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1 IntrodutionThe work reported in this artile originates in the e�ort to develop a prati-al mathematial assistant that integrates external dedutive omponents. The
mega system [Benzm�uller et al., 1997℄ is an interative, plan-based dedu-tion system with the ultimate goal of supporting theorem proving in main-stream mathematis and mathematis eduation. To provide the neessary rea-soning and symboli omputation failities it inorporates the �rst-order theoremprovers bliksem, EQP, Otter, ProTeIn, Spass, WaldMeister (see [Sut-li�e and Suttner, 1997℄ for referenes), the two higher-order theorem proversTPS [Andrews et al., 1996℄ and LEO [Benzm�uller and Kohlhase, 1998℄, and theomputer algebra systems Maple, MagMa, GAP and �CAS (see [Kerber etal., 1998℄ for referenes).Traditional dedution systems, suh as the ones integrated into 
mega, aswell as today's tatial theorem provers, suh as Isabelle [Paulson, 1994℄ orNqThm [Boyer and Moore, 1979℄, are monolithi systems. They either work likeompilers { reading a problem �le and writing proof and log �les after suessfulomputation { or like programming environments featuring their own ommandinterpreter or graphial user interfae. Driven by the omplexity of real-worldreasoning problems and pratial onsiderations in designing and interatingwith the system, we have seen a rapid move towards integrative frameworksombining various external reasoners [Denzinger, 1993; Benzm�uller et al., 1997;Dahn, 1997℄ and omputation systems [Clarke and Zhao, 1992; Harrison andTh�ery, 1993; Ballarin et al., 1995; Kerber et al., 1998℄.Ideally, the reasoning modules in the 
mega system interat with eah otherto omplete open subgoals during the development of a proof. This an be initi-ated and supervised on-line by the user. This an be also guided by the 
megasystem itself, for instane during proof planning in order to expand a given proofplan to a full proof. Unfortunately, it is not always lear in advane, whih proveris best suited for the problem at hand. Furthermore, the user ould be asked tosupport the system with additional knowledge. Thus, 
mega will all several`servies' in parallel in order to maximise the likelihood of suess and minimisethe time the user has to spend waiting for the system. The proprietary proofsfound by these systems are transformed into the internal format of the 
megasystem; again, this transformation proess should run in parallel to the ongoinguser interation.The role of the mathematial assistant in partiular, but also of generalappliations of theorem proving in the large, for instane in program veri�a-tion [Hutter et al., 1996℄, all for an open and distributed arhiteture. In suhan arhiteture, the developer of a dedution system or a mathematial toolupgrades it to a so-alled mathematial servie [Homann and Calmet, 1996℄ byproviding it with an interfae to a ommon mathematial software bus [Calmetand Homann, 1997℄. That is, it provides the mathematial servie instead of thesoftware itself. In the ontext of the 
mega system, we have implemented andexperimented with suh a network design, where the integrated theorem proversand mathematial tools interat distributed over the Internet and an be dynam-ially added to and subtrated from the oordinated reasoning repertoire of theomplete system. The possible bene�ts of suh an approah to semi-automatedproof development are:



Modularisation The more external reasoners a system like the 
mega systemintegrates the heavier the burden of installing and maintaining them gets.For instane, the kernel of 
mega alone is a rather large system (roughly17 MB of Common Lisp ode for the main body in the urrent version), itssuessful installation depends on the presene of (proprietary) ompilers orinterpreters. This situation is similar for the other reasoning systems inte-grated into the 
mega system, whih ome from numerous di�erent originalsoures. For the user it is a burden to install and understand the ompletesystem, for the developers it is a tedious task to port the system to om-monly available ompilers. Thus providing a mathematial servie insteadof software enapsulates related funtionality into re-usable omponents andeases the maintenane of the partiular modules and environments builtupon them at the ost of requiring a onstant pool of hardware resoures.Dedution systems are among the most omplex existing AI programs, theyare typially developed by more than one individual and the respetive om-ponents require speialised know-how that is nowadays impossible to aquirefor a single person. The equivalent is true for Computer Algebra systems thatexist in a vast variety from multipurpose to very speialised ones. Both userand developer an hardly distinguish whih system is best suited for a par-tiular task, let alone being able to use all di�erent systems. Thus a modulararhiteture of mathematial servies allows the foused and independentdevelopment in speialised researh groups, for speialised appliation areas,and with speialised tehniques.Inter-Operability Having a means of modularisation, the requirement appearsof being able to easily put together a omplete and working system outof heterogeneous omponents. Having a ommon platform of exhangingservies aross the network makes omponents inter-operable: they are ableto provide additional funtionality for the system as a whole and, in turn, areprovided with additional servies in order to perform their servie far moreeÆiently. For inter-servie exhange of data, it is important to even takepossible, but yet not existing omponents into aount, i.e., the interationsheme should be generi and open. This aelerates the availability of newdevelopments, beause it avoids ubiquitous re-engineering.Robustness Fixed software arhitetures pose the problem of failure handling,e.g., a typial proof system with a stati topology will not work if one of itsintegral mathematial modules does not funtion or has to undergo mainte-nane. A dynami, deentralised network arhiteture provides the ability ofbringing together available and partially redundant omponents on the y.Temporarily shutting o� a partiular mathematial servie for maintenanepurposes thus should not do any harm.Salability Finally, the performane aspet of theorem proving in the largeis addressed by a distributed arhiteture. In loal omputer networks, thesituation is quite ommon that users have relatively low-speed mahines ontheir desktop, whereas some high-speed servers operate freely aessible inthe bakground. Running, e.g., the user interfae on the loal mahine usesthe loal resoures that are `lose to the relevant data' and suÆient for thistask while the more powerful servers an be fully exploited for the reallyomplex task of atually proving theorems. A exible, dynami topologyis the key to optimally adapt to hanging omputational resoures, thusinreases the salability of theorem proving.



Indeed, these desiderata omply remarkably well with the aims of the Agent-Oriented Programming paradigm developed in the �eld of Distributed Arti�ialIntelligene: Intelligent agents are self-interested, autonomous servie programswhih exibly interat in a shared, also human-inhabited environment by meansof ommuniation. The agent metaphor has been suessfully applied to a spe-trum of sophistiated software problems ranging from `hardbots' in robotis andtelematis to `softbots' in user assistane systems.Consequently, the present artile proposes this perspetive as the basis of theMathWeb arhiteture whih generalises the work done in 
mega:MathWeb-agents `inarnate' partiular mathematial servies and possess a (partial) repre-sentation of the servie network.MathWeb-agents share a standardised ommu-niation language to talk about mathematial objets, formulae, and proofs (ob-jets of ommuniation) and to address the servies whih they provide (speehats of ommuniation). MathWeb agents are reative in the sense that theyare steadily interating with users and other software agents working on sharedproofs and mathematial omputations. They are pro-ative in that they adoptand autonomously work on partiular mathematial goals. And they are soialin the sense that they request other agents or even the human user to supportthe suessful exeution of their servies.Thus theorem proving in MathWeb is the joint e�ort of a soiety (a multi-agent system) of ommuniating mathematial agents. We propose MathWebas a onvenient design stane to enable modularisation, networked inter-operabi-lity, robustness and salability in theorem proving. In partiular MathWebdoes not in itself aim at improving the expressivity of theorem proving perse, as other approahes to ooperating theorem provers do (see e.g. [Denzingerand Dahn, 1998℄ and the referenes therein). This may be an ultimate e�et ofproviding the distribution layer in MathWeb, but the urrent paper does notmake any onrete laim in this diretion.1.1 Struture of the ArtileWe start with a motivational example showing how it is proessed by the hybrid
mega system in Setion 2. From these onsiderations, the requirement of �nd-ing a suitable methodology for distributing mathematial servies immediatelyarises. This software methodology is given by the agent metaphor of DistributedArti�ial Intelligene and orresponding e�orts for building domain-independentommuniation languages, suh as the Knowledge Query and Manipulation Lan-guage (KQML) (Setion 3). TheMathWeb arhiteture for automated theoremproving (Setion 4) thus extends 
mega into an open and distributed soiety ofmathematial agents whih use KQML performatives (speeh at types) to ad-dress their servies.MathWeb agents are equipped with a standardised ontentlanguage OpenProof (Setion 5) derived from the OpenMath spei�ation totalk about mathematial objets, formulae, and proofs. At hand of a olletion ofexisting (and planned) mathematial servies, we demonstrate that MathWebis a powerful agent-oriented tool for their integration.1.2 Related WorkIn [Fisher and Ireland, 1998℄, Fisher and Ireland propose an agent-based ap-proah to proof planning that is motivated by a �ne-grained parallelisation of



the proof planning proess more than the distribution aspet. They propose asoiety of agents that are organised by a ontrat net arhiteture, building onearlier studies of Fisher [Fisher, 1997℄ on agent-based theorem proving.Calmet and Homann present a framework for establishing the semantisof intimately integrated dedution and omputation systems [Homann, 1996;Homann and Calmet, 1996℄. In a serviing arhiteture like the one desribedin this paper, the semantis of the protool employed in the ommuniation isnot a orretness problem, sine our approah assumes that proofs are ommu-niated, so that the initiator of a reasoning task an always ollet the partialproofs and verify the orretness of the �nal resulting proof if he does not trustthe mathematial servies.To our knowledge, only three distributed theorem proving systems besides
mega have atually been implemented up to now. The modal-logi theoremprover from [Pitt, 1996℄ uses a trader model like the one realized in 
mega.The ILF system [Dahn, 1997℄ onnets to Mathematia and some automatedtheorem provers in a simple master-slave model. A group of experimental sys-tems entreing around the Disount theorem prover has been presented by[Denzinger et al., 1997; D. Fuhs, 1997℄. Their experiments explore a tight oop-eration between the theorem provers that renders them as a group signi�antlymore suessful than any of them ould be alone. The underlying Teamworkand Tehs approah to distribution (see [Denzinger and Dahn, 1998℄) is prob-ably the work losest to MathWeb, but the emphasis was laid on supportingthe partiular ooperation model and not so muh on standardisation and gen-erality. In partiular, MathWeb would provide a drop-in replaement for theirimplementation.By introduing a servie-independent ommuniation language based bothon KQML [Finin and Fritzson, 1994℄ and OpenMath [Abbot et al., 1996℄, ourapproah is unique so far with respet to the onsequent appliation of Shoham'sAgent-Oriented Programming paradigm [Shoham, 1990℄ to Automated TheoremProving. As suh, it is the logial progression of our work on distributing the
mega system [Hess et al., 1998; Siekmann et al., 1998℄ and opens up the possi-bility for developing partiular negotiation protools. In general multi-agent sys-tem design, a similar stane has been taken by the MECCA arhiteture [Steiner,1992℄.2 Distributing Mathematial ServiesIn this setion we introdue a small example to elaborate the priniple of thehybrid 
mega arhiteture [Benzm�uller et al., 1997℄ in order to motivate asoftware methodology for distributed mathematial servies. We use a simpleproblem from Algebra | more preisely group theory | that states the equiv-alene of two di�erent axiomatisations of a group. Both are rather ommon andan be found in most textbooks of group theory (f. [Hall, 1959℄):De�nition 2.1 Let G be a non-empty set, then G together with binary operation`�' is a group if the following properties hold:G1) For all a; b 2 G there is a  2 G with a � b = .G2) For all a; b;  2 G holds (a � b) �  = a � (b � ).



G3) There exists an e 2 G suh that e � a = a and a � e = a for all a 2 G.G4) For all a 2 G exists x 2 G suh that a � x = e and x � a = e.De�nition 2.2 Let G be a non-empty set, then G together with binary operation`?' is a group if the following properties hold:H1) For all a; b 2 G there is a  2 G with a ? b = .H2) For all a; b;  2 G holds (a ? b) ?  = a ? (b ? ).H3) For all a; b 2 G exist uniquely determined x; y 2 G suh that a ? x = b andy ? a = b.To prove the equivalene of both de�nitions we have to infer the axioms of theseond de�nition assuming that the �rst de�nition holds and vie versa. However,in both ases we have to deide in advane how we express the operation on onegroup de�nition by a suitable term involving the operation given in the otherde�nition. This is generally a non-trivial task, however in the ase of our examplewe an simply identify both operations with eah other. The atual veri�ationof the single axioms is then done by �nding suitable ombinations of the givenequations.For instane, we verify the �rst part of the existene of divisors in de�ni-tion 2.2 by showing the existene and uniqueness of the solutions of equationax = b using de�nition 2.1: The existene of a suitable x is obvious by settingx = a 1b, where a 1 denotes the inverse element introdued by G4, and verifyingthat ax = a(a 1b) = (aa 1)b = eb = b holds. To show uniqueness we assume nowthat there exist two solutions x; x0 2 G of our original equation, then we havewith b = ax = ax0 and multipliation with a 1 the uniqueness of solutions by:a 1b = x = x0.2.1 Formal Proof Development in Hybrid 
megaThe equivalene of di�erent axiomatisations of the same mathematial entityis a general problem that arises in the hybrid 
mega system (Figure 1 showsonly the omponents and the information ow whih are relevant for our ex-ample) when the same entity is tried to be de�ned alternatively in 
mega'sknowledge base. A similar situation appears when 
mega reeives de�nitionsfrom two separate knowledge bases, as depited in Figure 1. The entral ompo-nent of 
mega is the ontroller. It supervises the proess of proving a theoremby handling requests to knowledge bases, distributing subproblems to reasoningomponents and aepting user input via some user interfae. To illustrate theproessing of our equivalene problem, we assume that both group axiomati-sations in the knowledge bases are given as higher order formulas in a typedChurh �-alulus [Andrews, 1986℄ with base types fo; �g:group-1 := �G�!o �Op(�;�)!� not-empty(G) ^ losed-under(G;Op) ^assoiative(G;Op) ^ 9e G(e) ^unit(G;Op; e) ^ inverse-exists(G;Op; e) (1)group-2 := �G�!o �Op(�;�)!� not-empty(G) ^ losed-under(G;Op) ^assoiative(G;Op) ^divisors-exist(G;Op): (2)
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Figure 1: Distributed Mathematial Servies in 
megaBoth terms onsist of onjuntions of high level onepts that are in turnde�ned in the respetive knowledge bases using other �-terms. All high levelonepts diretly orrespond to a single axiom given in the informal de�nitions(this is of ourse indiated by the hoie of names). Here we assume for sim-pliity that not-empty, losed-under, and assoiative represent the sameonepts and are equally named in both knowledge bases. In order to ompareboth onepts, 
mega tries to prove the equivalene of the given formalisations.This goal is spei�ed by user interation via the interfae. The orrespondingtheorem is of the form:8G (9Op1 group-1(G;Op1) � 9Op2 group-2(G;Op2)) (3)
mega sends this theorem together with the retrieved �-terms (1) and (2)to the proof planner. The planner uses a set of domain independent planning-operators (alled methods) that it an employ to simplify the theorem. This setontains a partiular method (f. [Cheikhrouhou and Sorge, 1998℄) that appliesto formulae like the one given in (3). It splits the equivalene, expands thegroup de�nitions and partitions the proof into single subgoals. Eah one of thesesubgoals ontains one of the onjunts given in (1) and (2). This method alsointrodues meta-variables for the existentially quanti�ed variables, i.e., the twodi�erent operations de�ned on the group and the identity element.There are other methods whih are able to lose some of the trivial sub-goals, i.e., subgoals that diretly orrespond to formulas given as hypotheses.



For example, the properties not-empty, losed-under, and assoiative anbe diretly inferred for both axiomatisations. Thereby the methods omputepossible instantiations for the introdued meta-variables. The planner �nally re-turns a proof plan, ontaining the partial proof derived so far, together with theproposed instantiations for the meta-variables. In ase of our example the plan-ner would propose to instantiate both meta-variables for the two operations ofthe group with the same onstant and the identity element of de�nition 1 withany arbitrary onstant. Expanding the planning steps in 
mega results in fourremaining subgoals. H ` g(E) (4)H ` unit(g;Op1; E) (5)H ` inverse-exists(g;Op1; E) (6)G ` divisors-exist(g;Op2) (7)Here g denotes a onstant instantiated for the universally quanti�ed variablein (3) and the over-lined letters indiate the meta-variables introdued by theplanner. Furthermore, H and G speify sets of hypotheses whih orrespond tothe axiomatisations of de�nition 2.1 and 2.2 respetively.In order to further treat the subgoals (4) through (7) 
mega expands thehigh level onepts given both in the goal and the hypotheses, by fething theappropriate de�nitions from the knowledge bases. These de�nitions are again�-terms that an easily be substituted in the formulas whih are subsequently�-normalised. For example the existene of inverses in a group orresponds to�G�!o �OP(�;�)!� �E� 9F�!� 8X� G(X)! OP (X;F (X)) = E (8)With all de�nitions expanded it is now possible to hand the remaining problemsover to an automated theorem prover. In our example it suÆes to give a singlesubproblem together with its expanded hypotheses lines to some automated the-orem prover, suh as Otter [MCune and Wos, 1997℄ or Spass [Weidenbah,1997℄. For this, 
mega translates higher order syntax into �rst order and sub-stitutes the meta-variables with the instantiations proposed by the planner. Ifthe planner has proposed more than one possible instantiations of the meta-variables, the proess of alling ATPs is iterated for all the instantiations untilsome proof ould be found. If we have dependenies between subproblems, i.e.meta-variables need to be substituted with the same term in di�erent subprob-lems, 
mega keeps trak of these meta-variables and ompares instantiationsgiven by the respetive automatially generated subproofs. If di�erent instantia-tions are returned, 
mega tries to math or unify these, and if this fails 
megasuessively uses generated meta-variable substitutions of one subproblem onthe dependent ones and tries to prove those subproblems again by alls to au-tomated omponents. Eventually, if all this fails, the proof is left to the user. Inour example, however, the proofs returned from the theorem provers are simplytranslated bak into 
mega's syntax and alulus and omplete the proof.During the whole proess of proof onstrution a user an always monitorthe progression of the proof and, if neessary, interfere and inuene the nextstep. In our example, the expansion of de�nitions and the atual ativation oftheorem provers has to be on�rmed by an 
mega user.



2.2 Desiderata of a Methodology for Distributing MathematialServiesThe above example illustrates how work on a single problem an be shared be-tween di�erent omponents of a hybrid system. The system is basially builtaround the 
mega ontroller as the entral unit that annot only deploy othersystems but has dedutive apabilities by itself, i.e. it an expand planning meth-ods and de�nitions, ompare meta-variable instantiations by means of uni�a-tion, or apply single dedution steps indiated by the user. The advantages ofsuh a system are that problems an be takled that are beyond the reah of a sin-gle automated theorem prover. As displayed in Figure 1, however, the protoolsthat 
mega mediates are proprietary ones and the arhiteture itself is stati ina sense that single omponents, e.g., the ontroller, annot be easily exhanged.For instane, it is a expendable task to simply substitute one �rst-order theo-rem prover for another sine usually the syntax translator of the interfae hasto be redesigned. The same problem arises in other approahes onerned withthe integration of two or several theorems provers (f. [Felty and Howe, 1997;Slind et al., 1998; Benzm�uller and Sorge, 1998℄) or theorem provers with de-ision proedures or Computer Algebra systems (f. [Clarke and Zhao, 1992;Harrison and Th�ery, 1993; Ballarin et al., 1995; Kerber et al., 1998℄) that gener-ally do not follow a ommon paradigm, i.e., a similar input-output spei�ation.Their solutions do heavily depend on the integrated systems.The question how di�erent theorem provers an be easily ombined in a singleenvironment that is exible enough to handle both replaement and addition ofsystems has led to the onept of Open Mehanized Reasoning Systems [Giun-higlia et al., 1996℄. Within an OMRS, theorem provers an be viewed as easilyreplaeable plug and play omponents. The onept of OMRS has been gener-alised to OpenMathematial Environments [Homann and Calmet, 1995℄ whereall kinds of mathematial servies [Homann and Calmet, 1996℄ an be ombined.It turned out that in order to handle a mathematial servie (either a theoremprover or a Computer Algebra system) as a plug and play omponent the sys-tems have to be at least separated into distint omponents for ontrol and logior omputation. Thus, it is pratially impossible to integrate any monolithisystem without redesigning major parts. Moreover, ommerial systems wherethe soures are not available annot be re-engineered and are therefore lost foran integration.This inspired the extension of the latter arhiteture to ope with heteroge-neous mathematial servies (suh as theorem provers, Computer Algebra sys-tems, editors, display omponents, et.). On the mathematial software bus [Cal-met and Homann, 1997℄, onneted servies an exhange information by diretlysending standardised mathematial objets to a spei�ed servie. Yet, the ap-proah still has two major drawbaks: Firstly, all onneted systems have toommuniate in some standardised language. Although there have been somee�orts to establish some standard for exhange of mathematial objet lately(f. [Caprotti, 1998; Ion, 1998℄) these languages are still far from being generalenough for a variety of possible servies. A seond drawbak of the arhitetureis the priniple of a software bus itself. Conneted servies need to know of otherservies or at least of a entral diretory (request broker) available on the soft-ware bus in order to send direted messages. To maintain this knowledge withineah servie or within a entral diretory is a diÆult task for a freely expanding



software bus that is for example distributed over the Internet. Furthermore, thisarhiteture laks robustness in a sense that if a onneted servie, espeially theentral diretory, fails there are no means for the requesting servie to rediretits query.These onsiderations reveal a methodologial hallenge: whih is the rightsoftware engineering metaphor to integrate a variety of mathematial serviesas partiular modules? How is it possible to make these modules inter-operable,preferably over a global network, at the same time staying open for future en-hanements? How do we support a dynami arhiteture whih is robust to theexhange or maintenane of embedded servies and whih is salable to eÆ-iently adapt to hanging omputational resoures? As an be seen from ourpreeding ritique, the listed desiderata are not fully addressed by DistributedObjet-Oriented Programming paradigms, suh as the Common Objet RequestBroker Arhiteture (CORBA) approah [Siegel, 1996℄.3 Agent-Oriented Programming
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Figure 2: A (Soial) Agent ArhitetureFollowing Russell & Norvig [Russell and Norvig, 1995℄, the term agent de-sribes a self-ontained omputational struture, i.e., a state and a orrespond-ing alulation (Figure 2). This struture is enapsulated by a separate envi-ronment whih the agent pereives through sensors and upon whih the agentats through e�etors. The de�nition is lose to the one of a robot whih itgeneralises to software environments (softbots). Both physial and virtual envi-ronments share the requirements of loal, deentralised ontrol (modularisation),the handling of inherent omplexity (salability and robustness), and heteroge-neous, open strutures (inter-operability). The agent paradigm put forward byresearh in Distributed Arti�ial Intelligene is a novel ombination of fundamen-tal tehnologies from Distributed Systems, Embedded Systems, Objet-orientedProgramming, and Arti�ial Intelligene and seems to be the natural metaphorto manage these requirements.



3.1 Properties of AgentsDespite of the sometimes mentalisti terminology of DAI, agent properties aredeeply rooted in purely tehnial onepts. Partly due to the broadened perspe-tive and partly due to new insights into the agent as a situated entity, an enlargedset of key properties of ageny proposed by Wooldridge & Jennings [Wooldridgeand Jennings, 1995℄ is nowadays ommonly agreed on (Other agent featureswhih are researhed are mobility and veraity.):Autonomy: Agents are enapsulated, i.e., they should be able to perform themajority of their problem solving tasks without the diret intervention ofhumans or other agents, and they should have a degree of ontrol over theirown ations and their own internal state. Autonomy is the fous of the agentde�nition given by Russell & Norvig [Russell and Norvig, 1995℄.Responsiveness, Reativity: Agents should respond in a timely fashion tohanges whih our in their environment, i.e., they are reative. Note thatthis does not neessarily entail real-time behaviour.Pro-ativeness and Deliberation: Agents should not simply at in responseto their environment, but also exhibit goal-direted behaviour to take initia-tive where appropriate. We speak of deliberative abilities in this respet andpresume rationality , i.e., from its urrent belief, the agent deides (hooses)intentions whih are ations to ahieve its goals. Furthermore, the agentavoids behaviour whih he believes to onit with them. Interestingly, re-garding the agent's state as a knowledge base and its omputation as a ra-tional inferene proedure (Figure 2) losely mirrors the image of a theoremprover. And in fat historially, the �rst agents were modelled as dedu-tive/abdutive inferene systems.Adaptivity: Agents should be able to modify their behaviour aording tohanging environmental and omputational onstraints to their funtioning(resoures, suh as fuel, spae, tools; time, memory). Aording to the moreand more popular bounded rationality priniple [Good, 1976; Simon, 1982℄,they should do that in an approximately optimal manner.Soial Ability: Agents should be able to interat, when they deem appro-priate, with other arti�ial agents and humans in order to omplete theirown problem solving and help others with their ativities. This requires thatagents have, as a minimum, a means by whih they an ommuniate theirrequirements to others and an internal, rational mehanism (soial model)for deiding when soial interations are appropriate (Figure 2) | both interms of generating appropriate requests and judging inoming requests.Soial abilities are the key to design open systems in whih heterogeneousinformation entities operate in a ommon framework upon di�erent goalsand on behalf of di�erent users.3.2 Agent Communiation Languages: KQMLShoham oined the term Agent-Oriented Programming [Shoham, 1990℄ as a soft-ware methodology in whih softbots, suh as the one depited in Figure 2, areused to enapsulate arbitrary, traditional software appliations, e.g., legay sys-tems. These agent-shells are able to interfae and ontrol the operation of theembedded servies quite similarly to the way a knowledge base would operate.



On top, they introdue a soial model referring to other servie agents with whihthey omprise a soiety. The prominent means for the interation between soialagents in a funtional servie network turn out to be ommon ommuniationlanguages whih enable the agents to oordinate their behaviour, i.e., steer theembedded appliations by exhanging beliefs, goals, and intentions. As a part ofthe fast-growing researh threads in Computer Siene, Shoham's work triggereda gamut of innovative software appliations, e.g., in robotis, personal assistants,work-ow management, teleommuniation, information retrieval, et.Arti�ial ommuniation languages go bak to philosophial and linguisti(espeially pragmatis) observations into human language whih they transferinto a formal setting. For example, the speeh at theory [Searle, 1969℄ learlydistinguishes nested modes of human ommuniation, i.e., the utterane fore ofproduing some sound, the loutionary fore of saying some sentene, the illo-utionary fore of meaning some objet, and the perloutionary fore of ausingsome e�et in the mind of the reipient. Perloutionary and illoutionary foreare partiularly di�erent in ases in whih the utterer uses an indiret way ofpersuading the reipient to do something, e.g., by lying.
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Figure 3: Arti�ial Communiation: KQML and the OSI Referene ModelIn a soiety of benevolent, i.e., truthful, servie agents, suh as the Knowl-edge Query and Manipulation Language (KQML) [Finin and Fritzson, 1994℄ pre-sumes, the perloutionary and illoutionary role of a speeh at an be uni�ed.KQML is thus able to identify domain-independent types of speeh ats, suh as`telling' or `requesting' something, whih is aptured by so-alled performatives.Languages whih address this level of ommuniation are also alled interlinguae.For example, the Foundation for Intelligent Physial Agents (FIPA) [Steiner,1997℄ aims to develop an industrial-strength standard quite similar to KQML.Interlinguae are strongly onneted to nested ontolinguae or ontent languageswhih are used to represent the domain-dependent objets of a performative.



Examples of ontent languages are ISO-Prolog [ISO, 1995℄ or the KnowledgeInterhange Format (KIF) [Genesereth and et al., 1992℄.On the lower level of arti�ial ommuniation, the human `produing a sound'is substituted by standardising the information exhange from physial (Ether-net) up to presentational issues (XML, see below). This results in a layered stru-ture (the Open Systems Interonnetion (OSI) referene model [DIN ISO 7498,1982℄) for KQML ommuniation illustrated by Figure 3. The former OSI appli-ation layer now hosts the performative and the ontent layer. This way, KQMLagents whih do not share any ontent language are still able to understand theirbasi intentions and are thus able to proess at least a subset of the utteranes.KQML-Content ::= <KQMLCONTENT> (ContentjKQML) </KQMLCONTENT>KQML-Aspet ::= <KQMLASPECT> Content </KQMLASPECT>Performative ::= "tell" j "deny" j : : : j"insert" j "delete" j : : : j"error" j "sorry" j "reply" j : : : j"evaluate" j "ask-one" j "stream-all"j : : : j"standby" j "ready" j "next" j "disard" j "eos" j : : : j"register" j "unregister" j "forward" j "broadast" j : : : j"advertise" j "broker-one" j : : : jKQML ::= <KQML perf=Performative language=AttValueontology=AttValue reply-with=AttValuein-reply-to=AttValue sender=AttValuereeiver=AttValue from=AttValueto=AttValue name=AttValue : : : >KQML-Content KQML-Aspet</KQML> Figure 4: Expressing KQML in XMLSyntatially, KQML messages an be enoded using the eXtensible MarkupLanguage (XML [Bray, 1997℄) as the underlying presentation layer (f. Figure 4).Originally, KQML uses an ASCII-based string representation. Compliane withtodays suessful presentation languages, suh as the Hypertext Markup Lan-guage (HTML) [Raggett, 1998℄, and upoming standards, like MathML [Ion,1998℄ and OpenMath [Abbot et al., 1996; Caprotti, 1998℄, however, is a keyissue in designing open systems. These languages use the XML framework astheir basis.For expressing KQML in XML we introdue a speial <KQML/> tag that isannotated with a partiular performative (perf=Performative). The tag fur-thermore arries information about the ontent language used in the KQMLmessage (language) and the semantis of nested primitive symbols (ontology).The reply-with attribute desribes whether an answer to the message is ex-peted and with whih in-reply-to annotation it should be given. The sender



and reeiver agents of the message are identi�ed using a unique naming on-vention, suh as Uniform Resoure Loations (URL's). Sender and reeiver anbe di�erent from the originator (from) and the destination (to) of the message.name arries the name of some arbitrary agent for introdution purposes.The atual ontent of the KQMLMessage is an expression in the ontent lan-guage Content orresponding with the language attribution. It is enapsulatedin the <KQMLCONTENT> tag. Sine performatives ould be nested, the ontentould also ontain a KQML expression itself. The KQML-Aspet part of theKQML message spei�es whether and with whih ontent the urrent performa-tive is to be answered.It is diÆult to give a semantis to ommuniation languages in the generalase | think of the di�erene between perloutionary and illoutionary fore.Presuming benevolent agents, however, giving a �xed meaning to eah KQMLmessage aording to the hosen Performative makes sense. Beause delibera-tive apabilities are a neessary preondition for reasonable ommuniation, theidenti�ation of an agent with a virtual knowledge base (see Figure 2) is helpfulfor this purpose. Virtual, beause not every fat or belief must be present in thestate of the knowledge base, but ould possibly be dedued from the anonialrepresentation using a rational inferene proedure. The semantis of "tell",for example, is straightforward to desribe, then: The utterer noti�es that theembedded KQML-Content is an element of its virtual knowledge base. "deny"simply means the ontrary.Indeed, KQML stems from an attempt to ombine heterogeneous knowledgesoures over the network. The set of performatives and their semantis thusaptures all the reasonable interations between knowledge soures. Besides theinformatives like "tell" and "deny", KQML introdues database performatives,suh as "insert" and "delete" with whih the utterer suggests the reipientto hange the ontent of its virtual knowledge base. A basi response to suha suggestion ould be "error" (the operation would ause inonsistenies) or"sorry" (the reipient is not able to proess the operation beause of tehnialreasons, e.g., it is not able or does not have enough omputational resoures toperform it).A more sophistiated "reply" response is neessary to proess the queryperformatives "evaluate" and "ask-one". "evaluate" requests the reipientjust to onvert (simplify) the ontent expression into the anonial representationused by its knowledge base. The simpli�ed expression does not have to be validfor that purpose. By "ask-one", a math of the ontent expression with thevirtual knowledge base is invoked, i.e., whether it ould be derived from theanonial data. This presupposes the ontent language to exhibit some notion ofpartial spei�ation, for example by introduing variables and uni�ation. Withrespet to the traditional input-output spei�ation of servies, talking aboutonstrained objets is a far more expressive sheme. The results of mathing are,again, expressions in the ontent language embedded in a "reply" performative.The desired format of responses an be spei�ed in advane by the requestingagent in the KQML-Aspet part of the respetive query performative.Aess of knowledge soures must not stik with a simple query-responsesheme. By allowing for advaned queries with multiple responses (for exam-ple, stream-all: try to math the ontent in all possible ways with the virtualknowledge base and send the result in separate "reply" messages) and nestedperformatives, KQML is able to introdue on-demand strategies:



<KQML perf="standby"><KQMLCONTENT><KQML perf="stream-all"><KQMLCONTENT> Math </KQMLCONTENT> </KQML></KQMLCONTENT></KQML>This is an exemplary enquiry of a `lient' to a reipient `server' to prepare foran on-demand streaming servie whih the server aknowledges with "ready".Now the lient is able to utter "next" performatives to trigger subsequentreplies regarding the Math expression. If the servie is obsolete, the lientsends "disard". If there is no further response, the server sends "eos" (`endof stream').Finally, KQML supports the maintenane of agents' soial model (Figure 2),i.e., the management of names, harateristis, and apabilities of neighbouragents, in order to build a funtional `neighbourhood' of knowledge soures."register" and "unregister" are simple naming apabilities with whih agentsintrodue themselves and exit the soiety. Thus, agents an maintain a list ofative neighbours to whih they ould "forward" embedded KQML messages.The "broadast" performative also uses this mehanism to route KQML mes-sages to all onneted agents in a network. The reply-with attribution an beused to avoid yles.Using nested KQML expressions and the mathing priniple of the enapsu-lated ontent language, the "advertise" performative allows to build up a moredetailed domain-related model of neighbours. The ontent of an advertisementare those KQML message patterns whih the agent is willing or able to pro-ess. Thus eah agent is able to maintain a lookup table with agent names andtheir apabilities in terms of KQML patterns. This table is used, for example,in delegating a partiular task to another agent ("broker-one").Our presentation of KQML performatives has of ourse neither been exhaus-tive nor detailed. It should however have beome lear that using an agent-oriented arhiteture and ommuniation language ombines the ahievementsof, e.g., an objet-oriented methodology and distributed programming, and isable to provide an open, exibly interating, and robust network of software ser-vies, suh as knowledge bases and mathematial servies. As suh, agents arenot a prime onstrut for improving the expressivity of a servie domain whihis not the aim of the present artile.4 Agent-Oriented Integration of Mathematial ServiesCoinidently, the desiderata for distributed automated theorem proving that wehave skethed in Setion 2 �t exatly with the appliation pro�le of the Agent-Oriented Programming tehniques developed in Setion 3. Furthermore, a virtualknowledge base agent is very lose to a mathematial servie: it maintains a setof mathematial `truths' upon whih a rational inferene proedure (proof proe-dure or alulation) operates. For example, a theorem prover virtually representsa knowledge base for all proofs that it ould derive. A omputer algebra systemould be seen as the set of all omputations (equations) it ould solve. Also theuser interfae that is able to ask for the user's help represents the ombined



knowledge of its user. Subsequently, we propose the MathWeb arhiteture(Figure 5) as a reasonable, agent-oriented integration of mathematial servies.
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"broker"(<P>)Figure 5: Agents as Distributed Mathematial Servies in MathWebFollowing the Agent-Oriented Programming paradigm, MathWeb enap-sulates mathematial servies, suh as the user interfae, the 
mega ontrolmodule, the proof planner, knowledge bases, proof mediators, and proof systemslike Spass and Otter, eah into an agent-shell. These agents are reative inthat they are steadily interating with users and other software agents workingon shared proofs and mathematial omputations. They are pro-ative in thatthey adopt and autonomously work on partiular mathematial goals. And theyare soial in that they request other agents or even the human user to supportthe suessful exeution of their servies by ommuniating via KQML.MathWeb embeds a partiular ontent language into KQML. OpenProofwhih is explained in detail in Setion 5 is derived from the OpenMath [Abbotet al., 1996℄ standard that has been designed as a fundamental (higher-order)language for exhanging mathematial objets, suh as symbols, variables, fun-tional abstrations, and appliations.OpenProof extends this repertoire to rep-resent formulae in various logis, mathematial omputations upon those, andespeially proofs in di�erent aluli. Using OpenMath variables, these stru-tures an be de�ned even left partially unspei�ed whih introdues a sophis-tiated notion of mathing a virtual (mathematial) knowledge base: a partialproof or a partial omputation an be given in a KQML query. Mathing into thevirtual knowledge base amounts to dedutive or algebrai omputations whihfurther instantiate the proof and whih will be �nally returned in a response per-formative. Similarly, OpenProof expressions an be transformed by the userinterfae forth-and-bak into human-oriented visualisations or verbalisations tointerat with the user. In eah ase, proof and omputation strutures whih areonstrained on di�erent levels of representation are fundamentally more power-



ful and exible than traditional protools for speifying dedution problems. Forexample, the operation of a proof planner, whih takes some (partial) proof andreturns several (partial) subproblems an be expressed in OpenProof.It is, however, neessary to are for an eÆient treatment of the mathemati-al strutures.MathWeb agents espeially assume a lean separation of (meta-)variables for identifying a partiular servie invoation and (objet-)variablesin the problem spei�ation. This way, MathWeb agents an pragmatiallypreproess reeived KQML(OpenProof) messages in order to ontrol the en-apsulated operation of theorem provers and mathematial systems. Vie versa,it is possible forMathWeb agents to onstrut KQML(OpenProof) messagesif the embedded omputations need some support. The generi faility of anyMathWeb agent to analyse and generate KQML(OpenProof) is thus oupledto a onrete, servie-spei� interfae. For eah type of mathematial servies,a suitable interfae struture and respetive enodings in KQML(OpenProof)an be spei�ed (see Setion 5.3 for an overview).We allow a single agent to manage several, simultaneous instanes of thesame servie, e.g., to elaborate several theorem provers at the same time, butbased on shared anonial knowledge (the bakground theory). This is an im-portant restrition, beause the funtioning of KQML strongly depends on theonstrutibility of a onsistent virtual knowledge base for eah agent. Havingseveral servie instanes operating on di�erent bakground theories and allow-ing di�erent servies within the same agent is therefore not advisable.MathWeb agents maintain a soial model of their environment in the formof a apability list, i.e., they keep book about a portion of the overall serviearhiteture. For example, the user interfae agent might only know the proofplanner and the 
mega ontrol agent. The Spass and Otter agents might onlyknow eah other and be aware the mediator agent whih enapsulates some of theprevious funtionality of the 
mega ontroller to translate between higher-ordernatural dedution proofs (ND(HOL)) and �rst-order resolution using lausalnormal form (RES(CNF(FOL))). The 
mega ontrol agent ould onnet theproof planner, theorem provers, and the mediator.A MathWeb agent organises information about the apabilities of otherMathWeb agents in a lookup table. The table stores the inoming "advertise"performatives arrying KQML messages to whih these agents ould suessfullyrespond to (see Setion 5.3). Again, the expressiveness of the ontent languageOpenProof is useful to speify, e.g., knowledge bases whih are able to deliverformula de�nitions of mathematial symbols responding to "ask-one"messages,proof systems whih are able to proess similar queries regarding proofs, media-tors whih ould "evaluate" formulae or proofs from/into partiular formalisms,and even servies, suh as the proof planner whih provide a streaming serviein order to transmit multiple partially instantiated (sub-)results on-demand.Besides the usual "reply" performative, answers to servie requests inMath-Web will also transport proessing errors and tehnial errors. KQML's "error"and "sorry" performatives, however, are somehow restrited for this purpose,sine ignoring their ontent. It is thus useful to allow partiular error expres-sions in the ontent language (Setion 5) as ordinary KQML replies. Theoremproving is a hallenging domain for oping with failures sine it is undeidablein general. How ould a servie ever return a message saying that a requestedproof is not possible? When does a lient know that it has reeived all possible(useful) answers to the requested omputation?



It is neessary to take the bounded rationality aspet of MathWeb agentsinto aount right from design time: Objets of mathematial omputationsshould be intimately oupled with the situative ontext in whih they are in-voked, i.e., with the resoures that they are allowed to onsume in proessing.For this purpose, OpenProof proofs or omputations are annotated with de-sriptions of the time, the memory, the information, and the user interation thathave been neessary to derive them. This makes it possible to establish a prioriestimations of the utility of a servie whih helps to optimise the MathWeb.Now reonsider the example of Setion 2. Figure 5 shows one of the manyextended possibilities using MathWeb: Initially, the user interfae starts, su-pervised by a human user, a proof delegation ("broker-one") to the 
megaontrol agent. We assume that the initial proof goal has been entered by theuser. The ontroller delegates the task of breaking down the proof into propersubproblems to the proof planner agent. All subproblems are requested in theform of a streaming servie ("standby"). Not until needed in the proof planner,the group de�nitions referred in the proof spei�ation are looked up by queryingthe two knowledge base agents. Perhaps with the help of the human user whihproposes some instantiation of the proof via "tell", the proof planner onstrutsappropriate subproblems and replies them to the 
mega ontroller whih, inturn, "broadast"s the higher-order natural dedution strutures to the proveragents to onurrently run for solutions. Beause Otter and Spass operate on�rst-order lausal normal form and onstrut resolution-type proofs, the Otteragent-shell �rst asks the mediator agent for help in translation ("evaluate") be-fore routing the translated broadasts to Spass. For this purpose, the mediatoragent looks up the remaining de�nitions, suh as of inverse-exists, from theknowledge bases. In a simpli�ed version, the sent KQML messages look the fol-lowing way. The atual ontent tags use the OpenProof syntax of the followingsetion, of ourse.<KQML perf="ask-one"><KQMLCONTENT>F = inverse-exists</KQMLCONTENT><KQMLASPECT>F</KQMLASPECT></KQML> <KQML perf="reply"><KQMLCONTENT>�G: �! o �OP : (�; �)! � �E: �9 F : �! � 8 X: �G(X)! OP (X;F (X)) = E</KQMLCONTENT></KQML>In our example, Spass has found a result �rst; the noti�ed ontroller willthen "deny" the original request to shut down the redundant omputations inOtter. Finally, when all subproofs are olleted by the ontroller, the mediatoragent is one again ontated to transform the overall result bak into naturaldedution form whih is used in the user interfae for presentation purposes.With respet to the entral role of the 
mega ontroller in the heart of Fig-ure 1,MathWeb now amounts to a dynamially rearrangeable deentralisation.This has been possible due to the rihness of agent-based ommuniation. Es-peially we an now unouple the syntax translations neessary to ommuniatesubproblems and proofs between the 
mega ontroller and the theorem prov-ing agents. The uni�ed view onto (mathematial) servies allows to integratefurther servies without ubiquitous re-engineering of proprietary interfaes. In-



stead, the envisaged appliation is wrapped into the generi MathWeb shellby ustomising a library of suitable interfaes. A further advantage of suh anopen approah is that several users with di�erent demands an use the systemooperatively or independently at the same time. The partiular modules thendeide based on priority and workload whether to proess partiular tasks or not.In short, MathWeb provides the modular, inter-operable, robust, and salableframework for automated theorem proving motivated by this artile. Of ourse,MathWeb owes muh to the OpenProof ontent language that we outline inthe following setion.5 A Content Language for Mathematis and DedutionGiven a generi interlingua suh as KQML, it additionally requires a suitableontolingua to express the ontent of servies to talk about servie performanes apartiular appliation domain for interating agents. In the ase of mathematialtheorem proving, this ontent omprises mathematial objets, formulae, theo-rems, theories, but also (partial) proofs, and even proof plans. Appropriate an-didates for suh a language are the so-alled `DFG syntax' [H�ahnle et al., 1996℄or the spei�ation put forward by the OpenMath initiative (see http://www.openmath.org), whih strives for a standard exhange platform for mathemat-ial software systems. For MathWeb, we propose a ontent language (see 5.1for details) whih is an extension of the latter, sine it has more support for dis-tribution and also overs symboli omputation servies. There are even alreadysomeOpenMath-ompliant systems, suh asMaple [Redfern, 1998℄, whih animmediately serve as mathematial servies.We will now give a brief overview on the emerging OpenMath standard(f. [Caprotti, 1998℄) and indiate where it meets the ommuniation needsfor MathWeb. In the Setion 5.2 we will extend the OpenMath suiting ourneeds to a ontent language, whih in lak of a better name we have alledOpenProof.5.1 The OpenMath StandardThe OpenMath initiative's aim is to establish a ommon information exhangeplatform among software tools used in mathematis. At the moment, their ef-forts are largely fousing at representational issues for the ommuniation be-tween omputer algebra systems. We will use the mehanisms provided by theOpenMath standard to express the logial side of mathematis (de�nitions,theorems,. . . ), too.TheOpenMath language is syntatially a member of the XML [Bray, 1997℄family of languages to whih also HTML [Raggett, 1998℄ or its extension formathematis, MathML [Ion, 1998℄, belong. XML derivates an be nested, thusOpenMath expressions �t very well into our KQML variant of Setion 3. TheOpenMath standard de�nes a anonial way to represent the struture of math-ematial objets. It o�ers primitive onstruts for logial onstants (alled `sym-bols' in OpenMath and indiated by the <OMS/> tag), variables (<OMV/>), ap-pliations (by <OMA/>), and a primitive binding onstrut <OMBIND/> that allowsto formalise quanti�ers or �-abstration (the bound variables are tagged using



<OMBVAR/>). For instane the expression sin(x) and the funtion f(x) = sin(x)have the following OpenMath representations<OMOBJ><OMBIND><OMS d="e" name="Lambda"/><OMBVAR><OMV name="x"/></OMBVAR><OMOBJ><OMA> <OMA><OMS d="trig" name="sin"/> <OMS d="trig" name="sin"/><OMV name="x"/> <OMV name="x"/></OMA> </OMOBJ> </OMA></OMBIND></OMOBJ>In order to support a standardised semantis, espeially when resolving sym-bols in OpenMath syntax, a set of so-alled ontent-ditionaries , referred bythe d attribute of OpenMath symbols is provided. Content ditionaries areglobally agreed on spei�ations on the meaning of OpenMath symbols. Basedon uniquely named ontent ditionaries, the individual mathematial systemsimplement so-alled phrase-books , i.e., transformation proedures that interpretOpenMath representations and transform them into internal representations ofthe systems proper (and vie versa). Therefore, suh phrase books are an integralpart of the interfae between a mathematial servie and the embraing Math-Web agent. Note that due to the expliit annotation of individual symbols, theoriginal ontology attribute in KQML-performatives whih is a more rigid wayof �xing the semantis of symbols beomes redundant.There are some speial tags for grounding integers (<OMI>), oats (<OMF>,strings (<OMSTR>), and byte arrays (<OMB>) diretly in the language. Further-more, the OpenMath protool provides so-alled `error objets' that allow topass information about exeptional omputation states in the mathematial ser-vies themselves. Errors are OpenMath symbols applied to a list of objets.Consider for instane the following representation of division by zero:<OMOBJ><OME><OMS d="arith" name="DivisionByZero"/><OMA><OMS d="arith" name="divide"/><OMV name="x"/><OMI> 0 </OMI></OMA></OME></OMOBJ>KQML usually manages failure handling by its builtin performatives, e.g.,"error" and "sorry", annotated with some omment or ode of the failure. InMathWeb, this would amount to an extensive list of failure odes depending onthe various mathematial servies. A "reply" ontaining an OpenMath errorobjet is however more informative both on the mathematial and the dedutiveservie level.5.2 OpenProof: Formulae and Proofs in OpenMathOpenMath is simplisti in that it does not immediately introdue logial ex-pressions, e.g., from propositional logi, equality logi, lause logi, higher-order



logi, et. | let alone proofs in various aluli, suh as �rst-order natural de-dution or higher-order semanti tableaux. Similarly, there is no notion of amathematial omputation inluding intermediate results.OpenMath's expressive binding onstrutor, however, allows us to buildsuh strutures as mathematial objets inluding `meta'-information, e.g., inwhih logial language a formula is expressed, and `meta'-variables, e.g., unspe-i�ed parts of a logial formula, using a new OpenProof ontent ditionary andadditional ditionaries for partiular logis and proof aluli. We will elaborateon this approah in the rest of the setion without giving a formal de�nitionof the openproof ditionary, whih is outside the sope of this artile. To on-serve spae, we will replae some lengthy syntatial forms with onventionalmathematial notation for presentation purposes.The openproof ontent ditionary introdues four new binding symbols:formula and term (for formulae and terms ontaining meta-variables), proofand omputation (for proofs and omputation objets) in OpenMath. Attri-butions of variables allow us to make assertions about the type and syntatialnature of the logial objets they represent; this will beome essential for de-sribing the e�et of mathematial servies. Consider for instane the followingOpenMath representation.<OMOBJ><OMBIND><OMS d="openproof" name="formula"/><OMBVAR><OMATTR><OMATP><OMS d="openproof" name="language"/><OMS d="FFOL" name="CNF"/></OMATP><OMV name="F"/></OMATTR></OMBVAR><OMV name="F"/></OMBIND><OMOBJ>It stands for any formula F that is a �rst-order formula in onjuntive nor-mal form. Here we assume the existene of a ontent ditionary FFOL `Frag-ments of �rst-order logi' that de�nes �rst-order logi (i.e. the logial symbols8; 9;^;_;: : : :) and various sub-languages. Along the same lines, we representthe shemati term X +X , where the meta-variable X stands for an arithmetiexpression (as de�ned in the ontent ditionary arith):<OMOBJ><OMBIND><OMS d="openproof" name="term"/><OMBVAR><OMATTR><OMATP><OMS d="arith" name="arith-expression"/></OMATP><OMV name="X"/></OMATTR></OMBVAR><OMA><OMS d="arith" name="plus"/><OMV name="X"/><OMV name="X"/></OMA></OMBIND><OMOBJ>OpenProof representations for proofs and omputation objets are de�nedin muh the same way. Coneptually, they are �ve-tuples (de; obj; seq; res; lang),where



1. de is a set of delarations for meta-variables in the proof or omputationobjet.2. obj is the proof objet or the omputation objet itself, i.e. a tree represen-tation of the proof or the omputation (see [Homann and Calmet, 1996℄ fordetails).3. For a proof objet, seq is a sequent H ` A, where H is the set of hypotheses,and A is the assertion of obj; for a omputation objet, seq is a omputationsequent, A 7! R, where A is a set of argument objets and R is the resultingobjet of the omputation.4. res is a spei�ation of the resoures used by the proof or omputationobjet. We have already motivated that suh an annotation is essential forproviding e�etive mathematial servies.5. lang is the logial system that is used to represent the meta-formulae.These �ve-tuples are represented as binding objets proof and omputation,where de is represented as the list of attributed bound variables and seq,res, and lang are represented as attributions to obj. It is straightforward touse OpenMath terms to enode formal proofs using ideas from the so-alled`propositions-as-types' paradigm (or the Curry-Howard isomorphism [Thomp-son, 1991℄). For instane, the �-term ) I(�XA^B : ^ I(^ER(X);^EL(X)) isa representation of the following Natural Dedution proof with its attahedOpenMath representation. For simplifying unritial parts of the lengthy ex-pression, we use onvenient onventional notations:[A ^B℄1 ^ERB [A ^B℄1 ^ELA ^IB ^A )I1A ^B ) B ^A
<OMOBJ><OMBIND><OMS d="ND(FOL)" name="impliesI"/><OMBVAR><OMATTR><OMATP><OMS d="openproof" name="assertion"/>A ^B</OMATP><OMV name="X"/></OMATTR></OMBVAR><OMA><OMS d="ND(FOL)" name="andI" ><OMA><OMA><OMS d="ND(FOL)" name="andEr"><OMV name="X"/></OMA><OMA><OMS d="ND(FOL)" name="andEl"><OMV name="X"/></OMA></OMA></OMA></OMBIND></OMOBJ>Here, we assume the existene of a ontent ditionary ND(FOL), whih spei-�es a Natural Dedution alulus for �rst-order logi [Gentzen, 1935℄ by de�ningthe inferene rules as OpenMath symbols impliesI, impliesE, andI, andE,. . .(of appropriate types). Note that in ontrast to the lassial `propositions-as-types' approah, we have made use of the OpenMath binding onstrut againto eliminate the �-abstration in the argument of)I , instead we have made thesymbol impliesI a binding symbol itself. This is unneessary from a theoretialpoint of view, but gives a more diret enoding of the respetive proof trees. Now,we an express partially spei�ed proof objets by introduing meta-variables.



[A ^B℄1... [A ^B℄1 ^ELA ^IB ^A )I1A ^B ) B ^A
<OMOBJ><OMBIND><OMS d="openproof" name "proof"/><OMBVAR><OMATTR><OMATP><OMS d="openproof" name="sequent"/>A ^B ` A<OMS d="openproof" name="language"/><OMS d="ND(FOL)" name="FO-ND"/></OMATP><OMV name="F"/></OMATTR></OMBVAR><OMATTR><OMATP><OMS d="openproof" name="sequent"/>; ` A ^B ) B ^A<OMS d="openproof" name="resoures"/>3 � R � 5<OMS d="openproof" name="language"/><OMS d="ND(FOL)" name="FO-ND"/></OMATP>) I(�X: ^ I(^EL(X);F(X))</OMATTR></OMBIND> </OMOBJ>In this partial proof, the meta-variable F stands for a sub-proof in �rst-orderND for the sequent A ^ B ` B; F is bound in the proof environment andthe information about the alulus and the sequent are added by attribution.The resoures R used by the overall proof are at least 3 ND proof steps andshould not exeed 5 proof steps. The partial proof above ould be sent to aMathWeb theorem proving agent using the KQML-performative "ask-one":the sending agent wants to know whether there is a single instane of this proof(given the resoure bounds of 5 steps) in the virtual knowledge base of theprover agent. The answer ould be the OpenProof equivalent to)I(�XA^B :^I(^ER(X);^EL(X)) (see above) whih has the variable F instantiated by the(funtional) symbol ^ER and arries the �nal resoure amount of 4 steps. Wewill ome bak to the issue of dealing with resoures in the onlusion (Setion 7).Note that the exibility of KQML ommuniation based on meta-variableshas to be paid with the neessity of requiring mathing the level of agents. Inthis respet, the ontent-languageOpenProof (and for the same reason alreadyOpenMath) is more problemati than traditional agent ontent languages. How-ever, sine we an restritOpenProof to seond-order expressions, we only needseond-order mathing, whih is known to be deidable [Huet and Lang, 1978℄.We are urrently investigating whether more restritive poliies for addressingservies via OpenProof an be aptured with omparably more lightweightmehanisms.5.3 A Categorisation of Mathematial ServiesIn this setion we briey ategorise mathematial servies by their behaviourand ommuniation needs. A speial emphasis is put on speifying possible in-terations with other agents inMathWeb, thus on the suitability of messages inKQML(OpenProof). We follow ategorisations made in [Homann and Calmet,1996; Hess et al., 1998℄ and do not laim that our list is omplete.5.3.1 Mathematial FiltersCertain mathematial programs an be used in a �lter-like way, that is theyan read a request from an input stream and write some answer to an out-put stream. Mathematial �lters an be further grouped in omputation �ltersand dedution �lters. The �rst perform some numerial or algebrai alulation



whih result they return (maybe oupled with some protool information onhow the result was obtained), while the latter attempt to prove a given problemand return, if suessful, the proof or signal failure. Using partially spei�edKQML(OpenProof) proof and omputation expressions, mathematial �ltersan be genuinely addressed in one-solution, single-shot modes up to all-solutions,streaming modes.Unlike omputation �lters whih terminate eventually, dedution �lters willnot always return a result. Thus dedution agents need to have additional prop-erties for maintenane: On the one hand a requesting lient must be able to senda termination signal, e.g., "deny", to a dedution servie in order to delare anearlier request as obsolete. On the other hand the servie itself needs to surveyits own running proesses, assign resoures to inoming requests and terminateproesses that have not produed any results after their alloated resoures havebeen onsumed. Two instanes of �lter agents that we have already integratedinto 
mega are the automati theorem prover Spass [Weidenbah, 1997℄ andthe Computer Algebra system Maple [Redfern, 1998℄. Furthermore, there isa servie ompetitive-atp that alls sets of ATP onurrently as ompetingservies (this strategy is known to yield even super-linear speedups in pratie).5.3.2 MediatorsAlthough OpenProof is a generi representation devie for formulae in variouslogis and proofs in di�erent aluli, it would be an overkill to demand from eahMathWeb agent to ope with arbitrary strutures besides the natural format ofits enapsulated servie. This would inrease the omputational burden that theagent shell has to arry. Instead, the problems involved in translating betweenthe di�erent formats are rather themselves reasonable mathematial servies(see the example of Figure 5) to be embedded into agents and to be integratedinto the MathWeb. An example of suh a mediator agent is a syntax trans-former that an onvert between di�erent representations of �rst-order logi, e.g.,negation normal form and lausal form. Another servie is `relativisation' whihtransforms formulae of sorted �rst-order logi or higher-order logi to lassial�rst-order logi [Shmidt-Shau�, 1989; Kerber, 1991℄. Finally, there are prooftransformers [Pfenning, 1987; Huang and Fiedler, 1996℄ that an transform fromone alulus into another one (possibly even transforming the base logi along theway). Sine mediators do not need a virtual knowledge base in the KQMLsensefor that purpose, we rather regard their task to simplify inoming expressionsinto a anonial format, thus implement the "evaluate" performative of KQMLwith orresponding OpenProof formula or proof ontents.5.3.3 Knowledge BasesMathematial knowledge bases are used to uniquely store formulae (axiomatisa-tions, de�nitions, et.) and also proof steps and proofs in order to give ommonlyused, onvenient symbols a semantis. Thus, they are a similar onept to theOpenMath ontent ditionaries. For MathWeb, a lose onnetion of theseonepts is envisaged: Knowledge bases with a MathWeb shell are automati-ally able to produe properOpenMath ode of their knowledge, thus a reason-able ontent ditionary. On the other hand,MathWeb knowledge bases an a-ess existing ontent ditionaries to provide their information in theMathWeb.



This happens typially over the "ask-one" performative arrying a higher-orderequation (see Setion 4).Contrary to other mathematial servies, knowledge bases have the propertythat they an be dynamially hanged by lients, i.e., the user edits a de�ni-tion in the user interfae and "insert"s it to the knowledge base or requestsa "delete". The knowledge base agents therefore have some additional infor-mation on aess rights for partiular agents/partiular users sending requests.The Mizar Library [Rudniki, 1992℄ is a knowledge base that already o�ers itsservies via the Internet, but is not yet integrated into MathWeb.MathWeb urrently only inludes the MBase servie, a simple web-basedmathematial knowledge base system that stores mathematial fats like theo-rems, de�nitions and proofs and an perform type heking, de�nition expansionand semanti searh. It ommuniates with other mathematial servies by me-diators and with humans by the interation unit OtOpus.5.3.4 Display ComponentsThis point overs possible interation devies that enable a user to view andelaborate proessed mathematial data in a desired way. To these servies belong(graphial or non-graphial) displays and browsers for formulas and proofs, aswell as systems that an transform provided data into a human-oriented format.As an example of the latter, one might onsider systems that translate proofsinto natural language. An example for a graphial user interfae that is alreadyavailable in MathWeb is L
UI [Siekmann et al., 1998℄ the interfae for the
mega system. The user interfae is a basi soure of ativity, as maintenaneof knowledge bases, transformations of logial expressions, and the initiation ofproofs are triggered from here (see the above servies). Note that the user, thushis user interfae, ould also appear as requestable entity in the MathWeb,for example to propose an instantiation, to solve some lemma, et. Therefore,the user interfae should also proess inoming "ask-one" ommands, but forupholding the onveniene of the user, it should not aept "stream-all" orsimilar requests.5.3.5 Anytime ServiesAnytime servies provide a means to organise the output of omputations thatmight have more than one result (possibly in�nitely many results) to a lients re-quest. The general funtionality of these servies is similar to those of mathemat-ial �lters, but they an also store additional information on both the requestedservie and the lient. The latter itself reeives a result along with information onhow long the anytime servie an provide further results and how these resultsan be retrieved. Using these spei�ations, subsequent requests of the lientan then be answered by the anytime servie using the already omputed results(always provided the requests are within the given time limit). A predestinedandidate for an anytime agent is, for instane, a uni�ation engine for higher or-der logis. The neessary information exhange an be enoded in KQML usingstreaming together with the resoure attribution of OpenProof.



5.3.6 Mathematial Control UnitsFinally ontrol units form the link between several di�erent other mathematialservies. They have the ability to permanently store data of ongoing proofs oromputations, making it available to other agents requests as well as using itto assign other agents to ertain tasks. While inorporating less or no appli-ation servies, ontrol units overview a greater portion of the overall serviearhiteture and funtion as brokers to whih agents with a smaller `soial hori-zon' ould turn to. MathWeb should always have a `bakbone' of persistent,mutually-aware ontrol units in order to bridge dispersed areas of servies. Aselaborated in the example in Setion 4 the 
mega ontrol unit ontains all ne-essary information in order to arry out the steps leading to a omplete proof ofthe given example. "broadast", "forward", and "broker-one" messages aretypially sent to the ontrol unit for routing purposes.6 Implementation and ExperienesMathWeb is implemented as an objet-oriented toolbox that provides the fun-tionality for building a soiety of software agents that render mathematialservies by either enapsulating legay dedution software or their own fun-tionality. The system is available at http://www.ags.uni-sb.de/~omega/www/mathweb.html.The urrent list of integrated mathematial servies onsist of the theoremprovers and omputer algebra systems mentioned in the introdution, the knowl-edge base system MBase, the proof transformation and presentation systemProVerb [Huang and Fiedler, 1996℄ and the L
UI [Siekmann et al., 1998℄ andOtOpus user interfaes. Currently, these servies are used by the three ontrolomponents InKa [Hutter and Sengler, 1996℄, �Clam [Rihardson et al., 1998℄,and the 
mega kernel [Benzm�uller et al., 1997℄. A �rst synergy e�et ofMath-Web has been that the �rst two systems an now partake in infrastruture (suhas L
UI and MBase) developed for the latter, while the 
mega system annow turn to InKa or �Clam when it needs support for indutive proofs. Further-more,MathWeb approah has been a key fator in keeping the 
mega systemmaintainable and the near future will see further modularisation and `agenti�-ation' of system omponents, whih will lead to simpler system maintenaneand a more open development model.In the urrent implementation, the software bus funtionality of MathWebis realized by a CORBA-like model [Siegel, 1996℄ in whih a entral broker agentprovides routing and authentiation information to the mathematial servies(see [Hess et al., 1998℄ for details). The agents are realized in a distributed pro-gramming system mOZart (see http://www.mozart-oz.org for details), aninterative and distributed implementation of the onurrent onstraint pro-gramming language Oz [Smolka, 1995℄. mOZartFurthermore, MathWeb provides the mOZart shell (Mosh), a tool forlaunhing and administering multiple mOZart appliations (the agents) withinonly one mOZart proess. It ombines some frequently used shell ommands(for �les, proesses and environment) with some (thread-related) mOZart om-mands. These allow (remotely) administering the mathematial servies arossthe Internet, sine the administrator an onnet to remote Mosh daemons {



whih run ontinually at the host providing the servies { launh and terminateservies. This also allows for a limited form of self-organization of mathematialservies, sine these an use Mosh sripts themselves to launh and administerother servies.By providing several trading points whih are interonneted using the KQMLinterlingua we are now smoothly migrating into the fully distributedMathWebin whih eah mathematial servie agent possesses the omplete funtionalityof the trading point inluding the apability lookup table. The urrent tradingpoints still use a proprietary protool | both at the interlingua and the ontentlanguage levels | for ommuniation with several embedded mathematial ser-vies that is ustomised to the urrent needs and funtionality of 
mega. Sine itresembles KQML performatives, we will ome up with a fully KQML-ompliantsystem in the near future.mOZart's main advantage as a basis for MathWeb omes from its net-work transpareny, i.e., the full support of remote omputations in the baselanguage (lexial soping, logial variables, objets, onstraints,. . . ), and its net-work awareness, i.e., the full ontrol over network operations, suh as the hoiebetween stationary and mobile objets, whih make it easy to `agentify' arbitraryappliations. Inorporating both properties goes well beyond the distribution fa-ilities of e.g. CORBA. mOZart also provides high-level inferene primitiveslike onstraint propagation, searh, and searh ontrol whih makes it a goodimplementation hoie for the mathematial servies proper. mOZart provideslow-level primitives to seamlessly integrate C/C++ ode and to ontrol arbi-trary external proesses via Operating System funtionality. An example of amathematial servie that is fully implemented in mOZart is the generi proofvisualisation tool L
UI.For the ontent language, MathWeb still uses a mix of languages, onsist-ing mainly of the 
mega, InKa, and �Clam internal formats and the variousinput languages of the legay systems, turned into mathematial servies byMathWeb. Work is under way to implement the translation servies needed forintegrating the ontent languageOpenProof proposed in setion 5.2. A uni�edontent language will greatly simplify the administration of mathematial ser-vies, sine with n input languages of legay systems, we only need 2n transfor-mation servies for pairwise ommuniation instead of n2 without OpenProof.In fat, the need for a development ontent language ame from this pratialneed as muh as the desire for standardisation.Apart from the appliation in mathematis and software engineering that hasbeen the primary fous, MathWeb has been tested in the Doris1 system, anatural language understanding system that uses �rst-order automated theoremprovers and model builders as external mathematial servies to solve the onsis-teny and entailment problems pertaining to various disambiguation problemsin text and dialogue understanding. Doris generates up to 500 dedution prob-lems for eah sentene it proesses, distributes them to ompeting mathematialservies (over a network of workstations) and ollets the results to obtain thedesired result. Using the MathWeb approah, the integration of the theoremprovers was very simple: the only new parts were a soket onnetion from Pro-1 See http://www.oli.uni-sb.de/~bos/atp/doris.html for a web-based interfaethat ats as a MathWeb lient.



log on the Doris side and a new servie module for the doris servie2 on theMathWeb side. Experiene with this appliation shows that distribution usingMathWeb does not ome for free: A test with around 1300 Doris dedutionqueries yielded the following timings:330{1250 ms pure theorem proving time50-120 ms spent in the servie module (opening an inferior shell, reating�les,. . . ). This depends strongly on the eÆieny of the server �le system.5{500 ms Internet lateny (we have measured inter-departmental (in Saar-br�uken) and international (Saarbr�uken/Amsterdam) onnetions)However, the large number of dedution problems and the possibility of oarse-grained parallelisation by distribution lead to a signi�ant inrease in overallsystem performane, ompared to an earlier entralised, sequential arhiteture.In partiular, the timings also show that it an pay o� for a lient in Saarbr�ukento delegate dedution problems to faster mahines in Amsterdam or vie versa.7 ConlusionWe have proposed a distributed network arhiteture for automated and in-terative theorem proving, MathWeb, that extends and generalises earlier ef-forts in the 
mega proof development system to support modularisation, inter-operability, robustness, and salability of mathematial software systems. Thekey onept is the identi�ation of mathematial appliations with ommuni-ating, autonomous agents, alled mathematial servies. We have desribedan agent{ and ommuniation model for the MathWeb arhiteture based onthe KQML and OpenMath standards whih provides the funtionality to turnexisting theorem proving systems and tools into mathematial servies homoge-neously integrated into a networked proof development environment.7.1 ResouresFuture work will onentrate on the resoure part of OpenProof, sine thenumber of proof steps used in the examples in setion 5.2 is ertainly not anuniversally meaningful unit of measure throughout the MathWeb. Partiularprovers and aluli need less basi operations than others for performing partiu-lar manipulations or inferenes. Partiular mahines running MathWeb agentsare faster than others. Thus having omparable proessing times seems to be abetter approah. Additional osts, suh as memory usage, required transforma-tions, the information looked up in knowledge bases, user interations, et., arealso not yet aounted for. Gerber & Jung [Gerber and Jung, 1998℄ propose ab-strat resoures as a reasonable representation devie for suh interdependeniesbetween autonomous agents. They furthermore desribe topologial and algo-rithmi means for organising a soiety of agents towards optimality based onabstrat resoures.2 I.e. a small (60 line) mOZart program that relays problems, results and statistisbetween the Doris program and the ompetitive-atp servie.3 These times have been measured on a olletion of SUN Ultra mahines runningSolaris 5 in Saarbr�uken and Amsterdam (all timings given in total elapsed time;normalised to our fastest mahine, a SUN Ultra 4 at 300 MHz).



7.2 NegotiationOne means for load-balaning in multi-agent systems with entral deision mak-ing has been adopted from eonomis: the market metaphor. If (mathematial)agents are equipped with a notion of (sel�sh) utility, thus money, and is pro-vided a ommuniative platform for performing negotiations, the whole systemis able to perform self-regulation, i.e., suboptimalities from ineÆient or dis-abled servies will be adapted by reorientation of servie requests. The ontratnet protool [Smith, 1980℄ and its derivates, for example, introdue an autionmehanism for the delegation of tasks harged with ertain osts. An agent herein`announes' a task, suh as the proof of a ertain theorem, to a number of servieagents. Eah servie now judges its ompetene and predits the expeted oststhat his proessing will produe. It `bids' for the task aordingly. The initiativeagent then selets one or several servie agents in order to redue osts and max-imise performane. Using the KQML performatives, suh aution mehanismsan be easily implemented.AknowledgementsThe work reported here was supported by the `Deutshe Forshungsgemein-shaft' (DFG) in the `Sonderforshungsbereih 378' and the `GraduiertenkollegKognitionswissenshaft'. The authors would like to thank the 
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