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Abstract

Active networking in environments built to support link rates up to several gigabits per second poses
many challenges. One such challenge is that the memory bandwidth and individual processing power of the
router’s microprocessors limit the total available processing power of a router. In this paper, we identi
describe three key components, which promise a high performance active network solution. This s
implements the key features typical to active networking, such as automatic protocol deployment an
cation specific processing, and it is suitable for a gigabit environment. First, we describe the hardw
the Active Network Node (ANN), a scalable, high performance platform based on off-the-shelf CPUs 
nected to a gigabit ATM switch backplane. Second, we introduce the ANN’s modular, extensible and highly
efficient operating system (NodeOS). Third, we describe an Execution Environment running on top of the
NodeOS, which implements a novel large-scale active networking architecture called “Distributed 
Caching”. 

Key words: active networks; distributed code caching; gigabit active networking; scalable active
work node
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1 Introduction
Active networks [27] are packet-switched networks in which packets can contain code fragments

that are executed on the intermediary nodes. The code carried by a packet may extend and modify the net-
work infrastructure. The goal of active network research is to develop mechanisms to increase the flexibil-
ity and customizability of the network and to accelerate the pace at which network software is deployed.
Applications running on end systems are allowed to inject code into the network to change the ne
behavior to their favor. 

Until recently, active networking research concentrated on two distinct approaches: “program
switches” [4, 6] and “capsules” [23, 29]. These two approaches can be viewed as the two extremes 
of how program code is injected into network nodes. Programmable switches typically upgrade by i
injection of code by a network administrator. Research in the area of programmable switches foc
how to upgrade network devices at run time, on upgrades introduced by administrators which supp
system applications (e.g. congestion control for real-time data streams), or on a combination o
Example applications include self-learning web caches, congestion control algorithms, on-line au
and sensor data mixing. Since the code is injected out-of-band, programmable switches provide n
mated, on-the-fly upgrading functionality. Capsules, on the other hand, are packets carrying small a
of program code, which is transported, in-band and executed on every node along a packet’s pa
approach introduces a totally new paradigm to packet switched networks. Instead of “passively” fo
ing data packets, routers execute the packet’s code. The result of that computation determines w
pens next to the packet. Applications include simple proof-of-concept ping applications, ne
diagnostic tools, active multicasting and more. This approach has the potential for an enormous im
the future of networking. However, in the near future, security constraints will cause severe perfor
problems for capsule-based solutions. Capsules commonly make use of a virtual machine that inter
capsule’s code to safely execute it on a node. In order to ensure security, the virtual machines mus
the address space a particular capsule might access, thus restricting the application of capsules. W
network links to be 10 Gb/s or faster in the near future. With an optimistic average packet size of 51
for IP traffic, a router has to process 2.6 million packets per second on every port, which is less th
nanoseconds per packet. A 300 MHz PentiumTM processor can therefore not spend on average more 
114 cycles to receive, process, and forward a packet just to keep up with the link speed. Even if we
that a significant fraction of the packets forwarded do not require active processing and can be ha
hardware, it seems obvious that active network architectures based on virtual machines are not we
to a multi-gigabit scenario. They may, however, be relevant to network management. 

Recently, convergence between the pure “programmable switch” and the pure “capsule” ap
became visible. Most of the research groups involved agree that some sort of code caching makes
sense. The main motivation for this convergence is the realization that potential capsule code is mo
cation specific than user specific. In the same way, users usually do not write their own applications
off-the-shelf software. They are not expected to inject their own programs into the network, but use cod
from a set of code modules written by specialists. This allows for various optimizations in the form of
ing, as we will see in the related work section. We will also show how our approach aggressively
upon this same realization. 

Another very important observation is that the deployment of multimedia data sources and a
tions (e.g. real-time audio/video, IP telephony) will produce longer lived packet streams (flows†) with more
packets per session than is common in today’s Internet. Especially for these kinds of applications
networking offers very promising possibilities: media gateways; data fusion and merging; and so

† Flows are sequences of packets with a common five-tuple of IP header fields consisting of source address,
destination address, source port number, destination port number, and protocol.
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cated application specific congestion control. Both our hardware and software architectures support the
notion of flows. In particular, the locality properties of flows are effectively exploited to provide for a
highly efficient data path. 

This paper describes the design of a high performance Active Network Node (ANN) that supports
network traffic at gigabit rates and provides the required flexibility of Active Network technology for auto-
matic, rapid protocol deployment and application specific data processing and forwarding. In section 2, we
look at ongoing research conducted in other labs. Section 3 describes the hardware of our ANN, and section
4 describes the software platform running on top of that hardware. Section 5 shows how we integrate our
Distributed Code Caching (DAN, [10]) architecture on top of our platform. Section 6 summarizes our ideas
and takes a look at what we plan to do in the future.

2 Related Work
Active networking research has been ongoing for several years. Various research labs have

described and implemented interesting approaches. In this section, we give an overview of some of these
efforts.

2.1 MIT

Tennenhouse et al. [27] proposed “capsules”, that is datagrams carrying small fragments of c
and an implementation in the form of an IP option [29]. The TCL language and a stripped-down TCL inter-
preter are used to provide safe execution of the code. Some simple, well-known network utilitie
traceroute) have been implemented using capsules. So far, this work is mainly focused on a proof-o
cept for the capsule idea. To overcome security issues, the capsules in this approach are interpreted
tual machine. This method of execution introduces performance problems.
Further, this group proposed the ANTS [30] toolkit (downloadable code available). The main goal of ANTS

is to provide an architecture for dynamic network protocol deployment. It introduces an optimization
traditional capsule model. Instead of carrying code in every packet, packets carry pointers to cod
code is then loaded the first time it is needed from the previous hop along a packet’s path. Java is u
programming language for active code. This approach optimizes the bandwidth usage with the draw
a considerable initial delay. Further, the usefulness of active reliable multicast is shown [18] using thANTS

platform. Results are measured in [17] and show significant performance gains. [17] also proposes
applications of active network technologies like sensor data mixing and inspired us to follow a s
approach. Recently, this group presented PAN [20], an approach similar to ANTS with the difference that
instead of Java, machine code is transported in packets. This gives better forwarding performan
security and interoperability issues are not addressed. Therefore, this approach has yet to prove its
usefulness. 

2.2 BBN

Smart Packets [23] is another capsule approach. The main focus is on implementation of exte
diagnostic functionality in the network. A new compact programming language called “Sprocket” is s
fied and implemented. Its goal is to produce code that is compact enough to fit into an Ethernet 
Sprocket programs are compiled into “Spanner” code that represents the assembly language fo
Packets. Spanner code is interpreted in a virtual machine on the node receiving the packet. The p
are authenticated before interpretation and run-time limited during execution. With its clear focus o
work management, SmartPackets provide a very powerful improvement over SNMP, which is used for man-
agement of conventional networks. The group is in the process of deploying SmartPackets on thCAIRN

network. 
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Zegura et al. [6, 7, 32] introduced a generic view of network code as a set of functions which are
called depending on identifiers found in data packets. Application specific data processing is implemented,
as an example, for congestion control for MPEG video streams. The functions referred to in the data packets
are loaded out-of-band into the network nodes.

This group also showed how self-organizing network caches could be built using active network
technologies. They used simulations and analytical models to evaluate the performance gains offered by
caching. This work shows that network caching is an application of active networks worth pursuing. Our
system builds in part on the theoretical background and terminology introduced in [6], but significantly
extends the system’s capabilities. 

2.4 University of Pennsylvania

The SwitchWare [3] project uses three important components: active packets, switchlets, a
secure active router infrastructure. Active packets are similar to MIT’s capsules. Switchlets are dynamicall
loadable programs that provide specific services on the network nodes. Active packets are program
a simple language called PLAN (Programming Language for Active Networks). PLAN programs are strongly
typed and statically type-checked to provide safety before being injected into the network. FurtherPLAN

programs are made secure by restricting their actions (e.g. a PLAN program cannot manipulate node-res
dent state). To compensate for these limitations, PLAN programs can call switchlets. Switchlet modules a
written in a language (CAML) which supports formal methodologies to prove security properties of
modules at compile time and no interpretation is needed. The code fragments are authenticated
developer and explicitly (and not on-demand) loaded into the switch. At the lowest layer, the Secure
Network Environment (SANE) ensures the integrity of the entire environment. SANE identifies a minimal set
of system elements (e.g. a small area of the BIOS) upon which system integrity is dependent and builds
integrity chain with cryptographic hashes on the image of the succeeding layer in the system, befo
ing control to that image. If an image is corrupted, it is automatically recovered from an authenticate
over the network. Although the project shows very interesting properties, the main problem with this
tecture seems to be that PLAN programs are not powerful enough for many applications. Theref
switchlets have to be installed out-of-band to provide “handles” for the PLAN programs. This makes the sys
tem less flexible. Active Bridging [4] is an application of SwitchWare which shows reprogramming
bridge with switchlets. 

Another group at the University of Pennsylvania works on the Programmable Protocol Proc
Pipeline (P4, [14]) project. They use reconfigurable Field Programmable Gate Arrays (FPGAs) to imple-
ment datagram processing functionality (forward error correction in their case) in hardware. Usin
kind of hardware support looks very promising for the future of active networking. As far as we know
is the only other group besides us to consider hardware support for active networking at this point i

2.5 University of Arizona

Scout [19] is a communication-oriented operating system. The kernel is a customized composi
low-level communication primitives that are implemented as modules. Modules implement indepe
functionality, like IP, UDP, or TCP protocols. Modules can be combined to form paths that build a logical
channel over which I/O data flows. Joust [15] runs on top of Scout and consists of an implementation of
Java virtual machine (VM) including both the runtime system and a just-in-time compiler. The VM’s API has
been extended to interact closely with Scout and to allow applications to access low level resour
fixed components are written in C or Java and compiled to machine code ahead of time. The Jou
implementation of ANTS performs two to three times faster than an implementation using Sun’s JDK and an
of-the-shelf operating system like Linux. The Scout/Joust combination provides the fastest Java e
ment for active networks documented thus far. However, it still looks like it is not suited for high-vol
high-bandwidth traffic. 
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Netscript [31] is middleware for programming functions of intermediate network nodes. The Net-
script programming language allows script processing of packet streams with a focus on routing, packet
analyzers and signaling functions. Netscript programs are organized as mobile agents that are dispatched to
remote systems and executed under local or remote control. The goal of Netscript is to simplify the devel-
opment of networked systems and to enable their remote programming. The Netscript project envisions
networks that support flexible programmability and dynamic deployment of software at all nodes. The Net-
script language includes constructs and abstractions that greatly simplify the design of traffic-handling soft-
ware. These abstractions hide the heterogeneous details of networked systems. Protocol messages are
defined and encoded as high-level Netscript objects. Netscript programs are message interpreters that oper-
ate on streams of messages. Messages can be encoded either as high-level Netscript objects or in a format
compatible with existing standards. 

2.7 Implications on our work

The use of interpreted capsules has a lot of potential in areas like network management, where per-
formance is not a primary concern. As demonstrated by others, using an interpretation-based approach
delivers far more flexible mechanisms for network management than traditional approaches (e.g. SNMP).
Java as the language of choice for capsules provides the advantages of having a lot of market and research
momentum. This leads to a variety of available execution environments for Java capsules and increasingly
higher quality of these environments. We therefore decided to support the ANTS execution environment on
our ANN node architecture. However, for applications requiring a maximal amount of computation perfor-
mance, minimal latency and high bandwidth, our DAN architecture promises to be better suited. We
describe the ANN’s hardware and software architecture in the next two sections, before we elaborate
implementation of DAN on our platform.

3 The Active Networking Node Hardware
The current trend in Internet router technology is to implement an increasingly higher amount 

agram processing in hardware ASICs. Most modern high-performance IP routers are capable of forwarding
standard datagrams (without special features like IP options) entirely in hardware. This is required for larg
backbone routers to keep up with link speeds. These routers typically use ASICs on every port, which have
high-bandwidth access to a local table of routes. The central CPU is only involved in processing of non-stan
dard datagrams and to implement control-path functionality like routing protocols. 

By definition, active networking extends the amount of processing spent on a single packet an
the processing is application-specific for a potentially significant variety of applications, it cann
implemented in ASICs. We believe, however, that with the following set of hardware design measure
can optimally address the problem. Active networking router hardware designed for high perfor
requires: 

• A high number of processing elements compared to the number of router ports. A single 
CPU attached to a backplane serving all ports is unable to keep up with link speed even for a
number of ports and relatively low bandwidth links (e.g. 10 Mbits/s). We use a general purpoCPU

and a Field Programmable Gate Array (FPGA) on every port of a switch backplane. We call the
combination of CPU and FPGA the processing engine. The CPU takes care of the majority of active
functions applied to a packet, while the FPGA implements functions which are particularly perfo
mance critical in hardware. Both can be programmed on-the-fly. 

• Tight coupling between a processing engine and the network, as well as between the pro
engine and a switch backplane. Since the main limiting factors are processing power and m
bandwidth, one has to make sure that these valuable resources are used in the most effect
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ion. Two selective measures are applied. First, we benefit from the fact that most network traffic is
flow-oriented. Bursts of packets share important forwarding properties that are, once determined,
common to all packets of a particular flow. Thus, the majority of non-active packets allow cut-
through routing directly through the switch backplane without CPU intervention. Second, by tightly
coupling the processing engine to the link, packets arrive at an ANN with minimal overhead through
zero-copy DMA. 

• Scalable processing power to meet the demands of active processing of packets. Comput
active flows must be evenly distributed over the processing engines available. 

The top level hardware archi-
tecture for the ANN is shown
in Figure 1. It is derived from
our high performance IP
routing architecture [22] and
has been refined and opti
mized for the purpose of
active networks. The node
consists of a set of Active
Network Processing Ele-
ments (ANPE, four in Figure
1) connected to an ATM

switch fabric [8]. ANNs are
interconnected only through
ANPEs. The scalable switch
fabric currently supports
eight ports with data rates a
high as 2.4 Gb/s on each por
The ANPE comprises a gen-
eral-purpose processor, 

large FPGA (100,000 gates), and memory. The ANPEs are connected to the backplane via the ATM Port Inter-
connect Controller (APIC, [12]) chip. Other devices, like workstations and servers, are connected thro
line card directly to the switch fabric (not shown in Figure 1). 

Scalability is guaranteed through (1) the ability to configure any number of ANPEs which can be
added to the ANN; (2) a scalable switch backplane; (3) a load sharing algorithm which dynamically dis
utes active flows over the ANPEs by configuring the corresponding APICs (setting/resetting cut-through
switching of selected VCs) in order to move active flows from heavily loaded ANPEs to less loaded ones
Figure 1 shows an example data flow coming into the ANN at ANPE A and going out at ANPE D. The active
processing is done in ANPE C since ANPE A is heavily loaded and the load-sharing algorithm directed 
flow to ANPE C which finally directs the flow to the ANN connected to ANPE D (ANPE A and D switch the
flow in hardware without CPU intervention through the APIC). We are developing an intra-ANN protocol to
communicate the status of processing engine load between ANPEs on a reserved VC.

3.1 ANPE Architecture

The ANPE consists of an APIC ATM host adapter chip, a PentiumTM CPU, a large FPGA, and up to four
gigabytes of DRAM. 

The APIC (ATM Port Interconnect Controller) is an ATM host-network interface device with two ATM

ports and a built-in PCI (Peripheral Component Interconnect) bus interface. Each of the ATM ports can be
independently operated at full duplex rates ranging from 155 Mb/s to 1.2 Gb/s. The ATM cell handling is
done entirely in hardware and structured so as not to affect the active networking software subsyst

Figure 1:  Active Network Node (ANN)
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APIC further implements VC switching in hardware and is capable of forwarding cells directly without pass-
ing them to the processing engine. This is used to implement the load-sharing algorithm as shown in the
previous section. It allows the ANPE to forward plain (non-active) IP traffic without touching the processing
engine (also called cut-through forwarding), which leaves valuable cycles available for active processing.
The APIC provides a powerful host system interface featuring different modes of scatter-gather Direct
Memory Access (DMA) to provide true zero-copy protocol processing. This allows the implementation of a
very high-performance I/O subsystem that supports high-bandwidth and low latency. 

The processing engine consists of an Intel PentiumTM CPU and a 240-pin FPGA, which can have a
very large number of gates (up to 100,000). The CPU runs our NodeOS, which is an optimized version of
NetBSD derived from our Router Plugins [9] architecture. We will describe this architecture in the next sec-
tion. The FPGA can be programmed by the CPU on-the-fly to implement the most performance-critical algo-
rithms in hardware. The APIC can distribute individual flows to the CPU or the FPGA on a per VC basis. A
packet can first go to the FPGA and then either be passed to the CPU or forwarded straight through the APIC

to the link, depending on whether there is additional processing required. We expect this combination of
FPGA/CPU/cut-through processing to provide excellent performance for software based packet forwarding.

One or multiple ANPEs can be physically placed on
one ANPE card (Figure 1 shows only one-CPU/FPGA/APIC

ANPE cards). The main advantage of having multiple
CPU/FPGA/APIC combinations on one card is that the load-
sharing algorithm can save switch backplane bandwidth
by distributing the active flows to processing engines on
the same ANPE card. Figure 2 shows an ANPE card with
two ANPEs and three flows of data packets traversing the
card. The three flows are drawn as a dotted, a dashed, and
a solid line. The lines show the three different modes of
operation of an ANPE card. The flow shown as dashed line
is routed through the first APIC into the first processing
engine. The processing engine processes the packets and
forwards them to one of the ports of the attached switch
backplane. Note that the second APIC on the ANPE card
routes this flow in cut-through mode. The flow shown as
solid line is an example of a flow that is diverted to the
second processing engine on the same ANPE card. This happens in case the first processing engine is
heavily loaded. In this case, the load-sharing algorithm picks the second processing engine to process the
packets and configures both APICs appropriately. Finally, the dotted flow is cut-through routed through both
the APICs without any CPU intervention. This could either be a regular IP flow not requiring active process-
ing or an active flow that is diverted to another anpe card attached to another switch port. This would hap-
pen if both processing engines on the card are heavily used by active flows and there are other CPUs on
other ANPE cards in the same ANN which are lightly loaded. The usage of these different modes of operation
of the individual ANPE cards lead to optimal performance and scalability of the ANN as a whole. 

Figure 2:  ANPE card
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4 ANN Software Infrastructure
To utilize the hardware architecture described in the previous section in an efficient way, our soft-

ware architecture must be optimized to a similar extent for high performance. The main design goal is to
provide a highly efficient data path and a flexible control path. All high-bandwidth data path components
are implemented in the system’s kernel, whereas all management components are implemented
space. We embed the architecture described here into our Router Plugins research platform. We sh
[9] that a highly modular router software architecture could be implemented without any significant p
mance penalties. The architecture described here leverages the results from the Router Plugins wo

Within the active networking community, it is common to distinguish between the “NodeOS
and “Execution Environments” (EEs) for active networking software architectures. The NodeOS represents
the operating system components implementing services like packet scheduling, resource mana
and packet classification, which are independent of a specific active networking implementation
NodeOS offers these services to the EEs running on top of it. An EE implements active networking protoco
specific processing. For example, there can be an independent EE for ANTS, for SmartPackets or for
SwitchWare. 

Our software architec-
ture is shown in Figure 3. It
supports two EEs, namely the
ANTS EE and the Distributed
Code Caching for Active Net-
works (DAN, [10]) EE. IP can
be viewed as another EE with
the distinguishing property
that the other EEs typically can
not work without IP since they
use it for routing and forward-
ing.

We target the use of
ANTS to network management
tasks and experimental proto-
typing of network protocols.
ANTS is described in [30]. DAN

is described in more detail in
the next section. It represents
our own active network archi-
tecture specially targeted at high-bandwidth, low-latency applications. 

Before we give an overview of the individual NodeOS components as shown in Figure 3, we
duce some of the general concepts of this architecture. 

In the context of our architecture, we call code blocks implementing application-specific ne
functions active plugins. Active plugins contain code that is downloaded and installed on the node
downloading is triggered by the occurrence of a reference in a datagram as shown in the section onDAN, by
a special configuration packet, or by an administrator. Active plugins can create instances. The term
is intentionally derived from object-oriented programming since the semantics are similar. Instanc
flow-specific configurations of active plugins. The individual properties of instances are EE and plugin spe-
cific. For example, an IP instance consists of the code that forwards the packet and the required inform
about the interface on which the packet has to be forwarded. However, all instances use the sam

Figure 3:  Software architecture
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defined API that embeds them into the system. The API consists of an entry() and an exit() function among
others. The entry() function is called to pass a packet to the instance. The exit() function is called by the
instance when it is done with packet processing. 

We make an important distinction
between the first few packets of a flow
and subsequent packets. The reception of
the first packets of a flow usually causes
the plugins to create an instance for the
new flow. If the packet is passed to mul-
tiple instances, these instances are
chained together by making the first
plugin’s exit() function call the second
plugins entry() function and so on. Every
EE is allowed to request a selector from the NodeOS to label the chain of instances. The selector is se
the upstream node by the NodeOS. The upstream node puts the selector in subsequent packets o
flow, which allows the downstream node to efficiently lookup the state information using hashing
directly assign the flows state information to the packet. Note that this is similar to tag switching. We
duced the Simple Active Packet Format (SAPF), which describes the format of the selector, in [28]. Figur
schematically depicts instance chaining and labeling using a selector. As described below, the Sele
patcher implements flow lookups based on selectors. The Packet Scheduler is called last to send th
off to the network. 

While per flow instance creation and management introduces a certain amount of overhead, t
off in the context of active networks is dramatic for subsequent packets. Other than the selector, no
tiplexing has to be performed and the operations of instances are reduced to only those which va
packet to packet of the same flow (e.g. there is no routing lookup). Note that all flow specific inform
has soft-state characteristics: it is automatically removed when no packets of a given flow are rece
a configurable amount of time. 

For the rest of this section, we give a high level overview of the NodeOS building blocks. TheDAN

EE is discussed in section 5, the ANTS EE in [30]. 

4.1 NodeOS components

The kernel consists of the following components (from bottom to top):

• Device Drivers / Layer 2 processing (DD): the DD are standard NetBSD device drivers implement-
ing network hardware specific send and receive functions. They are modified only in two 
First, to allow packet scheduling, they do not implement packet queues on their own. Secon
pass incoming packets to the Selector Dispatcher instead of the IP stack if the packet con
selector. If no selector is present, the packet is first passed to the packet classifier and then 
stack. 

• Packet Classifier (PC): all packets not carrying a selector are passed to the packet classifie
implemented a highly efficient packet classifier based on a Directed Acyclic Graph (DAG) in the
context of the Router Plugins platform. The packet is classified on a five-tuple of IP header fields
and the interface on which it is received. The five-tuple consists of a pair of IP addresses, port num
bers and the protocol used. The PC allocates a flow record for every packet of a new flow. It tags

incoming packets with a flow index (FIX) which is carried in the packet’s mbuf1 and points to the

1 The mbuf is a data structure that is used to store packets and packet related information efficiently in BSD

derived operating system kernels.

Figure 4:  Instance chaining and labeling
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packet’s flow record. Plugins can access the flow record through the FIX. It stores all flow related
information. 

• Selector Dispatcher (SD): the SD scans a data packet for its SAPF selector. Using the selector, i
hashes into a table to find the flow’s FIX. The same hash table stores the outgoing selector, w
will replace the incoming selector in the packet before it, is sent to the downstream node. Fu
stores a pointer to the first instance in the flow’s instance chain as previously described and
in Figure 4. To negotiate new selector values, the selector dispatcher offers an API to se
receive messages from neighbor nodes. 

• Packet Scheduler (PS): the PS in use is a modified version of a Deficit Round Robin (DRR [25])
scheduler which allows bandwidth reservations using filters in addition to fair queueing. Be
DRR, we plan to use a port of CMU’s Hierarchical Fair Service Curves (HFSC, [26]) scheduler which
represents the state-of-the-art in flow based packet scheduling providing hierarchical sche
and decoupling of bandwidth and delay. Both schedulers can be programmed through thePS API

thus allowing plugins as well as the administrator to reserve resources.

• Resource Controller (RC): the RC keeps track of the CPU cycles and memory consumed by activ
plugin instances. The RC is responsible for fair CPU time sharing between different instances. Sin
NetBSD is not a real time operating system and does not have a preemptive or multithreaded
we implement this by keeping track of the consumed CPU cycles on a per flow basis. Incomin
packets are enqueued in an input queue associated with the flow. Input queues are served in
robin fashion. On reception of a packet, the system goes through the following steps:
- get packet from network card
- find corresponding flow (call SD or PC)
- enqueue packet in flow’s input queue
- pick packet to process from the set of all input queues

- timestamp selected packet with CPU TCS2 
- continue processing with that packet
- before enqueueing the packet on the output queue, read TCS again and add difference to flow

total
- enqueue packet in output queue

The RC implements the selection of the queue. We will investigate different schemes to pic
right packet. Besides per-flow CPU distribution, we will measure what fraction of the total tim
system spends processing packets. This will give us an idea of how heavily our system is lo
any given time. All RCs in an ANN periodically exchange this quantity with each other on a reser
VC to serve as input parameters for the load-sharing algorithm.
The second quantity worth observing is the active plugin’s memory consumption. The plugin
be restricted to an upper limit of memory usage by policy or depending on the current avera
lization of the networking subsystem. We modify the kernel’s memory management to keep
of memory usage on a per instance basis and possibly deny additional memory to greedy ins
An important resource management issue has to do with the ANN running out of resources such a
CPU or memory capacity. Besides implementing the load-sharing algorithm, we explore both
cies and mechanisms which can do: (1) effective “admission control” to ensure sufficient res
for admitted active connections; (2) cache management for active plugins to decide which
plugins to replace to create room for the active plugins fetched on demand to be used imme

• Plugin Control Unit (PCU): the PCU manages plugins, and is responsible for forwarding con
path messages (e.g. for instance creation and registration messages) to individual plugin

2 The Pentiums TCS register is a 64 bit register which is incremented by one on every clock cycle.



A Scalable, High Performance Active Network Node (ANN) Page 11

ple
e user-
com-
ystem
 espe-

men-
-

as
give an

t is to
and for-
require-
d
nd inef-
ses can

psules,
ling. We
n a refer-
ded from
ecutes
sues are
nd thus,
 author-
ve this
nd net-

 pack-
t is pro-
iewed as
other kernel components, as well as from user space programs using ANN library calls (we provide
the ANN library with our system). Plugins register themselves with a callback function and an iden-
tifier (plugin code) when they get loaded into the kernel. All plugins must reply to a defined set of
control messages, (e.g. messages to create and free instances). 

• Plugin Manager (PM): the PM is a user-space utility for configuring the system. It is a sim
application that takes arguments from the command line and translates them into calls to th
space library. This library implements the function calls needed to configure all kernel level 
ponents. In most cases, the plugin manager is invoked from a configuration script during s
initialization, but it can also be used to manually issue commands to various plugins. This is
cially useful to test new active plugins.

The design of this software architecture is clearly driven by the goal of allowing efficient imple
tations of EEs and active plugins. While we favor our DAN architecture with this design, we make all com
ponents accessible to other EEs through a well-documented API.

5 The Distributed Code Caching Approach to Active Networking
Distributed Code Caching for Active Networks (DAN) has been described in [10]. Since [10] h

been published, the architecture has matured significantly. We review the important ideas here, 
update reflecting the latest development, and elaborate on how DAN is embedded into the NodeOS
described in the previous section. 

Before we present our approach, we review the basic requirement for active networking. I
allow users and applications to control networking nodes and how their packets are processed 
warded. This necessitates computing and programmability at each network node. However, this 
ment should not considerably degrade the performance of an EE through excessively complex an
inefficient security mechanisms. In other words, per-packet processing should not require a long a
ficient software path. Thus, the fundamental challenge that high performance active networking po
be summarized as follows: 

Allow relocating part of the processing from the endsystems into the network, however minimize the
amount of processing on a single node and make the processing as efficient as possible while keeping the
flexibility and customizability that the active networking paradigm introduces. 

We believe that our architecture, which we call “Distributed Code Caching”, does just that. 

5.1 Distributed Code Caching

To overcome the performance-related problems that will exist, at least in the near term, for ca
we think that a combination of the programmable switch and the capsule approaches is very appea
replace the capsules’ program code by a reference to an active plugin stored on a code server. O
ence to an unknown code segment in a router or an end system, the code is automatically downloa
a code server. It is important to note that the code fragment or plugin is dynamically linked and ex
like native code on the router/node, and thus, it runs as fast as any other code. The security is
addressed by usage of well-known cryptography techniques (as explained later in this section), a
our scheme does not require slow virtual machines. This introduces some restrictions regarding the
ship and the source of active network code for the benefit of security and performance but we belie
to be an appropriate compromise. To explain our idea, we first analyze the layout of data packets a
work nodes common in today's networks.

Each network node typically supports a particular set of functions that may be applied to data
ets. One or more unique identifiers in the packet’s header identify these functions. When a packe
cessed, the referenced functions are applied to the data of the packet. The packet’s data can be v
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the input parameter to a function. An Ethernet packet, for example, contains a unique identifier for the
upper layer protocol (0x0800 for IPv4, 0x08dd for IPv6). By demultiplexing an incoming packet on this
value, the kernel decides to which function or set of functions the packet gets passed next. Packets consist
of a finite sequence of such identifiers for functions and input parameters. The functions are normally
daisy-chained in a sense that one function calls the next according to the order of the identifiers in the data
packet. The first function is determined by the hardware (the interface on which the packet is received) and
the last function or set of functions is implemented in the application consuming the packet. Each of the
functions may also decide not to call the next function for several reasons (e.g. forwarding the packet to the
next hop and thereby skipping over the higher layer data or detection of errors). Depending on the type of
node and the packet’s content, only a subset of these functions may be called. It is possible to think
function identifiers in data packets as “pointers” to code fragments. In today’s systems, the code tha
ments these functions must be available on the node processing the packet. In our system, the node
a “code server” for the necessary code in case the node does not already have the required code l
contrast to data servers, which provide a client with “passive” data, code servers provide active 
stored in a database of code fragments. A code server is a well-known node in the network that pr
library of possibly unrelated functions for different types of operating systems from various develop

Figure 5 shows an example of a cli-
ent downloading real-time video through
an Active Network Node (ANN) which
involves several steps: (1) The ANN

receives the connection setup request and
forwards it to the video sever; (2) the
video server replies with a packet refer-
encing a function for congestion control of
the video stream; (3) the ANN does not
have the code referenced in its local cache
and therefore contacts a code server for
the plugin; (4) the ANN receives the active
plugin, dynamically links it in its network-
ing subsystem, possibly applies the data to the congestion control function, and forwards the pack
client. Once the plugin is downloaded, it is stored locally on the ANN removing the need to download th
same active plugin in the future. Distributed code caching features the following important propertie

• Active plugins in object code: It is important to note that the active plugins offered by the co
server are programmed in a higher level language such as ‘C’ and compiled into object code
ANN platform. Once the node loads the functions, they are in no way different than the ones
piled into the network subsystem at build-time. For example, the functions have as much c
over the network subsystem’s data structures as any other function in the same context, a
are executed as fast as any other code.

• Security addressed by usage of well known cryptography techniques: All active plugins stored
on code servers are digitally signed by their developers. Code servers are well known n
nodes that authenticate the active plugin when sending them to ANNs. ANNs load only authenti-
cated, digitally signed active plugins and have the capability to check the plugin’s source
developer before installing and running the plugin locally. The security problem is reduced 
implementation of a simple policy rule on the node which lets it choose the right code serve
database of public keys to check the developer’s signature and the code server’s authentica

• Minimization of code download time: Downloading of active plugins from code servers to ANNs
happens infrequently, since this is necessary only on the first occurrence of a new function
fier. Still, some attention has to be paid to the minimization of the download delay. Download

Figure 5:  ANN downloading an active plugin
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can be minimized by the following three architectural considerations: 
(1) “Probe” packet: By using one or multiple “probe” packet sent from the server to the c
before sending data packets. The probe packet triggers the downloading of active plugins in
lel on all routers along the packet’s path. The total end-to-end code download delay can be r
approximately to the time a single ANN requires for the download.
(2) Optimal code server arrangement. Code servers should be as “close” as possible to thANN.
They can be put into a hierarchy similar to DNS servers where the root code servers get their ac
plugins from the programmers of the plugins. 
(3) Minimizing the distance between the ANN and the code server: The ANN can reach the code
server through different ways. One or multiple unicast addresses of code servers can be co
on the ANN (again similar to DNS). The responsibility for finding a suitable code server is up to 
administrator selecting the unicast address. Another possibility is the usage of anycast or m
addresses, which would delegate the responsibility for finding the best code server to the an
multicast routing. Last, the data server itself could maintain a database of active plugins a
ANN could query the data server for the plugin. This solution has the advantage that no pa
configuration information for code servers must be present on the node and there is no nee
particular active plugin distribution infrastructure. It seems very natural that the organization
viding a data server makes sure that not only end systems (e.g. by offering a plugin for 
browser) but also all nodes along the data packet’s path are able to process the data offere
best possible way. One disadvantage of this solution is that it allows only one level of authe
tion (the developer’s digital signature). Also, code plugins may come from “non-optimal” sou
in respect to bandwidth and delay since all routers along the packet’s path might access th
data server instead of possibly utilizing parallel active plugin downloading through a hierarc
infrastructure.

• Policies: We support policies for at least two important system properties: Acceptance of spe
active plugins and plugin caching behavior. 
(1) Acceptance policies: Policies regarding acceptance of active plugins on nodes are de
Even if plugin sources and the plugins themselves are authenticated, network administrato
wish to restrict the set of developers they accept active plugins from or exclude certain s
active plugins because of undesired behavior.
(2) Caching policies: Developers are able to set time-outs for active plugins. When a time
reached for a plugin on an ANN, the ANN would delete it and refetch it on the next reference in
data packet. This mechanism can be used to deploy prototype versions of new network p
implementations. Time-outs can be set to infinity for non-expiring plugins. In addition to t
developer specified time-outs, the administrator of an ANN can set time-outs for an individua
plugin, for sets of plugins or for all plugins in the ANN. These time-outs force a periodic refetch 
specified plugins independent of a developer’s settings. Such a refetch can be set to happen
band to provide the node with the most recent plugin version independent of references 
packets. 
By installing a set of rules on the ANN we will enable both mechanisms that implement these p
cies to be configured. 

• Integration with existing network protocols: Our active networking support can be provided 
existing protocols by introducing new function identifiers at different layers. We will briefly lo
into the three possibilities:
(1) Data link layer: Using ATM as a link layer, an application of function identifiers could be to 
them in the LLC SNAP field. 
(2) Network layer: IP options, which are defined for both IPv4 and IPv6, might be the most c
mon way to introduce new function identifiers ([6] and [29] also describe a way to use IP option
fields for AN). Options are commonly used to specify unusual datagram processing, e.g. s
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routing. Whereas option usage in IPv4 is very limited because the total option length is 40 bytes,
IPv6 introduces a very flexible option concept by allowing very long and unlimited numbers of
options wrapped into either Hop-by-Hop or Destination option extension headers. Using IPv6
options has the further advantage that the system can benefit from the option type semantics which
specifies the node’s behavior in case it does not recognize the option type (skipping
option/discarding packet/sending ICMP message to source). 
For function identifiers in IP options in the context of connection-oriented protocols like TCP, active
plugin download can take place on connection setup. When the data server replies with a SYN back
to the client requesting the connection, it may include a packet containing the “probe” fun
identifier and optional configuration information and force the nodes along the path to fetc
active plugins. In BSD 4.4, the retransmission delay for the client initiating the SYN is approxi-
mately 6 seconds before the next SYN is sent out and the client waits 76 seconds before conside
the request as failed. Thus on-demand loading of the corresponding code should be possib
out the need for changing the end node’s TCP.
(3) Transport layer: For functions to be executed on end systems only, function identifie
occur in addition to or instead of the usual transport layer function identifier for TCP/UDP.

We described the most important properties of distributed code caching in this section. The u
caching techniques and active plugins in machine code promises to deliver a significant perfor
improvement over the traditional, interpretation-based capsules. Next, we describe the implement
our DAN EE on top of the ANN NodeOS described in section 4. 

5.2 The DAN Execution Environment

The DAN EE is shown in Figure 6. It
consists of the Active Function Dispatcher
(AFD) in the kernel and the DAN Plugin
Management (DPMgmt) in user space. The
DPMgmt consists of the Active Plugin
Loader, the Policy Controller, the Security
Gateway, the Plugin Database Controller,
and the Plugin Requester. Next follows a
description of the individual components.

• Active Function Dispatcher
(AFD): the AFD scans a data packet
for function identifiers and passes
the packet to the corresponding
active plugins. Although, as
shown in the previous section, it is
possible to integrate DAN function
identifiers at various places in dat-
agrams, in its current imple-
mentation the AFD looks for DAN

function identifiers only in IPv6
hop-by-hop options. We embed
DAN function identifiers in ANEP

[2] packets. ANEP is a packet
header defined by the active net-
works working group to precede EE specific packet headers. The IPv6 option processing code
passes the packet to the AFD when it finds DAN function identifiers following an ANEP header.
While scanning the packet, the AFD calls the functions referenced until they have all been calle

Figure 6:  DAN EE
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one of them has dropped the packet. The AFD keeps track of all known function identifiers and a
pointer to their corresponding instances on a per flow basis. As the instances are called, the AFD

chains them together as shown in section 4. Note however, that the AFD calls the instances individ-
ually. The chaining has no effect on the AFD. It is only considered if the packet contains a selector.
In that case, it is passed directly to the first instance of the chain without going through the AFD. 
In case of a previously unknown function identifier, the AFD contacts the Active Plugin Loader
(APL, described next) in order to request the corresponding active plugin. It temporarily suspends
packet processing for the packet causing the call, enqueues the packet in a dedicated queue, and
proceeds with the next packet received. The AFD maintains its own queue of active packets with
previously unknown function identifiers. On a call from the APL, the AFD resumes the processing of
the enqueued packet by calling the newly installed active plugin. 

• Active Plugin Loader (APL): this component interfaces with the networking subsystem in the 
nel through a dedicated socket interface similar to the way routed does in BSD Unix. On the occur-
rence of an identifier for a previously unknown active plugin, the AFD requests the correspondin
active plugin from the APL. The APL talks first to the Policy Controller to find out whether th
request for the plugin is permitted. If the Policy Controller positively acknowledges the reque
APL requests the plugin from the Plugin Database Controller which maintains the database o
active plugins. If the plugin is locally available, it is immediately loaded into the networking 
system through the Plugin Control Unit. If not, the APL contacts the Plugin Requestor to send ou
request to a code server. On reception of the plugin from a code server, the APL passes it to the
Security Gateway for origin and signature control. If the active plugin’s signature is valid a
origin proven, it gets passed down to the Plugin Control Unit for integration into the netwo
subsystem. Previously suspended packet processing then resumes. Finally, the plugin is p
the Plugin Database Controller, which includes it in its local database of active plugins. 

• Policy Controller (PC): the PC maintains policy rules set up by the node’s administrator. As pr
ously described, we implement both acceptance policies as well as caching policies for acti
gins.

• Security Gateway (SG): the SG is responsible for checking the integrity and origin of active p
gins. Which security checks are required is determined by the configuration of the ANN in question.
The SG maintains a database of public keys. We implement full RSA public-key encryption using
the RSAREF [24] library as a basis. This library provides both MD5 one-way hashing as well as RSA

public key encryption. MD5 one-way hashing will be used to generate a plugin specific hash
that is then digitally signed with RSA using the developer’s private key. The code server transm
the active plugin together with the signed hash to the ANN. On reception of the plugin, the ANN cal-
culates the plugin’s MD5 hash, decrypts the received hash with the developers public key and
pares both hashes. If they match, the plugin is assumed to be valid. Security extensions [13
Domain Name System (DNS) provide support for a general public key distribution service wh
we use to distribute the developer’s and code server’s public keys. The stored keys enable ANNs to
learn the authenticating keys of code servers in addition to those for which they are initially c
ured. Keys associated with the code server’s and developer site’s DNS names can be retrieved to
support our system. An ANN can learn the public key of a code server or a developer either by r
ing it from the DNS or by having it statically configured. To reliably learn the public key by read
it from the DNS, the key itself must be signed with a key the ANN trusts. The ANN must be initially
configured with at least the public key of one code server and developer. This is typically th
work subsystem developer’s key. From there, the node can securely read the public keys o
code servers and developers. As an alternative to the DNS security scheme, we will use IP security
[5], which is mandatory for IPv6 implementations, for code server authentication. This allows s
ple and streamlined security for ANNs which do not check developer signatures but depend on 
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server authentication only. 

• Plugin Database Controller (PDC): the PDC efficiently administers the local database of acti
plugins. Plugins are indexed by developer codes and function identifiers for fast access. If thANN

offers code server service to other ANNs, the database may contain active plugins for foreign ha
ware and software architectures. The active plugins are stored together with the developer’s
signature and the originating code server authentication. Typically, the plugins are stored on
volatile storage, like disks or flash RAM. This is not required for regular ANNs since they can refetch
active plugins from code servers on system startup, thus saving the download time during
processing. Plugins come with an expiration date that can be set to “infinite”. Administrato
able to set global expiration time for unused plugins independent of plugin specific setting
expiration of a code plugin, the PDC deletes it from its non-volatile storage and reloads it 
request. 

• Plugin Requester (PR): the PR is responsible for requesting active plugins from code servers
replying to such requests. The request is either unicasted, multicasted or anycasted depen
the local configuration as described using a lightweight non-connection oriented protoco
UDP/IP) to ensure stable operation under heavy load. Since we use a datagram oriented p
instead of a connection-oriented protocol, both loss of the active plugin request or loss of th
(the active plugin itself) may occur. In this case, the packet causing the request is dropped
networking subsystem with a possible error message sent to the source. The download of th
plugin is reinitiated the next time the same function reference occurs in a packet.

5.3 Code Server

Code servers feature a database of active plugins for possibly different operating systems an
ware architectures. They get their plugins either manually by configuration through a system admin
or automatically from an upper level code server in the code server hierarchy. 

Code servers are network nodes running a version of the DPMgmt. We are carefully separating ANN
NodeOS-dependent layers (e.g. the part that communicates with the AFD) from the rest of the DPMgmt to be
able to port the DPMgmt to a wide range of platforms. Since most of today’s router hardware lacks 
mass storage, end systems similar to database servers are better suited to be configured as code s
are exploring the usability of publicly available relational and object-oriented database technologies
ciently store active plugins. 

5.4 Plugin Packages

The code for active plugins is stored on code servers and in the local active plugin database
individual ANNs together with additional data. The code for multiple active functions can be wra
together into one active plugin package. A download of such a package would install multiple activ
tions on the ANN. This is useful for strongly correlated active functions such as the four options for
mobility support [16]. On occurrence of a function identifier in a data packet, not only the referenced
function implementation is downloaded and installed but also one or more others, since they w
likely be referenced in the future. This mechanism requires only one download cycle and one applic
related functions such as security checks for the whole package. A package contains at least:

• the code for one or more active functions

• the developer’s digital signature

• the code server’s authentication information

• configuration information for the ANN which will be passed to the plugin after installation and a 
of rules regarding storage of the plugin package, like its expiration date
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6 Conclusions and Future Work
We elaborated on three key factors critical to pave the way for active networking in a gigabit envi-

ronment. First, we elaborated on a gigabit hardware platform that allows high-performance active net-
working in a scalable fashion combining off-the-shelf and customized hardware components. Second, we
described our NodeOS supporting both the active network paradigm as well as the hardware in a highly
optimized way. Third, we reviewed a new active networking execution environment called “Distrib
Code Caching” which we believe to be especially well suited for our high-performance hardware an
ware environment.

We are currently in the process of implementing the system described here and expect to hav
totype of the system up and running by the time this paper is published. As a next step, we will star
ing on a variety of applications. 

One of the most promising applications of our environment is automatic protocol deploymen
plan to show automatic upgrading of IPv4 nodes to IPv6 nodes as well as on-the-fly revision of IPv6
mentations. Without active networking, it is extremely hard (if not impossible) to change a protocol o
is deployed. What is needed, is a fully automated way to deploy and revise new protocols. This
allow for incremental refinement of specifications and implementations based on real-world expe
which has not been possible so far. Consider for example IPv6 options: in IPv6, only a very small sIP

options is specified in the base specification [11]. These options are mainly used to pad data packe
tain sizes in order to align them at word boundaries. However, the protocol supports new options in
ular way. An arbitrary number of IPv6 options can follow the IPv6 header in the form of Hop-by-H
Destination options. It is expected that these new options are ‘hardwired’ into an IPv6 implementat
support new options, such an implementation would require recompiling, which is difficult and time
suming to do in an operational network. With the system described here, a new active plugin for a
option is downloaded on demand from a code server the first time the new option is referenced 
active plugin is stored for later use in the local cache. We will show this feature for options requir
IPv6 mobility support and possibly others. Other applications planned for implementation on the pl
include application-specific reliable multicast, congestion-control for real-time audio/video, media 
ways and sensor data mixing.
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