On Key Agreement and Conference Key
Agreement

Colin Boyd

Information Security Research Centre
Queensland University of Technology
2 George Street
Brisbane Q4001
AUSTRALIA
email: boyd@fit.qut.edu.au

Abstract. An attack is demonstrated on a previously proposed class
of key agreement protocols. Analysis of the attack reveals that a small
change in the construction of the protocols is sufficient to prevent the
attack. The insight gained allows a generalisation of the class to a new
design for conference key agreement protocols.

1 Introduction

Protocols designed for establishing session keys are frequently divided into two
types. Key transfer protocols rely on one trusted entity to choose the key, which
is then transported to the other users involved. By contrast, in key agreement
protocols each user involved participates in the formation of the key. One possible
advantage of key agreement over key transport is that each user can often be
sure that the new key is random as long as that user’s own input is.

The most well known key agreement protocol is Diffie-Hellman key exchange
[5] which exploits the algebraic properties of exponentiation to allow agreement
of a shared secret between two users over an insecure channels. It has long been
recognised that the Diffie-Hellman protocol is insufficient on its own because an
attacker who controls the path between the two users can intercept the messages
and masquerade as each of them; as a result the users share different keys with
the attacker rather than one with each other. In view of this many different
enhancements to the basic Diffie-Hellman protocol have been proposed which
provide user authentication in various ways [11].

An examination of the fundamental requirements of key agreement led to a
proposed classification of key agreement protocols in a previous paper of this au-
thor [3]. This included abstract and concrete protocols divided into three classes.
Concrete examples included protocols which do not fall into the Diffie-Hellman
paradigm and which may have advantages in efficiency of implementation. In
this paper one of these classes is examined in detail. An attack is revealed which
shows that the whole class is insecure as described in the earlier paper. Analysis
of the attack shows that the weakness results from the incorrect properties of
the function used to combine the user inputs, and this allows the protocols to be

simply repaired by re-defining the properties of this function. The insight gained
allows the class of protocols to be generalised to a conference key agreement
protocol.

2 Key Agreement Protocol Classes

In this section the basic ideas from the previous work [3] are reviewed. A key
agreement protocol is defined to involve two users A and B. Each chooses an
input, N4 and Np respectively, randomly from the domain of interest. The
conference key K4p will be the result of the operation of some function, f,
called the combining function, on the two inputs.

Kap = f(Na,NB)

Note that in certain cases f may have additional inputs. The goals of a key
agreement protocols are defined as the following.

KA1 Both participants possess K 4p which they can verify is new.

KAZ2 It is infeasible to find K 45 by eavesdropping on the protocol, even if the
protocol is repeated many times.

KA3 Both participants have equal input into the combining function.

K A4 Both participants know the identity of the other party which may possess
Kap.

Property KA2 must hold with the possibility that an attacker knows old
values of K 4p from previous protocol runs, since this is a normal assumption in
protocol analysis. Note that key confirmation is not a goal of these properties,
so that although A receives assurance that nobody apart from B has the value
K 4p, she may have no assurance that B did actually get K 4. If such assurance
is required extra protocol messages may be added to form a ‘handshake’ that
requires knowledge of K sp.

Since it is necessary only for A and B to make their inputs known to each
other, two messages should normally suffice for these protocols. Clearly at least
one input to the combining function must remain unknown to an attacker. The
classification of protocols previously defined [3] uses this observation to define
three classes.

Class 1 Neither N4 nor Ng is kept confidential.
Class 2 Only N4 is kept confidential.
Class 3 Both N4 and Npg are kept confidential.

Class 1 requires that A and B already share a secret and so, although of practical
use in some situations, this is of reduced interest. Classes 2 and 3 can work with
the use of public key cryptography. (It should be noted that public or shared keys
are required in all the extensions of basic Diffie-Hellman.) Class 3 only requires
that each of A and B uses the public key of the other to transport its input

confidentially. Class 2 requires that A transports N4 to B using B’s public key,
and authenticates its origin using A’s public key for a digital signature.

The choice of the combining function is critical in achieving the protocol
goals. It was proposed that classes 2 and 3 may be implemented using the fol-
lowing bi-one-way function where h is a suitable one-way function. (A function
of two inputs is bi-one-way if it is one-way when either of the two inputs is fixed.)

f(Na;Np) = h(Na) & h(Np)

One advantage of using this function is that nobody, including A or B, can force
use of an old key so KA1 will be satisfied. Also its commutativity means that
it is reasonable to assert that KA3 is also satisfied. Unfortunately it turns out
that in the case of class 2 its properties are not sufficient to guarantee KA2.

3 The Attack

In this section the attack on the protocols in class 2 is described through a
particular example. It is true that the attack may not apply if other combining
functions are used than in this example, or if extra fields or processing are
applied. However the example shows that the argument used to support the
protocol security is flawed and so all protocols in this class should be considered
dubious.

Consider the following concrete implementation of a protocol in class 2. It is
assumed that B’s public key Kpg is known to A and that A’s signature can be
verified by B using A’s public key. In the following { X}k, denotes encryption
with B’s public key while Siga(.) is A’s signature on the message within the
brackets.

1. A—> B: {NA}KB,SigA(A,B,h(NA))
2. B—+A:Ng

The session key is then defined as Kap = h(N4) @ h(Np). B checks the
signature of A against the received value of N4 before accepting the key. As
mentioned above, both KA1 and KA3 are satisfied. KA4 is satisfied for A because
she knows that only B will receive N4 and is satisfied for B because he can verify
that N4 can have been signed only by A. Superficially KA2 appears to hold too
because an attacker cannot obtain N4 and consequently cannot obtain K 4p.
The flaw in this argument is that N4 itself is not actually required to find K 45,
but only h(Ng4), and this opens the door for a replay attack.

Consider an attacker C who captures the messages passed in an earlier pro-
tocol run between A and B. In particular C obtains the value Ng. We may also
suppose that C' will obtain the session key for K g for this earlier run. Then
C can find h(Ng) and so can find h(Na) = Kag ® h(Ng). C is now able to
masquerade as A by simply replaying message 1 from the earlier protocol run.
Even though B chooses a new value N, C can still find the new session key
K'yp = h(Na) & h(NG).

Observe that the attacker does not learn N4 and does not need to in order
to obtain K 4. In terms of the secure channel analysis performed in the original
paper there has been no failure of authentication or confidentiality of messages.
N4 was indeed conveyed to B in a confidential manner; the problem was simply
that N4 was not required in order to find the session key.

4 Fixing the Protocols

It is already made clear that the problem arises because N4 is not required in
order to find K 4p. The protocol can be fixed by changing only the combining
function to one in which it is necessary to know N4 and such that the N4 used
cannot be found from knowledge of an old session key. A function with such
a property is readily to hand, namely a message authentication code (MAC)
sometimes called a keyed one-way hash function. Recently there has been a great
deal of interest in how to construct secure and efficient MACs [1, 2, 9]. However
there are a number of alternative definitions of their exact properties so we need
to be careful exactly what we require of our function.

A MAC, like a bi-one-way function, is a function of two inputs f(k, z), where
the first variable is a secret key. Two basic properties of MACs are that it
should not give away its key even after repeated use, and that it is infeasible to
calculate f(k,z) without knowledge of k. These are just the property required
in the combining function to prevent the replay attack. However, in addition to
this property we require that the function also has the properties of a bi-one-way
function, namely that it should be one-way in either of the variables when the
other is fixed.

1. For a fixed (known) kg and output value yq it should be infeasible to find a
value = with f(ko,z) = yo.
2. For a fixed zg and output value yq it should be infeasible to find a k with

f(k=$0) = Yo-

Property 1 was included in the definition of keyed hash function given by
Berson, Gong and Lomas [2]. However, other authors have pointed out that it
is not apparently necessary for many common uses of a MAC [1, 9]. In fact it is
reasonable to assert that the common practical methods of MAC construction
would probably possess the property, but if more assurance is required then a
specific construction is given by Berson et al.

Property 2 is a natural property of a MAC as long as the key length is no
greater than the output length. This is because if a key could be found which
maps xg to yo then it is likely to be unique and so knowledge of input and
output pairs will give away the value of k. The construction of Berson et al.
does not dictate the size of the parameters, so again may be used as a definite
construction if desired.

It is worthwhile to consider carefully once more which properties the protocol
has, with the same messages as before, but now using a MAC as the combining
function and where N4 takes the role of the MAC key.

KA1 A and B can clearly find K 45. The one-way property in each of the MAC
inputs implies that each can verify that the K4p is new as long as they
choose their input to be new.

KA2 K 4p is now secure from eavesdroppers at least in the attack above. The
argument that N4 is never revealed, even with compromise of K4p, and
that the N4 value used is required to find any subsequent K 4p value now
appears sound. Ideally this should be converted to a formal argument but
that is beyond the scope of this paper’.

KA3 One drawback of using the MAC is that the symmetry of the combining
function is now lost. However, because the MAC is one-way in both compo-
nents, neither party can force a particular value and so as far as this goes
neither participant controls the session key.

KA4 The argument given above still appears correct. A knows that only B will
get N4, while B can verify that A sent N4 intended for use with B.

5 A New Conference Key Agreement Protocol

One of the advantages of considering the general classes of key agreement is that
it gives insight into how to generalise the construction to the conference key
situation. With the hindsight of the attack found on the Class 2 protocols with
two users, it is clear how they may be generalised. Notice that the Class 1 and
Class 3 protocols can also be generalised. For Class 1 though, the situation is
even less appealing than with two users, since the assumption that all n users
share a secret initially seems unrealistic.

Class 3 protocols could be generalised in an obvious way by having each
user encrypt its chosen input value with the public key of each of the other
n — 1 users. These could then be combined by using a multi-one-way function
which is one-way in each of the n inputs. The obvious generalisation of the bi-
one-way function used above would seem adequate here. However, an important
disadvantage of this protocol is that each user needs to encrypt and decrypt n—1
values which becomes costly for large n. A more efficient option is available for
Class 2 and so we concentrate on this for the remainder of this section.

5.1 Proposed Protocol

The generalisation of the Class 2 protocols will involve a set of n users, U =
{U1,Us,...,U,}. As before each user, U;, chooses a random value, N;, in a
suitable range. One user, say Uy, will be distinguished and will send its value Ny
to each other user in an authenticated and confidential way. The other users only
have to broadcast their messages so that all users in U receive all the N; values.
U, will sign the value N; together with the names of all users in the conference.
Since this message is the same for every user it only needs to be formed and sent

! In general there is no known method for proving a protocol is secure so this is not
likely to be a simple task.

once in a broadcast to all users. The value of N; is sent to user U; encrypted
with that user’s public key, K;. The protocol then has three stages, the second
and third of which each constitute n — 1 messages. In the following the asterisk
is used to denote broadcast messages.

1. U1 — % :U,Sig(jl(u,h(Nl))
2. Uy = Ui : {Ni}xk,
3. U; = *x: N;

The conference key should then be defined by
Ky = f(N1,h(N2) ® h(N3) ... ® h(Ny))

where fis a MAC and h is a one-way function. The purpose of & in the definition
of Ky will be discussed below. The purpose of h in message 1 is simply to protect
the confidentiality of NVy.

Before examining the security of the protocol, let us consider the computa-
tional requirements for each user. U; has to perform n —1 public key encryptions
and 1 signature. The other n — 1 users have only to check one signature and de-
crypt one message, so for them the computational requirements are the same
as for the two user case. U; has a high computational burden, and yet this
can be reduced substantially by using Rabin’s public key cryptosystem [10] for
the encryption of Nj. Since encryption with Rabin’s scheme only requires one
modular multiplication this means that even with a few hundred users, U;’s
computational burden is no more than twice that of the other users. (On the
other hand it should be acknowledged that use of Rabin’s scheme results in a
modest increase in computation for the other users.)

5.2 Protocol Security

The arguments for the security of the protocol are much the same as those for
the two user case. The key agreement properties should be examined once more.

KA1 All participants evidently possess K. Uy derives freshness from the one-
way property of the first component of f. Freshness for the other users is
derived from use of h and the one-wayness of the second component of f.
Even if all other users conspire to choose a specific value, use of A means
that they cannot force any specific value for the second component of f, and
so cannot force any chosen value for K.

K A2 Obtaining Ky requires knowledge of IN; which is available only to users in
U. Compromise of old session keys does not reveal N; which must be used in
order to find the value of any other derived key with N; as first component.
As for the two user case a formal argument would give greater confidence
but appears difficult.

KA3 We would like all participants to have an equal input to K. As in the
two user case the asymmetry of the input of U; means there is an obvious
difference from other users. However, in the sense that each user cannot

determine the output even with knowledge of the other inputs, they all have
equal influence.

KA4 U; decides who will obtain [Ny, while the other users receive an authenti-
cated message regarding which other users have obtained it.

5.3 Key Confirmation

It is often desired to include in key establishment protocols a method for users
to verify that the key they have received has also been received by the other
protocol participants. It is worth considering the problem of key confirmation for
the conference key protocol, because a simple handshake that might be added
to the two-user protocol is not effective and does not appear to be usefully
generalised. The problem is that in a two-user protocol each user only needs to
know that some other entity has the key if so then that entity must be the
second user guaranteed by KA4. In the conference key situation this is of little
use because the session key itself cannot be used to distinguish exactly which
users have the key.

The simplest solution seems to be to use public keys for each user to sign
the conference key and broadcast the signature. Each signature should include
all the random challenges and the conference key itself as well as the set of users
involved. The values Ny and Ki; need to have their confidentiality maintained
and are thus hashed in the following. However this would not be necessary if the
signature scheme itself already included a hashing mechanism.

Ui — % SigUz‘(h’(NlaKU):N27' ,anU)

Such a signature needs to be generated and broadcast by each user U;. The
computational effort of this key confirmation phase is now worse than the key
agreement protocol itself! Each user must generate one signature and verify
n — 1 others. However, the effort per user can be greatly reduced, this time by
using Rabin’s signature scheme for which signature verification requires only
one modular multiplication. (Another possibility is to use RSA signatures with
a small public exponent.)

5.4 Comparison with Previous Protocols

A number of researchers have considered ways to generalise key agreement proto-
cols to include the situation where a group of n users wish to agree a session key.
Ingemarsson, Tang and Wong [6] generalised the Diffie-Hellman to a conference,
while Burmester and Desmedt developed a more efficient version quite recently
[4]. However both of these have dealt only with the confidentiality of the session
key and not considered authentication. As a result the man-in-the-middle attack
on basic Diffie-Hellman is still applicable to them. A protocol of Klein, Otten
and Beth [8] includes conference key distribution as well as detection of cheaters,
and as a result is computationally very expensive.

Just and Vaudenay [7] have extended Burmester and Desmedt’s protocol to
an authenticated version and provide proofs about certain aspects of security.
Because their protocols are related to Diffie-Hellman, they obtain the property
of forward secrecy, that compromise of long-term private keys does not com-
promise previously used session keys. This is a property that is not obtained in
the proposed protocol. However the protocol of Just and Vaudenay is far more
computationally expensive than the proposed one, requiring a sub-protocol to
be executed between every pair of users.

6 Conclusion

The attack on the previously published class of protocols shows that they are
quite insecure with the properties stated. What is quite unusual is that the
problem can be fixed without changing the messages sent at all, but rather
altering the properties of the combining function used to define the session key.

As is often the case, once an attack is understood it is easy to correct the
design, in this case with a minimal change to the original. In addition this greater
understanding can lead to insight into other extensions such as the conference
protocol proposed above. Readers are invited to consider possible attacks on the
new proposed protocols.

Acknowledgements

I am grateful to Anish Mathuria for insightful comments, and to the anonymous
referees for pointing out some important omissions.

References

1. S. Bakhtiari, R. Safavi-Naini and J. Pieprzyk, “Keyed Hash Functons, Cryptogra-
phy: Policy and Algorithms, Springer-Verlag, LNCS 1029, pp.210-214, 1996.

2. T. Berson, L. Gong and M. Lomas, “Secure, Keyed and Collisionful Hash Func-
tion”, Technical Report, SRI International, September 1994.

3. C. Boyd, “Towards a Classification of Key Agreement Protocols”, IEEE Computer
Security Foundations Workshop, pp.38-43, IEEE Press 1995.

4. M. Burmester and Y. Desmedt, “A Secure and Efficient Conference Key Distri-
bution System”, Advances in Cryptology - Eurocrypt 94, Springer-Verlag, 1995,
pp-275-286.

5. W. Diffie and M. Hellman, “New Directions in Cryptography”, IEEE Transactions
on Information Theory, IT-22, 6, pp.644-654, 1976.

6. I. Ingemarsson, D. Tang and C. Wong, “A Conference Key Distribution Scheme”,
IEEE Transactions on Information Theory, IT-28, 5, September 1982, pp.714-720.

7. M. Just and S. Vaudenay, “Authenticated Multi-Party Key Agreement”, Advances
in Cryptology - Asiacrypt 96, Springer-Verlag, 1996, pp.26-35.

8. B. Klein, M. Otten and T. Beth, “Conference Key Distribution Protocols in Dis-
tributed Systems”, Codes and Cyphers - Cryptography and Coding IV, IMA, 1995,
PD-225-242.

9. B. Preneel and P. van Qorschot, “MDx-MAC and Building Fast MACs from Hash
Functions”, Advances in Cryptology - Crypto ’95, Springer-Verlag, 1995, pp.1-14.
10. M. Rabin, “Digitalized Signatures and Public-Key Functions as Intractable as Fac-
torization”, MIT Laboratory for Computer Science, 1979.
11. R. Rueppel and P. van Oorschot, “Modern Key Agreement Techniques”, Computer
Communications, July 1994.

This article was processed using the INTEX macro package with LLNCS style

