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Abstract

The abnormalities found in human Down syndrome (trisomy 21) have been thought to result
from increased expression of genes on chromosome 21 because of their higher gene dosage.
Now, several groups have shown this to be generally the case, but some inter-individual
variability and other exceptions were found.
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The gene-dosage hypothesis for Down
syndrome 
The Down syndrome (trisomy 21) phenotype is characterized

by abnormalities affecting most organs and organ systems

[1]. Although the extent and severity of the abnormalities is

highly variable among individuals, all have some level of

intellectual disability that is associated with specific brain

regions and the performance of specific cognitive tasks [2,3].

The incidence of Down syndrome remains at approximately

1 in 800 live births, and given the intellectual disabilities, it

is a significant social and medical issue. Although it has been

known for several decades that Down syndrome is caused by

an extra, normal copy of the long arm of human chromo-

some 21 (21q), the molecular and cellular events linking the

presence of an extra chromosome to the phenotypic features

are unknown. The central hypothesis in Down-syndrome

research is that gene dosage results in a 50% increase in

expression of genes on chromosome 21q, and that this

directly or indirectly alters the timing, pattern or extent of

development. Accordingly, an essential question in Down-

syndrome research is: are all trisomic genes overexpressed

in all tissues and at all time points? If not, then which genes

are overexpressed, and when and where? Answers to these

questions are critical for determining which genes are rele-

vant to phenotype development, for linking expression of

specific genes to specific phenotypic features, and to account

for phenotypic variability. 

Chromosome 21 encodes over 300 genes and predicted genes

[4]. These include approximately 170 protein-coding genes

with clear orthologs in the mouse genome plus a significant

number of gene models predicted on the basis of spliced

expressed sequence tags (ESTs) with verified expression.

Because analyses of cases of Down syndrome that are due to

partial trisomies of chromosome 21q have not eliminated any

significant segment of 21q from containing genes potentially

impacting cognitive function [5], and because we understand

so little about individual gene functions, essentially all genes

within 21q need to be considered as candidates for relevance to

the Down-syndrome phenotype. Given the large number of

genes involved, determining which genes are overexpressed

requires a large-scale approach, which is complicated by the

small differences in expression level (50%) between normal

and Down syndrome individuals predicted by gene dosage.

Recently, several groups have contributed to progress in this

area, by screening microarrays with RNA from brains of

human fetuses with Down syndrome [6] or a trisomic mouse

model [7], by screening a cDNA array containing mouse

orthologs of human chromosome 21 genes with RNA from

several tissues of a mouse model [8], and by using quantitative

reverse-transcriptase-coupled (RT) PCR analysis of RNA from

different tissues of a mouse model at different ages [9]. The

results of all four studies support the hypothesis that gene-

dosage effects exist in Down syndrome, but they also show that

dosage effects may be specific to particular genes, alleles



and/or tissues, and that background and stochastic or transient

effects may be confounding factors.

Large-scale studies of gene-dosage effects in
Down-syndrome fetuses and trisomic mice  
Mao et al. [6] screened two Affymetrix oligonucleotide

arrays (containing probes for approximately 12,000 and

22,000 human genes) with RNA from age-matched Down-

syndrome and euploid control fetuses at 17-20 weeks gesta-

tion (see Table 1). They used RNA from four normal and four

Down-syndrome cerebrums and from four normal and four

Down-syndrome-derived astrocyte cell lines cultured from

cerebral cortex. Samples were analyzed individually in order

to detect variation between individuals. From all analyses, a

global increase in expression level of 25 chromosome 21

genes was observed in the Down-syndrome samples com-

pared to the euploid controls. The increase overall was con-

sistent with predictions if gene expression followed gene

dosage, but levels varied among individuals such that there

were examples of individual genes showing no increases in

comparisons of individual Down-syndrome-euploid pairs

(see also below). Importantly, these variations in expression

levels might be linked to phenotypic variations that would

have been apparent at later developmental time points. Dif-

ferences in expression levels of genes on other chromosomes

- about 85 genes whose expression increased and 100 whose

expression decreased - were also observed. 

Regions of human chromosome 21 are orthologous to seg-

ments of three mouse chromosomes [10] (Figure 1): the cen-

tromere-proximal 30 megabase (Mb) region of chromosome

21 up to and including the ZNF295 gene is orthologous to

the telomeric region of mouse chromosome 16 [10] and the

next two approximately 1-2 Mb segments of chromosome 21

are orthologous to regions of mouse chromosomes 17 and 10,

respectively. Because of the large region of homology with

mouse chromosome 16, development of segmental trisomy

mouse models for Down syndrome has focused on this

region. Currently, the best mouse models of Down syndrome

are the Ts65Dn mouse (reviewed in [11,12]) and the Ts1Cje

mouse [13]. Ts65Dn mice have three copies of 94 genes

orthologous to human chromosome 21 genes, contained

within chromosome 16 from the Gabpa/App gene cluster to

the distal telomere [4]. Ts1Cje mice are trisomic for 71

orthologs of human chromosome 21 genes, within chromo-

some 16 distal to (and not including) the superoxide dismu-

tase 1 (Sod1) gene to the telomere [13].

Amano et al. [7] screened Affymetrix oligonucleotide arrays

representing about 11,000 mouse genes with RNA from

whole brains of postnatal day zero Ts1Cje mice. Six trisomic

females and six littermate controls were examined, and 38

genes within the trisomic segment showed detectable expres-

sion. Of these, 37 showed a mean increase in expression level

of about 1.5-fold in the trisomic mice, consistent with gene-

dosage effects. But out of all the possible trisomy:euploid

comparisons (6 × 6 = 36), not all individual pairwise compar-

isons showed similar increases. Indeed, of the 37 genes, only

24 showed increases in 18 or more of the 36 possible pairs.

Because these mice are maintained on an inbred background

(C57BL/6J), the only genetic contribution to expression dif-

ferences is the trisomic segment. Expression levels of ten tri-

somic genes were assayed by real-time RT-PCR using RNA
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Table 1

Overview of studies of gene-dosage effects in trisomies

Mao et al. [6] Amano et al. [7] Kahlem et al. [8] Lyle et al. [9]

Species and strain Humans with Down Ts1Cje mice Ts65Dn mice Ts65Dn mice
syndrome

Number of individuals 4 plus 4 controls 6 plus 6 controls 4 plus 4 controls 4 plus 4 controls

Ages 17-20 weeks gestation Postnatal day 0 3-4 months Postnatal day 30 and 11 
months

Tissues Cerebrum and cortex-derived Whole brains Cortex, midbrain, cerebellum, Brain, liver, kidney, heart, 
astrocyte cell lines heart, testis, liver, kidney, lung, muscle, and lung

and muscle

Technique used Affymetrix microarrays Affymetrix microarrays Custom cDNA array RT-PCR

Number of genes on Over 300 71 94  (77 tested in 9 tissues) 94 (78 tested in 10 tissues)
trisomic segment

Trisomic genes increased 25 (variation among 37 (variation among All genes (of 66 with detectable  607 gene-tissue 
in expression individuals) individuals) expression) except in muscle combinations (of 666 with 

and 10 gene-tissue combinations detectable expression)

Non-trisomic genes with Approximately185 258 Not determined Not determined
altered expression



from four additional trisomic and normal control mice. All

showed relative expression increases of over 1.34-fold,

including those with increases of about 1.2-fold in the array

experiments, as well as the Prdm15 (Znf295) gene, which

showed no increase in arrays. Also, similar to the results of

Mao et al. [6], some non-trisomic genes showed altered

expression levels: 59 showed levels under 0.7 times normal

and 199 showed levels over 1.2 times normal, out of the

10,000 genes with detectable expression.

Kahlem et al. [8] created custom arrays containing cDNAs

for 77 orthologs of human chromosome 21 genes that are tri-

somic in the Ts65Dn mouse. Arrays were screened with

Ts65Dn RNA from nine tissues, including cerebellum, cortex

and midbrain, in each case pooling RNAs from four individ-

uals, aged 3-4 months. Expression of 66 trisomic genes was

detected in at least one of the nine tissues. In eight tissues,

overall levels of expression were consistent with gene

dosage, with trisomy:euploid ratios ranging from about 1.63

and about 1.73 in cortex and heart, respectively, to about

1.23 in kidney. Only muscle, with ratios of 1.16, failed to

show notable gene-dosage effects. A small number of specific

gene-tissue combinations deviated from dosage effects; 10

combinations showed unchanged or decreased ratios and 15

showed ratios over 2.0. Quantitative RT-PCR analysis of

several genes corroborated the array results in 78% of cases.

To circumvent the sensitivity limitations of microarrays,

which do not always detect genes expressed at low levels, Lyle

et al. [9] used real-time RT-PCR for experiments with Ts65Dn

mice. RNA from brain, liver, kidney, heart, muscle and lung of

postnatal day 30 mice, and brain, liver, kidney and heart of 11-

month-old mice was used, in each case pooling material from

four trisomic or euploid male mice. Assays of 78 trisomic

genes showed an overall mean expression ratio of approxi-

mately 1.5. There were statistically significant variations,

however. For example, 59 gene-tissue combinations (out of

666; 78 genes were tested in 10 tissues, and 114 gene-tissue

combinations had no detectable expression) showed no signif-

icant increase in trisomic mice, and 26 gene-tissue combina-

tions showed over 2.2-fold increases in trisomic mice.

Variability between individuals
Both Mao et al. [6] and Amano et al. [7] observed deviations

from dosage predictions of trisomy:euploid RNA-expression

ratios in some pairwise comparisons between individuals.

Sources of such variation - apart from experimental artifacts

and limitations - include allelic variation in trisomic genes or

in background (euploid) genes that regulate trisomic genes

and possible stochastic or environmental effects. Certainly,

allelic variation has been observed in human gene-expres-

sion patterns [14-16]. Specifically for chromosome 21,

promoter polymorphisms in six genes were reported that

resulted in expression differences of 30-66% among alleles

expressed in HEK293 embryonic kidney cells [17]. If an

individual trisomic for a low-expressing allele is compared

to a euploid individual disomic for a high-expressing allele,

significant expression differences may be undetectable; con-

versely, trisomy for a high-expressing allele could result in

much more than a 50% difference compared with a euploid

for low-expressing alleles. Similar arguments apply to back-

ground variation (in euploid genes) in humans and in

Ts65Dn mice (because the latter are maintained as F1

hybrids of two strains). 

The experiments with Ts65Dn mice used RNAs pooled from

multiple individuals [8,9]. Variation between individuals is

expected because of the history of the strain: in the Ts65Dn

mice, the trisomic segment originated from the DBA/2J

strain, but because of extensive early breeding to

C57BL/6JEi, there may be no DBA/2J alleles remaining

except immediately around the breakpoint of the rearrange-

ment. The Ts65Dn strain is now maintained as F1 hybrids of

C57BL/6JEi and C3H/HeSnJ [18]. Thus, the three alleles in

individual mice may all derive from C57BL/6JEi or be

combinations of C57BL/6JEi and C3H/HeSnJ, and inter-

individual variation will be found.

Genetic variation does not exist, however, in the experiments

with Ts1Cje mice, because they are maintained on the inbred
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Figure 1
Human chromosome 21 and homologous regions in mouse models.
Regions that are syntenic with mouse chromosomes are indicated on the
left; those that are trisomic in the major mouse models are indicated on
the right. See text for further details.

Trisomic regions in 
  mouse models

Mouse-chromosome
homologies

Ts65Dn

Ts1Cje
16

17
10

About 1.2 Mb

About 30 Mb

About 2.2 Mb

ZNF295

SODI

GABPA/APP

11.2

21.2

22.11

22.12
22.13
22.2

22.3

21



C57BL/6J strain. The reported inter-individual variation in

expression levels [7] must therefore have other causes, such

as stochastic processes or subtle environmental effects, possi-

bly fluctuating in time but frozen in these snapshots of

expression patterns. This is consistent with reports of vari-

able expression levels of 37 genes in the hippocampus of

inbred rats (the Sprague-Dawley strain); 2-3-fold variations

in average expression level were seen among 20 individuals,

with as much as 10-fold variation seen with some genes [19].

Deviation from the expected 1.5-fold increase
and variations in non-trisomic gene expression
Gene-tissue combinations with ratios of trisomy:euploid

expression significantly greater or less than 1.5-fold were

reported in the Ts65Dn experiments [8,9]. Notably, Kahlem

et al. [8] reported that expression of trisomic genes in skele-

tal muscle was increased only 1.16-fold, but Lyle et al. [9]

reported that expression of only 28 of 78 genes was

increased significantly less than 1.5-fold. Is this difference

due to the different techniques used (arrays versus RT-PCR),

or to age effects (day 30 versus 3-4-month-old mice)? Also,

while the former study [8] reported only 5 gene-tissue com-

binations with levels increased over 1.5-fold (excluding

testes), and 15 increased under 1.5-fold (out of 594 combina-

tions), the latter [9] reported 123 combinations with over

1.5-fold increases and 298 with under 1.5-fold increases (out

of 666). Although these differences are reported as statisti-

cally significant, in particular for data from Lyle et al. [9],

the biological significance remains to be determined. For

example, it is not possible to state that the cell will recognize

1.43-fold as different from 1.50-fold for the hormonally

upregulated Neu-associated kinase (Hunk) gene in the post-

natal day 30 brain, or 1.41-fold as not different from normal

for the GABPA transcription factor gene in the kidney [9].

Alterations in expression levels of many non-trisomic genes

were reported by two of the studies [6,7]. Currently, there is

no known functional link between the euploid genes and the

trisomic genes that would predict such dysregulation. Fur-

thermore, 19 of the euploid genes found to have altered

expression by Mao et al. [6] were reported to be expressed

by Amano et al. [7], but none showed altered expression in

the latter study. Such inconsistencies could be due to differ-

ences in the organism, tissue, or developmental time

studied, or to subtle environmental effects. 

From the results of these experiments [6-9], it is reasonable

to conclude that expression of trisomic mRNAs in human

Down syndrome and mouse chromosome 16 segmental tri-

somies is governed by gene dosage. Additional large-scale

experiments along these lines, therefore, seem unnecessary

and are unlikely to further illuminate the field. The inter-

individual variation, and the possible specific effects on reg-

ulation of genes in different tissues at different times,

however, argue that dosage still needs to be examined

carefully, but this will be more productive when applied to

specific genes, specific tissues or cell types, among individu-

als, and in relation to phenotypic variability. The preference,

of course, is to examine expression at the protein level.
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