
Speci�cation Matching of Software ComponentsAmy Moormann Zaremski and Jeannette M. Wing(amy@cs.cmu.edu and wing@cs.cmu.edu)School of Computer ScienceCarnegie Mellon University5000 Forbes AvenuePittsburgh, Pennsylvania 15213June 13, 1996AbstractSpeci�cation matching is a way to compare two software components based on descriptionsof the components' behaviors. In the context of software reuse and library retrieval, it can helpdetermine whether one component can be substituted for another or how one can be modi�edto �t the requirements of the other. In the context of object-oriented programming, it can helpdetermine when one type is a behavioral subtype of another.We use formal speci�cations to describe the behavior of software components, and hence, todetermine whether two components match. We give precise de�nitions of not just exact match,but more relevantly, various avors of relaxed match. These de�nitions capture the notions ofgeneralization, specialization, and substitutability of software components.Since our formal speci�cations are pre- and post-conditions written as predicates in �rst-order logic, we rely on theorem proving to determine match and mismatch. We give examplesfrom our implementation of speci�cation matching using the Larch Prover.
This research is sponsored by the Wright Laboratory, Aeronautical Systems Center, Air Force Materiel Command,USAF, and the Advanced Research Projects Agency (ARPA) under grant number F33615-93-1-1330.The views and conclusions contained in this document are those of the authors and should not be interpreted asnecessarily representing the o�cial policies or endorsements, either expressed or implied, of Wright Laboratory orthe U. S. Government.The U. S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstandingany copyright notation thereon. This manuscript is submitted for publication with the understanding that the U. S.Government is authorized to reproduce and distribute reprints for Governmental purposes.1

1. Motivation and IntroductionSpeci�cation matching is a process of determining if two software components are related. Itunderlies understanding this seemingly diverse set of questions:� Retrieval. How can I retrieve a component from a software library based on its semantics,rather than syntactic structure?� Reuse. How might I adapt a component from a software library to �t the needs of a givensubsystem?� Substitution. When can I replace one software component with another without a�ecting theobservable behavior of the entire system?� Subtype. When is an object of one type a subtype of another?In retrieval, we search for all library components that satisfy a given query. In reuse, weadapt a component to �t its environmental constraints, based on how well the component meetsour requirements. In substitution, we expect the behavior of one component to be observablyequivalent to the other's; a special case of substitution is when a subtype object is the componentsubstituting for the supertype object. Common to answering these questions is deciding whenone component matches another, where \matches" generically stands for \satis�es," \meets," or\is equivalent to." Common to these kinds of matches is the need to characterize the dynamicbehavior, i.e., semantics, of each software component.It is rarely the case that we would want one component to match the other \exactly." In retrieval,we want a close match; as in other information retrieval contexts [SM83, ML94, OKS+93], we mightbe willing to sacri�ce precision for recall. That is, we would be willing to get some false positivesas long as we do not miss any (or too many) true positives. In determining substitutability, we donot need the substituting component to have the exact same behavior as the substituted, only thesame behavior relative to the environment that contains it.In this paper we lay down a foundation for di�erent kinds of semantic matches. We explore notjust exact match between components, but many avors of relaxed match. To be concrete and tonarrow the focus of what match could mean, we make the following assumptions:� The software components in which we are interested are functions (e.g., C routines, Adaprocedures, ML functions) and modules (roughly speaking, sets of functions) written in someprogramming language. These components might typically be stored in a program library,shared directory of �les, or software repository.� Associated with each component, C, is a signature, Csig, and a speci�cation of its behavior,Cspec.Whereas signatures describe a component's type information (which is usually statically-checkable),speci�cations describe the component's dynamic behavior. Speci�cations more precisely character-ize the semantics of a component than just its signature. In this paper, our speci�cations areformal, i.e., written in a formally de�ned assertion language.2

Given two components, C = hCsig; Cspeci and C 0 = hC 0sig; C 0speci, we de�ne a generic componentmatch predicate, Match:De�nition 1 (Component Match)Match: Component, Component ! BoolMatch(C;C 0) =matchsig(Csig; C 0sig) ^ matchspec(Cspec; C 0spec)Two components C and C 0 match if 1) their signatures match, given some de�nition of signaturematching, and 2) their speci�cations match, given some de�nition of speci�cation match. Althoughwe de�ne match as a conjunction, we can think of signature match as a \�lter" that eliminates theobvious non-matches before trying the more expensive speci�cation match.There are many possible de�nitions for the signature match predicate, matchsig , which wethoroughly analyzed in a previous paper [ZW95]. In the remainder of this paper, for matchsig, weuse for functions type equivalence modulo variable renaming (\exact match" in [ZW95]), and formodules, a partial mapping of functions in the modules with exact signature match on the functions(\generalized module match" in [ZW95]).In this paper, we focus on the speci�cation match predicate, matchspec. We write pre-/post-condition speci�cations for each function, where assertions are expressed in a �rst-order predicatelogic. We determine match between two functions by some logical relationship, e.g., implication,between the two pre-/post-condition speci�cations. We modularly de�ne match between two mod-ules in terms of some kind of match between corresponding functions in the modules. Given ourchoice of formal speci�cations, we exploit state-of-the-art theorem proving technology as a way toimplement a speci�cation match engine. All of the example matches in this paper have been provenusing the LP theorem prover[GG91].Speci�cation match goes a step beyond signature match. For functions, signature match is basedentirely on the functions' types, e.g., int � int ! int, and not at all on their behavior. For example,integer addition and subtraction both have the same signature, but completely opposite behavior;the C library routines strcpy and strcat have the same signature but users would be unhappy if onewere substituted for the other. Given a large software library or a large software system, manyfunctions will have identical signatures but very di�erent behavior. For example, in the C mathlibrary nearly two-thirds of the functions (31 out of 47) have signature double ! double . Based onsignature match alone, we cannot know which of a large number of retrieved functions does whatwe want. Since speci�cation match takes into consideration more knowledge about the componentsit allows us to increase the precision with which we determine when two components match.For each kind of match we de�ne, there is both a match name and a match predicate symbol.For example, the strongest function speci�cation match is named exact pre/post match and has thepredicate symbol matchE-pre=post . For each match named M with the predicate symbol matchMand components S and Q, if matchM (S;Q) holds, we say equivalently:� M match of S with Q� S matches with Q (under M)� Q is matched by S (under M) 3

It is important to distinguish between \matches with" and \is matched by", because not allmatches are symmetric: matchM (S;Q) does not necessarily imply that matchM (Q; S). For thematches that are symmetric, we also say that \S and Q satisfy the match."In what follows, we �rst briey describe the language with which we write our formal speci�ca-tions. We de�ne exact and relaxed match for functions (Section 3) and then for modules (Section 4).We discuss our implementation of a speci�cation matcher using the Larch Prover in Section 5 andtwo applications of speci�cation match in the software engineering context in Section 6. We closewith related work and a summary.2. Larch/ML Speci�cationsWe use Larch/ML [WRZ93], a Larch interface language for the ML programming language, tospecify ML functions and ML modules. Larch provides a \two-tiered" approach to speci�cation[GH93]. In one tier, the speci�er writes traits in the Larch Shared Language (LSL) to assert state-independent properties. Each trait introduces sorts and operators and de�nes equality betweenterms composed of the operators (and variables of the appropriate sorts). Appendix 1 shows theOrderedContainer trait. Ordered containers are multisets that maintain an ordering on elementsbased on time of insertion (i.e., there is a notion of a �rst and last element). Elements are alsoordered by a total order, >, on their values, e.g., integral values. Counter to the Larch style ofusing di�erent traits for di�erent theories, we chose to use the single trait OrderedContainer inmultiple ways in order to simplify the explanations of our examples. The trait de�nes operators togenerate containers (empty and insert), to return the container resulting from deleting a particularelement (delete), to return the element or container resulting from deleting the �rst or last element(�rst, last, butFirst, and butLast), and to return information about a container (size, isEmpty),information about a particular element (isIn, count), and the maximum element of a containeraccording to the total ordering on elements (max).In the second tier, the speci�er writes interfaces in a Larch interface language to describestate-dependent e�ects of a program (see Figure 1). The Larch/ML interface language extendsML by adding speci�cation information in special comments delimited by (� + : : : + �). Theusing and based on clauses link interfaces to LSL traits by specifying a correspondence between(programming-language speci�c) types and LSL sorts. For polymorphic sorts, there must be anassociated sort for both the polymorphic variable (e.g., �) and the type constructor (e.g., T) in thebased on clause. The speci�cation for each function begins with a call pattern consisting of thefunction name followed by a pattern for each parameter, optionally followed by an equal sign (=)and a pattern for the result. In ML, patterns are used in binding constructs to associate namesto parts of values (e:g:, (x, y) names x as the �rst of a pair and y as the second). The requiresclause speci�es the function's pre-condition as a predicate in terms of trait operators and namesintroduced by the call pattern. Similarly, the ensures clause speci�es the function's post-condition.If a function does not have an explicit requires clause, the default is requires true. A functionspeci�cation may also include amodi�es clause, which lists those objects whose values may changeas a result of executing the function. Larch/ML also includes rudimentary support for specifyinghigher-order functions.Though simplistic, for exposition purposes, we will use the Larch/ML interface speci�cations4

signature Stack = sig(�+ using OrderedContainer +�)type � t (�+ based onOrderedContainer.E OrderedContainer.C +�)val create : unit ! � t(�+ create () = sensures s = empty +�)val push : � t � �! � t(�+ push (s; e) = s2ensures s2 = insert (e; s) +�)val pop : � t! � t(�+ pop s = s2requires not (isEmpty (s))ensures s2 = butLast (s) +�)val top : � t! �(�+ top s = erequires not (isEmpty (s))ensures e = last (s) +�)end
signature Queue = sig(�+ using OrderedContainer +�)type � t (�+ based onOrderedContainer.E OrderedContainer.C +�)val create : unit ! � t(�+ create () = qensures q = empty +�)val enq : � t � �! � t(�+ enq (q; e) = q2ensures q2 = insert (e; q) +�)val rest : � t! � t(�+ rest q = q2requires not (isEmpty (q))ensures q2 = butFirst (q) +�)val deq : � t! �(�+ deq q = erequires not (isEmpty (q))ensures e = �rst (q) +�)endFigure 1: Two Larch/ML Speci�cationsof Figure 1 as the \library" for our examples of speci�cation matching. It contains two modulespeci�cations: one for Stack with the functions create, push, pop, and top, and one for Queue, withthe functions create, enq, rest, and deq. We specify each function's pre- and post-conditions interms of operators from the OrderedContainer trait (shown in Appendix A).3. Function MatchingFor a function speci�cation, S, we denote the pre- and post-conditions as Spre and Spost , respectively.Spred de�nes the interpretation of the function's speci�cation as an implication between the two:Spred = Spre) Spost . This interpretation means that if Spre holds when the function speci�ed by Sis called, Spost will hold after the function has executed (assuming the function terminates). If Spredoes not hold, there are no guarantees about the behavior of the function. This interpretation of apre- and post-condition speci�cation is the most common and natural for functions in a standardprogramming model. For example, for the Stack top function in Figure 1� The pre-condition toppre is not (isEmpty (s)).� The post-condition toppost is e = last (s).� The speci�cation predicate toppred is (not (isEmpty (s)))) (e = last (s)).To be consistent in terminology with our signature matching work, we present function speci�-cation matching in the context of a retrieval application. Example matches are between a libraryspeci�cation S and a query speci�cation Q. We assume that variables in S and Q have been5

Match Predicate Symbol R1 R2 bSExact Pre/Post matchE-pre=post , , SpostPlug-in matchplug-in)) SpostPlug-in Post matchplug-in-post �) SpostGuarded Plug-in matchguarded-plug-in)) Spre ^ SpostGuarded Post matchguarded-post �) Spre ^ Spost� : droppedTable 1: Instantiations of generic pre/post match ((Qpre R1 Spre) ^ (bS R2 Qpost))renamed consistently1. For example, if we compare the Stack pop function with the Queue restfunction, we must rename q to s and q2 to s2. The examples presented in this section are intendedprimarily as illustrations of the various match de�nitions. Additional examples of more practicalapplications appear in Section 6. In this section we examine several de�nitions of the speci�cationmatch predicate (matchspec(S;Q)). We characterize de�nitions as either grouping pre-conditionsSpre and Qpre together and post-conditions Spost and Qpost together, or relating predicates Spredand Qpred . Both of these kinds of matches have a general form.De�nition 2 (Generic Pre/Post Match)matchpre=post (S;Q) = (Qpre R1 Spre) ^ (bS R2 Qpost)Pre/post matches relate the pre-conditions of each component and the post-conditions of eachcomponent. Post-conditions of related functions are often similar, so we want to compare themdirectly to each other. For example, post-conditions may specify related properties of the returnvalues. Similarly, pre-conditions of related functions may specify related bounds conditions of inputvalues. In some cases, we may want to include some information about the pre-condition in thepost-condition clause. To allow this exibility, we let bS be either Spost or Spre ^Spost in the genericpre/post match de�nition. The relations R1 and R2 relate pre-conditions and post-conditionsrespectively, and are either equivalence (,) or implication ()), but need not be the same. Thematches may vary from this form by dropping some of the terms. Table 1 summarizes how R1, R2,and bS are instantiated for each of the pre/post matches in Section 3.1. For example, for plug-inmatch, R1 and R2 are both) and bS is Spost , so matchplug-in is (Qpre) Spre) ^ (Spost)Qpost). For matchplug-in-post and matchguarded-post , R1 is not instantiated because its arguments aredropped. For matchguarded-plug-in and matchguarded-post , bS is Spre ^ Spost .De�nition 3 (Generic Predicate Match)matchpred (S;Q) = Spred R Qpred1This renaming is easily provided by signature matching; we are assuming that the signatures of S and Q match.6

Predicate matches relate the speci�cation predicates, Spred and Qpred , in their entirety. Predicatematches are useful in cases where we need to consider the relationship of the speci�cations asa whole rather than relationships of the parts, for example, when we need to assume somethingfrom the pre-condition in order to reason about post-conditions. Additionally, these de�nitionsapply for speci�cations of other forms (e.g., for speci�cations that do not have separate pre- andpost-conditions). The relation R between the speci�cation predicates is equivalence (,) for thestrictest match, but may be relaxed to either implication ()) or reverse implication ((). Table 2summarizes how R is instantiated for each of the predicate matches in Section 3.2.PredicateMatch Symbol RExact Predicate matchE-pred ,Generalized matchgen-pred)Specialized matchspcl-pred (Table 2: Instantiations of generic predicate match (Spred R Qpred)It is important to look at both pre/post matches and predicate matches. Which kind of matchis appropriate may depend on the context in which the match is being used or on the speci�ca-tions being compared. We present the pre/post matches in Section 3.1 and the predicate matchesin Section 3.2. For each, we present a notion of exact match as well as relaxed matches.3.1. Pre/Post MatchesPre/post matches on speci�cations S and Q relate Spre to Qpre and Spost to Qpost . Each match isan instantiation of the generic pre/post match (De�nition 2). We consider �ve kinds of pre/postmatches, beginning with the strongest match and weakening the match by relaxing the relationsR1 and R2 from , to), by adding Spre to bS, or by dropping the pre-condition term. In eachcase, relaxing the match allows us to make comparisons between less closely related components,but weakens the guarantees about the relationship between the two components. For example,dropping the pre-condition term would allow us to relate components that have the same behaviorfor the subset of inputs that they handle but that make di�erent assumptions about which inputsare valid (e.g., routines on arrays with di�erent bounds). However, since we are not comparing thepre-conditions at all, we cannot guarantee that the components are behaviorally equivalent for allinputs.3.1.1. Exact Pre/Post MatchIf exact pre/post match holds for two speci�cations, the components are essentially equivalent andthus completely interchangeable. Anywhere that one component is used, it could be replaced bythe other with no change in observable behavior. Exact pre/post match instantiates both R1 and7

R2 to , and bS to Spost in the generic pre/post match of De�nition 2; two function speci�cationssatisfy the exact pre/post match if their pre-conditions are equivalent and their post-conditions areequivalent.De�nition 4 (Exact Pre/Post Match)matchE-pre=post (S;Q) = (Qpre , Spre) ^ (Spost , Qpost)Exact pre/post match is a strict relation, yet two di�erent-looking speci�cations can still satisfythe match. Consider for example the following query Q1, based on the OrderedContainer trait. Q1speci�es a function that returns an ordered container whose size is zero, one way of specifying afunction to create a new ordered container.signature Q1 = sig (Q1)(�+ using OrderedContainer +�)type � t based on OrderedContainer.E OrderedContainer.C +�)val qCreate : unit ! � t(�+ qCreate () = censures size (c) = 0 +�)endUnder exact pre/post match, Q1 is matched by both the Stack and Queue create functionsof Figure 1. (The speci�cations of Stack and Queue create are identical except for the name of thereturn value.)Let us look in more detail at how the Stack create speci�cation matches with Q1. Let S bethe speci�cation for Stack create and Q1 be the query speci�cation with c renamed to s. Spre= true, Spost = (s = empty). Q1pre = true, Q1post = (size(s) = 0). Since both Spre and Q1preare true, showing matchE�pre=post (S;Q1) reduces to proving Spost , Q1post , or (s = empty) ,(size(s) = 0). The \if" case ((s = empty)) (size(s) = 0)) follows immediately from the axioms inthe OrderedContainer trait about size. Proving the \only-if" case ((size(s) = 0)) (s = empty))requires only basic knowledge about integers and the fact that for any ordered container, s, size(s) �0, which is provable from the OrderedContainer trait.3.1.2. Plug-in MatchEquivalence is a strong requirement. Sometimes a weaker match is \good enough." For plug-inmatch, we relax both R1 and R2 from , to) in the generic pre/post match. Under plug-inmatch, Q is matched by any speci�cation S whose pre-condition is weaker (to allow at least all theconditions that Q allows) and whose post-condition is stronger (to provide a guarantee at least asstrong as Q).De�nition 5 (Plug-in Match)matchplug-in(S;Q) = (Qpre) Spre)^ (Spost) Qpost)8

S

<Spre>

<Spost>

...

<Qpre>

code
...

...
code

<Qpost>

...Figure 2: Idea Behind Plug-in MatchPlug-in match captures the notion of being able to \plug-in" S for Q, as illustrated in Figure 2. Aspeci�er writes a query Q saying essentially:I need a function such that if Qpre holds before the function executes, then Qpost holdsafter it executes (assuming the function terminates).With plug-in match, if Qpre holds (the assumption made by the speci�er) then Spre holds(because of the �rst conjunct of plug-in match). Since we interpret S to guarantee that Spre) Spost ,we can assume that Spost will hold after executing the plugged-in S. Finally, since Spost) Qpostfrom the second conjunct of plug-in match, Qpost must hold, as the speci�er desired. We say that Sis behaviorally equivalent toQ, since we can plug-in S for Q and have the same observable behavior,but this is not a true equivalence because it is not symmetric: we cannot necessarily plug-in Q forS and get the same guarantees.Consider the following query. Q2 is fairly weak speci�cation of an add function. It requires thatthe input container has less than 50 elements, and guarantees that the resulting container is oneelement larger than the input container.signature Q2 = sig (Q2)(�+ using OrderedContainer +�)type � t based on OrderedContainer.E OrderedContainer.C +�)val qEnq : � t � �! � t(�+ qEnq (q1; e) = q2requires size (q1) < 50ensures size (q2) = (size (q1) +1) +�)end 9

Under exact pre/post match, Q2 is not matched by any function in the library, but under plug-inmatch, Q2 is matched by both the Stack push and the Queue enq functions. Since push and enqare identical except for their names and the names of the variables, the proof of the match is thesame for both.The pre-condition requirement, Qpre) Spre , holds, since Spre = true . To show that Spost)Qpost , we assume Spost (q2 = insert(e; q)), and try to show Qpost (size(q2) = size(q) + 1). Substi-tuting for q2 in Qpost , we have size(insert(e; q)) = size(q) + 1, which follows immediately from theequations for size.3.1.3. Plug-in Post MatchIf we are concerned with only the e�ects of functions, then a useful relaxation of the plug-in match isto consider only the post-condition part of the conjunction. (Most pre-conditions could be satis�edby adding an additional check before calling the function.) Plug-in post match is also an instanceof generic pre/post match of De�nition 2, with R2 instantiated to) and bS instantiated to Spostbut dropping Qpre and Spre .De�nition 6 (Plug-in Post Match)matchplug-in-post (S;Q) = (Spost) Qpost)Consider the following query. Q3 is identical to Stack top except that Q3 has no requires clause.signature Q3 = sig (Q3)(�+ using OrderedContainer +�)type � t based on OrderedContainer.E OrderedContainer.C +�)val qTop : � t! �(�+ qTop c = eensures e = last (c) +�)endStack top does not match with Q3 under either exact pre/post or plug-in match, because Q3'spre-condition is weaker than Stack top's. Since the post-conditions are equivalent, Stack top doesmatch with Q3 under plug-in post match.3.1.4. Guarded Plug-in MatchIn some cases, the post-condition relation, Spost) Qpost , only holds for values of the input allowedby the pre-condition. For example, the butFirst clause mentioned in the post-condition of Stackpop is not de�ned for the empty stack. The guarded plug-in match adds Spre as an assumption(or \guard") to the post-condition relation, to exclude such cases. We instantiate R1 and R2 to) in the generic pre/post match, as with plug-in match, but we use bS = Spre ^ Spost rather thanbS = Spost . We use Spre and not Qpre since Spre is likely to be necessary to limit the conditionsunder which we try to prove Spost) Qpost . 10

De�nition 7 (Guarded Plug-in)matchguarded-plug-in(S;Q) = (Qpre) Spre)^ ((Spre ^ Spost)) Qpost)For example, suppose we wish to �nd a function to delete from an ordered container using thefollowing query Q4:signature Q4 = sig (Q4)(�+ using OrderedContainer +�)type � t based on OrderedContainer.E OrderedContainer.C +�)val qRest : � t! � t(�+ qRest c = c2requires not (isEmpty (c))ensures size (c2) = (size (c) �1) +�)endQ4 describes a function that requires a non-empty container and returns a container whose sizeis one less than the size of the input container. This is a fairly weak way of describing deletion,since it does not specify which element is removed. Even this weak speci�cation match still givesus a big gain in precision over signature matching, however. Q4 would not be matched by otherfunctions with the signature � t! � t, for example, a function that reverses or sorts the elementsin the container, or removes duplicates.While intuitively Q4 would seem related to Stack pop and Queue rest, neither pop nor rest matchwith Q4 under either plug-in or plug-in post match. Consider Stack pop (the reasoning is similarfor Queue rest). We cannot prove Spost) Qpost (i.e., (s2 = butFirst(s))) (size(s2) = size(s) �1))for the case where s = empty . However, by adding the assumption Spre (not(isEmpty(s))), we areable to show that Stack pop matches with Q4 under guarded plug-in match. The �rst conjunct(Qpre) Spre) is trivial, since the pre-conditions of Q4 and Stack pop are the same. Figure 3sketches the proof of the second conjunct ((Spre ^ Spost)) Qpost).Assume not(isEmpty(s)) Assume Spre (1)Assume s2 = butFirst(s) Assume Spost (2)size(s2) = size(s)� 1 Attempt to prove Qpost (3)size(butFirst(s)) = size(s)� 1 Apply (2) to (3) (4)Let s = insert(ec; sc) Since s is not empty (1), ands generated by empty and insert (5)size(butFirst(insert(ec; sc))) = size(insert(ec; sc))� 1 Substitute (5) for s in (4) (6)size(sc) = size(insert(ec; sc))� 1 Axioms for butFirst (7)size(sc) = (size(sc) + 1)� 1 Axioms for size (8)size(sc) = size(sc) Axioms for +, � (9)Figure 3: Proof Sketch of matchguarded-post(pop; Q4)3.1.5. Guarded Post MatchAs with plug-in match, we de�ne a more relaxed guarded match by dropping the pre-conditionrelation term. Because we do not have the pre-condition term, there is no guarantee that Spre11

actually holds, so we may have to provide an additional \wrapper" in our code to establish Sprebefore we call the function speci�ed by S.De�nition 8 (Guarded Post Match)matchguarded-post(S;Q) = (Spre ^ Spost)) QpostFor example, consider the following query, which is the same as Q4 but without a requires clause.signature Q5 = sig (Q5)(�+ using OrderedContainer +�)type � t based on OrderedContainer.E OrderedContainer.C +�)val qRest : � t! � t(�+ qRest c = c2ensures size (c2) = (size (c) �1) +�)endBecause this query has a stronger pre-condition, it is not matched by any functions in the libraryunder either plug-in or guarded plug-in match. Plug-in post match does not work either becausewe need to assume Spre (not(isEmpty(s))) to show Spost) Qpost . However, under guarded postmatch, Q5 is matched by both Stack pop and Queue rest. The proofs are very similar to that forQ4 in the guarded post match (Figure 3).3.2. Predicate MatchesRecall the generic predicate match (De�nition 3):matchpred (S;Q) = Spred R Qpredwhere the relation R is either equivalence (,), implication ()), or reverse implication (().Note that this general form allows alternative de�nitions of the speci�cation predicates. Onealternative is Spred = Spre ^ Spost , which is stronger than Spred = Spre) Spost . This interpretationis reasonable in the context of state machines, where the pre-condition serves as a guard so that astate transition occurs only if the pre-condition holds.As we did with the generic pre/post match, we consider instantiations of the generic predicatematch of the generic predicate match including an exact match and various relaxations.3.2.1. Exact Predicate MatchWe begin with exact predicate match. Two function speci�cations match exactly if their predicatesare logically equivalent (i.e., R is instantiated to,). This is less strict than exact pre/post match(De�nition 4), since there can be some interaction between the pre- and post-conditions (i.e.,matchE-pre=post) matchE-pred). In fact, in cases where Spre = Qpre = true, exact pre/post andexact predicate matches are equivalent. 12

De�nition 9 (Exact Predicate Match)matchE-pred (S;Q) = Spred , QpredOur example Q1 is still matched by Stack and Queue create under exact predicate match, sinceSpred , Qpred = (true) (s = empty)), (true) (size(s) = 0))= (s = empty), (size(s) = 0)which is exactly what we proved to show that Q1 is matched by Stack and Queue create underexact pre/post match.3.2.2. Generalized MatchGeneralized match is an intuitive match in the context of queries and libraries: speci�cations oflibrary functions will be detailed, describing the behavior of the functions completely, but we wouldlike to be able to write simple queries that focus only on the aspect of the behavior that we aremost interested in or that we think is most likely to di�erentiate among functions in the library.Generalized match allows the library speci�cation to be stronger (more general) than the query;R in the generic predicate match is instantiated to). Generalized match is a weaker match thanplug-in match (i.e., matchplug-in) matchgen-pred).De�nition 10 (Generalized Match)matchgen-pred (S;Q) = Spred) QpredFor example, again consider Q4. Using the exact predicate match, neither the Stack pop nor theQueue rest speci�cations match with this query. However, under generalized match, Q4 is matchedby both of these. The proofs are very similar to that for Q4 in the guarded match (Figure 3).Consider another example specifying a function that removes the most recently inserted elementof an ordered container. This query does not require that the speci�er knows the axiomatization ofordered containers, since the query uses only the container constructor, insert. The post-conditionspeci�es that the input container, c, is the result of inserting the returned element, e, into anothercontainer c2. The existential quanti�er (there exists) is a way of being able to name c2.signature Q6 = sig (Q6)(�+ using OrderedContainer +�)type � t based on OrderedContainer.E OrderedContainer.C +�)val qTop : � t! �(�+ qTop c = erequires not (isEmpty (c))ensures there exists c2:OrderedContainer.C(c = insert (e; c2)) +�)endAgain, under exact or plug-in matches, Q6 does not retrieve any functions. Under generalizedmatch, the query is matched by the Stack top function, but not Queue deq, since the query speci�es13

that the most recently inserted element is returned. To show matchgen (Stack :top; Q6), we considertwo cases: c =empty, and c =insert(ec,cc). In the �rst case, the pre-condition for both top and qTopare false, and thus the match predicate is vacuously true. In the second case, the pre-conditionsare both true, so we need to prove that Spost) Qpost . If we instantiate c2 to cc, the proof goesthrough.3.2.3. Specialized MatchSpecialized match is the converse of generalized match: matchspcl-pred (S;Q) = matchgen-pred (Q; S).A function whose speci�cation is weaker than the query might still be of interest as a base fromwhich to implement the desired function. Specialized match allows the library speci�cation to beweaker than the query; we instantiate R in the generic predicate match to (.De�nition 11 (Specialized Match)matchspcl-pred (S;Q) = Qpred) SpredConsider again the query Q3, which is the same as Stack top but without the pre-condition. Stacktop is thus weaker than Q3, but we can show that Q3 implies Stack top and hence that Q3 ismatched by Stack top under specialized match.3.3. Relating the Function MatchesWe relate all our function speci�cation match de�nitions in a lattice (Figure 4). An arrow from amatchM1 to another matchM2 indicates thatM1 is stronger thanM2 (i.e.,M1(S;Q))M2(S;Q)for all S;Q). We also say that M2 is more relaxed than M1.Table 3 summarizes which of the library functions match each of the six example queries undereach of the eight matches we have de�ned. For example, under generalized match, Q4 is matched byboth Queue.rest and Stack.pop, but under plug-in post match, Q4 is not matched by any functionsin the library. Parentheses around a function indicates that the match is implied by a strongermatch (e.g., matchplug-in(Q2;Queue:enq)) matchguarded-plug-in(Q2;Queue:enq)).We de�ne a variety of matches. Which match is most appropriate to use will depend on theparticular situation. First, the choice of match depends on the context in which the match is used {how strong of a guarantee is needed about the relation between the two speci�cations? If we want toknow that we can substitute one function for the other and still have the same behavior, we woulduse plug-in match or an exact match. In contrast, if we are only interested in whether the functionshave the same e�ects and we are willing to check pre-conditions separately, we can use guardedpost match. Which match is most appropriate also depends on the actual form of the predicates.In some cases, pre/post matches will be easier to prove with a theorem prover since the pre/postmatches relate pre-conditions to pre-conditions and post-conditions to post-conditions, and for twospeci�cations, S and Q, it is likely that Spre and Qpre are related and hence we can reason aboutthat relation (and similarly for Spost and Qpost). In other cases, however, it is necessary to makesome assumptions about the pre-condition in order to prove a relation between the post-conditions.In these cases, the predicate matches are easier to prove.14

Guarded PostGeneralized

Exact Predicate

Exact Pre/Post

Plug-in

Specialized

Plug-in Post

True

Guarded Plug-in

Figure 4: Lattice of Function Speci�cation MatchesExact Exact Plug-in Guarded Plug-in Special- Gener- GuardedPre/Post Predicate Plug-in Post ized alized PostQ1 Q.create (Q.create) (Q.create) (Q.create) (Q.create) (Q.create) (Q.create) (Q.create)S.create (S.create) (S.create) (S.create) (S.create) (S.create) (S.create) (S.create)Q2 | | Q.enq (Q.enq) (Q.enq) | (Q.enq) (Q.enq)| | S.push (S.push) (S.push) | (S.push) (S.push)Q3 | | | | S.top S.top | (S.top)Q4 | | | Q.rest | | (Q.rest) (Q.rest)| | | S.pop | | (S.pop) (S.pop)Q5 | | | | | | | Q.rest| | | | | | | S.popQ6 | | | S.top | | (S.top) (S.top)Table 3: Which Ones Match What(where Q = Queue module and S = Stack module)15

4. Module MatchingFunction matching addresses the problem of matching individual functions. However, a programmermay need to compare collections of functions, for example, ones that provide a set of operationson an abstract data type. Modules, such as Ada packages or C++ classes, are a common languagefeature of most modern programming languages, and are typically used to support explicitly thede�nition of abstract data types. Modules are also often used just to group a set of related functions,like I/O routines. This section addresses the problem of matching module speci�cations.A module speci�cation interface is a pair, � = h�T ;�F i, where� �T is a set of user-de�ned types, and� �F is a set of function abstracts.�T introduces the names of user-de�ned type constructors that may appear in �F . A functionabstract is the function name together with the function speci�cation. We include the function nameboth as useful feedback to the user and to distinguish between abstracts that would otherwise bethe same (thus �F is a set rather than a multiset). For example, the Queue interface in Figure 1has one user-de�ned type (�T = f� tg) and four function abstracts in �F .For a library interface, �L = h�LT ;�LF i, to match a query interface, �Q = h�QT ;�QF i, theremust be correspondences both between �LT and �QT and between �LF and �QF .In the module match de�nition we use here, the user-de�ned types and function abstracts inthe query interface are a subset of those in the library interface. We consider other module matchde�nitions elsewhere [Zar96]. We allow the query interface to be a subset of the library interfaceso that the querier may specify exactly the functions of interest and match a module that is moregeneral in the sense that its set of functions may properly contain the query's set.De�nition 12 (Module Match)M-match(�L;�Q;matchfn) =9 total functionsUTC : UserOp(�QT)! UserOp(�LT) (with corresponding renaming TC) andUF : �QF ! �LFsuch that (1) UTC and UF are one-to-one(2) 8 � 2 �QT ;matchE (�; TC �)(3) 8 Q 2 �QF ;matchfn(UF (Q); TC Q)UTC and TC ensure that user-de�ned types are named consistently in the two interfaces. Fora set of user-de�ned types �T , UserOp(�T) extracts the set of type constructor variables in �T(e.g., for �T = f� T; int Xg, UserOp(�T) = fT;Xg). The domain of function UTC is a set of typeconstructor variables; from it we construct the type constructor renaming sequence TC, whichis applied to the signatures of each function speci�cations in �QF . For each uq 2 UserOp(�T),16

the renaming [UTC(uq)=uq] appears in TC. To avoid potential naming conicts, we assume thatUserOp(�QT) and UserOp(�LT) are disjoint (if they are not, we can easily make them so).UF maps each query function abstract Q to a corresponding library function abstract, UF (Q).Since any user-de�ned types in UF (Q) come from �LT , we apply TC to Q to ensure consistentnaming of type constructors. The correspondence between each TC Q and UF (Q) is that theysatisfy the function match,matchfn . The library module may contain more functions than the querymodule (i.e., j�LF j � j�QF j, and �LF � TC �QF (where TC �QF is a shorthand for applying TCto each element of �QF). Section 6.2 contains an example of a module match, including a proof ofthe match relation with LP.Our de�nition of module match is highly parameterized and extensible. The function matchrelation between the pairs of functions is completely orthogonal to the module match de�nitions;we can instantiate matchfn with any of the function speci�cation matches de�ned in Section 3.In fact, the module match de�nitions are completely independent of the fact that we are match-ing speci�cations at the function level. If we use the same de�nitions of module matching, butinstantiate matchfn with a function signature match, we have module signature matching [ZW95].Most generally, a module interface consists of some global information (�T) and a set of functions(�F). This framework allows the potential to extend the module interface to contain even moreinformation. For example, we could extend module speci�cation interfaces to include informationabout shared types or global invariants in �T . A new module match de�nition including globalinvariants would be similar to De�nition 12, but UTC would change and point (2) of the de�nitionwould require some kind of consistency between invariants.5. ImplementationWe use LP, the Larch Prover [GG91], to attempt to prove that a match holds between two speci�-cations. LP is a theorem prover for a subset of multisorted �rst-order logic. We implemented toolsto translate Larch/ML speci�cations and match predicates into LP input. Each of the speci�cationmatch examples given in Section 3 (i.e., all entries in Table 3) and in Section 6 have been speci�edin Larch/ML, translated automatically to LP input, and proven using LP.For each speci�cation �le (e.g., Stack.sig), we check the syntax of the speci�cation and thentranslate it into a form acceptable to LP. Namely, we generate a corresponding .lp �le (e.g.,Stack.lp), which includes the axioms from the appropriate LSL trait and contains the appropriatedeclarations of variables, operators, and assertions (axioms) for the pre- and post-conditions ofeach function speci�ed. Each function foo generates two operators, fooPre and fooPost; the axiomsfor fooPre and fooPost are the bodies of the requires and ensures clauses of foo. Figure 5 showsStack.lp and Q2.lp, the result of translating the Stack speci�cation from Figure 1 (pg. 5) and thequery Q2 (pg. 9) into LP format. The thaw OrderedContainer Axioms command loads the stateresulting from executing the commands in OrderedContainer Axioms.lp. We use the lsl tool togenerate the �le OrderedContainer Axioms.lp from the LSL trait OrderedContainer.lsl. Wecomment out the thaw command in Q2.lp, since we assume that the query (Q2) uses the same traitas the library speci�cation (Stack). The command set name Q2 tells LP to use Q2 as the pre�xfor names of facts and conjectures. Commands declare var and declare op declare variables andoperators that will be used in the axioms. In particular, Q2.lp declares the element variable e,17

% Stack.lp%% Using OrderedContainerthaw OrderedContainer Axioms%% signature Stackset name Stackdeclare vare: Es: Cs2: C..declare opcreatePre: �>BoolcreatePost: C �>BoolpushPre: �>BoolpushPost: C, E, C �>BoolpopPre: C, C �>BoolpopPost: C, C �>BooltopPre: C, E �>BooltopPost: C, E �>Bool..assertcreatePre = true;createPost(s) = (s = empty);pushPre = true;pushPost(s, e, s2) = (s2 = insert(e,s));popPre(s, s2) = (�(isEmpty(s)));popPost(s, s2) = (s2 = butLast(s));topPre(s, e) = (�(isEmpty(s)));topPost(s, e) = (e = last(s))..

% Q2.lp%% Using OrderedContainer%%% thaw OrderedContainer Axioms%% signature Q2set name Q2declare vare: Eq1: Cq2: C..declare opaddPre: C, E, C �>BooladdPost: C, E, C �>Bool..assertaddPre(q1, e, q2) = (size(q1) < 50);addPost(q1, e, q2) =(size(q2) = size(q1) + 1)..
Figure 5: LP input for Stack and Q2container variables q1 and q2, and operators addPre and addPost. The assert clause adds axiomsto the logical system for addPre and addPost, corresponding to the requires and ensures clausesof add, respectively.Given the names of two function speci�cations, their corresponding speci�cation �les, and whichmatch de�nition to use, we also generate the appropriate LP input to initiate an attempt todetermine the match between those two functions. For example, Figure 6 shows the LP input toprove the plug-in match of Stack push with Q2. The input to LP for the proof consists simply ofcommands to load the theories for the library and query (execute Stack and execute Q2), andthe proof statement (prove : : :). 18

% PlugIn-Q2-Stack.lp%% Load library and query specsexecute Stackexecute Q2%% Plug-in Match: (Qpre => Spre) /n (Spost => Qpost)prove (addPre(s, e, s2) => pushPre) /n (pushPost(s, e, s2) => addPost(s, e, s2))Figure 6: LP input for plug-in match of Stack.push with Q2We could alternatively have chosen to generate the LP axioms on a per-query basis rather thangenerating axioms for each .sig �le (i.e., given a particular pair of functions, generate only thenecessary axioms for that particular pair). However, we assume that generating an .lp �le from a.sig �le will happen only once and that there may be several queries on a library speci�cation orseveral match de�nitions for a particular query. This approach enables us to consider module-levelmatches as well.Since LP is designed as a proof assistant, rather than an automatic theorem prover, some of theproofs require user assistance. Each of the 40 entries in Table 3 corresponds to a match that wehave used LP to prove. In characterizing how much assistance the proofs require, we consider onlythe primary matches (the 11 entries in the table that are not in parentheses), since proofs for allothers follow automatically from an entry to the left in the same row. Table 4 summarizes the levelof user assistance required for the primary matches. None means the proof went through with nouser assistance, guidance means that the proof required user input to apply the appropriate proofstrategies, and lemma means that the user had to prove additional lemmas to complete the proof.Query Library Match User AssistanceQ1 Queue.create Exact Pre/Post lemmaQ1 Stack.create Exact Pre/Post lemmaQ2 Queue.enq Plug-in noneQ2 Stack.push Plug-in noneQ3 Stack.top Specialized noneQ3 Stack.top Plug-in Post noneQ4 Queue.rest Guarded Plug-in lemmaQ4 Stack.pop Guarded Plug-in guidanceQ5 Queue.rest Guarded Post lemmaQ5 Stack.pop Guarded Post guidanceQ6 Stack.top Guarded Plug-in guidanceTable 4: Level of user assistance required for LP proofs of queriesFour of the proofs needed no assistance from the user: plug-in match of Stack.push andQueue.enqwith Q2, and plug-in post and specialized matches of Stack.top with Q3. Plug-in match of19

% exec M-Guard-Q6-Stack%% Load library and query specsexecute Stackexecute Q6%% Guarded Plug-in Match: (Qpre => Spre) /n ((Spre /n Spost) => Qpost)prove (qTopPre(c, e) => topPre(c, e)) /n ((topPre(c, e) /n topPost(c, e)) => qTopPost(c, e))% Additional user inputresume by induction<> basis subgoal[] basis subgoal<> induction subgoalresume by specializing c2 to cc<> specialization subgoal[] specialization subgoal[] induction subgoal[] conjecture%% End of input from �le `Guard-Q6-Stack.lp'.Figure 7: Proof script of generalized match of Stack.pop with Q6Stack.push with Q2 is the example shown in Figure 6; executing the statements in Figure 6 resultsin the response from LP that the match conjecture was proved using the default proof methods;no user assistance was required.Guarded plug-in match of Stack.pop with Q6 is an example of a match that requires some userassistance to LP. The user must tell the prover to use induction in the proof, and then how toinstantiate the existential variables. Figure 7 shows an LP-annotated script for this proof. Thelines with boldface are user input; <> and [] are proof notes from LP; and % is the commentcharacter. The line [] conjecture indicates that LP completed the proof. We classify the userassistance for this proof as simply guidance { telling LP what proof strategy to use next in caseswhere the default strategies do not complete the proof. A total of three proofs require guidance:guarded plug-in matches of Stack.top with Q6 and of Stack.pop with Q4, and guarded post matchof Stack.pop with Q5.The remainder of the proofs (exact pre/post match of Queue.create and Stack.create with Q1,guarded post match ofQueue.rest with Q4, and guarded post match ofQueue.rest with Q5) requirednot only guidance but also additional lemmas in order to prove the match. In all four cases, oneof the additional lemmas is �(insert(e,q) = empty) (something that might reasonably be includedin a more complete theory of containers). The proofs for Queue.rest with Q4 and Q5 additionallyneed the lemma size(butFirst(insert(e,q))) = size(q), which falls out directly from the axioms forStack but not Queue. The proofs for Q1 need additional lemmas about the sizes of containers.Figure 8 shows an LP-annotated script for the proof of guarded post match of Queue.rest with Q5.20

% exec M-GuardPost-Q5-Queue%% Load library and query specsexecute Queueexecute Q5set name Lemmaprove �(insert(e,q) = empty) by contradiction<> contradiction subgoalcritical-pair *Hyp with OrderedContainer[] contradiction subgoal[] conjectureprove size(butFirst(insert(e,q))) = size(q) by induction on q<> basis subgoal[] basis subgoal<> induction subgoal[] induction subgoal[] conjectureset name Queryprove restPre(q, q2) /n restPost(q, q2) => remainderPost(q, q2)resume by induction on q<> basis subgoal[] basis subgoal<> induction subgoal[] induction subgoal[] conjecture%% End of input from �le `M-GuardPost-Q5-Queue.lp'.Figure 8: Proof script of guarded post match of Queue.rest with Q56. ApplicationsAs we mentioned in Section 1, any problem that involves comparing the behavior of two softwarecomponents is a potential candidate for speci�cation matching. In particular, we focus on problemsthat center around substituting one component for another. In this section, we examine two suchproblems: retrieval for reuse and subtyping of object-oriented types.6.1. Retrieval for ReuseIf we have a library of components with speci�cations, we can use speci�cation matching to retrievecomponents from the library. Formally, we de�ne the retrieval problem as follows:21

De�nition 13 (Retrieval)Retrieve: Query Speci�cation, Match Predicate, Component Library ! Set of ComponentsRetrieve(Q;matchspec ; L) = fC 2 L : matchspec(C;Q)gGiven a query speci�cation Q, a speci�cation match predicatematch spec , and a library of componentspeci�cations L, Retrieve returns the set of components in L that match with Q under the matchpredicate matchspec . Note that the components can be either functions or modules, provided thatmatchspec is instantiated with the appropriate match. Parameterizing the de�nition by matchspecalso gives the user the exibility to choose the degree of relaxation in the speci�cation match.Using speci�cation match as part of the retrieval process (or separately on a given pair ofcomponents) gives us assurances about how appropriate a component is for reuse. At the functionlevel especially, the various speci�cation matches give us various assurances about the behavior ofa component we would like to use. We treat Q as the \standard" we expect a component to meet,and S as the library component we would like to reuse. If the exact pre/post match holds on S andQ, we know that S and Q are behaviorally equivalent under all conditions; using S for Q shouldbe transparent. If the plug-in or guarded plug-in match holds, we know that S can be substitutedfor Q and the behavior speci�ed by Q will still hold, although we are not guaranteed the samebehavior when Qpre is false. If the guarded post match holds, we know that the speci�ed behaviorholds when Spre is satis�ed. Depending on the context, we may be able to ensure that Spre holdsand hence guarantee the behavior speci�ed by Q.For example, suppose that we are implementing a �le cache manager. Among many other things,we will need a function to replace a �le in the cache with a newly-fetched �le when the cache isfull. We want to know whether there are functions in the library to do this. Given that libraryfunctions have speci�cations associated with them, we can use speci�cation matching to retrievethe functions we want. If we use a match de�nition like guarded plug-in match, we can use a fairlyweak speci�cation like Q7 as our query:signature Query = sig (Q7)(�+ using OrderedContainer +�)type � fscache based on OrderedContainer.E OrderedContainer.C +�)val qReplace : � fscache � �! unit(�+ qReplace (cache, �le)requires size (cache) = 50modi�es cacheensures isIn (�le, cache 0) and (size (cache 0) = size (cache)) +�)endQ7 speci�es a property that would hold for a destructive replacement function, namely that thesize of the cache remains the same and that the new �le is in the cache in the �nal state. Thequery function takes as input a �le system cache (of type � fscache) and a �le (of type �). Therequires clause indicates that the cache must be a particular size (i.e., we are assuming that we areoperating on a full cache). The modi�es clause indicates that the value of cache may be changed22

signature Component1 = sig(�+ using OrderedContainer +�)type � fscache based on OrderedContainer.E OrderedContainer.C +�)val replaceFirst : � fscache � �! unit(�+ replaceFirst (cache, �le)requires not (isEmpty (cache))modi�es cacheensures cache 0 = insert (�le, butFirst (cache)) +�)endsignature Component2 = sig(�+ using OrderedContainer +�)type � fscache based on OrderedContainer.E OrderedContainer.C +�)val replaceMax : � fscache � �! unit(�+ replaceMax (cache, �le)requires not (isEmpty (cache))modi�es cacheensures cache 0 = insert (�le, delete (max (cache),cache)) +�)end Figure 9: Two library �le replacement functionsby the function. In the ensures clauses, we use cache 0 to stand for the value of the cache in the�nal state and the unprimed cache to refer to the value in the initial state.Suppose that the two functions listed in Figure 9 are in the library. Both require that thecache be non-empty and replace a current element of the cache with the new �le. The replaceFirstfunction in Component1 uses a FIFO replacement strategy: the �rst �le inserted is the one replaced(e.g., the �le that has been in the cache the longest). The replaceMax function in Component2 usesa priority-based replacement strategy: it replaces the maximum element in the cache, for some(unspeci�ed) total ordering on the elements of the cache. This ordering could be based on thetime since the �le was last referenced (i.e., an LRU replacement strategy) or on the priority of theelements in the cache (e.g., hoard priorities).Using guarded plug-in match, retrieval using the query Q7 returns both of the library func-tions in Figure 9 since both replacement strategies guarantee the properties speci�ed in Q7's post-condition. Proofs of guarded plug-in match of both replaceFirst with Q7 and replaceMax with Q7are shown in Appendix B.Thus, we could use both of these functions to experiment with the e�ects of a particular re-placement strategy on the performance of our cache manager. We could also use a more speci�cquery (e.g., the same as one of the library components) to distinguish between the two librarycomponents.This example also illustrates the importance of the pre-condition guard in guarded plug-inmatch. If we used plug-in match rather than guarded plug-in, we would not retrieve either function,23

since it is necessary to exclude the case of an empty cache when trying to prove that the size ofcache and cache 0 are equal.6.2. SubtypingA second application of speci�cation matching is determining when one object is a subtype ofanother. In object-oriented programming languages, an object type2 de�nes a collection of objects,which consist of data (state) andmethods that act on the data [Car89, Ame91, Mey88]. Intuitively, atype � is a subtype of another type � if an object of type � can be substituted for an object of type � .Precise de�nitions of subtyping vary in the strictness of this notion of substitutability from simplyrequiring the methods' signatures to match (signature subtyping) to requiring a correspondencebetween the methods' dynamic semantics (behavioral subtyping).In order to relate subtyping to signature and speci�cation matching, we must �rst convert objecttypes to our context. We base our de�nition of an object type on that of Liskov and Wing [LW94]but di�er from their de�nition in that we do not include invariants or constraints. We restrict ourfocus here to relating methods, which is only one aspect of their subtyping relation. We modelan object type as a module interface, with a type declaration for the object type (a descriptionof the object type's value space), a global variable of the object type to hold the current state ofthe object (an element of the value space), and a function signature (and speci�cation) for eachmethod.Let T represent the module interface of the supertype and S the module interface of the subtype.Subtyping requires a correspondence between each method in T and a method in S but allows ad-ditional methods in S. The correspondence between methods varies among the subtype de�nitionsbut is always a function match de�nition. There is also a correspondence between type declarations.These are exactly the correspondences captured by the module match de�nition (De�nition 12).Thus, we de�ne subtyping in terms of module match using the following general form:De�nition 14 (Generic Subtype)Subtype(S; T) = M-match(S; T; matchmethod)S is a subtype of T if their modules match. The particular notion of subtyping depends onmatchmethod , the match used at the method (function) level. We discuss other possible instantiationsof matchmethod and the more general relation between both signature and behavioral subtypingto signature and speci�cation matching in more detail elsewhere [Zar96]. In the remainder ofthis section, we relate behavioral subtyping to speci�cation matching and illustrate how to usespeci�cation matching to show that one object is a behavioral subtype of another with an example.Figure 10 shows the module speci�cations for two objects (example similar to that in Liskovand Wing [LW94]). The �rst is BagObj, a mutable bag object with global variable b and methodsput, get, and card. The second speci�cation is of a stack object. StackObj is based on the sametrait as bag, but has a stricter speci�cation for the method that removes an object (pop top) and2These are usually simply called \types", but we need to distinguish types of objects from types in signatures.24

signature BagObj = sig(�+ using OrderedContainer +�)type � t (�+ based onOrderedContainer.E OrderedContainer.C +�)val b : � tval put : �! unit(�+ put (e)modi�es bensures b0 = insert (e; b) +�)val get : unit ! �(�+ get () = erequires not (isEmpty(b))modi�es bensures (b0 = delete (e; b)) and(isIn (e; b)) +�)val card : unit ! int(�+ card () = nensures n = size (b) +�)end
signature StackObj = sig(�+ using OrderedContainer +�)type � t (�+ based onOrderedContainer.E OrderedContainer.C +�)val s : � tval push : �! unit(�+ push (e)modi�es sensures s0 = insert(e; s) +�)val pop top : unit ! �(�+ pop top () = erequires not (isEmpty (s))modi�es sensures (s0 = butLast (s)) and(e = last (s)) +�)val swap top : �! unit(�+ swap top (e)requires not (isEmpty (s))modi�es sensures s0 = insert (e, butLast (s)) +�)val height : unit ! int(�+ height () = iensures i = size(s) +�)endFigure 10: Larch/ML speci�cations of bag and stack object typesan additional method, swap top. In keeping with the Liskov and Wing approach, we assume thatcreate methods are de�ned elsewhere. Appendix 1 lists the OrderedContainer trait on which bothspeci�cations are based.The StackObj speci�cation di�ers in several ways from the Stack speci�cation in Figure 1 (pg. 5).First, in StackObj, stacks are mutable, whereas in Stack they are not. Because the Stack speci�cationin Section 2 speci�es the behavior of a typical implementation in a functional language, its stacksare immutable. Here, however, we wish to model the speci�cation of a stack in the object-orientedparadigm, and hence these stacks are mutable. Second, Stack has separate functions for pop andtop while StackObj combines these in pop top. Again, this is mainly a by-product of the di�erencebetween a functional implementation and an object-oriented one. Third, each speci�cation hasadditional functions that the other does not.We now consider how to de�ne the behavioral subtype relation between two objects (modules).Behavioral subtyping attempts to capture the notion that anywhere in a program that an objectof type T is used, we should be able to substitute an object of type S, where S is a subtype of T ,and still have the same observable behavior of the program.25

There are a number of de�nitions of behavioral subtyping that attempt to capture this substi-tutability property [DL96, LW94, DL92, Ame91, LW90, Lea89, Mey88]. There are subtle di�erencesbetween all these subtype de�nitions, but common to all is the use of pre-/post-condition speci�-cations both to describe the behavior of types and to determine whether one type is a subtype ofanother. Let mT be a method of supertype T , and mS be the corresponding method of subtype S.Behavioral subtyping requires that each method in the supertype T have a corresponding methodin the subtype S, but there may be additional methods in S. We use the following rules forbehavioral subtyping:� Pre-condition rule. mT :pre) mS :pre� Post-condition rule. (mS:pre ^mS :post)) mT :postThis is the same as our guarded plug-in match, and is used for the same reason: to showsubstitutability, making assumptions about the pre-condition when necessary. Thus, we de�nebehavioral subtyping by instantiating matchmethod in the generic subtype de�nition (De�nition 14)with guarded plug-in match (De�nition 7, pg. 11). We assume that the signatures match.De�nition 15 (Behavioral Subtype)Subtypebehav(S; T) = M-match(Sspec; Tspec; matchguarded-plug-in)We can model other versions of behavioral subtyping by substituting other function speci�cationde�nitions for matchmethod . For example, substituting plug-in match for matchmethod yields Amer-ica's subtype de�nition [Ame91], which is also the methods rule in Liskov and Wing's subtypede�nition [LW94]. Substituting a conjunction of generalized match with the pre-condition rulefrom plug-in match (i.e., matchmethod = (mT :pre) mS :pre)^ (mS:pred) mT :pred)) yields Dharaand Leaven's method rule [DL96].Consider the StackObj and BagObj speci�cations in Figure 10. If we expect a bag object, we willnot be surprised by the behavior of a stack object (i.e., we should be able to substitute a stack fora bag). Stack push adds an element to a container, just as bag put does, and stack height returnsthe size of a container, just as bag card does. Bag get is non-deterministic: it deletes and returnsan element in a container. Stack pop top is just more restrictive about which element it deletes.In contrast, if we expect a stack object, we may be surprised by a bag object when we remove anelement, since the bag get method may remove an element other that the top. Thus, intuitively wewould expect stack to be a subtype of bag but not vice versa. We would like to show that StackObjis a behavioral subtype of BagObj according to De�nition 15. As the objects are speci�ed, we wouldnot be able to show the subtype relation if we used plug-in match as the method match, becausewe cannot prove matchplug�in(pop top ; get) (since we cannot reason about the case where the stackor bag is empty). However, we can show that StackObj is a behavioral subtype of BagObj, sinceour behavior subtype de�nition uses guarded plug-in match, which speci�cally allows us to excludethe case where the stack or bag is empty.To show Subtypebehav(StackObj ;BagObj) (or equivalently, M-match(StackObj spec; BagObj spec;matchguarded-plug-in)), we must de�ne the mappings UF and UTC to satisfy the three requirements26

of module match in De�nition 12. There is only one user-de�ned type in both StackObj andBagObj, and it is the same (i.e., UserOp(�BagT) = UserOp(�StackT) = t). So UTC is the identityfunction (UTC(t) = t). We de�ne UF as follows: UF (put) = push , UF (get) = pop top , andUF (card) = height . UTC and UF satisfy the three requirements of module match:(1) UTC and UF are both one-to-one total functions. (UF is not onto, but does not need to be.)(2) matchE (� t; � t)(3) matchguarded-plug-in(push; put)matchguarded-plug-in(pop top ; get)matchguarded-plug-in(height ; card)We translated our speci�cations of StackObj and BagObj into LP input and were able to provethe guarded plug-in matches with very little user guidance. Appendix C shows the LP proof script ofguarded plug-in match between each pair of methods. The proofs for matchguarded-plug-in(push ; put)and matchguarded-plug-in(height ; card) are trivial, since the speci�cations are identical modulo vari-able names. The proof for matchguarded-plug-in(pop top; get) requires an additional lemma and someguidance.Thus, not only have we shown how subtyping �ts into our framework of speci�cation matching,but we can also use our speci�cation matching tools to automate checking our subtype relation.Other subtype de�nitions (e.g., Liskov and Wing [LW94]) include additional global information,such as invariants and constraints, which we do not model. It should be possible, however, toadd this in our framework by extending �T to include constraint speci�cations in addition touser-de�ned type declarations.7. Related WorkOther work on speci�cation matching has focused on using one or two particular match de�nitionsfor retrieval of software components (usually functions). Rollins and Wing proposed the idea offunction speci�cation matching and implemented a prototype system in �Prolog using plug-in match[RW91]. �Prolog does not use equational reasoning, and so the search may miss some functions thatmatch a query but require the use of equational reasoning to determine that they match. The VCRretrieval system [FKS94] uses plug-in match with VDM as the speci�cation language. The focusof this work is on e�ciency of proving match; the tool performs a series of �ltering steps beforedoing all-out match. Penix and Alexander [PA95] use theorem proving to translate automaticallyspeci�cations into domain-speci�c feature sets (sets of attribute-value pairs), which they then useto do a more e�cient retrieval. Such an approach depends on formulating the feature sets for eachdomain, however. Perry's Inscape system [Per89] is a speci�cation-based software developmentenvironment. Its Inquire tool [PP93] provides predicate-based retrieval in Inscape. Match can beeither exact pre/post or a form of generalized match. The prototype system has a simpli�ed andhence fairly limited inference mechanism. In Inscape, the user must provide speci�cations for eachcomponent anyway, so the query for a retrieval will already be written. Jeng and Cheng [JC92] useorder-sorted predicate logic speci�cations. They de�ne two matches, both of which are instances27

of our generalized function match, but with the additional property that they generate a series ofsubstitutions to apply to the library component to reuse in the desired context. Mili, Mili andMittermeir [MMM94] de�ne a speci�cation as a binary relation. A speci�cation S re�nes anotherspeci�cation Q if S has information about more inputs and assigns fewer images to each argument.This is like plug-in match except that the match is in terms of relations rather than predicates.The PARIS system [KRT87] maintains a library of partially interpreted schemas. Each schemaincludes a speci�cation of assertions about the input and results of the schema and about how theabstract parts of the schema can be instantiated. Matching corresponds to determining whether apartial library schema could be instantiated to satisfy a query. The system does some reasoningabout the schemas but with a limited logic. Katoh, Yoshida and Sugimoto [KYS86] use \orderedlinear resolution" to match English-like speci�cations that have been translated into �rst-orderpredicate logic formulas. They allow some relaxations but check only for equivalence and do notverify that the subroutines match.To summarize, our work on speci�cation matching is more general than the above in three ways:We handle not just function match, but module match; we have a framework, which is extremelymodular (e.g., function match is a parameter to module match; speci�cation match is one conjunctof component match), within which we can express each of the speci�c matches \hardwired" in thede�nitions used by others; and we have a exible prototype tool that lets us easily experiment withall the di�erent matches. Finally, we are not wedded to just the software retrieval application; wealso apply speci�cation match to other application areas.Signature matching is a very restricted form of speci�cation matching. Most work in this areahas focused on using the expressiveness and theoretical properties of type systems to de�ne variousforms of relaxed matches [ZW95, DC92, Rit92, RT89, SC94]. Chen, Hennicker, and Jarke [CHJ93]describe a framework for both signature and speci�cation matching, but have only implementedsignature matching. Wileden et. al. survey speci�cation-level interoperability [WWRT91]. Mostwork thus far has focused on signature-based interoperability, and how to convert types in a het-erogeneous environment [Kon93, YS94, Tha94].Less closely related work, but relevant to our context of software library retrieval, divides intothree categories. Text-based information retrieval [FN87, AS87, PD89, MBK91] and AI-basedsemantic net classi�cations [OHPDB92, FHR91] have the advantage that many e�cient tools areavailable to do the search and match in these structures. The disadvantage is that a component'sbehavior is described informally. A third class of retrievals [PP94, CMR92] allows queries over arepresentation of the component's actual code, e.g., abstract syntax trees. Such queries are usefulmainly for determining structural characteristics of a component, e.g., nested loops or circulardependencies.8. Summary and Future WorkOur work described in this paper makes three speci�c contributions with respect to speci�cationmatching: foundational de�nitions, a prototype tool, and descriptions of applications. By pro-viding precise de�nitions, we lay the groundwork for understanding when two di�erent softwarecomponents are related, in particular when their speci�cations match. Though we consider in de-tail functions and modules, exact and relaxed match, and formal pre-/post-condition speci�cations,28

the general idea behind speci�cation matching is to exploit as much information associated with thedescription of software components as possible. By building a working speci�cation match engine,we demonstrated the feasibility of our ideas. With this tool, we can explore the pragmatic impli-cations of our de�nitions and apply speci�cation matching to various applications. Though ournotion of speci�cation match was originally motivated by the software library retrieval application,it is more generally applicable to other areas of software engineering, for example, determiningsubtyping in designing class hierarchies, or showing that one component may be substituted foranother when upgrading a system.The heart of an interoperability problem is that the interfaces of two or more systems do notmatch [VLP94]. Thus our work makes a step in the direction of detecting an interoperability prob-lem based on a system's interface that speci�es its input-output (black-box) functional behavior.However, even if two components' speci�cations match according to our notion of interface spec-i�cation, they may still fail to interoperate. One reason is that they may di�er in the way theychoose to communicate with their environment. One way to extend our work is to add more infor-mation to interface speci�cations to enable detection of other ways components interact with eachother. Toward this goal, Allen and Garlan [AG94] use a subset of CSP to specify \protocols" as away to capture the way a component communicates with its environment and to determine whencomponents interoperate smoothly with each other based on these protocol speci�cations. Hence,a more complete interface would include protocol speci�cations as well as our kind of functionalspeci�cation; our notion of speci�cation match could similarly be extended to include a notion ofprotocol match. We deliberately set up our framework to allow di�erent notions of speci�cationand di�erent notions of speci�cation match, depending on one's personal de�nition of speci�cation.Finally, we can invert the notion of speci�cation match: Determining that two components donot match is determining that they mismatch. Garlan, Allen, and Ockerbloom [GAO95] take astep toward understanding this notion of mismatch at a system's architectural level. Hence, apromising direction of future work is to extend our formal framework from the module level to thearchitectural level by modeling the various kinds of architectural mismatch they describe informally.AcknowledgmentsWe thank David Garlan and Stephen Garland for comments on earlier versions of this work,Stephen Garland for his assistance in the details of using LP. The cache replacement strategyexample was initially suggested by Maria Ebling.This research is sponsored by the Wright Laboratory, Aeronautical Systems Center, Air ForceMateriel Command, USAF, and the Advanced Research Projects Agency (ARPA) under grantnumber F33615-93-1-1330. Views and conclusions contained in this document are those of the au-thors and should not be interpreted as necessarily representing the o�cial policies or endorsements,either expressed or implied, of Wright Laboratory or the U. S. Government.References[AG94] Robert Allen and David Garlan. Formalizing architectural connection. In Proceedingsof the 16th International Conference on Software Engineering, pages 71{80, Sorrento,Italy, May 1994. 29

[Ame91] Pierre America. Designing an object-oriented programming language with behaviouralsubtyping. In J. W. de Bakker, W. P. de Roever, and G. Rozenberg, editors,Foundations of Object-Oriented Languages, REX School/Workshop, The Netherlands,May/June 1990, pages 60{90. Springer-Verlag, 1991. LNCS vol. 489.[AS87] S. P. Arnold and S. L. Stepoway. The REUSE system: Cataloging and retrievalof reusable software. In COMPCON Spring '87, 32nd IEEE Computer Society Intl.Conf., pages 376{379, February 1987.[Car89] Luca Cardelli. Typeful programming. Report 45, DEC Systems Research Center,Palo Alto, CA, May 1989.[CHJ93] P. S. Chen, R. Hennicker, and M. Jarke. On the retrieval of reusable software com-ponents. In Proceedings of the 2nd International Workshop on Software Reusability,pages 99{108. IEEE Computer Society Press, March 1993.[CMR92] Mariano Consens, Alberto Mendelzon, and Arthur Ryman. Visualizing and queryingsoftware structures. In Proceedings of the 14th International Conference on SoftwareEngineering, pages 138{156, May 1992.[DC92] Roberto Di Cosmo. Type isomorphisms in a type-assignment framework. In Proceed-ings of the 19th Annual POPL, pages 200{210, January 1992.[DL92] Krishna Kishore Dhara and Gary T. Leavens. Subtyping for mutable types in object-oriented programming languages. Technical Report 92-36, Dept. of Comp. Science,Iowa State Univ., November 1992.[DL96] Krishna Kishore Dhara and Gary T. Leavens. Forcing behavioral subtyping throughspeci�cation inheritance. In Proceedings of the 18th International Conference on Soft-ware Engineering, March 1996.[FHR91] Gerhard Fischer, Scott Henninger, and David Redmiles. Cognitive tools for locatingand comprehending software objects for reuse. In Proc. of the 13th ICSE, pages 318{328, May 1991.[FKS94] B. Fischer, M. Kievernagel, and W. Struckmann. VCR: A VDM-based software com-ponent retrieval tool. Technical Report 94-08, Technical University of Braunschweig,Germany, November 1994.[FN87] W. B. Frakes and B. A. Nejmeh. Software reuse through information retrieval. InBruce D. Shriver, editor, The 20th Annual HICSS, Vol. 2: Software, pages 530{535.Western Periodicals Co., 1987.[GAO95] David Garlan, Robert Allen, and John Ockerbloom. Architectural mismatch: whyreuse is so hard. IEEE Software, 12(6):17{26, November 1995.[GG91] Stephen J. Garland and John V. Guttag. A guide to LP, the Larch Prover. Report 82,DEC Systems Research Center, Palo Alto, CA, December 1991.[GH93] John V. Guttag and James J. Horning, editors. Larch: Languages and Tools forFormal Speci�cation. Texts and Monographs in Computer Science. Springer-Verlag,1993. With S. J. Garland, K. D. Jones, A. Modet, and J. M. Wing.30

[JC92] J.-J. Jeng and B. H. C. Cheng. Formal methods applied to reuse. In Proceedings ofthe 5th Workshop in Software Reuse, 1992.[Kon93] Dimitri Konstantas. Object-oriented interoperability. In Oscar M. Nierstrasz, edi-tor, ECOOP'93 { 7th European Conference on Object-Oriented Programming, Kaiser-slautern, Germany, July 1993, volume 707 of LNCS, pages 80{102. Springer-Verlag,NY, 1993.[KRT87] Shmuel Katz, Charles A. Richter, and Khe-Sing The. PARIS: A system for reusingpartially interpreted schemas. In Proc. of the 9th ICSE, pages 377{385, March 1987.[KYS86] H. Katoh, H. Yoshida, and M. Sugimoto. Logic-based retrieval and reuse of softwaremodules. In 5th Annual Intl. Phoenix Conf. on Computers and Communications,pages 445{449, March 1986.[Lea89] Gary Leavens. Verifying object-oriented programs that use subtypes. Technical Re-port 439, MIT Laboratory for Computer Science, February 1989. Ph.D. thesis.[LW90] Gary T. Leavens and William E. Weihl. Reasoning about object-oriented programsthat use subtypes. In ECOOP/OOPSLA '90 Proceedings, 1990.[LW94] Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACMTOPLAS, November 1994.[MBK91] Yo�elle S. Maarek, Daniel M. Berry, and Gail E. Kaiser. An information retrievalapproach for automatically constructing software libraries. IEEE TSE, 8(17):800{813, August 1991.[Mey88] Bertrand Meyer. Object-oriented Software Construction. Prentice Hall, New York,1988.[ML94] M. Mauldin and J. Leavitt. Web-agent related research at the CMT. In ACM SpecialInterest Group on Networked Information Discovery and Retrieval (SIGNIDR-94),August 1994.[MMM94] A. Mili, R. Mili, and R. Mittermeir. Storing and retrieving software components: Are�nement-based approach. In Proc. of the 16th ICSE, pages 91{100, May 1994.[OHPDB92] Eduardo Ostertag, James Hendler, Rub�en Prieto-D�iaz, and Christine Braun. Com-puting similarity in a reuse library system: An AI-based approach. ACM TOSEM,1(3):205{228, July 1992.[OKS+93] K. A. Olsen, R. R. Korfhage, K. M. Sochats, M. B. Spring, and J. G. Williams.Visualization of a document collection: The VIBE system. Information Processingand Management, 29(1):69{81, 1993.[PA95] John Penix and Perry Alexander. Design representation for automating softwarecomponent reuse. In Procedings of the First International Workshop on Knowledge-Based Systems for the (Re)use of Program Libraries, June 1995.[PD89] Rub�en Prieto-D�iaz. Classi�cation of reusable modules. In Ted J. Biggersta� andAlan J. Perlis, editors, Software Reusability Vol. 1: Concepts and Models, pages 99{123. ACM Press, 1989. 31

[Per89] Dewayne E. Perry. The Inscape environment. In Proc. of the 11th ICSE, pages 2{12,1989.[PP93] Dewayne E. Perry and Steven S. Popovich. Inquire: Predicate-based use and reuse.In Proceedings of the 8th Knowledge-Based Software Engineering Conference, pages144{151, September 1993.[PP94] Santanu Paul and Atul Prakash. A framework for source code search using programpatterns. IEEE Transactions on Software Engineering, 6(20):463{475, June 1994.[Rit92] Mikael Rittri. Retrieving library identi�ers via equational matching of types. Techni-cal Report 65, Programming Methodology Group, Dept. of Comp. Sciences, ChalmersUniv. of Technology and Univ. of G�oteborg, January 1990 (reprinted w. correctionsMay 1992).[RT89] Colin Runciman and Ian Toyn. Retrieving re-usable software components by polymor-phic type. Conf. on Functional Programming Languages and Computer Architectures,pages 166{173, September 1989.[RW91] Eugene J. Rollins and Jeannette M. Wing. Speci�cations as search keys for softwarelibraries. In Proc. of the 8th Intl. Conference on Logic Programming, June 1991.[SC94] David W.J. Stringer-Calvert. Signature matching for Ada software reuse. Master'sthesis, University of York, England, 1994.[SM83] G. Salton and M. J. McGill. Introduction to Modern Information Retrieval. McGraw-Hill, 1983.[Tha94] Satish R. Thatt�e. Automated synthesis of interface adapters for reusable classes. InProceedings of the 21st Annual Symposium on Principles of Programming Languages,pages 174{187, January 1994.[VLP94] Mary Vernon, Edward Lazowska, and Stewart Personick, editors. R&D for the NII:Technical Challenges. Interuniversity Communications Council, Inc. (EDUCOM),1994.[WRZ93] J.M. Wing, E. Rollins, and A. Moormann Zaremski. Thoughts on a Larch/ML and anew application for LP. In Ursula Martin and Jeannette M. Wing, editors, First Intl.Workshop on Larch. Springer Verlag, 1993.[WWRT91] Jack C. Wileden, Alexander L. Wolf, William R. Rosenblatt, and Peri L. Tarr.Speci�cation-level interoperability. CACM, 34(5):72{87, May 1991.[YS94] Daniel M. Yellin and Robert E. Strom. Interfaces, protocols, and the semi-automaticconstruction of software adaptors. OOPSLA Conference Proceedings, ACM SIGPLANNotices, 29(10):176{190, October 1994.[Zar96] Amy Moormann Zaremski. Signature and Speci�cation Matching. PhD thesis,Carnegie Mellon School of Computer Science, January 1996. Technical Report CMU-CS-96-103.[ZW95] Amy Moormann Zaremski and Jeannette M. Wing. Signature Matching: a Tool forUsing Software Libraries. ACM TOSEM, April 1995.32

A The OrderedContainer traitOrderedContainer (E , C) : traitincludes Integer, TotalOrder(E)introducesempty : ! C butFirst : C ! Cinsert : E;C! C butLast : C ! Cdelete : E;C ! C butMax : C ! C�rst : C ! E isEmpty : C ! Boollast : C ! E isIn : E;C ! Boolmax : C ! E size : C ! Intcount : E;C! IntassertsC generated by empty, insertC partitioned by count8 e; e1 : E; c : Clast(insert(e; c)) == ebutLast(insert(e; c)) == c�rst(insert(e; c)) == if c = empty then e else �rst(c)butFirst(insert(e; c)) == if c = empty then empty else insert(e; butFirst(c))max (insert(e; c)) == if c = empty then eelse if e > max (c) then e else max (c)butMax(insert(e; c)) == delete(max (c); c)isEmpty(empty):isEmpty(insert(e; c)):isIn(e; empty)isIn(e; insert(e1; c)) == (e = e1) _ (isIn(e; c))size(empty) == 0size(insert(e; c)) == size(c) + 1size(delete(e; c)) == if isIn(e; c) then size(c)� 1 else size(c)count(e; empty) == 0count(e; insert(e1; c)) == count(e; c) + (if e = e1 then 1 else 0)count(e; delete(e1; c)) == if e = e1 then max (0; count(e; c)� 1) else count(e; c)
33

B Retrieval example proofs%% Guarded plug-in match of replaceFirst with Q7execute replace-�fo.lpexecute query7.lp%% Guarded Plug-in match { pre-conditionprove (qReplacePre(cache, newobj) => replaceFirstPre(cache, newobj))resume by induction on cache%% Additional Lemmasset name Lemmaprove �(insert(newobj,cache) = empty) by contradictioncritical-pair *Hyp with Containerprove size(butFirst(insert(e,cache))) = size(cache) by induction on cache%% Guarded Plug-in match { post-conditionset name Queryprove (replaceFirstPre(cache, newobj) /n replaceFirstPost(cache, cache0, newobj)) =>qReplacePost(cache, cache0, newobj)resume by induction on cache%% Full Guarded Plug-in matchprove (qReplacePre(cache, newobj) => replaceFirstPre(cache, newobj)) /n((replaceFirstPre(cache, newobj) /n replaceFirstPost(cache, cache0, newobj)) =>qReplacePost(cache, cache0, newobj))qed
34

%% Guarded plug-in match of replaceMax with Q7execute replace-priority.lpexecute query7.lp%% Guarded Plug-in match { pre-conditionprove (qReplacePre(cache, newobj) => replaceMaxPre(cache, newobj))resume by induction on cache%% Additional Lemmasset name Lemmaprove �(c=empty) => �isEmpty(c)resume by induction on cprove �(isEmpty(c)) => isIn(max(c),c)resume by induction on cresume by case cc = emptyresume by case max(cc) < einstantiate c by cc in Lemma.1prove �(isEmpty(c)) => size(insert(e, delete(max(c), c))) = size(c)resume by =>instantiate c by cc in Lemma.2%% Guarded Plug-in match { post-conditionset name Queryprove (replaceMaxPre(cache, newobj) /n replaceMaxPost(cache, cache0, newobj)) =>qReplacePost(cache, cache0, newobj)%% Full Guarded Plug-in matchprove (qReplacePre(cache, newobj) => replaceMaxPre(cache, newobj)) /n(replaceMaxPre(cache, newobj) /n replaceMaxPost(cache, cache0, newobj)) =>qReplacePost(cache, cache0, newobj)qed
35

C Script of proof that stack is a behavioral subtype of bagexecute bagobj.lpexecute stackobj.lp% guarded-plug-in(push, put)prove (putPre => pushPre) /n ((pushPre /n pushPost(b, b0, e)) => putPost(b, b0, e))[] conjecture% guarded-plug-in(height, card)prove (cardPre => heightPre) /n ((heightPre /n heightPost(b, i)) => cardPost(b, i))[] conjecture% Additional lemma assert 0 <= count(e,s)prove delete(e,insert(e,s)) = sapply OrderedContainer.2 to conjecture[] conjecture% guarded-plug-in(pop, get)prove(getPre(b, e) => popPre(b, e)) /n((popPre(b,e) /n popPost(b, b0, e)) => getPost(b, b0,e))..resume by induction on b<> basis subgoal[] basis subgoal<> induction subgoal[] induction subgoal[] conjectureqed
36

