
Extensible Algebraic Datatypes with Defaults

Matthias Zenger
Swiss Federal Institute of Technology

INR Ecublens
1015 Lausanne, Switzerland

matthias.zenger@epfl.ch

Martin Odersky
Swiss Federal Institute of Technology

INR Ecublens
1015 Lausanne, Switzerland

martin.odersky@epfl.ch

ABSTRACT
A major problem for writing extensible software arises when
recursively defined datatypes and operations on these types
have to be extended simultaneously without modifying ex-
isting code. This paper introduces Extensible Algebraic
Datatypes with Defaults which promote a simple program-
ming pattern to solve this well known problem. We show
that it is possible to encode extensible algebraic datatypes
in an object-oriented language, using a new design pattern
for extensible visitors. Extensible algebraic datatypes have
been successfully applied in the implementation of an ex-
tensible Java compiler. Our technique allows for the reuse
of existing components in compiler extensions without the
need for any adaptations.

1. INTRODUCTION

1.1 Extensibility Problem
The extensibility problem has been extensively studied [5,

6, 10, 11, 16, 19, 22, 30]. It can be paraphrased as follows:
Given a recursively defined set of data and operations on
them, how can one add both new data variants and new op-
erations on variants without changing or duplicating exist-
ing code? This is not only an academic question. Extending
a system by modifying source code is an error-prone task.
Furthermore, creating an extended system by duplicating
source code also results in duplicated maintenance costs, if
the old and the new system are both going to be used. In
some cases, it is not even possible to apply source code mod-
ifications, because some parts of the system might only be
available in binary form.

For example, consider a representation of lambda terms as
trees, with variants Lambda, Apply and Variable and an eval
operation on those trees. As one possible extension, con-
sider adding variants Number and Plus to the term type. As
another extension consider adding an operation that prints
a term.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICFP’01, September 3-5, 2001, Florence, Italy.
Copyright 2001 ACM 1-58113-415-0/01/0009 ...$5.00.

The traditional object-oriented and functional approaches
both make extensions in one dimension easy, but extensions
in the other dimension very hard. In the object-oriented ap-
proach, data is modelled by a set of classes, sharing a com-
mon interface. For the lambda term example, there would
be an interface or abstract class Term specifying the eval
method with subclasses Lambda, Apply and Variable. Each
subclass defines its own implementation of eval. Whereas
extending the datatype with new variants is simply done by
creating new classes, adding new operations involves modi-
fications of the abstract base class.

On the other hand, in the functional approach, the vari-
ants of a datatype are typically implemented as an algebraic
type. Here, defining new operations is easy. One just writes
a new function which matches against the data variants.
But since ordinary algebraic datatypes cannot be extended
without modifications to the source code, it would not be
possible to add new variants.

Each of the two approaches can encode the other. In
one direction, object-oriented languages can model the func-
tional approach using the Visitor design pattern [14]. In
the other direction, objects can be represented in functional
languages as closures taking an algebraic datatype of mes-
sages as parameter. However, each of these encodings ex-
changes both the strengths and weaknesses of one approach
with the strengths and the weaknesses of the other; neither
encoding gains simultaneous extensibility of both data and
operations.

1.2 Extensibility by Subclassing
We can make the object-oriented approach extensible

without modifying source code if we allow type casts. For
adding a new operation, we have to extend the common vari-
ant interface with the new operation. In our lambda exam-
ple, one would define an extension ExtendedTerm of interface
Term that adds a print method. As a consequence, all three
variants have to be subclassed to provide an implementation
for the new operation. Whenever we want to invoke the new
operation, we first have to cast the receiver to the extended
type. For instance to invoke the print method of a variable t
of type Term one uses ((ExtendedTerm)t).print(). Otherwise
we would not be able to access the new operation. This
approach supports extensibility of both data and functions.
But adding a new function is very tedious, since it requires
that all variants have to be subclassed.

Krishnamurthi, Felleisen and Friedman show that we can
apply a similar coding scheme to the functional approach
to make it also support variant extensions [19]. They de-
scribe the composite design pattern Extensible Visitor that

keeps visitors open for later extensions. Whenever a new
variant class is added, all existing visitors have to be sub-
classed in order to support this new variant. Otherwise a
runtime error will appear as soon as an old visitor is applied
to a new variant. Again, variants and operations are exten-
sible. But this time, adding a new variant requires all vis-
itors to be subclassed. Since the extensible visitor pattern
is rather complex and error-prone to implement by hand,
a special syntax is proposed for specifying extensible visi-
tors. A preprocessor translates these specifications into an
object-oriented programming language. A pattern compa-
rable to the one of Krishnamurthi, Felleisen and Friedman is
described by Gagnon and Hendren [13]. They explain how
to add new variants and operations, but the extension or
reuse of operations is not discussed.

In summary, subclassing techniques can provide extensi-
bility in the previously missing dimension, but they rely on
the use of type casts and require possibly extensive adapta-
tion code.

1.3 Extensibility with Default Cases
In practice, it appears quite often that an operation de-

fines a specific behaviour only for some variants and all other
variants are subsumed by a default treatment. Such an oper-
ation could be reused without modifications for an extended
type, if all new variants are properly treated by the existing
default behaviour. In fact, our experience with the imple-
mentation of an extensible Java compiler shows that at least
for this sort of application, the majority of the existing oper-
ations can be reused “as is” for extended types (Section 5.3
presents statistics). In this case, extending a system with
the techniques of Section 1.2 would be very cumbersome,
since for most cases we would just have to map an opera-
tion for all new variants to the default behaviour.

If we would be able to specify a default case for every func-
tion operating on an extensible type, a function would have
to be adapted only in those situations where new variants
require a specific treatment. This technique would improve
“as is” code reuse significantly. Previously mentioned ap-
proaches were not able to handle default cases since datatype
and function definitions were tightly coupled: one of the two
always specified the interface of its partner completely.

In this paper we present a solution to the extensibility
problem which is based on the new notion of extensible al-
gebraic datatypes with defaults. We describe these exten-
sible algebraic types in the context of an object-oriented
language. The approach presented in this paper smoothly
combines object-oriented extensibility through subclassing
and overriding with type-safe pattern matching on algebraic
datatypes, known from functional programming languages.
Our work was inspired by the algebraic types offered by
Pizza [24], a superset of Java [18].

From an extensible algebraic datatype one can derive ex-
tended types with new variants in addition to the ones de-
fined in the original type. These types enable us to solve the
extensibility problem in a functional fashion; i.e. the defini-
tion of the datatype and operations on that type are strictly
separated. Extensions on the operation side are therefore
completely orthogonal to extensions of the datatype.

In addition to adding new variants and operations, we also
support extending existing variants of a datatype and mod-
ifying existing operations. Furthermore, applying existing
operations to new variants is possible, since operations for

extensible algebraic types define a default case. Extensibil-
ity is achieved without the need for modifying or recompiling
the original program code or existing clients.

We show that it is possible to encode programs using ex-
tensible algebraic types in languages with just objects and
subtyping such as Java. The encoding takes the form of a
new design pattern for extensible visitors with default cases.
Since this pattern is rather difficult to implement by hand,
we decided to include direct support for extensible algebraic
types in an extension of Java.

Extensible algebraic types have been used heavily in the
design and implementation of our extensible Java compiler
JaCo. JaCo has been used in several projects to rapidly im-
plement language extensions for Java. The implementation
work in these projects showed that the notational conve-
nience afforded by default cases was very important. Statis-
tics taken from several compiler extensions indicate that on
average three quarters of all functions operating on algebraic
types could be reused on extended types without any modi-
fications. Extensible algebraic datatypes allowed us to reuse
these functions without having to add adaptation code.

The rest of this paper is organized as follows. Section 2
presents a simple programming protocol that explains how
extensible algebraic datatypes with defaults solve the exten-
sibility problem. Section 3 discusses various aspects of ex-
tensible algebraic datatypes in more detail. Section 4 gives
an encoding of extensible algebraic datatypes with visitors.
Section 5 discusses the experience we gained from using ex-
tensible algebraic types in the design and implementation of
an extensible Java compiler and presents statistics about the
level of code reuse in this system. Related work is reviewed
in Section 6. Section 7 concludes.

2. EXTENSIBILITY WITH ALGEBRAIC
DATATYPES

A typical example where the extensibility problem plays
a significant role is the implementation of extensible inter-
preters and compilers. A wrong design limits extensibility
or complicates at least the task of extending the system.
In this section we use algebraic datatypes to derive a pro-
gramming pattern for writing extensible interpreters. We
start with a small language consisting of variables, lambda
abstractions and lambda applications.

For declaring algebraic types we use the syntax introduced
by the programming language Pizza [24]. Here is an alge-
braic datatype defining abstract syntax tree nodes for our
example language:

class Term {
case Variable(String name);
case Apply(Term fn, Term arg);
case Lambda(String name, Term body);

}

The algebraic type Term declares constructors Variable,
Lambda and Apply for the three language constructs. We
now define a simple interpreter that evaluates terms based
on a call-by-value evaluation strategy with dynamic scop-
ing. Our Interpreter class contains a single method eval that
implements the operation for evaluating a term. Pattern
matching is used to distinguish the different variants of the
Term type in the eval method. Pizza uses switch statements
to perform pattern matching for objects of an algebraic type.

class Interpreter {
Term eval(Term term, Env env) {

switch (term) {
case Variable(String n):

return env.lookup(n);
case Apply(Term fn, Term arg):

switch (eval(fn, env)) {
case Lambda(String n, Term body):

return eval(body,
env.bind(n, eval(arg, env)));

default:
throw new Error(”function expected”);

}
default:

return term;
}

}
}

By using this approach, it is straightforward to add new op-
erations over type Term to the interpreter simply by defining
further methods. The following code adds a method that
transforms a term into a string:

class Formatter {
void toString(Term term) {

switch (term) {
case Variable(String n):

return n;
case Apply(Term fn, Term arg):

return ”(” + toString(fn) +
” ” + toString(arg) + ”)”;

case Lambda(String n, Term b):
return ”(” + n + ”–>” + toString(b) + ”)”;

default:
return ”<unknown>”;

}
}

}

We now come to the problem of adding new variants to
the Term datatype. This paper proposes extensible algebraic
datatypes with defaults to solve this problem. These types
enable us to define a new algebraic datatype by adding ad-
ditional variants to an existing algebraic type. Here is the
declaration of an extended Term datatype, which defines two
new variants Number and Plus:

class ExtendedTerm extends Term {
case Number(int val);
case Plus(ExtendedTerm left, ExtendedTerm right);

}

With this definition, we introduce a new algebraic datatype
ExtendedTerm consisting of five constructors Variable, Apply,
Lambda, Number and Plus. One can think of an extensible
algebraic datatype as an algebraic type with an implicit de-
fault case. Extending an extensible algebraic type means
refining this default case with new variants. For the exam-
ple above, the new type ExtendedTerm inherits all variants
from Term and defines two additional ones. With our refine-
ment notion, these two new variants are subsumed by the
implicit default case of Term. The next section shows that
this notion turns ExtendedTerm into a subtype of Term. This
subtype relationship is crucial for code reuse, since it allows
us to apply all functions over the original type to terms con-
taining nodes from the extended type. Since the existing
functions perform a pattern matching only over the origi-
nal variants, an extended variant is handled by the default
clause of the switch statement.

For our current eval method, the default clause simply re-
turns the same node, so numbers and additions would not

get evaluated by the eval operation. To support evaluation
of the new variants, we have to adapt our interpreter ac-
cordingly. We do this by subclassing the Interpreter class
and overriding the eval method.

class ExtendedInterpreter extends Interpreter {
Term eval(Term term, Env env) {

switch (term) {
case Plus(ExtendedTerm left, ExtendedTerm right):

return ExtendedTerm.Number(
evalNum(left, env) + evalNum(right, env));

default:
return super.eval(term, env);

}
}
int evalNum(ExtendedTerm term, Env env) {

switch (eval(term, env)) {
case Number(int val): return val;
default: throw new Error(”number expected”);

}
}

}

The example shows that we only have to provide an imple-
mentation for the Plus variant. For all the other variants, we
delegate the method call to the overridden method. Even
our freshly introduced Numbers are handled properly by the
overridden method.

In the new interpreter we make use of an additional
method evalNum which projects Number terms to integers
and throws an exception if the given term is not a Number.

These code fragments demonstrate the expressiveness of
extensible algebraic datatypes in the context of an object-
oriented language like Java. We are able to extend datatypes
and operations in a completely independent and uniform
way. An extension in one dimension does not enforce any
adaptations of the other dimension. Since in pattern match-
ing statements new variants are simply subsumed by the de-
fault clause, existing operations can be reused for extended
datatypes. Operations are defined locally in a single place.
The conventional object-oriented approach would distribute
a function definition over several classes, making it very dif-
ficult to understand the operation as a whole.

Our approach supports a modular organization of
datatypes and operations with an orthogonal extensibility
mechanism. With the technique presented in this section,
extended interpreters are derived out of existing ones simply
by subclassing. Only the differences have to be implemented
in subclasses. The rest is reused from the original system,
which itself is not touched at all. Roudier and Ichisugi re-
fer to this form of software development as programming by
difference [29].

3. PRINCIPLES OF EXTENSIBLE ALGE-
BRAIC DATATYPES

In this section, we review the type theoretic intuitions be-
hind extensible algebraic datatypes with defaults. Usually,
algebraic types are treated as sum types of variants. Classi-
cal sum types can be straightforwardly extended by adding
new variants. However, such an extension yields a subtype
relation which is the reverse of the extension relation, i.e.
extensions become supertypes of the original type. In the
following subsection, we review these concepts, and argue
that the induced subtyping relation is not useful for writing
extensible software. We then refine in Section 3.2 our model

A A B

B

A

1 2 1

Figure 1: Subtyping for extensible sums

of algebraic types to include default cases. This has the ef-
fect of reversing the original subtype relation, bringing it in
sync with the extension relation.

3.1 Extensible Sums
Algebraic datatypes can be modelled as sums of variants.

Each variant constitutes a new type, which is given by a tag
and a tuple of component types. For instance, consider the
declaration:

class A {
case A1(T1,1 x1,1, . . . , T1,r1 x1,r1);
case A2(T2,1 x2,1, . . . , T2,r2 x2,r2);

}

This defines a sum type A consisting of two variant types
A1 and A2, which have components T1,1 x1,1, . . . , T1,r1

x1,r1

and T2,1 x2,1, . . . , T2,r2 x2,r2 , respectively.
Let allcases(A) denote the set of all variants of the alge-

braic type A. For example, allcases(A) = {A1, A2}.
To describe extensions of algebraic types, we introduce a

partial order � between algebraic types. B � A holds if B

extends A by adding new variants to it. A priori the alge-
braic extension relation � is independent of the subtyping
relation.

In our setting � is defined explicitly by type declara-
tions. For example, the following code defines an algebraic
datatype B � A that extends A with an additional variant
B1:

class B extends A {
case B1(. . .);

}

The new type B is described by the set of its own vari-
ants owncases(B) = {B1} and the inherited variants
allcases(A). Thus, for the extended algebraic type B, we get
allcases(B) = allcases(A) ∪ owncases(B) = {A1, A2, B1}.

The standard typing rules for sum types [3] make A a sub-
type of B if all variants of A are also variants of B. In our
example, we have allcases(A) ⊆ allcases(B), so our origi-
nal type A is a subtype of the extended type B. Figure 1
summarizes the relationships between types. In this figure,
algebraic datatypes are depicted as boxes, variants are dis-
played as round boxes. Arrows highlight subtype relation-
ships. More specifically, outlined arrows represent algebraic
type extensions, whereas all other arrows connect variants
with the algebraic types to which they belong.

Unfortunately, the subtype relation between extensible
sum types is often the opposite of what one would like to
have in practice. Imagine we have the following Term type:

class Term {
case Number(int val);
case Plus(Term left, Term right);

}

Adding a new variant Ident would yield a new algebraic type
ExtendedTerm.

class ExtendedTerm extends Term {
case Ident(String name);

}

Since ExtendedTerm is a supertype of Term, we cannot rep-
resent the sum of two identifiers with the Plus variant. This
variant expects two Terms as its arguments, but the variant
Ident is not included in the Term type. In other words, ex-
tensible sums do not support open recursion in the definition
of a datatype. So the classical way of describing algebraic
types by a fixed set of variants does not provide extensibility
in the way we need it.

3.2 Extensible Algebraic Types with Defaults
In order to turn extended types into subtypes, we have to

keep the set of variants open for every extensible algebraic
type. We achieve this by adding a default variant to every
algebraic datatype, which subsumes all variants defined in
future extensions of the type. The set of all variants of an
extensible algebraic datatype is now given by the following
equation.

allcases(Y) = inherited(Y) ∪ owncases(Y) ∪ default(Y)

where owncases(Y) =
⋃

i

{Yi}

inherited(Y) =
⋃

Y �X,Y 6=X

owncases(X)

default(Y) =
⋃

Z�Y,Z 6=Y

owncases(Z)

That is, every extensible algebraic type Y is defined by
three disjoint variant sets owncases(Y), inherited(Y) and
default(Y). inherited(Y) includes all inherited variants
from the algebraic type Y is extending, owncases(Y) de-
notes Y ’s new cases, and default(Y) subsumes variants of
future extensions.

With this understanding, our variant sets for types A

and B from Section 3.1 now look like this: allcases(A) =
{A1, A2} ∪ default(A), and allcases(B) = {A1, A2, B1} ∪
default(B). Since default(A) captures B1 as well as
default(B), {B1} ∪ default(B) is a subset of default(A).
Therefore allcases(B) ⊆ allcases(A) and B is a subtype
of A.

One might be tempted to believe now that one has even
allcases(A) = allcases(B). This would identify types A and
B. But a closer look at the definition of default reveals that
default(B) only subsumes variants of extensions of B. Vari-
ants of any other extension of A are contained in default(A),
but not covered by default(B). This is illustrated by the fol-
lowing algebraic class declaration:

class C extends A {
case C1(. . .);

}

C is another extension of algebraic type A, which is com-
pletely orthogonal to B. It’s case C1 is not included in
default(B), but is an element of default(A). As a conse-
quence, {B1} ∪ default(B) is a proper subset of default(A),
and therefore the extended type B is a proper subtype of

A

2A1A 1B

BC

C 1

Figure 2: Subtyping for alternative extensions of

algebraic types

A. C is a proper subtype of A for the same reasons, but the
types B and C are incompatible.

The subtype relationships of our example are illustrated
in Figure 2. Again, boxes represent extensible algebraic
datatypes, round boxes represent variants. Subtype rela-
tionships are depicted with arrows. Extending an algebraic
datatype means creating a new type which is a subtype of
the old one and which inherits all the variants of the old
one. Furthermore this new type may also define additional
variants. Dashed arrows connect inherited variants with the
algebraic type to which they get inherited.

With our approach, extended algebraic types are subtypes
of the types they extend. Therefore existing functions can be
applied to values of extended types. New variants are sim-
ply subsumed by the default clause of every pattern match-
ing construct. Another interesting observation can be made
when looking at two different extensions of a single alge-
braic type (like B and C in the example above). They are
incompatible; neither of them is a supertype of the other
one. This separation of different extensions is a direct con-
sequence of single-inheritance: an extensible algebraic type
can only extend a single other algebraic datatype.

Extending the same type more than once yields extended
algebraic types that share some variants, but that are in-
compatible to each other. Of course, it is also possible to
extend an extension of an algebraic type further:

class D extends B {
case D1(. . .);

}

Here, the algebraic type D extends B and defines an ad-
ditional variant D1. Figure 3 shows the resulting subtype
relations.

3.3 Compilation of Extensible Algebraic
Types with Defaults

The previous section pointed out that extensible algebraic
datatypes with defaults are subject to single-inheritance; i.e.
an algebraic type can only extend a single other algebraic
datatype. This restriction enables an efficient compilation
of pattern matching for extensible algebraic types using the
conventional technique for sealed datatypes. The conven-
tional compilation scheme assigns unique tags to every vari-
ant of an algebraic type. Pattern matching can then simply
be implemented with a switch over all tags.

For extensible algebraic datatypes with defaults, variants
are tagged with subsequent numbers starting with the num-
ber which is equivalent to the number of inherited variants.

A

B

D

A 2 B 1A 1 D 1

Figure 3: Subtyping for linear extensions of alge-

braic types

By doing this, we never tag two variants of any algebraic
type with the same number. But we observe that two dif-
ferent extensions of an algebraic type (like B and C in Sec-
tion 3.2) may share the same tags. Since two extensions of
a single algebraic datatype always yield incompatible types,
this issue usually does not cause any problems. Only pattern
matching statements that mix variants of two incompatible
extensions have to be split up in two separate pattern match-
ing statements together with a dynamic typecheck that se-
lects one of the two statements. We implemented an effi-
cient version of this compilation scheme for our extensible
Java compiler JaCo [33].

4. VISITOR ENCODING
In object-oriented languages, algebraic dataypes can be

encoded with the visitor design pattern [14]. Krishnamurthi,
Felleisen and Friedman extended this design pattern to en-
able extensibility [19]. In this section, we take their ap-
proach even further by adding support for default cases. Our
programming pattern models extensible algebraic types in
a purely object-oriented language (with some small differ-
ences which are discussed at the end of this section). We
start with a review of the standard visitor pattern. All code
fragments of this section are written in Java.

4.1 Design PatternVisitor

The visitor design pattern models algebraic types with
abstract classes. The variants of an algebraic type are rep-
resented by subclasses which define the fields of the variant
and a corresponding constructor. Operations are encapsu-
lated in visitor objects. A visitor object contains an over-
loaded method visit for every variant, which implements the
operation specifically for this variant. To be able to apply
a visitor, every variant defines an accept method. These
methods take a visitor and invoke the appropriate visitor
method. Here is a visitor framework for the example from
Section 2. We only show the code for variant Variable. The
other variants of the Term type are encoded analogously.

interface Visitor {
void visit(Variable term);
void visit(Apply term);
void visit(Lambda term);

}

abstract class Term {
abstract void accept(Visitor v);

}
class Variable extends Term {

String name;
Variable(String name) { this.name = name; }
void accept(Visitor v) { v.visit(this); }

}
...

Concrete operations implement the visitor interface and pro-
vide a mechanism for passing arguments and returning re-
sults. Various solutions are possible here. We present a
technique where for every visitor invocation a new visitor
object gets created. The visitor constructor stores the argu-
ments in fields inside the visitor. There is also a public field
res in which the result of an operation is stored. The follow-
ing implementation of Eval uses an anonymous visitor in the
visit(Apply term) method for applying a lambda abstraction
to an argument. Since we refer to the formal parameter term
from inside the anonymous class, Java requires us to mark
this parameter as final.

class Eval implements Visitor {
private Env env;
public Term res;
Eval(Env env) { this.env = env; }
void visit(Variable term) {

res = term;
}
void visit(Lambda term) {

res = term;
}
void visit(final Apply term) {

Eval eval = new Eval(env);
term.fn.accept(eval);
eval.res.accept(new Visitor() {

void visit(Variable t) { throw new Error(); }
void visit(Apply t) { throw new Error(); }
void visit(Lambda t) {

Eval evArg=new Eval(env);
term.arg.accept(evArg);
Eval evFun=new Eval(env.bind(t.x, evArg.res));
t.body.accept(evFun);
res = evFun.res;

}
});

}
}

The Visitor interface describes all the datatype’s variants.
Since this interface is fixed, it this not possible to add new
variants. On the other side, adding new operations is easy
by creating a new visitor implementation.

4.2 Extensible Visitors with Default Cases
We now show how to derive an extensible visitor design

pattern with default cases. Operations with default cases
can be applied to extended algebraic datatypes. They pro-
vide a generic treatment for variants of any future datatype
extension. In our visitor framework we model default cases
with an additional visit method in the Visitor interface.

interface Visitor {
void visit(Term term);
void visit(Variable term);
void visit(Apply term);
void visit(Lambda term);

}

In the code fragments of this section, new code is highlighted
in italics.

The Term class now defines a generic implementation of
the method accept which calls the default case of the visitor.
Like in the standard visitor pattern, variants override this
method by calling their own visit method.

abstract class Term {
void accept(Visitor v) { v.visit(this); }

}
class Variable extends Term {

String name;
Variable(String name) { this.name = name; }
void accept(Visitor v) { v.visit(this); }

}
...

Note that even though the accept methods of class Term and
Variable are syntactically identical, a different visit method
is called.

So far, except for the additional default case of visitors
and the default implementation of the accept method, set-
ting up the extensible visitor framework was identical to the
standard pattern.

Now, we look into the implementation of concrete visi-
tors. Since we want visitors to be extensible, it should be
possible to subclass a visitor in order to override existing
methods or to add further visit methods for new variants.
In the standard visitor pattern, we created a new visitor for
every visitor application. For example, in the code above,
we implemented a recursive call of the visitor Eval with the
following two lines:

Eval eval = new Eval(env);
term.fn.accept(eval);

For extensible visitors, this hard-coded visitor creation does
not work anymore, since it does not consider the fact that
we might use an extension of Eval. We use instead a scheme
first proposed by Krishnamurti, Felleisen and Friedman [19]:
Every visitor object has to provide factory methods [14] for
creating all non-anonymous visitors that are being used in
the visitor object. Extensions are supposed to override these
factory methods.

Here is an extensible visitor that implements our Eval op-
eration. Compared to the version from the previous sec-
tion, we only added the default visit method and a factory
method newEval for creating instances of Eval. This factory
method gets invoked in the recursive operation call of the
visit method for lambda applications.

class Eval implements Visitor {
protected Env env;
public Term res;
Eval(Env env) { this.env = env; }
Eval newEval(Env env) { return new Eval(env); }
void visit(Term term) { res = term; }
void visit(Variable term) { res = term; }
void visit(Lambda term) { res = term; }
void visit(final Apply term) {

Eval eval = newEval(env);
term.fn.accept(eval);
eval.res.accept(new Visitor() {

void visit(Term t) {
throw new Error(”function expected”);

}
void visit(Variable t) {

throw new Error(”function expected”);
}
void visit(Apply t) {

throw new Error(”function expected”);
}

void visit(Lambda t) {
Eval evArg=newEval(env);
term.arg.accept(evArg);
Eval evFun=newEval(env.bind(t.x, evArg.res));
t.body.accept(evFun);
res = evFun.res;

}
});

}
}

Next, we are going to extend the system by adding new
variants Number and Plus. We do this by first creating an
abstract intermediate class XTerm which extends the old
Term class. The new variant classes are direct subclasses of
XTerm. With this approach, we have a type XTerm which
subsumes our new variants. Now we have to update the Vis-
itor interface accordingly. The extended XVisitor interface
inherits all methods from the original Visitor interface and
defines two additional visit methods for the Number and Plus
variant. The following code shows that there is also an ex-
tra default visit method for XTerms. We explain later how
the default methods for Term and XTerm variants are going
to be used. Before, we focus our attention again on class
XTerm. Like class Term, this class defines an accept method,
which, this time, takes an XVisitor and calls the correspond-
ing default case. Note that this method does not override
the inherited accept method. The new accept simply over-
loads the existing one. As before, the variants override the
new accept method in order to call their own specialized vis-
itor method. The following code fragment summarizes the
framework we described. Except for the additional extends
clauses, this code for extending an algebraic type is com-
pletely analogous to the one for defining a new algebraic
type.

interface XVisitor extends Visitor {
void visit(XTerm term);
void visit(Number term);
void visit(Plus term);

}
abstract class XTerm extends Term {

void accept(XVisitor v) {
v.visit(this);

}
}
class Number extends XTerm {

int value;
Number(int value) { this.value = value; }
void accept(XVisitor v) { v.visit(this); }

}
...

We quickly verify that it is possible to apply an existing
visitor like Eval to a term structure containing variants of
the extended type. Since XTerm and variants of XTerm do
not override the accept method of Term, the default visit
method of the visitor gets invoked as desired in this case.

The rest of this section provides the last missing piece
in the puzzle by looking at extensions of existing visitor
classes like Eval. Here, we have to make sure that the visit
methods of extended variants are called, rather than the
default method of the original visitor. As explained before,
for variants of extended types we automatically get into the
original default method, so why not refining the dispatch
here in order to incorporate the visitor’s new visit methods?
We do this by overriding the default visit method in the
extended visitor. The overriding method performs a new

dispatch with a more refined Term type. For this purpose, we
have to insert a type cast to XTerm that tells the typechecker
that our class is going to extend the Eval visitor specifically
for XTerms. We defer a discussion about this type cast until
the full pattern is explained.

Since we override the default visit(Term term) method
from class Visitor, we have to provide a new default
visit(XTerm term) method to keep the visitor open for fur-
ther extensions. In most cases, this new method will just
refer to the former default method via super.visit.

class XEval extends Eval implements XVisitor {
void visit(Term term) {

((XTerm)term).accept(this);
}
void visit(XTerm term) { super.visit(term); }
void visit(Number term) { super.visit(term); }
void visit(Plus term) { ... }

}

Let us trace back the different method calls for the follow-
ing visitor application to verify that our extended visitor is
behaving in the desired way.

Term term = new Plus(new Number(1), new Number(2));
term.accept(new XEval(env));

The initial accept invocation refers to the accept method of
class Term, since the dynamic type of term is Plus which
does not override this accept method. Method accept of
class Term calls the visit(Term term) method of our visi-
tor. Here, the argument term gets cast to XTerm and a
new dispatch on accept is performed. With Java’s strategy
for finding the best overloaded method, we refer to method
accept(XVisitor v) this time. But now, this method is over-
ridden in Plus, the dynamic type of our term, and we au-
tomatically end up in the visit method for Plus. Figure 4
illustrates the full sequence of method calls for the given
visitor application.

A full implementation of the extended Eval visitor is given
below. We used a slightly different approach for implement-
ing the evaluation of Plus variants, compared to the version
with extensible algebraic datatypes in Section 2.

class XEval extends Eval implements XVisitor {
XEval(Env env) { super(env); }
Eval newEval(Env env) { return new XEval(env); }
void visit(Term term) {

((XTerm)term).accept(this);
}
void visit(XTerm term) { super.visit(term); }
void visit(Number term) { super.visit(term); }
void visit(Plus term) {

class EvalNum implements XVisitor {
int res = 0;
void visit(Term t) { throw new Error(); }
...
void visit(XTerm t) { throw new Error(); }
void visit(Plus t) { throw new Error(); }
void visit(Number t) { res += t.value; }

}
EvalNum evalNum = new EvalNum();
Eval eval = newEval(env);
term.left.accept(eval); eval.res.accept(evalNum);
eval = newEval(env);
term.right.accept(eval); eval.res.accept(evalNum);
res = new Number(evalNum.res);

}
}

class Eval implements Visitor {
 void visit(Term term) {
 ...
 }

}
 ...

class XEval extends Eval implements XVisitor {
 void visit(Term term) {
 ((XTerm)term).accept(this);
 }
 void visit(XTerm term) {
 ...
 }
 void visit(Plus term) {
 ...
 }
 ...
}

abstract class Term {
 void accept(Visitor v) {
 v.visit(this);
 }
}

abstract class XTerm extends Term {
 void accept(XVisitor v) {
 v.visit(this);
 }
}

class Plus extends XTerm {
 void accept(XVisitor v) {
 v.visit(this);
 }

}

term.accept(new XEval(env));

Figure 4: Sequence of method calls for a visitor invocation

With the protocol presented in this section, it is possible
to implement extensible datatypes and visitors in an object-
oriented language. Datatype extensions do not require any
adaptations for existing visitors. They provide a default
case for variants that are added later on. It is possible to
extend existing visitors to modify the treatment of existing
variants, but also to refine the default case for a new set
of variants. This approach completely decouples datatype
extensions from extensions of operations.

4.3 Extensible Algebraic Types in Compari-
son

In contrast to the source-level extensible algebraic types,
the extensible visitor pattern opens the possibility of run-
time errors because of the type cast in the extended concrete
visitor class XEval. For programs adhering to the design pat-
tern, this type cast only fails, if we try to apply an extended
visitor to an incompatible datatype extension. For instance,
if we would apply XEval to variants of another extension of
Term, we would get a runtime error. XEval only handles
variants of Term, XTerm, and any extension of XTerm. So, if
we only extend a datatype linearly without introducing any
branches, the type cast will never fail at runtime.

Pattern matching dispatch differs slightly between exten-
sible algebraic types and extensible visitors. With the exten-
sible visitor technique, the visit method for variants of Term
is found after one double-dispatch. For variants of XTerm we
need two double-dispatches until the proper visit method of
the extended visitor is called. In general, for variants of the
n-th datatype extension, we need n + 1 double-dispatches.

Now, let us look back to the extensible algebraic
datatypes. Here, we had an analogous situation. Every ex-
tension of an operation was implemented by overriding the
old operation. The new operation matched against the new
variants and forwarded the call to the old operation for the
existing variants. So, for n extensions, we need in total n+1
single method dispatches and n + 1 pattern matching state-
ments. Only the order in which we dispatched on variants
is now reversed. In the solution with extensible algebraic
types, the variants from the latest extension are matched

first. But since extensible algebraic datatypes can be used
much more flexibly in practice, we do not need to observe
a special implementation pattern, like the one presented in
Section 2.

This is indeed one of the main weaknesses of the de-
scribed design pattern. It is complicated to implement the
full protocol by hand. Furthermore, even in the presence
of anonymous local classes, visitors are rather heavy-weight
constructs, imposing a lot of implementation work on the
programmer.

For this reason, we decided to have direct language sup-
port for extensible algebraic datatypes in Java. This also
allowed us to implement the more efficient pattern match-
ing scheme that was briefly introduced in Section 3.3.

4.4 Extensibility Issues
Extensible algebraic datatypes as well as extensible visi-

tors achieve simultaneous extensibility of types and opera-
tions. For both approaches, the main limitation is that we
can extend a system only in a linear way, where each new ex-
tension explicitly refers to the previous one by name. Thus,
it is not possible to merge orthogonal extensions.

The restriction to linear extensions is explicit in the ex-
tensible visitor approach, where a type cast fixes a visitor
extension to be used only for a specific extension branch.
The switch statement for extensible algebraic types does not
have this restriction. It allows pattern matching against any
variant of an extended type. For instance, in the following
switch statement, we have a switch selector of type Term,
but we can also match against variants of any extension of
Term.

Term eval(Term term, Env env) {
switch (term) {

case Variable(String name): ...
case Number(int val): ...
default: ...

}
}

This flexibility can be seen as an advantage or a disadvan-
tage. One might regret the loss of type security, because

it is now possible to apply the eval method to a datatype
extension of Term for which it was not designed. But of
course, one can model the behaviour of extensible visitors
with the extensible algebraic type approach by introducing
an explicit type cast.

Term eval(Term term, Env env) {
switch ((ExtendedTerm)term) {

...
}

}

In practice, we did not experience any problems with this
issue. For the applications in which we used extensible al-
gebraic types, namely extensible compilers and interpreters,
we never happened to use two alternative extensions of a sin-
gle algebraic datatype simultaneously. We also experienced
that most extensions of our extensible compiler could not
have been formulated in an orthogonal way. Therefore, the
linearity restriction did not really limit the way we extended
our system.

We emphasized already that in our approach, extensibility
in one dimension does not require any adaptations in the
other dimension due to the presence of default cases. This
improves “as is” code reuse significantly, as Section 5.3 will
show. On the other hand, the type system does not detect
cases where an operation needs a refinement.

5. EXPERIENCE

5.1 Extensible Compilers
Originally, the work presented in this paper was motivated

by a project which aimed at implementing an extensible Java
compiler [33, 34]. At that time and still today, it was very
popular to experiment with various language extensions of
Java. Unfortunately, implementing these language exten-
sions turned out to be a very difficult and time consuming
task, since a suitable compiler infrastructure was missing.
But even if a compiler prototype was available, implemen-
tation of new language features was rather done in an ad-hoc
fashion by hacking a copy of the existing compiler. By doing
this, the implementation of the new features and the original
version get mixed. Thus, the extended compiler evolves into
an independent system that has to be maintained separately.

Opposed to this destructive reuse of source code, we devel-
oped a framework where extended compilers reuse the com-
ponents of their predecessors, and define new or extended
components without touching any predecessor code. Ex-
tended compilers are derived out of existing ones simply by
subclassing. Only the differences have to be implemented
in subclasses. Thus, all extended compilers that are de-
rived from an existing base compiler share the components
of this base compiler. With this approach we created a com-
piler infrastructure which provides a basis for maintaining
all compilers together.

One of the main difficulties of the implementation of this
compiler was the representation of abstract syntax trees in
an extensible fashion. The work with EspressoGrinder [23,
24, 27], a Java compiler with a rigorous object-oriented ar-
chitecture, demonstrated the disadvantages of the classical
object-oriented approach for implementing syntax trees and
compiler phases. With an object-oriented approach, a com-
piler phase gets distributed over the whole code. This makes
it very difficult to understand but also to extend. Further-

more, adding new passes is a pain, as explained in Sec-
tion 1.1. Standard visitors do not provide an ideal solution
either, because they do not allow extensibility for variants.
They also tend to be rather heavy-weight syntactically.

Extensible algebraic datatypes offered what we needed:
extensibility of the datatype itself, extensibility of opera-
tions and a very light-weight pattern matching construct
which even supports nested patterns. They allowed us to
apply a functional programming style in an object-oriented
language. Object-oriented features were mainly used for
providing extensibility by subclassing and overriding. Fur-
thermore they were used to implement an extensible com-
ponent framework for gluing the different components of the
compiler together in a flexible and extensible manner.

5.2 JaCo: an Extensible Java Compiler
The implementation of our extensible Java compiler

JaCo [32] makes extensive use of extensible algebraic
datatypes. Since JaCo is a plain Java 2 compiler without
support for extensible algebraic datatypes, it is not possi-
ble to compile JaCo with itself. Instead, JaCo is compiled
with an extension of itself, supporting extensible algebraic
types. This complicated the bootstrapping process quite a
bit. The first version of JaCo was implemented in Pizza,
which already offers algebraic types. We then modified the
Pizza compiler to allow a very restricted form of extensible
algebraic types. With this modified Pizza compiler we ex-
tended JaCo so that this extension supported our restricted
form of extensible algebraic types introduced in Pizza. After
this step, we were able to compile JaCo with an extension of
itself and we finally implemented full support for extensible
algebraic types as described in [34].

Throughout the last two years we utilized our extensible
Java compiler successfully in various projects. Several lan-
guage extensions have been implemented and are still being
maintained. Among the implementations is a compiler for
Java with synchronous active objects, proposed by Petit-
pierre [26]. Another extension introduces Büchi and Weck’s
compound types together with type aliases [2]. In addition,
we added operator overloading to the Java programming
language in the style proposed by Gosling [17]. Eugster,
Guerraoui and Damm implemented a domain specific lan-
guage extension supporting publish/subscribe primitives on
top of JaCo [8]. A rather exotic extension of JaCo is an im-
plementation of a small language based on join calculus [12].
It replaces the syntactic analyzer pass with a full compiler
for join calculus that generates a Java syntax tree as out-
put. This tree is then fed into the remaining Java compiler
to generate Java bytecodes. In this extension, JaCo is basi-
cally used as a backend for a compiler of a language, which
has nothing in common with Java.

During the implementation of the extensions mentioned
before, we did not have to modify the base compiler a single
time. Its architecture was open enough to support all sorts
of extensions we needed so far. Changes of the base compiler
were all related to minor modifications in the specification
of the Java programming language or to bugs found in the
compiler. These changes can usually be elaborated in such
a way that binary compatibility of Java classfiles is not bro-
ken. As a consequence, all compilers derived from the base
compiler benefit immediately from the changes, since they
inherit them. Because of Java’s late binding mechanism it
is not even necessary to recompile derived compilers.

JaCo PiCo CJavaC SJavaC
1. Lines of code 25590 5462 6972 2335

2. Classes 134 48 58 34
3. Algebraic types 5 2 3 1
4. Algebraic type extensions 0 1 3 1

5. Visitors 135 46 54 13
6. Visitor extensions 4 17 39 11
7. Visitors reused “as is” – 118 96 124

8. Visitors for extended types in JaCo – 63 108 63
9. Visitors for extended types – 30 54 11

10. Visitor extensions for extended types – 14 39 10
11. Visitors for extended types reused “as is” – 49 (78%) 69 (64%) 53 (84%)

Table 1: Statistics for the extensible compiler JaCo and derived compilers

5.3 Code Reuse in JaCo Extensions
Table 1 shows some data regarding the base compiler JaCo

and three compiler extensions: PiCo, written by Zenger [33],
extends JaCo by adding extensible algebraic types, CJavaC,
written by Zermatten [35], extends JaCo with compound
types and type aliases, and SJavaC, written by Cavin [4], is
the synchronous active objects compiler.

The first row in Table 1 shows the code size of the base
compiler and all extensions (given in lines of code including
comments and whitespaces). These data show that all ex-
tensions reuse large parts of the base compiler unchanged.
The next three rows state the number of classes, algebraic
types and algebraic type extensions of the four compilers
under consideration.

The base compiler JaCo contains five algebraic types.
These types are used to represent the abstract syntax, sym-
bols, types and constants. Furthermore, the implementation
of the backend uses items to enable delayed code genera-
tion [31]. Two of the three extensions of JaCo extend only
the abstract syntax tree type. CJavaC also extends the sym-
bol and the type representation.

The data presented in the following rows are supposed
to give an indication how the different compiler extensions
benefit from the use of extensible algebraic types. The row
labelled Visitors gives the number of methods that contain
at least one pattern matching construct. This analogy be-
tween visitors and methods is a relatively conservative ap-
proximation, because it counts methods with multiple switch
statements as single visitors. The row labelled Visitor exten-
sions shows the number of methods that override a method
with a pattern matching construct in a supertype. The row
labelled Visitors reused “as is” lists the number of visitors
in the base compiler that are reused in an extension with-
out being overridden. This number is for each extension the
difference between the number of visitors in JaCo (135) and
the number in row 6.

For instance, the PiCo extension defines 46 visitors, but
only 17 of them override one of the 135 visitors of JaCo.
So PiCo incorporates 118 visitors from the base compiler
without changing them.

Most derived compilers extend only some of the algebraic
types in JaCo, whereas others are left unchanged. To assess
the usefulness of default cases in visitors, we need to disre-
gard algebraic data types which are unchanged. Line 8 of
Table 1 shows the number of visitors in the base compiler
that match over types which are subsequently extended in

the derived compiler. Line 9 shows the number of visitors
in the derived compiler which match over extended types.
Line 10 gives the number of methods that override a visitor
method for an extended type. Line 11 gives the difference
between lines 8 and 10, and therefore shows the number and
percentage of visitors for extended types that are reused “as
is”. Note that this is a lower bound for code reuse since the
data does not show whether a method counted in line 10
overrides a method in the base compiler (counted in line 8)
or a method defined in the derived compiler (counted in
line 9).

The data show that PiCo defines 30 visitors for the ex-
tended abstract syntax tree type, 14 of them override one
of the 63 tree visitors of the base system. So more than
75% of the tree visitors are reused without refining their de-
fault case for the new variants. For CJavaC we do not have
to refine the default case of more than 63% of visitors for
extended types. For SJavaC, the numbers are even better.
This compiler reuses 84% of the tree visitors from the base
system without adapting them.

These statistics indicate that for our extensible compiler
project, operations with default cases help to improve the
“as is” code reuse enormously. Without default cases we
would have to update every single operation if the corre-
sponding datatype was extended.

6. RELATED WORK
For the language ML, several proposals have been made

to support extensibility for algebraic types. With Garrigue’s
polymorphic variants, an algebraic type constructor does not
belong to any algebraic datatype in particular [15]. So there
is no need anymore to define an algebraic type before using
a specific variant. Type inference is used to infer admissible
variants according to their use. With polymorphic variants,
a programming style like the one presented in this paper
is possible, but results in less precise types. For functions
that are defined by a pattern matching clause with a de-
fault case, it is possible to pass any existing variant — not
necessarily one, the function was intended for. This is due
to the fact that it is not possible to declare to which alge-
braic types a variant constructor belongs. In [16] Garrigue
presents an alternative solution to the extensibility problem
based on polymorphic variants. This solution has more pre-
cise types, but does not provide default cases for operations.
It supports a modular organization of datatype extensions.
But when combining two datatypes, it is necessary to re-

define every function in order to forward the call to one of
the previous implementations. OCaml supports polymor-
phic variants from version 3.00 on [20].

The proposal for ML2000 contains a generalization of
SML’s exception types [1]. These extensible types are intro-
duced in order to tag objects to support runtime dispatch
and type-safe downcasting. Therefore they can also be seen
as an extensible form of algebraic types. An extensible type
is described by an initial variant constructor. Extending this
type means refining the variant. The extended variant is a
subtype of the previous one. In a pattern matching con-
struct it is possible to match against variants that have a
common supertype, thus giving the programmer the ability
to define a typecase facility. It is possible to implement our
programming protocol with these types, but ML2000’s ex-
tensible types provide a slightly weaker typing, since they
do not support deriving extended datatypes from existing
types. It is only possible to add new variants to an existing
type by specializing a variant. So, a type like ExtendedTerm
from Section 2 could not be formulated. ML2000’s extensi-
ble types are a refinement of the Object ML design of Reppy
and Riecke [28].

In the literature, extensibility of algebraic datatypes was
mostly discussed in the context of building modular inter-
preters in functional programming languages. Existing ap-
proaches like [21] and [9] allow a restricted form of extensi-
bility: algebraic types are extensible, but the final datatype
has to be closed before being used. Furthermore, extensions
of datatypes always require updates of all existing functions
to support the new variants due to the lack of default cases
in pattern matching constructs. On the other hand, these
approaches support the combination of orthogonal exten-
sions. Basically the same holds for mixin modules proposed
by Duggan and Sourelis [7].

Open classes, proposed by Clifton, Leavens, Chambers
and Millstein, offer extensibility with default cases [5] for
the object-oriented approach. Open classes allow the user to
add new methods to existing classes without modifying ex-
isting code and without breaking encapsulation properties.
With open classes, a datatype is modelled by an abstract su-
perclass, variants are concrete subclasses. New operations
are specified as external top-level methods. The default case
is given in the form of a method for the abstract superclass.
If a specific behaviour for a variant has to be provided, this
method has to be overridden for the variant. With open
classes, we get extensibility for data and operations where
extensions in one dimension do not require modifications
of the other one. But in practice, open classes suffer from
several drawbacks. Whereas a new operation is typically
defined as an external top-level method in a single compila-
tion unit, extending or modifying an existing operation can
only be done by explicitly subclassing all affected variants
and overriding the corresponding methods. This leads to
an inconsistent distribution of code, making it very difficult
to group related operations and to separate unrelated ones.
Furthermore, extending or modifying an operation always
entails extensions of the datatype. This restricts and com-
plicates reuse. For instance, accessing an extended operation
in one context and using the original operation in another
one cannot be implemented in a straightforward way.

Languages equipped with multiple dispatch offer this
functionality. For instance, MultiJava introduces multi-
methods for Java [5]. For type-safety, MultiJava requires

“default implementations” for generic methods as well.
Therefore, a programming protocol similar to ours could be
used to solve the extensibility problem. On the other hand,
multimethods do not support deep pattern matching, and
they are syntactically more heavy-weight and less flexible to
apply than our switch statements. In the context of Java it is
furthermore difficult to compile multiple dispatch efficiently.
Dispatch costs are linear with the number of methods that
dynamically overload a method.

Palsberg and Jay’s Generic Visitor design pattern offers
a way to completely decouple datatype and function defi-
nitions [25]. Therefore, their generic visitors are very flexi-
ble to use and to extend. Since generic visitors rely on re-
flective capabilities of the underlying system, this approach
lacks static type-safety and is subject to substantial runtime
penalties.

7. CONCLUSION
We classified solutions of the extensibility problem ac-

cording to the degree of possible code reuse. The plain
object-oriented and functional solution allow extensibility
of datatypes and operations only through source code mod-
ifications. With subclassing and by using type casts, exten-
sions are possible without touching source code. But de-
pending on the approach, an extension on the datatype side
entails extensions of all existing operations or vice versa. A
solution for the extensibility problem in which operations
provide a default case that handles future extensions does
not require adaptations of operations for new datatype vari-
ants. We introduced extensible algebraic datatypes that fa-
cilitate a simple programming protocol supporting exten-
sibility with default cases. Extensible algebraic datatypes
allow us to freely extend datatypes and operations simul-
taneously and independently of each other. We presented
a novel design pattern for extensible visitors with default
cases, showing that it is possible to encode a similar pro-
gramming protocol in an object-oriented language. This
pattern does not rely on additional language features, but
is much more complicated to implement by hand.

Based on extensible algebraic datatypes, we designed and
implemented an extensible Java compiler. For experiment-
ing with programming language extensions, such an extensi-
ble compiler is essential for rapidly implementing language
extensions. Extending this compiler does not require any
source code modifications. Extended compilers evolve out
of existing ones simply by subclassing. Since they share most
components with their predecessors, our technique provides
a basis for maintaining the systems together. Statistics show
that extended compilers reuse large parts of the base com-
piler unchanged. An extended compiler reuses on the aver-
age 75% of the operations on extended algebraic types from
the base compiler without any adaptations. This number
shows that default cases contribute significantly to the level
of “as is” code reuse. In the last two years our extensible
compiler framework was used in various other projects to
quickly implement new language extensions of Java.

Acknowledgments
Special thanks to Christoph Zenger and Michel Schinz for
numerous helpful discussions. Furthermore we thank Stew-
art Itzstein, David Cavin, Stephane Zermatten, Yacine
Saidji and Christian Damm. They implemented extensions
of JaCo and provided feedback on the implementation.

8. REFERENCES

[1] A. Appel, L. Cardelli, K. Crary, K. Fisher, C. Gunter,
R. Harper, X. Leroy, M. Lillibridge, D. B. MacQueen,
J. Mitchell, G. Morrisett, J. H. Reppy, J. G. Riecke,
Z. Shao, and C. A. Stone. Principles and preliminary
design for ML2000, March 1999.

[2] M. Büchi and W. Weck. Compound types for Java. In
Proc. of OOPSLA’98, pages 362–373, October 1998.

[3] L. Cardelli and P. Wegner. On understanding types,
data abstraction, and polymorphism. Computing
Surveys, 17(4):471–522, December 1985.

[4] D. Cavin. Synchronous Java compiler. Projet de

semestre. École Polytechnique Fédérale de Lausanne,
Switzerland, February 2000.

[5] C. Clifton, G. T. Leavens, C. Chambers, and
T. Millstein. MultiJava: Modular open classes and
symmetric multiple dispatch for java. In Proceedings
of OOPSLA 2000, volume 35, pages 130–145, October
2000.

[6] W. R. Cook. Object-oriented programming versus
abstract data types. In Foundations of
Object-Oriented Languages, REX School/Workshop,
Noordwijkerhout, The Netherlands, 1990, volume 489,
pages 151–178. Springer-Verlag, New York, NY, 1991.

[7] D. Duggan and C. Sourelis. Mixin modules. In
Proceedings of the 1996 ACM SIGPLAN International
Conference on Functional Programming, pages
262–273, Philadelphia, Pennsylvania, 24–26 May 1996.

[8] P. Eugster, R. Guerraoui, and C. Damm. On objects
and events. In Proceedings for OOPSLA 2001, Tampa
Bay, Florida, October 2001.

[9] R. B. Findler. Modular abstract interpreters.
Unpublished manuscript, Carnegie Mellon University,
June 1995.

[10] R. B. Findler and M. Flatt. Modular object-oriented
programming with units and mixins. In Proceedings of
the ACM SIGPLAN International Conference on
Functional Programming (ICFP ’98), volume 34(1),
pages 94–104, 1999.

[11] M. Flatt. Programming Languages for Reusable
Software Components. PhD thesis, Rice University,
Department of Computer Science, June 1999.

[12] C. Fournet and G. Gonthier. The reflexive chemical
abstract machine and the join-calculus. In Proc. 23rd
ACM Symposium on Principles of Programming
Languages, pages 372–385, Jan. 1996.

[13] E. Gagnon and L. J. Hendren. SableCC – an
object-oriented compiler framework. In Proceedings of
TOOLS 1998, August 1998.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns : Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994.

[15] J. Garrigue. Programming with polymorphic variants.
In ML Workshop, September 1998.

[16] J. Garrigue. Code reuse through polymorphic
variants. In Workshop on Foundations of Software
Engineering, Sasaguri, Japan, November 2000.

[17] J. Gosling. The evolution of numerical computing in
Java. Sun Microsystems Laboratories.
http://java.sun.com/people/jag/FP.html.

[18] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java

Language Specification. Java Series, Sun Microsystems,
second edition, 2000. ISBN 0-201-31008-2.

[19] S. Krishnamurthi, M. Felleisen, and D. Friedman.
Synthesizing object-oriented and functional design to
promote re-use. In European Conference on
Object-Oriented Programming, pages 91–113, 1998.

[20] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and
J. Vouillon. The Objective Caml system release 3.00,
documentation and user’s manual, April 2000.

[21] S. Liang, P. Hudak, and M. Jones. Monad
transformers and modular interpreters. In Symposium
on Principles of Programming Languages, pages
333–343, January 1992.

[22] P. Mäenpää and K. Oksanen. Extensible algebraic
datatypes through prototypes and subtyping.
Unpublished, 2000.

[23] M. Odersky and M. Philippsen. EspressoGrinder
distribution. http://wwwipd.ira.uka.de/∼espresso,
Dec. 1995.

[24] M. Odersky and P. Wadler. Pizza into Java:
Translating theory into practice. In Proc. 24th ACM
Symposium on Principles of Programming Languages,
pages 146–159, January 1997.

[25] J. Palsberg and C. B. Jay. The essence of the visitor
pattern. Technical Report 5, University of Technology,
Sydney, 1997.

[26] C. Petitpierre. A case for synchronous objects in

compound-bound architectures. Unpublished. École
Polytechnique Fédérale de Lausanne, 2000.

[27] M. Philippsen and M. Zenger. JavaParty – transparent
remote objects in Java. Concurrency: Practice and
experience, 9(11):1225–1242, November 1998.

[28] J. Reppy and J. Riecke. Simple objects for Standard
ML. In Proc. of the ACM SIGPLAN ’96 Conference
on Programming Language Design and
Implementation, pages 171–180, Philadelphia,
Pennsylvania, 1996.

[29] Y. Roudier and Y. Ichisugi. Mixin composition
strategies for the modular implementation of aspect
weaving — the EPP preprocessor and it’s module
description language. In Aspect Oriented Programming
Workshop at ICSE’98, April 1998.

[30] P. Wadler and et al. The expression problem.
Discussion on the Java-Genericity mailing list,
December 1998.

[31] N. Wirth. Compiler Construction. Addison-Wesley,
1996.

[32] M. Zenger. JaCo distribution.
http://lampwww.epfl.ch/jaco/. University of South
Australia, Adelaide, November 1998.

[33] M. Zenger. Erweiterbare Übersetzer. Master’s thesis,
University of Karlsruhe, August 1998.

[34] M. Zenger and M. Odersky. Implementing extensible
compilers. In Proceedings of the ECOOP 2001
Workshop on Multiparadigm Programming with
Object-Oriented Languages, pages 61–80, Budapest,
Hungary, June 2001.

[35] S. Zermatten. Compound Types in Java. Projet de

semestre. École Polytechnique Fédérale de Lausanne,
Switzerland, June 2000.
http://lampwww.epfl.ch/jaco/cjava.html

