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ABSTRACT

This paper investigates the use of Gaussian Selection (G8jtice
the state likelihood computation in HMM-based systems. sEhe
likelihood calculations contribute significantly (30 to% to the
computational load. Previously, it has been reported thagrw
GS is used on large systems the recognition accuracy tentks-to
grade above x 3 reduction in likelihood computation. To explain
this degradation, this paper investigates the trade-eftessary be-
tween achieving good state likelihoods and low computatiom
addition, the problem of unseen states in a cluster is exaghiit
is shown that further improvements are possible. For exapys-
ing a different assignmentmeasure, with a constraint ontimeber
of components per state per cluster, enabled the recogritou-
racy on a 5k speaker-independent task to be maintained up:to a
reduction in likelihood computation.

1. INTRODUCTION

In recent years, high accuracy large vocabulary continspegch
recognition systems have been developed. However, mastrsgs
in particular those based on HMMs, have tended to operatevat s
eral times real-time. To convert laboratory systems in&fuigrod-
ucts, techniques are required to reduce the decoding tirfeester
than real-time, while maintaining, or staying close to,shee level

is divided up during training into a set of vector quantisegions.
Each component is then assigned to one or more VQ codewords.
During recognition, the input speech vector is vector gisauot
Only the likelihoods of the components associated with tig@ V
codeword corresponding to the observation vector are ceeapu
exactly and the remaining likelihoods are approximatedBdr-
chieri’s work, the VQ codebooks were generated by clusgettire
Gaussian components. An alternative data driven approasipre-
posed by Murveit et al [7]. Recently a number of direct seamneth-
ods have been proposed. However, these are typically sysgiem
cific, e.g. requiring a single shared covariance [1], orgdarumber
of components per state [4].

This paper investigates the GS approach proposed by Batdhie
particular, the paper addresses the problem of limitedopdnce
when pruning (beam-search) is applied. Bocchieri repotied

on context-independent systems with no pruning reductidng

to x9 in the likelihood computation can be made [3]. However,
this drops tox3 when pruning is applied in a context-dependent
system [2]. The causes of this degradation are investigaiate
CUED-HTK system used on the 5k Hub 2 task in the 1993 ARPA
evaluation [9], reimplemented in HTK V2.0 [10].

2. GAUSSIAN SELECTION METHOD

of accuracy. A number of methods have been proposed in the liThe Gaussian clustering was performed during HMM trainisg a

erature, falling into the following general categoriesung, ty-
ing, feature selection, and Gaussian selection. Sincevidlaation
of Gaussian likelihoods can dominate the total computatitoad,
taking between 30 to 70% of the computation, the latter catelg
of particular interest and is the topic of this paper.

The motivation behind Gaussian Selection (GS) is as folldfwan
input vector is an outlier with respect to a component distion,
i.e. it lies on the tail of the distribution, then the likedibd of that
component producing the input vector is very small. Thisltss
in the component likelihoods within a state having a largeadyic

follows. A weighted (Mahalanobis-like) Euclidean distanioe-
tween the means was used to calculate the distance betweegh th
andjth Gaussians.
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whereD is the feature vector dimensiop; (k) is thekth compo-
nent of vectory,, andw(k) is equal to the inverse square root of
the kth diagonal element of the average of the covariances of the
Gaussian seV (u,,, Zwm), m = 1,..., M, whereX,, is the diag-

range, with one or two components tending to dominate thie sta®nal covariance of thexth Gaussian component. Then, a clustering

likelihood for a particular input vector. Hence, the stakelihood
could be computed solely from these components without iaerot
able loss in accuracy. GS methods attempt to efficientlycstiese
components, or a subset containing them, at each frame.

GS was originally proposed by Bocchieri [3]. The acoustiacsp

procedure based on the Linde-Buzo-Gray [6] algorithm wadieg
to minimise the average (per Gaussian component) distoftio;,
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whereM is the number of Gaussian components in the model sethe choice 0P in equation 6 controls the average size of the Gaus-

& is the number of clusters (pre-defined), agds the centre (code-
word) of thegth cIusterX¢,

Cyp = =1,.
* 7 Size X¢ Z Hims &
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The clusters produced by the above process are disjoinseld in
recognition, errors are likely since the likelihood of so@&ussians
close to the input feature vector but not in the selectedetusill
be excluded from the full computation. To avoid this, clus&hare
Gaussians as follows. Given a thresh@ld> 1, an input feature
vector,o, is said to fall on the tail of the:th Gaussian if

1 Z o(1) —
5Z:(()

wheres?, (1) is theith diagonal element oE.,,. Thus, if the clus-
ter centroid is taken to be a typical input feature vectorribagh-

Nm(i))2 >0 (4)

bourhoody, of codewordcy, can be defined as consisting of all

Gaussians such that [3]
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whereos?, (1) is theith diagonal element of the matrix of the av-

erage covariance of the full Gaussian set. The useZof(:) in
the criterion is preferred te2,(¢) since the individual variance es-
timates are often noisy.

sian neighbourhoods. Efficiency improves with reductiom®i
because fewer Gaussian likelihoods have to be computedgluri
recognition. However, there is a trade-off with the rectigniaccu-
racy. For states with at least one component assigned teatsel
cluster, errors can occur if some components that make #isegmt
contribution to a state likelihood are not contained in ttlaster.
The state likelihood is likely to be poorly approximatedtistcase.
Further errors can occur due to ‘state flooring’. When no comp
nents from a state are assigned to the selected clusteptiedikeli-
hood is simply given a discrete approximate value, i.e. fittiered.
Since it is possible for an input vector to be an outlier witkpect
to all the component distributions of a state on the optinaahpthe
state flooring chosen can be crucial to maintaining accufdus is
investigated in the next section.

A good cluster assignment is therefore one which assignall
most of, the components that contribute significantly taeski&e-
lihoods for that region of acoustic space, while assigniadeav
non-contributing components as possible.

3. EXPERIMENTAL RESULTS

3.1. Experimental Setup

The November 1993 ARPA WSJ evaluation Hub 2 task consists of a
5k word closed vocabulary, with a standard bigram languaggeh
provided by Lincoln Labs, the 5K Closed NVP bigram. Pronanci
tions were taken from the Dragon Wall Street Journal Proiation
Lexicon version 2.0 with some locally generated additioms eor-

The weighted distance measure in equation 5 takes no account @ftions.

the variance of the cluster, so some clusters grow too ladye.

alternative class-weighted, distance measure was therefore imple-The experiments reported here used the HMM model set trdared

mented, where the neighbourhood of codewoyd consists of the
Gaussians such that
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Wherea%( i) is the:th diagonal element of the cluster centroid co-

variance Xc, = 1/size(xg) Y Tom.

mEX
During recognition, the appropriate neighbourhood is ctele by
determining the cluster centroid,, which minimises the weighted
(Mahalanobis-like) Euclidean distance to the observatiector,
o(t), attimet,

il

C: = min d(o(t), Cs)
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Each state likelihood is calculated by exactly determirtimg log
likelihoods of components within the selected cluster apyrax-
imating, by a discrete value, the other components. Thectéxtu
in computation of the Gaussians, the computation fract@nis
defined as

Gnew + VQcomp

¢ =
Grun

®)

the Hub 2 task. This set consists of continuous mixture dgr&i
mixture component, tied state, word-internal triphone HMabrre-
sponding to a 44 base phone set plus silence and optionaWotel
silence models. All the speech phone models had three egnitti
states, and a strictly left-to-right topology. Acoustiaferes are 12
MFCCs and log energy plus first and second derivatives (&fal
dimensions). State tying was performed using a deciseaiased
algorithm. More details may be found in [9]. The decoding was
performed using the HTK V2.0 tool HVite [10].

HTK V2.0 [10] was also used to build the GS codebooks. The-code
books were flat with 256 codewords. A standard flat searchmas i
plemented to eliminate effects of codebook search errors the
results (faster methods such as [8] can reduce the searttocas
few percent relative to the standard full search). Resuéggaven
for both lattice rescoring and full recognition experimenthe for-
mer were performed for speed of execution, and serve tariites
the general behaviour. Since the codebook search is dispiop-
ate to the search-space of the lattices, reductions in ctatipo
are only considered in terms of the percentage of compoihetfit |
hoods computed with GS with respectto the none GS latticesys
These percentages tend to be slightly high with respecetaditual
reductions that can be achieved in the full recognitionesystFor

whereG,..,, G s are the average number of Gaussians calculatefis full system, computation reduction is presented ugiegcom-

per frame in the GS and full system respectively, 8 ..., the
number of computations required to calculate the VQ index.

putation fraction defined in equation 8.



3.2. Gaussan To Cluster Assignment Tall Standard GS Min 1 C5C
% Lhood | Word || % Lhood | Word
2 calc error calc error
. 1.0 13.17 18.17 23.37 13.07
RN 13 22.55 13.89 30.31 12.88
Bl R 1.6 33.08 12.80 38.77 12.72
A — — WEIGHT
YN - - CLASS-WEIGHT . L
gkt 1 Table 1: Word error against % component likelihoods calculated
g "N per frame for the standard GS system and for GS with at least on
ail6 v q . -
g RN component per state per codeword (CSC) at assignmentresiith
S1s o Ts 1

olds of{1.0,1.3,1.6 using lattice rescoring.
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- 3.4. Constrained Gaussian Selection
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The good performance at tail thresholds of 1.6 and abovéiseed

) ] o at the expense of excess computation. Examination of treteclu
Figure 1. Word error against % component likelihoods calculatedais at these thresholds showed that many clusters comteneral

per frame for weighted and class-weighted assignment mesati - components from the same state. This is in contradictioh thie
tail thresholds{1.0,1.3,1.6,1.9,2 Rusing lattice rescoring. motivation behind GS, namely that the state likelihood alafion

is dominated by one or two components, implying that someann
It was previously reported that a cluster class-basatlags-  essary computation is being performed. As a first, simplkitien
weight”) distance measure improved the assignment of componertts this problem the number of CSC was limited to a fixed number,
to cluster neighbourhoods compared to a standard averaghteeg S, If more thanS components from a state satisfied the tail thresh-
distance measure on a SD word-spotting task [5]. Figure Wsho old then the closest components to the codeword centroid were
that this holds for a speaker-independent LVCSR task. Ather  assigned to that cluster.
results are, therefore, presented using the class-weighéasure.

In addition, the results in table 1 suggest that most of thidant
3.3. StateFlooring likelihoods required for exact computation in a clustemi¢hin the

i . ) 1.3 tail threshold, with the remaining important composéntthe

From figure 1, it can be seen that the class-weighted system 4Egion from a tail of 1.3to 1.9. Thus, a dual ring CSC conatraias
curacy matches the non-GS system for tail thresholds of dds @ applied. In this, the number of CSC was constrained at ar iaile
above. Even at these thresholds the choice of approximgik threshold, as in the single ring approach, and between ties tail
lihood for components outside the frame cluster was fountieto 504 an outer tail threshold. Approximating the componeutside
important. If the likelihood is too small reasonable pattsymde ¢ cluster with a discrete log likelihood (since some statere
killed, whereas poor paths may remain within the searchesffac floored), the results shown in table 2 were obtained.
the likelihood is too large. The choice of approximation $pe-

cially sensitive when no components from a state belongdsé

. . Approach Inner | Max | Outer | Max || Comp Fr| Word
lected cluster so ‘state flooring’ occurs. A good approxinag tal | csc | tail | csc c error
likelihood score was found empirically. Standard . . . . 1000 | 12.72

Standard GS| 1.6 - - - 24.1 12.75
To test whether the GS performance degrades below the 1.6 taiSingie ring 16 4 . 184 12.88
threshold due to the state likelihoods of components withise- 1.9 3 - - 20.3 12.88
lected cluster being poorly determined or due to state fhaprihe 1.9 4 - - 24.3 12.46
1.3 system was run as follows. If no components from a state bg Doublering | 1.3 4 16 1 17.7 | 12.69
longed to the VQ codeword at a particular frame then the ikee | i 13 4 19 1 20.4 12.54
lihood of that state was computed. Otherwise, the statdiHited Min1CSC [ 1.3 - - - 249 | 12.94

was computed only from those components lying within theeeod Taple 2: Word error against computation fraction for full recogni-
word cluster. With this approach, the 1.3 SyStem was ablétaina tion pass using: standard System, standard C|a33-wei'ght;|ass_

the standard system accuracy. This indicates that a signffgart  \eighted system with one or two ring constraints on the maxim
of the failing of the lower thresholds is due to state flooring number of CSC, and with a minimum of 1 CSC.

As a very basic solution, each cluster was forced to contdieat
one componentfrom each state. If no components from a S&le Mrypje 2 shows that a4 reduction in computation was achieved us-
the tail threshold, then the closest component to the alestetroid ing the standard class-weighted measure without loss iaracy.

from that state was assigned to the cluster. Since no SW®ES Wk rther reductions were achieved without loss in accuracap
floored no approximations were required for the componeuts o plying a single maximum constraint of 4 CSC at a tail of 1.6 or 3

side the cluster. Under this constraint, word error rateseto _the CSC atatail of 1.9. Tighter constraints led to a drop in penfance
standard system (12.69%) were observed throughoutthtétesh- e 16 the sub-optimal selection of the components. For plam

oldrange, butatthe costof anincrease in the numberof COBTHS ;¢ vectors at the centre and edge of a cluster are likebetbest
calculated, as shown in table 1.



fitted to different components within the cluster signment was first improved by use of a class-weighted distan
measure. This achievedat reduction in computation without loss
in accuracy. To further reduce the over-assignment, wetiaiming
the significant components, the number of components perjsta
cluster (CSC) was constrained. The selection of compornvesss
very crude, with those closest to the centroid being assigBeen
S0, this constraint enabled computation to be reduced to5 with

no degradation. In particular, a dual ring approach, in Wwhfee

number of CSC was constrained at both an inner tail threshold

The double ring constrained system produced the greategiuta-
tion reduction. From table 2 it can be seen that most of theiiciamt
likelihoods lie in the 1.3 tail boundary. In experimentsfpened

with an inner ring tail threshold of 1.0, the accuracy deghds
important components were eliminated from the clustersshsvn

by table 1, the 1.3 tail threshold requires some further comepts
from outside this boundary. Table 2 shows that a single corapb

in the outer ring from a tail of 1.3 to 1.6 is sufficient to mattle  petween the inner tail and an outer tail threshold, yieldedosd
standard system accuracy with a computation fraction ofljus’%.  error of 12.69% at a computation fraction of 17.7%, compdced
Hence, a> 5 x reductionin likelihood computation can be achieved 2. 729, word error in the system without GS. This was based on
without anincrease in the word error on a pruned system. VBB 0  the observations that most significant components lie wittfiairly

all reduction in decoding time will depend on the ratio ofebeto  tight tail threshold, but inclusion of some components fromtside

likelihood computation time. This is dependent on the an@din  this threshold is essential to prevent state flooring proisle
pruning and level of tying used.
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