
Resource Optimization for Content Distribution Networks in Shared Infrastructure
Environment

Thanh Vinh Nguyen, Chun Tung Chou, Paul Boustead
Telecommunications and Information Technology Research Institute (TITR)

University of Wollongong, Australia

Email:
�
vinh, ctchou, paul � @titr.uow.edu.au

Abstract— Current Content Distribution Networks (CDN) de-
ployment requires heavy infrastructure investment since a large
number of servers have to be deployed over a wide area. This
paper proposes a new paradigm where future CDNs are to be de-
ployed over a leased server and network infrastructure. While
this paradigm shift introduces a new dimension of flexibility, it re-
quires the resource provisioning and object placement problems
to be jointly considered. This paper formulates this new optimiza-
tion problem, and presents solution to it based on Lagrangian re-
laxation and greedy heuristics.

Index Terms—Content distribution networks, shared infrastruc-
ture, provisioning, replica placement, greedy heuristic.

I. INTRODUCTION

Content Distribution Networks (CDN) are networks of surro-
gate servers spanning the Internet, aiming to overcome network
bottlenecks and improve user experience by bringing contents
to network edge. In recent years, with the appearance of com-
mercial CDNs, operated by companies like Akamai [1], Digital
Island [2] and Speedera [3], this area has been receiving a great
deal of attention from research community. While recognizing
that Content Distribution Service is a useful service, we believe
that there exists the needs for new innovative CDN deployment
approaches. Deploying a CDN currently involves building an
Internet-wide network of servers to host replicated contents. As
an example, Akamai currently has more than 12000 servers lo-
cated in 66 countries [1]. Such scale of infrastructure is ob-
viously challenging in financial, technical and administrative
terms, both for deployment and operation of the service.
We believe that in the future, the deployment of content net-
works will follow one of two possible paths: 1) One is the
formation of large, Internet-wide CDNs by inter-networking
among regional CDN operators/carriers. This content-peering
approach is being investigated by Internet Engineering Task
Force content distribution internetworking working group [4].
2) The second alternative is to deploy CDNs using hired re-
sources, including bandwidth, server storage space and pro-
cessing power. Our paper aims to explore and investigate this
“resource-hiring” paradigm.
Inspired by works such as [5], [6], [7] (and references
therein), we envisage a networking environment where Net-
work Providers (NP) manage the physical server and net-
work infrastructure, over which services can be delivered us-
ing leased server and network resources. The Service Providers
(SP) lease these resources in the form of overlay network
topologies, including virtual servers at server farms/server clus-
ters and virtual links, to deliver their services.

By using a common shared infrastructure, each service is pro-
vided with the full advantage of a dedicated network at lower
initial investment and resource commitment. The approach also
introduces a whole new dimension of flexibility into service
networks - the ability to dynamically adjust resource alloca-
tion, including changing the overlay topology, when necessary.
Considering that more and more services will need distributed
infrastructure for scalability and quality of service, we believe
that shared infrastructure is the logical next step for network
service delivery. Content Distribution Service, with its massive
distributed infrastructure requirement, is a typical application
that we believe would benefit from this paradigm shift.
However, such a fundamental shift in deploying and running
CDNs will introduce new requirements and challenges, espe-
cially resource provisioning and content replication that have
yet been addressed in literature. For example, the question
of where to place contents and how requests are directed - ie.
replica placement (RP) problem - and where and how much
resources should be allocated - i.e. provisioning problem -
now become closely coupled and must be addressed simulta-
neously. Besides, any resource usage, e.g. storage space or
processing power, incurs charges on the CDN provider, thus a
RP algorithm that fills up all potential resources in search of
the best performance possible ([8], [9]) is no longer appropri-
ate. Rather, we would expect providers to strive to achieve an
acceptable performance at the least cost possible. The intro-
duction of the “resource costs” concept also makes the problem
much more complex by itself, since the total usage must be op-
timized across multiple resource types, each with different costs
at different locations.
In this paper, we will first describe a general framework for
provisioning service overlays over shared infrastructure, which
aims to define the components a overlay CDN, as well as the
functions and interaction between NPs and SPs regarding ser-
vice provisioning. Based on this framework, we will then de-
velop a CDN resource provisioning model that deals with re-
source allocation and object placement problems jointly. The
model is formulated as a mixed integer programming problem,
which we have been able to solved efficiently using a greedy
search heuristic.
The organization of this paper is as follows: Sections II de-
scribes a general provisioning framework for share infrastruc-
ture, Section III then introduces parameters and formulation for
our CDN provisioning model. Section IV outlines the heuris-
tics we have used to solve this model, namely Lagrangian re-
laxation and greedy search heuristic. Section V describes and

discuss our implementation and numerical results. Section VI
then provides a brief summary of other related works. Finally
Section VII sums up the main contribution of this work and
outlines the future directions that we will take.

II. FRAMEWORK

This section aims to give an overview of the CDN provision-
ing process over a shared infrastructure. The aim of the pro-
visioing process is to determine the amount of resources to be
hired from the network provider. The resources required to de-
ploy a CDN include computation power and memory space at
servers, and network bandwidth. The resource requirement can
be communicated to the NP by using a “CDN topology” infor-
mation structure that includes the following components:� Virtual CDN servers:

These virtual CDN servers are logical partitions of physi-
cal servers or server clusters. Each virtual server is speci-
fied through the following attributes:

- Server location
- Computation power
- Storage space
- Delivery bandwidth

Virtual servers are required to be accessible to end users,
to whom contents are to be delivered. A server’s “deliv-
ery bandwidth” specifies the aggregated bandwidth used
to deliver contents from that server. As content requests
may come from any part of the network, the SP is only in-
terested in and provision for the aggregated bandwidth at
a particular server. This is similar to the “hose” bandwidth
provisioning concept in VPN literature [7].� Virtual links:
A virtual link is a connection between two CDN servers.
These links form the backbone of the CDN, and are used
for software distribution, content replication and updates,
and back-end communications (e.g. accessing a vendor’s
back-end databases in an online transaction). A virtual
link is specified by its end points and bandwidth.

A key issue for the CDN operator is to determine the best CDN
topology. In the “resource-hiring” paradigm, topology deci-
sions will have to tradeoff between service performance and
resource cost. An optimal topology would deliver the required
quality of service at the minimum cost. Topology design, there-
fore, would be an optimization process taking into account the
following:

- Potential server locations
- Hiring cost of various resources and their capacity limits
- User demands and their spatial distribution
- Service performance requirement

The NP is expected to provide the SP with the first two pieces of
information listed above. We envisage the optimization process
to be implemented in a provisioning tool used by the SP, which
gathers the necessary information, computes the optimal “CDN
topology”, and passes this information onto the NP. The NP
will then create the requested topology provided that it passes
an admission control test. An important element of the resource
hiring framework is that the SP can adjust its resource usage ac-
cording to the current level of demand by performing the above

optimization process at appropriate time intervals. Although
we have illustrated the provisioning framework using CDN as
an example, it can also be applied to other services.

Based on this framework, in the next section we will formu-
late a joint CDN provisioning-replica placement optimization
problem, reflecting our vision on how CDNs will most likely
work in this new innovative environment.

III. CDN PROVISIONING MODEL

A. Assumptions

Since for a CDN the bandwidth consumed by content deliv-
ery is expected to be much higher than for distribution and up-
dates, we have taken into account only the delivery bandwidth
provisioning in our model, i.e. we have assumed a simplified
approach where the more significant factors - CDN servers and
delivery bandwidth - are determined before the less important
connecting “pipes” are provisioned.
We also assumed that the server resource consumption exhibits
a constant per-request average computation and bandwidth us-
age. In other words, computation power and bandwidth usage,
and hence their cost, at a server is linearly dependent on the
amount of requests handled.

B. Network and cost models

We model the network as a graph
�������	��

�

, where
�

is
the set of nodes and

is the set of edges. Two subsets of nodes

are defined - customer nodes
���

and potential server nodes
���

,
where

�������������
, � ��� �����

and � ��� �����
. A customer

node is where requests for contents are generated, which in real
life may be an ISP access network. A potential server node rep-
resents a location that resources can be hired and a surrogate
server can be established, e.g. a server farm. To model server
capacities, each potential server � � � � has a limit !#" on the
amount of requests it can handle per unit time.
Each edge $
�
 has a weight that represent distances between
two nodes. The distances %&"(' between any node �)� � � and* � ��� is assumed to be known and is preprocessed using short-
est path algorithms on graph

�
.

A content population of + objects is used, with object , having
size -�. . The amount of requests generated by customer node

*
for object , per unit time is represented by / ' . .
A decision by the CDN owner to use potential node � for con-
tent replication and delivery is assumed to incur the following
costs:

- Site start up cost 0 " - a once-off charge that models the
costs involved when an new server is established (e.g. re-
source allocation, shipping software, configuration...)

- Storage cost - assumed to be proportional to the amount of
contents stored at the site, with unit cost being 12" .

- Serving cost - a combined cost for processing power and
delivery bandwidth. The cost per unit request is 3�" .

An “acceptable QoS threshold” is represented by a requirement
of average customer-content distance for each object under 4 .
The provisioning problem can then be formulated as an opti-
mization problem whose objective is to find a configuration (i.e.
which locations are used, which objects are replicated, and how

much serving power should be used at each location) that sat-
isfies the QoS constraint, and at the same time minimizes the
total cost incurred on the CDN provider.

C. Problem Formulation

To formulate this optimization problem we used the follow-
ing binary and continuous decision variables:

� " ����� if site i is used�
otherwise

(1)

� " . � � � if object k is replicated at site i�
otherwise

(2)� ." ' �	� � � / ' .�
 (3)

The continuous variable � ." ' is used to indicate the fraction of
requests for object k from customer j that should be directed to
site i. Based on these variables, the optimization can be formu-
lated as the following mixed integer linear programming model:

��
�� � ������ "������
�
. ��� � " .�1 " -�.� ��� !#"%$'&)()*,+ � $ � ".-

�� "����0/
�
''���1�

�
. �2� � ." ' 3 "� �,� !3+4&'5 "�6 * � $ � " -

-
�� "���� � " 0 "� ��� !#"%(,&�"87:9 � $ � "

(4)

Subject to:

/
�
''�2� �

�
. ��� � ."('<; !#" �>= � (5a)

�� "���� � ."(' � /&' . �4= * � , (5b)

? �"���� ? /''���
� ." ' % "('?

/''��� /&' .
; 4 �4= , (5c)

�� "���� � " ! "A@CB " (5d)

� ."(' ; /&' . � " . �>= � � * � , (5e)� " . ; � " �4= � � , (5f)� " . � � " �ED � � �#F (5g)� ."(' �	� � � / ' .
 (5h)

where B " � ?
/''���

?
� . �2� / ' . is the total demand from all cus-

tomers. In this formulation, constraint (5a) enforces the serving
power limit at each potential site, (5b) means that all requests
must be served, while constraint (5c) maintains the QoS thresh-
old for each object. Constraint (5e) means that a site can only
serve request for an object if that object is replicated there, and
(5f) means a site must be in use for objects to be replicated
there. According to constraint (5d), the total capacity of opened
sites must not be smaller than the total demand. Note that this

is actually a redundant constraint, which can be deduced from
(5a), (5e) and (5f). Although redundant in the original model, it
has been added to strengthen a Lagrangian relaxation approach
that we will be using in Section IV. Similar techniques have
often been used in literature [10].
Also note that in our model there is an underlying assumption
requests from customers can be split and directed to a suitable
server. The splitting ratios are indicated by � ."(' . This is neces-
sary and useful considering that each customer node represents
a customer base, such as an ISP network, not an end user.
We will show below that this mixed integer linear programming
formulation is NP-hard, and thus we need to develop heuristics
to solve the problem for realistic networks. In the Section IV
we will describe a number of proposed heuristics.

D. Proving NP-hardness

We will prove the NP-hardness of this model by reducing it
to a well-known NP-hard problem - the facility location prob-
lem [11], [10]. Consider our model with + � � , 0 " � � �4= � ,
4 �HG

and denote I "(' � &>JLKMNK � I " ' �O� � � �
 . Note that sub-
script for , has been dropped since there is only one object. In
this particular case, the start up cost and performance constraint
(5c) are eliminated, and the problem can be rewritten as:

� ��� �� "P�2� /
�
''��� I�"('�/&' 3�" -

�� "���� � " 1 " -
Subject to:

/
�
''�2� I " ' / ' ; ! " �4= �

�� "P�2� I�"(' � � �4= *
� ; I�"(' ; � " ; � �4= � � *RQ � " . �1D � � �#F

which is a capacitated facility location problem. Thus our
model is NP-hard S

IV. SOLUTION PROCEDURES

A. Lagrangian Heuristic

One of our first heuristic attempt is a Lagrangian relaxation is
approach. We relax constraint (5e) and add the following term
to the objective function:

�� "P�2�E/
�
''���	�

�
. ���UT ."('WV � ."('YX / ' . � " .#Z � T ." ' @ �

where T ."(' is the Lagrangian multiplier. By rearranging the
relaxed objective function, the problem can be decomposed
into two sub-problems:

��
0[\� � ��� �� "P�2� �
�
. ��� � " . V 1 " -�. X /

�
''��� / ' . T ."(' Z -

�� "���� � " 0 " (6)

Subject to: (5d), (5f), (5g), and:

��
�� � � ��� �� "P�2� /
�
''��� �

�
. ��� � ."(' V 3�" - T

." ' Z (7)

Subject to: (5a), (5b), (5c), (5h)
Note that we have been able to separate binary variables into
problem � � , and the continuous variable into ��� . For each
value of the Lagrangian multiplier vector T ."(' , the optimal solu-
tion to the relaxed problem can be obtained by solving � � and
��� separately.

1) Solving subproblems: To find the optimal solution to
problem � � , we first leave aside constraint (5d) and further de-
compose the problem into one subproblem for each location � :

��
0[��)� � ��� �
�
. ��� � " . V 1 "�- . X /

�
''��� / ' . T ."(' Z� �,� � J�� -

� " 0 " (8)

Subject to: (5f).
For each of these N problems, we consider the following
cases:

1) If � " � � (server � closed) then:� " . � � �>= , � � � � �
	
	�	 � + , due to constraint (5f).
2) If � " � � (server � opened) then:� for each , � � � � ��	
	
	 � +

- If � " . @ � then � " . � �
- If � " .�
 � then � " . � �

where � " . is defined in (8).� � � " � ?
� . �2�

� " . � " .
-
� " 0 "

Thus server � incurs a cost of � � " if opened, and
�

otherwise.
Note that if � � " ; �

, server � is opened in the optimal solu-
tion to problem � � , i.e. � " � � �>= � � ���� � D � � � � " ; � F .
If
? "������� !#" @�B " , then constraint (5d) is satisfied, and

� ��
is optimal set of servers to be opened. Otherwise (5f) can be
enforced by solving the following problem, which determines
which additional servers should also be opened.

� ��� �
"���� ��� ����

� "�� � "
Subject to: �

"���� � � � ��
� " ! "A@ B " X �

"���� ��
! " � � " �0D � � � F

which is a binary knapsack problem of at most size N. There
exist exact algorithms to solve this problem, for example dy-
namic programming algorithms [12], [13]. Note that although
the addition of constraint (5d) has made solving this subprob-
lem more complicated, our experiments showed a significant
improvement in solution bounds with its inclusion.
Problem ��� , on the other hand, is a constrained multi-
commodity minimum cost flow problem and is a pure linear
programming problem. In our current implementation, the
Cplex optimization package [14] is used to solve it.

2) Subgradient heuristic: We used the popular subgradient
method to adjust Lagrangian multiplier T ."(' and generate so-
lution bounds. Instead of solving the original mixed integer
problem, we solve the relaxed problem for a series of different
multiplier values iteratively. In each iteration, solution to the
relaxed problem gives a lower bound of the original problem.
We then attempt to reconstruct a feasible solution using the fol-
lowing procedure:

- Set �� " . � � and �� " � � �4= � � ,
- Consider the solution D � ."(' F to subproblem ���
- For each � ." '

set �� " . and �� " to � if � ."('�� �
The set V � ."(' � �� " . � �� " Z created by this procedure is a feasible
solution to the original model, and thus gives us upper bound.
The Lagrangian multiplier is adjusted in a way to improve the
gap between these bounds, and the best feasible solution found
is retained as heuristic solution. Due to space restriction, details
of the subgradient method cannot be explained here. Interested
readers are referred to [5].

B. Greedy heuristics

1) Analysis: In the original optimization (4), if � " were de-
termined, i.e. if the topology were fixed, the objective function
would become:

��
�� � � � � �� "���� �
�
. ��� � " . 1 "�- . -

�� "P��� /
�
''��� �

�
. ��� � ."(' 3�" -

! � " "%+ � (9)

where the total start up costs ! � " "%+ � is fixed and can be removed
from the objective. Note that the objective function now can
be broken up across , (objects), and that in the constraint set,
only constraint (5a) binds the objects together. Thus we can
approximate � � by ranking the objects (e.g. according to total
demand or priority) and solving the following problem for each
object sequentially. The resulted problem for object , is below,
with subscript , dropped for convenience.

��
��"!U� � ��� �� "P��� � " 1 "�- -
�� "P��� /
�
''��� � "(' 3�" (10)

Subject to:

/
�
''��� � "(' ; !

&)+ � "$# 7 (&%(' ." �4= � (11a)

�� "P��� � "(' � / ' �4= * (11b)

? �"���� ? /''���
� "(' % "('?

/''��� /&'
; 4 � (11c)

� "(' ; / ' � " �4= � � * (11d)� " ; � " �4= � (11e)� " � � "2�1D � � � F Q � "(' � � � � / '
 (11f)

Note that the residual resource has to be updated after
the optimization is done for each object: ! &)+ � "$# 7 (&%(' ." �

! &)+ � "$# 7 (&%(' . � �" X ? /''���
� . � �"(' .

� � . is similar to a facility location problem (FLP) with an ex-
tra performance constraint. If the set � " (i.e. object replication)
were fixed, the problem is reduced to a constrained transport
problem, where optimal � "(' is deterministic and can be solved
efficiently.

2) Heuristic outline: Based on the above observations, we
have designed a two-level greedy search heuristic, with the first
level attempts to search for candidate topology and the second
level searches for the best replication within each topology. The
following outline describes our current implementation, using a
Drop procedure [10] at both levels.
Topology search:

1) Initialize: Start with all server locations opened, calculate
the cost of current topology.

2) For each node � in the current topology, find the total cost
of the resulting topology if server at � is removed.

3) If there are possible cost savings, close server � that offers
the maximum saving.

4) Go back to (2) and continue till no improvements can be
found.

The cost for each candidate topology is found using the follow-
ing procedure:

1) Rank the objects in decreasing order of total demand.
2) For each object ,

- Start by placing a replica of , at every server and cal-
culate current cost by solving a constrained transport
problem.

- For each replica, re-optimize the problem to find the
cost saving if it were removed.

- Drop the replica that offers the maximum saving.
- Continue drop attempts till no further improvements

can be found.
3) Update the residual resource remained at each server and

proceed to next object.
Thus instead of solving the original problem, we solve a
large number of constrained transport problems of size at most
� 	 � . The number of transport problems can be shown to be� V ��� +1Z . In our implementation, Cplex is used to solve the
transport problems. Note that although this outline uses only
Drop heuristic for both topology and replication search, we are
currently implementing other variations of greedy search (i.e.
add and interchange [10]), which can also be fitted within the
same framework.

V. NUMERICAL RESULTS

The proposed heuristics have been implemented and tested
on a number of different network topologies generated by the
GT-ITM topology generator [15]. In each topology, a number
of nodes are randomly selected to be potential server nodes, and
the others are assumed to be customer nodes. Other parameters,
including server capacities, request rates and resource costs are
randomly generated. For each topology, we experimented with
different cost combinations in which resource costs are varied
across a wide range.
Table I shows the the results obtained from experiments with a
these generated topologies. Some problems of small sizes were

used so that we could obtain an exact (optimal) solution with
the mixed integer programming solver provided by Cplex opti-
mization package, which enabled a comparison between heuris-
tic and optimal solutions.
In this table, each row show the results from a different sample
problem. The first three columns show problem size parame-
ters, namely � , � and + . Greedy heuristic results are given
as ! * , together with the gaps between these solutions and op-
timal solutions (if available) or lower bound provided by the
Lagrangian solution (not included in the table) – denoted ����� *
– and associated cpu time 	 * . Lagrangian solutions are given
as ! % , together with the gap �
��� % between solution and lower
bound LB, �
��� % �
��� �������� , cpu time 	 % , and the fractional cost
contributed by each type of resources – denoted ��� , ��� , ��� for
start up, storage and serving costs, respectively. Exact solu-
tions, if obtainable, are displayed in the !���� $ � column.
Generally, the Lagrangean heuristic provided results with a
����� % of under ��� % for all of our experiments. It has also been
observed that this gap is small (under � � %) if serving or start
up costs are large compared to storage cost, and tends get larger
(over � � %) if storage cost is set to dominate the final total cost.
However, at small problem sizes, where we were were able to
compare this with optimal solution, it appears that even in those
cases, this heuristic result is actually still very close (under � %)
to the optimal solution. This suggests that although the heuristic
does not always provide a good warrantee on solution quality at
large storage costs, it does give a good indication of where re-
quests should be directed, which, in turn, translates into a good
feasible solution with our solution recovery procedure. The
main draw back of this Lagrangian heuristic is scalability, with
cpu times exceed 20 hours as the problem size approaches a to-
tal of 30 nodes and 1000 objects. This is due to the fact that
subproblem (���) is has a large number of variables (� � +),
thus although it is solvable, performance decreases quickly as
problem size increases.
The greedy heuristic, on the other hand, achieved a compara-
ble accuracy to the Lagrangian heuristic. Although most of the
times if provides a worse solution, the difference is not signif-
icant as the gap between a greedy solution and the Lagrangian
lower bound is seen to be consistently under � � %. The advan-
tage of this approach is performance. For example, it can be
seen from Table I cpu time 	 * is under � % of cpu time 	 % for
problems of size � �! � �" � �#�W� .

VI. RELATED WORKS

There have been a significant amount of research in the field
of replica placement algorithms for CDNs over the past few
years. Some examples are [9], [8], [16], [17]. There are also
works in other related areas that were not intended for CDNs,
but can be relevant and useful in terms of formulation and al-
gorithms, such as proxy locations [18], cable network content
replication [19], or placement of network instrumentations [20].
Work in [21] provided a comprehensive review of these and
other related publications.
Though different in details, these existing RP models share sig-
nificant characteristics. Server capacities are usually assumed
unlimited and content–customer distances are then optimized

TABLE I
NUMERICAL RESULTS.

Problem size Greedy heuristic Lagrangean heuristic Cplex
N M K ! * ����� * (%) 	 * ! % �
��� % (%) � � (%) � � (%) � � (%) 	 %

10 10 10 91781 5 2s 90308 9 16 28 56 27s 86004
10 10 10 78394 9 2s 76223 15 40 14 46 50s 72030
10 10 10 45362 51 2s 31665 12 87 7 6 68s 30010
10 10 10 545970 1 2s 548382 3 5 2 93 10s 542234
15 15 100 568313 17 6m 549558 13 3 68 29 50m -
15 15 100 106594 5 7m 115976 15 2. 56 42 50m -
15 15 100 222781 23 7m 215880 2 66 80 19 48m -
15 15 100 142850 29 7m 150579 36 0.1 99 0.9 56m -
15 15 1000 798656 11 18m 887503 23 3 80 13 13h -
15 15 1000 470674 38 16m 462129 36 42 40 18 26h -
15 15 1000 565316 28 16m 493909 12 12 53 38 21h -
54 54 1000 230500 - 5h - - - - - - -

without considering server loads [9], [16], [20]. Besides, the
optimization objectives have often followed a “fill-it-up” trend
- looking for best performance possible using all available re-
sources. As pointed out in Section I, such approach would not
be suitable in a shared infrastructure environment. Unlike these
existing works, we aim to create a model suitable for this new
environment that captures all the key constraints.
More recently, work in [22] used content clustering to reduce
the number of objects that an RP algorithm has to consider. The
authors showed that with clustering, the number of objects can
be reduced significantly and comparable RP results can then be
achieved at even as low as � X � % of cpu time. We consider
this work complementary to ours and intend to leverage it to
improve our heuristic’s scalability.

VII. CONCLUSION AND FUTURE WORK

We believe that service provisioning over shared infrastruc-
ture represents a promising future direction for the Content Dis-
tribution Network service; however, such paradigm shift im-
plies new requirements for provisioning and replica placement
algorithms that have yet to be fully addressed in current litera-
ture. In this paper we have formulated an optimization model to
address the CDN provisioning and replica placement problem
that arises in this new environment, and have been able to solve
it with a two level greedy search heuristic.
We are currently expanding this heuristic implementation to
include other greedy search variants (including add and inter-
change procedures) and intend to investigate the use of content
clustering to improve heuristic scalability.

VIII. ACKNOWLEDGMENT

The support of the Cooperative Research Centre for Smart
Internet Technology (CRC-SIT, www.smartinternet.com.au)
for this work and permission to publish this paper is hereby
acknowledged.

REFERENCES

[1] Akamai. www.akamai.com.
[2] Digital Island. www.digitalisland.net.
[3] Speedera. www.speedera.com.
[4] IETF Content Distribution Internetworking Working Group.

www.ietf.org/html.charters/cdi-charter.html.
[5] F. Safaei, I. Ouveysi, M. Zukerman, and R. Pattie. Carrier-scale pro-

grammable networks: Wholesaler platform and resource optimization.
IEEE Journal on Selected Areas in Communications, 19(3), March 2001.

[6] T. Brunner and R. Stadler. Service management in multiparty active net-
works. IEEE Communications Magazine, 38(3):144–151, 2000.

[7] Service Overlay Networks: SLAs, QoS and Bandwidth Provisioning,
Paris, France, November 2002.

[8] J. Kangasharju, J. Roberts, and K. Ross. Object replication strategies in
content distribution networks. In In Proc. WCW’01: Web Caching and
Content Distribution Workshop, Boston, MA, June 2001.

[9] L. Qiu, V. Padmanabham, and G. Voelker. On the placement of web server
replicas. In In Proc. 20th IEEE INFOCOM, 2001.

[10] R. Sridharan. The capacitated plant location problem. European Journal
of Operational Research, 87:203–213, 1995.

[11] D. B. Shmoys, Éva Tardos, and K. Aardal. Approximation algorithms for
facility location problems (extended abstract. pages 265–274, 1997.

[12] S. Martello and P. Toth. Knapsack problems. Wiley, 1990.
[13] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimiza-

tion. Wiley, 1999.
[14] ILOG Cplex Optimization Suite. www.ilog.com/products/cplex.
[15] K. Calvert, M. Doar, and E. W. Zegura. Modeling internet topology. IEEE

Communications Magazine, June 1997.
[16] S. Jamin, C. Jin, A. R. Kurc, D. Raz, and Y. Shavitt. Constrained mirror

placement on the internet. In Proceedings of INFOCOM, pages 31–40,
2001.

[17] A. Venkataramani, M. Dahlin, and P. Weidmann. Bandwidth constrained
placement in a wan. ACM Principles of Distributed Computing, Aug
2001.

[18] B. Li, M. J. Golin, G. F. Italiano, X. Deng, and K. Sohraby. On the optimal
placement of web proxies in the internet. In Proceedings of INFOCOM,
1999.

[19] I. Cidon, S. Kutten, and R. Soffer. Optimal allocation of electronic con-
tent. In Proceedings of INFOCOM, pages 1773–1780, 2001.

[20] S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang. On the place-
ment of internet instrumentation. In Proceedings of INFOCOM, pages
295–304, 2000.

[21] M. Karlsson and M. Mahalingam. Do we need replica placement algo-
rithms in content delivery networks. In WCW’01. IEEE International Web
Content Caching and Distribution Workshop, August 2002.

[22] Yan Chen, Lili Qiu, Weiyu Chen, Luan Nguyen, and Randy H. Katz.
Efficient and adaptive web replication using content clustering. IEEE
Journal on Selected Areas in Communications, 21(Y), 2003.

