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Abstract

Specification matching is a way to compare two software components based on descriptions
of the components’ behaviors. In the context of software reuse and library retrieval, it can help
determine whether one component can be substituted for another or how one can be modified
to fit the requirements of the other. In the context of object-oriented programming, it can help
determine when one type 1s a behavioral subtype of another.

We use formal specifications to describe the behavior of software components, and hence, to
determine whether two components match. We give precise definitions of not just exact match,
but more relevantly, various flavors of relaxed match. These definitions capture the notions of
generalization, specialization, and substitutability of software components.

Since our formal specifications are pre- and post-conditions written as predicates in first-
order logic, we rely on theorem proving to determine match and mismatch. We give examples
from our implementation of specification matching using the Larch Prover.
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1. Motivation and Introduction

Specification matching is a process of determining if two software components are related. It
underlies understanding this seemingly diverse set of questions:

e Retrieval. How can I retrieve a component from a software library based on its semantics,
rather than syntactic structure?

o Reuse. How might 1 adapt a component from a software library to fit the needs of a given
subsystem?

o Substitution. When can I replace one software component with another without affecting the
observable behavior of the entire system?

o Subtype. When is an object of one type a subtype of another?

In retrieval, we search for all library components that satisfy a given query. In reuse, we
adapt a component to fit its environmental constraints, based on how well the component meets
our requirements. In substitution, we expect the behavior of one component to be observably
equivalent to the other’s; a special case of substitution is when a subtype object is the component
substituting for the supertype object. Common to answering these questions is deciding when
one component matches another, where “matches” generically stands for “satisfies,” “
“is equivalent to.” Common to these kinds of matches is the need to characterize the dynamic

behavior, i.e., semantics, of each software component.

meets,” or

It is rarely the case that we would want one component to match the other “exactly.” In retrieval,
we want a close match; as in other information retrieval contexts [SM83, ML94, OKS™93], we might
be willing to sacrifice precision for recall. That is, we would be willing to get some false positives
as long as we do not miss any (or too many) true positives. In determining substitutability, we do
not need the substituting component to have the exact same behavior as the substituted, only the
same behavior relative to the environment that contains it.

In this paper we lay down a foundation for different kinds of semantic matches. We explore not
just exact match between components, but many flavors of relaxed match. To be concrete and to
narrow the focus of what match could mean, we make the following assumptions:

e The software components in which we are interested are functions (e.g., C routines, Ada
procedures, ML functions) and modules (roughly speaking, sets of functions) written in some
programming language. These components might typically be stored in a program library,
shared directory of files, or software repository.

e Associated with each component, C, is a signature, C';,4, and a specification of its behavior,

Cspec-

Whereas signatures describe a component’s type information (which is usually statically-checkable),
specifications describe the component’s dynamic behavior. Specifications more precisely character-
ize the semantics of a component than just its signature. In this paper, our specifications are
formal, i.e., written in a formally defined assertion language.
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Given two components, C' = (Clig, Copec) and C' = (Cy; ), Cg ), we define a generic component
match predicate, Match:

Definition 1 (Component Match)

Match: Component, Component — Bool
Match(C,C") =
matchgiy(Csig, Cfi,) A matchspee(Cspecs Cpee)
Two components C' and C” match if 1) their signatures match, given some definition of signature
matching, and 2) their specifications match, given some definition of specification match. Although
we define match as a conjunction, we can think of signature match as a “filter” that eliminates the
obvious non-matches before trying the more expensive specification match.

There are many possible definitions for the signature match predicate, matchg;,, which we
thoroughly analyzed in a previous paper [ZW95]. In the remainder of this paper, for matchg;,, we
use for functions type equivalence modulo variable renaming (“exact match” in [ZW95]), and for
modules, a partial mapping of functions in the modules with exact signature match on the functions
(“generalized module match” in [ZW95]).

In this paper, we focus on the specification match predicate, matchsy... We write pre-/post-
condition specifications for each function, where assertions are expressed in a first-order predicate
logic. We determine match between two functions by some logical relationship, e.g., implication,
between the two pre-/post-condition specifications. We modularly define match between two mod-
ules in terms of some kind of match between corresponding functions in the modules. Given our
choice of formal specifications, we exploit state-of-the-art theorem proving technology as a way to
implement a specification match engine. All of the example matches in this paper have been proven
using the LP theorem prover[GG91].

Specification match goes a step beyond signature match. For functions, signature match is based
entirely on the functions’ types, e.g., int x int — int, and not at all on their behavior. For example,
integer addition and subtraction both have the same signature, but completely opposite behavior;
the C library routines strepy and strcat have the same signature but users would be unhappy if one
were substituted for the other. Given a large software library or a large software system, many
functions will have identical signatures but very different behavior. For example, in the C math
library nearly two-thirds of the functions (31 out of 47) have signature double — double. Based on
signature match alone, we cannot know which of a large number of retrieved functions does what
we want. Since specification match takes into consideration more knowledge about the components
it allows us to increase the precision with which we determine when two components match.

For each kind of match we define, there is both a match name and a match predicate symbol.
For example, the strongest function specification match is named ezact pre/post match and has the
predicate symbol matchg_,./pos¢- For each match named M with the predicate symbol matchy
and components S and Q, if matchy (S, Q) holds, we say equivalently:

e M match of .S with @
e S matches with () (under M)
e () is matched by S (under M)



It is important to distinguish between “matches with” and “is matched by”, because not all
matches are symmetric: matchy (S, Q) does not necessarily imply that matchy (Q,S). For the
matches that are symmetric, we also say that “S and ) satisfy the match.”

In what follows, we first briefly describe the language with which we write our formal specifica-
tions. We define exact and relaxed match for functions (Section 3) and then for modules (Section 4).
We discuss our implementation of a specification matcher using the Larch Prover in Section 5 and
two applications of specification match in the software engineering context in Section 6. We close
with related work and a summary.

2. Larch/ML Specifications

We use Larch/ML [WRZ93], a Larch interface language for the ML programming language, to
specify ML functions and ML modules. Larch provides a “two-tiered” approach to specification
[GHI3]. In one tier, the specifier writes traits in the Larch Shared Language (LSL) to assert state-
independent properties. Each trait introduces sorts and operators and defines equality between
terms composed of the operators (and variables of the appropriate sorts). Appendix 1 shows the
OrderedContainer trait. Ordered containers are multisets that maintain an ordering on elements
based on time of insertion (i.e., there is a notion of a first and last element). Elements are also
ordered by a total order, >, on their values, e.g., integral values. Counter to the Larch style of
using different traits for different theories, we chose to use the single trait OrderedContainer in
multiple ways in order to simplify the explanations of our examples. The trait defines operators to
generate containers (empty and insert), to return the container resulting from deleting a particular
element (delete), to return the element or container resulting from deleting the first or last element
(first, last, butFirst, and butLast), and to return information about a container (size, isEmpty),
information about a particular element (isIn, count), and the maximum element of a container
according to the total ordering on elements (maz).

In the second tier, the specifier writes interfaces in a Larch interface language to describe
state-dependent effects of a program (see Figure 1). The Larch/ML interface language extends
ML by adding specification information in special comments delimited by (x 4+ ...+ ). The
using and based on clauses link interfaces to LSL traits by specifying a correspondence between
(programming-language specific) types and LSL sorts. For polymorphic sorts, there must be an
associated sort for both the polymorphic variable (e.g., @) and the type constructor (e.g., T') in the
based on clause. The specification for each function begins with a call pattern consisting of the
function name followed by a pattern for each parameter, optionally followed by an equal sign (=)
and a pattern for the result. In ML, patterns are used in binding constructs to associate names
to parts of values (e.g., (z, y) names z as the first of a pair and y as the second). The requires
clause specifies the function’s pre-condition as a predicate in terms of trait operators and names
introduced by the call pattern. Similarly, the ensures clause specifies the function’s post-condition.
If a function does not have an explicit requires clause, the default is requires true. A function
specification may also include a modifies clause, which lists those objects whose values may change
as a result of executing the function. Larch/ML also includes rudimentary support for specifying
higher-order functions.

Though simplistic, for exposition purposes, we will use the Larch/ML interface specifications



signature Stack = sig signature Queue = sig

(¥4 using OrderedContainer —+:x) (¥4 using OrderedContainer -+:x)
type a t (x+ based on type a t (x4 based on
OrderedContainer.E OrderedContainer.C +x) OrderedContainer.E OrderedContainer.C +x)
val create : unit — o t val create : unit — o t
(%4 create () = s (%4 create () = ¢
ensures s = empty +%) ensures ¢ = empty —+*)
val push: atxa —at val eng: atxa — at
(%4 push (s,e) = s2 (x4 eng (q,e) = ¢2
ensures s2 = insert(e,s) —+*) ensures ¢2 = insert (e,q) +%)
val pop: at > a't val rest : ot > a t
(%4 pop s = 2 (%4 rest ¢ = ¢2
requires not (isEmpty (s)) requires not (isEmpty (q))
ensures s2 = butLast(s) +x) ensures ¢2 = butlFirst(q) —+*)
val top : at = «a val deg: at - «
(¢t tops = e (¢4 degq = e
requires not (isEmpty (s)) requires not (isEmpty (q))
ensures e = last(s) —+*) ensures e = first(q) +x%)
end end

Figure 1: Two Larch/ML Specifications

of Figure 1 as the “library” for our examples of specification matching. It contains two module
specifications: one for Stack with the functions create, push, pop, and top, and one for Queue, with
the functions create, eng, rest, and deq. We specify each function’s pre- and post-conditions in
terms of operators from the OrderedContainer trait (shown in Appendix A).

3. Function Matching

For a function specification, S, we denote the pre- and post-conditions as .S,y and Sy, respectively.
Spred defines the interpretation of the function’s specification as an implication between the two:
Spred = Spre = Spost- This interpretation means that if S,,. holds when the function specified by S
is called, S,,s will hold after the function has executed (assuming the function terminates). If .S,
does not hold, there are no guarantees about the behavior of the function. This interpretation of a
pre- and post-condition specification is the most common and natural for functions in a standard
programming model. For example, for the Stack top function in Figure 1

e The pre-condition top,,. is not (isEmpty/(s)).
e The post-condition top,.s is e = last(s).

e The specification predicate top,,cq is (not (isEmpty(s))) = (e = last(s)).

To be consistent in terminology with our signature matching work, we present function specifi-
cation matching in the context of a retrieval application. Example matches are between a library
specification .S and a query specification ). We assume that variables in .S and ¢ have been
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Match Predicate Symbol R1 Ra S

Exact Pre/Post matchy _pre/post = = Shpost

Plug-in matchyiyg-in = = Shpost

Plug-in Post matchpiug-in-post * = Shpost

Guarded Plug-in matchgyarded-plug-in = = Spre N Spost

Guarded Post matchyyarded-post * = Spre N Spost
x : dropped

Table 1: Instantiations of generic pre/post match ((Qpre R1 Spre) A (5 Ra Qpost))

renamed consistently!. For example, if we compare the Stack pop function with the Queue rest
function, we must rename ¢ to s and ¢2 to s2. The examples presented in this section are intended
primarily as illustrations of the various match definitions. Additional examples of more practical
applications appear in Section 6. In this section we examine several definitions of the specification
match predicate (matchsye.(S5,Q)). We characterize definitions as either grouping pre-conditions
Spre and @, together and post-conditions S,,s and (), together, or relating predicates Speq
and @ ,req. Both of these kinds of matches have a general form.

Definition 2 (Generic Pre/Post Match)

matchpre/post (S7Q) = (Qpre R1 Spre) A (§ R2 QPOSt)

Pre/post matches relate the pre-conditions of each component and the post-conditions of each
component. Post-conditions of related functions are often similar, so we want to compare them
directly to each other. For example, post-conditions may specify related properties of the return
values. Similarly, pre-conditions of related functions may specify related bounds conditions of input
values. In some cases, we may want to include some information about the pre-condition in the
post-condition clause. To allow this flexibility, we let S be either Spost OT Spre ASpost in the generic
pre/post match definition. The relations Ry and Ry relate pre-conditions and post-conditions
respectively, and are either equivalence (<) or implication (=), but need not be the same. The
matches may vary from this form by dropping some of the terms. Table 1 summarizes how Rq, R,
and S are instantiated for each of the pre/post matches in Section 3.1. For example, for plug-in
match, R{ and Ry are both = and S is Sposts 80 matchypg-in s (Qpre = Spre) A (Spost =
Qpost). For matchypg-in-post and matchgyarged-post; R1 is not instantiated because its arguments are
dropped. For matchyyarded- piug-in and matchgyarded-posts S 15 Spre N Spost-

Definition 3 (Generic Predicate Match)

matChPred (57 Q) = Spred R Qpred

'This renaming is easily provided by signature matching; we are assuming that the signatures of S and @ match.



Predicate matches relate the specification predicates, S,eq and @ ppeq, in their entirety. Predicate
matches are useful in cases where we need to consider the relationship of the specifications as
a whole rather than relationships of the parts, for example, when we need to assume something
from the pre-condition in order to reason about post-conditions. Additionally, these definitions
apply for specifications of other forms (e.g., for specifications that do not have separate pre- and
post-conditions). The relation R between the specification predicates is equivalence (<) for the
strictest match, but may be relaxed to either implication (=) or reverse implication («<). Table 2
summarizes how R is instantiated for each of the predicate matches in Section 3.2.

Predicate
Match Symbol R
Exact Predicate matchg -pred =
Generalized matchgen -pred =
Specialized matchgspei-pred <=

Table 2: Instantiations of generic predicate match (Syreq R Qpred)

It is important to look at both pre/post matches and predicate matches. Which kind of match
is appropriate may depend on the context in which the match is being used or on the specifica-
tions being compared. We present the pre/post matches in Section 3.1 and the predicate matches
in Section 3.2. For each, we present a notion of exact match as well as relaxed matches.

3.1. Pre/Post Matches

Pre/post matches on specifications S and Q) relate S, to Qpre and Sposr t0 Qpost. Each match is
an instantiation of the generic pre/post match (Definition 2). We consider five kinds of pre/post
matches, beginning with the strongest match and weakening the match by relaxing the relations
Ri and Ry from < to =, by adding S, to §, or by dropping the pre-condition term. In each
case, relaxing the match allows us to make comparisons between less closely related components,
but weakens the guarantees about the relationship between the two components. For example,
dropping the pre-condition term would allow us to relate components that have the same behavior
for the subset of inputs that they handle but that make different assumptions about which inputs
are valid (e.g., routines on arrays with different bounds). However, since we are not comparing the
pre-conditions at all, we cannot guarantee that the components are behaviorally equivalent for all
inputs.

3.1.1. Exact Pre/Post Match

If exact pre/post match holds for two specifications, the components are essentially equivalent and
thus completely interchangeable. Anywhere that one component is used, it could be replaced by
the other with no change in observable behavior. Exact pre/post match instantiates both Ry and
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Ro to & and S to Spost in the generic pre/post match of Definition 2; two function specifications
satisfy the exact pre/post match if their pre-conditions are equivalent and their post-conditions are
equivalent.

Definition 4 (Exact Pre/Post Match)

matChE-pre/post (57 Q) = (Qpre e Spre) A (Spost e onst)

Exact pre/post match is a strict relation, yet two different-looking specifications can still satisfy
the match. Consider for example the following query (21, based on the OrderedContainer trait. ()1
specifies a function that returns an ordered container whose size is zero, one way of specifying a
function to create a new ordered container.

signature Q1 = sig (Q1)
(¥4 using OrderedContainer +x)
type « t based on OrderedContainer.E OrderedContainer.C +x)
val gCreate : unit - a t
(++ ¢Create () = ¢
ensures size (¢) = 0 +x%)
end

Under exact pre/post match, Q1 is matched by both the Stack and Queue create functions
of Figure 1. (The specifications of Stack and Queue create are identical except for the name of the
return value.)

Let us look in more detail at how the Stack create specification matches with Q1. Let S be
the specification for Stack create and ()1 be the query specification with ¢ renamed to s. S,
= true, Spost = (5 = empty). Qly.. = true, Q1,4 = (size(s) = 0). Since both S, and Q1,.
are true, showing matchy_, e /pos: (S, Q1) reduces to proving Spoe <> Qlyos, or (s = empty) <
(size(s) = 0). The “if” case ((s = empty) = (size(s) = 0)) follows immediately from the axioms in
the OrderedContainer trait about size. Proving the “only-if” case ((size(s) = 0) = (s = empty))
requires only basic knowledge about integers and the fact that for any ordered container, s, size(s) >
0, which is provable from the OrderedContainer trait.

3.1.2. Plug-in Match

Equivalence is a strong requirement. Sometimes a weaker match is “good enough.” For plug-in
match, we relax both Ry and Ry from < to = in the generic pre/post match. Under plug-in
match, ) is matched by any specification S whose pre-condition is weaker (to allow at least all the
conditions that @) allows) and whose post-condition is stronger (to provide a guarantee at least as
strong as ().

Definition 5 (Plug-in Match)

matChplug-in (57 Q) = (Qpr’e = Spre) A (Spost = onst)
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Figure 2: Idea Behind Plug-in Match

Plug-in match captures the notion of being able to “plug-in” S for (), as illustrated in Figure 2. A
specifier writes a query ) saying essentially:

I need a function such that if QQp.. holds before the function executes, then (), holds
after it executes (assuming the function terminates).

With plug-in match, if @, holds (the assumption made by the specifier) then S, holds
(because of the first conjunct of plug-in match). Since we interpret S to guarantee that Sp,.. = Sp,st,
we can assume that S,,, will hold after executing the plugged-in S. Finally, since Sp,5 = @ post
from the second conjunct of plug-in match, ¢),,s; must hold, as the specifier desired. We say that S
is behaviorally equivalent to ), since we can plug-in .S for () and have the same observable behavior,
but this is not a true equivalence because it is not symmetric: we cannot necessarily plug-in @ for
S and get the same guarantees.

Consider the following query. ()2 is fairly weak specification of an add function. It requires that
the input container has less than 50 elements, and guarantees that the resulting container is one
element larger than the input container.

signature Q2 = sig (Q2)
(¥4 using OrderedContainer +x)
type « t based on OrderedContainer.E OrderedContainer.C +x)
val ¢Fng: atxa — at
(*+ qEng (q1,¢) = ¢2
requires size (¢1) < 50
ensures size (¢2) = (size(ql) +1) +x)
end



Under exact pre/post match, Q2 is not matched by any function in the library, but under plug-in
match, ()2 is matched by both the Stack push and the Queue eng functions. Since push and eng
are identical except for their names and the names of the variables, the proof of the match is the
same for both.

The pre-condition requirement, (), = Spr, holds, since S,, = true. To show that S, =
Qposts We assume Sy, (g2 = insert(e,q)), and try to show Q.5 (size(q2) = size(q) + 1). Substi-
tuting for ¢2 in ),,s, we have size(insert(e, q)) = size(q) + 1, which follows immediately from the
equations for size.

3.1.3. Plug-in Post Match

If we are concerned with only the effects of functions, then a useful relaxation of the plug-in match is
to consider only the post-condition part of the conjunction. (Most pre-conditions could be satisfied
by adding an additional check before calling the function.) Plug-in post match is also an instance
of generic pre/post match of Definition 2, with R, instantiated to = and S instantiated to Shpost
but dropping @, and S,..

Definition 6 (Plug-in Post Match)

matChplug-in-post (57 Q) = (Spost = onst)

Consider the following query. €3 is identical to Stack top except that )3 has no requires clause.

signature Q3 = sig (Q3)
(¥4 using OrderedContainer +x)
type « t based on OrderedContainer.E OrderedContainer.C +x)
val gTop: ot = «
(x4 qTop c = e
ensures ¢ = last(c) +%)
end

Stack top does not match with @3 under either exact pre/post or plug-in match, because 3’s
pre-condition is weaker than Stack top’s. Since the post-conditions are equivalent, Stack top does
match with @3 under plug-in post match.

3.1.4. Guarded Plug-in Match

In some cases, the post-condition relation, S,ost = (post, only holds for values of the input allowed
by the pre-condition. For example, the butFirst clause mentioned in the post-condition of Stack
pop is not defined for the empty stack. The guarded plug-in match adds S, as an assumption
(or “guard”) to the post-condition relation, to exclude such cases. We instantiate Ry and Rs to
= in the generic pre/post match, as with plug-in match, but we use S = Spre N Spost rather than
S = Spost- We use S, and not (), since S, is likely to be necessary to limit the conditions
under which we try to prove Sp,o5 = Qpost-
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Definition 7 (Guarded Plug-in)
matChguarded-plug-in (57 Q) = (Qpre = Spre) A ((Spre A Spost) = onst)

For example, suppose we wish to find a function to delete from an ordered container using the
following query Q4:

signature Q4 = sig (Q4)
(¥4 using OrderedContainer +x)
type « t based on OrderedContainer.E OrderedContainer.C +x)
val gRest: at > 't
(¥4 qRest ¢ = 2
requires not (isEmpty(c))
ensures size (c2) = (size(c) —1) +x)
end

(24 describes a function that requires a non-empty container and returns a container whose size
is one less than the size of the input container. This is a fairly weak way of describing deletion,
since it does not specify which element is removed. Even this weak specification match still gives
us a big gain in precision over signature matching, however. ()4 would not be matched by other
functions with the signature o ¢ — « t, for example, a function that reverses or sorts the elements
in the container, or removes duplicates.

While intuitively )4 would seem related to Stack pop and Queue rest, neither pop nor rest match
with @4 under either plug-in or plug-in post match. Consider Stack pop (the reasoning is similar
for Queue rest). We cannot prove Syo5r = Qpost (€., (52 = butllirst(s)) = (size(s2) = size(s) —1))
for the case where s = empty. However, by adding the assumption S, (not(isEmpty(s))), we are
able to show that Stack pop matches with ()4 under guarded plug-in match. The first conjunct
(Qpre = Spre) is trivial, since the pre-conditions of Q4 and Stack pop are the same. Figure 3
sketches the proof of the second conjunct ((Spre A Spost) = Qpost)-

Assume not(isEmpty(s)) Assume Sy, (1)
Assume s2 = butllirst(s) Assume Sy, (2)
size(s2) = size(s) — 1 Attempt to prove (s (3)
size(butFirst(s)) = size(s) — 1 Apply (2) to (3) (4)
Let s = insert(ec, sc) Since s is not empty (1), and
s generated by empty and insert (5)
size(butFirst(insert(ec, sc))) = szze(znsert(ec sc)) — 1 Substitute (5) for sin (4) (6)
size(sc) = size(insert(ec, sc)) — Axioms for butFirst (7)
size(sc) = (szze(sc) +1)-1 Axioms for size (8)
size(sc) = size(sc) Axioms for +, — 9)

Figure 3: Proof Sketch of matchyyarded- post (pop, @4)

3.1.5. Guarded Post Match

As with plug-in match, we define a more relaxed guarded match by dropping the pre-condition
relation term. Because we do not have the pre-condition term, there is no guarantee that S,
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actually holds, so we may have to provide an additional “wrapper” in our code to establish 5,
before we call the function specified by S.

Definition 8 (Guarded Post Match )

matChguarded-post (57 Q) = (Spre A Spost) = onst

For example, consider the following query, which is the same as Q4 but without a requires clause.

signature Q5 = sig (Q5)
(¥4 using OrderedContainer +x)
type « t based on OrderedContainer.E OrderedContainer.C +x)
val gRest: at > 't
(¥4 qRest ¢ = 2
ensures size (¢2) = (size(c) —1) +x%)
end

Because this query has a stronger pre-condition, it is not matched by any functions in the library
under either plug-in or guarded plug-in match. Plug-in post match does not work either because
we need to assume Sy (not(isEmpty(s))) to show S,psr = @Qpost. However, under guarded post
match, @5 is matched by both Stack pop and Queue rest. The proofs are very similar to that for
(4 in the guarded post match (Figure 3).

3.2. Predicate Matches

Recall the generic predicate match (Definition 3):

matchpred (S, Q) = Spred R Qpred

where the relation R is either equivalence (&), implication (=), or reverse implication («=).

Note that this general form allows alternative definitions of the specification predicates. One
alternative is Sppeq = Spre A Spost, Which is stronger than S,eq = Spre = Spose. This interpretation
is reasonable in the context of state machines, where the pre-condition serves as a guard so that a
state transition occurs only if the pre-condition holds.

As we did with the generic pre/post match, we consider instantiations of the generic predicate
match of the generic predicate match including an exact match and various relaxations.

3.2.1. Exact Predicate Match

We begin with exact predicate match. Two function specifications match exactly if their predicates
are logically equivalent (i.e., R is instantiated to <). This is less strict than exact pre/post match
(Definition 4), since there can be some interaction between the pre- and post-conditions (i.e.,
Matchp_pre/post = matchgpreq). In fact, in cases where S, = Q... = true, exact pre/post and
exact predicate matches are equivalent.
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Definition 9 (Exact Predicate Match)

matChE-pred (57 Q) = Spred ~ Qpred
Our example @1 is still matched by Stack and Queue create under exact predicate match, since

Spred € Qpred = (true = (s = empty)) < (true = (size(s) = 0))
= (s = empty) < (size(s) = 0)

which is exactly what we proved to show that (21 is matched by Stack and Queue create under
exact pre/post match.

3.2.2. Generalized Match

Generalized match is an intuitive match in the context of queries and libraries: specifications of
library functions will be detailed, describing the behavior of the functions completely, but we would
like to be able to write simple queries that focus only on the aspect of the behavior that we are
most interested in or that we think is most likely to differentiate among functions in the library.
Generalized match allows the library specification to be stronger (more general) than the query;
R in the generic predicate match is instantiated to =. Generalized match is a weaker match than
plug-in match (i.e., matchypg-in = matchyen-pred)-

Definition 10 (Generalized Match)

matchgen-pred (5, Q) = Spred = Qpred

For example, again consider (4. Using the exact predicate match, neither the Stack pop nor the
Queue rest specifications match with this query. However, under generalized match, ()4 is matched
by both of these. The proofs are very similar to that for Q4 in the guarded match (Figure 3).

Consider another example specifying a function that removes the most recently inserted element
of an ordered container. This query does not require that the specifier knows the axiomatization of
ordered containers, since the query uses only the container constructor, insert. The post-condition
specifies that the input container, ¢, is the result of inserting the returned element, e, into another
container ¢2. The existential quantifier (there exists) is a way of being able to name ¢2.

signature Q6 = sig (Q6)
(¥4 using OrderedContainer +x)
type « t based on OrderedContainer.E OrderedContainer.C +x)
val gTop: ot = «
(x4 qTop c = e
requires not (isEmpty(c))
ensures there exists c¢2:OrderedContainer.C
(c = insert(e, c2)) +%)
end

Again, under exact or plug-in matches, Q6 does not retrieve any functions. Under generalized
match, the query is matched by the Stack top function, but not Queue degq, since the query specifies
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that the most recently inserted element is returned. To show matchy, (Stack.top, Q6), we consider
two cases: ¢ =empty, and ¢ =insert(ec,cc). In the first case, the pre-condition for both top and ¢Top
are false, and thus the match predicate is vacuously true. In the second case, the pre-conditions
are both true, so we need to prove that S, = Qpost- If we instantiate c2 to cc, the proof goes
through.

3.2.3. Specialized Match

Specialized match is the converse of generalized match: matchsyer-pred (S, Q) = matchyen-prea (@, 5).
A function whose specification is weaker than the query might still be of interest as a base from
which to implement the desired function. Specialized match allows the library specification to be
weaker than the query; we instantiate R in the generic predicate match to <.

Definition 11 (Specialized Match)

matChspcl-pred (57 Q) = Qpred = Spred

Consider again the query ()3, which is the same as Stack top but without the pre-condition. Stack
top is thus weaker than @3, but we can show that ()3 implies Stack top and hence that @3 is
matched by Stack top under specialized match.

3.3. Relating the Function Matches

We relate all our function specification match definitions in a lattice (Figure 4). An arrow from a
match M1 to another match M2 indicates that M1 is stronger than M2 (i.e., M1(S,Q) = M2(5,Q)
for all S,Q). We also say that M2 is more relaxed than M1.

Table 3 summarizes which of the library functions match each of the six example queries under
each of the eight matches we have defined. For example, under generalized match, ()4 is matched by
both Queue.rest and Stack.pop, but under plug-in post match, Q4 is not matched by any functions
in the library. Parentheses around a function indicates that the match is implied by a stronger
match (e.g., matchypy-in (Q2, Queve.eng) = matchygrdcd-plug-in(Q2, Queue.eng)).

We define a variety of matches. Which match is most appropriate to use will depend on the
particular situation. First, the choice of match depends on the context in which the match is used —
how strong of a guarantee is needed about the relation between the two specifications? If we want to
know that we can substitute one function for the other and still have the same behavior, we would
use plug-in match or an exact match. In contrast, if we are only interested in whether the functions
have the same effects and we are willing to check pre-conditions separately, we can use guarded
post match. Which match is most appropriate also depends on the actual form of the predicates.
In some cases, pre/post matches will be easier to prove with a theorem prover since the pre/post
matches relate pre-conditions to pre-conditions and post-conditions to post-conditions, and for two
specifications, S and @), it is likely that S, and @, are related and hence we can reason about
that relation (and similarly for S,,5 and @p,s). In other cases, however, it is necessary to make
some assumptions about the pre-condition in order to prove a relation between the post-conditions.
In these cases, the predicate matches are easier to prove.
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Figure 4: Lattice of Function Specification Matches

Plug-in

7\

Plug-in Post

Guarded Post

Exact Exact Plug-in Guarded Plug-in Special- Gener- Guarded
Pre/Post  Predicate Plug-in Post 1zed alized Post
Q1 | Q.create (Q.create) (Q.create) (Q.create) (Q.create) (Q.create) (Q.create) (Q.create)
S.create  (S.create)  (S.create)  (S.create)  (S.create)  (S.create) (S.create)  (S.create)
Q2 — — Q.eng (Q.eng) (Q.eng) — (Q.eng) (Q.eng)
— — S.push (S.push) (S.push) — (S.push) (S.push)
Q3 — — — — S.top S.top — (S.top)
Q4 — — — Q.rest — — (Q.rest) (Q.rest)
— — — S.pop — — (S-pop) (S-pop)
Qb5 — — — — — — — Q.rest
— — — — — — — S.pop
Q6 — — — S.top — — (S.top) (S.top)

Table 3: Which Ones Match What(where @ = Queue module and S = Stack module)
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4. Module Matching

Function matching addresses the problem of matching individual functions. However, a programmer
may need to compare collections of functions, for example, ones that provide a set of operations
on an abstract data type. Modules, such as Ada packages or C++ classes, are a common language
feature of most modern programming languages, and are typically used to support explicitly the
definition of abstract data types. Modules are also often used just to group a set of related functions,
like 1/O routines. This section addresses the problem of matching module specifications.

A module specification interface is a pair, ¥ = (37, ¥Xp), where

e Y7 is a set of user-defined types, and

e Y r is a set of function abstracts.

Y7 introduces the names of user-defined type constructors that may appear in . A function
abstract is the function name together with the function specification. We include the function name
both as useful feedback to the user and to distinguish between abstracts that would otherwise be
the same (thus X is a set rather than a multiset). For example, the Queue interface in Figure 1
has one user-defined type (X7 = {a t}) and four function abstracts in Xp.

For a library interface, ¥, = (¥17, X1F), to match a query interface, Yo = (g7, X0F), there
must be correspondences both between X7 and ¥gr and between Xy and XgF.

In the module match definition we use here, the user-defined types and function abstracts in
the query interface are a subset of those in the library interface. We consider other module match
definitions elsewhere [Zar96]. We allow the query interface to be a subset of the library interface
so that the querier may specify exactly the functions of interest and match a module that is more
general in the sense that its set of functions may properly contain the query’s set.

Definition 12 (Module Match)

M-match(Xr, Xq, matchy,) =
3 total functions
Urc : UserOp(Xgr) — UserOp(Xpr) (with corresponding renaming 7'C') and
UF : EQF — ELF
such that (1) Urc and Up are one-to-one
(2) V 7 € Yo7, matchg (t,TC T)
(3) V@€ EQF7 matchfn(UF(Q),TC’ Q)

Urpc and TC ensure that user-defined types are named consistently in the two interfaces. For
a set of user-defined types Y7, UserOp(Xr) extracts the set of type constructor variables in Xrp
(e.g., for X ={a T, int X}, UserOp(X7) = {1, X }). The domain of function Urc¢ is a set of type
constructor variables; from it we construct the type constructor renaming sequence T'C', which
is applied to the signatures of each function specifications in ¥gp. For each u, € UserOp(Xr),
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the renaming [Urc(uy)/u,] appears in T'C. To avoid potential naming conflicts, we assume that
UserOp(Xg7) and UserOp(Xrr) are disjoint (if they are not, we can easily make them so).

Ur maps each query function abstract () to a corresponding library function abstract, Up(Q).
Since any user-defined types in Up (@) come from Xy, we apply TC' to () to ensure consistent
naming of type constructors. The correspondence between each T'C' Q and Up(Q) is that they
satisfy the function match, matchy,. The library module may contain more functions than the query
module (i.e., |Xrr| > [XgrF|, and Xrp O T'C XgF (where TC' X is a shorthand for applying T'C'
to each element of ¥gp). Section 6.2 contains an example of a module match, including a proof of
the match relation with LP.

Our definition of module match is highly parameterized and extensible. The function match
relation between the pairs of functions is completely orthogonal to the module match definitions;
we can instantiate matchy, with any of the function specification matches defined in Section 3.
In fact, the module match definitions are completely independent of the fact that we are match-
ing specifications at the function level. If we use the same definitions of module matching, but
instantiate matchy, with a function signature match, we have module signature matching [ZW95].

Most generally, a module interface consists of some global information (X7) and a set of functions
(Xg). This framework allows the potential to extend the module interface to contain even more
information. For example, we could extend module specification interfaces to include information
about shared types or global invariants in 7. A new module match definition including global
invariants would be similar to Definition 12, but Urc would change and point (2) of the definition
would require some kind of consistency between invariants.

5. Implementation

We use LP, the Larch Prover [GG91], to attempt to prove that a match holds between two specifi-
cations. LP is a theorem prover for a subset of multisorted first-order logic. We implemented tools
to translate Larch /ML specifications and match predicates into LP input. Each of the specification
match examples given in Section 3 (i.e., all entries in Table 3) and in Section 6 have been specified
in Larch/ML, translated automatically to LP input, and proven using LP.

For each specification file (e.g., Stack.sig), we check the syntax of the specification and then
translate it into a form acceptable to LP. Namely, we generate a corresponding .1lp file (e.g.,
Stack.1lp), which includes the axioms from the appropriate LSL trait and contains the appropriate
declarations of variables, operators, and assertions (axioms) for the pre- and post-conditions of
each function specified. Each function foo generates two operators, fooPre and fooPost; the axioms
for fooPre and fooPost are the bodies of the requires and ensures clauses of foo. Figure 5 shows
Stack.1lp and Q2.1p, the result of translating the Stack specification from Figure 1 (pg. 5) and the
query 2 (pg. 9) into LP format. The thaw OrderedContainer_Azioms command loads the state
resulting from executing the commands in OrderedContainer Axioms.1lp. We use the 1sl tool to
generate the file OrderedContainer Axioms.1lp from the LSL trait OrderedContainer.lsl. We
comment out the thaw command in Q2. 1p, since we assume that the query ()2) uses the same trait
as the library specification (Stack). The command set name Q2 tells LP to use )2 as the prefix
for names of facts and conjectures. Commands declare var and declare op declare variables and
operators that will be used in the axioms. In particular, Q2.1p declares the element variable e,
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% Stack.lp % Q2.1p

%% Using OrderedContainer %% Using OrderedContainer
thaw OrderedContainer_Axioms %%% thaw OrderedContainer_Axioms
%% signature Stack %% signature Q2
set name Stack set name Q2
declare var declare var
e: e:
s: C ql: C
s2: C q2: C
declare op declare op
createPre: —>Bool addPre: C, E, C —>Bool
createPost: C —>Bool addPost: C, E, C —>Bool

pushPre: —>Bool
pushPost: C, E, C —>Bool

popPre: C, C —>Bool assert
popPost: C, C —>Bool addPre(ql, e, q2) = (size(ql) < 50);
topPre: C, E —>Bool addPost(ql, e, q2) =
topPost: C, E —>Bool (size(q2) = size(ql) + 1)
assert

createPre = true;

createPost(s) = (s = empty);

pushPre = true;

pushPost(s, e, s2) = (s2 = insert(e,s));
popPre(s, s2) = (~(isEmpty(s)));
popPost(s, s2) = (s2 = butLast(s));
topPre(s, e) = (~(isEmpty(s)));
topPost(s, e) = (e = last(s))

Figure 5: LP input for Stack and Q2

container variables ¢1 and ¢2, and operators addPre and addPost. The assert clause adds axioms
to the logical system for addPre and addPost, corresponding to the requires and ensures clauses
of add, respectively.

Given the names of two function specifications, their corresponding specification files, and which
match definition to use, we also generate the appropriate LP input to initiate an attempt to
determine the match between those two functions. For example, Figure 6 shows the LP input to
prove the plug-in match of Stack push with @2. The input to LP for the proof consists simply of
commands to load the theories for the library and query (execute Stack and execute J2), and
the proof statement (prove ...).
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% Plugln-Q2-Stack.lp

%% Load library and query specs
execute Stack

execute Q2

%% Plug-in Match: (Qpre => Spre) /\ (Spost => Qpost)
prove (addPre(s, e, s2) => pushPre) /\ (pushPost(s, e, s2) => addPost(s, e, s2))

Figure 6: LP input for plug-in match of Stack.push with Q)2

We could alternatively have chosen to generate the LP axioms on a per-query basis rather than
generating axioms for each .sig file (i.e., given a particular pair of functions, generate only the
necessary axioms for that particular pair). However, we assume that generating an .1p file from a
.sig file will happen only once and that there may be several queries on a library specification or
several match definitions for a particular query. This approach enables us to consider module-level
matches as well.

Since LP is designed as a proof assistant, rather than an automatic theorem prover, some of the
proofs require user assistance. Each of the 40 entries in Table 3 corresponds to a match that we
have used LP to prove. In characterizing how much assistance the proofs require, we consider only
the primary matches (the 11 entries in the table that are not in parentheses), since proofs for all
others follow automatically from an entry to the left in the same row. Table 4 summarizes the level
of user assistance required for the primary matches. None means the proof went through with no
user assistance, guidance means that the proof required user input to apply the appropriate proof
strategies, and lemma means that the user had to prove additional lemmas to complete the proof.

Query Library Match User Assistance
@1 Queue.create  Exact Pre/Post lemma,
Q1 Stack.create  Exact Pre/Post lemma
Q2 Queue.enq Plug-in none
Q2 Stack.push Plug-in none
@3 Stack.top Specialized none
@3 Stack.top Plug-in Post none
Q4 Queue.rest  Guarded Plug-in lemma
Q4 Stack.pop Guarded Plug-in guidance
@5 Queue.rest Guarded Post lemma,
@5 Stack.pop Guarded Post guidance
(6 Stack.top Guarded Plug-in guidance

Table 4: Level of user assistance required for LP proofs of queries

Four of the proofs needed no assistance from the user: plug-in match of Stack.push and Queue.eng
with ()2, and plug-in post and specialized matches of Stack.top with @)3. Plug-in match of
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% exec M-Guard-Q6-Stack

%% Load library and query specs
execute Stack

execute Q6

%% Guarded Plug-in Match: (Qpre => Spre) /\ ((Spre /\ Spost) => Qpost)
prove (qTopPre(c, e) => topPre(c, e)) /\ ((topPre(c, e) /\ topPost(c, e¢)) => qTopPost(c, e))
% Additional user input
resume by induction
<> basis subgoal
[ ] basis subgoal
<> induction subgoal
resume by specializing c2 to cc
<> specialization subgoal
[ ] specialization subgoal
[ ] induction subgoal
[ ] conjecture

%% End of input from file ‘Guard-Q6-Stack.lp’.

Figure 7: Proof script of generalized match of Stack.pop with Q6

Stack.push with ()2 is the example shown in Figure 6; executing the statements in Figure 6 results
in the response from LP that the match conjecture was proved using the default proof methods;
no user assistance was required.

Guarded plug-in match of Stack.pop with Q6 is an example of a match that requires some user
assistance to LP. The user must tell the prover to use induction in the proof, and then how to
instantiate the existential variables. Figure 7 shows an LP-annotated script for this proof. The
lines with boldface are user input; <> and [ ] are proof notes from LP; and % is the comment
character. The line [ ] conjecture indicates that LP completed the proof. We classify the user
assistance for this proof as simply guidance — telling LP what proof strategy to use next in cases
where the default strategies do not complete the proof. A total of three proofs require guidance:
guarded plug-in matches of Stack.top with ()6 and of Stack.pop with ()4, and guarded post match
of Stack.pop with Q5.

The remainder of the proofs (exact pre/post match of Queue.create and Stack.create with Q1,
guarded post match of Queue.rest with @4, and guarded post match of Queue.rest with Q5) required
not only guidance but also additional lemmas in order to prove the match. In all four cases, one
of the additional lemmas is ~ (insert(e,q) = empty) (something that might reasonably be included
in a more complete theory of containers). The proofs for Queue.rest with Q4 and @5 additionally
need the lemma size(butlFlirst(insert(e,q))) = size(q), which falls out directly from the axioms for
Stack but not Queue. The proofs for ()1 need additional lemmas about the sizes of containers.
Figure 8 shows an LP-annotated script for the proof of guarded post match of Queue.rest with 5.
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% exec M-GuardPost-Q5-Queue
%% Load library and query specs
execute Queue

execute Q5

set name Lemma
prove ~(insert(e,q) = empty) by contradiction
<> contradiction subgoal
critical-pair *Hyp with OrderedContainer
[ ] contradiction subgoal
[ ] conjecture

prove size(butFirst(insert(e,q))) = size(q) by induction on q
<> basis subgoal
[ ] basis subgoal
<> induction subgoal
[ ] induction subgoal
[ ] conjecture

set name Query
prove restPre(q, q2) /\ restPost(q, q2) => remainderPost(q, q2)
resume by induction on q
<> basis subgoal
[ ] basis subgoal
<> induction subgoal
[ ] induction subgoal
[ ] conjecture

%% End of input from file ‘M-GuardPost-Q5-Queue.lp’.

Figure 8: Proof script of guarded post match of Queue.rest with ()5
6. Applications

As we mentioned in Section 1, any problem that involves comparing the behavior of two software
components is a potential candidate for specification matching. In particular, we focus on problems
that center around substituting one component for another. In this section, we examine two such
problems: retrieval for reuse and subtyping of object-oriented types.

6.1. Retrieval for Reuse

If we have a library of components with specifications, we can use specification matching to retrieve
components from the library. Formally, we define the retrieval problem as follows:
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Definition 13 (Retrieval)

Retrieve: Query Specification, Match Predicate, Component Library — Set of Components
Retrieve(Q, matchgpe., L) = {C' € L : matchg,.(C,Q)}

Given a query specification (), a specification match predicate match .., and a library of component
specifications L, Retrieve returns the set of components in I that match with ¢ under the match
predicate matchg,... Note that the components can be either functions or modules, provided that
match gpe. 1s instantiated with the appropriate match. Parameterizing the definition by match gpe.
also gives the user the flexibility to choose the degree of relaxation in the specification match.

Using specification match as part of the retrieval process (or separately on a given pair of
components) gives us assurances about how appropriate a component is for reuse. At the function
level especially, the various specification matches give us various assurances about the behavior of
a component we would like to use. We treat () as the “standard” we expect a component to meet,
and S as the library component we would like to reuse. If the exact pre/post match holds on S and
@), we know that S and @) are behaviorally equivalent under all conditions; using S for ¢ should
be transparent. If the plug-in or guarded plug-in match holds, we know that .S can be substituted
for ) and the behavior specified by @ will still hold, although we are not guaranteed the same
behavior when (), is false. If the guarded post match holds, we know that the specified behavior
holds when S,,. is satisfied. Depending on the context, we may be able to ensure that S, holds
and hence guarantee the behavior specified by Q).

For example, suppose that we are implementing a file cache manager. Among many other things,
we will need a function to replace a file in the cache with a newly-fetched file when the cache is
full. We want to know whether there are functions in the library to do this. Given that library
functions have specifications associated with them, we can use specification matching to retrieve
the functions we want. If we use a match definition like guarded plug-in match, we can use a fairly
weak specification like Q7 as our query:

signature Query = sig (QT)
(¥4 using OrderedContainer +x)
type « fscache based on OrderedContainer.E OrderedContainer.C +%)
val gReplace : o fscache ¥ o — unit
(x4 qReplace (cache, file)
requires size (cache) = 50
modifies cache
ensures isln (file, cache’ ) and (size(cache’) = size (cache)) +x)
end

Q)7 specifies a property that would hold for a destructive replacement function, namely that the
size of the cache remains the same and that the new file is in the cache in the final state. The
query function takes as input a file system cache (of type « fscache) and a file (of type a). The
requires clause indicates that the cache must be a particular size (i.e., we are assuming that we are
operating on a full cache). The modifies clause indicates that the value of cache may be changed
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signature Componentl = sig
(¥4 using OrderedContainer +x)
type « fscache based on OrderedContainer.E OrderedContainer.C +%)
val replaceFirst : « fscache x o — unit
(%4 replaceFirst (cache, file)
requires not (isEmpty (cache))
modifies cache
ensures cache’ = insert (file, butFirst (cache)) +x)
end

signature Component2 = sig
(¥4 using OrderedContainer +x)
type « fscache based on OrderedContainer.E OrderedContainer.C +%)
val replaceMazx : « fscache x o — unit
(%4 replace Maz (cache, file )
requires not (isEmpty (cache))
modifies cache
ensures cache’ = insert (file, delete (max (cache),cache)) +x)
end

Figure 9: Two library file replacement functions

by the function. In the ensures clauses, we use cache’ to stand for the value of the cache in the
final state and the unprimed cache to refer to the value in the initial state.

Suppose that the two functions listed in Figure 9 are in the library. Both require that the
cache be non-empty and replace a current element of the cache with the new file. The replaceFirst
function in Component! uses a FIFO replacement strategy: the first file inserted is the one replaced
(e.g., the file that has been in the cache the longest). The replace Maz function in Component? uses
a priority-based replacement strategy: it replaces the maximum element in the cache, for some
(unspecified) total ordering on the elements of the cache. This ordering could be based on the
time since the file was last referenced (i.e., an LRU replacement strategy) or on the priority of the
elements in the cache (e.g., hoard priorities).

Using guarded plug-in match, retrieval using the query Q7 returns both of the library func-
tions in Figure 9 since both replacement strategies guarantee the properties specified in QQ7’s post-
condition. Proofs of guarded plug-in match of both replace First with Q7 and replace Max with Q7
are shown in Appendix B.

Thus, we could use both of these functions to experiment with the effects of a particular re-
placement strategy on the performance of our cache manager. We could also use a more specific
query (e.g., the same as one of the library components) to distinguish between the two library
components.

This example also illustrates the importance of the pre-condition guard in guarded plug-in
match. If we used plug-in match rather than guarded plug-in, we would not retrieve either function,
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since it is necessary to exclude the case of an empty cache when trying to prove that the size of
cache and cache’ are equal.

6.2. Subtyping

A second application of specification matching is determining when one object is a subtype of
another. In object-oriented programming languages, an object type? defines a collection of objects,
which consist of data (state) and methods that act on the data [Car89, Ame91, Mey88]. Intuitively, a
type o is a subtype of another type 7 if an object of type ¢ can be substituted for an object of type 7.
Precise definitions of subtyping vary in the strictness of this notion of substitutability from simply
requiring the methods’ signatures to match (signature subtyping) to requiring a correspondence
between the methods” dynamic semantics (behavioral subtyping).

In order to relate subtyping to signature and specification matching, we must first convert object
types to our context. We base our definition of an object type on that of Liskov and Wing [LW94]
but differ from their definition in that we do not include invariants or constraints. We restrict our
focus here to relating methods, which is only one aspect of their subtyping relation. We model
an object type as a module interface, with a type declaration for the object type (a description
of the object type’s value space), a global variable of the object type to hold the current state of
the object (an element of the value space), and a function signature (and specification) for each
method.

Let T represent the module interface of the supertype and S the module interface of the subtype.
Subtyping requires a correspondence between each method in 7" and a method in .S but allows ad-
ditional methods in S. The correspondence between methods varies among the subtype definitions
but is always a function match definition. There is also a correspondence between type declarations.
These are exactly the correspondences captured by the module match definition (Definition 12).
Thus, we define subtyping in terms of module match using the following general form:

Definition 14 (Generic Subtype)

Subtype(S,T) = M-match(S, T, matchpeihod)

S is a subtype of T if their modules match. The particular notion of subtyping depends on
matchpethod , the match used at the method (function) level. We discuss other possible instantiations
of match,ethoq and the more general relation between both signature and behavioral subtyping
to signature and specification matching in more detail elsewhere [Zar96]. In the remainder of
this section, we relate behavioral subtyping to specification matching and illustrate how to use
specification matching to show that one object is a behavioral subtype of another with an example.

Figure 10 shows the module specifications for two objects (example similar to that in Liskov
and Wing [LW94]). The first is BagObj, a mutable bag object with global variable b and methods
put, get, and card. The second specification is of a stack object. StackObj is based on the same
trait as bag, but has a stricter specification for the method that removes an object (pop_top) and

2These are usually simply called “types”, but we need to distinguish types of objects from types in signatures.
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signature BagObj = sig signature StackObj = sig

(¥4 using OrderedContainer —+:x) (¥4 using OrderedContainer -+:x)
type a t (x+ based on type a t (x4 based on
OrderedContainer.E OrderedContainer.C +x) OrderedContainer.E OrderedContainer.C +x)
val b: o't val s : at
val put : o — unit val push : a — unit
(%4 put (e) (%4 push (e)
modifies b modifies s
ensures b = insert(e,b) +x) ensures s’ = insert(e,s) +x)
val get : unit — « val pop_top : unit - «
(x4 get () =e (%4 pop_top () = e
requires not (isEmpty(b)) requires not (isEmpty (s))
modifies b modifies s
ensures (' = delete(e, b)) and ensures (s’ = butlLast(s)) and
(isIn(e, b)) —+x*) (e = last(s)) +x)
val card : unit — int val swap_top : a — unit
(¢4 card () =n (%4 swap_top (€)
ensures n = size (b) +x) requires not (isEmpty (s))
end modifies s

ensures s’ = insert (e, butLast(s)) +x%)

val height : unit — int
(%4 height () =i
ensures { = size(s) +*)
end

Figure 10: Larch/ML specifications of bag and stack object types

an additional method, swap_top. In keeping with the Liskov and Wing approach, we assume that
create methods are defined elsewhere. Appendix 1 lists the OrderedContainer trait on which both
specifications are based.

The StackObj specification differs in several ways from the Stack specification in Figure 1 (pg. 5).
First, in StackObj, stacks are mutable, whereas in Stack they are not. Because the Stack specification
in Section 2 specifies the behavior of a typical implementation in a functional language, its stacks
are immutable. Here, however, we wish to model the specification of a stack in the object-oriented
paradigm, and hence these stacks are mutable. Second, Stack has separate functions for pop and
top while StackObj combines these in pop_top. Again, this is mainly a by-product of the difference
between a functional implementation and an object-oriented one. Third, each specification has
additional functions that the other does not.

We now consider how to define the behavioral subtype relation between two objects (modules).
Behavioral subtyping attempts to capture the notion that anywhere in a program that an object
of type T is used, we should be able to substitute an object of type .S, where S is a subtype of T,
and still have the same observable behavior of the program.
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There are a number of definitions of behavioral subtyping that attempt to capture this substi-
tutability property [DL96, LW94, D192, Ame91, LW90, Lea89, Mey88]. There are subtle differences
between all these subtype definitions, but common to all is the use of pre-/post-condition specifi-
cations both to describe the behavior of types and to determine whether one type is a subtype of
another. Let m7r be a method of supertype T, and mg be the corresponding method of subtype S.

Behavioral subtyping requires that each method in the supertype T" have a corresponding method
in the subtype S, but there may be additional methods in S. We use the following rules for
behavioral subtyping:

e Pre-condition rule. mr.pre = mg.pre

e Post-condition rule. (mg.pre A mg.post) = mry.post

This is the same as our guarded plug-in match, and is used for the same reason: to show
substitutability, making assumptions about the pre-condition when necessary. Thus, we define
behavioral subtyping by instantiating match,einoq in the generic subtype definition (Definition 14)
with guarded plug-in match (Definition 7, pg. 11). We assume that the signatures match.

Definition 15 (Behavioral Subtype)

Subtypey pa, (S, T) = M-match(Sgpec, Tspec, Matchyyarded-plug-in)

We can model other versions of behavioral subtyping by substituting other function specification
definitions for match,,ethoq. For example, substituting plug-in match for match,,cep,q vields Amer-
ica’s subtype definition [Ame91], which is also the methods rule in Liskov and Wing’s subtype
definition [LW94]. Substituting a conjunction of generalized match with the pre-condition rule
from plug-in match (i.e., matchyethoa = (mr.pre = mg.pre) A(mg.pred = my.pred)) yields Dhara
and Leaven’s method rule [DL96].

Consider the StackObj and BagObj specifications in Figure 10. If we expect a bag object, we will
not be surprised by the behavior of a stack object (i.e., we should be able to substitute a stack for
a bag). Stack push adds an element to a container, just as bag put does, and stack height returns
the size of a container, just as bag card does. Bag get is non-deterministic: it deletes and returns
an element in a container. Stack pop_top is just more restrictive about which element it deletes.
In contrast, if we expect a stack object, we may be surprised by a bag object when we remove an
element, since the bag get method may remove an element other that the top. Thus, intuitively we
would expect stack to be a subtype of bag but not vice versa. We would like to show that StackObj
is a behavioral subtype of BagQObj according to Definition 15. As the objects are specified, we would
not be able to show the subtype relation if we used plug-in match as the method match, because
we cannot prove matchyyg—in (pop-top, get) (since we cannot reason about the case where the stack
or bag is empty). However, we can show that StackObj is a behavioral subtype of BagObj, since
our behavior subtype definition uses guarded plug-in match, which specifically allows us to exclude
the case where the stack or bag is empty.

To show Subtypeycpq, (StackObj, BagObj) (or equivalently, M-match(StackObj,,.., BagObj ..,
matchgyqrded-plug-in)), we must define the mappings Up and Upc to satisfy the three requirements
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of module match in Definition 12. There is only one user-defined type in both StackObj and
BagObj, and it is the same (i.e., UserOp(Xpq,7) = UserOp(EXstackr) = t). So Urc is the identity
function (Urc(t) = t). We define Up as follows: Up(put) = push, Up(get) = pop_top, and
Up(card) = height. Urc and Up satisfy the three requirements of module match:

(1) Urc and Ur are both one-to-one total functions. (Uf is not onto, but does not need to be.)
(2) matchg (o t, o t)

(3) matChguarded-plug-in (pUSh7 pUt)
matChguarded-plug-in (pOp—t0p7 get)

matchgyarded-plug-in (height, card)

We translated our specifications of StackObj and BagQObj into LP input and were able to prove
the guarded plug-in matches with very little user guidance. Appendix C shows the LP proof script of
guarded plug-in match between each pair of methods. The proofs for matchyyarded- plug-in (Push, put)
and matchgyarded-piug-in (height, card) are trivial, since the specifications are identical modulo vari-
able names. The proof for matchgyarded-piug-in (Pop-top, get) requires an additional lemma and some
guidance.

Thus, not only have we shown how subtyping fits into our framework of specification matching,
but we can also use our specification matching tools to automate checking our subtype relation.
Other subtype definitions (e.g., Liskov and Wing [LW94]) include additional global information,
such as invariants and constraints, which we do not model. It should be possible, however, to
add this in our framework by extending Y7 to include constraint specifications in addition to
user-defined type declarations.

7. Related Work

Other work on specification matching has focused on using one or two particular match definitions
for retrieval of software components (usually functions). Rollins and Wing proposed the idea of
function specification matching and implemented a prototype system in AProlog using plug-in match
[RW91]. AProlog does not use equational reasoning, and so the search may miss some functions that
match a query but require the use of equational reasoning to determine that they match. The VCR
retrieval system [FKS94] uses plug-in match with VDM as the specification language. The focus
of this work is on efficiency of proving match; the tool performs a series of filtering steps before
doing all-out match. Penix and Alexander [PA95] use theorem proving to translate automatically
specifications into domain-specific feature sets (sets of attribute-value pairs), which they then use
to do a more efficient retrieval. Such an approach depends on formulating the feature sets for each
domain, however. Perry’s Inscape system [Per89] is a specification-based software development
environment. Its Inquire tool [PP93] provides predicate-based retrieval in Inscape. Match can be
either exact pre/post or a form of generalized match. The prototype system has a simplified and
hence fairly limited inference mechanism. In Inscape, the user must provide specifications for each
component anyway, so the query for a retrieval will already be written. Jeng and Cheng [JC92] use
order-sorted predicate logic specifications. They define two matches, both of which are instances
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of our generalized function match, but with the additional property that they generate a series of
substitutions to apply to the library component to reuse in the desired context. Mili, Mili and
Mittermeir [MMMO94] define a specification as a binary relation. A specification S refines another
specification @ if .S has information about more inputs and assigns fewer images to each argument.
This is like plug-in match except that the match is in terms of relations rather than predicates.

The PARIS system [KRT87] maintains a library of partially interpreted schemas. Each schema
includes a specification of assertions about the input and results of the schema and about how the
abstract parts of the schema can be instantiated. Matching corresponds to determining whether a
partial library schema could be instantiated to satisfy a query. The system does some reasoning
about the schemas but with a limited logic. Katoh, Yoshida and Sugimoto [KYS86] use “ordered
linear resolution” to match English-like specifications that have been translated into first-order
predicate logic formulas. They allow some relaxations but check only for equivalence and do not
verify that the subroutines match.

To summarize, our work on specification matching is more general than the above in three ways:
We handle not just function match, but module match; we have a framework, which is extremely
modular (e.g., function match is a parameter to module match; specification match is one conjunct
of component match), within which we can express each of the specific matches “hardwired” in the
definitions used by others; and we have a flexible prototype tool that lets us easily experiment with
all the different matches. Finally, we are not wedded to just the software retrieval application; we
also apply specification match to other application areas.

Signature matching is a very restricted form of specification matching. Most work in this area
has focused on using the expressiveness and theoretical properties of type systems to define various
forms of relaxed matches [ZW95, DC92, Rit92, RT89, SC94]. Chen, Hennicker, and Jarke [CHJ93]
describe a framework for both signature and specification matching, but have only implemented
signature matching. Wileden et. al. survey specification-level interoperability [WWRT91]. Most
work thus far has focused on signature-based interoperability, and how to convert types in a het-
erogeneous environment [Kon93, YS94, Tha94].

Less closely related work, but relevant to our context of software library retrieval, divides into
three categories. Text-based information retrieval [FN87, AS87, PDR89, MBKO91] and Al-based
semantic net classifications [OHPDB92, FHR91] have the advantage that many efficient tools are
available to do the search and match in these structures. The disadvantage is that a component’s
behavior is described informally. A third class of retrievals [PP94, CMR92] allows queries over a
representation of the component’s actual code, e.g., abstract syntax trees. Such queries are useful
mainly for determining structural characteristics of a component, e.g., nested loops or circular
dependencies.

8. Summary and Future Work

Our work described in this paper makes three specific contributions with respect to specification
matching: foundational definitions, a prototype tool, and descriptions of applications. By pro-
viding precise definitions, we lay the groundwork for understanding when two different software
components are related, in particular when their specifications match. Though we consider in de-
tail functions and modules, exact and relaxed match, and formal pre-/post-condition specifications,
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the general idea behind specification matching is to exploit as much information associated with the
description of software components as possible. By building a working specification match engine,
we demonstrated the feasibility of our ideas. With this tool, we can explore the pragmatic impli-
cations of our definitions and apply specification matching to various applications. Though our
notion of specification match was originally motivated by the software library retrieval application,
it is more generally applicable to other areas of software engineering, for example, determining
subtyping in designing class hierarchies, or showing that one component may be substituted for
another when upgrading a system.

The heart of an interoperability problem is that the interfaces of two or more systems do not
match [VLP94]. Thus our work makes a step in the direction of detecting an interoperability prob-
lem based on a system’s interface that specifies its input-output (black-box) functional behavior.
However, even if two components’ specifications match according to our notion of interface spec-
ification, they may still fail to interoperate. One reason is that they may differ in the way they
choose to communicate with their environment. One way to extend our work is to add more infor-
mation to interface specifications to enable detection of other ways components interact with each
other. Toward this goal, Allen and Garlan [AG94] use a subset of CSP to specify “protocols” as a
way to capture the way a component communicates with its environment and to determine when
components interoperate smoothly with each other based on these protocol specifications. Hence,
a more complete interface would include protocol specifications as well as our kind of functional
specification; our notion of specification match could similarly be extended to include a notion of
protocol match. We deliberately set up our framework to allow different notions of specification
and different notions of specification match, depending on one’s personal definition of specification.

Finally, we can invert the notion of specification match: Determining that two components do
not match is determining that they mismatch. Garlan, Allen, and Ockerbloom [GAQ95] take a
step toward understanding this notion of mismatch at a system’s architectural level. Hence, a
promising direction of future work is to extend our formal framework from the module level to the
architectural level by modeling the various kinds of architectural mismatch they describe informally.
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A The OrderedContainer trait

OrderedContainer ( E , C ) : trait
includes Integer, TotalOrder(L)

introduces
empty : — C butFirst : C' = C
msert : B, C'— C butLast : C — C
delete : F,.C — C butMax : C' — C
first: C - F isEmpty : C' — Bool
last : ' = F isin: F,C — Bool
maz : C' — F size : C'— Int

count : E,C — Int
asserts

C' generated by emply, insert
C partitioned by count
Veel:FEc:C
last(insert(e,c)) == e
butLast(insert(e, c)) == ¢
first(insert(e,c)) == if ¢ = empty then e else first(c)
butFirst(insert(e, c)) == if ¢ = empty then empty else insert(e, butFirst(c))
) == if ¢ = empty then e
else if e > maz(c) then e else max(c)
butMaz (insert(e, c)) == delete(maz(c), c)
isEmpty(empty)
—isEmpty(insert(e, c))
—isIn(e, empty)
isIn(e, insert(el, c)) == (e = el) V (isln(e, c))

maz (insert(e, c)

size(empty) ==

size(insert(e, c)) == size(c) + 1

size(delete(e, c)) == if isIn(e, ¢) then size(c) — 1 else size(c)

count (e, empty) == 0

count(e, insert(el, c)) == count(e,c) 4 ( if e = el then 1 else 0)

count(e, delete(el, c)) == if e = el then max (0, count(e, c) — 1) else count(e, c)
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B Retrieval example proofs

%% Guarded plug-in match of replaceFirst with Q7

execute replace-fifo.lp
execute query7.lp

%% Guarded Plug-in match — pre-condition
prove (qReplacePre(cache, newobj) => replaceFirstPre(cache, newobj))
resume by induction on cache

%% Additional Lemmas

set name Lemma

prove ~(insert(newobj,cache) = empty) by contradiction
critical-pair *Hyp with Container

prove size(butFirst(insert(e,cache))) = size(cache) by induction on cache

%% Guarded Plug-in match — post-condition
set name Query
prove (replaceFirstPre(cache, newobj) /\ replaceFirstPost(cache, cache’, newobj)) =>
qReplacePost(cache, cache’, newobj)
resume by induction on cache

%% Full Guarded Plug-in match
prove (qReplacePre(cache, newobj) => replaceFirstPre(cache, newobj)) /\
((replaceFirstPre(cache, newobj) /\ replaceFirstPost(cache, cache’, newobj)) =>
qReplacePost(cache, cache’, newobj))

qed
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%% Guarded plug-in match of replaceMax with Q7

execute replace-priority.lp
execute query7.lp

%% Guarded Plug-in match — pre-condition
prove (qReplacePre(cache, newobj) => replaceMaxPre(cache, newobj))
resume by induction on cache

%% Additional Lemmas
set name Lemma

prove ~(c=empty) => ~isEmpty(c)
resume by induction on ¢

prove ~(isEmpty(c)) => isln(max(c),c)
resume by induction on ¢
resume by case cc = empty
resume by case max(cc) < e
instantiate ¢ by cc in Lemma.l

prove ~(isEmpty(c)) => size(insert(e, delete(max(c), ¢))) = size(c)
resume by =>
instantiate ¢ by cc in Lemma.2

%% Guarded Plug-in match — post-condition

set name Query

prove (replaceMaxPre(cache, newobj) /\ replaceMaxPost(cache, cache’, newobj)) =>
qReplacePost(cache, cache’, newobj)

%% Full Guarded Plug-in match
prove (qReplacePre(cache, newobj) => replaceMaxPre(cache, newobj)) /\
(replaceMaxPre(cache, newobj) /\ replaceMaxPost(cache, cache’, newobj)) =>
qReplacePost(cache, cache’, newobj)

qed
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C Script of proof that stack is a behavioral subtype of bag

execute bagobj.lp
execute stackobj.lp

% guarded-plug-in(push, put)
prove (putPre => pushPre) /\ ((pushPre /\ pushPost(b, b/, e)) => putPost(b, b/, ¢))
[ ] conjecture

% guarded-plug-in(height, card)
prove (cardPre => heightPre) /\ ((heightPre /\ heightPost(b, i)) => cardPost(b, i))

[ ] conjecture

% Additional lemma assert 0 <= count(e,s)
prove delete(e,insert(e,s)) = s

apply OrderedContainer.2 to conjecture

[ ] conjecture

% guarded-plug-in(pop, get)
prove
(getPre(b, e) => popPre(b, e)) /\
((popPre(b,e) /\ popPost(b, b’, e)) => getPost(b, b’,e))

resume by induction on b
<> basis subgoal
[ ] basis subgoal
<> induction subgoal
[ ] induction subgoal
[ ] conjecture
qed
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