
Fast Exact Multiplication by the Hessian

Barak A. Pearlmutter
Dept. of Computer Sci. & Eng.

Oregon Graduate Institute
19600 NW von Neumann Drive

Beaverton, OR 97006-1999
bap@cse.ogi.edu

Abstract

Just storing the Hessian H (the matrix of second derivatives @2E=@wi@wj of the error E
with respect to each pair of weights) of a large neural network is difficult. Since a common
use of a large matrix like H is to compute its product with various vectors, we derive a
technique that directly calculates Hv, where v is an arbitrary vector. This allows H to be
treated as a generalized sparse matrix. To calculate Hv, we first define a differential operatorRff(w)g = (@=@r)f(w + rv)jr=0, note that Rfrwg = Hv and Rfwg = v, and then applyRf�g to the equations used to compute rw. The result is an exact and numerically stable
procedure for computing Hv, which takes about as much computation, and is about as local,
as a gradient evaluation. We then apply the technique to backpropagation networks, recurrent
backpropagation, and stochastic Boltzmann Machines. Finally, we show that this technique
can be used at the heart of many iterative techniques for computing various properties of H,
obviating the need for direct methods.

1 Introduction

Efficiently extracting second-order information from large neural networks is an important problem,
because properties of the Hessian appear frequently. For instance, in the analysis of the convergence
of learning algorithms (Widrow et al., 1979; le Cun et al., 1991; Pearlmutter, 1992); in some
techniques for estimating generalization in neural networks (MacKay, 1991; Moody, 1992); in
techniques for enhancing generalization by pruning weights (le Cun et al., 1990; Hassibi and Stork,
1993); and in full second-order numerical optimization methods (Watrous, 1987).

There exist algorithms for calculating the full Hessian H (the matrix of second derivative terms@2E=@wi@wj of the error E with respect to the weights w) of a backpropagation network (Bishop,
1992; Buntine and Weigend, 1991), or reasonable estimates thereof (MacKay, 1991)—but just
storing the full Hessian is impractical for large networks. There is also an algorithm for efficiently
computing just the diagonal of the Hessian (Becker and le Cun, 1989; le Cun et al., 1990). This
is useful when the trace of the Hessian is needed, or when the diagonal approximation is being
made—but there is no reason to believe that the diagonal approximation is good in general, and it
is reasonable to suppose that, as the system grows, the diagonal elements of the Hessian become
less and less dominant. Further, the inverse of the diagonal approximation to the Hessian is known
to be a poor approximation to the diagonal of the inverse of the Hessian.

1

Here we derive an efficient technique for calculating the product of an arbitrary vector v with
the Hessian H . This allows information to be pulled out of the Hessian without ever calculating of
storing the Hessian itself. A common use for an estimate of the Hessian is to take its product with
various vectors. This takes O(n2) time when there are n parameters. The technique we derive here
finds this product in O(n) time and space,1 and does not make any approximations.

We first operate in a very general framework, to develop the basic technique, and then proceed
to apply it to a series of more and more complicated systems, starting with a simple backwards
propagation of error to calculate gradients, i.e. a backpropagation network, and then proceeding toa
deterministic relaxation network, and then to a stochastic Boltzmann Machine.

2 The Relation Between the Gradient and the Hessian

The basic technique is to note that the Hessian matrix appears in the expansion of the gradient about
a point in parameter space,rw(w +�w) = rw(w) +H�w + O(jj�wjj2)
whereE is the error, w is a point in parameter space,�w is a perturbation of w,rw is the gradient, the
vector of partial derivatives @E=@wi , and H is the Hessian, the matrix of second derivatives of E
with respect to each pair of elements of w. This equation has been used to analyze the convergence
properties of some variants of gradient descent (Pearlmutter, 1992), and to approximate the effect of
deleting a weight from the network (le Cun et al., 1990; Hassibi and Stork, 1993). Here we instead
use it by choosing �w = rv, where v is a vector and r is a small number. We wish to compute Hv.
Now we note that H(rv) = rHv = rw(w + rv)�rw(w) + O(r2)
or, dividing by r, Hv = rw(w + rv)�rw(w)r +O(r): (1)

This in itself provides a simple approximation algorithm for finding Hv for any system whose
gradient can be efficiently computed, in time less than double that required to compute the gradient,
assuming that the gradient at w has already been computed. Also, applying the technique requires
minimal programming effort. This approximation was used to good effect in (le Cun et al., 1993).

Unfortunately, this formula is succeptible to numeric and roundoff problems. The constant r
must be small enough that the O(r) term is insignificant. But as r becomes small, large numbers are
added to tiny ones in w + rv, causing a loss of precision of v. A similar loss of precision occurs in
the subtraction of the original gradient from the perturbed one, because two nearly identical vectors
are being subtracted to obtain the tiny difference between them.

3 The Rf�g Technique

Fortunately, there is a way to make an algorithm which exactly computes Hv, rather than just
approximating it, and simultaneously rid ourselves of these numeric difficulties. To do this, we first

1Or O(pn) time when, as is typical for supervised neural networks, the full gradient is the sum of p gradients, each
for one single exemplar.

2

take the limit of equation (1) as r ! 0. The left hand side stays Hv, while the right hand side
matches the definition of a derivative, and thusHv = limr!0

rw(w + rv)�rw(w)r = @@rrw(w + rv)����r=0
(2)

As we shall see, there is a simple transformation to convert an algorithm that computes the
gradient of the system into one that computes this new quantity. The key to this transformation is
to define the operator Rff(w)g = @@r f(w+ rv)����r=0

(3)

We can then take all the equations of the procedure for calculating the gradient, e.g. the backprop-
agation procedure, or the deterministic Boltzmann Machine gradient calculation, or whatever the
gradient calculation involves, and we can apply this Rf�g operator to each equation. Because Rf�g
is a differential operator, it obeys the usual rules for differential operators, such as:Rfcf(w)g = cRff(w)g (4)Rff(w) + g(w)g = Rff(w)g+Rfg(w)gRff(w)g(w)g = Rff(w)gg(w) + f(w)Rfg(w)gRff(g(w))g = f 0(g(w))Rfg(w)gR�df(w)dt � = dRff(w)gdt
Also note that Rfwg = v: (5)

These rules are sufficient to derive, from the equations normally used to compute the gradient, a
new set of equations about a new set of R-variables. These new equations make use of variables
from the original gradient calculation on their right hand sides. This can be thought of as an adjoint
system to the gradient calculation, just as the gradient calculation of backpropagation can be thought
of as an adjoint system to the forward calculation of the error measure. This new adjoint system
computes the vector Rfrwg, which is precisely the vector Hv which we desire.

4 Application of the Rf�g Technique to Various Networks

Let us utilize this new technique for transforming the equations that compute the gradient into
equations that compute Hv, the product of a vector v with the Hessian H . We will, rather
mechanically, derive appropriate algorithms for some standard sorts of neural networks. Of course,
the same process can be used to mechanically derive similar algorithms for most neural network
gradient calculation procedures not covered below .

Usually the error E is the sum of the errors for many patterns, E = PpEp. Therefore rw andH are sums over all the patterns, H = PpHp, and Hv = PpHpv. As is usual, for clarity this
outer sum over patterns is not shown except where necessary, and the gradient and Hv procedures
are shown for only a single exemplar.

3

4.1 Simple Backpropagation Networks

Let us apply the above procedure to a simple backpropagation network, to derive theRfbackpropagationg
algorithm, a set of equations that can be used to efficiently calculate Hv for a backpropagation
network. This Rfbackpropagationg algorithm was independently discovered by Martin Møller
(unpublished manuscript) using a different derivation.

For convenience, we will now change our notation for indexing the weights w. Let w be the
weights, now doubly indexed by their source and destination units’ indices, as in wij , the weight
from unit i to unit j. Because v is of the same dimension as w, its elements will be identically
indexed. All sums over indices are limited to weights that exist in the network topology. As is usual,
quantities which occur on the left sides of the equations are treated computationally as variables, and
calculated in topological order, which is assumed to exist because the matrix wij is zero-diagonal
and can be put into triangular form (Werbos, 1974).

The forward computation of the network is2xi = Xj wjiyj (6)yi = �i(xi) + Ii
where �i(�) is the nonlinearity of the ith unit, xi is the total input to the ith unit, yi is the output of
the ith unit, and Ii is the external input (from outside the network) to the ith unit.

Let the error measure be E = E(y), and its simple direct derivative with respect to yi beei = dE=dyi. We assume that ei depends only on yi, and not on any yj for j 6= i. This is true of
most common error measures, such as sum square error or cross entropy.3 We can thus write ei(yi)
as a simple function. The backward pass is then@E@yi = ei(yi) +Xj wij @E@xj (7)@E@xi = �0i(xi)@E@yi@E@wij = yi @E@xj

Applying Rf�g to the above equations givesRfxig = Xj �wjiRfyig+ vjiyj� (8)Rfyig = Rfxig �0i(xi)
for the forward pass, and, for the backward pass,R�@E@yi� = e0i(yi)Rfyig+Xj wijR(@E@xj)+ vij @E@xj! (9)

2This compact form of the backpropagation equations, due to Fernando Pineda, unifies the special cases of input
units, hidden units, and output units. In the case of a unit i with no incoming weights, an input unit, it simplifies toyi = �i(0) + Ii, allowing the value to be set entirely externally. For a hidden unit or output i, the term Ii = 0. In the
corresponding equations for the backward pass (7) only the output units have nonzero direct error terms ei, and since
such output units have no outgoing weights, the situation for an output unit i simplifies to @E=@yi = ei(yi).

3If this assumption is violated then in equation (9) the e0i(yi)Rfyig term generalizes to
Pj(@ei=@yj)Rfyjg.

4

R�@E@xi� = Rfxig �00i (xi)@E@yi + �0i(xi)R�@E@yi�R(@E@wij) = yiR(@E@xj)+Rfyig @E@xj
The vector whose elements are the terms Rf@E=@wijg is just Rfrwg = Hv, the quantity we wish
to compute.

For simple squared error ei(yi) = yi�di where di is the desired output for unit i, so e0i(yi) = 1,
which simplifies (9) for simple output units to Rf@E=@yig = Rfyig. Note that, in the above equa-
tions, the topology of the neural network sometimes results in some R-variables being guaranteed
to be zero when v is sparse, and in particular, when v = (0 � � � 0 1 0 � � � 0), which can be used to
compute a single desired column of the Hessian. In fact, using a sequence of such vectors to pull
out the Hessian column by column is the most efficient known technique to compute the Hessian
for networks of this sort.

4.2 Recurrent Backpropagation Networks

The recurrent backpropagation algorithm (Almeida, 1987; Pineda, 1987) consists of a set of forward
equations which relax to a solution for the gradient,xi = Xj wjiyj (10)dyidt / �yi + �i(xi) + Iidzidt / �zi + �0i(xi)Xj �wijzj�+ ei(yi)@E@wij = yizj jt=1
Adjoint equations for the calculation of Hv are obtained by applying the Rf�g operator, yieldingRfxig = Xj �wjiRfyig+ vjiyj� (11)dRfyigdt / �Rfyig+ �0i(xi)RfxigdRfzigdt / �Rfzig+ �0i(xi)Xj �vijzj + wijRfzjg�+ e0i(yi)RfyigR(@E@wij) = yiRfzjg+Rfyig zj jt=1
These equations specify a relaxation process for computing Hv. Just as the relaxation equations
for computing rw are linear even though those for computing y and E are not, these new relaxation
equations are linear.

5

4.3 Stochastic Boltzmann Machines

One might ask whether this technique can be used to derive a Hessian multiplication algorithm
for a classic Boltzmann Machine (Ackley et al., 1985), which is discrete and stochastic, unlike its
continuous and deterministic cousin to which application of Rf�g is simple. A classic BM operates
stochastically, with its binary unit states si taking on random values according to the probabilityP (si = 1) = pi = �(xi=T) (12)xi = Xj wjisj
At equilibrium, the probability of a state � of all the units is related to its energyE� =Xi<j s�i s�j wij (13)

by P (�) = Z�1 exp�E�=T , where the partition function Z is defined by Z = P� exp�E�=T .
The system’s equilibrium statistics are sampled because, at equilibrium,@G@wij = 1T �p+ij � p�ij� (14)

where pij = hsisji, G is an information-theoretic error term, the asymmetric divergence, T is the
temperature, and the + and � superscripts indicate varying environmental distributions.

Applying the Rf�g operator, we obtainR(@G@wij) = 1T �Rnp+ijo�Rnp�ijo� : (15)

We shall soon find it useful if we defineD� = RfE�g = Xi<j s�i s�j vij (16)qij = hsisjDi (17)

(with the letter D chosen because it has the same relation to v that E has to w) and to note thathDi = Xi<j pijvij : (18)

With a little calculus we see thatRfexp�E�=Tg = �P (�)ZD�=T , and thusRfZg = �Z hDi =T .
Using these and the relation between the probability of a state and its energy, we find thatRfP (�)g = 1T P (�)(hDi �D�) (19)

which can be used to simplifyRfpijg = X� RfP (�)g s�i s�j= 1T X� P (�)(hDi �D�)s�i s�j= 1T (hsisji hDi � hsisjDi)= 1T �pij hDi � qij� : (20)

6

This beautiful formula4 gives an efficient way to compute Hv for a BM, or at least as efficient a way
as is used to compute the gradient, simply by using sampling to estimate qij and hDi. It requires
the additional calculation and broadcast of the single global quantity D, but is otherwise local.

The collection of statistics for the gradient is sometimes accelerated by using the equationpij = hsii hsj jsi = 1i = hpii hpjjsi = 1i : (21)

The analogous identity for accelerating the computation of qij isqij = hpii hsjDjsi = 1i (22)

or qij = hpii hpj(D + (1 � sj)�Dj)jsi = 1i (23)

where �Di =Pj sjvji is defined by analogy with �Ei = Ejsi=1 �Ejsi=0 =Pj sjwji.
The derivation here was for the simplest sort of Boltzmann Machine, with binary units and only

pairwise connections between the units. However, the technique is immediately applicable to higher
order Boltzmann Machines (Hinton, 1987), as well as to Boltzmann Machines with non-binary units
(Movellan and McClelland, 1991).

4.4 Weight Perturbation

In weight perturbation (Jabri and Flower, 1991; Alspector et al., 1993; Flower and Jabri, 1993; Kirk
et al., 1993; Cauwenberghs, 1993) the gradient rw is approximated using only the globally broadcast
result of the computation of E(w). This is done by adding a random zero-mean perturbation vector�w to w repeatedly and approxmating the resulting change in error byE(w +�w) = E(w) + �E = E(w) +rw ��w:
From the viewpoint of each individual weight wi�E = �wi @E@wi + noise. (24)

Because of the central limit theorem it is reasonable to make a least-squares estimate of @E=@wi ,
which is @E=@wi = h�wi�Ei=
�w2i �: The numerator is estimated from corresponding samples of�wi and �E, and the denominator from prior knowledge of the distribution of �w. This requires
only the global broadcast of �E, while each �wi can be generated and used locally.

It is hard to see a way to mechanically apply Rf�g to this procedure, but we can nonetheless
derive a suitable procedure for estimating Hv. We note that a better approximation for the change
in error would be E(w +�w) = E(w) +rw ��w + 1

2�wT bH�w (25)

where bH is an estimate of the HessianH . We wish to include in bH only those properties of H which
are relevent. Let us define z = Hv. If bH is to be small in the least squares sense, but also bHv = z,
then the best choice would then be bH = zvT =jjvjj2, except that then bH would not be symmetric,

4Equation (20) is similar in form to that of the gradient of the entropy (Geoff Hinton, personal communication.)

7

and therefore the error surface would not be well defined. Adding the symmetry requirement, the
least squares bH becomes bH = 1jjvjj2 �zvT + vzT � v � zjjvjj2 vvT� : (26)

Substituting this in and rearranging the terms, we find that, from the perspective of each weight,�E = �wi @E@wi + �w � vjjvjj2 ��wi � �w � v
2jjvjj2 vi� zi + noise. (27)

This allows both @E=@wi and zi to be estimated in the same least-squares fashion as above, using
only locally available values, vi and�wi, and the globally broadcast �E, plus a new quantity which
must be computed and globally broadcast, �w � v. The same technique applies equally well to other
perturbative procedures, such as unit perturbation, and a similar derivation can be used to find the
diagonal elements of H , without the need for any additional globally broadcast values.

5 Applications

The Rf�g technique makes it possible to calculate Hv efficiently. This can be used in the center
of many different iterative algorithms, in order to extract particular properties of H . In essence, it
allows H to be treated as a generalized sparse matrix.

5.1 Finding Eigenvalues and Eigenvectors

Standard variants of the power method allow one to� Calculate the largest few eigenvalues of H , and their eigenvectors.� Calculate the smallest few eigenvalues of H , and their eigenvectors.� Sample H’s eigenvalue spectrum.

A clever algorithm (Skilling, 1989) based on choosing a random vector v0 , calculating vi = H iv0

for 0 < i � m, using the dot products vi � vj to estimate the moments of the eigenvalue spectrum,
and using these moments to recover the shape of the eigenvalue spectrum, is made applicable to
the Hessian by the Rf�g technique, in both deterministic and, with minor modifications, stochastic
settings.

5.2 The Inverse Hessian

It is frequently necessary to compute H�1b, the key calculation of all Newton’s-method second-
order numerical optimization techniques, and also used in the Optimal Brain Surgeon technique
and in some techniques for predicting the generalization rate. The Rf�g technique does not directly
solve this problem, but instead one can solve Hx = b for x by minimizing jjHx � bjj2 using the
conjugate-gradient method, thus exactly computing x = H�1b in n iterations without calculating
or storing H�1. This squares the condition number, but if H is known to be positive definite, one
can instead minimize xTHx=2 + x � b, which does not square the condition number. See (Press
et al., 1988, page 78) for details.

8

5.3 Step Size and Line Search

Many optimization techniques repeatedly choose a direction v, and then proceed along that direction
some distance �, which takes the system to the constrained minimum of E(w + �v). Finding the
value for � which minimizes E is called a line search, because it searches only along the linew + �v. There are many techniques for performing a line search. Some are approximate while
others attempt to find an exact constrained minimum, and some use only the value of the error,
while others also make use of the gradient.

In particular, the line search used within the Scaled Conjugate Gradient (SCG) optimization
procedure, in both its deterministic (Møller, 1993a) and stochastic (Møller, 1993b) incarnations,
makes use of both first- and second-order information at w to determine how far to move. The
first order information used is simply rw(w), while the second-order information is precisely Hv,
calculated with the one-sided finite difference approximation of equation (1). It can thus benefit
immediately from the exact calculation of Hv. In fact, the Rfbackpropagationg procedure was
independently discovered for precisely that application by Martin Møller (personal communication.)

The SCG line search proceeds as follows. Assuming that the error E is well approximated by
a quadratic, the product Hv at w and the gradient rw(w) allows one to predict the gradient at any
point along the line w + �v byrw(w + �v) = rw(w) + �Hv +O(�2): (28)

Disregarding the O(�2) term, if we wish to choose � to minimize the error, we take the dot product
with v and set equal to zero, as the gradient at the constrained minimum must be perpendicular to
the space under consideration. This gives v � rw(w) + �vTHv = 0 or� = �v � rw(w)vTHv : (29)

Equation (28) then gives a prediction of the gradient at w + �v. To access the accuracy of the
quadratic approximation we might wish to compare this with a gradient measurement taken at that
point, or we might even preemptively take a step in that direction.

Divorced from the SCG algorithm, another application for this way of calculating � is to
eliminate the step size � of conventional gradient descent, which useswt+1 = wt � �rw(wt)
to gradually minimize E. Gradient descent suffers not only from a poor convergence rate, but also
from the need to constantly tune � for rapid convergence as the minimization proceeds. The above
simple line search suggests the use of � = �� at each step, orwt+1 = wt � jjrw(wt)jj2rw(wt)THrw(wt)rw(wt): (30)

The necessary modifications for gradient descent with momentum are trivial, as are the appropriate
modifications for a stochastic gradient setting. Of course, this simple procedure needs to be
augmented by mechanisms to check that vTHv > 0, and that the quadratic assumption is not
inaccurate enough to cause failure to reduce E at each step.

9

5.4 Eigenvalue Based Learning Rate Optimization for Stochastic Gradient Descent

The technique descibed in the previous section is, at least as stated, suitable only for deterministic
gradient descent. Typically, for large systems, deterministic gradient descent is impractical, and
only noisy estimates of the gradient are available. In joint work with colleagues at AT&T Bell
Labs (le Cun et al., 1993), the approximation technique of equation (1) enabled H to be treated as a
generalized sparse matrix, and properties of H were extracted in order to accelerate the convergence
of stochastic gradient descent.

Information accumulated online, in particular eigenvalues and eigenvectors of the principle
eigenspace, was used to linearly transform the weight space in such a way that the ill-conditioned
off-axis long narrow valleys in weight space, which slow down gradient descent, become well-
conditioned circular bowls. This work did not use an exact value for Hv, but rather a stochastic
unbiased estimate of the Hessian based on just a single exemplar at a time. Computations of the
form x(t) = H(t)v were replaced with relaxations of the form x(t) = (1 � �)x(t� 1) + � bH(t)v,
where � is chosen to trade off steady-state noise against speed of convergence.

6 Summary and Conclusion

Second-order information about the error is of great practical and theoretical importance. It allows
sophisticated optimization techniques to be applied, appears in many theories of generalization, and
is used in sophisticated weight pruning procedures. Unfortunately, the Hessian matrix H , whose
elements are the second derivative terms @2E=@wi@wj , is unwieldy. We have derived the Rf�g
technique, which directly computes Hv, the product of the Hessian with a vector. The technique is� exact: no approximations are made.� numerically accurate: there is no drastic loss of precision.� efficient: it takes about the same amount of computation as a gradient calculation.� flexible: it applies to all current gradient calculation procedures.� robust: if the gradient calculation gives an unbiased estimate of rw then our procedure gives

an analogous unbiased estimate of Hv.

Procedures that result from the applications of the Rf�g technique are about as local, parallel,
and efficient as the original untransformed gradient calculation. The technique applies naturally
to backpropagation networks, recurrent networks, relaxation networks, and stochastic Boltzmann
Machines. To give an idea of its efficiency, we can compute H one column at a time by cycling v
through the unit basis vectors. This is as efficient as the best algorithms to calculate the full Hessian
of a backpropagation network, a well studied problem. Hopefully, application of this technique will
facilitate the construction of efficient algorithms that make use of exact second-order information
without calculating or storing the full Hessian.

10

Acknowledgments

I thank Yann le Cun and Patrice Simard for their encouragement and generosity. Without their work
and enthusiasm I would not have derived the Rf�g technique or recognized its importance. Thanks
also go to Nandakishore Kambhatla, John Moody, Akaysha Tang, Steve Rehfuss, and Andreas
Weigend for their helpful comments and careful readings. This work was partially supported by
grants NSF ECS-9114333 and ONR N00014-92-J-4062 to John Moody.

References

Ackley, D. H., Hinton, G. E., and Sejnowski, T. J. (1985). A learning algorithm for Boltzmann Machines.
Cognitive Science, 9:147–169.

Almeida, L. B. (1987). A learning rule for asynchronous perceptrons with feedback in a combinatorial
environment. In (Caudill and Butler, 1987), pages 609–618.

Alspector, J., Meir, R., Yuhas, B., and Jayakumar, A. (1993). A parallel gradient descent method for learning
in analog VLSI neural networks. In (Cowan and Giles, 1993). In press.

Becker, S. and le Cun, Y. (1989). Improving the convergence of back-propagation learning with second
order methods. In Touretzky, D. S., Hinton, G. E., and Sejnowski, T. J., editors, Proceedings of the
1988 Connectionist Models Summer School. Morgan Kaufmann. Also published as Technical Report
CRG-TR-88-5, Department of Computer Science, University of Toronto.

Bishop, C. (1992). Exact calculation of the Hessian matrix for the multilayer perceptron. Neural Computation,
4(4):494–501.

Buntine, W. and Weigend, A. (1991). Calculating second derivatives on feedforward networks. IEEE
Transactions on Neural Networks. In submission.

Caudill, M. and Butler, C., editors (1987). IEEE First International Conference on Neural Networks, San
Diego, CA.

Cauwenberghs, G. (1993). A fast stochastic error-descent algorithm for supervised learning and optimization.
In (Cowan and Giles, 1993). In press.

Cowan, J. and Giles, L., editors (1993). Advances in Neural Information Processing Systems 5. Morgan
Kaufmann. In press.

Flower, B. and Jabri, M. (1993). Summed weight neuron perturbation: An o(n) improvement over weight
perturbation. In (Cowan and Giles, 1993). In press.

Hassibi, B. and Stork, D. G. (1993). Second order derivatives for network pruning: Optimal brain surgeon.
In (Cowan and Giles, 1993). In press.

Hinton, G. E. (1987). Connectionist learning procedures. Technical Report CMU-CS-87-115, Carnegie
Mellon University, Pittsburgh, PA 15213.

Jabri, M. and Flower, B. (1991). Weight perturbation: An optimal architecture and learning technique for
analog vlsi feedforward and recurrent multilayer networks. Neural Computation, 3(4):546–565.

Kirk, D., Kerns, D., Fleischer, K., and Barr, A. (1993). Analog VLSI implementation of gradient descent. In
(Cowan and Giles, 1993). In press.

le Cun, Y., Denker, J., Solla, S., Howard, R. E., and Jackel, L. D. (1990). Optimal brain damage. In Touretzky,
D. S., editor, Advances in Neural Information Processing Systems 2. Morgan Kaufmann.

11

le Cun, Y., Kanter, I., and Solla, S. A. (1991). Second order properties of error surfaces: Learning time and
generalization. In Lippmann, R. P., Moody, J. E., and Touretzky, D. S., editors, Advances in Neural
Information Processing Systems 3, pages 918–924. Morgan Kaufmann.

le Cun, Y., Simard, P. Y., and Pearlmutter, B. A. (1993). Automatic learning rate maximization by on-line
estimation of the Hessian’s eigenvectors. In (Cowan and Giles, 1993). In press.

MacKay, D. J. C. (1991). A practical Bayesian framework for back-prop networks. Neural Computation,
4(3):448–472.

Møller, M. (1993a). A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks. In
press.

Møller, M. (1993b). Supervised learning on large redundant training sets. International Journal of Neural
Systems. In press.

Moody, J. E. (1992). The effective number of parameters: an analysis of generalization and regularization in
nonlinear learning systems. In (Moody et al., 1992), pages 847–854.

Moody, J. E., Hanson, S. J., and Lippmann, R. P., editors (1992). Advances in Neural Information Processing
Systems 4. Morgan Kaufmann.

Movellan, J. R. and McClelland, J. L. (1991). Learning continuous probability distributions with the con-
trastive Hebbian algorithm. Technical Report PDP.CNS.91.2, Carnegie Mellon University Dept. of
Psychology, Pittsburgh, PA.

Pearlmutter, B. A. (1992). Gradient descent: Second-order momentum and saturating error. In (Moody et al.,
1992), pages 887–894.

Pineda, F. (1987). Generalization of back-propagation to recurrent neural networks. Physical Review Letters,
19(59):2229–2232.

Press, W. H., Flannery, B. P., Teukolsky, S. A., and Verrerling, W. T. (1988). Numerical Recipes in C.
Cambridge University Press.

Skilling, J. (1989). The eigenvalues of mega-dimensional matrices. In Skilling, J., editor, Maximum Entropy
and Bayesian Methods, pages 455–466. Kludwer Academic Publishers.

Watrous, R. (1987). Learning algorithms for connectionist networks: Applied gradient methods of nonlinear
optimization. In (Caudill and Butler, 1987), pages 619–627.

Werbos, P. J. (1974). Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences.
PhD thesis, Harvard University.

Widrow, B., McCool, J. M., Larimore, M. G., and Johnson, Jr., C. R. (1979). Stationary and nonstationary
learning characteristics of the LMS adaptive filter. Proceedings of the IEEE, 64:1151–1162.

12

