
On Key Agreement and Conference KeyAgreementColin BoydInformation Security Research CentreQueensland University of Technology2 George StreetBrisbane Q4001AUSTRALIAemail: boyd@�t.qut.edu.auAbstract. An attack is demonstrated on a previously proposed classof key agreement protocols. Analysis of the attack reveals that a smallchange in the construction of the protocols is su�cient to prevent theattack. The insight gained allows a generalisation of the class to a newdesign for conference key agreement protocols.1 IntroductionProtocols designed for establishing session keys are frequently divided into twotypes. Key transfer protocols rely on one trusted entity to choose the key, whichis then transported to the other users involved. By contrast, in key agreementprotocols each user involved participates in the formation of the key. One possibleadvantage of key agreement over key transport is that each user can often besure that the new key is random as long as that user's own input is.The most well known key agreement protocol is Di�e-Hellman key exchange[5] which exploits the algebraic properties of exponentiation to allow agreementof a shared secret between two users over an insecure channels. It has long beenrecognised that the Di�e-Hellman protocol is insu�cient on its own because anattacker who controls the path between the two users can intercept the messagesand masquerade as each of them; as a result the users share di�erent keys withthe attacker rather than one with each other. In view of this many di�erentenhancements to the basic Di�e-Hellman protocol have been proposed whichprovide user authentication in various ways [11].An examination of the fundamental requirements of key agreement led to aproposed classi�cation of key agreement protocols in a previous paper of this au-thor [3]. This included abstract and concrete protocols divided into three classes.Concrete examples included protocols which do not fall into the Di�e-Hellmanparadigm and which may have advantages in e�ciency of implementation. Inthis paper one of these classes is examined in detail. An attack is revealed whichshows that the whole class is insecure as described in the earlier paper. Analysisof the attack shows that the weakness results from the incorrect properties ofthe function used to combine the user inputs, and this allows the protocols to be



simply repaired by re-de�ning the properties of this function. The insight gainedallows the class of protocols to be generalised to a conference key agreementprotocol.2 Key Agreement Protocol ClassesIn this section the basic ideas from the previous work [3] are reviewed. A keyagreement protocol is de�ned to involve two users A and B. Each chooses aninput, NA and NB respectively, randomly from the domain of interest. Theconference key KAB will be the result of the operation of some function, f ,called the combining function, on the two inputs.KAB = f(NA; NB)Note that in certain cases f may have additional inputs. The goals of a keyagreement protocols are de�ned as the following.KA1 Both participants possess KAB which they can verify is new.KA2 It is infeasible to �nd KAB by eavesdropping on the protocol, even if theprotocol is repeated many times.KA3 Both participants have equal input into the combining function.KA4 Both participants know the identity of the other party which may possessKAB .Property KA2 must hold with the possibility that an attacker knows oldvalues of KAB from previous protocol runs, since this is a normal assumption inprotocol analysis. Note that key con�rmation is not a goal of these properties,so that although A receives assurance that nobody apart from B has the valueKAB, she may have no assurance that B did actually get KAB. If such assuranceis required extra protocol messages may be added to form a `handshake' thatrequires knowledge of KAB.Since it is necessary only for A and B to make their inputs known to eachother, two messages should normally su�ce for these protocols. Clearly at leastone input to the combining function must remain unknown to an attacker. Theclassi�cation of protocols previously de�ned [3] uses this observation to de�nethree classes.Class 1 Neither NA nor NB is kept con�dential.Class 2 Only NA is kept con�dential.Class 3 Both NA and NB are kept con�dential.Class 1 requires that A and B already share a secret and so, although of practicaluse in some situations, this is of reduced interest. Classes 2 and 3 can work withthe use of public key cryptography. (It should be noted that public or shared keysare required in all the extensions of basic Di�e-Hellman.) Class 3 only requiresthat each of A and B uses the public key of the other to transport its input



con�dentially. Class 2 requires that A transports NA to B using B's public key,and authenticates its origin using A's public key for a digital signature.The choice of the combining function is critical in achieving the protocolgoals. It was proposed that classes 2 and 3 may be implemented using the fol-lowing bi-one-way function where h is a suitable one-way function. (A functionof two inputs is bi-one-way if it is one-way when either of the two inputs is �xed.)f(NA; NB) = h(NA)� h(NB)One advantage of using this function is that nobody, including A or B, can forceuse of an old key so KA1 will be satis�ed. Also its commutativity means thatit is reasonable to assert that KA3 is also satis�ed. Unfortunately it turns outthat in the case of class 2 its properties are not su�cient to guarantee KA2.3 The AttackIn this section the attack on the protocols in class 2 is described through aparticular example. It is true that the attack may not apply if other combiningfunctions are used than in this example, or if extra �elds or processing areapplied. However the example shows that the argument used to support theprotocol security is awed and so all protocols in this class should be considereddubious.Consider the following concrete implementation of a protocol in class 2. It isassumed that B's public key KB is known to A and that A's signature can beveri�ed by B using A's public key. In the following fXgKB denotes encryptionwith B's public key while SigA(:) is A's signature on the message within thebrackets.1. A! B : fNAgKB ; SigA(A;B; h(NA))2. B ! A : NBThe session key is then de�ned as KAB = h(NA) � h(NB). B checks thesignature of A against the received value of NA before accepting the key. Asmentioned above, both KA1 and KA3 are satis�ed. KA4 is satis�ed for A becauseshe knows that only B will receiveNA and is satis�ed for B because he can verifythat NA can have been signed only by A. Super�cially KA2 appears to hold toobecause an attacker cannot obtain NA and consequently cannot obtain KAB.The aw in this argument is that NA itself is not actually required to �nd KAB,but only h(NA), and this opens the door for a replay attack.Consider an attacker C who captures the messages passed in an earlier pro-tocol run between A and B. In particular C obtains the value NB . We may alsosuppose that C will obtain the session key for KAB for this earlier run. ThenC can �nd h(NB) and so can �nd h(NA) = KAB � h(NB). C is now able tomasquerade as A by simply replaying message 1 from the earlier protocol run.Even though B chooses a new value N 0B , C can still �nd the new session keyK 0AB = h(NA)� h(N 0B).



Observe that the attacker does not learn NA and does not need to in orderto obtain KAB. In terms of the secure channel analysis performed in the originalpaper there has been no failure of authentication or con�dentiality of messages.NA was indeed conveyed to B in a con�dential manner; the problem was simplythat NA was not required in order to �nd the session key.4 Fixing the ProtocolsIt is already made clear that the problem arises because NA is not required inorder to �nd KAB . The protocol can be �xed by changing only the combiningfunction to one in which it is necessary to know NA and such that the NA usedcannot be found from knowledge of an old session key. A function with sucha property is readily to hand, namely a message authentication code (MAC)sometimes called a keyed one-way hash function. Recently there has been a greatdeal of interest in how to construct secure and e�cient MACs [1, 2, 9]. Howeverthere are a number of alternative de�nitions of their exact properties so we needto be careful exactly what we require of our function.A MAC, like a bi-one-way function, is a function of two inputs f(k; x), wherethe �rst variable is a secret key. Two basic properties of MACs are that itshould not give away its key even after repeated use, and that it is infeasible tocalculate f(k; x) without knowledge of k. These are just the property requiredin the combining function to prevent the replay attack. However, in addition tothis property we require that the function also has the properties of a bi-one-wayfunction, namely that it should be one-way in either of the variables when theother is �xed.1. For a �xed (known) k0 and output value y0 it should be infeasible to �nd avalue x with f(k0; x) = y0.2. For a �xed x0 and output value y0 it should be infeasible to �nd a k withf(k; x0) = y0.Property 1 was included in the de�nition of keyed hash function given byBerson, Gong and Lomas [2]. However, other authors have pointed out that itis not apparently necessary for many common uses of a MAC [1, 9]. In fact it isreasonable to assert that the common practical methods of MAC constructionwould probably possess the property, but if more assurance is required then aspeci�c construction is given by Berson et al.Property 2 is a natural property of a MAC as long as the key length is nogreater than the output length. This is because if a key could be found whichmaps x0 to y0 then it is likely to be unique and so knowledge of input andoutput pairs will give away the value of k. The construction of Berson et al.does not dictate the size of the parameters, so again may be used as a de�niteconstruction if desired.It is worthwhile to consider carefully once more which properties the protocolhas, with the same messages as before, but now using a MAC as the combiningfunction and where NA takes the role of the MAC key.



KA1 A and B can clearly �nd KAB. The one-way property in each of the MACinputs implies that each can verify that the KAB is new as long as theychoose their input to be new.KA2 KAB is now secure from eavesdroppers at least in the attack above. Theargument that NA is never revealed, even with compromise of KAB , andthat the NA value used is required to �nd any subsequent KAB value nowappears sound. Ideally this should be converted to a formal argument butthat is beyond the scope of this paper1.KA3 One drawback of using the MAC is that the symmetry of the combiningfunction is now lost. However, because the MAC is one-way in both compo-nents, neither party can force a particular value and so as far as this goesneither participant controls the session key.KA4 The argument given above still appears correct. A knows that only B willget NA, while B can verify that A sent NA intended for use with B.5 A New Conference Key Agreement ProtocolOne of the advantages of considering the general classes of key agreement is thatit gives insight into how to generalise the construction to the conference keysituation. With the hindsight of the attack found on the Class 2 protocols withtwo users, it is clear how they may be generalised. Notice that the Class 1 andClass 3 protocols can also be generalised. For Class 1 though, the situation iseven less appealing than with two users, since the assumption that all n usersshare a secret initially seems unrealistic.Class 3 protocols could be generalised in an obvious way by having eachuser encrypt its chosen input value with the public key of each of the othern � 1 users. These could then be combined by using a multi-one-way functionwhich is one-way in each of the n inputs. The obvious generalisation of the bi-one-way function used above would seem adequate here. However, an importantdisadvantage of this protocol is that each user needs to encrypt and decrypt n�1values which becomes costly for large n. A more e�cient option is available forClass 2 and so we concentrate on this for the remainder of this section.5.1 Proposed ProtocolThe generalisation of the Class 2 protocols will involve a set of n users, U =fU1; U2; : : : ; Ung. As before each user, Ui, chooses a random value, Ni, in asuitable range. One user, say U1, will be distinguished and will send its value N1to each other user in an authenticated and con�dential way. The other users onlyhave to broadcast their messages so that all users in U receive all the Ni values.U1 will sign the value N1 together with the names of all users in the conference.Since this message is the same for every user it only needs to be formed and sent1 In general there is no known method for proving a protocol is secure so this is notlikely to be a simple task.



once in a broadcast to all users. The value of N1 is sent to user Ui encryptedwith that user's public key, Ki. The protocol then has three stages, the secondand third of which each constitute n� 1 messages. In the following the asteriskis used to denote broadcast messages.1. U1 ! � : U ; SigU1(U ; h(N1))2. U1 ! Ui : fN1gKi3. Ui ! � : NiThe conference key should then be de�ned byKU = f(N1; h(N2)� h(N3) : : :� h(Nn))where f is a MAC and h is a one-way function. The purpose of h in the de�nitionofKU will be discussed below. The purpose of h in message 1 is simply to protectthe con�dentiality of N1.Before examining the security of the protocol, let us consider the computa-tional requirements for each user. U1 has to perform n�1 public key encryptionsand 1 signature. The other n� 1 users have only to check one signature and de-crypt one message, so for them the computational requirements are the sameas for the two user case. U1 has a high computational burden, and yet thiscan be reduced substantially by using Rabin's public key cryptosystem [10] forthe encryption of N1. Since encryption with Rabin's scheme only requires onemodular multiplication this means that even with a few hundred users, U1'scomputational burden is no more than twice that of the other users. (On theother hand it should be acknowledged that use of Rabin's scheme results in amodest increase in computation for the other users.)5.2 Protocol SecurityThe arguments for the security of the protocol are much the same as those forthe two user case. The key agreement properties should be examined once more.KA1 All participants evidently possess KU . U1 derives freshness from the one-way property of the �rst component of f . Freshness for the other users isderived from use of h and the one-wayness of the second component of f .Even if all other users conspire to choose a speci�c value, use of h meansthat they cannot force any speci�c value for the second component of f , andso cannot force any chosen value for KU .KA2 Obtaining KU requires knowledge of N1 which is available only to users inU . Compromise of old session keys does not reveal N1 which must be used inorder to �nd the value of any other derived key with N1 as �rst component.As for the two user case a formal argument would give greater con�dencebut appears di�cult.KA3 We would like all participants to have an equal input to KU . As in thetwo user case the asymmetry of the input of U1 means there is an obviousdi�erence from other users. However, in the sense that each user cannot



determine the output even with knowledge of the other inputs, they all haveequal inuence.KA4 U1 decides who will obtain N1, while the other users receive an authenti-cated message regarding which other users have obtained it.5.3 Key Con�rmationIt is often desired to include in key establishment protocols a method for usersto verify that the key they have received has also been received by the otherprotocol participants. It is worth considering the problem of key con�rmation forthe conference key protocol, because a simple handshake that might be addedto the two-user protocol is not e�ective and does not appear to be usefullygeneralised. The problem is that in a two-user protocol each user only needs toknow that some other entity has the key | if so then that entity must be thesecond user guaranteed by KA4. In the conference key situation this is of littleuse because the session key itself cannot be used to distinguish exactly whichusers have the key.The simplest solution seems to be to use public keys for each user to signthe conference key and broadcast the signature. Each signature should includeall the random challenges and the conference key itself as well as the set of usersinvolved. The values N1 and KU need to have their con�dentiality maintainedand are thus hashed in the following. However this would not be necessary if thesignature scheme itself already included a hashing mechanism.Ui ! � : SigUi(h(N1;KU); N2; : : : ; Nn;U)Such a signature needs to be generated and broadcast by each user Ui. Thecomputational e�ort of this key con�rmation phase is now worse than the keyagreement protocol itself! Each user must generate one signature and verifyn � 1 others. However, the e�ort per user can be greatly reduced, this time byusing Rabin's signature scheme for which signature veri�cation requires onlyone modular multiplication. (Another possibility is to use RSA signatures witha small public exponent.)5.4 Comparison with Previous ProtocolsA number of researchers have considered ways to generalise key agreement proto-cols to include the situation where a group of n users wish to agree a session key.Ingemarsson, Tang and Wong [6] generalised the Di�e-Hellman to a conference,while Burmester and Desmedt developed a more e�cient version quite recently[4]. However both of these have dealt only with the con�dentiality of the sessionkey and not considered authentication. As a result the man-in-the-middle attackon basic Di�e-Hellman is still applicable to them. A protocol of Klein, Ottenand Beth [8] includes conference key distribution as well as detection of cheaters,and as a result is computationally very expensive.



Just and Vaudenay [7] have extended Burmester and Desmedt's protocol toan authenticated version and provide proofs about certain aspects of security.Because their protocols are related to Di�e-Hellman, they obtain the propertyof forward secrecy, that compromise of long-term private keys does not com-promise previously used session keys. This is a property that is not obtained inthe proposed protocol. However the protocol of Just and Vaudenay is far morecomputationally expensive than the proposed one, requiring a sub-protocol tobe executed between every pair of users.6 ConclusionThe attack on the previously published class of protocols shows that they arequite insecure with the properties stated. What is quite unusual is that theproblem can be �xed without changing the messages sent at all, but ratheraltering the properties of the combining function used to de�ne the session key.As is often the case, once an attack is understood it is easy to correct thedesign, in this case with a minimal change to the original. In addition this greaterunderstanding can lead to insight into other extensions such as the conferenceprotocol proposed above. Readers are invited to consider possible attacks on thenew proposed protocols.AcknowledgementsI am grateful to Anish Mathuria for insightful comments, and to the anonymousreferees for pointing out some important omissions.References1. S. Bakhtiari, R. Safavi-Naini and J. Pieprzyk, \Keyed Hash Functons, Cryptogra-phy: Policy and Algorithms, Springer-Verlag, LNCS 1029, pp.210-214, 1996.2. T. Berson, L. Gong and M. Lomas, \Secure, Keyed and Collisionful Hash Func-tion", Technical Report, SRI International, September 1994.3. C. Boyd, \Towards a Classi�cation of Key Agreement Protocols", IEEE ComputerSecurity Foundations Workshop, pp.38-43, IEEE Press 1995.4. M. Burmester and Y. Desmedt, \A Secure and E�cient Conference Key Distri-bution System", Advances in Cryptology - Eurocrypt 94, Springer-Verlag, 1995,pp.275-286.5. W. Di�e and M. Hellman, \New Directions in Cryptography", IEEE Transactionson Information Theory, IT-22, 6, pp.644-654, 1976.6. I. Ingemarsson, D. Tang and C. Wong, \A Conference Key Distribution Scheme",IEEE Transactions on Information Theory, IT-28, 5, September 1982, pp.714-720.7. M. Just and S. Vaudenay, \Authenticated Multi-Party Key Agreement", Advancesin Cryptology - Asiacrypt 96, Springer-Verlag, 1996, pp.26-35.8. B. Klein, M. Otten and T. Beth, \Conference Key Distribution Protocols in Dis-tributed Systems", Codes and Cyphers - Cryptography and Coding IV, IMA, 1995,pp.225-242.



9. B. Preneel and P. van Oorschot, \MDx-MAC and Building Fast MACs from HashFunctions", Advances in Cryptology - Crypto '95, Springer-Verlag, 1995, pp.1-14.10. M. Rabin, \Digitalized Signatures and Public-Key Functions as Intractable as Fac-torization", MIT Laboratory for Computer Science, 1979.11. R. Rueppel and P. van Oorschot, \Modern Key Agreement Techniques", ComputerCommunications, July 1994.

This article was processed using the LATEX macro package with LLNCS style


