
Semantic Foundations for EmbeddingHOL in NuprlDouglas J. HoweBell Labs600 Mountain Ave., Room 2B-438Murray Hill, NJ 07974, USA.Abstract. We give a new semantics for Nuprl's constructive type theorythat justi�es a useful embedding of the logic of the HOL theorem proverinside Nuprl. The embedding gives Nuprl e�ective access to most of thelarge body of formalized mathematics that the HOL community hasamassed over the last decade. The new semantics is dramatically simplerthan the old, and gives a novel and general way of adding set-theoreticequivalence classes to untyped functional programming languages.1 IntroductionNuprl [5] and HOL [9] are interactive theorem proving systems with a numberof similarities: their logics are higher-order type theories, their approaches toautomated reasoning are based on that of LCF [8], and their main application hasbeen to formal reasoning about computation. However, the two logics are verydi�erent in a number of ways. Nuprl has a constructive type theory, based on atype theory of Martin-L�of[16]. The theory contains a programming language, andall objects have a computational interpretation. Programs are reasoned aboutdirectly in logic, and the constructivity of the theory means that programs canbe synthesised from proofs. On the other hand, HOL's theory is classical, andthe way mathematics is encoded is similar to the way ordinary mathematicsis done in ZF set theory. Functions are built in, but all other objects, such asintegers and lists, are given set-theory-like encodings with the aid of the \selectoperator" @x2T: P (x); which denotes some x of type T such that P (x).The HOL theory has proven to be well suited to formalizing much of themathematics of computation. The system has attracted a large number of users(almost certainly more than any theorem-proving system), and a great deal ofthe e�ort in the HOL community has gone into building the libraries of formalmathematics needed for verifying hardware and software of practical interest.A good picture of the scope and extent of this work can be obtained from theproceedings of recent meetings of the annual HOL conference (for example, [2]).Nuprl's type theory o�ers a number of advantages over HOL's logic.{ Expressive power of the type system. Nuprl has subtypes and dependentfunction types. Also, through the use of universes and \sigma" types, onecan express modules of the kind found in Standard ML [18].



{ Constructivity. Experience with Nuprl has shown that for the mathematics ofordinary programs, constructivity comes at essentially no cost. Thus it seemsto be a strict loss that one cannot extract programs from formal proofs inHOL.{ Writing programs. Nuprl includes a programming language which, whileprimitive, includes many of the features, such as function de�nition by gen-eral recursion, of a conventional functional programming language.Most of these features have been recognized in the HOL community as desirablefor HOL. See, for example, [17, 15, 20].There have been a number of substantial applications of Nuprl (see [14] fora recent example), but there has been nothing like the sustained e�ort of theHOL community in formalizing mathematics useful for veri�cation.There are two main motivations for the present work. The �rst is to make upfor Nuprl's relative lack of libraries of mathematics. The proposed solution is toreconcile the semantics of the two logics so that most of the mathematics devel-oped in HOL can be directly imported into Nuprl. The goal here is a practicalone, to be able to e�ectively use HOL mathematics in Nuprl proofs. Just aboutany theorem-prover can embed the logic of any other simply by formalizing thesyntax of proofs, but this is not e�ective. We need a strong connection betweenthe mathematics developed in Nuprl and the mathematics imported from HOL,so that HOL facts will be applicable in Nuprl proofs, and furthermore will beapplicable in such a way that Nuprl's automated reasoning programs can readilyincorporate them. We also need to be careful not to let HOL's classical naturespill over and destroy the constructivity of Nuprl proofs.All the work in reconciling the semantics is on the Nuprl side. We give a newsemantics of Nuprl which combines set theory with the operational semantics ofNuprl's programming language. In this semantics one can �nd standard modelsof HOL's type theory.The other main motivation for this work is to �x a long-standing and seriousproblem with the semantics of Nuprl's logic. The problem is the complexity of thesemantics. The semantics is operationally derived: one starts with an untypedprogramming language presented as a set of terms together with an evaluationrelation, and then inductively builds a type system. A type system is a partialfunction from terms to partial equivalence relations over terms (\PERS"), andthe terms in the domain of the function are called types. Thus the meaning of atype is a set of terms together with an equivalence relation over the set.Deriving the semantics of types from an operational semantics of an untypedprogramming language has several advantages. One is that the approach is fairlygeneric. For example, there is no di�culty in substituting a language like thefunctional part of Standard ML (ignoring ML's types) for Nuprl's current lan-guage. Another advantage is the exibility and expressive power of the typesystem.The main cost of this approach has been the use of PERs. The PER typesystem itself is not particularly complicated | the di�culties arise when oneextends the semantics to sequents, or \hypothetical judgements" to use Martin-



L�of's terminology. Consider, for example, the rule�; x :T1 ` b 2 T2 � ` T1 2 U1� ` �x: b 2 T1 ! T2Ignoring the second premise and the list � of typing assumptions, a naive readingof the rule would say that in order to show that �x: b has type T1 ! T2, it su�cesto assume x has type T1 and prove that b has type T2. But this is not su�cient.In order for �x: b to have type T1 ! T2, it must map equal members of T1 toequal members of T2. Thus, for this rule to be valid, the truth of the �rst premisemust guarantee this \functionality" of �x: b.This gives rise to a \functionality semantics" for sequents. A functionalitysemantics is given by Martin-L�of in [16]. This semantics is itself fairly compli-cated. However, for technical reasons having to do with several essential practicalconsiderations, including reasoning about general recursive programs, and col-lapsing Martin-L�of's four forms on judgement into one, Nuprl requires a morere�ned notion of functionality. Chapter 8 of the Nuprl book [5] gives a sketch ofthis semantics. For a better idea of the complications involved, see Allen's PhDthesis [3]. Because of this complexity, many of the existing Nuprl rules have notbeen completely veri�ed, and there is a strong barrier to extending or modify-ing the theory. In particular, it has been a barrier to changing Nuprl to have aprogramming language more like SML.The new semantics completely does away with PERs and functionality. In-stead, types are simply sets of terms, and sequents essentially have the naivesemantics: the sequent x1 :A1; : : : ; xn :An ` t 2 Twill be true if t is a member of T whenever the xi are terms such that xi is amember of Ai for 1 � i � n.Section 2 gives the technical core of the paper. In it, we show how to addobjects of set theory to the operational semantics of a programming language.These objects come from a universe V of sets, whose members include functions(represented as graphs), pairs, and so on, as well as sets of these objects andequivalence classes over these sets. The approach is to extend the evaluationrelation of the programming language with rules for objects in V . The technicalwork is to make this coherent. Because of space considerations, Section 2 doesnot deal with all of Nuprl's (rather large) language.The hardest part of making this semantics work is dealing with equivalenceclasses. These are included to account for Nuprl's quotient type, which is essentialfor implementing abstract data types in Nuprl. In Nuprl, an ADT is representedby a sigma type, each member of which is a tuple consisting of an implementationtype together with implementations of the operators of the ADT. The operatorsmust satisfy the equations of the ADT. Often a desired implementation typedoes not have the right equality. Consider, for example, the implementation ofrational numbers as pairs of integers. In this case, a quotient must be used togive the implementation type the right equality.



A quotient type in Nuprl has the form (x; y) : A==E, where x and y bindin E. E represents an equivalence relation over the type A. In the PER model,this is easily explained. It is simply the type that has the same members as A,but whose equivalence relation is de�ned by E. In the new semantics, the typewill contain equivalence classes, in the usual set theoretic sense, formed from A.Since we also want the quotient to be computationally meaningful, the type willalso contain \polymorphic equivalence classes" that can be computed with.A point worth emphasizing about the new semantics is that is not particularto any programming language. When constructing V , one needs to know whatthe possible forms of data values are (and the current construction covers mostof the forms in existing programming languages), but almost all of the technicaldevelopment is independent of the rest of the language. The approach to opera-tional semantics builds on our work described in [12]. Evidence for the robustnessof this approach with respect to changes in the programming language can befound, for example, in the adaptations of our approach by Pitts and Gordon,described in [19, 7].In Section 3, we show how to apply this semantics to the Nuprl logic asdescribed in [5]. This is done by adding, to the programming language, operatorsrepresenting Nuprl's type constructors, together with rules specifying how to\evaluate" instances of these constructors to get a member of V representingthe set of all members of a type. We have to make a small change to the Nuprlrules to accommodate the new semantics. In particular, the rules for the quotienttype need to incorporate the new constructor for values of the type. Also, weneed to slight modify the extensionality rule (which reduces proving f 2 A! Bto proving f(x) 2 B for all x 2 A). These rule changes have no signi�cantpractical import for Nuprl. It should be easy to adapt old proofs to use the newrules.In Section 4 we sketch how to use this new semantics to justify an embeddingof HOL. We are currently in the process of actually using this embedding. Theconnection between HOL and Nuprl has been implemented, and we have begunthe importation of HOL theories. The immediate goal is to use these theoriesin a project to use Nuprl to verify the SCI cache-coherency protocol [1]. Detailson the embedding of HOL and its practical applications will be the subject of afuture paper.In the last section we discuss some related work and discuss some extensionsof Nuprl justi�ed by our semantics. The appendix gives a proof sketch postponedfrom the body of the paper.2 SemanticsThe semantics has an operational avour. We start with the standard cumulativehierarchy of set theory. We modify encodings of objects like functions, equiva-lence classes and the sets that will be used to stand for types in the type theory,so that they are distinguishable via \tags". We then remove certain ill-behavedsets, calling the resulting universe of sets V .



We then construct a \programming" language based on V and the termsof Nuprl. The semantics of this language is given as a set of rules inductivelyde�ning an evaluation relation +. These rules explain how to evaluate, for ex-ample, the application of a set theoretic function, represented as a graph, to anarbitrary term. We then de�ne an operational preorder, �, for the resulting lan-guage. Intuitively, e � e0 if e approximates e0. In particular, if e � e0, and if C[�]is a program context (i.e. a term with a hole in it) such that C[e] evaluates to anatomic value v (an integer, say), then C[e0] also evaluates to v. Some examplesare given in Section 2.2.The operational preorder will be used to give set theoretic meanings to terms.If � 2 V and � � a then � will be a possible set-theoretic meaning of a. Forsome a there will be many possible values of �. However, because of the removalof \ill-behaved" objects, if  2 V stands for a type, then for all e there will beat most one � 2  such that � � e. Thus, relative to a given type , terms willhave unique set theoretic meanings. Furthermore, for any given e there will beat most one  � e. Thus a term e will represent at most one type .2.1 The Set Theoretic Universe VWe �rst de�ne Z to be a large chunk of the usual cumulative hierarchy of ZF settheory. In particular, de�ne sets Z� , indexed by ordinals �, by Z�+1 = Pow (Z�),where Pow (X) is the power set of X, and Z� = S�<� Z� if � is a limit ordinal.Now �x some ordinal �0, and let Z = [�<�0Z� . For � 2 Z, de�ne the rank of �,denoted rank (�), to be the least ordinal � < �0 such that � 2 Z� .We now de�ne W � Z to be elements of Z that are tagged according to acertain scheme. Let I be some set. Pick distinct sets fn; set; eq and ci, i 2 I,and let (a; b), for a; b 2 W , be the standard encoding of pairs in set theory.Inductively de�ne W � Z as follows.1. (set; ) 2W if  �W .2. (fn; �) 2 W if � � W � W and for all (x; y); (x0; y0) 2 �, x = x0 impliesy = y0.3. (ci; (x1; : : : ; xn)) 2W if xi 2W for all i.4. (eq; �) 2W if � � W .We will usually identify (fn; �) and �, (eq; �) and �, (set; ) and , and writeci(x) for (ci; x). We use the letters �; , and � exclusively for objects introducedby clauses 1, 2 and 4 above, respectively. We use the letters � and � for arbitrarymembers of W .An object ci(e) is intended to represent a value built with the data construc-tor ci; � is intended to represent a set-theoretic function; �, an equivalence class;and , the collection of set-theoretic meanings of a type in the type theory.The de�nition of V � W is rather technical, and was chosen to meet tworequirements. One requirement is the unique-meaning property described above.The other is that V be closed under the set constructors, such as generalizedcartesian product, that correspond to Nuprl's type constructors.



f + � (�;�) 2 � �< af(a) + �̂ (ap�) f + �x: b b[a=x] + vf(a) + v (ap�)�̂ + �̂ (�) �x: b + �x: b (�) [e] + [e] (eq) ci(e) + ci(e) (ci)a + � 8�2�: � < f(�̂)f �a + �̂ (ap�) a + [a0] f(a0) + vf �a + v (apeq)Fig. 1. Evaluation rules.To de�ne V , we �rst need to introduce a notion of consistency between mem-bers of W . It will turn out that two members that are not consistent cannotapproximate the same term.De�nition1. Two elements x; y 2W are consistent if x " y, where " � W �Wis de�ned by rank induction as follows.{  " .{ �1 " �2 if for all (�1; �1) 2 �1 and (�2; �2) 2 �2, if �1 " �2 then �1 " �2.{ ci(x1; : : : ; xn) " ci(x01; : : : ; x0n) if for all j, xj " x0j.{ � " �0 if for some � 2 � and �0 2 �0, � " �0.De�nition2. De�ne V � W by rank induction as follows.{  2 V if  � V and for all �; �0 2 , � " �0 implies � = �0.{ � 2 V if � � V � V and � " �.{ ci(x1; : : : ; xn) 2 V if xj 2 V for all j.{ � 2 V if � � V .Note that � " � for all � 2 V . Hencefore all uses of the letters �; �; ; � and �will be restricted to V .2.2 A Programming LanguageIn this section we give a \programming" language that combines V withNuprl's term language. We are taking Nuprl's language to include two new op-erators, one for constructing members of quotient types, and one for destructingthem. The changes in the Nuprl rules needed to accommodate these new oper-ators will be discussed in Section 3.The operators in Nuprl's term language are either canonical, and are used toconstruct values, or are non-canonical, and are used to build terms that requireevaluation to obtain a value. For the new semantics, we reclassify Nuprl's opera-tors for building types from canonical to non-canonical (this will be expanded onin the next section). We treat Nuprl's canonical operators generically, and omit



e + v � < v�< e (+< ) �< � (�<) � 2 � � < a� < [a] (�<)8 (�;�)2�: � < b[�̂=x]� < �x: b (�<) 8 j: �j < ejci(�)< ci(e) (ci<)Fig. 2. Approximation rules.here all of its non-canonical operators except for function application. Extend-ing the proofs to deal with the omitted operations is completely straightforward.In [12] we show how to de�ne a general rule schema such that Theorem 6 holdswhenever the underlying evaluation rules �t the schema, as is the case with therules for the omitted operators.The index set I used in the de�nition of V is chosen so that the ci's can beput in one-to-one correspondence with the set of all canonical operators of Nuprlexcept for � (which is the only canonical binding operator).We build the set T of terms of our programming language by starting with anin�nite set of variables and all ; �; � 2 V as constants, and then closing underthe following two rules. If f and a are terms, then f(a), f �a and [a] are terms.If e is a tuple of terms, then for all i 2 I, ci(e) is a term. If b is a term and x isa variable, then �x: b is a term.The usual de�nitions of substitution, closed term, and so on, apply to thislanguage. Let T0 be the set of closed terms. Inductively de�ne an injection i fromV to T0 as follows.i[�] = � ci(i[�1]; : : : ; i[�n]) if e has the form ci(�1; : : : ; �n)� otherwiseWe will usually write �̂ for i[�].We now give a form of operational semantics for this language by giving aset of inductive rules that simultaneously de�ne binary relations < � V � T0and + � T0 � T0. + will be the evaluation relation of the language, and < willturn out to be a restriction of the operational preorder based on +.The rules for + and < are given in Figures 1 and 2. We �rst give the intuitivemeanings of these rules, and then illustrate with a few examples. Consider �rstthe evaluation rules (Figure 1). The �rst two rules are for evaluation of functionapplications. To evaluate a term f(a), one �rst evaluates f . If the value is anabstraction �x: b, then the value is the value of b[a=x] (if any). If it is a constant� 2 Vfn, then �nd an ordered pair (�; �) 2 � such that � approximates a, andreturn �̂.The second line of rules in Figure 1 simply says that any expression builtwith a value constructor evaluates to itself. The last two rules are for computingwith equivalence classes. The idea is that one computes with an equivalence classby computing with its members. To evaluate f �a, �rst evaluate a. If the value



is the \polymorphic" equivalence class [a0], then the result is simply the valueof the function application f(a0). [a0] can be thought of as standing for anyequivalence class that has a0 as a member.Rule (ap�), covering the case where the value of f is the equivalence class �, iscrucial. It is the reason why we can dispense with functionality in our semantics.Intuitively, the rule will force any function computing with equivalence classesto do a \run-time" check that it respects the equality represented by the classes.In particular, we want to force f to check that it returns the same value nomatter what member of � it is applied to. Unfortunately, there is no appropriateglobal notion of \same value". So, this rule \guesses" a value � 2 V such that �approximates f(�̂) for all � 2 �, and returns �̂.Now consider the rules in Figure 2. Rule (�< ) says that an equivalence class� approximates a polymorphic equivalence class [a] if some member of � approx-imates a. Rule (�< ) says that a graph � approximates an abstraction �x: b ifevery � in the domain of �, the value of � at � approximates b[�̂=x].We now look at a few examples. In the full language, some of the ci correspondto the integers, and there are non-canonical operators for addition etc. Let � =f(0; 4); (1; 5)g, �0 = f(0; 2)g and  = f(�; 17); (�0; 18)g. We have{ �̂(0 + 0) + 4 because 0< 0 + 0.{ �̂ < �x: x+ 4, but not �̂0 < �x: x+ 4.{  ̂(�x: x+ 4) + 17.We now consider an example involving the quotient type. Let �1 = f0; 2; : : :gand �2 = f1; 3; : : :g (again ignoring tags). The type (x; y) : N==even(x � y) willhave as members �̂1; �̂2 and [n] for n � 0. We have �̂1< [2] but not �̂2< [2]. Also,if f = �x: if evenp(x) then 0 else 1then f �[2] + 0 and f ��2 + 1̂.The evaluation relation + is idempotent, in the sense that if e + v then v + v.We use the letters u and v exclusively for values, which are terms u such thatu + u. Note that, because of the rule (ap�), + is not determinate: there is a terme and distinct v; v0 such that e + v and e + v0. However, Theorem 9 below saysthat this indeterminacy is inessential.2.3 Operational Preorder and Meaning of ProgramsAll of the terms considered so far, except for �-abstractions, can be writtenas � (e) where � is an operator and e is a (possibly empty) sequence of terms.Applications f(a) can be thought of as having the form ap (f; a). For � a binaryrelation on terms, de�ne e h�i e0 if e = e0 = x, or if e = �x: b, e0 = �x: b0and b � b0, or if e = � (e1; : : : ; en), e0 = � (e01; : : : ; e0n) and ei � e0i for 1 � i � n.Some of the Nuprl operators that we are omitting from the present account arebinding operators. In the full account, the de�nition of h�i is extended to theseoperators in the obvious way.



We extend a relation � � T0 � T0 on closed terms to a relation �� on openterms by de�ning e �� e0 if �(e) � �(e0) for all substitutions � such that �(e)and �(e0) are closed.The operational preorder is now de�ned as follows.De�nition3. Let � � T0 � T0. De�ne [�] � T0 � T0 by e [�] e0 if e + u impliesthere exists u0 such that e0 + u0 and one of the following holds.1. u h��i u0.2. u = �, u0 = �x: b0 and for all (�; �) 2 �, �̂ � b0[�̂=x].3. u = �, u0 = [a0] and for some � 2 �, �̂ � a0.Note that the mapping � 7! [�] is monotone with respect to inclusion of relations.This allows us to make the following de�nition.De�nition4. De�ne � to be the largest relation � � T0�T0 such that � � [�].De�ne � to be the symmetric closure of �.It is easy to show that the �xed-point equation � = [�] holds. We will use thisequation frequently (and implicitly, usually) in the rest of the paper.As in [10, 11], it is straightforward to show that � is a preorder (i.e. it isreexive and transitive). This can be done by the principle of coinduction, whichsays that to prove � � � it su�ces to prove � � [�].Lemma5. For all � 2 V and all closed terms e, �< e if and only if �̂ � e.Proof. The proof is a straightforward induction on the rank of �.In what follows we will use � < e and �̂ � e interchangeably.The proof of the following theorem is too long to be included here. The detailsare not particularly interesting. The appendix gives a sketch of the proof.Theorem6. �� is a precongruence: for all terms e and e0, if e h��i e0 thene �� e0.An immediate consequence Theorem 6 is a substitutivity property: if e �� e0and a �� a0 then e[a=x] �� e0[a0=x].Proving the coherence theorem (Theorem 9 below) is straightforward becauseif a term e evaluates to both v and v0, then v and v0 are the same up to consistentconstants. This is made precise in the following de�nition and lemma.De�nition7. De�ne e 1 e0 if there is a term c with free variables x1; : : : ; xnand some �1; : : : ; �n 2 V and �01; : : : ; �0n 2 V , such that e = c[�=x], e0 = c[�0=x],and for each i, 1 � i � n, �i " �0i.Lemma8. 1. If e 1 e0, e + v and e0 + v0, then v 1 v0.2. If e 1 e0, � < e and �0 < e0 then � " �0.



Proof. The proof is a straightforward induction on the de�nitions of e + v and� < e. We do only two cases; the remaining cases are similar.Case (ap�). We must have e0 = f 0(a0) for some f 0; a0. Since f + � and f 1 f 0,by part 1 of the induction hypothesis we cannot have f 0 + �x: b0 for any b0,and so f 0(a0) + v0 must be derived by an instance of rule (ap�). By part 1 ofthe induction hypothesis, � " �0, and by part 2, � " �0. By de�nition of � " �0,� " �0.Case (ap�). Proceeding as in the previous case, we have e0 = f 0�a0 and f 0�a0 + �0via (ap�). By the induction hypothesis, � " �0, so there exist � 2 � and �0 2 �0such that � " �0. We have f(�) 1 f 0(�0), so by the induction hypothesis � " �0.Theorem9. (Coherence.) Suppose e 2 T0.1. If 1 < e and 2 < e then 1 = 2.2. For all  2 V and �1; �2 2 , if �̂1 < e and �̂2 < e then �1 = �2.Proof. For part 2, if � < e and �0 < e for �; �0 2 , then by Lemma 8, � " �0,and so � = �0 by the de�nition of V . The proof of part 1 is similar.3 NuprlThis section shows how to apply the semantic ideas of the previous section to avariant of Nuprl's type theory.Nuprl has a large number of built-in type constructors and a very largenumber of inference rules (close to 100), so a complete account here is impossible.However, the semantics is su�cient simple that an interested reader would nothave too much di�culty in verifying all the rules given in the Nuprl book [5],given the de�nitions and examples in this section, and assuming the results ofSection 2.To give the semantics for the type theory, we �rst need to extend the oper-ational semantics to include evaluation rules for all the type constructors. It iseasy to show that all the results of the previous section hold for this extension.We only give a few examples of such rules. Obvious variations work for the othertype constructors.To account for all of Nuprl, we have to make V su�ciently large. Nuprl hasa hierarchy of universes U1; U2; : : : of types. Each Ui has to be closed undertype constructors such as generalized cartesian product. This means that theset-theoretic meaning of each Ui has to be closed under the corresponding setconstructors. This requires the use of inaccessible cardinals. These are de�ned inmost set theory texts, and the reason for their use in this context is explainedfurther in [11]. We choose the ordinal �0 in the de�nition of W to be the limitof a countable sequence �1 < �2 : : : of inaccessible cardinals. For each i � 1, leti = V \ Z�i . We add evaluation rules Ui + bi for each i � 1.We give a rule for Nuprl's generalized cartesian product x : A! B as follows.If  2 V and, for each � 2 , � 2 V , then let ��2 : � denote the set of all



� 2 V such that the domain of � is , and for each (�; �) 2 �, � 2 �. Note that(��2 : �) 2 V . The evaluation rule isA + ̂ 8�2: B[�̂=x] + c�x : A! B + i[��2 : �]Nuprl has an equality type, similar to Martin-L�of's \I" type, which representsthe proposition that two elements of the type are equal. Let true be some one-element set, and let false be the empty set. The rules for the equality type areas follows.A + ̂ � 2  � < a1 � < a2(a1 = a2 2 A) + dtrue A + ̂ � 6= � 2  � < a1 � < a2(a1 = a2 2 A) + dfalse:Finally, we give a rule for the quotient type. If X is an equivalence relationover , then let ==X be the set of equivalence classes of X. In the rule below,let Q stand for f (�; �)2 �  j �;� 6= ; g.A +  8�; �2: E[�̂; �̂=x; y] + d�;� Q is an equivalence relation(x; y) : A==E + i[==Q]:Having added the evaluation rules for all the type constructors, we can givethe semantics of Nuprl's type system.De�nition10. A closed term e is a type if there is a  2 V such that e + ̂.De�ne M�[e] = .M� is well-de�ned by Theorem 9 and the fact that e +  implies  < e.De�nition11. Let e and a be closed terms. De�ne a 2 e if e is a type and thereexists � 2M�[e] such that � < a. In the case � exists, de�ne Me[a] = �.Me is well-de�ned by Theorem 9. We will write M [a] for M̂ [a]. Note that ife 2 Ui then e is a type and M�[e] 2 i.The preceding de�nition gives the core idea of the semantics. With a typeis associated a set , and the members of the type are all terms e which areapproximated by some member of .It is now easy to give the semantics of Nuprl sequents. Nuprl sequents havethe form x1 :A1; : : : ; xn :An ` t 2 Twhere t; T; A1; : : : ; An are terms and for all i, 1 � i � n, all of the free variables oft and T are among x1; : : : ; xn, and all of the free variables of each Ai are amongx1; : : : ; xi�1. A closing substitution for the sequent is a substitution which hasdomain x1; : : : ; xn and whose values are all closed terms.De�nition12. The sequentx1 :A1; : : : ; xn :An ` t 2 Tis true if �(t) 2 �(T ) for all closing substitutions � such that for all i, 1 � i � n,�(xi) 2 �(Ai).



Soundness of an inference rule is now de�ned as usual: the conclusion is truewhenever the premises are.Theorem13. The rules of Nuprl, with suitable modi�cations to the quotientand extensionality rules, are sound.We do not give the proof here, but just give a few representative cases. We alsosimplify the rules somewhat, for example by dealing only with the hypothesesthat are introduced or analyzed by a rule (as opposed to the common pre�x ofhypotheses shared by the conclusion and premises).We �rst do the \function intro" rule.` A 2 Ui x :A ` b 2 B` �x: b 2 x : A! BBy the �rst premise, there is a  such that M�[A] = . By the second premise,for each � 2 , B[�̂=x] is a type, so for some �, M�[B[�̂=x]] = �. By theevaluation rule for the product type,M�[x : A! B] = ��2 : �:By the second premise, b[�̂=x] 2 B[�̂=x] for all � 2 . Let � 2 ��2 : � encodethe mapping � 7!M� [b[�̂=x]]: To complete the veri�cation of the rule, we onlyneed to show that � � �x: b, and this is immediate.Next we do the \function elim" rule.` a 2 A ` f 2 x : A! B` f(a) 2 B[a=x]Let MA[a] = � and Mx:A!B [f ] = �. Let � be such that (�; �) 2 �. By theevaluation rule for product, B[�̂=x] +  for some  such that � 2 , so, usingTheorem 6,  � B[�̂=x] � B[a=x] and hence M�[B[a=x]] = . Since � � f , wehave �̂ � f(�̂) � f(a), so f(a) 2 B[a=x].Some of the rules for Nuprl's quotient type need to be changed. We sketchthese changes below. Veri�cation of the rules is straightforward, and is omittedhere. Let Q be (x; y) : A==E. The new \introduction" rule adds the constructor[�]. ` Q 2 Ui ` a 2 A` [a] 2 QThe new \elimination" rule adds the non-canonical form for quotients.` e 2 Q x :A; y :A; z :E ` ctrue 2 (f(x) = f(y) 2 T )` f �e 2 Twhere ctrue is the unique member of true. In the second premise, the assumptionz :E merely asserts that E is true; the variable z is not allowed to occur free inf or T . Also, there is no need for a premise giving a type to f .One other rule for quotients also needs to be changed. The changes are similarto the \intro" rule. Also, Nuprl's \direct computation" rule, which formalizessymbolic computation, must be updated to include the equivalence f �[e] � f(e).



4 HOLIn this section we �rst sketch how to use the semantics we have developed tojustify an embedding of HOL. We then explain why this embedding is e�ective.In order to embed HOL, we need to add an operator to Nuprl to repre-sent HOL's \select" operator. The evaluation rule is as follows. Note that non-emptiness of a type is taken to represent truth of the corresponding proposition.T + ̂ 8�2: P [�̂=x] + c� �0 2  of minimum rank such that �0 6= ;@x2T: P + c�0The base logic of HOL is a polymorphic version of the simply typed �-calculuswith two base types: bool, for the booleans, and ind, representing an in�nite set.There are three constants = : 'a ! 'a ! bool==> : bool ! bool ! bool@ : ('a ! bool) ! 'afor equality, implication, and \select", respectively. The 'a is a type variable.The semantics of HOL is the standard set-theoretic one where function type isgiven the usual set-theoretic meaning.Given Nuprl's select operator, it is trivial to give de�nitions in Nuprl forthe base types and the constants. ind is de�ned to be Nuprl's type of naturalnumbers, and HOL's function type is interpreted as Nuprl's function type. Wecan prove in Nuprl that each of the (de�ned) constants has the appropriate type.For example, we can prove8 'a2HOL U: @ 2 ('a ! bool) ! 'awhere HOL U is the type of all members of the type universe U1 that are non-empty, and bool is de�ned as the subtype fx2Z jx = 0_x = 1 g of Nuprl's typeZ of integers. In general, all HOL theorems and axioms have implicit outermostquanti�ers for their type variables. These quanti�ers are made explicit in theNuprl interpretation.Extensions to the HOL logic are made by creating theories. A theory consistsof a set of new type constructors, and set of new constants with their types, someaxioms involving the new constants and types, and a set of theorems proved usingthe axioms. To import this theory into Nuprl, we proceed as we did for the baselogic: we �nd Nuprl objects to use in place of the new types and constants (thesecan usually be computed automatically from the theory's de�nitions), prove inNuprl that the constants have their assigned types, and then prove that theaxioms all hold. Once we have done this, the new semantics of Nuprl tells usthat the set theoretic meaning of the Nuprl objects we introduced can be directlyused to give a model of the HOL theory. The theorems are valid in this model,hence their translations into Nuprl are true.



The use of Nuprl objects to \instantiate" HOL theories is one reason whythis embedding is e�ective. For example, we instantiate the HOL theories forthe integers with Nuprl's integer type and Nuprl's built-in operations over theintegers. All the HOL theorems about the HOL integers then become applicableto Nuprl integers.A major concern here is the constructivity of Nuprl proofs. HOL formu-las, when imported into Nuprl, have type bool. Nuprl's encoding of logic usespropositions-as-types, so, for example, Nuprl's universal quanti�cation is rep-resented using the generalized cartesian product type. We can prove, however,that the two ways of encoding logic are equivalent. Thus, for each HOL theoremimported, we can derive a version of the theorem that uses Nuprl's logical con-nectives. However, the proof of this derivation is non-constructive, and so theprogram synthesized from one of these new theorems might mention the non-computable select operator @. If such a theorem is cited in another Nuprl proof,the program there might also be uncomputable.The reason this is not a problem is because equalities in Nuprl have no com-putational content. So, for example, if a universally quanti�ed equation is proved,then the program extracted from the proof is simply a constant function. Thishas two main consequences. First, if we are proving an equation (possibly underassumptions) in Nuprl, we can safely use any HOL theorem whatsoever. Second,no matter what we are proving, it is always safe to use HOL facts, such as uni-versally quanti�ed equations, that have no computational content. Fortunately,the vast majority of HOL theorems �t this category, and the vast majority ofthe work in proving any theorem about software involves computationally trivialfacts (mostly equations and inequations). Most of the work in Nuprl proofs isdone by term rewriting. All the programs that apply term rewriting can safelyuse any HOL theorem.It is easy to modify the system to ensure that non-computable \programs"are not inadvertently extracted from proofs. For example, we can add a bit toeach proof node, where a true bit means that the extracted program of thesubproof rooted at the node must not contain the select operator. The user setsthe bit at the root, and the system computes the bit when the proof is extendedby re�nement, setting it to false when the node being re�ned has a conclusionwhich is computationally trivial, and simply propagating it otherwise. Inferencesteps may not mention the select operator, or use lemmas whose top bit is false,if the bit at the node being re�ned is true.Details on the actual HOL embedding and some of its practical applicationswill be given in a forthcoming paper.5 Related Work, DiscussionIn [4], Breazu-Tannen and Subrahmanyam give a logic for reasoning about pro-grams using structural recursion over data types formed from constructors sub-ject to some equations. Their idea, to make the meaning of a de�nition by struc-tural recursion ? if it does not respect the equations, is somewhat similar to



our treatment of f �t, which tests to see if f respects equality as given by theequivalence class t.It is straightforward to give a classical interpretation justifying the selectoperator for typed variants of Martin-L�of's type theory. Such an interpretationis given by Dybjer in [6]. Because these variants are based on a typed language,they do not enjoy some of the useful features of Nuprl, such as direct reasoningabout the programming language used for realizers extracted from proofs, writingprograms in a conventional style (e.g. general recursion), genericity with respectto programming language (e.g. using ML instead) and partial functions.The idea of adding function oracles � to an untyped programming languagecomes from our paper [11]. The semantics we gave there might give a model ofNuprl in which the select operator is de�nable, but we would have had to use thecomplicated PER semantics along the lines discussed earlier (the author gave upon doing this in disgust), and the embedding of HOL would be much harder tojustify because of the PER/set mismatch in the respective semantics.The idea for the proof of Theorem 6 �rst appeared in [10]. An expandedtreatment of the proof method is in [11].In [13] we gave a type theory that contained ZF set theory. Although thattheory is in some respects similar to Nuprl, the programming language in thetheory is typed in an essential way and hence the semantics cannot be appliedto Nuprl. Also, there are no polymorphic equivalence classes in that work, andthe semantics is much more complicated than the present one.The new semantics justi�es some useful extensions to Nuprl. It justi�es ex-tensional equality of types: two types are equal if and only if they have the sameset of members. Currently, Nuprl's type equality is taken to be intensional, orstructural, for technical reasons having to do with collapsing Martin-L�of's fourforms of judgment to one, although there are no rules that exploit this. Otherextensions include: the law of the excluded middle (an immediate consequenceof the introduction of the @ operator), a power set constructor, and some im-predicative constructs.References1. Part IIIA: SCI Coherence Overview, 1995. Unapproved draft IEEE-P1596-05Nov90-doc197-iii.2. Higher Order Logic Theorem Proving and Its Applications, Lecture Notes in Com-puter Science. Springer, 1995.3. S. F. Allen. A Non-Type-Theoretic Semantics for Type-Theoretic Language. PhDthesis, Cornell University, 1987.4. V. Breazu-Tannen and R. Subrahmanyam. Logical and computational aspects ofprogramming with sets/bags/lists. In Automata, Languages and Programming:18 th International Colloquium, Lecture Notes in Computer Science, pages 60{75.Springer-Verlag, 1991.5. R. L. Constable, et al. Implementing Mathematics with the Nuprl Proof Develop-ment System. Prentice-Hall, Englewood Cli�s, New Jersey, 1986.



6. P. Dybjer. Inductive sets and families in Martin-L�of's type theory and their set-theoretic semantics. In Proceedings of the B.R.A. Workshop on Logical Frame-works, Sophia-Antipolis, France, June 1990.7. A. Gordon. Functional Programming and Input/Output. Cambrige UniversityPress, 1994.8. M. J. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: A MechanizedLogic of Computation, volume 78 of Lecture Notes in Computer Science. Springer-Verlag, 1979.9. M. J. C. Gordon and T. F. Melham. Introduction to HOL: A Theorem ProvingEnvironment for Higher Order Logic. Cambridge University Press, Cambridge,UK, 1993.10. D. J. Howe. Equality in lazy computation systems. In Proceedings of the FourthAnnual Symposium on Logic in Computer Science, pages 198{203. IEEE ComputerSociety, June 1989.11. D. J. Howe. On computational open-endedness in Martin-L�of's type theory. InProceedings of the Sixth Annual Symposium on Logic in Computer Science, pages162{172. IEEE Computer Society, 1991.12. D. J. Howe. Proving congruence of bisimulation in functional programming lan-guages. Information and Computation, 1996. To appear.13. D. J. Howe and S. D. Stoller. An operational approach to combining classical settheory and functional programming languages. In Theoretical Aspects of ComputerSoftware, Lecture Notes in Computer Science. Springer-Verlag, 1994.14. P. B. Jackson. Exploring abstract algebra in constructive type theory. InA. Bundy, editor, 12th Conference on Automated Deduction, Lecture Notes in Ar-ti�cal Intelligence. Springer, June 1994.15. B. Jacobs and T. Melham. Translating dependent type theory into higher orderlogic. In Proceedings of the Second International Conference on Typed LambdaCalculi and Applications, volume 664 of Lecture Notes in Computer Science, pages209{229. Springer, 1993.16. P. Martin-L�of. Constructive mathematics and computer programming. In SixthInternational Congress for Logic, Methodology, and Philosophy of Science, pages153{175, Amsterdam, 1982. North Holland.17. T. Melham. The HOL logic extended with quanti�cation over type variables. For-mal Methods in System Design, 3(1{2):7{24, August 1993.18. R. Milner, M. Tofte, and R. Harper. The De�nition of Standard ML. MIT Press,1990.19. E. Ritter and A. Pitts. A fully abstract translation between a �-calculus withreference types and Standard ML. In Proceedings of the Second InternationalConference on Typed Lambda Calculi and Applications, volume 902 of Lecture Notesin Computer Science, pages 397{413. Springer, 1995.20. M. van der Voort. Introducing well-founded function de�nitions in HOL. In HigherOrder Logic Theorem Proving and Its Applications, volume A-20 of IFIP Transac-tions, pages 117{131. North-Holland, 1993.A Proof of PrecongruenceThe proof of Theorem 6 in large part a straightforward extension of the methodof [10, 12]. One of the main di�erences is that we use Lemma 14 for the casesfor rules (ap�) and (ap�).



Lemma14. If � < e[�̂=x] and � < e0 then � < e[e0=x].Lemma 14, while highly plausible, is in fact rather di�cult to prove. Theobvious inductive argument over the de�nition of < fails because of rules (ap�)and (ap�). Our proof is rather complicated, and is omitted because of lack ofspace. All the complication resides in the well-founded relation that the inductiveproof is based on.We now sketch the remainder of the proof. We continue to omit any mentionof operators not treated in Section 2. The key to the rest of the proof is thefollowing de�nition.De�nition15. De�ne the precongruence candidate, a binary relation b� on terms,by induction on the size of its �rst argument: e b� e0 if there exists e00 such thate hb�i e00 and e00 �� e0.It is straightforward to verify that the precongruence candidate has the fol-lowing properties: it is reexive; it is operator respecting in the sense that if e b� e0then C[e] b� C[e0] for all contexts C[�]; if e1 b� e2 � e3 then e1 b� e3; if v b� v0then v [b�] v0; and if e �� e0 then e b� e0. We can also show that b� is substitutive:if e b� e0 and b b� b0 then b[e=x] b� b0[e0=x].The following key lemma can be easily proved using co-induction on thede�nition of �.Lemma16. Suppose that for all closed e; e0 and v such that e + v and e b� e0,there exists v0 such that e0 + v0 and v b� v0. Then � is a precongruence.We can now prove Theorem 6.Proof. By the preceding lemma, it su�ces to prove by induction on the de�ni-tions of + and < that1. If e + v and e b� e0 then e0 + v0 with v b� v0.2. If � < e and e b� e0 then � < e0.We do a case analysis on rules. In each case, we use the following fact. Let 10 beproperty 1 above with e b� e0 replaced by e hb�i e0. It is straightforward to showthat for any particular e; e0; v and v0, 10 implies 1. An analogous statement holdsfor property 2.We only consider a few representative cases. The remaining cases are eithervery similar or trivial.Case (ap�). Suppose f(a) hb�i f 0(a0). f 0 + v0 with � b� v0. By de�nitionof b�, � � v0. Suppose v0 = �. By part 2 of the induction hypothesis, � < a0,so f 0(a0) + �. Suppose v0 = �x: b. Since � � b0[�=x], by Lemma 14 we have� � b0[a0=x], so b0[a0=x] + v00 with � � v00, and this implies � b� v00.Case (ap�). Suppose f(a) hb�i f 0(a0). f + �x: b so by the induction hypothesisthere exists b0 such that f 0 + �x: b0 and b b� b0. b[a=x] b� b0[a0=x], so by theinduction hypothesis v b� v0.Case (�<). Suppose �x: b hb�i e0. Then e0 = �x: b0 where b b� b0. b[�̂=x] b�b0[�̂=x], so � < b0[�̂=x] and � < �x: b.This article was processed using the LaTEX macro package with LLNCS style


