � 8 j; j 6= i; 0 � j � n� 1 : ag [j℄ = hstate ; opi) op 6= Fnone in s(F) � 8 j; j 6= i; 0 � j � n� 1 : ag [j℄ = hstate ; opi) (state 6= in s _ op = F)Figure 2: Algorithm CTP-Temp.beause so long as some philosopher is in F its ag remains hin s ;Fi, and thusnone in s(F) evaluates to false . So no philosopher attempting F an skip theloop ondition in line 5 to attend F.CTP-Temp also failitates onurrent entering beause if no philosopher hasrequested F, then all passive(F) evaluates to true. So all philosophers attempt-ing to attend F an do so, and their entries to the forum are mutually indepen-dent.In the presene of onurreny, unfortunately, CTP-Temp fails to guaranteebounded delay. To illustrate, assume that pi repeatedly wishes to attend F,while pj repeatedly wishes to attend F. A slow philosopher pk attemptingto attend, say F, may be forever bloked in the while-loop of the algorithmif every time when pk heks the loop ondition it sees that turn = F andall passive(F) = false ; and within the interval of two onseutive heks, pj andpi eah have ompleted an instane of F and F, respetively.4.2 A Fair SolutionThe unbounded delay of CTP-Temp is due to the fat that when turn = F, somephilosopher attempting to attend F will sueed, but we annot guarantee whihphilosopher will sueed. To overome this problem, we let some philosopherattending F \apture" all philosophers urrently waiting for the same forum12

into the forum.4 Obviously, not every philosopher an apture philosophers, forotherwise philosophers interested in F will keep entering F, thus bloking theother forum inde�nitely. Our approah is to let the �rst philosopher startinga new session of F at as a aptain to apture philosophers. The philosophersthat are aptured into F are alled the suessors of the aptain. Suessors arenot allowed to apture philosophers to avoid possibility of livelok.The following variable is added to assist the oordination:� suessor : array [0::n�1℄ of (F;F;?), where suessor [i℄ indiates the fo-rum for whih pi has been aptured. suessor [i℄ = ? if pi is not urrentlyaptured. It is read/write shared by all philosophers.The algorithm, whih we refer to as CTP-2, is given in Figure 3. It begins byletting pi set its ag [i℄ to hrequest ;Fi to express its interest in F. To ompletethe request, pi must also lear suessor [i℄ to indiate that it is not aptured byany philosopher. Then, like CTP-Temp, pi begins a repeat-loop to test if it anattend F. In line 5, in addition to the two onditions turn = F and all passive(F),a philosopher pi exits the while-loop if it �nds that it is a suessor of someother philosopher, whih is determined by the ondition suessor [i℄ = F. Ifpi is a suessor, then it also skips the repeat-loop and enters CS to attend F.By `CS'|the Critial Setion|we mean the program segment from line 8 toline 13.If pi is not a suessor of any other philosopher, then like CTP-Temp, itobtains a temporary permission to attend F if F has priority or no one else isinterested in F (line 5). To atually attend F, pi must hek if no philosopherhas obtained a temporary permission to attend F (by evaluating none in s(F)).In addition, pi must also hek if all suessors of a previous aptain interestedin F have �nished F. The new prediate no suessor(F) de�ned in Figure 3serves this purpose. Note that the evaluation of no suessor(F) involves, foreah pj , two aesses to pj 's variables: ag [j℄ and suessor [j℄. As shall be learin the analysis, the order of the two aesses is irrelevant to the orretness ofthe algorithm.It is also important to note that the ondition none in s(F) in line 7 mustbe evaluated before no suessor(F). (Throughout the paper we use 1 !̂ 2 to4The idea of apturing is distantly related to that of helping from the onurrent objetsliterature [14, 3℄. In the onstrution of onurrent objets, some helping mehanisms aredevised to let proesses \help" eah other to make progress so that if some proess makesprogress, then eventually every proess does. Our apturing proedure also allows a philoso-pher in the ritial setion to \help" others to enter the ritial setion, but the tehnialdetails are entirely di�erent. 13

/* assuming pi is attempting F */1 ag [i℄ hrequest ;Fi;2 suessor [i℄ ?;3 repeat4 ag [i℄ hrequest ;Fi;5 while suessor [i℄ 6= F ^ turn 6= F ^ :all passive(F) do skip ;6 ag [i℄ hin s ;Fi;7 until suessor [i℄ = F _ (none in s(F) !̂ no suessor (F));/* beginning of ritial setion */8 if suessor [i℄ 6= F then f9 turn F;10 for j 0 to n� 1, j 6= i, do /* start apturing philosophers */11 if ag [j℄ 2 fhrequest ;Fi; hin s ;Fig then suessor [j℄ F; g12 << talk in F >>13 ag [i℄ hpassive;?i;/* end of ritial setion */whereall passive(F) � 8 j; j 6= i; 0 � j � n� 1 : ag [j℄ = hstate ; opi) op 6= Fnone in s(F) � 8 j; j 6= i; 0 � j � n� 1 : ag [j℄ = hstate ; opi) (state 6= in s _ op = F)no suessor (F) � 8 j; j 6= i; 0 � j � n� 1 : ag [j℄ = hstate ; opi) :(suessor [j℄ = F ^ op = F)Figure 3: Algorithm CTP-2.
14

denote the onjuntion of 1 and 2 where 1 is evaluated before 2.) Otherwise,mutual exlusion annot be guaranteed (see Setion 4.4).Finally, pi must also set turn to F (line 9), and then apture philosophersinterested in the same forum. The latter is done by setting their suessors to F(lines 10-11). After exiting the forum, pi resets its ag and returns to thinking.4.3 Analysis of CTP-2For the purpose of analysis, we formalize the terms used in the algorithm. Wesay that a philosopher pi has requested F (or more olloquially, pi is interestedin F) if pi has exeuted line 1 of CTP-2. To omplete a request pi must also setsuessor [i℄ to ?. We say that pi has ompleted a request for F if it has exeutedlines 1-2. The request is granted when pi exits the repeat-loop in lines 3-7. piis waiting for F if it has ompleted a request for F but the request has not yetbeen granted.Reall that the CS region refers to the program segment from line 8 toline 13. So pi enters CS when its request is granted, and exits CS when it�nishes line 13. A passage through CS by pi thus refers to a time interval fromthe point pi enters CS to the point it leaves CS. Sine the CS region is used toimplement a forum session, \a passage through CS" will be used synonymouslywith \a passage through a forum" in the analysis.In the algorithm a philosopher pi interested in F enters CS only if1. suessor [i℄ = F, or2. suessor [i℄ 6= F and (none in s(F) !̂ no suessor(F)) = trueIn the �rst ase we say that pi enters CS as a suessor , while in the latterase pi enters CS as a aptain. Observe that pi resets suessor [i℄ to ? eahtime it ompletes a request, and will not alter it while waiting for the requestto be granted. So for suessor [i℄ to be F, some philosopher must have hangedsuessor [i℄ to F after pi ompletes its request. We say that pj aptures pi ifpj writes F to suessor [i℄ while pi is waiting for F. In this ase, pi must enterCS as a suessor; pi is then alled a suessor of pj , and pj a aptain of pi.Note that when pi exits CS, the suessor-aptain relation between pi and pj isbroken. So when we say \pi is a suessor of pj" or \pj is a aptain of pi", weimpliitly assume a passage by pi and a passage by pj to whih the phrase refers.Note further that sine more than one philosopher may write F to suessor [i℄,pi may have more than one aptain at a time.Sine more than one philosopher may enter CS as a aptain simultaneously,they may attempt to apture one another. If pi interested in F enters CS as a15

aptain, but before pi exeutes the if-then statement in line 8 another aptain pjhas written F to suessor [i℄, then pi will not be able to apture any philosopher.In this ase we say that pi is a aptain killed by pj . A aptain that is not killedby any other aptain is alled an e�etive aptain. Clearly, if pj kills pi, then pjmust be an e�etive aptain. Furthermore, although an e�etive aptain is ableto apture suessors, it may end up with no suessor if no one is interested inthe same forum.We are now ready for the analysis. We begin with mutual exlusion.Lemma 4.1 If pi enters CS as a aptain, then while it is in CS, no other pjinterested in a di�erent forum an be in CS as a aptain simultaneously.Proof. Assume pi is interested in F. By de�nition of aptain, pi must enterCS with a ondition none in s(F) = true. Observe that pi sets its state toin s before it evaluates none in s(F). So when pi inspets other philosophers'states, no pj interested in a di�erent forum an be in state in s (and so an bein CS) at this moment. Subsequently, when pj enters state in s to inspet pi'sstate, if pi is still in CS, pj must �nd that none in s(F) = false and so annotenter CS. 2Lemma 4.2 If pi enters CS as a aptain, then after it leaves CS, no otherpj interested in a di�erent forum an enter CS as a aptain until all of pi'ssuessors have left CS.Proof. Assume that pi is interested in F. For pj to enter CS as a aptain, it mustevaluate both none in s(F) and no suessor(F) to true, and the �rst prediatemust be evaluated before the seond. By Lemma 4.1, to obtain none in s(F) =true pi must have left CS when pj inspets pi's ag in the evaluation. Sowhen pj evaluates no suessor(F), pi must have �nished apturing philosophers(lines 10-11 of the algorithm). Let pk be a suessor of pi. For distinguishingpurposes we shall use F� to denote the instane of F for whih pk enters CS asa suessor of pi.For pj to evaluate no suessor(F) to true, the following must hold (notethat no partiular ordering is assumed in aessing ag [k℄ and suessor [k℄):ag [k℄ = hstate ; opi) :(suessor [k℄ = op = F)So there are four ases: suessor [k℄ = ?, suessor [k℄ = F, op = ?, orop = F. Sine pi has written F� to suessor [k℄, and sine only pk an re-set suessor [k℄ to ? (whih ours only after pk has requested another forum),16

the ase suessor [k℄ = ? seen by pj implies that pk has already �nished F� andleft CS.The ase suessor [k℄ = F implies that some philosopher pl reads op = F inag [k℄ and writes F to suessor [k℄ after pi has written F� to suessor [k℄. Thisimplies that pk has left CS in between, as a suessor of pi.For the ase op = ?, reall that pj reads ag [k℄ after pi writes F� tosuessor [k℄. Moreover, sine pk is a suessor of pi, pk must have ompleted arequest for F� before pi writes F� to suessor [k℄. Then we have the followingevents that happen in the order listed:� pk sets ag [k℄ to hrequest ;F�i and resets suessor [k℄ to ?.� pi writes F� to suessor [k℄.� pj reads ag [k℄ = hpassive ;?i.Therefore, when pj �nds that ag [k℄ = hpassive ;?i, pk must have already �n-ished F� and left CS.Finally, onsider the ase op = F. Similar to the above argument we anshow that for pj to read ag [k℄ = hstate ;Fi, pk must have �nished F� and haverequested F. The lemma is then proven. 2Lemma 4.3 If pi enters CS as a suessor, then it annot apture any philoso-pher while in CS.Proof. By de�nition of suessor, pi enters CS with the ondition suessor [i℄ =F (assuming pi is interested in F). Beause no philosopher an hange suessor [i℄to F (Lemma 4.2), suessor [i℄ remains F in between the time pi �nishes line 7and the time it is to exeute line 8. So pi skips lines 9-11 of CTP-2. 2Theorem 4.4 CTP-2 guarantees mutual exlusion.Proof. Suppose pi interested in F enters CS as a aptain. By Lemmas 4.1and 4.2, while pi and its suessors are in CS, no philosopher interested in Fan enter CS as a aptain. Moreover, Lemma 4.3 implies that for a philosopherinterested in F to enter CS as a suessor, some philosopher interested in F mustenter CS as a aptain to apture the philosopher. So while pi and its suessorsare in CS, no philosopher interested in F an enter CS as a suessor, either. Alltogether, we have that while a philosopher is in CS (either as a aptain or as asuessor), no philosopher interested in a di�erent forum an enter CS (eitheras a aptain or as a suessor). 2We now prove bounded delay. 17

Lemma 4.5 Suppose pj enters CS as a aptain. If pi enters CS as a suessorof pj, then while pj stays in CS, pi annot re-enter CS as a suessor of pj .Similarly, if pi enters CS as a aptain killed by pj, then when pi re-enters CSas a aptain while pj is still in CS, pi annot be killed again by pj.Proof. This follows from the fat that pj in CS attempts to write suessor [i℄only one, and pi resets suessor [i℄ to ? before it ompletes a request. 2The above lemma implies that a aptain in a passage through F an ap-ture/kill at most k � 1 philosophers, where k is the number of philosophersthat an potentially attend F. Moreover, sine only an e�etive aptain anapture/kill philosophers, the lemma implies that if pi repeatedly enters CS toattend F, then either pi or some other pj interested in F must repeatedly enterCS as an e�etive aptain.Lemma 4.6 If a philosopher is waiting for a forum, then eventually somephilosopher will attend a forum.Proof. Suppose pi has requested F. If no philosopher has requested F, thenthe three Boolean onditions all passive(F), none in s(F), and no suessor(F)evaluate to true. So pi an exit both the while-loop and the repeat-loop of thealgorithm to enter CS to attend F. So for the rest of the proof assume thatsome pj has requested F. Moreover, sine a philosopher spends only a �niteamount of time in CS, and sine a philosopher annot enter CS as a suessorunless some philosopher is in CS as a aptain, we shall further assume that nophilosopher is urrently in CS, and no philosopher will enter CS as a suessor.While pi and pj are waiting for F and F respetively, if no philosopher getsinto CS, then pi and pj must iterate through either the while-loop or the repeat-loop of the algorithm. Sine no one gets into CS, turn remains the same value,say F (the other ase is similar). So pi annot be bloked in the while-loop. Onthe other hand, pj and every other philosopher interested in F will eventuallybe bloked in the while-loop beause turn = F and all passive(F) = false .Therefore, eventually pi will evaluate none in s(F) !̂ no suessor(F) to true,and then will exit the repeat-loop to enter CS. 2Lemma 4.7 If pj interested in F enters CS as a aptain while pi is waiting forF, then when pj starts to apture philosophers, either pi will be aptured by pj ,or pi will have already entered CS.Proof. This follows diretly from the algorithm. 218

By Lemma 4.7, if a set of philosophers have ompleted their requests forF, then if one of them gets to attend F, the others will also attend F before adi�erent forum is established.For the following lemma, reall De�nition 2.3 that \a round of F" is a max-imal set S of onseutive passages through F suh that no passage through adi�erent forum is interspersed among them. It is lear that to start a roundof F some pj interested in F must enter CS as a aptain, and when a round ofpassages terminates, the next round of passages must be for a di�erent forum.Lemma 4.8 Suppose pi has ompleted a request for F. Then the following musthold:1. If a round of F is already ongoing when pi ompletes its request, then ei-ther pi will attend F, or a round of F will start.2. If a round of F starts after pi has ompleted the request, then pi must makea passage through F in this round.Proof. The seond ase follows diretly from Lemma 4.7 and the fat thatwithin a round of F there must be some philosopher that enters CS as an e�etiveaptain. (In Lemma 4.7, it is easy to see that the passages through F by pi andpj must belong to the same round.)For the �rst ase, if pi remains waiting for F, then by Lemma 4.6 eithersome philosopher will enter CS to start a round of F, or some philosopher willrepeatedly enter CS to attend F. If some philosopher repeatedly attends F, thenby Lemma 4.5 some philosopher interested in F must also repeatedly enter CSas an e�etive aptain; then by Lemma 4.7 pi will be able to attend F. So thease is proven beause pi will attend F, or a round of F will start. 2Lemma 4.9 Suppose pi is waiting for F while a round of F is ongoing. Theneventually the round of F will terminate and a round of F will start.Proof. While pi is waiting for F, by Lemma 4.6 either pi or some other philoso-pher eventually attends F, or otherwise some philosopher must repeatedly attendF. By the mutual exlusion property (Theorem 4.4), the �rst ase implies thatthe ongoing round of F will terminate and a round of F will then start.For the seond ase, by Lemma 4.5 some pj interested in F must repeatedlyenter CS as an e�etive aptain. However, this auses a ontradition beauseafter pj enters CS as an e�etive aptain, it will set turn to F. turn will thenremain F until some philosopher interested in F enters CS to hange turn bakto F. While turn = F and pi remains waiting for F, pj annot re-enter CS as a19

aptain. So the seond ase also implies that the round of F will terminate anda round of F will start. 2Theorem 4.10 CTP-2 guarantees bounded delay.Proof. Suppose pi has ompleted a request for F. Consider �rst that a roundof F is already ongoing when pi ompletes its request. Then by Case 1 ofLemma 4.8, either pi will attend F, or a round of F will start. In the formerase, we are done. In the latter ase, sine pi's request for F has not beengranted, by Lemma 4.9 the round of F will terminate and a new round of F willstart. Then by Case 2 of Lemma 4.8 pi will attend F in this new round.Next, suppose that a round of F is ongoing when pi ompletes its request.Then by Lemma 4.9 the round of F will eventually terminate and a round of Fwill start. By Case 2 of Lemma 4.8 pi will attend F in this round.If no round of passages is ongoing when pi ompletes its request, then byLemma 4.6 eventually some round of passages will start. If it is a round of F,then by Case 2 of Lemma 4.8 pi will attend F in this round. If it is a roundof F, then by Lemma 4.9 this round of F will eventually terminate and a roundof F will start. Case 2 of Lemma 4.8 then ensures that pi will attend F in thatround. 2From the above proof, when a philosopher pi ompletes a request for F, itwaits for at most 2 rounds of passages before a round of F is initiated in whih pian make a passage through F. So CTP-2's forum-swith omplexity is 2. Timeand onurreny will be analyzed in Setion 5.3 when we extend the algorithmto m fora.Finally, it is easy to see that if no philosopher is interested in F, then everyphilosopher attempting to attend F an do so, and they an attend F onur-rently. The other ase that philosophers an attend F onurrently is similar.So CTP-2 allows onurrent entering.4.4 RemarksWe omment here on some ode of CTP-2 relating to its orretness and perfor-mane. First, as noted in Setion 4.2, the ondition none in s(F) in line 7 ofCTP-2 must be evaluated before no suessor(F), for otherwise mutual exlu-sion annot be guaranteed. To see this, assume that pi and pj wish to attendF, while pk wishes to attend F. Assume further that turn = F. Consider thefollowing senario: 20

1. pk sees that no philosopher is interested in F, and so it exits the while-loopin line 5.2. pi also exits the while-loop beause turn = F. It then sets ag [i℄ tohin s ;Fi, �nishes line 7, and enters CS.3. pj sets its ag to hrequest ;Fi and proeeds to line 5.4. pk hanges its state to in s and starts to evaluate the onditions in line 7.Suppose no suessor(F) is evaluated �rst. Sine no philosopher interestedin F is aptured as a suessor, pk sees that no suessor(F) = true. pkthen evaluates none in s(F). It begins with pj and �nds that pj is instate request . So pk ontinues to hek pi's ag.5. Before pk inspets pi's ag, pi �nds that pj is also interested in F and soit aptures pj . pi then sets turn to F, �nishes F, and resets its state topassive .6. pk now sees that pi's state is passive and so obtains none in s(F) = true.It then exits line 7 and enters CS to attend F.7. pj in line 5 learns that it is aptured as a suessor and so moves on toattend F, yielding both F and F to be in session simultaneously.Note that if none in s(F) is evaluated �rst, then pi must have already ap-tured pj when pk sees none in s(F) = true. So when pk evaluates no suessor(F),it annot return true unless pj has �nished F.Seond, the statement \turn F" in line 9 an be moved to the end ofline 11 where pi has �nished apturing philosophers, or it an even be plaedoutside the if-then statement so that every philosopher entering CS will set turnto F (whih, of ourse, may result in many redundant assignments to turn). Itis not diÆult to see that these modi�ations annot a�et the orretness ofthe algorithm. However, we have deliberately plaed the statement before theapturing proedure to ahieve optimal performane.Intuitively, if turn is hanged earlier, then fewer philosophers get a haneto onurrently attend an ongoing forum, and so philosophers interested in adi�erent forum wait for less time before attending the forum. So the hoie ofplaing \turn F" before or after the apturing proedure should be a matter oftrade-o� between the algorithm's time omplexity and its onurreny. However,as we shall see in Setion 5.4, plaing \turn F" ahead improves the algorithm'stime omplexity, but does not a�et its degree of onurreny. (This is beausethe philosophers interested in F will still be able to attend F onurrently asthey will be aptured by the aptain exeuting \turn F".)21

Finally, although after pi has set ag [i℄ to hrequest ;Fi in line 1 it will againexeute the same assignment immediately after it enters the repeat-loop, line 1annot be removed. This is beause the apturing proedure in line 11 involves,for eah pj , a read from ag [j℄ to see if pj is interested in F and, if so, a writeto suessor [j℄. Between the read and the write, pj ould have also enteredCS as a aptain, �nished F, hanged ag [j℄ to hpassive ;?i, and then requestedanother entry to F. If we were to remove line 1 from the algorithm, then ag [j℄remains hpassive ;?i after pj has exeuted line 2. When pi �nally writes Fto suessor [j℄ and leaves CS, another pk interested in F may read turn = F,pass line 5, see none in s(F) !̂ no suessor(F) = true, and then enter CSto attend F. Sine suessor [j℄ = F, pj an also enter CS to attend F, thusviolating mutual exlusion.5 A Generalized SolutionWe now generalize CTP-2 to m fora F0;F1; : : : ;Fm�1.5.1 The AlgorithmThe generalized algorithm, whih we refer to as CTP-m, is given in Figure 4.Like CTP-2, a philosopher pi ompletes its request for Fk by hanging ag [i℄to hrequest ;Fki and resetting suessor [i℄ to ?. In CTP-2, pi must wait until(1) some aptain aptures pi, (2) turn = Fk , or (3) no philosopher is interested ina di�erent forum. In CTP-m, however, are must be taken to avoid deadloks.For example, suppose two philosophers p1 and p2 wish to attend F1 and F2respetively, and turn is set to a third forum, say F0. If eah pj (j = 1; 2) loopson the ondition \turn 6= Fj" ^ \some philosopher is interested in a di�erentforum", then both p1 and p2 would be waiting forever. Note that the latterondition annot be weakened to \some philosopher is interested in the forumspei�ed by turn" either. This is beause then both p1 and p2 may �nd that noone is interested in F0 and then attempt to establish F1 and F2 simultaneously.To resolve this dilemma, we let the philosopher whose requesting forum isthe \losest" to the one ditated by turn proeed. This is determined by thefuntion next op(Fg), whih heks all philosophers' ags to see if any philoso-pher has requested a forum. If so, next op(Fg) returns the �rst requested fo-rum in the sequene Fg ;Fg+1; : : : ;Fg+m�1. Otherwise, next op(Fg) returns Fg .(Note that throughout this paper unless stated otherwise addition and subtra-tion on indies of F are modulo m. Moreover, if h < g then Fg ;Fg+1; : : : ;Fh22

/* assuming pi is attempting Fk */1 ag [i℄ hrequest ;Fki;2 suessor [i℄ ?;3 repeat4 ag [i℄ hrequest ; Fki;5 while suessor [i℄ 6= Fk ^ next op(turn) 6= Fk do skip ;6 ag [i℄ hin s ;Fki;7 until suessor [i℄ = Fk_ (none in s(Fk) !̂ no suessor (Fk) !̂ (turn = Fk _ all passive(turn)));/* beginning of ritial setion */8 if suessor [i℄ 6= Fk then f9 turn next op(Fk+1);10 for j 0 to n� 1, j 6= i, do /* start apturing philosophers */11 if ag [j℄ 2 fhrequest ;Fki; hin s ;Fkig then suessor [j℄ Fk; g12 << talk in Fk >>13 ag [i℄ hpassive ;?i;/* end of ritial setion */whereall passive(Fg) � 8 j; j 6= i; 0 � j � n� 1 : ag [j℄ = hstate ; opi) op 6= Fgnone in s(Fk) � 8 j; j 6= i; 0 � j � n�1 : ag [j℄ = hstate ; opi) (state 6= in s_op = Fk)no suessor (Fk) � 8 j; j 6= i; 0 � j � n� 1 : ag [j℄ = hstate ; opi):(9 l; l 6= k : suessor [j℄ = Fl ^ op = Fl)/*/*/*/*/* funtion next op(Fg) returns the �rst forum Fh in the sequene Fg;Fg+1; : : : ,Fg+m�1 suh that some philosopher has requested Fh but no philosopher hasrequested Fg;Fg+1; : : : ; Fh�1. Note that sine ag [i℄ is also inspeted, and sinepi invokes next op only when it is interested in Fk, next op(Fg) returns Fk if nophilosopher is interested in a di�erent forum. */*/*/*/*/1 next op (Fg) :: f2 next g +m;3 for j 0 to n� 1 do f4 let ag [j℄ = hstate ; opi;5 if op 6= ? then f6 let op = Fl;7 if l < g then l l+m;8 if l < next then next l; gg9 return Fnext (mod m);10 g Figure 4: Algorithm CTP-m.23

stands for the sequene Fg ;Fg+1; : : : ;Fm�1;F0;F1; : : : ;Fh.) So the exit ondi-tion next op(turn) = Fk in line 5 means that from pi's observation Fk is therequested forum that is the losest to the one spei�ed by turn.When pi exits the while-loop, it hanges ag [i℄ to hin s ;Fki. In CTP-2, piexits the repeat-loop in line 7 only if it is a suessor, or no philosopher interestedin a di�erent forum is in state in s and all suessors interested in a di�erentforum have left CS. In CTP-m, if pi is not a suessor, we additionally requirepi to hek if turn = Fk or no philosopher is interested in the forum ditated byturn. (Note that the CS region of CTP-m refers to the program segment fromline 8 to line 13.) As we shall see in Setions 5.2 and 5.4, this extra onditiontogether with our way of assigning turns guarantees that a philosopher waitsfor at most m rounds of passages before its request is granted. Removing thisondition (i.e., turn = Fk _ all passive(turn)) from the algorithm explodes theforum-swith omplexity from O(m) to O((1+p52)m)!Like CTP-2, when pi enters CS, if it is not a suessor then it must atas a aptain to apture philosophers interested in the same forum to enter CS.Then, it must give the turn to other philosophers that are waiting for a di�erentforum. In CTP-m, the new turn is alulated by the funtion next op(Fk+1),whih assigns turn to the �rst forum in the sequene Fk+1;Fk+2; : : : ;Fk+m�1for whih some philosopher is waiting, or Fk otherwise.Note that unlike CTP-2 where a aptain always yields turn to the otherforum, in CTP-m a aptain may set turn to the same forum it has requested if itsees that no one is interested in a di�erent forum. In the presene of onurreny,this may ause turn, whih has been set to Fh by some aptain pi (beause pifound some philosopher interested in Fh), to be reset to Fk by a slow aptain pj(beause pj evaluated next op(Fk+1) earlier than pi and found no philosopherinterested in a forum other than Fk). As a result, more philosophers an enterCS to attend Fk before turn is �nally set to Fh to allow other philosophers toattend Fh. However, as we shall see in Setion 5.4, the time a philosopher maywait for its request is only slightly a�eted (at most by a onstant fator), whilethe degree of onurreny is inreased by O(n). Therefore, in CTP-m we haveopted for a higher degree of onurreny by allowing a aptain to set turn tothe same forum it has requested.Moreover, one may have observed that the evaluation of next op(turn) 6= Fkin line 5 involves an aess to turn, and then the inspetion of philosophers'ags. Thus it is possible that while the inspetion is ongoing turn has beenhanged several times already, and so a philosopher may exit the while-loopeven if its requesting forum is not the losest to the one urrently spei�ed by24

turn. However, the premature exit of the while-loop is not harmful beause whenthe philosopher proeeds to line 7, it will learn that either some philosopher isalready in CS or it does not have the priority to enter CS when it evaluates\turn = Fk _ all passive(turn)", and so it will go bak to line 5 to re-evaluatenext op(turn), whih will then bring up the more up-to-date value of turn.The evaluation of \turn = Fk _ all passive(turn)" in line 7 also involves anaess to turn and the inspetion of philosophers' ags. Unlike the situation inline 5, turn annot be hanged by any philosopher interested in a di�erent forumduring the evaluation. This is beause the evaluation takes plae only afternone in s(Fk) !̂ no suessor(Fk) = true, whih implies that no philosopherinterested in a di�erent forum an be in CS to hange turn. Note that turn maybe hanged by some pj interested in Fk during the evaluation; but this annotause a problem as no philosopher interested in a di�erent forum will be ableto enter CS until pi has exited CS.5.2 Mutual Exlusion and Bounded Delay of CTP-mWe now prove the orretness of CTP-m. Sine all the terms de�ned in Se-tion 4.3 an be easily generalized to m fora, we shall use them diretly in theanalysis.Theorem 5.1 CTP-m guarantees mutual exlusion.Proof. This an be proved similarly to Theorem 4.4 and observe that only theexit ondition(suessor [i℄ = Fk) _ (none in s(Fk) !̂ no suessor(Fk))of the repeat-loop of CTP-m suÆes to guarantee mutual exlusion. 2We move on to prove that CTP-m guarantees bounded delay. For this weneed the following lemmas.Lemma 5.2 Suppose pj enters CS as a aptain. If pi enters CS as a suessorof pj, then while pj stays in CS, pi annot re-enter CS as a suessor of pj .Similarly, if pi enters CS as a aptain killed by pj, then when pi re-enters CSas a aptain while pj is still in CS, pi annot be killed again by pj.Proof. Like Lemma 4.5, this is beause pj in CS attempts to write suessor [i℄only one, and pi resets suessor [i℄ to ? before it ompletes a new request. 225

Lemma 5.3 If a philosopher is waiting for a forum, then eventually somephilosopher will attend a forum.Proof. We shall only outline the main idea of the proof; the rest is similar toLemma 4.6. Assume that no philosopher is urrently in CS and no philosopherwill enter CS as a suessor. So turn remains unhanged. Observe that whenone or more philosophers attempt to attend a forum, not all of them an bebloked in the while-loop of CTP-m. This is beause a philosopher pi whoserequest Fk is the losest to turn (w.r.t. the ordering turn; : : : ;Fj ;Fj+1; : : :) willobtain next op(turn) = Fk in line 5, and so will proeed to line 7. Sine Fkis the losest to turn, the ondition turn = Fk _ all passive(turn) must hold.So if the evaluation of the Boolean ondition in line 7 returns false , then somepj interested in a di�erent forum must have set its state to in s and is alsoevaluating the Boolean ondition in line 7. (pj must have seen a relatively oldversion of turn when it evaluated next op(turn) in line 5.) Then both pi andpj will loop bak to line 4. When they proeed to line 5, still, pi will not bebloked in line 5, but pj this time will see a orret version of turn and so willlearn that its requesting forum is not the losest to turn, and so will be waitingin line 5. Clearly, at most n� 1 philosophers an ause suh a onit situationwith pi, and all of them will eventually be bloked in line 5, after whih pi willbe able to exit the loop ondition in line 7 to enter CS. 2Lemma 5.4 Suppose pi has ompleted a request for Fk. Then the followingmust hold:1. If a round of Fk is already ongoing when pi ompletes its request, theneither pi will attend Fk, or a di�erent round of passages will start.2. If a round of Fk starts after pi has ompleted the request, then pi mustmake a passage through Fk in this round.Proof. The proof is similar to Lemma 4.8; we omit the details. 2Lemma 5.5 Suppose a round of Fh is ongoing while pi is waiting for Fk, k 6= h.Then the round of Fh will eventually terminate and a new round will start.Proof. The proof is similar to Lemma 4.9, and observe that while pi is waitingfor Fk , eventually some e�etive aptain interested in Fh must assign turn toone of the fora Fh+1;Fh+2; : : : ;Fk. Then every philosopher attempting to attendFh will �nd next op(turn) 6= Fh when it evaluates the while-loop ondition ofCTP-m, and so an no longer enter CS as a aptain in this round of Fh. 226

Lemma 5.6 Suppose a round of Fl starts while pi is waiting for Fk, l 6= k.Then when the round terminates, the next round must be a round of Fg forsome Fg in Fl+1;Fl+2; : : : ;Fk.Proof. Sine pi requests Fk before the round of Fl starts, when any aptain inthe round alls the funtion next op(Fl+1) to assign the next turn, it must obtainone of the fora Fl+1;Fl+2; : : : ;Fk. So right after the round terminates, turn =Fg for some Fg in Fl+1;Fl+2; : : : ;Fk. Moreover, some philosopher must haverequested Fg during the exeution of next op(Fl+1). By the mutual exlusionproperty, the philosopher must still be waiting for Fg when the round of Flterminates. So right after the round of Fl terminates, we have that (1) turn = Fg ,and (2) some philosopher is waiting for Fg .To omplete the proof of the lemma, we argue that the next round of passagesmust be a round of Fg . Observe that to start a new round of passages, say around of Fh, some philosopher pj must enter CS as a aptain, and so it mustexit the repeat-loop of CTP-m with true on the following ondition:none in s(Fh) !̂ no suessor(Fh) !̂ (turn = Fh _ all passive(turn))Note that pj an evaluate \turn = Fh _ all passive(turn)" only after the predi-ate \none in s(Fh) !̂ no suessor(Fh)" evaluates to true. That is, only afterall aptains and their suessors in the urrent round of Fl have left CS. Sinewhile pj is evaluating \turn = Fh _ all passive(turn)" no philosopher an be inCS to hange turn, turn remains Fg during the evaluation. So if Fh 6= Fg , thenall passive(turn) must evaluate to false beause some philosopher has alreadyrequested Fg before the evaluation. So no philosopher an start a round of Fhunless Fh = Fg . 2Lemma 5.7 After pi ompletes a request for Fk, at most m rounds of passagesan our before a round of Fk starts.Proof. The lemma holds trivially if no round of passages starts after pi om-pletes its request. So let us assume that some round of Fh starts after pi om-pletes its request. Clearly, the lemma holds if h = k.If h 6= k, then by Lemma 5.6 at most m � 2 more rounds of passages anour before a round of Fk starts. Inluding the round of Fh and the round ofpassages that might already be ongoing when pi ompletes its request, therefore,at most m rounds of passages an our before a round of Fk start. 2Theorem 5.8 CTP-m guarantees bounded delay.27

Proof. Assume pi has ompleted a request for Fk. While pi is waiting for Fk,if no round of passages is ongoing, then by Lemma 5.3 some round of passageswill start. If this is a round of Fk, then by Case 2 of Lemma 5.4, pi mustmake a passage through Fk in this round. If this is not a round of Fk, thenby Lemmas 5.5 and 5.7 some round of Fk eventually starts; and by Case 2 ofLemma 5.4 pi must make a passage through Fk in this round. So pi eventuallyattends Fk if no round of passages is ongoing when it ompletes its request.Next, suppose some round Fh is already ongoing when pi ompletes its re-quest. If h = k, then by Case 1 of Lemma 5.4 eventually either pi makes apassage through Fk or a new round of passages will start. If h 6= k, then byLemma 5.5 a new round of passages will also start. Together with the previousargument, we onlude that if some round of passages is already ongoing whenpi ompletes its request, then pi eventually attends Fk . 2By Lemmas 5.5 and 5.7 we an see that after pi ompletes its request for Fk,it waits for at most m rounds of passages before a round of Fk starts in whihpi an make a passage through Fk . So CTP-m's forum-swith omplexity is m.Of the m rounds of passages pi has been waiting, one of them must start beforepi ompletes its request, and the remaining m � 1 rounds must be of di�erentfora.5.3 Time Complexity and Conurreny of CTP-mWe now analyze CTP-m's time omplexity and its onurreny. Reall that\passages" are represented as non-zero length intervals. Sine the analysis in-volves handling of passages, we begin with some de�nitions on intervals.Let U be a (losed) interval, and let s(U) and e(U) denote its start pointand end point, respetively. By kUk we mean the length of U , i.e., kUk =e(U) � s(U), and by t 2 U we mean s(U) � t � e(U). The intersetion of Uand V , denoted by U u V , is de�ned to be the maximum interval W suh that8 t 2 W : t 2 U ^ t 2 V , or ? otherwise. Two intervals U and V overlap ifkU u V k > 0. The projetion of U in [ts; tf ℄, denoted by U jtfts , is the intervalU u [ts; tf ℄ if U and [ts; tf ℄ overlap, or ? otherwise. If S is a set of intervals,then S jtfts = fU jtfts : U 2 S; U jtfts 6= ?g.5For the proofs in this setion, it is useful to reall De�nition 2.2. The fol-lowing proposition follows diretly from the above de�nitions.5Sine we allow passages to our onurrently, in the paper, unless stated otherwise, allsets onsisting of intervals are treated as multisets.28

Proposition 5.9 Let S be a set of intervals. Then for any t; ts � t � tf ,dim(Sjtfts) � dim(Sjtts) + dim(Sjtft). Moreover, if t 62 U for all U 2 S, thendim(Sjtfts) = dim(Sjtts) + dim(Sjtft).As analyzed in the previous setion, after pi ompletes a request for Fk,it waits for at most m rounds of passages before a round of Fk is initiated inwhih pi an make a passage through Fk . To analyze the time omplexity, we�rst determine the number of passages that may our in eah round. This isdone in the following lemma. Of ourse, if the round starts before pi ompletesits request, then we are only onerned with the passages that our after piompletes its request. The time ts set up in the following lemma is for thispurpose. Moreover, nh denotes the number of philosophers that an potentiallyattend Fh.Lemma 5.10 Suppose a round of Fh is ongoing while pi is waiting for Fk,Fk 6= Fh. Let ts = max(ts1 ; ts2), where ts1 is the time the round of Fh starts,and ts2 the time pi ompletes its request for Fk, and let tf be the time the roundof Fh terminates. Furthermore, let Sh be the set of passages that may overlapwith the interval [ts; tf ℄. ThenjShj � nh(nh + 1)(2nh + 1)12 + 3nh(nh + 1)4Proof. We begin by distinguishing between three types of passages through CS:� �-passage: the philosopher making this passage sets turn to the same fo-rum as its request.� �-passage: the philosopher making this passage sets turn to a forum dif-ferent from its request.� -passage: the philosopher making this passage is unable to set turn.By the algorithm, a philosopher that makes an �- or �-passage must enter CSas an e�etive aptain, while a -passage must be made by a suessor or akilled aptain.Note that sine we are only onerned with passages that overlap with theinterval [ts; tf ℄, i.e., passages in Sh, unless stated otherwise, all passages onsid-ered in the proof belong to Sh. By the mutual exlusion property of CTP-m,the philosophers making these passages are all interested in Fh.Observe that an �-passage annot be initiated after pi has requested Fk.This is beause if pj enters CS after pi has requested Fk, then when pj omputesnext op(Fh+1) in line 9 of CTP-m, it must obtain a forum with an index otherthan h. 29

Moreover, when some p1 ompletes a �-passage, no other p2 an initiate a �-passage unless another philosopher has made an �-passage to reset turn to Fh.6To see this, suppose that p1 in its �-passage sets turn to Fg . If p2 ompletes its Fhrequest before p1 sets turn to Fg, then when p1 starts apturing philosophers,either p2 will be aptured by p1 (and thus p2 an only make a -passage forits request), or p2 must have already initiated a �-passage (and thus p2's �-passage annot be initiated after p1 ompletes its �-passage). If p2 ompletesits request after p1 has set turn to Fg , then when p2 starts to evaluate theondition \turn = Fh _ all passive(turn)" in line 7, it must obtain false and soannot make a �-passage.So in the absene of �-passages all �-passages must overlap. Let q1; q2; : : : ; qlbe the philosophers that are making these overlapping �-passages and, withoutloss of generality, assume that q1 ompletes its passage earlier (or at least nolater) than q2, whih ompletes its passage earlier than q3, and so on. Supposethat q1 in its �-passage an apture at most r philosophers (and reall that noneof them an be aptured more than one in the passage). Then, q1's �-passagean result in at most r -passages. Moreover, none of these r philosophersinvolves q2; : : : ; ql (and q1) beause when q1 aptures these r philosophers thephilosophers q2; : : : ; ql are still in their �-passages. (Reall from the previousdisussion that q2; : : : ; ql must have already initiated their �-passages when q1starts to apture philosophers, and they annot omplete their �-passages untilq1 has �nished apturing philosophers beause q1 ompletes its �-passage earlierthan they do.)Beause after q1 ompletes its �-passage it may re-enter CS as a suessor ofq2, and beause after ompleting their -passages the r philosophers apturedby q1 may also re-enter CS as a suessor of q2, q2's �-passage an result inat most (r + 1) -passages. In general, qi's �-passage an result in at most(r + i� 1) -passages. So the l �-passages overall an result in at mostX1� i� l r + i� 1 = l � r + l(l� 1)2-passages. Together with the l �-passages, the total number of passages theyan generate is at mostl � r + l(l � 1)2 + l = l � r + l(l+ 1)2Given that l + r = nb for some nb � nh, the total number of passages these nbphilosophers an generate is at most nb(nb + 1)=2.6Note that this property would not hold if line 9 is plaed after line 11; that is, if a aptainsets turn after it has �nished apturing philosophers. See Setion 5.4.30

If some �-passage has been ompleted between these �- and -passages, thena new set of overlapping �-passages may be initiated.7 Sine the philosopherompleting the �-passage may later re-enter CS to initiate a �-passage, by theabove argument, a total number of nb+1 philosophers an be involved in makinga new series of �- and -passages, resulting in at most (nb + 1)(nb + 2)=2 morepassages. Note, however, that before these (nb + 1) philosophers initiate thenew series of �- and -passages, the philosopher making the �-passage may �rstapture the nb philosophers to initiate an additional number of nb -passages.So overall they an result in (nb + 1)(nb + 2)=2 + nb passages.Similarly, if after the seond series of �- and -passages another �-passagehas been ompleted, then a third series of at most (nb+2)(nb+3)=2+ (nb +1)of �- and -passages is possible. Note that sine no philosopher an initiate an�-passage after pi has requested Fk, the previous �-passage and the urrent onemust be made by di�erent philosophers.Suppose that there are na ongoing �-passages when pi ompletes its requestfor Fk. Then, inluding the �rst series of nb(nb+1)2 �- and -passages, these�-passages overall an generate at mostnb(nb + 1)2 + X1� i�na� (nb + i)(nb + i+ 1)2 + nb + i� 1�of �- and -passages. Reall that nb is the maximum number of philosophersthat an be involved in the �rst series of �- and -passages. Clearly, none ofthese nb philosophers an make any of the na �-passages. So na + nb � nh.Therefore, the total number of �-, �-, and -passages that an be initiated afterpi ompletes a request for Fk but before the urrent round of Fh terminates,plus the number of passages that may be already ongoing when pi ompletes itsrequest (whih, in the above disussion, are the na �-passages), is at mostnb(nb + 1)2 + X1� i�na� (nb + i)(nb + i+ 1)2 + nb + i� 1�+ na� nh(nh + 1)(2nh + 1)12 + 3nh(nh + 1)4 27The philosopher making this �-passage must have obtained next op(Fh+1) = Fh in line 9before pi ompletes its request for Fk (beause it does not �nd any philosopher interested ina di�erent forum), but have not yet assigned Fh to turn until q1; : : : ; ql set turn to a di�erentforum in their �-passages. 31

Note that the above bound for jShj is tight beause we an onstrut asenario to reah this bound. To illustrate, onsider the following senario fornh = 3:1. Eah of p1; p2; p3, one after another, initiates an �-passage as follows: itrequests Fh, enters CS, �nds that no one is interested in a di�erent forum,and so proeeds to obtain next op(Fh+1) = Fh.2. p0 ompletes a request for Fk .3. p1 sets turn to Fh and then ompletes its �-passage.4. p1 makes a �-passage as follows: it requests Fh, enters CS, sets turn toFk, and exits CS.5. p2 sets turn to Fh, aptures p1 (after p1 has requested another entry toFh), and then ompletes its �-passage.6. p1, as a suessor of p2, makes a -passage.7. p1 and p2 respetively initiate a �-passage as follows: eah requests Fh,enters CS, and proeeds to apture philosophers.8. p1 aptures none, sets turn to Fk, and ompletes its �-passage.9. p2 aptures p1 (after p1 has requested another entry to Fh), sets turn toFk, and ompletes its �-passage.10. p1, as a suessor of p2, makes a -passage.11. p3 sets turn to Fh, aptures p1 and p2 (after they have requested a newFh), and then ompletes its �-passage.12. p1 and p2, as a suessor of p3, make a -passage respetively.13. p1; p2; and p3 respetively initiate a �-passage as follows: eah requestsFh, enters CS, and proeeds to apture philosophers.14. p1 aptures none, sets turn to Fk, and ompletes its �-passage.15. p2 aptures p1 (after p1 has requested another entry to Fh), sets turn toFk, and ompletes its �-passage.16. p1, as a suessor of p2, makes a -passage.17. p3 aptures p1 and p2 (after they have requested another entry to Fh), setsturn to Fk, and ompletes its �-passage.18. Eah of p1 and p2, as a suessor of p3, makes a -passage.Therefore, 16 passages (3 �-passages, 6 �-passages, and 7 -passages) havepassed after p0 ompletes a request for Fk.Next, we ompute the maximum dimension of the set of passages that mayour in a round. 32

ppppppppppppppppppppppppppppp
pppppts

ppppppppppppppppppppppppppppp
ppppptf

ppppppppppppppppppppppppppppp
pppppmax(e(A); e(B3))

ppppppppppppppppppppppppppppp
ppppps(B1)

ppppppppppppppppppppppppppppp
pppppe(B2)

0 5 10 15 20 25 30 35� -� -pppp� -B3� -� -A � -� -B2pppp� -B1� -� -B�-C1 �-C2�-C �-C3 �-C4
Figure 5: Layout of the passages in Sh.Lemma 5.11 Suppose a round of Fh is ongoing while pi is waiting for Fk,Fk 6= Fh. Let ts = max(ts1 ; ts2), where ts1 is the time the round of Fh starts,and ts2 the time pi ompletes its request for Fk, and let tf be the time the roundof Fh terminates. Furthermore, let Sh be the set of passages that overlap withthe interval [ts; tf ℄. Then dim(Sh) � 2nh + 3Proof. Let �-, �-, and -passages be de�ned as in Lemma 5.10. Let A be theset of �-passages in Sh, and let A be the passage in A with the largest endtime. Furthermore, let B be the set of �-passages in Sh that are initiated noearlier than e(A); i.e., 8U 2 B : s(U) � e(A). Reall from Lemma 5.10 that all�-passages in A must be initiated before pi requests Fk, and that all �-passagesin B must overlap (at a ommon point).Let B1 be the passage, among the passages in B, with the smallest start time,and B2 be the passage with the largest end time. Sine B1 and B2 overlap, theyonstitute a over of Shje(B2)s(B1) (see Figure 5).Assume �rst that there is some �-passage that starts before e(A). Let B3 besuh a passage with the largest end time. Assume further that e(B3) < s(B1).So there is no �-passage overlapping with [e(B3); s(B1)℄ (beause for every �-passage B0 2 Sh, if s(B0) < e(A) then e(B0) � e(B3), and if s(B0) � e(A) thens(B0) � s(B1)). Sine A is the passage in A with the largest end time, there isno �- and �-passage overlapping with [max(e(A); e(B3)); s(B1)℄.Consider the maximum number of -passages that an be interspersed be-tween [max(e(A); e(B3)); s(B1)℄. Let C1 and C2 be any two -passages thatoverlap with the interval [max(e(A); e(B3)); s(B1)℄. (See Figure 5 again.) Weargue that C1 and C2 annot be made by the same philosopher. This is beauseif C1 and C2 were made by the same philosopher, say pj , then C1 and C2 mustnot overlap. Without loss of generality assume that e(C1) < s(C2). Then some33

aptain, while making an �- or �-passage, must have aptured or killed pj in[e(C1); s(C2)℄. This then ontradits the fat that no �- and �-passage mayoverlap with [max(e(A); e(B3)); s(B1)℄.Furthermore, let U be one of the two passages A and B3 with the largestend time. Sine no philosopher makes an �- or �-passage in [max(e(A); e(B3)),s(B1)℄, after a philosopher ompletes U , it annot make a -passage in theinterval. So no -passage overlapping with [max(e(A); e(B3)); s(B1)℄ an bemade by the philosopher that ompletes U .The above argument implies that at most (nh � 1) -passages an over-lap with [max(e(A); e(B3)); s(B1)℄. Sine no �- or �-passage an overlap with[max(e(A); e(B3)); s(B1)℄, a minimal over of Shjs(B1)max(e(A);e(B3)) has size at mostnh� 1. Moreover, sine A and B3 overlap, a minimal over of Shjmax(e(A);e(B3))tshas size at most two if e(B3) > e(A), and has size one otherwise. Togetherwith the fat that a minimal over of Shje(B2)max(e(A);e(B3)) has size at most 2, byProposition 5.9, therefore, dim(Shje(B2)ts) � nh + 3.In the above we assumed that e(B3) < s(B1). If e(B3) � s(B1), then Aand B3 together onstitute a over of Shjs(B1)ts . So dim(Shje(B2)ts) � 4. If no�-passage in Sh starts before e(A), then by the above argument we an see thata minimal over of Shje(A)ts has size one and a minimal over of Shjs(B1)e(A) hassize at most (nh � 1). So dim(Shje(B2)ts) � nh + 2. Sine nh � 1, in any ase,dim(Shje(B2)ts) � nh + 3.Similarly, we an show that at most (nh � 1) -passages an overlap with[e(B2); tf ℄. Sine no �- or �-passage an overlap with [e(B2); tf ℄, dim(Shjtfe(B2)) �nh�1. By Proposition 5.9 and the above argument that dim(Shje(B2)ts) � nh+3,we have that dim(Shjtfts) � 2nh + 2.We have onsidered the ase that there exist two passages A and B suhthat: A is the passage, among the set of �-passages in Sh (i.e., set A), with thelargest end time, and B is a �-passage initiated no earlier than e(A). If thereis no �-passage, or all �-passages in Sh are initiated earlier than e(A), then bya similar reasoning we an show that at most (nh � 1) -passages an overlapwith [t; tf ℄, where t = maxfe(U) : U is an �- or �-passage in Shg. Togetherwith the fat that dim(Shjtts) � 2, we have dim(Shjtfts) � nh + 1.If there is no �-passage (i.e., A = ;) but there is some �-passage in Sh, thenlet B1 be the set of �-passages in Sh that are initiated at or before ts, and B2be the set of �-passages that are initiated after ts. Note that the passages inB2 must overlap. Let t1 = maxfe(U) jU 2 B1g if B1 6= ;, and t1 = ts otherwise.Furthermore, let t2 = minfs(U) jU 2 B2g and t3 = maxfe(U) jU 2 B2g if34

B2 6= ;, and t2 = t3 = t1 otherwise. Analogous to the above analysis, wean show that dim(Shjt1ts) � 1, dim(Shjt2t1) � nh � 1, dim(Shjt3t2) � 2, anddim(Shjtft3) � nh � 1. So dim(Shjtfts) � 2nh + 1.If there is no �- and �-passage in Sh, then at most (nh � 1) -passages anoverlap with [ts; tf ℄ (these passages must be resulted from some early �- and�-passages that our before pi ompletes its request). So dim(Shjtfts) � nh�1.To summarize, dim(Shjtfts) � 2nh+2. Sine dim(Sh) = dim(Shjtmaxtmin), wheretmin = minfs(U) jU 2 Shg and tmax = maxfe(U) jU 2 Shg, by Proposition 5.9dim(Sh) � dim(Shjtstmin) + dim(Shjtfts) + dim(Shjtmaxtf). Observe that somepassages overlapping with [ts; tf ℄ may be initiated before ts, and all passagesoverlapping with [ts; tf ℄ must be ompleted before tf . So dim(Shjtstmin) � 1 anddim(Shjtmaxtf) = 0. Therefore, dim(Sh) � 2nh + 3. 2Note that in the above lemma if dim(Sh) = 2nh + 3 then there must besome ongoing �-passage when pi ompletes its request for Fk. This means thatthe round of Fh must have already started when pi ompletes its request. Onthe other hand, if the round starts after pi has ompleted its request, then no�-passage an our in this round (beause any e�etive aptain must have seenpi's request when it is in line 9 of CTP-m, and so annot set turn to Fh). As aresult, there is no passage between [ts; s(B1)℄ in Figure 5. So a minimal overof Sh has size at most nh + 1. We therefore have the following two orollaries.Corollary 5.12 Suppose a round of Fh starts before pi ompletes a request forFk, Fk 6= Fh. Let ts be the time pi ompletes the request, and let tf be the timethe round terminates. Moreover, let Sh be the set of passages that overlap withthe interval [ts; tf ℄. Then dim(Sh) � 2nh + 3Corollary 5.13 Suppose a round of Fh starts after pi has ompleted a requestfor Fk, Fk 6= Fh. Let ts be the time the round starts, and let tf be the time itterminates. Moreover, let Sh be the set of passages that overlap with the interval[ts; tf ℄. Then dim(Sh) � nh + 1The above orollaries onern the ase Fk 6= Fh. The ase Fk = Fh isonsidered below.Lemma 5.14 Suppose a round of Fk starts before pi ompletes its request forFk. Suppose further that pi does not make a passage for its request in this round.35

Let ts be the time pi ompletes its request, and let tf be the time this round ofFk terminates. Moreover, let Sk be the set of passages that overlap with theinterval [ts; tf ℄. Then dim(Sk) � nkProof. If no non--passage (i.e., �- or �-passages) overlaps with [ts; tf ℄, thenat most nk � 1 -passages an overlap with [ts; tf ℄ (as none of the -passagesan be made by pi). So dim(Sk) = dim(Sk jtfts) � nk � 1.If some non--passage made by, say pj , overlaps with [ts; tf ℄, then if thepassage starts after pi has ompleted its request, then either pj will apture pior pi will have already entered CS before pj attempts to apture it. Sine by thelemma assumption pi does not make a passage in this round, if there is any non--passage overlapping with [ts; tf ℄, then it must be initiated before pi ompletesits request. Let A be the non--passage, among the non--passages that overlapwith [ts; tf ℄, with the largest end time. By the proof of Lemma 5.11 it an beseen that at most (nk�2) -passages an overlap with [e(A); tf ℄. (Note that noneof these -passages and A an be made by pi.) So dim(Sk jtfe(A)) � nk�2. Sinedim(Sk) � dim(Sk je(A)tmin) + dim(Skjtfe(A)), where tmin = minfs(U) jU 2 Skg,dim(Sk) � 2 + nk � 2 = nk.To summarize, in either ase dim(Sk) � nk. 2Theorem 5.15 (Time Complexity) Let tr be the time a philosopher pi om-pletes its request for Fk, and tg be the time the request is granted (i.e., the timepi initiates a passage through Fk). Moreover, let S be the set of passages thatoverlap with [tr; tg ℄ and that must be ompleted before pi an initiate its passage.Thendim(S) � max fnk; 2nj + 3 : 1 � j 6= k � mg + 0� X1�j�m;j 6=k nj + 11AProof. By Lemma 5.7, pi waits for at mostm rounds of passages before a roundof Fk is initiated in whih it an make a passage through Fk. These inlude theround of passages that is already ongoing when pi ompletes its request. By theproof, the m�1 rounds of passages that start after pi has ompleted its requestmust all be di�erent, and none of them is a round of Fk . So by Corollary 5.13,a minimal over of the set of passages ourring in these m� 1 rounds has sizeat most P1�j�m;j 6=k(nj + 1).Consider the round of passages that is already ongoing when pi ompletesits request. By Corollary 5.12 and Lemma 5.14, a minimal over of the set of36

passages in S that our in this round has size at most max fnk; 2nj + 3 : 1 �j 6= k � mg.After these m rounds of passages, a round of Fk must follow, and by Case 2of Lemma 5.4 pi must make a passage through Fk in this round. Note thatbeause the passages in this round are for the same forum, pi needs not wait forany of them to omplete in order to initiate its own passage. So by de�nitionof S no passage in S omes from this round. Therefore,dim(S) � max fnk; 2nj + 3 : 1 � j 6= k � mg + 0� X1�j�m;j 6=k nj + 11A 2Sine nh � n, the time omplexity is O(m � n). Note that in measuringdim(S) above we only onsider passages that must be ompleted before pi aninitiate its passage; that is, we do not ount those with whih pi's passage mayproeed onurrently.We now onsider the onurreny of CTP-m, and reall that the degree ofonurreny is measured by the maximum number of passages that an be ini-tiated while a passage is ongoing and some philosopher is waiting for a di�erentforum. Lemmas 5.10 and 5.11 imply that the degree of onurreny of CTP-m isat least O(n2h). However, as shown below CTP-m an atually provide a degreeof onurreny up to O(n3h).Theorem 5.16 (Conurreny) Suppose pj is in Fh and pi is waiting for Fk,k 6= h. Then the number of passages that an still be initiated before pj leavesFh is at most nh(nh + 1)(2nh + 1)12 + nh(nh � 3)4Proof. Reall from the proof of Lemma 5.10 that among the nh(nh+1)(2nh+1)12 +3nh(nh+1)4 passages in Sh, nh of them are �-passages initiated before pi om-pletes its request, nh(nh+1)(2nh+1)12 + nh(nh�3)4 of them are �- and -passagesinitiated after pi ompletes its request but before the last of the nh �-passagesterminates, and the rest nh(nh+1)2 are �- and -passages initiated after all the�-passages terminate. So while the last �-passage is ongoing and pi is waitingfor Fk, at most nh(nh+1)(2nh+1)12 + nh(nh�3)4 more passages an be initiated. 2By omparing CTP-m with the simple entralized algorithm CTP-C pre-sented in Setion 3, we see that they have similar forum-swith omplexity (m37

for CTP-m, and m+ 1 for CTP-C); also both have time omplexity O(m � n).However, CTP-C allows a virtually unbounded degree of onurreny (throughthe use of a entralized mehanism), while CTP-m an reah only O(n3) (in afully distributed setting).5.4 RemarksWe omment on some nontrivial design hoies made for CTP-m. First, let us re-onsider Lemma 5.10. In the absene of �-passages the size of Sh in Lemma 5.10an be redued to nh(nh +1)=2. In the algorithm �-passages our beause weallow a aptain, upon seeing that no philosopher is interested in a di�erent fo-rum, to set turn to the same forum as its request. If we hange line 9 of CTP-mso that a aptain will always set turn to a di�erent forum (as in the ase ofCTP-2), then �-passages are not possible. In this ase, however, a minimalover of Sh in Lemma 5.11 may still ontain nh + 1 passages (2 overlapping�-passages and (nh�1) -passages). So the time omplexity of Theorem 5.15 isnot a�eted by any order of magnitude. However, the degree of onurreny willthen drop to O(n2h). Therefore, in CTP-m we have opted for a higher degreeof onurreny by allowing a philosopher to set turn to the same forum as itsrequest.Moreover, the order of exeution of setting turn (line 9) and apturingphilosophers (lines10-11) may also a�et the time omplexity. To see this, reallthat in the proof of Lemma 5.11 all �-passages that are initiated no earlier thane(A), i.e., the passages in B, must overlap (at a ommon point). So it takes atmost two passages to over the passages in B. If a philosopher sets turn afterit aptures philosophers, then the �-passages in B do not neessarily overlap(thereby inreasing the time omplexity). This is beause a philosopher pl mayenter CS as a aptain (assuming that pl is interested in Fh and turn = Fh),apture philosophers, and then �nd that some philosopher is interested in a dif-ferent forum Fg . Before pl sets turn to Fg , another pj interested in Fh may havealready read turn in line 7. Suppose pl then sets turn to Fg and exits CS beforepj ompares the value it has read (i.e., Fh) with the forum Fh it has requested(i.e., before pj tests the prediate turn = Fh in line 7). Then when pj �nds thatturn is (atually, was) Fh and enters CS, pl has already left CS, and so their�-passages do not overlap.A more signi�ant boost to CTP-m's performane is by the extra lause\turn = Fk _ all passive(turn)" added to line 7 that a philosopher heks to seeif it an enter CS. It is important to note that Lemma 5.6 would not hold if38

this lause is dropped from line 7. This is beause a philosopher pj interestedin a forum Fh may have already proeeded to line 6 when a round of Fl starts.When the round of Fl terminates, if this lause is removed, then pj may \sneak"into CS even if turn 6= Fh and some other philosopher is waiting for the forumspei�ed by turn. As a result, the number of rounds of passages pi needs to waitbefore it enters CS in Lemma 5.7 (i.e., the algorithm's forum-swith omplexity)would be muh more than m.To illustrate, assumem = 4 and turn = F0. Consider the following senario.81. p3 requests F3, �nds that no one is interested in F0;F1, and F2, and so itexits the while-loop and proeeds to line 6 (but has not yet exeuted line 6).2. p2 requests F2, �nds that no one is interested in F0 and F1, and so alsoproeeds to line 6.3. p1 requests F1, �nds that no one is interested in F0, and so also proeedsto line 6.4. p0 requests F0.5. p3 \sneaks" into CS (beause none in s(F3) !̂ no suessor(F3) evalu-ates to true). It then sets turn to F0 and exits CS. Then p3 requestsanother entry to F3.6. p2 \sneaks" into CS. It then sets turn to F3 and exits CS. Then p2requests another entry to F2.7. p3 �nds that turn = F3 and so it proeeds to enter CS. It then sets turnto F0, exits CS, and requests another entry to F3.8. p1 \sneaks" into CS. It then sets turn to F2 and exits CS.9. p2 �nds that turn = F2 and so it proeeds to enter CS. It then sets turnto F3 and exits CS.10. p3 �nds that turn = F3 and so it proeeds to enter CS. It then sets turnto F0 and exits CS.11. p0 now �nds that turn = F0 and so it proeeds to enter CS.Therefore, before p0 enters CS, the following 6 rounds of passages have bypassed:F�3;F�2;F3;F�1, F2;F3, where F�i represents a round of Fi initiated by a philosopherthat \sneaks" into CS. The senario an be extended to m = 5 so that p0 waitsfor the following rounds of passages before it enters CS to attend F0:F�4;F�3;F4;F�2;F3;F4;F�1;F2;F�4;F�3;F48Thanks to Wen-Jian Tsai for oming up with this senario.39

Note that p4 an sneak into F4 twie beause the evaluation of next op(turn) inline 5 requires an aess to turn and then an aess to eah philosopher's ag ,and no partiular ordering is assumed in aessing the ags. As a result, afterp1 sneaks into CS to establish a round of F1 and sets turn to F2 (beause p2 hasrequested another entry to F2), p4 an start to evaluate next op(turn) in line 5.When p4 learns that turn = F2, it may later �nd that no one is interested in F3and F2 (beause p2 has already �nished F2), and so proeeds to line 6 waiting tosneak into CS. Similarly, p3 an sneak into F3 after p1 has set turn to F2 beausewhen p3 reads turn = F2, it may later �nd that no philosopher is interested inF2, and so obtains next op(turn) = F3 in line 5. So it an also proeed to line 6waiting to sneak into CS.Let ak denote the number of rounds of passages p0 may wait before it entersCS for the setting where the philosophers may like to hold k di�erent fora. Weleave the reader to show that the senario an be generalized so that ak satis�esthe following reurrene relation:9ak = 8><>: ak�1 + ak�2 + 2 k > 21 k = 20 k = 1Solving this reurrene relation we haveam = 5 + 3p510 (1 +p52)m + 5� 3p510 (1�p52)m � 2Thus, an exponential number of rounds may pass before a philosopher's requestis granted!As mentioned earlier in Setion 4.1, our algorithm is based on Knuth's al-gorithm for 2-proess mutual exlusion [17℄. When generalizing to n-proess,Knuth's algorithm su�ers an exponential number of overtakes: a proess waitsfor 2n�1�1 entries to CS before it enters CS. The exponential bound is reduedto linear by Eisenberg and MGuire [10℄ by properly assigning the turn variablewhen a proess exits CS. As illustrated above, CTP-m's forum-swith omplex-ity (whih orresponds to the above \overtakes" omplexity when the CongenialTalking Philosophers problem is redued to n-proess mutual exlusion) ould9It helps to see the reurrene relation by renaming fora using the new index mapping:Fi �! Fm�1�i . As a result, the turn is now assigned in a dereasing order Fi;Fi�1;Fi�2 ; : : :instead of an inreasing order Fi;Fi+1;Fi+2; : : : . Aordingly, in the above senario form = 4,p0 now waits for the following 6 rounds of passages F�0 ;F�1 ;F0;F�2 , F1;F0 before it enters CS.For m = 5, the sequene beomes F�0;F�1 ;F0;F�2;F1;F0;F�3;F2;F�0;F�1;F0, and for m = 6, thesequene is F�0 ;F�1;F0;F�2 ;F1;F0;F�3 ;F2;F�0 ;F�1;F0;F�4;F3;F�0 ;F�1;F0;F�2;F1;F0.40

also blow up to exponential if not properly designed. Unlike Eisenberg andMGuire's approah, we let a philosopher, prior to entering CS, hek an addi-tional ondition to see if its forum is the most appropriate one to start.6 Related Work and ConlusionsWe have presented the Congenial Talking Philosophers problem to model groupmutual exlusion in whih resoures an be shared by proesses of the samegroup but the sharing annot be done aross groups. Although the problemours naturally in appliations suh as CSCW, to our knowledge, it has notbeen addressed in the literature thus far.We have also presented an eÆient and highly onurrent distributed algo-rithm CTP-m to solve the Congenial Talking Philosophers problem. In termsof forum-swith omplexity, when a philosopher requests a forum, it waits forat most m rounds of passages before it attends the forum, where m is the totalnumber of fora in the system. Within eah round of passages, at most O(nh)passages suÆe to over all the passages that our within the round, where nhis the total number of philosophers that may potentially attend Fh. So the timeomplexity is O(m �n). In terms of onurreny, while a philosopher pi oupiesthe meeting room and some other pj is waiting for a di�erent forum, CTP-man admit O(n3) entries to the meeting room to join the ongoing forum with pi.For omparison, we have presented two algorithms, one entralized and theother semi-distributed, for the Congenial Talking Philosophers problem. Bothalgorithms are able to laim a virtually unbounded degree of onurreny byusing a entralized mehanism to monitor philosophers' states. The entralizedmehanism, however, also makes them more vulnerable to faults. In partiular,the semi-distributed algorithm may result in unbounded time and forum-swithomplexity. Even for the entralized algorithm, its time and forum-swith om-plexity is approximately the same as our distributed solution.As disussed in Setion 2, the Congenial Talking Philosophers problem ismore general than the onventional n-proess mutual exlusion and the Readersand Writers problems. Our algorithm CTP-m also o�ers an appealing solutionfor these problems. For n-proess mutual exlusion, a proess waits for at mostn passages before it enters the ritial setion. Note that this inludes theone that is already ongoing when the proess makes its request for the ritialsetion. So, after a proess requests the ritial setion, at most n� 1 entries tothe ritial setion may proeed before the proess, whih is obviously a lowerbound for the mutual exlusion problem. (For a survey of mutual exlusion41

algorithms see [24, 4, 25, 20℄.) For the Readers and Writers problem, a wait-free approah is usually adopted within the realm of shared memory to allowonurrent reading while writing [23, 13℄. In this approah, n+1 extra opies ofthe shared objet are used to allow the readers to keep trak of the most reentversion of the shared objet. CTP-m, on the other hand, allows onurrentreading without introduing extra opies of the shared objet, but it does notallow onurrent reading while writing.A generalization of n-proess mutual exlusion that allows at most l proessesto be in the ritial setion simultaneously (known as the l-exlusion problem)has been proposed by Fisher, et al. [12℄, and subsequently studied by Afek, etal. [1℄. However, there is no diret onnetion between the l-exlusion problemand the Congenial Talking Philosophers problem in the sense that the solutionfor one problem annot be straightforwardly applied to the other.In light of the l-exlusion problem, Congenial Talking Philosophers an befurther generalized to model \l-forum exlusion", where there are l meetingrooms for the philosophers and so at most l fora an be in session simultane-ously. This new problem an be applied in situations in whih a resoure an beshared by proesses of the same group but not by proesses of di�erent groups,and l opies of the resoure are available. This generalized problem an be easilyredued to the three fundamental problems: n-proess mutual exlusion, Read-ers and Writers, and l-exlusion, but not vie versa. It is therefore interesting tosee how this more general problem an be solved eÆiently and in a distributedmanner. Other future work inludes studying various bounds of the CongenialTalking Philosophers problem, suh as time, onurreny, and the number ofvariables required.Aknowledgments. I would like to thank Wen-Jian Tsai for providingsome initial thoughts on the algorithms. He also provided many useful om-ments during the preparation of the manusript. I would also like to thankJen-Yi Liao for oining the term \Congenial Talking Philosophers" for our prob-lem. His original suggestion was \Congenial Dining Philosophers" for the diningproblem where there is only one dining table, and philosophers interested in thesame style of food, e.g., Chinese, Frenh, or Italian, an ome to the table toshare the food. Last, but not least, I would like to thank Mark Moir and theanonymous referees for their valuable omments, and Idit Keidar and Paul Attiefor proofreading the paper.
42

Referenes[1℄ Yehuda Afek, D. Dolev, Eli Gafni, M. Merritt, and N. Shavit. A bounded�rst-in, �rst-enabled solution to the `-exlusion problem. ACM Transa-tions on Programming Languages and Systems, 16(3):939{953, May 1994.[2℄ Divyakant Agrawal, Amr El Abbadi, and A. E. Lang. The performaneof protools based on loks with ordered sharing. IEEE Transations onKnowledge and Data Engineering, 6(5):805{818, Otober 1994.[3℄ James H. Anderson and Mark Moir. Universal onstrutions for large ob-jets. IEEE Transations on Parallel and Distributed Systems, 2000. Toappear.[4℄ M. Ben-Ari. Priniples of Conurrent and Distributed Programming. En-glewood Cli�s NJ: Prentie-Hall, 1990.[5℄ P. A. Bernstein, V. Hadzilaos, and N. Goodman. Conurreny Controland Reovery in Database. Addison-Wesley, 1987.[6℄ James E. Burns. Mutual exlusion with linear waiting using binary sharedvariables. ACM SIGACT News, 10(2):42{47, summer 1978.[7℄ K. Mani Chandy and Jayadev Misra. The drinking philosophers problem.ACM Transations on Programming Languages and Systems, 6(4):632{646,Otober 1984.[8℄ K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Foun-dation, Chapter 14: Committee Coordination. Addison-Wesley, 1988.[9℄ P. J. Courtois, F. Heymans, and D. L. Parnas. Conurrent ontrol withreaders and writers. Communiations of the ACM, 14(10):667{668, Otober1971.[10℄ M. A. Eisenberg and M. R. MGuire. Further omments on Dijkstra'sonurrent programming ontrol problem. Communiations of the ACM,15(11):999, November 1972.[11℄ K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions ofonsisteny and prediate loks in a data base system. Communiations ofthe ACM, 19(11):624{633, November 1976.
43

[12℄ Mihael J. Fisher, Nany A. Lynh, James E. Burns, and Allan Borodin.Resoure alloation with immunity to limited proess failure (preliminaryreport). In 20th Annual Symposium on Foundations of Computer Siene,pages 234{254, San Juan, Puerto Rio, 29{31 Otober 1979. IEEE.[13℄ Maurie Herlihy. Wait-free synhronization. ACM Transations on Pro-gramming Languages and Systems, 13(1):124{149, January 1991.[14℄ Maurie Herlihy. A methodology for implementing highly onurrentobjets. ACM Transations on Programming Languages and Systems,15(5):745{770, November 1993.[15℄ Yuh-Jzer Joung. Asynhronous group mutual exlusion. Tehnial re-port, Department of Information Management, National Taiwan Univer-sity, Taipei, Taiwan, 1998.[16℄ Yuh-Jzer Joung. The ongenial talking philosophers problem in omputernetworks (extended abstrat). In Proeedings of the 13th International Sym-posium on DIStributed Computing (DISC99), Leture Notes in ComputerSiene 1693, pages 195{209. Springer, 1999.[17℄ D. E. Knuth. Additional omments on a problem in onurrent program-ming ontrol. Communiations of the ACM, 9(5):321{322, May 1966.[18℄ Henry F. Korth. Loking primitives in a database system. Journal of theACM, 30(1):55{79, January 1983.[19℄ H. T. Kung and John T. Robinson. On optimisti methods for onurrenyontrol. ACM Transations on Database Systems, 6(2):213{226, June 1981.[20℄ Nany A. Lynh. Distributed Algorithms. Morgan-Kaufmann, 1996.[21℄ Christos H. Papadimitriou. The serializability of onurrent database up-dates. Journal of the ACM, 26(4):631{653, Otober 1979.[22℄ G. L. Peterson. Myths about the mutual exlusion problem. InformationProessing Letters, 12(3):115{116, June 1981.[23℄ G. L. Peterson. Conurrent reading while writing. ACM Transations onProgramming Languages and Systems, 5(1):46{55, January 1983.[24℄ Mihel Raynal. Algorithms for Mutual Exlusion. MIT Press, Cambridge,MA, 1986. 44

[25℄ A. Silbershatz and P. Galvin. Operating System Conepts. Addison-Wesley, fourth edition, 1994.[26℄ William E. Weihl. Loal atomiity properties: Modular onurreny ontrolfor abstrat data types. ACM Transations on Programming Languages andSystems, 11(2):249{283, April 1989.

45

