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Abstract. In this paper we propose a new approach to solve bi-criterion

optimization problems with ant algorithms where several colonies of ants

cooperate in �nding good solutions. We introduce two methods for co-

operation between the colonies and compare them with a multistart ant

algorithm that corresponds to the case of no cooperation. Heterogeneous

colonies are used in the algorithm, i.e. the ants di�er in their preferences

between the two criteria. Every colony uses two pheromone matrices |

each suitable for one optimization criterion. As a test problem we use

the Single Machine Total Tardiness problem with changeover costs.

1 Introduction

Ant Colony Optimization (ACO) is an evolutionary approach that has been ap-
plied successfully to solve various combinatorial optimization problems (for an
overview see Dorigo and Di Caro [4]). In ACO ants that found a good solu-
tion mark their paths through the decision space by putting some amount of
pheromone along the path. The following ants of the next generation are at-
tracted by the pheromone so that they will search in the solution space near
good solutions.

Much work has been done to apply evolutionary methods to solve multi-
criterion optimization problems (see [13] for an overview). But only a few of this
works used the ACO principle. Mariano and Morales [9] proposed an ant algo-
rithm where for each objective there exists one colony of ants. In particular, they
studied problems where every objective is in
uenced only by parts of a solution,
i.e. an objective can be determined knowing only the relevant part of a solution.
The objectives are assumed to be ordered by importance. In every generation ant
k from colony i receives a (partial) solution from ant k of colony i� 1. The ant
then tries to improve (or extend) the (partial) solution with respect to criterion
i. When the solutions have passed through all colonies those solutions that are in

? Corresponding author. Part of this work was done while the author stayed at the

Institute of Computer Science at the University of Hannover.



the nondominated front are allowed to update the pheromone information. Gam-
bardella et al. [7] developed an ant algorithm for a bi-criterion vehicle routing
problem. They used two ant colonies | one for each criterion. The two colonies
share a common global best solution which is used for pheromone update in
both colonies. Criterion 1 | the number of vehicles | is considered to be more
important than criterion 2 | the total travel time of the tours. Colony 1 tries
to �nd a solution with one vehicle less than the global best solution while colony
2 tries to improve the global best solution with respect to criterion 2. Whenever
colony 1 �nds a new global best solution both colonies start anew (with the
new global best solution). Gagn�e et al. [6] tested a multi-criterion approach for
solving a single machine total tardiness problem with changeover costs and two
additional criteria. In their approach the changeover costs were considered to
be most important. The idea was to construct heuristic values for the decisions
of the ants that take all criteria into account. The amount of pheromone that
an ant adds to the pheromone matrix depends solely to changeover costs of the
solution. All the above mentioned approaches assume that the di�erent criteria
can be ordered by importance and in the multi colony approaches there is always
one colony for every objective.

In this paper we study ACO methods for multi-criterion optimization when
the objectives can not be ordered by importance. The aim is to �nd di�erent solu-
tions which cover the Pareto-optimal front. A multi colony approach is proposed
where the ant colonies are forced to search in di�erent regions of the nondom-
inated front. It should be noted, that multi colony ant algorithms have been
studied before by some authors to parallelize ACO algorithms (a short overview
is given in [12]). We use heterogeneous colonies where the ants in a colony weight
the relative importance of the two optimization criteria di�erently so that they
are able to �nd di�erent solutions along the Pareto front. Cooperation between
the colonies is done by exchanging solutions in the global nondominated front
that are in regions which \belong to other colonies".

Our test problem, the Single Machine Total Tardiness Problem (SMTTP)
with changeover costs is described in section 2. A short introduction to ant
algorithms for solving the single objective versions of our test problem are given
in Section 3. Our ACO approaches for bi-criteria optimization problems are

described in Section 4. The multi colony approaches are explained in Section 5.
The tests instances and parameters are described in Section 6. The Results are
discussed in Section 7 and conclusions are given in Section 8.

2 The Test Problem

In this paper we use the Single Machine Total Tardiness Problem (SMTTP)
with changeover costs as our bi-criterion test problem. The problem is de�ned
as follows.

{ Given: n jobs, where job j, 1 � j � n has a processing time pj and a due
date dj and where for every pair of jobs i; j, i 6= j there are changeover costs
c(i; j) that have to be paid when j is the direct successor of i in a schedule.



{ Find: A non-preemptive one machine schedule that minimizes the value of
T =

Pn

j=1maxf0; Cj � djg where Cj is the completion time of job j and

that also minimizes the sum of the changeover costs C =
Pn�1

i=1 c(ji; ji+1)
where j1; j2; : : : ; jn is the sequence of jobs in the schedule.

T is called the total tardiness of the schedule and C is the cost of the schedule.
It is known that SMTTP is NP-hard in the weak sense [5] and is solvable in
pseudo-polynomial time [8]. The problem to �nd a schedule that minimizes only
the changeover costs is equivalent to the asymmetric Shortest Hamiltonian Path
problem which is NP-complete in the strong sense.

3 Ant Algorithms for Single-criteria Optimization

Problems

3.1 Total Tardiness Minimization

A variant of the ACO algorithm of Merkle and Middendorf [10] for the SMTTP
is described in this section (other ACO approaches for SMTTP can be found in
[1, 3]). In every generation each of m ants constructs one solution. An ant selects
the jobs in the order in which they will appear in the schedule. For the selection
of a job the ant uses heuristic information as well as pheromone information. The
heuristic information, denoted by �ij , and the pheromone information, denoted
by �ij , are an indicator of how good it seems to have job j at place i of the
schedule. The heuristic value is generated by some problem dependent heuristic
whereas the pheromone information stems from former ants that have found
good solutions.

The next job is chosen from the set S of jobs that have not been scheduled
so far according to the probability distribution that is determined by

pij =
[�ij ]

�
[�ij ]

�

P
h2S

[�ih]
�
[�ih]

�
(1)

The heuristic values �ij are computed according the following modi�ed due
date rule

�ij =
1

maxfT + pj ; djg � T

(2)

where T is the total processing time of all jobs already scheduled. The best
solution found so far is then used to update the pheromone matrix. But before
the update is done some of the old pheromone is evaporated according to

�ij = (1� �) � �ij

The reason for this is that old pheromone should not have a too strong in
u-
ence on the future. Then, for every job j in the schedule of the best solution found
so far some amount of pheromone � is added to element �ij of the pheromone



matrix where i is the place of job j in the schedule. The algorithm stops when
some stopping criterion is met, e.g. a certain number of generations has been
done. The pseudocode for the algorithm is given below.

Ant Algorithm 1 Total Tardiness Minimization
repeat

for ant k 2 f1; : : : ;mg do

S = f1; 2; : : : ; ng fset of nonscheduled jobsg
for i = 1 to n do

choose job j 2 S with probability pij
S := S � fjg

end for

end for

for all (i,j) do

�ij ( (1� �) � �ij fevaporate pheromoneg
end for

for all (i,j) 2 best solution do

�ij ( �ij +� fupdate pheromoneg
end for

until stopping criterion is met

It has to be mentioned that we use in this paper a simpli�ed version of
the original ant algorithm for the SMTTP problem. For an example no local
pheromone update is done by the ants, i.e. the ants do not change the pheromone
values during their search for a solution. Moreover, we do not use local optimiza-
tion. The reason for using a simpli�ed variant is that we want to concentrate on
the algorithmic aspects that are relevant for solving a bi-criterion problem with
multiple colonies.

3.2 Changeover Cost Minimization

An ant algorithm for the single machine scheduling problem where only the
changeover costs are relevant could be similar to the algorithm described above.
But the pheromone information should be di�erent. For the total tardiness
value it is important on which place in the schedule a job is. Whereas, for the
changeover costs it is more important which job is the predecessor of a job.
Hence, a pheromone matrix is used where �ij is the desirability that job j comes
after job i in the schedule. Moreover, an additional dummy node 0 is introduced
so that c(0; j) = 0 for every job j 2 [1; n]. Then �0j is the desirability to start
with job j. As heuristic information we use �ij = 1=c(i; j) for i; j 2 [1; n] and
�0j = 1 for j 2 [1; n].



4 Ant Algorithm for Bi-criterion Optimization Problems

In this section we describe how our ant algorithms works in case of a single
colony of ants.

4.1 Two Pheromone Matrices

Di�erent optimization criteria may need di�erent pheromone information as ex-
plained the last section. Therefore we propose to use two pheromone matrices,
one for each criterion. Then every ant can work di�erently on the two matrices.

For the SMTTP with changeover costs we use a pheromone matrixM = (�ij)
for the total tardiness criterion where �ij is the desirability that job j is on place i
of the schedule. For the changeover cost criterion a pheromone matrixM 0 = (� 0ij)
is used where � 0

ij
is the desirability that job j comes after job i in the schedule.

4.2 Heterogeneous Colony

To force the ants to search in di�erent regions of the Pareto front each of the
m ants in the colony weights the relative importance of the two optimization
criteria di�erently when making its decisions. More exactly, ant k, k 2 [1;m]
in the colony uses �k = k�1

m�1
. Every ant makes its decision according to the

following probabilities:

pij =
���ij � �

0(1��)�

ij
� ���

ij
� �

0(1��)�

ijP
h2S

���
ih

� �
0(1��)�

ih
� �

��

ih
� �

0(1��)�

ih

(3)

where �ij is the heuristic information that corresponds to the tardiness cri-
terion (cmp. Equation 2) and �0ij is the heuristic information that corresponds
to the changeover criterion (cmp. Subsection 3.2). Thus, in the extreme cases
the ant m with � = 1 considers only the �rst criterion whereas ant 1 with � = 0
considers only the second criterion.

Merkle and Middendorf [10] proposed an alternative method for pheromone
evaluation where the pheromone values corresponding to older decisions are
taken into account. Instead of using �ij in formula 1 they used

Pi

k=1 �kj . This so
called summation evaluation method was successfully applied to several schedul-
ing problems. For the weighted version of SMTTP a combination of standard
evaluation and a weighted version of summation evaluation has been shown to
be very successful in [11]. Formally, this combined version uses

��ij := c � xi � �ij + (1� c) � yi �

iX
k=1


i�k�kj (4)

where c is the parameter that determines the relative in
uence of weighted
summation evaluation, 
 is the parameter that determines the relative in
u-
ence of pheromone values corresponding to older decisions. Parameters xi :=



P
h2S

Pi

k=1 

i�k�kh and yi :=

P
h2S

�ih are factors to adjust the relative in
u-
ence of local and summation evaluation. Observe, that for c = 1 the standard
evaluation is obtained and for c = 0 pure summation evaluation.

Therefore it might be advantageous to use di�erent methods for the evalua-
tion of the two pheromone matrices. If e.g. summation evaluation is used for the
�rst criterion the probabilities used by the ant are

pij =
(��
ij
)�� � �

0(1��)�
ij

� �
��

ij
� �

0(1��)�
ijP

h2S
(��
ih
)�� � �

0(1��)�

ih
� ���

ih
� �

0(1��)�

ih

(5)

4.3 Pheromone Update

When all m ants of a generation have found a solution it has to be decided
which of the ants are allowed to update. Here we propose that all ants in the
nondominated front of the actual generation are allowed to update. An ant
that updates will update both pheromone matrices M and M 0. Note, that this
rule makes sense only when there are not too few ants in a colony. With only
very few ants in a colony the ants di�er much by their �-values. Hence, no real
competition about best solutions occurs since the ants will search in di�erent
regions of the nondominated front. Thus even the ants with weak solutions will
have good changes to do an update. One way to solve this problem is to allow
only those ants to update that have found solutions which are good compared
to the nondominated front of all solutions that have been found so far.

To give every generation of ants the same in
uence the amount of pheromone
that is added to a pheromone matrix is the same in every generation. Therefore,
every ant is allowed to update an amount of �ij = �ij+1=l where l is the number
of ants that are allowed to update in the actual generation.

5 The Multi Colony Approach

In our multi colony ant algorithm several colonies of ants cooperate and specialize
to �nd good solutions in di�erent regions of the Pareto front. All p colonies have
the same number of m=p ants.

5.1 Pheromone Update

In the single colony algorithm only ants in the nondominated front of the colony
are allowed to update. Hence, a reasonable way for pheromone update in the
multi colony algorithm is that only those ants update that found a solution
which is in the local nondominated front of the colony. This corresponds to the
case were there is no cooperation between the colonies. Therefore the results are
the same as with a multistart approach where a single colony ant algorithm is run
several times and the global nondominated front at the end is determined from
the nondominated fronts of all runs. In the following we describe how to introduce
collaboration between the colonies. For this, the ants in a generation put their



solutions in a global solution pool that is shared by all colonies. The pool is used
to determine the nondominated front of all solutions in that generation. Then,
only ants that found a solution which is in the global nondominated front are
allowed to update. We study two di�erent methods to determine in which colony
an ant should update the pheromone matrix:

1. Method 1 { update by origin: an ant updates only in its own colony (compare
Figure 1).

2. Method 2 { update by region in the nondominated front: the sequence of
solutions along the nondominated front is split into p parts of equal size.
Ants that have found solutions in the ith part update in colony i, i 2 [1; p]
(compare Figure 2). More formally, the solutions in the nondominated front
are sorted with respect to the �rst criterion (it does not matter whether the
list is sorted according to the �rst or the second criterion). Let L be the
sorted list. The sorted list is then split into parts L1; L2; : : : ; Lp so that their
size di�ers by at most one. All ants that found solutions in list Li, i 2 [1; p]
will update the pheromone matrix of colony i.

The �rst method imposes a stronger selection pressure on the ants that are
allowed to update. It is not enough for an ant to have a solution in the local
nondominated front of its colony. Instead, the solution must be in the global
nondominated front. This method might be advantageous because other colonies
help to detect which of the solutions in the local nondominated front of a colony
might be weak. An interesting observation is that the update by origin method
might also enforce the colonies to search in di�erent regions of the nondominated
front. It is more likely that a solution from the local nondominated front of a
colony might also be in the global nondominated front when only a few solutions
from other colonies are in the same region. Hence, it is more likely that an ant
with solutions in less dense areas of the nondominated front will be allowed to
update and thereby will in
uence the further search process.

The aim of method 2 is to explicitly guide the ant colonies to search in
di�erent regions of the Pareto front.

5.2 Heterogeneous Colonies

As in the single colony algorithm the ants in a colony use di�erent �-values,
i.e. when making their decisions they weight the relative importance of the two
optimization criteria di�erently. More exactly, ant k in colony i, i 2 [1; p] uses
�k =

k�1
m=p�1

, k 2 [1;m=p]. We call this rule 1 for de�ning the �-values.

An alternative could be to use di�erent �-values in the colonies so that �-
values of the ants in the colonies are in di�erent subintervalls of [0; 1]. Thus the
colonies weight the optimization criteria di�erently.

{ Rule 2 | disjoint �-intervalls: ant k, k 2 [1;m=p] in colony i has �-value
(i� 1) � m

p
+ k.



Colony 2 Colony 3Colony 1

update updateupdate

nondominated front

Fig. 1. Update by origin: Every ant with a solution in the nondominated front updates

in its own colony.

Colony 2 Colony 3Colony 1

updateupdateupdate

nondominated front

Fig. 2. Update by region in the nondominated front: Ants with a solution in the non-

dominated front update in the colony that are corresponds to the region of the solution.

{ Rule 3 | overlapping �-intervalls: the �-intervall of colony i overlaps by 50%
with the �-intervall of colony i� 1 and colony i+ 1. Formally, colony i has
ants with �-values in [(i� 1)=(p+ 1); (i+ 1)=(p+ 1)] (compare Figure 3).

1.00.0 0.5

Colony 4

Colony 2
Colony 1

Colony 3

Fig. 3. �-values when using rule 3: 4 colonies with 7 ants each.



6 Test Instances and Parameters

We tested our ant algorithms on problem instances where the jobs and their
deadlines were generated after the following rule that is often used to create
instances for the SMTTP [2]: for each job j 2 [1; 100] an integer processing time
pj is taken randomly from the interval [1; 100] and an integer due date dj is
taken randomly from the interval

2
4
100X
j=1

pj � (1� TF �

RDD

2
);

100X
j=1

pj � (1� TF +
RDD

2
)

3
5

The value RDD (relative range of due dates) determines the length of the
interval from which the due dates were taken. TF (tardiness factor) determines

the relative position of the centre of this interval between 0 and
P100

j=1 pj . We
chose the values for TF from the set f0:4; 0:5; 0:6g and RDD was set to RDD =
0:6. The changeover costs between the jobs were chosen randomly from one of
the sets [1; 100] and [50; 100].

The parameters used for the test runs are: � = 1, � = 1, � = 0:02. Pheromone
evaluation was done according to formula 5 where a combination between sum-
mation evaluation and standard evaluation for matrix 1 is used. For the corre-
sponding parameters the values c = 0:6 and 
 = 0:9 were used (these values
were shown to be suitable for the weighted SMTTP [11]). The number of ants
in every generation was m = 100. When using several colonies the 100 ants were
distributed equally to the colonies. Every element of the pheromone matrices
was initialized with 1:0. Every test was performed with 11 runs. Every run was
stopped after 300 generations.

7 Results

The performance of the multi colony approach was tested on 6 problem in-
stances: three instances with changeover costs in [1; 100] and three instances
with changeover costs in [50; 100] (and TF 2 f0:4; 0:5; 0:6g). The outcome of
each single run of the ant algorithm is the subset of all nondominated solutions
in the set of all solutions found during the run of the algorithm. The median
attainment surfaces for runs with 1 colony and 10 colonies are shown in Figure
4 (the median attainment surface is the median line of all the attainment sur-
faces connecting the pareto front in every of the 11 runs). For the tests with 10
colonies we used pheromone update method 2 (update by region in the pareto
front) and �-rule 2 with overlapping �-intervalls. The �gure shows that the me-
dian attainment surfaces of the runs with 10 colonies are nearly always better
than those for the 1 colony runs. Only for two instances with changeover costs in
[50; 100] the median attainment surfaces of the 1 colony runs are slightly better
in a small region. But for these instances the 10 colonies found solutions with
much smaller changeover costs.
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In the following we present some results where we compare the di�erent
pheromone update methods and the �-rules. For these tests we used the problem
instance with TF = 0:6 and changeover costs in [1; 100].

Figure 5 shows the convergence behaviour of the 10 colonies algorithm. The
median attainment surfaces obtained after di�erent numbers of generations are
depicted. It can be seen that the median attainment surfaces after 200 gener-
ations and 300 generations di�er not much. The results obtained for 1 colony
were similar. Hence, our other results that were all obtained after 300 generations
should not change with a higher number of generations.

The median attainment surfaces obtained with the di�erent pheromone up-
date methods are shown in Figure 6. The simple multistart strategy without
cooperation between the colonies is worst along the whole surfaces. For the
smaller costs values method 1 (update by origin) and method 2 (update by re-
gion in the nondominated front) show nearly the same performance. But median
attainment surface when using method 2 is the best for medium and small total
tardiness values.

Figure 7 shows from which colony the ants stem that found solutions which
are in the �nal nondominated front (i.e. after 300 generations). It can be seen



40000

50000

60000

70000

80000

90000

100000

110000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
O

T
A

L 
T

A
R

D
IN

E
S

S

CHANGEOVER COSTS

10 generations
50 generations

100 generations
200 generations
300 generations

Fig. 5. Convergence behaviour with 10 colonies: median attainment surfaces are shown

for generations 10, 50, 100, 200 and 300.

40000

50000

60000

70000

80000

90000

100000

110000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
O

T
A

L 
T

A
R

D
IN

E
S

S

CHANGEOVER COSTS

method 1 (update by origin)
method 2 (update by region in the nondominated front)

multistart

Fig. 6. In
uence of the pheromone update method when using 10 colonies: method

1 | update by origin; method 2 | update by cutting the nondominated front; the

multistart approach.

that the pheromone update method 2 (by region in the nondominated front)
forces all colonies to specialize to those regions from where the ants come that
are allowed to update in that colony. Also, method 1 (update by origin) seems
to force the colonies to specialize, though this e�ect is not so clear as for method
2. Clearly, for method 1 it can not be predicted to which region a colony will
specialize.
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Fig. 7. Solutions in the nondominated front after 300 generations when using 10

colonies: changeover costs and number of the colony from which the corresponding

ant stems. Left: pheromone update by region in the nondominated front (for all 11

runs). Right: pheromone update by origin (only for 1 run).

The in
uence of the �-rules when using pheromone update method 1 (by

origin) is shown in Figure 8 for 2 and 5 colonies. When using rule 2 with dis-
joint �-intervalls the case of 2 colonies clearly shows that colonies are forced to
specialize to di�erent regions of the nondominated front. The results for rule
2 in centres of these regions is quite good and better than for rule 3. But in
the middle of the nondominated front and in the extreme regions the results
for rule 2 are poor. Rule 3 shows a much more balanced behaviour. Rule 1 (all
colonies have ants with �-values in [0; 1]) perfomed worse than rule 3 along the
whole median attainment surface (not shown in the �gure). The results for 5
colonies are similar but the di�erences between the rules are not so big since the
colonies can specialize to smaller regions. For 10 colonies only small di�erences
were found (not shown here).
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Finally, we show that it is advantageous to use two pheromone matrices per
colony (compare subsection 4.1): a place-job matrix suitable for minimizing the
total tardiness and a job-job matrix suitable for minimizing changeover costs
(see Figure 9). When using only the place-job matrix in every colony the total
tardiness values are good when changeover costs do not matter. But the ants
were not able to �nd solutions with small changeover costs. When using only
the job-job matrix in each colony we have the opposite e�ect: the ants can �nd
solutions with small changeover costs but no solutions with small total tardiness
values. Using two matrices per colony performed nearly always better along the
whole median attainment surface than using only on of the matrices.
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Fig. 9. In
uence of number of matrices per colony: only one place-job matrix, only one

job-job matrix, one place-job matrix and one job-job matrix. Test runs were performed

with 10 colonies, pheromone by region in the nondominated front and overlapping

�-intervalls.

8 Conclusions and future work

We studied an approach to solve bi-criterion optimization problems with a mul-
tiple colony ant algorithm. It was shown that cooperation between the colonies
allows to �nd good solutions along the whole the Pareto front. Heterogeneous
colonies were used where the ants have di�erent prefences. It was shown that the
use of two di�erent kinds of pheromone matrices in every colony | each matrix
suitable for one optimization criterium | is advantagouos.

Currently we are studying methods to dynamically adapt the �-values of the
ants in a colony instead of using predetermined �-intervalls. Moreover, the in-



troduction of �tness sharing is under investigation. We expect that the use of
elitist ants that update the pheromone matrices for solutions that are in the non-
dominated front of all solutions found so far will improve our results. Also, local
pheromone update might be especially useful for multi-criterion optimization
since it forces the ants to search for di�erent sulutions.

An interesting topic for future research will be to study how the pheromone
update by region in the nondominated front can be applied to optimization
problems with more than two criteria. It is not obvious what regions should be
used then in the nondominated front.
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