
- 1 -

Agent Mobility and Reification of Computational State

Werner Van Belle, Theo D’Hondt
Programming Technology Lab

Departement Informatica
 Vrije Universiteit Brussel

{werner.van.belle|tjdhondt}@vub.ac.be

20 March 2000

Abstract

This paper describes an experiment with mobility in multi-agent
systems. The setting is a virtual machine that supports reification of the
computational state of a running process. The objective is to investigate
how this feature facilitates telescripting and to speculate on how
languages like Java should evolve to include the resulting notion of
strong migration.

Mobile Agent Systems

An agent is a persistent and autonomous software component. It can be
thought of as a process executed by some virtual machine but it is mainly
intended to provide a particular service. Viewed as processes, agents run
concurrently on one or more machines and have their own data space and
computational state.

We talk about multi agents if two or more agents, represented by processes,
are able to communicate with each other. Depending on the agent system
this communication can be performed by means of the available technology
(Remote Procedure Call, Remote Method Invocation, etc.). In our particular
setup, we will require our communication mechanism to support
asynchronous remote message passing.

A mobile agent is an agent which is able to move between different machines,
or in a more abstract sense, between locations. We will discuss migration in
the following section.

A mobile multi agent system is a software artefact specified in a language
that provides sufficient expressiveness and flexibility to allow the
construction of multiple interacting mobile agents. This includes routing of
messages between agent systems and providing an interconnection with

- 2 -

other systems. The agent system has to take care of migration of agents,
serialization of messages and scheduling of processes. This should, of
course, have a minimum of direct impact on the agents themselves.
This definition of mobile multi agents differs from others which view an agent
as an intelligent entity that interacts with some user on a creative basis: it
should learn about its environment and adapt to it as needed. In this paper
we are more interested in the architectural support, so we will focus on the
design and implementation of mobile multi agent systems. Particular
attention is paid to the migration aspect.

Migration

In this paper, migration denotes the act of transferring a running agent to
another location. After migration, the agent should continue and proceed
seamlessly with what it was performing before its move. In order to obtain
this result, three actions should be undertaken to prepare, guide and
complete the actual migration. First we have to encapsulate the agent’s
complete state; next, we need to transfer this capsule and finally, we need to
restore and re-activate the agent in its new environment. With the wide
availability of standard communication networks we can safely say that
transfer itself is no longer a problem. The challenging aspect in migration is
the wrapping and unwrapping of the agent in order to restore it to its full
powers.

An encapsulated agent should not carry the complete agent system in its
wrapping. We therefore need to make an inventory of those features that
determine the working of an agent. Conceptually, an agent consists of

¾ A data section which contains the environment needed by the agent;

¾ A (shared) code section which describes the behavior of the agent

¾ One or more runtime structures which describe the computational state

of the processes

¾ Connections to resources and to the underlying agent system

Today, almost no mobile multi agent system (except [1] and [2]),
encapsulates and transfers the computational state of the agent's process.
Typically, the agent program is duplicated on the receiving location and after
migration the agent is reinitialized from data saved before the move. This is
because it is a major challenge to the builder of a virtual machine to provide
a mechanism for capturing the computational state, as will be shown later.

This difficulty led to two kinds of migration models.

The first kind, called the looping model [3], transfers all of the agent’s
constituent parts except for the computational state. This means that the

- 3 -

only way to encapsulate an agent correctly is to ensure that the
computational state is empty. Consequently, the agent has to stop
voluntarily prior to migration and afterwards start up again. As such this
model loops between sequences of computation that start up and stop
completely.
In our view this approach to migration is flawed. First of all, the looping
model has a nefarious impact on how the agent’s program is engineered,
making the program code difficult to manage. Migration therefore becomes
too difficult to use and as such will be avoided unless absolutely needed.
Second, the agent itself is sole master of the migration process; it is
impossible for some external agency to capture the agent’s full state and
direct migration from the outside. This prohibits the use of manager agents
which send out agents to other machines as needed.

The second model of migration is called telescripting [1], also called strong
migration. When an agent systems supports telescripting it allows the agent
to move at all times to other locations, without the need of restarting the
entire computation. As can be inferred, in this model the agent's
computational state is transferred correctly.

Scripting an Agent

Before starting out on the fundamentals of building a virtual machine that
supports reification of computation, we shall describe the experimental
setting of this report.

In our approach we have started from an existing virtual machine called Pico
[7] which features open semantics. Pico is accessible via an extremely simple
language yet its expressiveness is very high, comparable to e.g. Scheme. Pico
semantics are defined by a set of nine evaluation functions that are
supported by a storage model and a computational model. The storage model
features full storage management and reclamation; the computational model
is based on a pushdown automaton that manages expressions and
continuations on a double stack. Continuations, inspired by continuation
passing style [4], are thunks that are sequenced in order to support
computation. Pico requires less than twenty continuations to implement the
complete semantics of the language.

In order to support our experiment, Pico semantics were extended to support
objects and multi threading. The result, called Borg is a prototype-based
language. Objects can specified and cloned in a very simple but effective way.
In the transcript below makecircle denotes a mixin method which extends the
basic point to become a circle:

createpoint(x,y)::
 { getx():: x;
 gety():: y;

- 4 -

 setx(nx):: x:=nx;
 sety(ny):: y:=ny;
 makecircle(r)::

 { setr(nr):: r:=nr;
 getr():: r;
 clone() } ;

 clone() }
:<closure createpoint>
a:createpoint(1,2)
:<dictionary>
b:a.makecircle(900)
:<dictionary>
b.getx()
:1
b.setx(8)
:8
b.getx()
:8
a.getx()
:1

Another abstraction layer we needed to support our experiment is routing of
messages and naming of agents. The problem with existing distributed
systems is that whenever an object changes its place (insofar as possible) its
name changes to reflect its new position. Borg has an original naming service
built into it so that we have a location transparant naming scheme and a
hierarchical interconnection network. [5]

Uniform Message Sending

On top of this all we have installed a serializer to store and retrieve
subgraphs of the data store. The serializer differentiates between two kinds
of serialization. The first concerns expressions handled as messages sent to
another location. The second concerns expressions handled as complete
agents which should be sent to a remote host.

When a message is serialized, we traverse the data graph and store
everything that we encounter on a stream. This process stops at leaves and
at dictionaries which will be serialized as references to remote dictionaries.
In this way, an agent can send a local dictionary to another agent without
having to send the entire dictionary content to the communication partner.

Uniform Message Sending: We use this messages serializer as a means for
sending messages to other agents in the same way we would send a message
to an object. There is only one difference: the caller will not receive a return
value and the execution will continue immediately. The expressions given as
arguments to a remote function will be serialized and deserialized
automaticaly. If there are too many expressions for an agent to evaluate, the
agent will store them in a queue and evaluate them one by one.

- 5 -

Below is an example of two Borg programs that communicate with each
other. The first program is the receiving agent which will do a callback to the
second agent. After having installed a callback procedure the second agent
calls the first one.

To all intents and purposes we have introduced asysnchronous message
passing, very similar to an actor system [8].

Agent Tecra/ses1
Calculate(…,callback)::
 { <some calculation>;
 callback.Answeris(…) }

Agent Tecra/ses2
Answeris(…)::
 { display(“The answer is: “);
 display(result) } ;
agent: remotedict(“Tecra/ses1”);
agent.Calculate(…,agentself())}

We can see that this way of working has a number of advantages over
standard distributed systems:

- We don’t have to generate and compile stubs beforehand. (in comparison
to Java and CORBA this is definitely a strong advantage, particularly
when we transfer code to other locations)

- The code is interpreted which guarantees small and powerful pieces of
code (compiled code is much larger than interpreted code)

- We don’t have to take location of an agent into account, since an agent’s
name doesn’t change after migration.

- Sending messages between agents is similar to sending messages between
objects, with automatic serialization of messages.

Virtual Machine

A standard virtual machine for a simple language such as Borg consists of:

¾ A language processor which, given a program text, generates an instance
of some abstract grammar (called expression). In Borg for example, the
program

setr(nr):: r:=nr

will be translated into the following expression:

[DCL [APL setr [TAB [REF nr]]][ASS r [REF nr]]]

- 6 -

Expressions can be externally stored as a sophisticated kind of bytecode
or they can be kept as executable code in some datastructure. Borg is
very close to for instance Scheme, in that language and execution model
practically coincide.

¾ A dictionary (or symboltable) to store identifiers and their values. The
values are either inline, or are references to a subset of possible
expressions (actually, values are expressions that have identity for the
evaluation function). A Borg dictionary is effectively a stack of frames so
as to support the notion of scope.

¾ An evaluation loop that unites the evaluation functions that make up
Borg semantics; this loop accepts a sequence of expressions and
evaluates them.

In the more general case, the complete process will take program text,
convert it into an expression which will be dispatched to a specialised
interpreter. For instance:

apply(exp)::
 if(exp.operand = '-',
 { par: evaluate(exp.par(1));
 number(-par.value) } ,
 if(exp.operand = '+',
 { par1: evaluate(exp.par(1));
 par2: evaluate(exp.par(2));

number(par1.value+par2.value) } ,
 error()))

then, for example an evaluation of

apply(-,apply(+,1,2))

will result in a call sequence of

apply(apply(-,apply(+,1,2)))
evaluate(apply(+,1,2))
evaluate(1)
evaluate(2)

The expressions used during this computation are typically stored on a
stack, which in general coincides with the run-time stack of the program
that implements the interpreter

Reification of the runtime stack

- 7 -

We will now describe a very straightforward way to reify the runtime stack of
the agent interpreter, thus making the agent runtime stack a first order
entity in the interpreted language. We will not describe full reification
because it not needed for our application (strong migration of code), but we
nevertheless need some way to capture the runtime stack and to handle it as
if it were yet another object in the interpreted language and not only in the
language the interpreter is written in. We view the computational model as a
paired expression/continuation stack. Below are the rules which should be
kept in thought when changing an existing interpreter.
¾ Whenever the interpreter is required to evaluate an expression it should

not call other functions to divide the given expression and conquer a
result.

¾ To retrieve the parameters passed to a function it has to take a peek at
the expression stack and pop these parameters by itself.

¾ When another function has to be called (e.g. a function such as evaluate) it
has to store the function to be called and the expression accompanying
the function on the continuation stack.

¾ At the end of a given function it has to proceed with the next function on
the continuation stack. In a tail recursive language this can be done by
applying the result of contstack.pop() at the end of the function. If we don't
have a tailrecursive language we need to return control and hope there
will be an outerstackloop available.

The above interpreter code will be converted to

Minus()::
 { par: expstack.pop();
 expstack.push(number(-par.value)) }

Apply()::
 { exp: expstack.pop();
 if(exp.operand = '-',
 { contstack.push(minus);
 contstack.push(evaluate);
 expstack.push(exp.par(1)) } ,
 if(exp.operand = '+',
 { par1: exp.par(1);
 par2: exp.par(2);
 contstack.push(addfinal);
 contstack.push(addaux);
 expstack.push(par2);
 contstack.push(evaluate);
 expstack.push(par1) } ,
 error())) }

Addaux()::
 { result1: expstack.pop();
 exp2: expstack.pop();
 expstack.push(result1);
 expstack.push(exp2);
 contstack.push(evaluate) }

Addfinal()::
 { result1: expstack.pop();

- 8 -

 result2: expstack.pop();
 expstack.push(number(result1.value+result2.value)) }

Implications of this conversion are obvious:

¾ We can easily garbage collect the system, because we can put the
running stacks in some root-table.

¾ We have an extra indirection which could lead to a suboptimal
performance.

¾ We can easily implement stack optimizations because we have the stack
under control. For example, implementing tail recursion is no problem if
we change the apply somewhat: An application consists of changing the
current dictionary, evaluating an expression and returning a value. If
we check that there is already a return-result continuation we won't have to
push a new one.

Migration revisited

An interpreter written in this way, i.e.with (a) the capability of serializing the
data store and (b) the ability to reify the computational state, can easily be
used to implement strong migration. Even if an agent process is in the midst
of being evaluated, we simply interrupt the process, serialize the state of the
entire computation, which also includes its computational state, and send it
to another location while removing the proces from interpreter control. At the
receiving end we deserialize the agent and start a process which uses the
freshly deserialized computational state.

The above steps should be taken at a moment at which the stack is
consistent, neither while a continuation thunk is executing, nor when there
are global variables which are not saved in the data store. With only these
things to think of we can state that we have implemented strong migration
without too much difficulty.

Serializing agents consists of traversing the data graph and storing
everything we encounter, including local dictionaries. The one exception to
this is the root environment which is simply marked as being the root
environment. In this way we can integrate agents in their new agent
environment upon their arrival at a new location.

The example below illustrates how migration can be exploited. We see that
we can call the agentmove native function at any time. When the agent arrives
at its new location it will print ‘after moving’ without the need for restarting it
at its main entry point.

Calcul(pars)::
 { <some calculation>;
 display(“before moving”);
 agentmove(remotedict(“otherplace.tecra”));

- 9 -

 display(“after moving”) }

main(pars,callback)::
 callback.Answeris(calcul(pars))

Java

Java is the current state of the art programming language for distributed
systems. At the moment of writing this paper, Sun is developping Jumping
Beans [6]. These are based upon Java Beans, which define the notion of
software components as well-defined interfaces which are contracts to be
honored to ensure interoperability.
Jumping Beans require a number of properties to be met by both an
application and its host environment for this application to become mobile:

¾ The application should be serializable.

¾ It must retrieve resources in a location-independent fashion If one wants
to use techniques which are application specific, one must be aware that
the host environment can change. A better way to retrieve resources is to
write applications in a mobility-aware fashion by techniques which are
specific to Jumping Beans.

¾ If the mobile application requires Jumping Beans services or requires
notification of Jumping Beans events, then it must implement MobileApp.

Furthermore the bean has to implement a number of hooks typically found
in weak migration schemes. These hooks are present after creation, before
dispatching, after arrival, before deactivation, after reactivation and before
destruction.

In order to make Jumping Beans (or similar migration schemes) really
workable, it may become necessary to rework the Java virtual machine so
that one can serialize the computational state of a thread as if it were yet
another standard Java object. Without this reification of the computational
state, mobile applications are doomed to remain complex artefacts, well
outside of the mainstream of software engineering.

Conclusion

In this paper we have reported on an experiment in mobility of software
agents. In particular, we investigated the reification of the computational
state of an agent’s underlying process, as a basis for the actual migration
scheme. We extended a simple, experimental virtual machine with first-class

- 10 -

computations and we proceeded by using these to transmit an active agent
from one location to another without direct impact on the agent’s
specification. We conclude that this is a workable approach to bring the
notion of mobility into the mainstream of software development. The next
step should be to rework the results of this experiment into
recommendations for future extensions to production-oriented environments
such as Java.

References

[1] Jim White, Mobile Agents White Paper, General Magic
[2] Robert S. Gray, Agent TCL: A flexible and secure mobile-agent system,

Department of Computer Science, Dartmouth College
[3] Gian Pietro Picco, Understanding Code Mobility, Politecnico di Torino,

Italy, Tutorial at ECOOP98, 22 July 1998
[4] Gerald Jay Sussman, Guy Lewis Steele Jr, Scheme, An Interpreter for

Extended Lambda Calculus, Massachusetts Institute of Technology,
Artificial Intelligence Laboratory. December 1975

[5] Werner Van Belle, Reinforcement Learning as a Routing Technique for
Mobile Multi Agent Systems, April 1997

[6] Ad Astra, Jumping Beans, a white paper , 1 september 1998
[7] Online documentation on http://pico.vub.ac.be
[8] Agha G. Actors: A Model of Concurrent Computation in Distributed

Systems, AI Tech Report 844, MIT, 1985

