
Secure Coprocessors in Electronic Commerce Applications

Bennet Yee J. D. Tygar
Microsoft Corporation Carnegie Mellon University
Redmond, WA 98052 Pitsburgh, PA 15213
bsy@microsoft.com tygar@cs.cmu.edu

Abstract

Many researchers believe electronic wallets (secure stor-
age devices that maintain account balances) are the solu-
tion to electronic commerce challenges. This paper argues
for a more powerful model — a secure coprocessor — that
can run a small operating system, run application pro-
grams, and also keep secure storage for cryptographic
keys and balance information.

We have built a system called Dyad, on top of a port of
the Mach 3.0 microkernel to the IBM Citadel secure co-
processor. This paper describes the abstract architecture
of Dyad and a general discussion of secure coprocessor
implementations of a variety of electronic commerce ap-
plications:� Copy protection for software� Electronic cash (including a critique of proposed so-

lutions for point-of-sale electronic wallet systems)� Electronic contracts� Secure postage

1 Introduction

Many researchers believe electronic wallets (secure stor-
age devices that maintain account balances) are the solu-
tion to electronic commerce challenges [3, 31]. This paper
argues for a more powerful model — a secure coprocessor
— that can run a small operating system, run application

This work was supported in part by ARPA contracts F33615-90-
C-1465 and F33615-93-1-1330, NSF Presidential Young Investigator
Award CCR-9958087, matching funds from Motorola and TRW, a con-
tract from the US Postal Service, and by an equipment grant from IBM.
This work was done while the first author was at Carnegie Mellon Uni-
versity. This work is the opinion of the authors and does not necessar-
ily represent the view of their employers, funding sponsors, or the US
Government.

programs, and also keep secure storage for cryptographic
keys and balance information.

Secure coprocessors are tamper-proof sealed devices
that have a processor, memory storage, and (optional) fast
crypto-support. They are protected in that any attempt
to penetrate them will result in all critical memory being
erased.

Secure coprocessors have a number of advantages over
electronic wallets. They have more powerful processors
and larger amounts of memory, so they can do more: they
can negotiate (and enforce) contracts that involve renting
and redistributing intellectual information. If they incor-
porate a secure display, they can provide much greater pro-
tection for customers in point-of-sale applications. They
can provide software copy protection, permitting much
more general applications.

We have built a system called Dyad, on top of a port
of the Mach 3.0 microkernel [19] to the IBM Citadel se-
cure coprocessor [57]. This paper describes the abstract
architecture of Dyad and a general discussion of secure co-
processor implementations of a variety of electronic com-
merce applications:� Copy protection for software� Electronic cash (including a critique of proposed so-

lutions for point-of-sale electronic wallet systems)� Electronic contracts� Secure postage

A few years ago, only experimental prototypes of se-
cure coprocessors existed, but today, the market is filling
up. Manufacturers such as Cylink, IBM, National Semi-
conductor, Spyrus, Telequip, and others have announced
secure coprocessor products. Several other major man-
ufacturers will announce significant new products in the
near future. There is a new FIPS standard for crypto-
graphic modules (including secure coprocessors) [53] and

a new service to perform those evaluations [54]. This pa-
per attempts to lay out the intellectual issues in the use of
these new secure coprocessor products.

Because of length considerations, this paper does not
discuss our Dyad implementation (see [60]), or addi-
tional applications of secure coprocessors arising from
distributed computation (see [43, 44].)

2 Secure Coprocessor Model

A secure coprocessor is a hardware module containing (1)
a CPU, (2) bootstrap ROM, and (3) secure non-volatile
memory. This hardware module is physically shielded
from penetration, and the I/O interface to the module is
the only way to access the internal state of the module. (If
the shield is somehow penetrated, then a secure coproces-
sor erases all critical memory.) This hardware module can
store cryptographic keys without risk of release. More
generally, the CPU can perform arbitrary computations
(under control of the operating system); thus the hardware
module, when added to a computer, becomes a true copro-
cessor. Often, the secure coprocessor will contain special
purpose hardware in addition to the CPU and memory; for
example, high speed encryption/decryption hardware may
be used.

2.1 Security Properties of Secure Coproces-
sors

All security systems rely on a nucleus of assumptions. For
example, it is often assumed that encryption systems are
resistant to cryptanalysis. Similarly, we take as axiomatic
that secure coprocessors provide private and tamper-proof
memory and processing. These assumptions may be fal-
sified: for example, attackers may exhaustively search
cryptographic key spaces. Similarly, it may be possi-
ble to falsify our physical security axiom by expending
enormous resources (possibly feasible for very large cor-
porations or government agencies). We rely on a physical
work-factor argument to justify our axiom, similar in spirit
to intractability assumptions of cryptography. Our secure
coprocessor model does not depend on the particular tech-
nology used to satisfy the work-factor assumption. Just
as cryptographic schemes may be scaled or changed to in-
crease the resources required to penetrate a cryptographic
system, current security packaging techniques may be
scaled or changed to increase the work-factor necessary to
successfully bypass the secure coprocessor protections.

Secure coprocessors must be packaged so that phys-
ical attempts to gain access to the internal state of the

coprocessor will result in resetting the state of the secure
coprocessor (i.e., erasure of the secure non-volatile mem-
ory contents and CPU registers). An intruder might be
able to break into a secure coprocessor and see how it is
constructed; the intruder cannot, however, learn or change
the internal state of the secure coprocessor except through
normal I/O channels or by forcibly resetting the entire se-
cure coprocessor. The guarantees about the privacy and
integrity of the secure non-volatile memory provide the
foundations needed to build distributed security systems.

2.2 Potential Platforms

Several physically secure processors exist, and more are
forthcoming. Some of these are very secure, satisfying
the highest security level specified by FIPS PUB 140-1
[53]. (This publication gives four security levels from
cryptographic modules, including secure coprocessors.)
Announced secure coprocessors include the �ABYSS [55]
and Citadel [57] systems from IBM; the iPower [34] en-
cryption card by National Semiconductor; some extended
implementations of the Clipper and Capstone systems
[2, 51, 52], proposed by the NSA as DES replacements; the
Crypta Plus [47] encryption card by Telequip; the CY512i
[13] chip from Cylink; and various smartcard systems such
as some GEMPlus or Mondex cards [22]. There will be
additional announcements of systems with increased pro-
cessing power from major vendors in the next few months.
For a fuller descriptions of potential platforms, see [60].

3 Applications

Because secure coprocessors can process secrets as well as
store them, they can do much more than just keep secrets
confidential. We describe how to use secure coproces-
sors to realize exemplar electronic commerce applications:
(1) copy protection, (2) electronic currency, (3) electronic
contracts, and (4) secure postage meters. None of these
are possible on physically exposed systems. These appli-
cations are discussed briefly below.

3.1 Copy Protection

Software is often charged on a per-CPU, per-site, or per-
use basis. Software licenses usually prohibit making
copies for use on unlicensed machines. This injunction
against copying is technically unenforceable without a se-
cure coprocessor. If the user can execute code on a phys-
ically accessible workstation, the user can also read that
code. Even if attackers cannot read the workstation mem-
ory while it is running, we are implicitly depending on the

assumption that the workstation was booted correctly —
verifying this property, as discussed above, requires the
use of a secure coprocessor.

Software copy protection is complementary to elec-
tronic commerce. Without copy protection, rental or per-
use charging of software is not possible. Here we discuss
tradeoffs in using a secure coprocessor to implement soft-
ware copy protection. (Dyad includes a software protec-
tion mechanism [60].)

3.1.1 Copy Protection with Secure Coprocessors

Secure coprocessors can protect executables from being
copied and illegally used. The proprietary code to be
protected — or at least some critical portion of it — is dis-
tributed and stored in encrypted form, so copying without
the code decryption key is futile,1 and this protected code
runs only inside the secure coprocessor. Either public key
or private key cryptography may be used to encrypt pro-
tected software. If private key cryptography is used, key
management is still handled by public key cryptography.
In particular, when a user pays for the use of a program, he
sends the certificate of his secure coprocessor public key
to the software vendor. This certificate is digitally signed
by a key management center and is prima facie evidence
that the public key is valid. The corresponding private key
is stored only within the secure non-volatile memory of
the secure coprocessor; thus, only the secure coprocessor
will have full access to the proprietary software.

What if the code size is larger than the memory capacity
of the secure coprocessor? We have two alternatives: we
can crypto-page or we can split the code into protected
and unprotected segments.

Section 4.3 discusses crypto-paging in greater detail,
but the basic idea is to encrypt and decrypt virtual memory
contents as they are copied between secure memory and
external storage. When we run out of memory space on
the coprocessor, we encrypt the data before it is flushed
to unsecure external storage, maintaining privacy. Since
good encryption chips are fast, we can encrypt and decrypt
on the fly with little performance penalty.

Splitting the code is an alternative to crypto-paging.
We can divide the code into a security-critical section and
an unprotected section. The security-critical section is
encrypted and runs only on the secure coprocessor. The

1Allowing the encrypted form of the code to be copied means that we
can back up the workstation against disk failures. Even giving attackers
access to the backup tapes will not release any of the proprietary code.
(Note that our encryption function should be resistant to known-plaintext
attacks, since executable binaries typically have standardized formats.)
A more interesting question arises if the secure coprocessor may fail.
Secure coprocessors may be used in a fault-tolerant fashion; see [60].

unprotected section runs concurrently on the host. An
adversary can copy the unprotected section, but if the
division is done well, he or she will not be able to run the
code without the secure portion. In �ABYSS [56], White
and Comerford show how such a partitioning should be
done to maximize the difficulty of reverse engineering the
secure portion of the application.2

Whether the proprietary code is split or not, the secure
coprocessor runs a small security kernel. It provides the
basic support necessary to communicate with the host or
the host’s I/O devices. With separate address spaces and
a few communication primitives, the complexity of a se-
curity kernel can be kept low, providing greater assurance
that a particular implementation is correct.

3.1.2 Previous Work

A more primitive version of the copy protection applica-
tion for secure coprocessors appeared in [28, 56]; a secure-
CPU approach using oblivious memory references (i.e.,
apparently random patterns of memory accesses) giving a
poly-logarithmic slow down, appears in [18] and [35].

3.2 Electronic Currency

We have shown how to keep licensed proprietary software
encrypted and allow only execute access. A natural ap-
plication is to allow charging on a pay-per-use or metered
basis. In addition to controlling access to the software
according to the terms of a license, some mechanism must
perform cost accounting, whether it tracks the number
of times a program has run or tracks dollars in a user’s
account. More generally, this accounting software pro-
vides an electronic currency abstraction. Correctly imple-
menting electronic currency requires that account data be
protected against tampering — if we cannot guarantee in-
tegrity, attackers might be able to create electronic money

2We also examined a real application, gnu-emacs 19.22 [45], to show
how it could be partitioned to run partially within a secure coproces-
sor. The X Windows display code should remain within the host for
performance. Most of the emacs lisp interpreter (e.g., bytecode.c,
callint.c, eval.c, lread.c, marker.c, etc) could be moved
into the secure coprocessor and accessed as remote procedures. Any
manipulation of host-side data — text buffer manipulation, lisp object
traversal — required during remote procedure calls can be provided by a
simple read-write interface (with caching) between the coprocessor and
the host, with interpreter-private data such as catch/throw frames residing
entirely within the secure coprocessor. Garbage collection does become
a problem, since the garbage collector must be able to determine if a Lisp
object is accessible from the call stack, a portion of which is inside the
coprocessor. If we chose to hide the actions of the evaluator and keep
the stack within the secure coprocessor hidden, this would require that
the garbage collector code (Fgarbage collect and its utilities) be
moved within the secure coprocessor as well.

at will. Privacy, while perhaps less important here, is a
property that users expect for their bank balance and wal-
let contents; similarly, electronic money account balances
should also be private.

We argue that secure coprocessors can not only sup-
port electronic wallet functionality, but that they also offer
stronger guarantees than existing and proposed electronic
wallets. In particular, electronic coprocessors offer con-
sumer protection unavailable with existing electronic wal-
lets. (We have built an electronic currency mechanism on
top of Dyad, see [60].)

3.2.1 Electronic Money Models

Several models can be adopted for handling electronic
funds. Any implementation of these models should follow
the standard transactional model, i.e., to group together
operations in a transaction having these three properties
[20, 21]:

1. Failure atomicity. If a transaction’s work is inter-
rupted by a failure, any partially completed results
will be undone.

2. Permanence. If a transaction completes successfully,
the result of its work will never be lost, except due to
a catastrophic failure.

3. Serializability. Concurrent transactions may occur,
but the results must be the same as if they executed
serially. This means that temporary inconsistencies
that occur inside a transaction are never visible to
other transactions.

These transactional properties are requirements for the
safe operation of any database, and they are absolutely
necessary for any electronic money system.

In the following, we discuss various electronic money
models, their security properties, and how they can be
implemented using present day technology. (We have
built an electronic currency system on top of Dyad.)

The first electronic money model is based on the cash
analogy. In this model, electronic cash has similar prop-
erties to cash:

1. Exchanges of cash can be effectively anonymous.

2. Cash cannot be created or destroyed except by na-
tional treasuries.

3. Cash transfers require no online central authority.

(Note that these properties are actually stronger than
that provided by real currency — serial numbers can be

recorded to trace transactions. Similarly, currency can be
destroyed.)

The second electronic money model is based on the
credit cards/checks analogy. Electronic funds are not
transferred directly; rather, promises of payment, cryp-
tographically signed to prove authenticity, are transferred
instead. A straightforward implementation of the credit
card model fails to exhibit any of the three proper-
ties above. However, by applying cryptographic tech-
niques, anonymity can be achieved in a cashier’s-check-
like scheme (e.g., Chaum’s Digicash model [10], which
lacks transactional properties such as failure atomicity —
see section 3.2.3), but the latter two requirements (con-
servation of cash and no online central authority) remain
insurmountable. Electronic checks must be signed and
validated at central authorities (banks), and checks/credit
payments en route “create” temporary money. Further-
more, potential reuse of cryptographically signed checks
requires that the recipient must be able to validate the
check with the central authority prior to committing to a
transaction.

The third electronic money model is based on the bank
rendezvous analogy. This model uses a centralized au-
thority to authenticate all transactions and is poorly suited
to large distributed applications. The bank is the sole ar-
biter of account balance information and can implement
the access controls needed to ensure privacy and integrity
of the data. Electronic Funds Transfer (EFT) services use
this model — there are no access restrictions on deposits
into accounts, so only the person who controls the source
account needs to be authenticated.

We examine these models one by one.
With electronic currency, integrity of accounting data is

crucial. We can establish a secure communication chan-
nel between two secure coprocessors by using a key ex-
change cryptographic protocol and thus use cryptography
to maintain privacy when transferring funds. To ensure
that electronic money is conserved (neither created nor
destroyed), the transfer of funds should be failure atomic,
i.e., the transaction must terminate in such a way as to
either fail completely or fully succeed — transfer trans-
actions cannot terminate with the source balance decre-
mented without having incremented the destination bal-
ance or vice versa. By running a transaction protocol
such as two-phase commit [7, 15, 58] on top of the secure
channel, secure coprocessors can transfer electronic funds
from one account to another in a safe manner, provid-
ing privacy and ensuring that money is conserved. Most
transaction protocols need stable storage for transaction
logging to enable the system to roll back when a trans-
action aborts. On large transaction systems this typically

has meant mirrored disks with uninterruptible power sup-
plies. With the simple transactions needed for electronic
currency, the per-transaction log typically is not that large,
and the log can be truncated after transactions commit and
further communications show all relevant parties have ac-
knowledged the transaction. Because each secure copro-
cessor handles only a few users, small amounts of stable
storage can satisfy logging needs. Furthermore, because
secure coprocessors have secure non-volatile memory, we
only need to reserve some of this memory for logging. The
log, accounting data, and controllingcode are all protected
from modification by the secure coprocessor, so account
data are safe from all attacks; their only threats are bugs
and catastrophic failures. Of course, the system should be
designed so that users should have little or no incentive
to destroy secure coprocessors that they can access. This
is natural when one’s own balances are stored on a secure
coprocessor, much like the cash in one’s wallets.

If the secure coprocessor has insufficient memory to
hold account data for all the users, the code and accounting
database may be written to host memory or disk after
obtaining a cryptographic checksum (see discussion of
crypto-sealing in section 4.3). For the accounting data,
encryption may alternatively be employed since privacy
is usually also desired.

Note that this type of decentralized electronic currency
is not appropriate for smartcards unless they can be made
physically secure from attacks by their owners. Smart-
cards are only quasi-physically secure in that their privacy
guarantees stem solely from their portability. Secrets may
be stored within smartcards because their users can provide
the physical security necessary. Malicious users, however,
can violate smartcard integrity and insert false data.3

Secure coprocessor mediated electronic currency trans-
fer is analogous to rights transfer (not to be confused with
rights copying) in a capability-based protection system
[59]. Using the electronic money — e.g., spending it
when running a pay-per-use program — is analogous to
the revocation of a capability. This type of model relies
on the idea of secure-coprocessor-protected unforgeable
electronic tokens. In addition to electronic money, these
unforgeable tokens are useful for many other applications.
Electronic tokens can be created and destroyed by a few
trusted programs. For pay-per-use applications, the token
is created by the vendor’s sales program and destroyed
by executing the application — the exact time of destruc-
tion of the token is a vendor design decision, since runs
of application programs are not, in general, transactional

3Newer smartcards such as GEMPlus or Mondex cards [22] feature
limited physical security protection, though the types of attacks these
cards can withstand have not been published.

in nature. However, the trusted electronic currency man-
ager running in the secure coprocessorcan use distributed
transactions to transfer money and other electronic tokens.
Transaction messages are encrypted by the secure copro-
cessor’s basic communication layer, providingprivacy and
integrity of communications. (Traffic analysis is beyond
the scope of this work and is not addressed.)

What about the other models for handling electronic
funds? With the credit card/check analogy, the authentic-
ity of the promise of payment must be established. When
the computer cannot keep secrets for users, there can be no
authentication because nothing uniquely identifies users.
Even if we assume that users can enter their passwords into
a workstation without fear of their password being com-
promised, we are still faced with the problem of providing
privacy and integrity guarantees for network communica-
tion. We have similar problems as in host-to-host authen-
tication in that cryptographic keys need to be somehow
exchanged. If communications are in plaintext, attackers
may simply record a transfer of a promise of payment and
replay it to temporarily create cash. While security sys-
tems such as Kerberos [46], if properly implemented [4],
can help to authenticate entities and create session keys,
they use a centralized server and have problems similar
to those in the bank rendezvous model. While we can
implement the credit card/check model using secure co-
processors, the inherent weaknesses of this model keep
us from taking full advantage of the security properties
provided by secure coprocessors; if we use the full power
of the secure coprocessor model to properly authenticate
users and verify their ability to pay (perhaps by locking
funds into escrow), the resulting system would be equiva-
lent to the cash model.

With the bank rendezvous model, a “bank” server super-
vises the transfer of funds. While it is easy to enforce the
access controls on account data, this suffers from problems
with non-scalability, loss of anonymity, and easy denial of
service from excessive centralization.

Because every transaction must contact the bank server,
access to the bank service will be a performance bottle-
neck. Banks do not scale well to large user bases. When a
bank system grows from a single computer to several ma-
chines, distributed transaction systems techniques must
be brought to bear in any case, so this model has no real
advantage over the use of secure coprocessors in ease of
implementation. Furthermore, if a bank’s host becomes
inaccessible, either maliciously or as a result of normal
hardware failures, no agent can make use of any bank
transfers. This model does not exhibit graceful degrada-
tion with system failures.

3.2.2 Point-of-Sale Terminals

In addition to their use in networked computers, secure
coprocessors can be used for commercial transactions at
point-of-sale terminals. For this application, we would
need portable secure coprocessor form factors, such as
smartcards or PCMCIA cards. Unlike the networked PC
scenario where the users can be familiar with particular
PCs they use, customers at a point-of-sale terminal have
no reason to trust its integrity.

Point-of-saleuse of secure coprocessors is vulnerable to
a very important class of threats: communication spoofing
between the secure coprocessor and the user. This problem
arises because there is no private communications path
[50] between the user and the secure coprocessor. A secure
display only displays data to the user originating from the
secure coprocessor and guarantees that the displayed data
can not be tapped by a third party; such a display would
provide secure one-way communication from the secure
coprocessor and the user.

Today’s smartcards and PCMCIA cards do not incor-
porate secure displays. Thus, for point-of-sale use, the
user must rely on the display on the point-of-sale terminal
to inform him of the total price. Unlike traditional paper
credit-card-imprint slips, a secure coprocessor’s digital
signature is on a document that is never shown to the user
— whatever per-signature user authorization required is
performed blind, and the secure coprocessor might sign a
purchase order fora $10,000 gold watch when the point-of-
sale terminal is displaying “$1.98 watch batteries.” Fur-
thermore, to prevent a user authorization replay attack,
some method for securely transferring the user authen-
tication/authorization input to the secure coprocessor is
required.

To permit secure input of user passwords to a secure
coprocessor and to display purchase information, a secure
display suffices: we use the secure display as a one-way
secure channel over which we transmit a one-time pad, i.e.,
a cryptographically random string. The user then uses the
point-of-sale terminal’s keyboard (perhaps via arrow keys)
to modify the displayed string into the user’s password.
For example, if your password was “SHOELACE” and
the displayed string was “QZKNCFLX”, you would press
the " arrow twice to change the “Q” to an “S”, and then
press the ! arrow to advance to the next character, etc.
(This is an idea adapted from [1].) Price information can
be shown on a secure display in the obvious way.

Without a secure display of purchase data and secure en-
try of passwords, point-of-sale use of secure coprocessors
does not increase the security of point-of-sale commerce
over existing credit card systems. One much touted prop-

erty of using smartcards in lieu of mag-stripe credit cards is
customer non-repudiation and the elimination of merchant
fraud. However, while the cryptographic signature keys
may be secure, smartcards without some form of secure
display can not link the signature to the purchase due to
the absence of customer review. Thus customers are still
vulnerable to merchant fraud — rather than modifying the
numbers a credit card slip after the fact, the merchant can
simply introduce a difference between data presented to
the user and the users’ secure coprocessor.

3.2.3 Previous Work

An alternative to the secure coprocessor managed elec-
tronic currency is Chaum’s Digicash protocol [8, 10]. In
such systems, anonymity is paramount, and cryptographic
techniques are used to preserve the secrecy of the users’
identities. No physically secure hardware is used, except
in the observers refinement to prevent double spending of
electronic money (rather than detecting it after the fact).4

Chaum-style electronic currency schemes are charac-
terized by two key protocols. The first is a blind signature
protocol between a user and a central bank. During a
withdrawal, the user obtains a cryptographically signed
check that is probabilistically proven to contain an encod-
ing of the user’s identity. The user keeps the values used
in constructing the check secret; they are used later in the
spending protocol.

The second protocol is a randomized interactive pro-
tocol between a user and a merchant. The user sends
the blind-signed check to the merchant and interactively
proves that the check was constructed appropriately out of
the secret values and reveals some, but not all, of those
secrets. The merchant “deposits” to the central bank the
blind-signed number and the protocol log as proof of pay-
ment. This interactive spending protocol has a flavor sim-
ilar to zero-knowledge protocols in that the answers to
the merchant’s queries, if answered for both values of the
random coin flips, reveal the user’s identity. When double
spending occurs, the central bank gets two logs for the
same check, and from this identifies the double spender.

There are a number of problems with this approach.
First, any system that provides complete anonymity is
currently illegal in the United States, since any mone-
tary transfer exceeding $10,000 must be reported to the
government [12], employee payments must be reported
similarly for tax purposes [11], stock transfers must be

4The observers model employs a physically secure hardware module
to detect and prevent double spending. Chaum’s protocol limits infor-
mation flow to the observer, so that the user need not trust it to maintain
privacy; however, it must be trusted to not destroy money. Secure co-
processors achieve the same goals with greater flexibility.

reported to the Securities and Exchange Commission, etc.
Second, in a real internetworked environment, network
addresses are required to establish and maintain a com-
munication channel, barring the use of trusted anonymous
forwarders — and such forwarding agents are still subject
to traffic analysis. Providing real anonymity in the high
level protocol is useless without taking network realities
into account. Third, Chaum’s cryptographic protocols do
not handle failures, and any systems based on them can-
not simultaneously have transactional properties and also
maintain anonymity and security. A transaction abort in
the blind signature protocol either leaves the user with a
debited account and no electronic check or a free check.
A transaction abort in the spending protocol either permits
the user to falsify electronic cash if the random coin flips
are reused when the transaction is reattempted (e.g., the
network partition heals), or reveals identifying informa-
tion to the merchant if new random coin flips are generated
when the transaction is reattempted.

Clearly, to provide a realistic distributed electronic cur-
rency system, transactional properties must be provided.
Unfortunately, the safety provided by transactions and the
anonymity provided by cryptographic techniques appear
to be inherently at odds with each other, and the trade-
offs made by Chaum-style electronic cash systems for
anonymity instead of safety are inappropriate for real sys-
tems.

Another class of electronic money system is server-
based. NetBill [42] is one type of such a system. NetBill
implements the credit card model of electronic currency.
A central server acts as a credit provider for users who
can place a spending limit on each authorized transaction,
and it provides billing services to the service providers.
No true anonymity is achieved: the central server has a
complete record of every user’s purchases and the records
for the current billing period is sent to users as part of their
bill. Some scaling may be achieved through replication,
but in this case providing hard credit limits require either
distributed transactions, or every user must be assigned to
a particular server, making the system non-fault tolerant.

Other approaches include anonymous credit cards [30]
or anonymous message forwarders to protect against traffic
analysis, at the cost of adding centralized servers back to
the system.

3.3 Electronic Contracts

One of the most exciting applications of secure coproces-
sors is the use of electronic contracts. Electronic contracts
are a natural extension to the “basic” electronic com-
merce approach. Where existing electronic commerce

systems provide a basic, two-party contract which offered
money for goods, a full electronic contract approach per-
mits multi-party contracts, delegation, and a richer set of
contractual primitives.

Electronic contracts provide enabling technology for
creating electronic marketplaces [17]. Applications in-
clude the idea of superdistribution of software [33], and
the creation of electronic futures markets.

In superdistribution, the idea is that the traditional soft-
ware distribution channel is replaced by allowing a soft-
ware buyer to resell the software on the manufacturer’s
behalf. When we look at this in the electronic contracts
viewpoint, the customer is entering into a contract with
the software manufacturer whereby the customer not only
obtains the rights to use that software, but also the rights to
make the same contract with other potential customers on
the manufacturer’s behalf. Such a self-replicating contract
is a relatively simple three-party contract, where all of the
contractual terms — electronic money transfer, rights to
run a program, and making more electronic contracts —
are enforceable by a secure coprocessor. See Figure 1 for
an example superdistribution contract.

Having an expressive electronic contract language also
enables the creation of electronic markets not previously
possible. For example, air travel requirements — travel
destination and approximate times — may be written up
as an electronic contract containing the maximum price
that the user is willing to pay, and this contract may be
put up for auction. Travel agents bid for and buy the
right (and obligation) to fulfill such contracts, increasing
the efficiency of the travel market; additionally, travel
agents may speculate on airline pricing and offer a higher
bid in anticipation of fare reductions. Note, furthermore,
that airline tickets may also be objects handled by the
electronic contract system: these may simply be electronic
documents signed by the airline giving the customer the
right to travel on a particular flight, or even a token of a
specific token type which permits travel on a certain flight.

In full generality, the objects referred to within elec-
tronic contracts will not always be objects that are man-
aged by secure coprocessors, and this necessarily implies
that external adjudication will be required when breaches
of contracts occur. Furthermore, the user may not be
able to satisfy the contractual demands, e.g., a broker who
(speculatively) sells run-time on a mainframe may find all
the cycles already allocated.

Our electronic contract model is built on the following
two secure coprocessor-provided primitive objects: (1)
unforgeable tokens and (2) computer-enforced contracts.

Unforgeable tokens are protected objects conserved by
secure coprocessors; they are freely transferable, but can

software_distributor(signatory id_t manuf,
signatory id_t distributor,
key_t sw_key,
int manuf_profit,
id_t prev_distr,
int prev_distr_cut,
time_t expire)

{
int price;

terminates when
date() >= expire;

access(none) super_buy(buyer,cash @ buyer)
id_t buyer;
money_t cash;
{

/* cannot sell at a loss */
if (cash->amount < price) reject;
xfer(cash,manuf->in_register,manuf_profit);
xfer(cash,prev_distr->in_register,prev_distr_cut);
xfer(cash,distributor->in_register,

price-manuf_profit-prev_distr_cut);
xfer(sw_key,buyer,1);
software_distributor(manuf,buyer,sw_key,manuf_profit,expire);

}
access(distributor) set_price(new_price)
int new_price;
{

/* pricing must at least pay for manufacturer profit */
if (new_price < manuf_profit + prev_dist_cut) reject;
price = new_price;
enable_access(super_buy,public);

}
}

Figure 1: Software Superdistribution Contract
In this example, the software retail distributor enters into a contract with a software manufacturer, which enables the
distributor to sell the software to customers for customer use and at the same time permit the customer to redistribute
the software under the same contractual terms. For the duration of the contract, the distributor gains the power to make
new contracts on the manufacturer’s behalf.

be created and destroyed only by the agents that issued
them (or their designees). Furthermore, the transfer of
tokens occur in a transactional manner, so that the number
of tokens is a conserved quantity (excepting explicit action
by their issuer).

Tokens are useful for representing electronic currency
and execute-only rights to a piece of software (much as in
capability systems). In the case of rights such as execute-
only rights, the token provides access to cryptographic
keys that may be used (only) within the secure coproces-
sors to run code. Electronic currency and execution rights
are subtypes of tokens and inherit the transactional transfer
property from tokens.

Contracts are another class of protected objects. They
are created when two parties agree on a contract draft.
Contracts contain binding clauses specifying actions that
each of the parties must perform or actions that the secure
coprocessors will enforce, along with “method” clauses
that may be invoked by certain parties (not necessarily
restricted to just the parties who agreed on the contract).
Time-based clauses and other event-based clauses may
also exist. Contractual obligations may force the transfer
of tokens between parties.

Contract drafts are typically instantiated from a contract
template. We can think of a contract template as a stan-
dardized contract with blanks which are filled in by the
two parties involved, though certainly “custom” contracts
are possible. Contract negotiation consists of an offerer
sending a contract template along with the bindings (val-
ues with which to fill in blanks) to the offeree. The offeree
either accepts or rejects the contract. If it is accepted, a
contract instance is created whereby the contract bindings
are permanent, and any immediate clauses are executed. If
the draft is rejected, the offeree may take the contract tem-
plate and re-instantiate a new draft with different bindings
to create a counter-offer, whereupon the roles of offerer
and offeree are reversed.

From the time that a contract is accepted until it termi-
nates, the contract is an active object running in one or
more secure coprocessors. Methods may be invoked by
users or triggered by external events (messages from the
host, timer expiration). The method clauses of a contract
are access-controlled: they may be optionally invoked by
only one party involved in the contract — or even by a
third party who is under no contractual obligations.

Contractual clauses can require one of the parties to
accept further contracts of certain types. One example
of this is a requirement for action to be completed by a
certain deadline, e.g., for a contractor to solve some prob-
lem or write some code before a project completion date.
Another is a contract between a distributor and a software

house, where the software house requires the distributor
to accept sales contracts from users for upgrading a piece
of software.

3.4 Secure Postage

While cryptographic methods have long been associated
with mail (dating back to the use by Julius Caesar de-
scribed in his book The Gallic Wars [9]), they have gener-
ally been used to protect the contents of a message, or in
rare cases, the address on an envelope (protecting against
traffic analysis). In this section, we examine the use of
cryptographic techniques to protect the stamp on an enve-
lope. (We are actively working with US Postal Service to
define standards for the use of secure postage [23].)

The US Postal Service, with almost 40,000 autonomous
post office facilities, handles an aggregate total of over
165 billion pieces of mail annually [40]. Most mail is
metered or printed. (Figure 2 shows an example of a
postage meter indicia.) Traditional postage meters must
be presented to a branch post office to be loaded with
postage. The postage credit is stored in a register sealed
in the machine. As each letter is stamped, the amount is
deducted from the machine’s credit register. Postal meters
are subject to at least four types of attack: (1) the postage
meter recorded credit may be tampered with, allowing the
user to steal postage; (2) the postage meter stamp may be
forged or copied; (3) a valid postage meter may be used
by an unauthorized person; and (4) a postage meter may
be stolen.5

With modern facilities for barcoding machine read-
able digital information, it would be easy to replace old-
fashioned human readable indicia by indicia which are
either entirely or partially machine readable. These indi-
cia could encode a digitally signed message which would
guarantee authenticity. If this digital information included
unique data about the letter (such as the date mailed,
zip codes of the originator and recipient, etc.), the dig-
itally signed stamp could protect against forged or copied
stamps. A rough outline of how such a system might work
was detailed by Pastor [36].

Unfortunately, a digitally signed stamp may be vulner-
able to additional types of attack:

1. If cryptographicsystems are misused, the system may
be directly attacked.

2. Even if cryptographic techniques are used correctly,
if the adversary has physical access to the postage

582,000 franking machines in the U. S. are currently reported as lost
or stolen [41].

Figure 2: Postage Meter Indicia Can Be Easily Copied or Forged

meter, he may be able to tamper with the credit reg-
ister.

3. Even if the credit is tamper-proof, a postage meter
may be opened and examined to discover crypto-
graphic keys, allowing the adversary to build new
bogus postage meters.

4. The protection scheme may depend on a highly avail-
able network connecting post office facilities in a
large distributed database. Since 40,000 autonomous
post office facilities exist, such a network would suf-
fer from frequent failures and partitions,creating win-
dows of vulnerability (with 165 billion pieces of mail
each year, a database to check the validity of digitally
signed metered stamps appears infeasible.)

We outline a protocol for protecting cryptographic
stamps, and demonstrate that the use of a secure copro-
cessor can address all of the above concerns. With the use
of cryptography and secure coprocessors, it is possible
to build a PC-based system that can produce fully secure
postage indicia.

3.4.1 Cryptographic Stamps

A cryptographic postage stamp is an indicia that can
demonstrate to the postal authorities that postage has been
paid. Unlike the usual stamps purchased at a post office,
these are printed by a conventional output device, such
as a laser printer, directly onto an envelope or a package.
Because such printed indicia can be copied, cryptographic
and procedural techniques must be employed to minimize
the probability of forgery.

We use cryptography to provide a crucial property: the
stamp depends on the address. A malicious user may copy
a cryptographic stamp, but any attempts to modify it or the
envelope address will be detected. To achieve this goal,
we encrypt (or cryptographically checksum) as part of the

stamp information relevant to the delivery of the particular
piece of mail — e.g., the return address and the destination
address, the postage amount, and class of mail, etc, as well
as other identifying information, such as the serial number
of the software instance producing the indicia, a sequence
number for the stamp, and the date/time (a timestamp).
The information, including the cryptographic signature or
checksum, is put into a barcode. The barcode must be eas-
ily printable by commodity or after-market laser printers,
it must be easily scanned and re-digitized at a post office,
and it must have sufficient information density to encode
all the bits of the stamp on the envelope within a rea-
sonable amount of space. Symbol Technologies’ PDF417
[26, 37, 38], for example, can encode 400 bytes per square
inch, sufficient for cryptographic stamps. Figure 3 shows
an example of PDF417’s density.

Six lines of 40 full ASCII characters for each address,6

four bytes each for hierarchical authorization number, a
serial number for the software instance that produced the
indicia, the stamp sequence number, the postage/class, and
the time, totals to under 500 bytes of data. (Using PDF417,
500 bytes takes 1.24 square inches.)

The cryptographic signature within the indicia prevents
many forms of replay attacks. Malicious users will not find
it useful to copy the stamps, since the cryptographic sig-
nature prevents them from modifying the stamp to change
the destination addresses, etc, so the copied stamps may
only be used to send more mail to the same destination
address. If duplicate detection is used (see below) then
even this threat vanishes. The timestamps and serial num-
bers also limit the scope of the attack by restricting the
lifetime of copies and permitting law enforcement to trace
the source of the attack.

Because cryptographic stamps also includes source in-

6Instead of a 40 character address, a 11-digit extended ZIP code
presently in use internally by the U. S. Postal Service may be used
instead; an eleven digit address fits in 37 bits.

Figure 3: PDF417 encoding of Abraham Lincoln’s Gettysburg Address

formation, a serial number, and the return address, dupli-
cated stamps can also be detected in a distributed manner.
Replays are detected by logging recent, unexpired indicia
from processed mail. If the post office finds a piece of
mail with a duplicate stamp, they will know that some
form of forgery has occurred. We examine the practicality
of replay detection next.

3.4.2 Detecting Replays

With a kilobyte of data per stamp, it would seem at first
that replay detection is infeasible because of size of the
database required. However, we can exploit the distributed
nature of mail delivery and sorting.

The US Postal Service sorts mail twice. First, mail is
sorted by destination zip code at a site near the source.
Then, the mail is delivered (in large batches) to a site
associated with the destination zip code, where the mail
is again sorted, this time by carrier route. Every piece
of mail destined for the same address passes through the
same secondary sorting site, making it a natural place for
detecting replays.

Detecting replays locally is feasible with today’s tech-
nology. Using the 1992 figures of 165 billion pieces of
mail per year handled at 600 regional sorting sites, with
the simplifying assumption that the volume of mail is
evenly distributed among these regional offices, we can
obtain an estimate of the storage resources required. As-
suming that cryptographic stamps expire six months af-
ter printing,7 an average regional office will see approx-
imately 130,000,000 stamps out of a national total of

7The U. S. Postal Service claims to deliver more than 90% of all first

80,000,000,000 stamps. If we store one kilobyte of in-
formation per stamp (doubling the above estimate) and
assume that the entire current mail volume uses crypto-
graphic stamps, this would require only 130 gigabytes of
disk storage per facility for logging, well within the ca-
pacity of a single disk array system. The stamps database
can be viewed as a sparse boolean matrix indexed in one
dimension by software instance serial number and in the
second dimension by stamp sequence number for that soft-
ware instance.

To make replay detection even easier, we exploit the
physical locality property: pieces of mail stamped by a
single device are likely to enter the mail processing sys-
tem at the same primary sorting site. Therefore, crypto-
graphic stamps from the same device are very likely to be
canceled at the same regional office, and we can detect
replays there. If any cryptographically stamped piece of
mail is sent from a different mail cancellation site, network
connections can be used for real-time remote access of
cancellation databases, or batch processing media such as
computer tapes may be used. In the case of real-time can-
cellation, the network bandwidth required depends on the
probability of the occurrence of such multi-cancellation-
site processing, and on how quickly we need to detect
replays. The canceled stamps database at each regional
office need not be large — each device can simply encrypt
a counter value in its stamps. We need only fast access
to a bit vector of recently used, unexpired stamp counter
values. These bit vectors are indexed by the device’s serial

class mail in three days, and more than 99% in seven days. Six months
would appear to be a generous bound for mail delivery.

number and can be compressed by run-length encoding or
other techniques. Only when a replay is detected might
we need access to the full routing information.

4 System Architecture

We have implemented Dyad, a prototype secure copro-
cessor system. The Dyad architecture is based on opera-
tional requirements arising from the security applications
in section 3. This section discusses Dyad’s abstract sys-
tem architecture based on the operational requirements of
a security system during system initialization and during
normal, steady state operation. A more detailed discus-
sion of the concrete system architecture may be found in
[60].

4.1 Operational Requirements

We begin by examining how a secure coprocessor interacts
with the host during system boot and then proceed with
a description of system services that a secure coprocessor
provide to the host operating system and user software.

To be sure that a system is securely booted, the boot-
strap process must involve secure hardware. Depending
on the host hardware (e.g., whether a secure coprocessor
could halt the boot process in case of an anomaly) we may
need secure boot ROM. Either the system’s address space
is configured so the secure coprocessor provides the boot
vector and the boot code directly; or the boot ROM is a
piece of secure hardware. In either case, a secure copro-
cessor verifies system software (operating system kernel,
system related user-level software) by checking the soft-
wares’ signatures against known values. To check that
the version of the software present in external, unsecure,
non-volatile store (disk) is the same as that installed by
a trusted party. Note that this interaction has the same
problems faced by two hosts communicating via a unse-
cure network: if an attacker can completely emulate the
interaction that the secure coprocessor has with a normal
host system, it is impossible for the secure coprocessor to
detect this. With secure coprocessor/host interaction, we
can make very few assumptions about the host (it can not
keep cryptographic keys). The best that we can do is to
assume that the cost of completely emulating the host at
boot time is prohibitively expensive.

The secure coprocessor ensures that the system securely
boots; after booting, a secure coprocessor aids the host op-
erating system by providing security functions. A secure
coprocessor does not enforce the host system’s security
policy — this is the job of the host operating system.

Since we know from the secure boot procedure that a cor-
rect operating system is running, we may rely on the host
to enforce policy. When the host system is up and running,
a secure coprocessor provides various security services to
the host operating system:� integrity verification of any stored data (by secure

checksums);� data encryption to boost storage media natural secu-
rity; and� encrypted communication channels (key exchange,
authentication, private key encryption, etc).8

4.2 Secure Coprocessor Architecture

The boot procedure described above made assumptions
about secure coprocessor capabilities. Let us refine the re-
quirements for secure coprocessor software and hardware.

To verify that the system software is the correct ver-
sion, the secure coprocessor must have secure memory to
store checksums or other data. If keyless cryptography
checksums such as MD5 [39], multi-round Snefru [32],
or IBM’s MDC [25] are one-way hash functions, then the
only requirement is that the memory be protected from
unauthorized writes. Otherwise, we must use keyed cryp-
tographic checksums such as Karp and Rabin’s technique
of fingerprinting (see [27]). The latter approach requires
that memory also be protected against read access, since
both the hash value and the key must be secret. Similarly,
cryptographic operations such as authentication, key ex-
change, and secret key encryption all require secrets to
be kept. Thus a secure coprocessor must have memory
inaccessible by all entities except the secure coprocessor
itself — enough private non-volatile memory to store the
secrets, plus private (possibly volatile) memory for inter-
mediate calculations in running protocols.

How much private non-volatile and volatile scratch
memory is enough? How fast must the secure copro-
cessor be to have good performance with cryptographic
algorithms? There are a number of architectural tradeoffs
for a secure coprocessor, the crucial dimensions being pro-
cessor speed and memory size. They together determine
the class of cryptographic algorithms that are practical.

4.3 Crypto-paging and Sealing

Crypto-paging is another technique for trading off mem-
ory for speed. A secure coprocessor encrypts its virtual

8Presumably remote hosts will also contain a secure coprocessor,
though everything will work fine as long as remote hosts follow the
appropriate protocols.

memory contents before paging it out to the host’s physi-
cal memory (and perhaps eventually to an external disk),
ensuring privacy. We need only enough private memory
for an encryption key and a data cache, plus enough mem-
ory to perform the encryption if no encryption hardware is
present. To ensure integrity, virtual memory contents may
be crypto-sealed by computing cryptographic checksums
prior to paging out and verifying them when paging in.

Crypto-paging and sealing are analogous to paging of
physical pages to virtual memory on disk, except for dif-
ferent cost coefficients. Well-known analysis techniques
can be used to tune such a system [29, 61]. The cost vari-
ance will likely lead to new tradeoffs: computing crypto-
graphic checksums is faster to calculate than encryption,
so providing integrity alone is less expensive than provid-
ing privacy as well. On the other hand, if the computation
can reside entirely on a secure coprocessor, both privacy
and integrity can be provided for free.

Crypto-paging is a special case of a more general
speed/memory trade off for secure coprocessors. We ob-
served in [48, 49] that Karp-Rabin fingerprinting can be
sped up by about 25% on an IBM RT/APC with a 256-
fold table-size increase; when implemented in assembler
on an i386SX the speedup is greater (about 80%; see [60]).
Intermediate-size tables yield intermediate speedups at a
slightly higher increase in code size. Similar tradeoffs can
be found for software implementations of DES.

4.4 Secure Coprocessor Software

A small, simple security kernel is needed for the secure
coprocessor. What makes Dyad’s kernel different from
other security kernels is the partitioned system structure.

Like normal workstation (host) kernels, the secure co-
processor kernel must provide separate address space if
vendor and user code is to be loaded into the secure co-
processor — even if we implicitly trust vendor and user
code, providing separate address spaces helps isolate the
effects of programming errors. Unlike the host’s kernel,
many services are not required: terminal, network, disk,
and most other device drivers need not be part of the se-
cure coprocessor. Indeed, since both the network and disk
drives are susceptible to tampering, requiring their drivers
to reside in the secure coprocessor’s kernel is overkill —
network and file system services from secure coprocessor
tasks can be forwarded to the host kernel for processing.
Normal operating system daemons such as printer service,
electronic mail, etc. are entirely inappropriate in a secure
coprocessor.

The only services that are crucial to the operation of the
secure coprocessor are (1) secure coprocessor resource

management; (2) communications; (3) key management;
and (4) encryption services. Resource management in-
cludes task allocation and scheduling, virtualmemory allo-
cation and paging, and allocation of communication ports.
Communications include both communication among se-
cure coprocessor tasks and communication to host tasks;
it is by communicating with host system tasks that proxy
services are obtained. Key management includes manage-
ment of authentication secrets, cryptographic keys, and
system fingerprints of executables and data. With the
limited number of services needed, we can easily envi-
sion using a microkernel such as Mach 3.0 [19], the NT
executive [14], or QNX [24]. We only need to add a com-
munications server and include a key management service
to manage secure non-volatile key memory. If the kernel
is small, we have more confidence that it can be debugged
and verified. (In Dyad, we ported Mach 3.0 to the Citadel
secure coprocessor.)

4.5 Key Management

Key management is a core portion of the secure coproces-
sor software. Authentication, key management, finger-
prints, and encryption protect the integrity of the secure
coprocessor software and the secrecy of private data. The
bootstrap loader, in ROM or in secure non-volatile mem-
ory, controls the bootstrap process of the secure coproces-
sor itself. In the same way that the host-side bootstrapping
process verifies the host-side kernel and system software,
this loader verifies the secure coprocessor kernel before
transferring control to it.

The system fingerprints needed for checking system in-
tegrity reside entirely in secure non-volatilememory or are
protected by encryption while in external storage. (De-
cryption keys reside solely in secure non-volatile mem-
ory.) If the latter approach is chosen, new private keys
must be selected for every new release of system software9

to prevent replay attacks where old, buggy, secure copro-
cessor software is reintroduced into the system. Depend-
ing on the algorithm, storage of the fingerprint information
can requires only integrity or both integrity and secrecy.

Other protected data held in secure non-volatilememory
include administrative authentication information needed
to update the secure coprocessor software. We assume
that a security administrator is authorized to upgrade se-
cure coprocessor software. The authentication data for
the administrator can be updated along with the rest of
the secure coprocessor system software; in either case, the

9One way is to use a cryptographicallysecure pseudo-randomnumber
generator [5, 6] with its internal state entirely in secure non-volatile
memory.

upgrade must appear transactional, that is, it must have
the properties of permanence, where results of completed
transactions are never lost; serializability, where there is a
sequential, non-overlapping view of the transactions; and
failure atomicity, where transactions either complete or
fail such that any partial results are undone [16, 20, 21].
Non-volatile memory gives us permanence automatically;
serializability, while important for multi-threaded applica-
tions, can be enforced by permitting only a single upgrade
operation at a time (this is an infrequent operation and does
not require concurrency); and the failure atomicity guar-
antee can be provided as long as the secure non-volatile
memory subsystem provides an atomic store operation.
Update transactions need not be distributed nor nested;
this simplifies the implementation.

5 For Further Information

Dyad allows a much broader class of electronic commerce
activities than more narrowly defined electronic wallet
systems. By using a secure coprocessor model, we are
able to add substantial functionality.

Information on secure coprocessors and the Dyad
implementation can be found on our WWW page:
http://www.cs.cmu.edu/afs/cs/project/dyad/www/. Please
send any email or inquiries for information to
dyad@cs.cmu.edu.

References

[1] M. Abadi, M. Burrows, C. Kaufman, and B. Lamp-
son. Authentication and delegation with smart-cards.
Technical Report 67, DEC Systems Research Center,
October 1990.

[2] R. G. Andersen. The destiny of DES. Datamation,
33(5), March 1987.

[3] Ross Anderson. Making smartcard systems robust.
In IFIPS First Smartcard Research and Advanced
Application Conference, pages 1–14, Lille, France,
October 1994.

[4] S. M. Bellovin and M. Merritt. Limitations of the
Kerberos authentication system. Submitted to Com-
puter Communication Review, 1990.

[5] Blum, Blum, and Shub. Comparison of two pseudo-
random number generators. Advances in Cryptology:
CRYPTO-82, pages 61–79, 1983.

[6] Manuel Blum and Silvio Micali. How to gener-
ate cryptographically strong sequences of pseudo-
random bits. SIAM Journal on Computing,
13(4):850–864, November 1984.

[7] Andrea J. Borr. Transaction monitoring in Encom-
pass: Reliable distributed transaction processing. In
Proceedings of the Very Large Database Conference,
pages 155–165, September 1981.

[8] Stefan Brand. An efficient off-line electronic cash
system based on the representation problem. Tech-
nical Report CS-R9323, Centrum voor Wiskunde en
Informatica, 1993.

[9] Julius Cæsar. Cæsar’s Gallic Wars. Scott, Foresman
and Company, 1935.

[10] David Chaum. Security without identification:
Transaction systems to make big brother obsolete.
Communications of the ACM, 28(10):1030–1044,
October 1985.

[11] U. S. Internal Revenue Code. Internal revenue code
volume 1, 1993.

[12] U. S. Legal Code. 1989 Amendments to the Omnibus
Crime Control and Safe Street Act of 1968, Public
Law 101-162. United States Legal Code, U. S. Gov-
ernment Printing Office, 1989.

[13] Cylink Corp. CY512i press release, February 1995.

[14] Helen Custer. Inside Windows NT. Microsoft Press,
Redmond, WA, 1993.

[15] C. J. Date. An Introduction to Database Systems
Volume 2. Addison-Wesley, Reading, MA, 1983.

[16] Jeffrey L. Eppinger, Lily B. Mummert, and Alfred Z.
Spector. Camelot and Avalon: A Distributed Trans-
action Facility. Morgan Kaufmann, 1991.

[17] Merrick Furst. Personal communications.

[18] Oded Goldreich. Towards a theory of software pro-
tection and simulation by oblivious RAMs. In Pro-
ceedings of the Nineteenth Annual ACM Symposium
on Theory of Computing, May 1987.

[19] David Golub, Randall Dean, Alessandro Forin, and
Richard Rashid. Unix as an application program. In
Proceedings of the Summer 1990 USENIX Confer-
ence, pages 87–95, June 1990.

[20] James N. Gray. A transaction model. Technical
Report RJ2895, IBM Research Laboratory, San Jose,
California, August 1980.

[21] James N. Gray. The transaction concept: Virtues
and limitations. In Proceedings of the Very Large
Database Conference, pages 144–154, September
1981.

[22] Louis Claude Guillou, Michel Ugon, and Jean-
Jacques Quisquater. The smart card: A standard-
ized security device dedicated to public cryptology.
In Gustavus J Simmons, editor, Contemporary cryp-
tology: The science of information integrity. IEEE
Press, Piscataway, NJ, 1992.

[23] Nevin Heintze, J. D. Tygar, and Bennet S. Yee. Cryp-
tographic indicia for the U. S. Postal Service, 1995.
To appear.

[24] Dan Hildebrand. An architectural overview of QNX.
In Proceedings of the USENIX Workshop of Micro-
Kernels and Other Kernel Architectures, April 1992.

[25] IBM Corporation. Common Cryptographic Archi-
tecture: Cryptographic Application Programming
Interface Reference, SC40-1675-1 edition.

[26] Stuart Itkin and Josephine Martell. A PDF417
primer: A guide to understanding second generation
bar codes and portable data files. Technical Report
Monograph 8, Symbol Technologies, April 1992.

[27] Richard M. Karp and Michael O. Rabin. Efficient
randomized pattern-matching algorithms. Technical
Report TR-31-81, Aiken Laboratory, Harvard Uni-
versity, December 1981.

[28] Stephen Thomas Kent. Protecting Externally Sup-
plied Software in Small Computers. PhD thesis, Mas-
sachusetts Institute of Technology, September 1980.

[29] Samuel J. Leffler, Marshall K. McKusick, Michael J.
Karels, and John S. Quarterman. The Design and Im-
plementation of the 4.3 BSD UNIX Operating Sys-
tem. Addison-Wesley, 1989.

[30] Steven Low, Nicholas F. Maxemchuk, and Sanjoy
Paul. Anonymous credit cards. Technical report,
AT&T Bell Laboratories, 1993. Submitted to IEEE
Symposium on Security and Privacy, 1993.

[31] J. McCrindle. Smart Cards. Springer Verlag, 1990.

[32] R. Merkle. A software one-way function. Technical
report, Xerox PARC, March 1990.

[33] Ryoichi Mori and Maraji Kawahara. Superdistribu-
tion: An overview and the current status. Technical
Reports of the Institute of Electronics, Information,
and Communication Engineers, 89(44), 89.

[34] National Semiconductor, Inc. iPower chip technol-
ogy press release, February 1994.

[35] Rafail Ostrovsky. Efficient computation on oblivious
RAMs. In Proceedings of the Twenty Second Annual
ACM Symposium on Theory of Computing, pages
514–523, May 1990.

[36] José Pastor. CRYPTOPOST: A universal informa-
tion based franking system for automated mail pro-
cessing. USPS Advanced Technology Conference
Proceedings, 1990.

[37] Theo Pavlidis, Jerome Swartz, and Ynjiun P. Wang.
Fundamentals of bar code information theory. Com-
puter, 23(4):74–86, April 1990.

[38] Theo Pavlidis, Jerome Swartz, and Ynjiun P. Wang.
Information encoding with two-dimensional bar
codes. Computer, 24(6):18–28, June 1992.

[39] R. Rivest and S. Dusse. The MD5 message-digest
algorithm. Manuscript, July 1991.

[40] U. S. Postal Service. Annual report of the postmaster
general, fiscal year 1991.

[41] U. S. Postal Service and U. K. Royal Mail. Personal
communications.

[42] Marvin Sirbu and Doug Tygar. Netbill: An internet
commerce system optimized for networked delivered
services. IEEE Compcon ’95 Conference, pages 20–
25, March 1995.

[43] Sean Smith, David Johnson, and J.D. Tygar. Com-
pletely asynchronous optimistic rollback recover
with minimal rollbacks. In IEEE 25th Sympo-
sium Fault Tolerant Computing, Pasadena, CA, June
1995. To appear.

[44] Sean Smith and J. D. Tygar. Security and privacy
for partial order time. In ISCA International Con-
ference on Parallel and Distributed Computing Sys-
tems, pages 70–79, Las Vegas, NV, October 1994.

[45] Richard Stallman. Gnu-emacs Manual.

[46] J. G. Steiner, C. Neuman, and J. I. Schiller. Ker-
beros: An authentication service for open network
systems. In USENIX Conference Proceedings, pages
191–200, Winter 1988.

[47] Telequip, Inc. Crypta Plus press release, January
1995.

[48] J. D. Tygar and B. S. Yee. Strongbox. In Jeffrey L.
Eppinger, Lily B. Mummert, and Alfred Z. Spector,
editors, Camelot and Avalon: A Distributed Trans-
action Facility. Morgan Kaufmann, 1991.

[49] J. D. Tygar and Bennet S. Yee. Strongbox: A system
for self securing programs. In Richard F. Rashid,
editor, CMU Computer Science: 25th Anniversary
Commemorative. Addison-Wesley, 1991.

[50] U. S. Department of Defense, Computer Security
Center. Trusted computer system evaluation criteria,
December 1985.

[51] U. S. National Instituteof Standards and Technology.
Capstone chip technology press release, April 1993.

[52] U. S. National Instituteof Standards and Technology.
Clipper chip technology press release, April 1993.

[53] U. S. National Instituteof Standards and Technology.
Federal information processing standards publica-
tion 140-1: Security requirements for cryptographic
modules, January 1994.

[54] U. S. National Instituteof Standards and Technology.
Csl newsletter, February 1995.

[55] Steve H. Weingart. Physical security for the�ABYSS system. In Proceedings of the IEEE Com-
puter Society Conference on Security and Privacy,
pages 52–58, 1987.

[56] Steve R. White and Liam Comerford. ABYSS: A
trusted architecture for software protection. In Pro-
ceedings of the IEEE Computer Society Conference
on Security and Privacy, pages 38–51, 1987.

[57] Steve R. White, Steve H. Weingart, William C.
Arnold, and Elaine R. Palmer. Introduction to the
Citadel architecture: Security in physically exposed
environments. Technical Report RC16672, Dis-
tributed security systems group, IBM Thomas J. Wat-
son Research Center, March 1991. Version 1.3.

[58] Jeannette Wing, Maurice Herlihy, Stewart Clamen,
David Detlefs, Karen Kietzke, Richard Lerner, and
Su-Yuen Ling. The Avalon language: A tutorial
introduction. In Jeffery L. Eppinger, Lily B. Mum-
mert, and Alfred Z. Spector, editors, Camelot and
Avalon: A Distributed Transaction Facility. Morgan
Kaufmann, 1991.

[59] W. A. Wulf, E. Cohen, W. Corwin, A. Jones,
R. Levin, C. Pierson, and F. Pollack. Hydra: The
kernel of a multiprocessor operating system. Com-
munications of the ACM, 17(6):337–345, June 1974.

[60] Bennet S. Yee. Using Secure Coprocessors. PhD
thesis, Carnegie Mellon University, 1994.

[61] Michael Wayne Young, Avadis Tevanian, Jr.,
Richard F. Rashid, David B. Golub, Jeffrey Eppinger,
Jonathan Chew, William Bolosky, David L. Black,
and Robert V. Baron. The duality of memory and
communication in the implementation of a multipro-
cessor operating system. In Proceedings of the 11th
Symposium on Operating System Principles, pages
63–76. ACM, November 1987.

