
EIGENVALUES OF RANDOM WREATH PRODUCTSSTEVEN N. EVANSAbstract. Consider a unifomrly chosen element Xn of the n-fold wreathproduct �n = G oG o � � � oG, where G is a �nite permutation group actingtransitively on some set of size s. The eigenvalues of Xn in the natural sn-dimensional permutation representation (the composition representation) areinvestigated by considering the random measure �n on the unit circle thatassigns mass 1 to each eigenvalue. It is shown that if f is a trigonometricpolynomial, then limn!1PfR f d�n 6= sn R f d�g = 0, where � is normalisedLebesgue measure on the unit circle. In particular, s�n�n converges weaklyin probability to � as n ! 1. For a large class of test functions f with non-terminating Fourier expansions, it is shown that there exists a constant c anda non-zero random variable W (both depending on f) such that c�n R f d�nconverges in distribution as n!1 to W .These results have applications to Sylow p-groups of symmetric groups andautmorphism groups of regular rooted trees.1. IntroductionLet T denote the regular rooted b-ary tree of depth n. That is, T is a tree with1 + b + b2 + � � �+ bn vertices such that one vertex (the root) has degree b, the bnleaf vertices have degree 1, and all other vertices have degree b + 1.Consider the group � of automorphisms ofT. An element  2 � is a permutationof the vertices of T such that the images of any two adjacent vertices (that is, twovertices connected by an edge) are again adjacent.Date: July 31, 2001.1991 Mathematics Subject Classi�cation. Primary 15A52, 05C05, 60B15, 60J80.Key words and phrases. random permutation, random matrix, Haar measure, regular tree,Sylow, branching process, multiplicative function.Research supported in part by NSF grant DMS-0071468.1



2 STEVEN N. EVANSAs usual, we may identify the vertices of T with the set of �nite sequences oflength at most n drawn from the set f0; 1; : : :; b�1g. That is, we may label the ver-tices with the elements of �[f0; 1; : : :; b�1g[f0; 1; : : : ; b�1g2[� � �[f0; 1; : : : ; b�1gn,where the empty sequence � corresponds to the root, the length 1 sequencesf0; 1; : : :; b � 1g correspond to the vertices adjacent to the root, and the length nsequences f0; 1; : : : ; b� 1gn correspond to the leaves. With this identi�cation, each 2 � maps sequences of length k into sequences of length k for 0 � k � n. More-over, if (i1; i2; : : : ; ik) = (j1; j2; : : : ; jk), then (i1; i2; : : : ; ik�1) = (j1; j2; : : : ; jk�1).Example 1.1. The labelling for the 3-ary tree of depth 2 is:(0; 0) (0; 1) (0; 2)""" bbb(0) (1; 0) (1; 1) (1; 2)""" bbb(1) (2; 0) (2; 1) (2; 2)""" bbb(2)        ````````�An example of an element of the group � for this tree is:(2; 0) (2; 1) (2; 2)���� HHHH(2) (0; 1) (0; 0) (0; 2)���� HHHH(0) (1; 0) (1; 2) (1; 1)���� HHHH(1)(((((((((( hhhhhhhhhh�The group � is nothing other than the n-fold wreath product of the symmetricgroup on b letters, Sb, with itself. We recall the general de�nition of a wreathproduct as follows. Let G and H be two permutation groups acting on sets of sizes and t, respectively, which we will identify with f0; 1; : : : ; s�1g and f0; 1; : : : ; t�1g.As a set, the wreath productGoH ofG andH is the Cartesian productGt�H; thatis, an element ofG oH is a pair (f; �), where f is function from f0; 1; : : : ; t�1g intoG and � 2 H. Setting f� := f ���1 for f 2Gt and � 2H, the group operation onG oH is given by (f; �)(f 0; �0) := (ff 0� ; ��0), where multiplication is coordinatewisein Gt. It is not hard to see that for three permutation groups G;H;K the group(G oH) oK is isomorphic to the group G o (H oK), and so it makes sense to referto these isomorphic groups as G oH oK. More generally, it makes sense to speakof the wreath product G1 oG2 o � � � oGn of n permutation groups G1;G2; : : : ;Gn.



EIGENVALUES OF RANDOM WREATH PRODUCTS 3Excellent references for wreath products with extensive bibliographies are [Ker71,Ker75, JK81]. Besides their appearance as the automorphism groups of regularrooted trees, wreath products are important in the representation theory of thesymmetric group and in various problems arising in the Polya{Red�eld theory ofenumeration under group action. Classically, they appeared in the work of Cauchyon Sylow p-groups of the symmetric group. For example, the Sylow p-group of Spr ,the symmetric group on pr letters, is the r-fold wreath product Cp o Cp o � � � o Cp,where Cp is the cyclic group of order p. The Sylow p-group of Sn for a general n isa certain product of such groups (see 4.1.22 of [JK81]).For G and H as above, there is a natural representation of G oH as a group ofpermutations of the set f0; 1; : : : ; t�1g�f0; 1; : : : ; s�1g. In this permutation rep-resentation, the group element (f; �) 2GoH is associated with the the permutationthat sends the pair (i0; i00) to the pair (j0; j00) where j0 = �(i0) and j00 = f(�(i0))(i00).Consequently, G oH has a linear representation in terms of (ts)� (ts) permutationmatrices with rows and columns both indexed by f0; 1; : : :; t�1g�f0; 1; : : : ; s�1g.In this linear representation, the group element (f; �) 2 G oH is associated withthe matrix M given byM ((i0; i00); (j0; j00)) = 8><>:1; if j0 = �(i0) and j00 = f(�(i0))(i00),0; otherwise.Either of these representations is called the composition representation.Example 1.2. The automorphism group of the rooted 3-ary tree of depth 2 con-sidered in Example 1.1 is S3 o S3, and so the resulting linear representation is9-dimensional. The particular group element  exhibited in Example 1.1 is givenby the pair (f; �), where, in cycle notation,� = (012);f(0) = (01)(2); f(1) = (0)(12); f(2) = (0)(1)(2):



4 STEVEN N. EVANSThe corresponding matrix is0BBBBBBBBBBBBBBBBBBBBB@
(0; 0) (0; 1) (0; 2) (1; 0) (1; 1) (1; 2) (2; 0) (2; 1) (2; 2)(0; 0) 0 0 0 0 0 0 1 0 0(0; 1) 0 0 0 0 0 0 0 1 0(0; 2) 0 0 0 0 0 0 0 0 1(1; 0) 0 1 0 0 0 0 0 0 0(1; 1) 1 0 0 0 0 0 0 0 0(1; 2) 0 0 1 0 0 0 0 0 0(2; 0) 0 0 0 1 0 0 0 0 0(2; 1) 0 0 0 0 0 1 0 0 0(2; 2) 0 0 0 0 1 0 0 0 0

1CCCCCCCCCCCCCCCCCCCCCASuppose now that we �x a permutation group G acting on a �nite set of sizes > 1. For simplicity, we will suppose that G acts transitively.Let Xn be a uniform random pick from the n-fold wreath product �n := G oG o � � � oG. The random group element Xn will have a corresponding compositionrepresentation Mn. If we wished to describe the distribution of the sn� sn randommatrixMn, we would need to specify the order in which the successive \wreathings"were performed. However, two di�erent orders produce matrices that are similar(with the similarity e�ected by a permutation matrix), and so the eigenvalues of thecomposition representation ofXn (and their multiplicities) are well-de�ned withoutthe need for specifying such an order. Let �n denote the random discrete measureof total mass sn on the unit circle T� C that is supported on this set of eigenvaluesand assigns a mass to each eigenvalue equal to its multiplicity. We will be interestedin the asymptotic behaviour of the measure �n. In particular, we will investigatethe behaviour of the integrals RTf d�n for suitable test functions f .Note that ZTzk �n(dz)= Tr (Mkn ) = Tr (Mkn) = Tr (Mnk)= ZT�zk �n(dz) = ZTz�k �n(dz);(1.1)



EIGENVALUES OF RANDOM WREATH PRODUCTS 5and so the behaviour of RTf d�n for a function f with Fourier expansion f(z) =P1k=�1 ckzk is determined by the behaviour of the random variables Tn;k :=Tr (Mkn ), k � 1.Let Sn;k denote the number of k-cycles in the composition representation of Xn.By a standard fact about permutation characters (see, for example, 6.13 of [Ker75]),(1.2) Tn;k = X̀jk `Sn;`;and hence, by M�obius inversion,(1.3) Sn;k = 1k X̀jk �� k̀�Tn;`;where � is the usual M�obius function�(i) := 8><>:(�1)j ; if i is the product of j distinct primes,0; otherwise.Therefore, it is equally useful to study the random variables Sn;k, k � 1.Example 1.3. Consider the n-fold wreath product S2 o S2 o � � � o S2, that is, thegroup of automorphisms of the regular rooted binary tree of depth n (a group oforder 2n). It follows from Lemma 2.3 below that the cycle count Sn;k is 0 unless kis of the form 2j , 0 � j � n. Observe from (1.2) that if k = 2hr where 2 - r, thenTn;k = X2jjk; j�n2jSn;2j = X2jj2h; j�n2jSn;2j = Tn;2h^n :It thus su�ces to understand the random variables Tn;2h , 0 � h � n.A simulated realisation of the random group element X6 resulted in the eigen-values shown (with multiplicities) in Figure 1.3.The corresponding realisations of the traces areT6;1 = 0; T6;2 = 0; T6;4 = 32; T6;8 = 48; T6;16 = 64; T6;32 = 64; T6;64 = 64;and, by (1.3), the corresponding realisations of the cycle counts areS6;1 = 0; S6;2 = 0; S6;4 = 8; S6;8 = 2; S6;16 = 1; S6;32 = 0; S6;64 = 0:



6 STEVEN N. EVANS
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Figure 1. Eigenvalues for a random automorphism of the rootedbinary tree of depth 6.Here are 10 more simulated realisations of the traces T6;2h, 0 � h � 6.0BBBBBBBBBBBBBBBBBBBBB@
T6;1 T6;2 T6;4 T6;8 T6;16 T6;32 T6;642 20 40 64 64 64 640 0 16 48 64 64 640 0 0 0 0 64 640 0 24 64 64 64 642 16 32 64 64 64 6410 36 56 64 64 64 648 20 56 64 64 64 640 0 0 16 64 64 6414 44 56 64 64 64 64

1CCCCCCCCCCCCCCCCCCCCCA:



EIGENVALUES OF RANDOM WREATH PRODUCTS 7The corresponding realisations of the cycle counts are0BBBBBBBBBBBBBBBBBBBBBBBB@
S6;1 S6;2 S6;4 S6;8 S6;16 S6;32 S6;642 9 5 3 0 0 00 0 4 4 1 0 00 0 0 0 0 2 00 0 6 5 0 0 02 7 4 4 0 0 010 13 5 1 0 0 00 4 8 3 0 0 08 6 9 1 0 0 00 0 0 2 3 0 014 15 3 1 0 0 0

1CCCCCCCCCCCCCCCCCCCCCCCCA:Using the facts we develop below in Section 3, it is not di�cult to show in thisexample that E[Tn;1 ] = 1 and E[Tn;2 ] = n + 1 (in general, E[Sn;p ] = n�p andE[Tn;p ] = 1+ np�p for a prime p). However, 5 realisations out of 11 resulted in thevalue 0 for both T6;1 and T6;2. This suggests that for large n the random variablesTn;1 and Tn;2 take the value 0 with probability close to 1, while the expectation ismaintained by large values being taken with probability close to 0. The followingresult (proved in Section 3) shows that this is indeed the case.Notation 1.4. Let � denote Lebesgue measure on the unit circle normalised to havetotal mass 1.Theorem 1.5. For a trigonometric polynomial f(z) =Pmk=�m ckzk, z 2T,limn!1P�ZTf d�n 6= snc0� = 0In particular, the random probability measure s�n�n converges weakly in probabilityto � as n!1.Theorem 1.5 leaves open the possibility of interesting behaviour for RTf d�n forcertain functions f having non-terminating Fourier expansion f(z) =P1k=�1 ckzkwith c0 = 0. Because of (1.1) it su�ces to consider functions of the form f(z) =P1k=1 ckzk.



8 STEVEN N. EVANSDe�nition 1.6. A complex sequence (dk)1k=1 is multiplicative if dk:` = dkd`. Ob-vious examples of multiplicative sequence are dk = k� for � 2 C . In general, amultiplicative function is speci�ed by assigning arbitrary values of dp to each primep. The value of dk for an integer k with prime decomposition k = ph11 ph22 : : : phmm isthen dh1p1 dh2p2 : : :dhmpm .Notation 1.7. Let �k denote the expected number of k-cycles in the cycle decom-position of a permutation chosen uniformly at random from G. Write M for thesmallest subset of N that contains f1 � k � s : �k > 0g and is closed undermultiplication.The following result is proved in Section 4.Theorem 1.8. Consider two sequences (ck)1k=1 and (dk)1k=1 that satisfy the fol-lowing conditions:a) (dk)1k=1 is multiplicative,b) dk > 0 for all k such that �k > 0,c) P1k=1 dk <1,d) (Psk=1 kdk�k)2 >Psk=1 k2d2k�k,e) limk!1; k2M ck=dk = c exists.Then the sequence of random variables( sXk=1kdk�k)�n ZT1Xk=1 ckzk �n(dz)converges in distribution as n!1 to a random variable cWP1k=1 dk, where 0 <W <1 almost surely.Remark 1.9. i) Condition (b) of Theorem 1.8 can be modi�ed to the weakercondition dk � 0 (with a corresponding modi�cation in the conclusion). Themodi�cation is discussed after the proof of the theorem in Section 4.ii) Suppose that (dk)1k=1 is an arbitrary positive multiplicative sequence. Notethat d1 = 1 (by the multiplicative assumption), �1 = 1 (by Burnside'sLemma and the assumption that G acts transitively { see Section 3), and�k > 0 for some k � 2 (again by transitivity). Thus Psk=1 kdk�k > 1 and(Psk=1 kdk�k)2 > Psk=1 kdk�k. For any group G the condition (d) of Theo-rem 1.8 is therefore implied by the condition kdk � 1 for all k.



EIGENVALUES OF RANDOM WREATH PRODUCTS 9In light of Remark 1.9(ii), the following result is immediate from Theorem 1.8.Corollary 1.10. Suppose that (ck)1k=1 is a sequence such that for some � < �1limk!1 ck=k� = c exists. Then the sequence of random variables( sXk=1k�+1�k)�n ZT1Xk=1 ckzk �n(dz)converges in distribution as n ! 1 to a random variable cWP1k=1 k�, where0 < W <1 almost surely.Example 1.11. For the reader's bene�t, we record the expected cycle counts �kin some examples (see 5.16 of [Ker75]).i) If G = Ss, the symmetric group of order s! acting on a set of size s, then�k = k�1, 1 � k � s.ii) If G = Cs, the cyclic group of order s acting on a set of size s, then�k = 8><>:�(k)=k; if kjs,0; otherwise,where �(k) := #f1 � ` � k : (`; k) = 1g is the Euler function.iii) If G = Ds, the dihedral group of symmetries of a regular s-gon, then �1 = 1,�2 = 8><>:(s � 1)=4; if n is odd,s=4; if n is even,and �k = �(k)=k, 3 � s � k, kjs.iv) If G is an arbitrary �nite group of order s acting on itself via the regularrepresentation, then �k = !k=k, kjs, where !k is the number of elements in Gwith order k.We end this introduction with some bibliographic comments on the substantialrecent interest in eigenvalues of random matrices in general and eigenvalues of Haardistributed random matrices from various compact groups in particular.A general reference to the history of randommatrix theory and its applications is[Meh91]. Asymptotics for the traces of powers of unitary, orthogonal and symplecticmatrices (equivalently, integrals of powers against the analogue of the measure �n)are investigated in [DS94] (see also [Rai97]). Integrals of more general well-behaved



10 STEVEN N. EVANSfunctions against the analogue of �n for these groups are studied in [Joh97]. Thenumber of eigenvalues in an interval for the unitary group (that is, the integral ofan indicator function against the analogue of �n) is investigated in [Wie98]. Thelogarithm of the characteristic polynomial of a random unitary matrix is also theintegral of a suitable function against the analogue of �n, and this object is thesubject of [HKO00, KS00a, KS00b]. A general theory for the unitary, orthogonaland symplectic groups that subsumes much of this work is presented in [DE01].Random permutations give rise to random permutation matrices. Given theconnection between cycle counts of permutations and traces of the correspondingmatrices, some of the huge literature on the cycle structure of uniform randompermutations can be translated into statements about eigenvalues of random per-mutation matrices. More in the spirit of this paper, the number of eigenvalues inan interval and the logarithm of the characteristic polynomial are investigated in[Wie00] and [HKOS00], respectively. The former paper treats not only the sym-metric group, but also the wreath product of a cyclic group with a symmetricgroup.There is a limited literature on other probabilistic aspects of wreath products. Asmentioned above, the Sylow p-group of Spr is a wreath product. The distributionof the order of a random element of this group is studied in [PS83b], while thedistribution of the degree of a randomly chosen irreducible character is studied in[PS83a, PS89]. The probability that a randomly chosen element of Sn o Sp has no�xed points as n!1 is given in [DS95]. Mixing times of Markov chains on wreathproducts are considered in [FS01]. Finally, in�nite wreath products are a fruitfulsource of examples of interesting behaviour and counterexamples in the study ofrandom walks on in�nite groups (see, for example, [KV83, LPP96, PSC99, Dyu99b,Dyu99a]). 2. Useful factsThe following is obvious and we leave the proof to the reader.Lemma 2.1. Suppose that G and H are two permutation groups acting on setsof size s and t, respectively. A G oH-valued random variable (F;�) is uniformlydistributed if and only if



EIGENVALUES OF RANDOM WREATH PRODUCTS 11� The H-valued random variable � is uniformly distributed.� The coordinates of the Gt-valued random variable F are uniformly dis-tributed on G and independent.� The random variables F and � are independent.De�nition 2.2. Suppose that G and H are two permutation groups acting onsets of size s and t. Consider (f; �) 2 G oH. Suppose that � 2 H has the cycledecomposition � = c(�)Y�=1 �j��(j�) : : : �`��1(j�)� ;that is, � can be decomposed into c(�) cycles, with the �th cycle of length `� . Theelements of G de�ned byg�(f; �) := f(j� )f(��1(j�)) : : : f(��(`��1)(j�)) = ff� : : : f�`nu�1 (j�)are called the cycle products of (f; �). Note that the de�nition of g�(f; �) dependson the choice of the cycle representative j� , so to give an unambigious de�nitionwe would need to specify how j� is chosen (for example, as the smallest elementof the cycle). However, di�erent choices of cycle representative lead to conjugatecycle products (see 4.2.5 of [JK81]).The following result is 4.2.19 in [JK81].Lemma 2.3. Suppose that G and H are two permutation groups acting on setsof size s and t. Consider (f; �) 2 G o H. Suppose that � 2 H has the cycledecomposition � = c(�)Y�=1 �j��(j� ) : : :�`��1(j�)�and that the �th cycle product g�(f; �) has a cycle decomposition into cycles oflengths m�;1;m�;2; : : : ;m�;d(�;�). Then the cycle decomposition of the compositionrepresentation of (f; �) consists of cycles of lengths `�m�;� , 1 � � � d(�; �), 1 �� � c(�). 3. Proof of Theorem 1.5In order to prove the theorem, it su�ces by (1.1) to show thatlimn PfTn;k 6= 0g = 0 for all k � 1:



12 STEVEN N. EVANSBy (1.2), it su�ces in turn to show that(3.1) limn PfSn;k 6= 0g = 0 for all k � 1:We will now choose a speci�c order of the successive \wreathings" in the con-struction of �n = G oG o � � � oG that leads to a useful inductive way of constructingX1; X2; : : : on the one probability space. Take �n = G o (G o (G o (� � � oG) : : : )).In other words, think of �n as a permutation group on a set of size sn and build�n+1 as G o �n. Start with X1 as a uniform random pick from G. Suppose thatX1; X2; : : : ; Xn have already been constructed. Take Xn+1 to be the pair (F;Xn),where F is a Gsn-valued random variable with coordinates that are independentuniform random picks from G which are also independent of Xn. It follows induc-tively from Lemma 2.1 that Xn+1 is a uniform random pick from �n+1.It is immediate from Lemma 2.1 that the cycle products of (F;Xn) consist ofproducts of disjoint collections of the independent uniformly distributed G-valuedrandom variables F (j). The segregation of the F (j) into the various cycle prod-ucts is dictated by the independent �n-valued random variable Xn. Therefore,conditional on Xn, the cycle products of (F;Xn) form a sequence of independent,uniformly distributed G-valued random variables.Put S01 := 1 and S0k := 0, k > 1. By Lemma 2.3, the stochastic process((Sn;k)1k=1)1n=0 taking values in the collection of in�nite-length integer-valued se-quences is thus a Galton{Watson branching process with in�nitely many types(the types labelled by f1; 2; 3; : : :g). An individual of type k can only give birthto individuals of types k; 2k; 3k; : : :. Moreover, the joint distribution of the se-quence of integer-valued random variables recording the number of o�spring oftypes k; 2k; 3k; : : : produced by an individual of type k does not depend on k and isthe same as that of the sequence recording the number of cycles of lengths 1; 2; 3; : : :for a uniformly chosen element of G.Recall our standing assumption that G acts transitively. It follows from this andBurnside's Lemma (see, for example, Lemma 4.1 of [Ker75]) that the number of1-cycles (that is, �xed points) of a uniformly chosen element of G is a non-trivialrandom variable with expectation �1 = 1. By the observations above, the process(Sn;1)1n=0 is a critical (single-type) Galton{Watson branching process and hence this



EIGENVALUES OF RANDOM WREATH PRODUCTS 13process becomes extinct almost surely. That is, if we set �1 := inffn : Sn;1 = 0g,then Pf�1 <1g = 1 and 0 = S�1 ;1 = S�1+1;1 = : : :.By the observations above and the strong Markov property, (S�1+n;2)1n=0 is alsoa critical (single-type) Galton{Watson branching process (with the same o�springdistribution as (Sn;1)1n=0) and so this process also becomes extinct almost surely.Hence, if we set �2 := inffn : Sn;1 = Sn;2 = 0g, then Pf�2 < 1g = 1 and0 = S�2 ;1 = S�2 ;2 = S�2+1;1 = S�2+1;2 = : : :. Continuing in this way establishes(3.1), as required.Remark 3.1. Much of the work on eigenvalues of Haar distributed random matricesdescribed in the Introduction is based on moment calculations. As noted in theIntroduction, E[Tn;1 ] = 1 for all n, and so a result such as Theorem 1.5 could notbe proved using such methods.4. Proof of Theorem 1.8By Theorem 1.5, we may suppose that ck = dk for all k. From equations (1.1)and (1.2) we have, in the notation of Section 3, thatZTf d�n = 1Xk=1dkTn;k= 1Xk=1dk0@X̀jk `Sn;`1A= 1X̀=1 `0@ 1Xj=1 dj:`1ASn;`= 0@ 1Xj=1 dj1A 1X̀=1 `d`Sn;`! :Setting � := Psj=1 jdj�j and (Wn)1n=0 := (��nP1k=1 kdkSn;k)1n=0, it thus suf-�ces to establish thatWn converges in distributions as n!1 to a random variableW with Pf0< W <1g = 1.ConstructX1; X2; : : : in the manner described in Section 3, so that ((Sn;k)1k=1)1n=0is an in�nitely{many{types Galton{Watson branching process. Let Fn :=



14 STEVEN N. EVANS�fX1; X2; : : : ; Xng and observe thatE " 1Xk=1kdkSn+1;k ���Fn# = 1Xk=1kdk0@X̀jk Sn;`�k=`1A= 1X̀=10@ sXj=1 j:`dj:`�j1ASn;`= 0@ sXj=1 jdj�j1A 1X̀=1 `d`Sn;`! :Thus, (Wn)1n=0 is a nonnegative martingale with respect to the �ltration (Fn)1n=0,and hence Wn converges almost surely as n ! 1 to an almost surely �nite non-negative random variable W .We will next show that E[W ] = 1 by showing that the martingale (Wn)1n=0 isbounded in L2(P) (and hence converges in L2(P) as well as almost surely). Byorthogonality of martingale increments,E[W 2n+1 ] = E[(Wn+1 �Wn)2] + E[W 2n ]:Let �j0;j00 denote the covariance between the numbers of j0-cycles and j00-cycles inuniform random pick from G. By the branching process property,E[(Wn+1 �Wn)2 ���Fn] = ��2(n+1) 1X̀=1 Sn;` Xj0;j00 `:j0d`:j0 `:j00d`:j00 �j0;j00= ��2(n+1) 1X̀=1 `2d2̀Sn;`!0@Xj0;j00 j0dj0j00dj00�j0;j001A :Note that the sequence (`2d2̀)1̀=1 is multiplicative. Thus, setting " :=Psj=1 j2d2j�j ,the sequence ("�nP1k=1 k2d2kSn;k)1n=0 is a martingale by the same argument thatestablished (Wn)1n=0 was a martingale. Consequently,E[(Wn+1 �Wn)2] = ��2(n+1)"n Xj0;j00 j0dj0 j00dj00 �j0;j00:By assumption, �2 > ", and hence supn E[W 2n ] <1, as required.For a partition a = (1a1 ; 2a2 ; : : : ; sas) of s (that is, a has a1 parts of size 1, a2parts of size 2, et cetera and, in particular, Pi iai = s) let p(a1; a2; : : : ; as) denotethe probability that a uniformly chosen element of G has a1 1-cycles, a2 2-cycles



EIGENVALUES OF RANDOM WREATH PRODUCTS 15et cetera. Write g(u1; u2; : : : ; us) :=Xa`s p(a1; a2; : : : ; as) sYi=1uaiifor the multivariate probability generating function corresponding to the probabilitydistribution p (thus g is just the cycle index polynomial of the group G - see 5.14of [Ker75]).Set 'n(x) := E[exp(�xWn)] and '(x) := E[exp(�xW )], x � 0. Conditioning onF1 gives 'n+1(x) = g('n(1d1x=�); 'n(2d2x=�); : : : ; 'n(sdsx=�));and hence '(x) = g('(1d1x=�); '(2d2x=�); : : : ; '(sdsx=�)):Thus, from assumption (b), � := PfW = 0g= limx!1'(x)= h(�);(4.1)where h(u) := g(u; : : : ; u) is the probability generating function of the total numberof cycles in a random uniform pick from G. The equation (4.1) has two solutionsin the interval [0; 1]: namely, 1 and the probability of eventual extinction for a(single-type) Galton{Watson branching process with the distribution of the totalnumber of cycles as its o�spring distribution. Because E[W ] = 1, � cannot be 1.The other root of (4.1) is clearly 0, because the total number of cycles is always atleast 1. This completes the proof of the theorem.Remark 4.1. Theorem 1.8 was proved under the hypothesis (b) that dk > 0 for allk 2 M. If this is weakened to the hypothesis that dk � 0 for all k 2 M, then asimilar result holds. Hypothesis (e) needs to be modi�ed to an assumption thatlimk!1;dk>0 ck=dk = c exists and dk = 0 implies ck = 0 for all k su�ciently large.The conclusion then becomes that the stated limit holds with 0 � W <1 almostsurely. The probability PfW = 0g is the probability of eventual extinction for aGalton-Watson branching process with o�spring distribution the total number ofcycles in a random uniform pick from G having lengths in the set fk : dk > 0g.
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