Semantic Foundations for Embedding
HOL in Nuprl

Douglas J. Howe

Bell Labs
600 Mountain Ave., Room 2B-438
Murray Hill, NJ 07974, USA.

Abstract. We give a new semantics for Nuprl’s constructive type theory
that justifies a useful embedding of the logic of the HOL theorem prover
inside Nuprl. The embedding gives Nuprl effective access to most of the
large body of formalized mathematics that the HOL community has
amassed over the last decade. The new semantics is dramatically simpler
than the old, and gives a novel and general way of adding set-theoretic
equivalence classes to untyped functional programming languages.

1 Introduction

Nuprl [5] and HOL [9] are interactive theorem proving systems with a number
of similarities: their logics are higher-order type theories, their approaches to
automated reasoning are based on that of LCF [8], and their main application has
been to formal reasoning about computation. However, the two logics are very
different in a number of ways. Nuprl has a constructive type theory, based on a
type theory of Martin-Lo6{[16]. The theory contains a programming language, and
all objects have a computational interpretation. Programs are reasoned about
directly in logic, and the constructivity of the theory means that programs can
be synthesised from proofs. On the other hand, HOL’s theory is classical, and
the way mathematics 1s encoded is similar to the way ordinary mathematics
is done in ZF set theory. Functions are built in, but all other objects, such as
integers and lists, are given set-theory-like encodings with the aid of the “select
operator” @z €T. P(x), which denotes some x of type T such that P(z).

The HOL theory has proven to be well suited to formalizing much of the
mathematics of computation. The system has attracted a large number of users
(almost certainly more than any theorem-proving system), and a great deal of
the effort in the HOL community has gone into building the libraries of formal
mathematics needed for verifying hardware and software of practical interest.
A good picture of the scope and extent of this work can be obtained from the
proceedings of recent meetings of the annual HOL conference (for example, [2]).

Nuprl’s type theory offers a number of advantages over HOL’s logic.

— Fzpressive power of the type system. Nuprl has subtypes and dependent
function types. Also, through the use of universes and “sigma” types, one
can express modules of the kind found in Standard ML [18].

— Constructivity. Experience with Nuprl has shown that for the mathematics of
ordinary programs, constructivity comes at essentially no cost. Thus it seems
to be a strict loss that one cannot extract programs from formal proofs in
HOL.

— Writing programs. Nuprl includes a programming language which, while
primitive, includes many of the features, such as function definition by gen-
eral recursion, of a conventional functional programming language.

Most of these features have been recognized in the HOL community as desirable
for HOL. See, for example, [17, 15, 20].

There have been a number of substantial applications of Nuprl (see [14] for
a recent example), but there has been nothing like the sustained effort of the
HOL community in formalizing mathematics useful for verification.

There are two main motivations for the present work. The first is to make up
for Nuprl’s relative lack of libraries of mathematics. The proposed solution is to
reconcile the semantics of the two logics so that most of the mathematics devel-
oped in HOL can be directly imported into Nuprl. The goal here is a practical
one, to be able to effectively use HOL mathematics in Nuprl proofs. Just about
any theorem-prover can embed the logic of any other simply by formalizing the
syntax of proofs, but this is not effective. We need a strong connection between
the mathematics developed in Nuprl and the mathematics imported from HOL,
so that HOL facts will be applicable in Nuprl proofs, and furthermore will be
applicable in such a way that Nuprl’s automated reasoning programs can readily
incorporate them. We also need to be careful not to let HOL’s classical nature
spill over and destroy the constructivity of Nuprl proofs.

All the work in reconciling the semantics is on the Nuprl side. We give a new
semantics of Nuprl which combines set theory with the operational semantics of
Nuprl’s programming language. In this semantics one can find standard models
of HOL’s type theory.

The other main motivation for this work is to fix a long-standing and serious
problem with the semantics of Nuprl’s logic. The problem is the complexity of the
semantics. The semantics 1s operationally derived: one starts with an untyped
programming language presented as a set of terms together with an evaluation
relation, and then inductively builds a type system. A type system is a partial
function from terms to partial equivalence relations over terms (“PERS”), and
the terms in the domain of the function are called types. Thus the meaning of a
type is a set of terms together with an equivalence relation over the set.

Deriving the semantics of types from an operational semantics of an untyped
programming language has several advantages. One is that the approach is fairly
generic. For example, there is no difficulty in substituting a language like the
functional part of Standard ML (ignoring ML’s types) for Nuprl’s current lan-
guage. Another advantage is the flexibility and expressive power of the type
system.

The main cost of this approach has been the use of PERs. The PER type
system itself 1s not particularly complicated — the difficulties arise when one
extends the semantics to sequents, or “hypothetical judgements” to use Martin-

Lof’s terminology. Consider, for example, the rule

e beTy, T'HETi el
I'FAx. beT) — Ty

Ignoring the second premise and the list I of typing assumptions, a naive reading
of the rule would say that in order to show that Az. b has type T} — T3, it suffices
to assume x has type 77 and prove that b has type 7. But this is not sufficient.
In order for Az. b to have type T} — T4, it must map equal members of T} to
equal members of T5. Thus, for this rule to be valid, the truth of the first premise
must guarantee this “functionality” of Az. b.

This gives rise to a “functionality semantics” for sequents. A functionality
semantics is given by Martin-Lof in [16]. This semantics is itself fairly compli-
cated. However, for technical reasons having to do with several essential practical
considerations, including reasoning about general recursive programs, and col-
lapsing Martin-Lof’s four forms on judgement into one, Nuprl requires a more
refined notion of functionality. Chapter 8 of the Nuprl book [5] gives a sketch of
this semantics. For a better idea of the complications involved, see Allen’s PhD
thesis [3]. Because of this complexity, many of the existing Nuprl rules have not
been completely verified, and there 1s a strong barrier to extending or modify-
ing the theory. In particular, it has been a barrier to changing Nuprl to have a
programming language more like SML.

The new semantics completely does away with PERs and functionality. In-
stead, types are simply sets of terms, and sequents essentially have the naive
semantics: the sequent

x1: Ay, kg A FEET

will be true if ¢ 1s a member of T whenever the z; are terms such that z; is a
member of A; for 1 < i < n.

Section 2 gives the technical core of the paper. In it, we show how to add
objects of set theory to the operational semantics of a programming language.
These objects come from a universe V of sets, whose members include functions
(represented as graphs), pairs, and so on, as well as sets of these objects and
equivalence classes over these sets. The approach is to extend the evaluation
relation of the programming language with rules for objects in V. The technical
work is to make this coherent. Because of space considerations, Section 2 does
not deal with all of Nuprl’s (rather large) language.

The hardest part of making this semantics work 1s dealing with equivalence
classes. These are included to account for Nuprl’s quotient type, which 1s essential
for implementing abstract data types in Nuprl. In Nuprl, an ADT is represented
by a sigma type, each member of which is a tuple consisting of an implementation
type together with implementations of the operators of the ADT. The operators
must satisfy the equations of the ADT. Often a desired implementation type
does not have the right equality. Consider, for example, the implementation of
rational numbers as pairs of integers. In this case, a quotient must be used to
give the implementation type the right equality.

A quotient type in Nuprl has the form (#,y) : A//E, where x and y bind
in E. F represents an equivalence relation over the type A. In the PER model,
this i1s easily explained. It is simply the type that has the same members as A,
but whose equivalence relation is defined by E. In the new semantics, the type
will contain equivalence classes, in the usual set theoretic sense, formed from A.
Since we also want the quotient to be computationally meaningful, the type will
also contain “polymorphic equivalence classes” that can be computed with.

A point worth emphasizing about the new semantics is that is not particular
to any programming language. When constructing V', one needs to know what
the possible forms of data values are (and the current construction covers most
of the forms in existing programming languages), but almost all of the technical
development 1s independent of the rest of the language. The approach to opera-
tional semantics builds on our work described in [12]. Evidence for the robustness
of this approach with respect to changes in the programming language can be
found, for example, in the adaptations of our approach by Pitts and Gordon,
described in [19, 7].

In Section 3, we show how to apply this semantics to the Nuprl logic as
described in [5]. This is done by adding, to the programming language, operators
representing Nuprl’s type constructors, together with rules specifying how to
“evaluate” instances of these constructors to get a member of V representing
the set of all members of a type. We have to make a small change to the Nuprl
rules to accommodate the new semantics. In particular, the rules for the quotient
type need to incorporate the new constructor for values of the type. Also, we
need to slight modify the extensionality rule (which reduces proving f € A — B
to proving f(z) € B for all © € A). These rule changes have no significant
practical import for Nuprl. It should be easy to adapt old proofs to use the new
rules.

In Section 4 we sketch how to use this new semantics to justify an embedding
of HOL. We are currently in the process of actually using this embedding. The
connection between HOL and Nuprl has been implemented, and we have begun
the importation of HOL theories. The immediate goal is to use these theories
in a project to use Nuprl to verify the SCI cache-coherency protocol [1]. Details
on the embedding of HOL and its practical applications will be the subject of a
future paper.

In the last section we discuss some related work and discuss some extensions
of Nuprl justified by our semantics. The appendix gives a proof sketch postponed
from the body of the paper.

2 Semantics

The semantics has an operational flavour. We start with the standard cumulative
hierarchy of set theory. We modify encodings of objects like functions, equiva-
lence classes and the sets that will be used to stand for types in the type theory,
so that they are distinguishable via “tags”. We then remove certain ill-behaved
sets, calling the resulting universe of sets V.

We then construct a “programming” language based on V and the terms
of Nuprl. The semantics of this language is given as a set of rules inductively
defining an evaluation relation |}. These rules explain how to evaluate, for ex-
ample, the application of a set theoretic function, represented as a graph, to an
arbitrary term. We then define an operational preorder, <, for the resulting lan-
guage. Intuitively, e < e’ if e approximates ¢’. In particular, if e < ¢’, and if C[]
is a program context (i.e. a term with a hole in it) such that C[e] evaluates to an
atomic value v (an integer, say), then Ce’] also evaluates to v. Some examples
are given in Section 2.2.

The operational preorder will be used to give set theoretic meanings to terms.
If « € V and a < a then a will be a possible set-theoretic meaning of a. For
some a there will be many possible values of «v. However, because of the removal
of “ill-behaved” objects, if ¥ € V stands for a type, then for all e there will be
at most one « € v such that a < e. Thus, relative to a given type 7, terms will
have unique set theoretic meanings. Furthermore, for any given e there will be
at most one v < e. Thus a term e will represent at most one type 7.

2.1 The Set Theoretic Universe V'

We first define Z to be a large chunk of the usual cumulative hierarchy of ZF set
theory. In particular, define sets Z,, indexed by ordinals o, by Z,11 = Pow(Z,),
where Pow(X) is the power set of X, and 7, = |J, ., Z, if 7 is a limit ordinal.
Now fix some ordinal og, and let 7 = U, «,,Z,. For a € 7, define the rank of «,
denoted rank (), to be the least ordinal 7 < oy such that o € Z;.

We now define W C Z to be elements of Z that are tagged according to a
certain scheme. Let I be some set. Pick distinct sets fn, set, eq and ¢;, ¢ € I,
and let (a,b), for a,b € W, be the standard encoding of pairs in set theory.
Inductively define W C Z as follows.

—_
~—~

set,y) e Wity CW.
fa,) € Wif ¢ C W x W and for all (z,y),(¢',y) € ¢, x = ' implies

[N}
P

i (21, ..., xn)) €W if z; € W for all .
,E)eWifeC .

i
~ N
ST

We will usually identify (fn, ¢) and ¢, (eq, &) and &, (set,v) and =, and write
¢;(T) for (¢;, 7). We use the letters ¢, v, and £ exclusively for objects introduced
by clauses I, 2and 4 above, respectively. We use the letters o and § for arbitrary
members of W.

An object ¢;(2) is intended to represent a value built with the data construc-
tor ¢;; ¢ 1s intended to represent a set-theoretic function; &, an equivalence class;
and v, the collection of set-theoretic meanings of a type in the type theory.

The definition of V' C W 1is rather technical, and was chosen to meet two
requirements. One requirement is the unique-meaning property described above.
The other is that V be closed under the set constructors, such as generalized
cartesian product, that correspond to Nuprl’s type constructors.

flo (o,f)€9 ada FUAz.b bla/z] Yo
F@) VB (apy) F@) o (ap»)

A)

alla (@) Az b Az b ([e] U €] (eq) ci(@) § ci(e) (c)

alf Yael B4 f(4) alfao] flao) Yo
Fal? (ape) fage ()

Fig. 1. Evaluation rules.

To define V', we first need to introduce a notion of consistency between mem-
bers of W. It will turn out that two members that are not consistent cannot
approximate the same term.

Definition1. Two elements x,y € W are consistentif x Ty, where T C W x W
is defined by rank induction as follows.

717
— ¢1 1 ¢po if for all (ay, B1) € ¢1 and (s, F2) € ¢, if ay | oy then G T fo.
= ci(x1, .. mn) Tei(ah, .. y) if forall j, z; |).

—¢é1¢ ifforsomeacéando’ €&, ald.
Definition 2. Define V C W by rank induction as follows.

—veVifyCV andforall ;0 €, a1 o implies a = .
—¢eVifgCVxVand ¢ ¢.
—¢i(z1,...,zn) € Vifz; €V for all j.

—¢eVifécCv.

Note that a T o for all @ € V. Hencefore all uses of the letters «, 3,7, ¢ and &
will be restricted to V.

2.2 A Programming Language

In this section we give a “programming” language that combines V' with
Nuprl’s term language. We are taking Nuprl’s language to include two new op-
erators, one for constructing members of quotient types, and one for destructing
them. The changes in the Nuprl rules needed to accommodate these new oper-
ators will be discussed in Section 3.

The operators in Nuprl’s term language are either canonical, and are used to
construct values, or are non-canonical, and are used to build terms that require
evaluation to obtain a value. For the new semantics, we reclassify Nuprl’s opera-
tors for building types from canonical to non-canonical (this will be expanded on
in the next section). We treat Nuprl’s canonical operators generically, and omit

ellv advw a€é ada

ade (<) a<d o (a) €4 [a] (&<)
V(a,B)€6. B < bla/z] Vi a,de
¢ <1 Ax. b (¢<) m(czd)

Fig. 2. Approximation rules.

here all of its non-canonical operators except for function application. Extend-
ing the proofs to deal with the omitted operations is completely straightforward.
In [12] we show how to define a general rule schema such that Theorem 6 holds
whenever the underlying evaluation rules fit the schema, as is the case with the
rules for the omitted operators.

The index set I used in the definition of V is chosen so that the ¢;’s can be
put in one-to-one correspondence with the set of all canonical operators of Nuprl
except for A (which is the only canonical binding operator).

We build the set T of terms of our programming language by starting with an
infinite set of variables and all v, ¢, € V' as constants, and then closing under
the following two rules. If f and a are terms, then f(a), f-a and [a] are terms.
If @ is a tuple of terms, then for all ¢ € I, ¢;(€) is a term. If b is a term and » is
a variable, then Az. b is a term.

The usual definitions of substitution, closed term, and so on, apply to this
language. Let Ty be the set of closed terms. Inductively define an injection i from
V to T as follows.

o] = {ci(i[al], ...y i[an]) if € has the form ¢;(aq, ..., ap)

o otherwise

We will usually write & for [«].

We now give a form of operational semantics for this language by giving a
set of inductive rules that simultaneously define binary relations <1 C V x Tj
and || C Ty x Tp. | will be the evaluation relation of the language, and <1 will
turn out to be a restriction of the operational preorder based on |}.

The rules for |} and <1 are given in Figures 1 and 2. We first give the intuitive
meanings of these rules; and then illustrate with a few examples. Consider first
the evaluation rules (Figure 1). The first two rules are for evaluation of function
applications. To evaluate a term f(a), one first evaluates f. If the value is an
abstraction Az. b, then the value is the value of b[a/#] (if any). If it is a constant
@ € an, then find an ordered pair (o, 5) € ¢ such that « approximates a, and

return 5.

The second line of rules in Figure 1 simply says that any expression built
with a value constructor evaluates to itself. The last two rules are for computing
with equivalence classes. The idea is that one computes with an equivalence class
by computing with its members. To evaluate f-a, first evaluate a. If the value

is the “polymorphic” equivalence class [ao], then the result is simply the value
of the function application f(ag). [ag] can be thought of as standing for any
equivalence class that has ap as a member.

Rule (apg), covering the case where the value of f is the equivalence class ¢, is
crucial. It is the reason why we can dispense with functionality in our semantics.
Intuitively, the rule will force any function computing with equivalence classes
to do a “run-time” check that 1t respects the equality represented by the classes.
In particular, we want to force f to check that it returns the same value no
matter what member of ¢ it 1s applied to. Unfortunately, there is no appropriate
global notion of “same value”. So, this rule “guesses” a value § € V such that 3
approximates f(&) for all o € £, and returns 8.

Now consider the rules in Figure 2. Rule (£<1) says that an equivalence class
¢ approximates a polymorphic equivalence class [a] if some member of ¢ approx-
imates a. Rule (¢<1) says that a graph ¢ approximates an abstraction Az. b if
every « in the domain of ¢, the value of ¢ at « approximates b[&/«].

We now look at a few examples. In the full language, some of the ¢; correspond
to the integers, and there are non-canonical operators for addition etc. Let ¢ =

{(0,4), (1,5)}, ¢' = {(0,2)} and = {(¢,17), (¢/, 18)}. We have

— ¢(0+0) | 4 because 0 <1 0+ 0.
- q§<l Az. x4+ 4, but not q§’<l/\x.x—|—4.
— YAz, z+4) 17

We now consider an example involving the quotient type. Let & = {0,2,...}
and & = {1,3,...} (again ignoring tags). The type (z,y) : N//even(x — y) will
have as members &1, & and [n] for n > 0. We have &< [2] but not &< [2]. Also,
if

f=Ax.if evenp(x) then 0 else 1

then f-[2] 4 0 and f-& | 1.

The evaluation relation | is idempotent, in the sense that if e || v then v |} v.
We use the letters u and v exclusively for values, which are terms u such that
u |} u. Note that, because of the rule (apg), |} is not determinate: there is a term
e and distinct v, v’ such that e |l v and e |} v'. However, Theorem 9 below says
that this indeterminacy is inessential.

2.3 Operational Preorder and Meaning of Programs

All of the terms considered so far, except for A-abstractions, can be written
as 7(2) where 7 is an operator and € is a (possibly empty) sequence of terms.
Applications f(a) can be thought of as having the form ap(f,a). For a binary
relation on terms, define e (n) ¢’ if e = ¢/ = x, orif e = Axw. b, ¢ = Az. ¥
and b b, orife=r(er,...,en), ¢ = 7(ef,...,e,) and e; e} for 1 < i < n.
Some of the Nuprl operators that we are omitting from the present account are
binding operators. In the full account, the definition of (5} is extended to these

operators in the obvious way.

We extend a relation n C Ty x T on closed terms to a relation ° on open
terms by defining e n° ¢’ if o(e) n o(e’) for all substitutions o such that o(e)
and o(e’) are closed.

The operational preorder is now defined as follows.

Definition 3. Let n C Ty x Tp. Define [n] C Ty x Ty by e [n] ¢’ if e |} u implies
there exists u’ such that ¢’ |} v’ and one of the following holds.

1w {n®) o'
2. u=¢,u = dze. b and for all (o, 3) € ¢, B ba/x).

3. u=¢, v = [a'] and for some o € £, & iy a’.

Note that the mapping 7 — [n] is monotone with respect to inclusion of relations.
This allows us to make the following definition.

Definition4. Define < to be the largest relation n C Ty x Tp such that n C [5].
Define ~ to be the symmetric closure of <.

It is easy to show that the fixed-point equation < = [<] holds. We will use this
equation frequently (and implicitly, usually) in the rest of the paper.

As in [10, 11], it is straightforward to show that < is a preorder (i.e. it is
reflexive and transitive). This can be done by the principle of coinduction, which
says that to prove n C < it suffices to prove n C [n].

Lemmab. For all o € V and all closed terms e, a1 e if and only if & <e.
Proof. The proof is a straightforward induction on the rank of «.

In what follows we will use a <1 e and & < e interchangeably.
The proof of the following theorem is too long to be included here. The details
are not particularly interesting. The appendix gives a sketch of the proof.

Theorem 6. <° is a precongruence: for all terms e and €', if e (<°) €' then
e<°¢.

An immediate consequence Theorem 6 is a substitutivity property: if e <° ¢’
and a <° @ then e[a/z] <° ¢'[d’/x].

Proving the coherence theorem (Theorem 9 below) is straightforward because
if a term e evaluates to both v and v’, then v and v’ are the same up to consistent
constants. This is made precise in the following definition and lemma.

Definition 7. Define e X ¢’ if there is a term ¢ with free variables z1,..., z,
and some a1, ..., a, €V and o, ..., «), € V, such that e = c[a@/Z], ¢’ = c[e /7],
and for each i, 1 <i < n, a; | af.

Lemma8. 1. IfeXe', ellvande o, then v X o',
2. IfeXe, ade and o/ e then o | o'.

Proof. The proof is a straightforward induction on the definitions of e || v and
a <1 e. We do only two cases; the remaining cases are similar.

Case (apy). We must have ¢’ = f'(a’) for some f',a’. Since f | ¢ and f M f',
by part 1 of the induction hypothesis we cannot have f’ || Az. b’ for any &',
and so f'(a’) § v" must be derived by an instance of rule (ap,). By part 1 of
the induction hypothesis, ¢ | ¢’, and by part 2, o T o'. By definition of ¢ | ¢/,
B1pa.

Case (ap;). Proceeding as in the previous case, we have ¢’ = f"-a’ and f"-a' |}
via (ap;). By the induction hypothesis, £ | &', so there exist o € § and o' € ¢
such that o T o'. We have f(a) X f'(a’), so by the induction hypothesis 5 T 3.

Theorem 9. (Coherence.) Suppose e € Ty.

1. Ify1 <d e and v2 e then v1 = v2.
2. Forally €V and a1, a5 €7, if a1 <d e and as < e then a1 = as.

Proof. For part 2,if o <1 e and o/ < e for o, € 7, then by Lemma8, a | o/,
and so o = o’ by the definition of V. The proof of part 1 is similar.

3 Nuprl

This section shows how to apply the semantic ideas of the previous section to a
variant of Nuprl’s type theory.

Nuprl has a large number of built-in type constructors and a very large
number of inference rules (close to 100), so a complete account here is impossible.
However, the semantics 1s sufficient simple that an interested reader would not
have too much difficulty in verifying all the rules given in the Nuprl book [5],
given the definitions and examples in this section, and assuming the results of
Section 2.

To give the semantics for the type theory, we first need to extend the oper-
ational semantics to include evaluation rules for all the type constructors. It is
easy to show that all the results of the previous section hold for this extension.
We only give a few examples of such rules. Obvious variations work for the other
type constructors.

To account for all of Nuprl, we have to make V' sufficiently large. Nuprl has
a hierarchy of universes Uy, Us, ... of types. Each U; has to be closed under
type constructors such as generalized cartesian product. This means that the
set-theoretic meaning of each U; has to be closed under the corresponding set
constructors. This requires the use of inaccessible cardinals. These are defined in
most set theory texts, and the reason for their use in this context is explained
further in [11]. We choose the ordinal o in the definition of W to be the limit
of a countable sequence 7 < 719... of inacceisible cardinals. For each i > 1, let
7' =V N Z,,. We add evaluation rules U; || ¥¢ for each i > 1.

We give a rule for Nuprl’s generalized cartesian product : A — B as follows.
If v € V and, for each o € v, 74 € V, then let ITa €7 .7, denote the set of all

¢ € V such that the domain of ¢ is v, and for each («,) € ¢, 8 € v4. Note that
(Ha€y.7,) € V. The evaluation rule is

Aly Vaey. Blajz]l 7,
z:A— B | i[lla€y.v,]

Nuprl has an equality type, similar to Martin-Lof’s “I” type, which represents
the proposition that two elements of the type are equal. Let 74y, be some one-
element set, and let 7445, be the empty set. The rules for the equality type are
as follows.

Aly a€ey ada adas Aly a#pf€y ada f<das
(a1 = az € A) I Virue (01202€A)U’Yﬁﬁe~

Finally, we give a rule for the quotient type. If X is an equivalence relation
over v, then let v//X be the set of equivalence classes of X. In the rule below,

let @ stand for { (o, B) €Y X ¥ | Yap #0}.

Ally Vea,per. E[d,@/x,y] JFap Q is an equivalence relation
(x,y) - A/JE L ily//Q]

Having added the evaluation rules for all the type constructors, we can give
the semantics of Nuprl’s type system.

Definition10. A closed term e is a type if there is a 4 € V such that e || 4.
Define M, [e] = 7.

M, 1s well-defined by Theorem 9 and the fact that e |} v implies v < e.

Definition11. Let e and a be closed terms. Define a € e if e is a type and there
exists o € M, [e] such that o <1 a. In the case « exists, define M.[a] = «.

M. is well-defined by Theorem 9. We will write M, [a] for M;[a]. Note that if
e € U; then e is a type and M.[e] € 7.

The preceding definition gives the core idea of the semantics. With a type
is associated a set 7, and the members of the type are all terms e which are
approximated by some member of ~.

It is now easy to give the semantics of Nuprl sequents. Nuprl sequents have
the form

x1: Ay, kg A FEET

where t,7T, Ay, ..., A, are terms and for all 7, 1 < ¢ < n, all of the free variables of

t and T" are among 1, ..., ,, and all of the free variables of each A; are among
x1,...,%i_1. A closing substitution for the sequent is a substitution which has
domain zq, ..., x,; and whose values are all closed terms.

Definition 12. The sequent
x1: Ay, kg A FEET

is true if o(t) € o(T) for all closing substitutions ¢ such that for all ¢, 1 <i < n,
o(x;) € o(4;).

Soundness of an inference rule is now defined as usual: the conclusion is true
whenever the premises are.

Theorem 13. The rules of Nuprl, with suitable modifications to the quotient
and extenstonality rules, are sound.

We do not give the proof here, but just give a few representative cases. We also
simplify the rules somewhat, for example by dealing only with the hypotheses
that are introduced or analyzed by a rule (as opposed to the common prefix of
hypotheses shared by the conclusion and premises).

We first do the “function intro” rule.

FAelU, z:A-beB
FAx.be z:A— B

By the first premise, there is a v such that M,[A] = 4. By the second premise,
for each o € v, B[@/«] is a type, so for some v, M,[B[&/z]] = vo. By the
evaluation rule for the product type,

Myz:A— Bl = Ha€y.7,.

By the second premise, b[a/a] € Bla/«] for all @ € 4. Let ¢ € [T €7 . v, encode
the mapping o — M, [b[&/z]]. To complete the verification of the rule, we only
need to show that ¢ < Az. b, and this is immediate.

Next we do the “function elim” rule.

FacA Ffe x:A— B
= f(a) € Bla/x]

Let Mala] = o and My a—.p[f] = ¢. Let 8 be such that («,5) € ¢. By the
evaluation rule for product, B[a/x] |} v for some v such that § € v, so, using
Theorem 6, ¥ < B[a/x] < Bla/#] and hence M,[Bla/x]] = . Since ¢ < f, we
have 3 < f(&) < f(a), so f(a) € Bla/z].

Some of the rules for Nuprl’s quotient type need to be changed. We sketch
these changes below. Verification of the rules is straightforward, and is omitted
here. Let @ be (x,y) : A//E. The new “introduction” rule adds the constructor

[]-

FQelU, Facl
Flde@
The new “elimination” rule adds the non-canonical form for quotients.

Fee® x:Ay Az EFcpyue €(fle)=Ffy)eT)
FfeeT

where ¢y 18 the unique member of 44yy.. In the second premise, the assumption
z: F merely asserts that E is true; the variable z is not allowed to occur free in
f or T. Also, there is no need for a premise giving a type to f.

One other rule for quotients also needs to be changed. The changes are similar
to the “intro” rule. Also, Nuprl’s “direct computation” rule, which formalizes
symbolic computation, must be updated to include the equivalence f-[e] ~ f(e).

4 HOL

In this section we first sketch how to use the semantics we have developed to
justify an embedding of HOL. We then explain why this embedding is effective.

In order to embed HOL, we need to add an operator to Nuprl to repre-
sent HOL’s “select” operator. The evaluation rule is as follows. Note that non-
emptiness of a type is taken to represent truth of the corresponding proposition.

Ty VYaeqy. Pla/z]l 75 «o €7 of minimum rank such that v., # 0
GreT. P 1 ay

The base logic of HOL 1s a polymorphic version of the simply typed A-calculus
with two base types: bool, for the booleans, and ind, representing an infinite set.
There are three constants

=:’a — "a — bool
==> : bool — bool — bool

@: ("a — bool) — ’a

for equality, implication, and “select”, respectively. The ’a is a type variable.
The semantics of HOL is the standard set-theoretic one where function type is
given the usual set-theoretic meaning.

Given Nuprl’s select operator, it is trivial to give definitions in Nuprl for
the base types and the constants. ind is defined to be Nuprl’s type of natural
numbers, and HOL’s function type is interpreted as Nuprl’s function type. We
can prove in Nuprl that each of the (defined) constants has the appropriate type.
For example, we can prove

V’a€e HOL.U. @€ ("a — bool) — "a

where HOL_U is the type of all members of the type universe U; that are non-
empty, and bool is defined as the subtype {#€Z |2 =0V a = 1} of Nuprl’s type
7 of integers. In general, all HOL theorems and axioms have implicit outermost
quantifiers for their type variables. These quantifiers are made explicit in the
Nuprl interpretation.

Extensions to the HOL logic are made by creating theories. A theory consists
of a set of new type constructors, and set of new constants with their types, some
axioms involving the new constants and types, and a set of theorems proved using
the axioms. To import this theory into Nuprl, we proceed as we did for the base
logic: we find Nuprl objects to use in place of the new types and constants (these
can usually be computed automatically from the theory’s definitions), prove in
Nuprl that the constants have their assigned types, and then prove that the
axioms all hold. Once we have done this, the new semantics of Nuprl tells us
that the set theoretic meaning of the Nuprl objects we introduced can be directly
used to give a model of the HOL theory. The theorems are valid in this model,
hence their translations into Nuprl are true.

The use of Nuprl objects to “instantiate” HOL theories is one reason why
this embedding is effective. For example, we instantiate the HOL theories for
the integers with Nuprl’s integer type and Nuprl’s built-in operations over the
integers. All the HOL theorems about the HOL integers then become applicable
to Nuprl integers.

A major concern here is the constructivity of Nuprl proofs. HOL formu-
las, when imported into Nuprl, have type bool. Nuprl’s encoding of logic uses
propositions-as-types, so, for example, Nuprl’s universal quantification is rep-
resented using the generalized cartesian product type. We can prove, however,
that the two ways of encoding logic are equivalent. Thus, for each HOL theorem
imported, we can derive a version of the theorem that uses Nuprl’s logical con-
nectives. However, the proof of this derivation i1s non-constructive, and so the
program synthesized from one of these new theorems might mention the non-
computable select operator @. If such a theorem is cited in another Nuprl proof,
the program there might also be uncomputable.

The reason this is not a problem is because equalities in Nuprl have no com-
putational content. So, for example, if a universally quantified equation is proved,
then the program extracted from the proof is simply a constant function. This
has two main consequences. First, if we are proving an equation (possibly under
assumptions) in Nuprl, we can safely use any HOL theorem whatsoever. Second,
no matter what we are proving, it is always safe to use HOL facts, such as uni-
versally quantified equations, that have no computational content. Fortunately,
the vast majority of HOL theorems fit this category, and the vast majority of
the work in proving any theorem about software involves computationally trivial
facts (mostly equations and inequations). Most of the work in Nuprl proofs is
done by term rewriting. All the programs that apply term rewriting can safely
use any HOL theorem.

It is easy to modify the system to ensure that non-computable “programs”
are not inadvertently extracted from proofs. For example, we can add a bit to
each proof node, where a true bit means that the extracted program of the
subproof rooted at the node must not contain the select operator. The user sets
the bit at the root, and the system computes the bit when the proof is extended
by refinement, setting it to false when the node being refined has a conclusion
which is computationally trivial, and simply propagating it otherwise. Inference
steps may not mention the select operator, or use lemmas whose top bit is false,
if the bit at the node being refined is true.

Details on the actual HOL embedding and some of its practical applications
will be given in a forthcoming paper.

5 Related Work, Discussion

In [4], Breazu-Tannen and Subrahmanyam give a logic for reasoning about pro-
grams using structural recursion over data types formed from constructors sub-
ject to some equations. Their 1dea, to make the meaning of a definition by struc-
tural recursion — if it does not respect the equations, is somewhat similar to

our treatment of f-f, which tests to see if f respects equality as given by the
equivalence class t.

It is straightforward to give a classical interpretation justifying the select
operator for typed variants of Martin-Lof’s type theory. Such an interpretation
is given by Dybjer in [6]. Because these variants are based on a typed language,
they do not enjoy some of the useful features of Nuprl, such as direct reasoning
about the programminglanguage used for realizers extracted from proofs, writing
programs in a conventional style (e.g. general recursion), genericity with respect
to programming language (e.g. using ML instead) and partial functions.

The idea of adding function oracles ¢ to an untyped programming language
comes from our paper [11]. The semantics we gave there might give a model of
Nuprl in which the select operator 1s definable, but we would have had to use the
complicated PER semantics along the lines discussed earlier (the author gave up
on doing this in disgust), and the embedding of HOL would be much harder to
justify because of the PER/set mismatch in the respective semantics.

The idea for the proof of Theorem 6 first appeared in [10]. An expanded
treatment of the proof method is in [11].

In [13] we gave a type theory that contained ZF set theory. Although that
theory is in some respects similar to Nuprl, the programming language in the
theory is typed in an essential way and hence the semantics cannot be applied
to Nuprl. Also, there are no polymorphic equivalence classes in that work, and
the semantics is much more complicated than the present one.

The new semantics justifies some useful extensions to Nuprl. It justifies ex-
tensional equality of types: two types are equal if and only if they have the same
set of members. Currently, Nuprl’s type equality is taken to be intensional, or
structural, for technical reasons having to do with collapsing Martin-Lof’s four
forms of judgment to one; although there are no rules that exploit this. Other
extensions include: the law of the excluded middle (an immediate consequence
of the introduction of the @ operator), a power set constructor, and some im-
predicative constructs.

References

1. Part IITA: SCI Coherence Overview, 1995. Unapproved draft [EEE-P1596-
05Nov90-doc197-iii.

2. Higher Order Logic Theorem Proving and Its Applications, Lecture Notes in Com-
puter Science. Springer, 1995.

3. S. F. Allen. A Non-Type-Theoretic Semantics for Type- Theoretic Language. PhD
thesis, Cornell University, 1987.

4. V. Breazu-Tannen and R. Subrahmanyam. Logical and computational aspects of
programming with sets/bags/lists. In Automata, Languages and Programming:
18" International Colloquium, Lecture Notes in Computer Science, pages 60-75.
Springer-Verlag, 1991.

5. R. L. Constable, et al. Implementing Mathematics with the Nuprl Proof Develop-
ment System. Prentice-Hall, Englewood Cliffs, New Jersey, 1986.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

P. Dybjer. Inductive sets and families in Martin-Lof’s type theory and their set-
theoretic semantics. In Proceedings of the B.R.A. Workshop on Logical Frame-
works, Sophia- Antipolis, France, June 1990.

A. Gordon. Functional Programming and Input/Output. Cambrige University
Press, 1994.

. M. J. Gordon, R. Milner, and C. P. Wadsworth. FEdinburgh LCF: A Mechanized

Logic of Computation, volume 78 of Lecture Notes in Computer Science. Springer-
Verlag, 1979.

M. J. C. Gordon and T. F. Melham. Introduction to HOL: A Theorem Proving
FEnvironment for Higher Order Logic. Cambridge University Press, Cambridge,
UK, 1993.

D. J. Howe. Equality in lazy computation systems. In Proceedings of the Fourth
Annual Symposium on Logic in Computer Science, pages 198-203. IEEE Computer
Society, June 1989.

D. J. Howe. On computational open-endedness in Martin-Lof’s type theory. In
Proceedings of the Sizth Annual Symposium on Logic in Computer Science, pages
162-172. IEEE Computer Society, 1991.

D. J. Howe. Proving congruence of bisimulation in functional programming lan-
guages. Information and Computation, 1996. To appear.

D. J. Howe and S. D. Stoller. An operational approach to combining classical set
theory and functional programming languages. In Theoretical Aspects of Computer
Software, Lecture Notes in Computer Science. Springer-Verlag, 1994.

P. B. Jackson. Exploring abstract algebra in constructive type theory. In
A. Bundy, editor, 12th Conference on Automated Deduction, Lecture Notes in Ar-
tifical Intelligence. Springer, June 1994.

B. Jacobs and T. Melham. Translating dependent type theory into higher order
logic. In Proceedings of the Second International Conference on Typed Lambda
Calculi and Applications, volume 664 of Lecture Notes in Computer Science, pages
209-229. Springer, 1993.

P. Martin-Lof. Constructive mathematics and computer programming. In Sizth
International Congress for Logic, Methodology, and Philosophy of Science, pages
153-175, Amsterdam, 1982. North Holland.

T. Melham. The HOL logic extended with quantification over type variables. For-
mal Methods in System Design, 3(1-2):7-24, August 1993.

R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press,
1990.

E. Ritter and A. Pitts. A fully abstract translation between a A-calculus with
reference types and Standard ML. In Proceedings of the Second International
Conference on Typed Lambda Calculi and Applications, volume 902 of Lecture Notes
in Computer Science, pages 397-413. Springer, 1995.

M. van der Voort. Introducing well-founded function definitions in HOL. In Higher
Order Logic Theorem Proving and Its Applications, volume A-20 of IFIP Transac-
tions, pages 117-131. North-Holland, 1993.

A Proof of Precongruence

The proof of Theorem 6 in large part a straightforward extension of the method
of [10, 12]. One of the main differences is that we use Lemma 14 for the cases
for rules (apy) and (apg).

Lemmal4. If o < e[3/x] and < € then o < ele’/z].

Lemma 14, while highly plausible, i1s in fact rather difficult to prove. The
obvious inductive argument over the definition of < fails because of rules (ap,)
and (apg). Our proof is rather complicated, and is omitted because of lack of
space. All the complication resides in the well-founded relation that the inductive
proof is based on.

We now sketch the remainder of the proof. We continue to omit any mention
of operators not treated in Section 2. The key to the rest of the proof is the
following definition.

Definition 15. Define the precongruence candidate, a binary relation § on terms,
by induction on the size of its first argument: e < e’ if there exists ¢ such that
e (g) e’ and e <° ¢,

It is straightforward to verify that the precongruence candidate has the fol-
lowing properties: it is reflexive; it is operator respecting in the sense that if e § e
then Cle] < C[e’] for all contexts C[-]; if ey < ey < eg then ey < ez; if v < v/
then v [g] v'; and if e <° ¢ then e < ¢/. We can also show that < is substitutive:
if e < e and b < b then ble/x] < V[’ /x].

The following key lemma can be easily proved using co-induction on the
definition of <.

Lemma 16. Suppose that for all closed e, e’ and v such that e || v and e % e,
there exists v’ such that e’ || v/ and v < v'. Then < is a precongruence.

We can now prove Theorem 6.

Proof. By the preceding lemma, it suffices to prove by induction on the defini-
tions of |} and <1 that

1. If e J v and e < € then ¢’ | o' with v < v'.
2. fa<deande<e then a<e.

We do a case analysis on rules. In each case, we use the following fact. Let 1’ be
property 1 above with e < ¢’ replaced by e (g) e’. It is straightforward to show
that for any particular e, e’, v and v, 1’ implies 1. An analogous statement holds
for property 2.

We only consider a few representative cases. The remaining cases are either
very similar or trivial.

Case (ap,). Suppose f(a) (g) fla). U o with ¢ < o'. By definition
of <, ¢ < v'. Suppose v/ = ¢. By part 2 of the induction hypothesis, o <1 @',
so f'(a’) | 5. Suppose v/ = Az. b. Since 3 < V[o/x], by Lemma 14 we have
B < b[a/x], so b[a'/x] | v with 8 <", and this implies 8 <

Case (apy). Suppose f(a) (g) F(a). f U Az. bso by the induction hypothesis
there exists b such that f' | Az. ¥ and b < V. bla/x] < ¥'[d’/x], so by the
induction hypothesis v % v,

Case (¢<1). Suppose Az. b (2) ¢. Then ¢ = Aw. b/ where b < V. blav/a] <
bla/x], so B <ab[a/x] and ¢ < Az. b.

This article was processed using the IANTRpX macro package with LLNCS style

