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Public-Key Cryptosystems Based on Linear CodesErnst M. GabidulinJanuary 22, 1995Contents1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12 Background of Algebraic Coding : : : : : : : : : : : : : : : : : : : : : : 53 The Niederreiter Cryptosystem Based On Generalized Reed-SolomonCodes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 374 The McEliece Cryptosystem based on Goppa Codes : : : : : : : : : : : 435 The Public-Key Cryptosystem based on Rank codes : : : : : : : : : : : 516 Comparison of the Three Public-Key Cryptosystems : : : : : : : : : : : 617 Conclusion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 621. IntroductionIn [1], a revolutionary concept was proposed to make public the encipherment keyas well as the enciphering algorithm. To describe a cryptosystem with PrivateKeys, one should introduce three main sets:The set M = fmg of plaintext messages to transmit;The set C = fcg of ciphertexts;The set K = fkg of encipherment keys.An encryption function is a one-one mapc = E (m;k)which turns a plaintext m into a ciphertext c after the key setting k has beenapplied.Let m; c and k be sequences over a �nite alphabet of length not greater thann. De�ne the complexity of encryption W (E) as the number of calculations toget c from m, if k is given.The complexity of encryption W (E j k) should be a polynomial in n of smalldegree.A decryption function is the inverse mapm = D (c;k)wich turns the ciphertext c into the plaintext m.1



Public-Key Cryptosystems Based on Linear Codes 2The complexity of decryption W (D j k) should be a polynomial of small de-gree in n, if the key k is known.On the other hand, if the key k is unknown then both the encryption andthe decryption should be much harder problems. Usually, it is desirable that thenumber of calculations W (D) would be not polynomial in n, i.e. it is asymptot-ically greater than any power of n. Another possibility would be the case whenthe problem of the decryption with unknown k is a so-called NP-complete prob-lem. These are problems for which a proposed solution which somehow has beenderived - possibly in a non-constructive manner - can be checked with polynomiale�orts.Hence, if two persons A and B want to communicate in a secret manner, theychoose a key k and keep it in secret. They can easily encrypt the plaintexts anddecrypt the ciphertexts.Suppose that an enemy party E does not know the secret key k but can inter-cept ciphertexts c. The person E may want to either obtain the correspondingplaintexts m's or get the secret key k from c.The cryptosystem seems to be rather good if the number of calculations, or,the work function W (D), is not polynomial or is infeasible from the practicalpoint of view.Cryptosystems with private (secret) keys are said to use symmetric ciphersbecause either both the encipherment key and the decipherment key are the sameor the decipherment key can easily be calculated provided that the enciphermentkey is known.Public Key systems are based on the concept of the so-called one way func-tions.Suppose from now on, that a key k de�nes an asymmetric cipher. Thismeans that the complexity of the encryption W (E j k) remains polynomial butthe complexity of decryption W (D j k) is not polynomial even if the key k isknown. That is the new idea introduced by Di�e and Hellman.We refer to an encryption function with this property as a one way function.It may be that there exists an extra key t such that W (D j k) is not polyno-mial but W (D j k; t) is polynomial. In this case, the key t is known as a trapdoorand the encryption function is referred to as a trapdoor one way function. Weassume that the key k can be calculated with polynomial e�orts if the trapdoort is given. But calculating the trapdoor t using the known key k should be hard.Note that, up to now, no function has been proved to be one way or trapdoorone way. But there are some candidats, for example, the discret logarithm or theproblem of factorizing integers.One can use the features of trapdoor one way functions to construct a cryp-tosystem as follows.General case� The legitimate user chooses a secret key (trapdoor) t (an easy problem).



Public-Key Cryptosystems Based on Linear Codes 3� Calculates the public key k (an easy problem).� Publishes k:� The sending party is requested to use the public key k for Encrypting (aneasy problem).� The legitimate user gets the plaintext using the public key k and the secretkey t (an easy problem).� The Enemy party has to decrypt the intercepted ciphertext using only thepublic key k (a hard problem).Many public key cryptosystems were proposed during the last two decades.First of all, the system due to Merkle and Hellman [2] should be mentioned.It is based on a famous NP-problem which is known as the knapsack problem.Another famous public key cryptosystem, the RSA System, was invented byRivest, Shamir and Adleman [3]. Its security lies in the di�culty of the problemof factoring large integers.We focus our attention on public key cryptosystems based on linear codes.Prof. McEliece was the �rst who proposed to use linear codes for Public-KeyCryptosystems (PKC) [4]. Later on, it was shown in [5] that the the problem ofdecoding a general linear code is NP-complete.If a family of linear codes is to be used in PKC, is should possess the followingfeatures:� It is be rich enough to avoid an exhaustive search when an enemy partywants to break the cryptosystem;� Encoding (encryption) and decoding (decryption) is easy when a full de-scription of a code is known;� A full description of a code is very hard to obtain from open keys (usually,a scrambled generator matrix or a scrambled parity check matrix).In the linear code case, the PKC is implemented as follows.� The legitimate user chooses a code with large distance having a fast decod-ing algorithm and chooses a scramble matrix (an easy problem).� Calculates a scrambled parity or generator matrix (an easy problem)� Publishes the above matrix as the public key.� The sending party is requested to use the above matrix for encrypting (aneasy problem).



Public-Key Cryptosystems Based on Linear Codes 4� The legitimate user gets the plaintext using the fast decoding algorithm (aneasy problem).� The Enemy party has to decode an intercepted ciphertext as a general code(a hard problem).In [4], the family of codes consisted of binary Goppa codes and a scrambledgenerator matrix Gcr = SG 2was used as a public key. A few more or lessunsuccessful attacks on this PKC were proposed [6, 7].The PKC based on a family of Generalized Reed-Solomon codes was proposedby Niederreiter [8]. The open key is a scrambled parity check matrix Hcr = SHof a GRS code. This is a Knapsack-Type cryptosystem. Therefore, one mighthope that this PKC is secure. But in fact, many knapsack-type PKC includingthe Niederreiter PKC and some of its modi�cations have recently be shown to beinsecure. See [9, 10].The PKC based on a family of rank codes [11] was proposed in [12]. Itlooks like a McEliece type PKC. An important di�erence is that an open keyGcr = SG+X is a sum of a scrambled generator matrix SG and a hiding matrixX. In [12], a hiding matrix X of rank 1 was used. Recently, Gibson showedthat for such hiding matrices a PKC can be broken for practical values of theparameters [13].In this report, the use of hiding matrices is proposed to modify all the abovePKC. The modi�ed open keys are as follows:� for the McEliece PKC: Gmodcr = SG+X, where X is a speci�c matrix ofrank 1;� for the Niederreiter PKC: Hmodcr = S(H+X), where X is a speci�c matrixof rank 1;� for the GPT PKC: Gmodcr = SG+X, where X is a speci�c matrix of rankt1 > 1, with t1 a design parameter.The main idea is as follows. The legal party chooses some random matrix Xas an extra secret key and adds it to the original public key to produce a newmodi�ed public key. Thus any visible structure of the public key will be hidden.Although there are strong restrictions in the choice of the random matrix X, itcan be done in practical applications.The report is organized as follows: in Section 2, the background of codes overlarge alphabets is given; in Section 3, the Niederreiter PKC is presented, and amodi�ed version of the Sidel'nikov-Shestakov attack, which slightly di�ers fromthe original one, is described. A modi�cation of the Niederreiter PKC is alsoconsidered; in Section 4, the McEliece PKC is described, together with attacksand modi�cations; in Section 5, the GPT PKC and Gibson's attack are presented;



Public-Key Cryptosystems Based on Linear Codes 5in Section 6, a comparison of all three PKCs is made from the point of view of thesize of the public keys and the work functions; in Section 7, concluding remarksare made. 2. Background of Algebraic CodingAll the public key cryptosystems under consideration are based on codes overlarge alphabets. In fact, these codes are generalized Reed-Solomon codes andrank codes. In this section, background information on these codes is given (formore detailed information, see [17] and [11]).Let GF (q) be a �nite �eld with q elements. The nth Cartesian power GF (q)nof GF (q) is a metric space with respect to the Hamming distance functiond(x;y) := jfi j 1 � i � n; xi 6= yigj ; (1)where x = (x) 2 GF (q)n and y =(y1; y2; : : : ; yn) 2 GF (q)nThe Hamming weight wH(x) of an element x 2 GF (q)n is the number ofnonzero positions in x, or, equivalently, the integerwH(x) := d(x); (2)where o is the zero-vector in GF (q)n.A linear code C of length n and dimension k over GF (q) is a k-dimensionallinear subspace of GF9q)n.The (minimum) distance of a linear code C is de�ned byd := minfd(x) j x 2 C; y 2 C; x 6= yg ; (3)or, equivalently, d := minfwH(x) j x 2 C; x 6= og : (4)If a code C has distance d, then we can correct all the errors e with wH (e) �t = b(d � 1) =2c. This means the following. Let us consider a vector y = g1+e,where g1 is a code vector. Then y is strictly closer to g1 than to any other codevector g2 if wH (e) � t = b(d� 1) =2c. Hence, we can uniquely recover g1 fromy. A linear code C of dimension k and distance d is referred to as an (n; k; d)-code.A linear code C can be given in terms of a generator matrix G or in terms ofa parity check matrix H.Let fgi = (gi;1; gi;2; : : : ; gi;n); i = 1; 2; : : : ; k; gi 2 GF (q)ng be a set of vectorswhich are linearly independent over GF (q). De�ne the k � n G of rank k byG = [gi;j ] ; i = 1; 2; : : : ; k; j = 1; 2; : : : ; n: (5)The code vectors, or codewords of the linear code C with generator matrix G arede�ned to be the linear combinations of rows of G with coe�cients in GF (q). In



Public-Key Cryptosystems Based on Linear Codes 6other words, let m = (m1;m2; : : : ;mk) be a k-string of elements of GF (q). Suchan m is often called an information sequence. Then the corresponding codewordis given by g (m) =mG: (6)On the other hand, to any matrix G of rank k, there exists a (n� k) � nmatrix H of rank r = n� k such thatGHt = On�kk ; (7)where Ht denotes transposed matrix and On�kk means the all-zero matrix of sizek�(n� k). The matrixH is known as a parity check matrix for C. Each codewordg = (g1; g2 : : : ; gn) can be obtained as a solution of a linear system of equationsin the variables g1; g2 : : : ; gn :gHt = (g1; g2; : : : ; gn)Ht = On�k1 : (8)The linear code C has distance d if and only if any d�1 columns of the Paritycheck matrix H are linearly independent over GF (q) and there exists d columnswhich are linearly dependent.The Singleton bound: for any linear code C we haved � r + 1; (9)where r denotes the rank of H over GF (q):2.1. Generalized Reed-Solomon codes. Generalized Reed-Solomon codes(GRS codes) are de�ned by a parity check matrix which is a generalized Vander-monde rectangular r � n-matrixH = VZ = 26666664 z1 z2 : : : znz1x1 z2x2 : : : znxnz1x21 z2x22 : : : znx2n: : : : : : : : : : : :z1xr�11 z2xr�12 : : : znxr�1n 37777775 ; (10)where Z = diag (z1; z2; : : : ; zn) denotes a diagonal matrix with non-zero diagonalelements and V denotes a Vandermonde rectangular r � n-matrixV = 26666664 1 1 : : : 1x1 x2 : : : xnx21 x22 : : : x2n: : : : : : : : : : : :xr�11 xr�12 : : : xr�1n 37777775 ; (11)where the xj's are di�erent.



Public-Key Cryptosystems Based on Linear Codes 7If the number of rows r is given, we can join, by convention, to GF (q) a formalelement x1. We shall operate with this element by the following agreement. LetF (x) = ar�1xr�1 + ar�2xr�2 + : : :+ a1x+ a0be a polynomial of degree not greater than r�1. Then the value of this polynomialat the point x1 is de�ned to be the leading coe�cient of this polynomial:F (x1) = ar�1:Hence, (x1)m = 0, if m = 0; 1; : : : ; r � 2, but (x1)r�1 = 1. Thus, the Vander-monde matrix can contain a column (0; 0; : : : ; 0; 1)t. From this, it follows thatthe maximal number of di�erent columns of the Vandermonde matrix is equal tojGF (q) [ x1j = q + 1.We haveProperty 1. Any square r� r-submatrix of V is a non singular (Vandermonde)square matrix. An analogous statement is true for the generalized matrix H.Conjecture 1. If an r � n matrix with n = q + 1 possess Property 1, thenthis matrix is a generalized Vandermonde matrix (except for the cases q = 2m;r = 3 or r = n� 3).All the code vectors g are solutions of the systemgHt = (g1; g2 : : : ; gn)Ht = On�k1 : (12)Evidently, the rank of H is equal to r and, by Property 1, any r columns arelinearly independent. Thus, the Parity check matrix H de�nes an optimal linearcode reaching the Singleton bound (9). This code has the following parameters:1. code length n � q + 1;2. dimension k = n� r;3. distance d = r + 1 = n� k + 1.Such codes are known as maximal distance separable, or MDS codes.The canonical row-reduced echelon formMultiply the generalized Vandermonde rectangular r � n-matrix H to theleft by F = H�11 , whereH1 = V1Z1 = 26666664 z1 z2 : : : zrz1x1 z2x2 : : : zrxrz1x21 z2x22 : : : zrx2r: : : : : : : : : : : :z1xr�11 z2xr�12 : : : zrxr�1r 37777775 : (13)



Public-Key Cryptosystems Based on Linear Codes 8To obtain the inverse matrix H�11 , de�ne the Lagrange interpolation polyno-mials of degree r � 1 byfi(x) =Y1�s�r;s6=i (x� xs)(xi � xs) =Xrs=1 fisxs�1;i = 1; 2; � � � ; r; (14)Note that fi(xj) =Xrs=1 fisxs�1j = �ij = (1; if j = i;0; if j 6= i;i; j = 1; 2; � � � ; r: (15)De�ne the square r � r-matrix F byF = "fijzi # ; i; j = 1; 2; : : : ; r: (16)It follows from Eq. (15) that F = H�11 (17)because (FH1)ij = rXs=1 fijzi !�zjxs�1j � = zjzi rXs=1 fisxs�1j = �ij:We obtain the canonical row-reduced echelon formHsys = FH = [Er R] ; (18)where Er denotes the r � r identity matrix, and R is the following r � (n � r)-matrix R = [pij ] = �zjzi fi(xj)� ="zjzi rXs=1 fisxs�1j # ;i = 1; 2; : : : ; r; j = r + 1; r + 2; : : : ; n: (19)On the other hand,fi(xj) = 1zi Y1�s�r;s6=i zs (xj � xs)(xi � xs) = 1zi rYs=1(xj � xs)rYs=1;s6=i(xi � xs) 1xi � xj = aibjxi � xj ; (20)



Public-Key Cryptosystems Based on Linear Codes 9where ai = 0@ rYs=1;s6=i(xi � xs)1A�1 ; i = 1; 2; : : : ; r;bj= rYs=1(xj � xs); j = r + 1; r + 2; : : : ; n: (21)Hence,R = 24�aizi � (zjbj)xi � xj 35 = " eai ebjxi � xj # ; i = 1; 2; : : : ; r; j = r + 1; r + 2; : : : ; n; (22)which means that the matrixR in Eq. 18 - Eq. 20 is a generalized Cauchy matrix.It is well known that a generalized Cauchy matrix with di�erent the xi's andxj's has theProperty 2. Any square submatrix of the matrixR of any order is nonsingular.The generalized Cauchy matrix R in (22) can be extended with one col-umn (ea1; ea2; : : : ; ear)t keeping Property 2. Hence, for the extended GeneralizedCauchy matrix the maximal possible value of the sum r + k is equal to q + 1.Consider the matrix W = ��(R)i;j��1� = �xi�xjeaiebj � ;xi 6= xj; i = 1; 2; : : : ; r; j = 1; 2; : : : ; k: (23)It is easy to see, that all elements of this matrix are non-zero, all determinantsof order 2 are non-zero but all determinants of order 3 or greater are equal to 0.Conjecture 2. Let R = [Ri;j] be an r � k-matrix possessing Property 2. Letr + k = q + 1. Let the matrix W = ��(R)i;j��1� have the property that all the1 � 1 and 2 � 2-submatrices are non-singular but all the 3 � 3 submatrices aresingular. Then the matrix R is an extended Generalized Cauchy matrix.2.2. Generalized Reed-Solomon codes: Fast Decoding Algorithms.The main Coding Theory problems are as follows:� The problem of �nding optimal (n; k; d)-codes, i.e., codes with the maximalpossible distance d, if n and k are given, or with maximal possible dimensionk, if n and d are given;� The problem of Error Correcting Decoding: given an (n; k; d)-code, to �nda simple method to correct all errors e with wH (e) � b(d � 1) =2c;



Public-Key Cryptosystems Based on Linear Codes 10� The more complicated type of Decoding known as the Minimal DistanceDecoding: given an (n; k; d)-code, to �nd a simple method to identify forany received vector y a code vector g that has minimal distance to y.The Eq.'s (10) and (8) solve the �rst problem for the parameters listed above.We present a few solutions to the problem of the Error Correcting Decoding,. i.e.,correcting of errors. The problem of the Minimal Distance Decoding is unsolvedfor GRS codes.General remarks. Let y = g + e be a code vector g corrupted by an errorvector e. Calculate the product s = yHt known as the syndrome vector of y:s = yHt=(g + e)Ht= eHt: (24)Hence, the syndrome of y depends only on the error vector e, not on the codevector g.First, consider the case when z1 = z2 = : : : = zn = 1. This is the case of theordinary Reed-Solomon codes.Let e be an error vector of weight wH (e) � m � t = b(d � 1) =2c andlet fi1; i2; : : : ; img be an index set that contains the error positions. Then thesyndrome s can be represented ass = (s0; s1; : : : ; sr�1) = eHt =(ei1; ei2; : : : ; eim)26664 1 xi1 x2i1 : : : xr�1i11 xi2 x2i2 : : : xr�1i2: : : : : : : : : : : : : : :1 xim x2im : : : xr�1im 37775 ; (25)where the eis's are the values of the errors. The positions i1; i2; : : : ; im are un-known but there exists a one-one correspondence between i and xi. So, if weknow the value of xi, then we know i. For this reason, the xi's are known as theerror locators. Denote, for any is, eis := us, xis := Ys. By Eq. (25), we get thefollowing system of r non-linear equations in the 2m variables u1; u2; : : : ; um andY1; Y2; : : : ; Ym :(u1; u2; : : : ; um)26664 1 Y1 Y 21 : : : Y r�111 Y2 Y 22 : : : Y r�12: : : : : : : : : : : : : : :1 Ym Y 2m : : : Y r�1m 37775 = (s0; s1; : : : ; sr�1) ; (26)where the right hand side is known. Note that the integer wH (e) also is unknown.The Problem of Error Correcting Decoding is �nding a simple method ofsolving this system (if a solution exists). We describe two simple methods in thesubsections below.



Public-Key Cryptosystems Based on Linear Codes 11The general case of decoding a GRS code can be reduced to the above case.In general, we have instead of Eq. (25) the following equations = (s0; s1; : : : ; sr�1) = eHt =(ei1; ei2; : : : ; eim) 26664 zi1 zi1xi1 zi1x2i1 : : : zi1xr�1i1zi2 zi2xi2 zi2x2i2 : : : zi2xr�1i2: : : : : : : : : : : : : : :zim zimxim zimx2im : : : zimxr�1im 37775 : (27)Denote, for any is, eiszis := eus, xis := Ys. Again, by Eq. (27), we obtain(eu1; eu2; : : : ; eum)26664 1 Y1 Y 21 : : : Y r�111 Y2 Y 22 : : : Y r�12: : : : : : : : : : : : : : :1 Ym Y 2m : : : Y r�1m 37775 = (s0; s1; : : : ; sr�1) : (28)When the eu0ss and Ys's are found, then the values of the errors are calculated byeis = eus=zis.The Peterson Algorithm. The �rst method of solving (26) was found byPeterson. It is known as the matrix method. The Peterson algorithm is well-de�ned if the number of errors does not exceed t = b(d� 1) =2c = br=2c.First, we describe how to �nd the actual number of errors wH (e).Consider the successive m-strings of the s's. It follows from (26), that(1; 1; : : : ; 1)UY = (s0; s1; : : : ; sm�1)(Y 11 ; Y 12 ; : : : ; Y 1m)UY = (s1; s2; : : : ; sm): : : �Y j1 ; Y j2 ; : : : ; Y jm�UY = (sj; sj+1; : : : ; sj+m�1) ;: : :�Y r�m1 ; Y r�m2 ; : : : ; Y r�mm �UY = (sr�m; sr�m+1; : : : ; sr�1) (29)where U denotes the diagonal matrix U = diag (u1; u2; : : : ; um) andY = 26664 1 Y1 Y 21 : : : Y m�111 Y2 Y 22 : : : Y m�11: : : : : : : : : : : : : : :1 Ym Y 2m : : : Y m�1m 37775 (30)denotes the transposed square Vandermonde matrix.Putting u := (u1; u2; : : : ; um), we have the equivalent representation



Public-Key Cryptosystems Based on Linear Codes 12u26664 1 Y1 Y 21 : : : Y m�111 Y2 Y 22 : : : Y m�11: : : : : : : : : : : : : : :1 Ym Y 2m : : : Y m�1m 37775 = uY = (s0; s1; : : : ; sm�1) ;u26664 Y1 Y 21 Y 31 : : : Y m1Y2 Y 22 Y 32 : : : Y m1: : : : : : : : : : : : : : :Ym Y 2m Y 3m : : : Y mm 37775 = uDY = (s1; s1; : : : ; sm) ;: : :u26664 Y m�11 Y m1 Y m+11 : : : Y 2m�11Y m�12 Y m2 Y m+12 : : : Y 2m�11: : : : : : : : : : : : : : :Y m�1m Y mm Y m+1m : : : Y 2m�1m 37775 = uDm�1Y = (sm�1; sm; : : : ; s2m�1) ;: : :u26664 Y r�m1 Y r�m+11 Y r�m+21 : : : Y r�11Y r�m2 Y r�m+12 Y r�m+22 : : : Y r�11: : : : : : : : : : : : : : :Y r�mm Y r�m+1m Y r�m+2m : : : Y r�1m 37775 = uDr�mY = (sr�m; s1; : : : ; sr�1) ;(31)where Y is de�ned above and D = diag (Y1; Y2; : : : ; Ym).Suppose that the actual number of errors is strictly less than m. Thenthe diagonal matrix U in (29) is singular because some diagonal elements areequal to 0. This means that the m-strings (s0; s1; : : : ; sm�1), (s1; s2; : : : ; sm), : : :,(sm�1; sm; : : : ; s2m�1) are linearly dependent over GF (q) and that the determi-nant of the matrix Mm = 26664 s0 s1 : : : sm�1s1 s2 : : : sm: : : : : : : : : : : :sm�1 sm : : : s2m�1 37775 (32)is equal to 0. Thus the beginning of the Peterson algorithm is as follows.1 After receiving the vector y calculate the syndrome s. If s = o, there areno errors.2 If s 6= o, then calculate detMm for m = t = [(d � 1) =2]. If detMt 6= 0,then the number of errors is equal to t.3 If detMt = 0, then calculate detMm for m = t � 1, and so on. Continuetill the �rst time, when detMm 6= 0. This value m will be the real numberof errors.



Public-Key Cryptosystems Based on Linear Codes 13Now suppose that m is the real value of the number of errors. Then both thematrix D and the matrix Y in the representation (31) are non-singular. More-over, the matricesY;DY; : : : ;Dm�1Y are linearly independent overGF (q). Thismeans that them-strings (s0; s1; : : : ; sm�1), (s1; s2; : : : ; sm), : : :, (sm�1; sm; : : : ; s2m�1)are also linearly independent and thatdetMm 6= 0: (33)On the other hand, the matrices Y;DY; : : : ;Dm�1Y;DmY are linearly de-pendent over GF (q) because the characteristic polynomial of the diagonal matrixD is given by'D(x) = (Y1 � x) (Y2 � x) : : : (Ym � x) = �m � �m�1x+ : : :+ (�1)m �0xm; (34)where the �i denotes the ith symmetrical function of the roots Y1; Y2; : : : ; Ym.Let us multiply the �rst line of Eq. (31) by �m, the second line by ��m�1,: : :,the mth line by (�1)m�1 �1, the (m+ 1)th line by (�1)m �0 = (�1)m. Addingall lines, we get u'D (D)Y = 0= �m (s0; s1; : : : ; sm�1)��m�1 (s1; s2; : : : ; sm) + : : :+(�1)m�1 �1 (sm�1; sm; : : : ; s2m�1)+(�1)m �0 (sm; sm+1; : : : ; s2m) (35)or, using the matrix Mm de�ned in (32), we obtain the following linear systemin the variables �m; �m�1; : : : ; �1(�m; �m�1; : : : ; �1)Mm = � (�1)m (sm; sm+1; : : : ; s2m) : (36)4 Solving this system, we get the �i's.5 Solving Eq. (34) �m � �m�1x+ : : :+ (�1)m �0xm = 0; (37)we get the roots Ys's and, consequently, the is's.6 Solving the linear system in the �rst line of Eq. (31), where the matrix Y isknown now, we get the us's and the errors eis.This concludes the Peterson algorithm.



Public-Key Cryptosystems Based on Linear Codes 14The number of calculations. The �rst three parts of the Peterson algo-rithm , namely, calculating determinants detMm. m = t; t � 1; : : :, require atmost O(t3) operations.Solving the linear system Eq. (36) requires at most O(t3) operations.Solving the algebraic equation Eq. (37) of order m requires at most O(nt)operations. We simply can examine each of the elements of GF (q) as a possiblesolution of Eq. (37).Solving the linear system in the �rst line of Eq. (31), where the matrix Y isknown, requires at most O (t3) operations.Thus, the Peterson algorithm requires O (t3 + nt) operations. Usually, t = cn,where c < 1 � 1q is the fraction of correctable errors. Hence, it requires at mostO (n3) operations to solve the system (26) using the Peterson algorithm. Recentresults on solving linear systems allow to reduce the number of calculations toO (n2:4) operations.Fast Decoding Based on the Euclidean Division Algorithm - theBerlekamp-Massey Algorithm. There exists another algorithm of solvingthe system (26) based on the Euclidean division algorithm. This algorithm isdue to Berlekamp, with a modi�cation due to Massey. Therefore, this algorithmis known as the Berlekamp-Massey algorithm. Currently, there are a few versionsof this algorithm which di�er in the implementation of the Euclidean divisionalgorithm.We often shall consider rings of polynomials mod g(x). From now on, weconsider the case g(x) = xr and the quotient ring GF (q) [x] =(xr). In this ring,the polynomial f(x) = 1 + x+ x2 + : : :+ xr�1 (38)has an inverse, namely, h(x) = 1� x because(1 � x) �1 + x+ x2 + : : :+ xr�1� = 1� xr � 1 (mod xr) : (39)Thus, we can put 11� x := 1 + x+ x2 + : : :+ xr�1: (40)Consider again the system (26). From now on, we assume that the integerm � t = b(d� 1) =2c is the actual number of errors. Introduce the syndromepolynomial S(x) = s0 + s1x+ s2x2 + : : :+ sr�1xr�1: (41)To get it, multiply both sides of Eq. (26) to the left by the vector (1; x; x2; : : : ; xr�1)t.Then we obtain on the right hand side S(x) and, using Eq. (40), on the left hand



Public-Key Cryptosystems Based on Linear Codes 15side the expressionu1 �1 + (Y1x) + (Y1x)2 + : : :+ (Y1x)r�1�+u2 �1 + (Y2x) + (Y2x)2 + : : :+ (Y2x)r�1�+...um �1 + (Ymx) + (Ymx)2 + : : :+ (Ymx)r�1� �mXs=1 us1� xYs (mod xr) ;Hence, instead of Eq. (26), we get the equivalent polynomial equationmXs=1 us1� xYs � S(x) (mod xr) : (42)Now introduce the error locator polynomial�(x) = mYs=1 (1� xYs) : (43)The degree of this polynomial is m. Its roots are the inverses of error locatorsYs's.Multiply Eq. (42) by �(x). De�ne the error evaluator polynomial 
(x) as theproduct 
(x) = �(x) mXs=1 us1� xYs = mXs=1 us mYj=1;j 6=s (1� xYj) : (44)The degree of 
(x) is less than or equal to m� 1. For any s, s = 1; 2; : : : ;m, thispolynomial takes at the point x = Y �1s the value
 �Y �1s � = us mYj=1;j 6=s �1 � Y �1s Yj� : (45)Hence, if we know 
(x) and Yj 's, we can evaluate the values of the errors byus = 
(Y �1s )mYj=1;j 6=s (1� Y �1s Yj) : (46)Combining Eqs. (42)-(44), we get the famous Berlekamp Key Equation
(x) � �(x)S(x) (mod xr) ; (47)



Public-Key Cryptosystems Based on Linear Codes 16where deg �(x) = m � t = jd�12 k ;deg 
(x) � m� 1;gcd (
(x): �(x)) = 1: (48)The problem of decoding is reduced to solving the Key Equation (47) withthe restrictions (48). This means that we have to �nd the unknown polynomials�(x) and 
(x), if the polynomial S(x) is given. When the polynomial �(x) isfound, we get its roots Y �1's s and, consequently, the error locators Xis's. Afterthat, we get the values of the errors eis = us from Eq. (46).Solving the Key Equation is based on the Euclidean division algorithm. Forreference, we give the description of this algorithm.The Euclidean division algorithm. The Euclidean division algorithm isa procedure for �nding the greatest common divisor of two polynomials. Considertwo polynomials f(x) and g(x) over GF (q). Suppose thatdeg g(x) � deg f(x):For convenience, denote F�1(x) := f(x), g(x) := F0(x).1st step Divide F�1(x) (= f(x)) by F0(x) (= g(x)):F�1(x) = G1(x)F0(x) + F1(x); where degF1 < degF0: (49)2nd step Divide F0(x) (= g(x)) by F1(x):F0(x) = G2(x)F1(x) + F2(x); where degF2 < degF1: (50)3rd Divide F1(x) by F2(x):F1(x) = G3(x)F2(x) + F3(x); where degF3 < degF2: (51)i'th step Divide Fi�2(x) by Fi�1(x):Fi�2(x) = Gi(x)Fi�1(x) + Fi(x); where degFi < degFi�1: (52)next to the last step Divide Fp�2(x) by Fp�1(x):Fp�2(x) = Gp(x)Fp�1(x) + Fp(x); where degFp < degFp�1: (53)last step Divide g(x) := Fp�1(x) by Fp(x):Fp�1(x) = Gp+1(x)Fp(x): (54)



Public-Key Cryptosystems Based on Linear Codes 17Then gcd (f(x); g(x)) = Fp(x): (55)At each step of the procedure, the current remainder Fi(x) can be representedas a linear combination of the two previous remainders. Thus, it is possible torepresent all remainders, including the last one Fp(x), as the linear combinationsof f(x) (= F�1(x)) and g(x) (= F0(x)):Fi(x) = Ai(x)f(x) +Bi(x)g(x): (56)The polynomials Ai(x) and Bi(x) can be obtained from Eqs. (49)-(54) butthere exists an inductive way of calculating them. De�ne two sequences of poly-nomials fAi(x)g and fBi(x)g byAi(x) = Gi(x)Ai�1(x) +Ai�2(x); (57)where, by de�nition, A�1(x) = 1 and A0(x) = 0, andBi(x) = Gi(x)Bi�1(x) +Bi�2(x); (58)where, by de�nition, B�1(x) = 0 and B0(x) = 1. Then Eq. (56) is true.It is easy to obtain many relations concerning the polynomials de�ned above.The following properties are important for the decoding procedure:1. For any i, gcd(Ai(x); Bi(x)) = 1: (59)2. For any i, F�1(x) = Bi+1(x)Fi(x) +Bi(x)Fi+1(x);F0(x) = Ai+1(x)Fi(x) +Ai(x)Fi+1(x): (60)3. For any i, Fi(x) = (�1)i�1 (Ai(x)F�1(x)�Bi(x)F0(x)) : (61)In particular,gcd(f(x); g(x)) = Fp(x) = (�1)p�1 (Ap(x)F�1(x)�Bp(x)F0(x)) : (62)4. For any i, Ai(x)Bi+1(x)�Ai+1(x)Bi(x) = (�1)i�1 : (63)5. For any i, degAi(x) = iXs=2 degGi(x); (64)degBi(x) = iXs=1 degGi(x) = deg f(x)� degFi�1(x); (65)degFi(x) = deg f(x)� i+1Xs=1degGi(x): (66)



Public-Key Cryptosystems Based on Linear Codes 18Solving the key equation. It follows from Eq. (47), that a polynomialC(x) exists such that 
(x) = C(x)xr + �(x)S(x):Hence, if we put F�1(x) = x; F0(x) = S(x), we can apply the Euclideandivision algorithm described in Eqs. (49)-(64), to get 
(x) and �(x):1 Start with calculating the polynomials Fi(x); Ai(x); Bi(x); i = 1.2 (The stop rule) Continue the calculations till i = m such thatdegFm�1(x) � jd�12 k butdegFm(x) < jd�12 k : (67)3 Calculate �(x) = Bm(x)Bm(0) ;
(x) = Fm(x)Bm(0) : (68)This is a solution of the Key Equation (47) with the restrictions (48) (see Eqs.(59), (61), (65)). (In fact, using (61), one can show that this solution is unique.)We already explained how the knowledge of �(x) and 
(x) allows us to decode.2.3. Sub�eld Subcodes: Alternant and Goppa Codes.Alternant codes. Let C be an (n; k; d) GRS code over the �eld GF (q) withq = pm elements. Consider the subcode Ca consisting of all code words with allcoordinates in the base �eld GF (p). This sub�eld subcode is called an alternantcode.In general, an alternant code Ca can be de�ned by the same parity checkmatrix(10) and the same linear system (8) with the restriction that all components gj ofa code vector g should belong to the base �eld GF (p). But it is more convenientto rewrite the parity check matrix (10) over the large �eldGF (p) as the equivalentParity check matrix over the base �eld GF (p). We consider a speci�c realizationof the �eld GF (p), say, by means of a basis f!1; !2; : : : ; !mg. Hence, in thisrealization each element ! 2 GF (p) can be represented in the form! = a1!1 + a2!2 + : : :+ am!m;where all the coe�cients a1; a2; : : : ; am are in the base �eld GF (p).This induces a mappingB : GF (pm) ! GF (p)m (69)which maps each element! of the large �eld into the columnm-vector (a1; a2; : : : ; am)t:B (!) = (a1; a2; : : : ; am)t : (70)



Public-Key Cryptosystems Based on Linear Codes 19So a parity check matrix of the alternant code Ca over the base �eld GF (p)can be obtained as fH = B (H) =26666664 B (z1) B (z2) : : : B (zn)B (z1x1) B (z2x2) : : : B (znxn)B (z1x21) B (z2x22) : : : B (znx2n): : : : : : : : : : : :B �z1xr�11 � B �z2xr�12 � : : : B (znxr�1n ) 37777775 : (71)It is clear that the number of columns in the matrix (71) is n and the numberof rows is mr. If some columns of the original matrixH are linearly independentover the large �eld GF (pm), then the corresponding columns of fH still remainlinearly independent over the base �eld GF (p). Thus, any d�1 columns of fH arelinearly independent over GF (p), and the minimal distance of an alternant codeCa is at least d = r + 1. On the other hand, the matrix fH may contain linearlydependent rows. So the rank ra of fH is not greater than rm and sometimes maybe strictly less.Combining these features, we get the following parameters (n; ka; da) of analternant code Ca:� code length n (the same as that of C);� dimension ka = n � ra � n� rm;� code distance da � d = r + 1 = n� k + 1.In general, alternant codes form the rich family of quite good codes over thebase �eld GF (p). Some of them reach the Varshamov-Gilbert bound.Fast decoding of alternant codes may be carried out just as for GRS codes (seethe above Section). The only di�erence is that the code vector g, the receivedvector y, and the vector of errors e have coordinates in the base �eld GF (p),not in the �eld GF (pm). It does not change any step of decoding procedureboth in the Peterson algorithm and in the Berlekamp-Massey algorithm. Hence,alternant codes possess fast decoding algorithms.Notice that in order to be able to carry out of a decoding algorithm, we shouldknow not only the parity matrix fH over GF (p) but also the parity check matrixH of the original GRS code over the large �eld GF (pm).Goppa Codes. Goppa codes were proposed by Goppa about 30 years ago.Since then, they are very popular because Goppa codes have a quite good mini-mum distance (on the Varshamov-Gilbert bound) and possess fast decoding al-gorithms. It has been shown that Goppa codes are a particular type of alternantcodes but the latter were proposed much later.



Public-Key Cryptosystems Based on Linear Codes 20Again, consider a large �eld GF (q) with q = pm elements and the ring ofpolynomials GF (q) [x]. Let G(x) 2 GF (q) [x]. Introduce the quotient ringRG = GF (q) [x] =(G(x)) (72)of polynomials over GF (q) mod G(x). This ring RG is not a �eld unless thepolynomial G(x) is irreducible.However, if � 2 GF (q) and G (�) 6= 0; then the polynomial x�� is invertiblein Rg (cf. Eqs. (38)-(39).) This can be shown by dividing the polynomial G(x)by x� �: G(x) = F (x)(x) +G (�) : (73)It follows from Eq. (73) thatF (x)(x) +G (�) � 0 mod G(x); (74)or, equivalently, h�G (�)�1 F (x)i (x) � 1 mod G(x): (75)Hence, we can consider the expression 1x� � (76)as a polynomial:1x� � := �G (�)�1 F (x) = �G (�)�1 G(x)�G (�)x� � mod G(x): (77)Keeping this in mind, we de�ne Goppa codes as follows.Let G(x) := G0 +G1x+G2x2 + : : :+Grxr; Gr 6= 0; (78)be a polynomial over GF (pm) of degree r and let � := (�1; �2; : : : ; �n), n > r, bea set of elements from GF (pm) such that G(�j) 6= 0. Let g : = (g1; g2; : : : ; gn) bea vector with components gj from the base �eld GF (p). The Goppa code CG is aset of all the vectors g such thatnXj=1 gjx� �j � 0 mod G(x): (79)If the Goppa polynomial G(x) is irreducible, the Goppa code CG is calledirreducible.Goppa codes can be de�ned also in terms of GRS codes. To see this, let usconsider the polynomial G (�)�1 G(x) �G (�)x� � =G(�)�1 hG(1) (�) + G(2)(�)2! (x) + : : :+ G(r)(�)r! (x)r�1i ; (80)



Public-Key Cryptosystems Based on Linear Codes 21where r = degG(x) and G(i) (�) denotes the ith derivative of G(x) at the pointx = �. Since the polynomials 1; (x); (x)2; : : : ; (x)r�1 are linearly independent inRG, we get from Eq. (79):A vector g = (g1; g2; : : : ; gn) with components gj from the base �eld GF (p) isa code vector of the Goppa code CG if and only ifnXj=1 gjG (�j)�1 G(r�i) (�j)(r � i)! = 0; i = 0; 1; : : : ; r � 1: (81)On the other hand,G(r)(�j)r! = Gr 6= 0;G(r�1)(�j)(r�1)! = Gr�1 + rGr�j;G(r�2)(�j)(r�2)! = Gr�2 + (r � 1)Gr�1�j + r(r�1)2 Gr�2j ;: : :G(1) (�j) = G1 + 2G2�j + : : :+ rGr�r�1j : (82)Hence, subtracting from the ith equation in Eq. (81) a suitable linear combinationof the equations (82), we obtain the equivalent systemnXj=1 gjG (�j)�1 �ij = 0; i = 0; 1; : : : ; r � 1: (83)This is just the de�nition of the sub�eld subcode (an alternant code) of theGRS code with the parity check matrixH = hzjxiji, where zj = G(�j)�1, xj = �j,and r = degG(x).Therefore, in general, the parameters of Goppa codes are the same:Code length n � q + 1 = pm + 1;Dimension kG = n� rG � n� rm;Code distance dG � d = r + 1 = degG(x) + 1: (84)But, in the binary case p = 2, Goppa codes have better parameters thangeneral alternant codes.To show this, consider again Eq. (79). In the binary case, gj = 0 or 1. IfwH (g) = w, gj1 = gj2 = : : : = gjw = 1, then we have for this code vectorwXs=1 1x� �s � 0 mod G(x); (85)where �s := gjs.



Public-Key Cryptosystems Based on Linear Codes 22Note that the left hand side of Eq. (85) can be written as!(1)g (x)!g(x) ; (86)where the polynomial !(1)g (x) is the derivative of the polynomial !g(x) given by!g(x) = wYs=1(x): (87)Note that since p = 2; the polynomial !(1)g (x) has only even powers of x:Hence !(1)g (x) = '2g(x) (88)for some polynomial 'g(x).Note that !g(x) and G(x) have no common roots in any extension �eld.Hence, by Eq. (85) we get'2g(x) � 0 mod G(x): (89)This means that G(x) j '2g(x): (90)Assume from now on, that the Goppa polynomial G(x) has no multiple roots inany extension �eld. Then, it follows from Eq. (90) that G(x) j '2g(x) if and onlyif G(x)2 j '2g(x): (91)Thus, the parameters of binary Goppa codes areCode length n � q + 1 = pm + 1;Dimension kG = n� rG � n� rm; r = degG(x);Code distance dG � d = 2degG(x) + 1; (92)i.e. code distance is about twice more in comparison with the general alternantcode for which the parity check matrix H has the same number of rows.To obtain a generator matrix of a Goppa code, we can apply the map-ping B (see Eqs. (69)-(71)) to the parity check matrix H = [�ij=G (�j)]; i =0; 1; : : : ; t � 1; j = 1; 2; : : : ; n. Denote by Hbin the binary matrix obtained fromthe binary matrixfH = [B ��ij=G(�j)�] by deleting linearly dependent rows. Thena generator matrixG is a binary k�n matrix with maximal value of k such thatGHtbin = 0.Fast decoding of Goppa codes may be carried out just as for GRS codes.Hence, Goppa codes possess Fast decoding algorithms.Notice that in order to be able to carry out a decoding algorithm, we shouldknow the ordering � = (�1; �2; : : : ; �n) and the Goppa polynomial G(x).



Public-Key Cryptosystems Based on Linear Codes 232.4. Maximal Rank Distance Codes.Rank Distance. Let the �eld GF (qN) be given and let GF (q) be the base�eld, q is a power of a prime. Let!1; !2; : : : ; !Nbe a basis of the �eld GF (qN) over the �eld GF (q). Each element xj 2 GF (q)can be uniquely represented in the formxj = a1;j!1 + a2;j!2 + : : :+ aN;j!N ;where ai;j 2 GF (q).Let AnN be the set of the N � n matrices with entries in GF (q).Let x = (x1; x2; : : : ; xn) 2 GF (qN)n be a vector with coordinates in GF (qN).Consider the bijective mappingA : GF (q)n ! AnN (93)that maps the vector x = (x1; x2; : : : ; xn) onto the matrixA(x) = 266664 a1;1 a1;2 : : : a1;na2;1 a2;2 : : : a2;n... ... ... ...aN;1 aN;2 : : : aN;n 377775 :Denote the rank of a matrixA over the �eld GF (q) by r(Ajq). Evidently, therank depends on the �eld. In particular,r(Ajq) � r(AjqN):The rank (or rank weight) r(xjq) of a vector x is de�ned as the rank of A(x)over GF (q): r(xjq) = r(A(x)jq):In fact, the rank function is a norm on GF (qN)n because1. for any x, r(xjq) � 0;2. r(xjq) = 0() x = 0;3. for any x;y 2 GF (qN)n we have, r(x+ yjq) � r(xjq) + r (yjq).This allows us to de�ne the Rank distance functiondr(x;y) = r(x� yjq):



Public-Key Cryptosystems Based on Linear Codes 24Equivalently, we can de�ne the rank distance as follows.The rank weight r(xjq) of x = (x1; x2; : : : ; xn) 2 GF (qN)n is the maximalnumber of xi that are linearly independent over the base �eld GF (q).The rank distance dr(x;y) between x and y is the rank weight of the di�erencex� y.It is clear that, for any x, r(xjq) � min (n;N) : (94)The rank distance d (C) = d of a linear code C is de�ned byd := minfdr(x;y) j x 2 C; y 2 C; x 6= yg ; (95)or, equivalently, d := minfr(xjq) j x 2 C; x 6= og : (96)If a code C has distance d, then it can correct all errors e with r(ejq) � t =b(d � 1) =2c.Let a linear code C � GF (qN)n of length n, dimension k (or, equivalently, ofsize M = qNk), and (rank) distance d over GF (qN) be given. We construct anew code Ctr � GF (qn)N , called the transposed code, of length N , of the samesize M = qNk, and the same (rank) distance d over GF (qn). The construction isas follows.Using the mapping (93), represent each codeword x 2C � GF (qN)n as thecorresponding matrix A(x) = 266664 a1;1 a1;2 : : : a1;na2;1 a2;2 : : : a2;n... ... ... ...aN;1 aN;2 : : : aN;n 377775 :Transpose this matrix A(x):A(x)t = 266664 a1;1 a2;1 : : : aN;1a1;2 a2;2 : : : aN;2... ... ... ...a1;n a2;n : : : aN;n 377775 : (97)Choose a basis 1; 2; : : : ; n of the �eld GF (qn) and map the matrix A(x)tonto the vector y = (y1; y2; : : : ; yN) 2 GF (qn)N ;where yi = ai;11 + ai;22 + : : : ai;nn 2 GF (qn), i = 1; 2; : : : ; N .All such vectors form a code Ctr � GF (qn)N of length N . It is also clear thatit has the same number of codewords M = qNk as C and the same rank distanced because the matrices A(x) and A(x)t have the same rank.



Public-Key Cryptosystems Based on Linear Codes 25Remark 1. The code Ctr is a group code but not necessarily a linear code.Remark 2. If C is an optimal code in the sense that its size is maximal for thegiven d, then Ctr is optimal as well.Lemma 1. For any linear (n; k; d) code C � GF (qN)n, we have the inequalityd � min (N;n) :Proof. See Eq (94). 2Lemma 2. (The Singleton-style bound.) Let n � N . For any linear (n; k; d)code C � GF (qN)n, k � n� d+ 1: (98)Proof. It is evident that, for any x 2 GF (qN)n, r(xjq) � wH(x), wherewH(x) denotes the Hamming weight of x. Hence, any code of size M with therank distance d is also a code of the same size with the Hamming distance d� � d.This means that the size Mr (n; d) = qNk of an optimal code for the rank metricis less then or equal to the size MH (n; d) = qNk1 of an optimal code for theHamming metric with the same n and d. Thus,k � k1 � n� d+ 1 (99)because the Singleton bound is valid for the Hamming distance. 2Lemma 3. Let n > N . For any group code G � GF (qN)n of size M = qNk anddistance d, d � N;Nk � n (N � d + 1) :Proof. The �rst statement follows from Lemma 1. To obtain the secondstatement, construct a linear (N; k; d) code over the �eld GF (q), transpose itand apply the Singleton-style bound. 2A linear (n; k; d) code is called a maximal rank distance (MRD) code if theSingleton bound (98) is reached. Such a code is optimal.The theory of MRD codes is given in [11]. It is shown that, for any n � N ,1 � d � n, an MRD code exists. Combining this with the transposed codeconstruction, we obtain optimal rank codes for any length n and any admissiblerank distance d.



Public-Key Cryptosystems Based on Linear Codes 26General construction of optimal codes. Let C � GF (q)n be a linear(n; k; d) code and let H be an (n� k) � n parity check matrix. For any d � 1,let Yd�1 be the set of (d� 1)� n matrices over the base �eld GF (q) of full rankd� 1.Theorem 1. Let H be an (n� k)�n parity check matrix of a linear (n; k) codeC � GF (qN)n. The code C has the rank distance d if and only if, for any matrixY 2 Yd�1; we have r(YHtjqN) = r(Yjq) = d � 1; (100)and there exists a matrix Y0 2 Yd such thatr(Y0HtjqN) < r(Y0jq) = d: (101)Proof. Necessity. Let C be a code of distance d. A vector x = (x1; x2; : : : ; xn)of rank d� 1 or less can always be represented in the formx = (x1; x2; : : : ; xn) = (u1; u2; : : : ; ud�1)Y;ui 2 GF (qN); Y 2Yd�1:Since x is not a codeword, the linear systemxHt = (u1; u2; : : : ; ud�1)YHt = 0 (102)of equations in the unknowns u1; u2; : : : ; ud�1 should have only the trivial zerosolution. This will be the case if r(YHtjqN) = d � 1. On the other hand, acodeword g of rank d can be represented in the formg = (g1; g2; : : : ; gn) = (v1; v2; : : : ; vd)Y0; (103)where Y0 2 Yd and v1; v2; : : : ; vd are linearly independent over GF (q). Since g isa non-trivial solution of the linear systemgHt = (v1; v2; : : : ; vd)Y0Ht = 0;in the unknowns v1; v2; : : : ; vd, we infer that r(Y0HtjqN) < d.Su�ciency. Suppose that the conditions (100)-(101) hold. Then the system(102) has only the trivial solution. Thus, vectors x of rank less or equal to d� 1can not be codewords. On the other hand, the system (103) has a solution ofrank d. Hence, the distance of the code with the parity matrix H is d. 2We now present the general construction of an MRD code in terms of theparity check matrix.Let h1; h2; : : : ; hn be a set of elements of GF (gN ) which are linearly indepen-dent over GF (q). Let us de�ne the (d� 1)� n matrix H byH = 266666664 h1 h2 � � � hnhq1 hq2 � � � hqnhq21 hq22 � � � hq2n� � � � � � � � � � � �hqd�21 hqd�22 � � � hqd�2n 377777775 : (104)



Public-Key Cryptosystems Based on Linear Codes 27Theorem 2. The code C de�ned by the parity check matrix H in (104) is anMRD code with the following parameters:� code length n � N ;� dimension k = n� d + 1;� (Rank and Hamming) code distance d = r + 1 = n � k + 1.Proof. Let Y 2Yd�1. Then the square (d� 1)� (d� 1) matrix YHt can berepresented in the formYHt = 2666664 f1 f q1 : : : f qd�21f2 f q2 : : : f qd�22... ... ... ...fd�1 f qd�1 : : : f qd�2d�1 3777775 ; (105)where (f1; f2; : : : ; fd�1)t = Y(h1; h2; : : : ; hn)t. The elements f1; f2; : : : ; fd�1 2GF (qN) are linearly independent overGF (q) because if not, the elementsh1; h2; : : : ; hnwould also be linearly dependent over GF (q), in contradiction with the assump-tion. It is known (see, for instance, [17]) that the matrix YHt is non-singular.This means that r(YHt j qN) = d� 1. Hence, by Theorem (1), a code C has rankdistance d. The dimension of the code is k = n � d + 1. So this code reachesthe Singleton bound for the rank distance as well as, by (99), for the Hammingdistance. 2The general construction of an MRD code can be also given in terms of itsgenerator matrix. Let g1; g2; : : : ; gn be any set of elements of GF (pN ) which arelinearly independent over GF (p). A matrix G is de�ned byG = 266666664 g1 g2 � � � gngp1 gp2 � � � gpngp21 gp22 � � � gp2n� � � � � � � � � � � �gpk�11 gpk�12 � � � gpk�1n 377777775 : (106)It can be shown that there exists an orthogonal (d� 1)�n matrixH of the form(104) such that GHt = 0;where d = n � k + 1. Hence the matrix (106) is a generator matrix of an MRDcode.MRD codes possess Fast Decoding Algorithms (see [11, 23].) We need someresults of the theory of linearized polynomials to present these algorithms.



Public-Key Cryptosystems Based on Linear Codes 28Linearized Polynomials. Let the �eld GF (qN) be given and let GF (q) bethe base �eld, where q is a power of a prime.A linearized polynomial with coe�cients in the �eld GF (qN) is a polynomialof the form F (x) = nXi=0 fixqi: (107)The largest i such that fi 6= 0 will be called the norm N(F ) of the polynomial.By way of convention, the norm of the linearized polynomial 0 is taken to be �1.If F (x) 6= 0; G(x) 6= 0, thenN (F 
G) � max(N (F ) ; N (G)) :We write RN [x] to denote the set of all the linearized polynomials with coef-�cients in GF (qN).Addition in RN [x] is de�ned byF (x) +G(x) = nXi=0 (fi + gi)xqi; (108)and symbolic multiplication byF (x)
G(x) = F (G(x)) = nXi=0 Xk+s=i �fsgqsk �xqi: (109)In other words, symbolic multiplication is the composition (or the substitution)of two polynomials. It is important to note that symbolic multiplication is notcommutative. But it is associative and distributive:F (x)
 (G(x)
H(x)) = (F (x)
G(x))
H(x) = F (x)
G(x)
H(x);(F (x) +G(x))
H(x) = F (x)
H(x) +G(x) 
H(x);F (x)
 (G(x) +H(x)) = F (x)
G(x) + F (x)
H(x): (110)Hence, the set RN [x] under these two operations becomes a non-commutativering whose multiplicative identity is the polynomial x.The Euclidean Right Division Algorithm. Consider two linearized poly-nomials f(x) and g(x) over GF (qN). Iff(x) = Q(x)
 F (x);g(x) = P (x)
 F (x);we say that F (x) is a right common divisor of polynomials f(x) and g(x). Leftcommon divisors are de�ned in a similar manner. In RN [x], we have both Eu-clidean left division algorithms and right division algorithms. We describe theright division algorithm. The left division algorithm is similar.



Public-Key Cryptosystems Based on Linear Codes 29The right Euclidean division algorithm is a procedure for �nding the rightgreatest common divisor of two polynomials. We use the notation rgcd = theright greatest common divisor. Consider again two linearized polynomials f(x)and g(x) over GF (q). Suppose thatN (g(x)) � N (f(x)) :For convenience, de�ne F�1(x) := f(x), F0(x) := g(x).1st step Divide to the right F�1(x) (= f(x)) by F0(x) (= g(x)):F�1(x) = G1(x)
 F0(x) + F1(x); where N (F1) < N (F0) : (111)2nd step Divide F0(x) (= g(x)) by F1(x):F0(x) = G2(x)
 F1(x) + F2(x); where N (F2) < N (F1) : (112)3rd step Divide F1(x) by F2(x):F1(x) = G3(x)
 F2(x) + F3(x); where N (F3) < N (F2) : (113)i'th step Divide Fi�2(x) by Fi�1(x):Fi�2(x) = Gi(x)
 Fi�1(x) + Fi(x); where N (Fi) < N (Fi�1) : (114)next to the last step Divide Fp�2(x) by Fp�1(x):Fp�2(x) = Gp(x)
 Fp�1(x) + Fp(x); where N(Fp) < N(Fp�1): (115)last step Divide Fp�1(x) by Fp(x):Fp�1(x) = Gp+1(x)
 Fp(x): (116)Then rgcd (f(x); g(x)) = Fp(x): (117)If Fp(x) = x, then f(x) and g(x) are relatively prime.At each step of the procedure, the current remainder Fi(x) can be representedas a linear combination of the two previous remainders. Thus, it is possible torepresent all remainders, including the last one Fp(x), as linear combinations off(x) (= F�1(x)) and g(x) (= F0(x)):Fi(x) = (�1)i�1 (Ai(x)
 f(x)�Bi(x)
 g(x)) : (118)



Public-Key Cryptosystems Based on Linear Codes 30The polynomials Ai(x) and Bi(x) can be obtained from Eqs. (49)-(54) butthere exists an inductive way of calculating these polynomials. De�ne two se-quences of polynomials fAi(x)g and fBi(x)g byAi(x) = Gi(x)
Ai�1(x) +Ai�2(x); (119)where, by de�nition, A�1(x) = x and A0(x) = 0, andBi(x) = Gi(x)
Bi�1(x) +Bi�2(x); (120)where, by de�nition, B�1(x) = 0 and B0(x) = x. Then Eq. (118) is true.It is easy to obtain many relations concerning the above polynomials. De�netwo sequences of polynomials fUi(x)g and fVi(x)g byUi(x) = Ui�1(x)
Gi(x) + Ui�2(x); (121)where, by de�nition, U�1(x) = 0 and U0(x) = x, andVi(x) = Vi�1(x)
Gi(x) + Vi�2(x); (122)where, by de�nition, V�1(x) = x and V0(x) = 0.The following properties are important for the decoding procedure:1. For any i, rgcd(Ai(x); Bi(x)) = x;rgcd(Ui(x); Vi(x)) = x; (123)i.e. both the polynomial pairs fAi(x); Bi(x)g and fUi(x); Vi(x)g are rela-tively prime.2. For any i, F�1(x) = Ui+1(x)
 Fi(x) + Ui(x)
 Fi+1(x);F0(x) = Vi+1(x)
 Fi(x) + Vi(x)
 Fi+1(x): (124)3. For any i, Fi(x) = (�1)i�1 (Ai(x)
 F�1(x)�Bi(x)
 F0(x)): (125)In particular,rgcd(f(x); g(x)) = Fp(x) = (�1)p�1 (Ap(x)F�1(x)�Bp(x)F0(x)): (126)4. For any i, Ai(x)
 Ui+1(x)�Bi(x)
 Vi+1(x) = (�1)i�1 x;Ai(x)
 Ui(x)�Bi(x)
 Vi(x) = 0;Ai(x)
 Ui�1(x)�Bi(x)
 Vi�1(x) = (�1)i�1 x: (127)



Public-Key Cryptosystems Based on Linear Codes 315. For any i, N(Ai(x)) = iXs=2N(Gs(x)); (128)N(Bi(x)) = iXs=1N(Gs(x)) = N(f(x))�N(Fi�1(x)); (129)N(Fi(x)0 = N(f(x))� i+1Xs=1N(Gs(x)): (130)Fast decoding of rank codes. We consider decoding algorithms for anMRD code given by the parity check matrix H (104). Let g = (g1; g2; : : : ; gn) bea code vector and let y = g + e be the received vector, where e =(e1; e2; : : : ; en)is an error vector. Let us calculate the syndrome vector s = yHt:yHt = (g+ e)Ht = gHt + eHt = eHt = s; (131)or (e1; e2; : : : ; en)Ht = s = (s0; s1; : : : ; sd�2): (132)The problem of decoding is to �nd the error vector e = (e1; e2; : : : ; en) if thematrix H and the syndrome vector s = (s0; s1; : : : ; sd�2) are given.Assume that the rank weight of the error vector is equal to r(ejq) = m. Thenthe vector e can be represented in the forme = EY =(E1; E2; : : : ; Em)Y; (133)where E1; E2; : : : ; Em 2 GF (qN) are linearly independent over GF (q), and Y 2Ym is an m � n matrix of rank exactly m with all the entries in the base �eldGF (q). Hence, Eq (132) can be rewritten as(E1; E2; : : : ; Em)YHt = s: (134)The matrix Zt := YHt has the formZt = YHt = 2666664 z1 zq1 : : : zqd�21z2 zq2 : : : zqd�22... ... ... ...zm zqm : : : zqd�2m 3777775 ; (135)where zt : =(z1; z2; : : : ; zm)t = Y(h1; h2; : : : ; hn)t. If E1; E2; : : : ; Em are linearlyindependent over GF (q), then the elements z1; z2; : : : ; zm 2 GF (qN) are also



Public-Key Cryptosystems Based on Linear Codes 32linearly independent over GF (q). From Eq. (134), we have the following systemof d� 1 equations in the 2m unknowns E1; E2; : : : ; Em, z1; z2; : : : ; zm:(E1; E2; : : : ; Em)2666664 z1 zq1 : : : zqd�21z2 zq2 : : : zqd�22... ... ... ...zm zqm : : : zqd�2m 3777775 = (s0; s1; : : : ; sd�2) ; (136)or, mXj=1Ejzqij = si; i = 0; 1; : : : ; d� 2: (137)Note that the integer m is also unknown.If we, somehow, have obtained a solution of Eq (137), we can �nd the matrixY from Eq. (135) and the error vector e from Eq (133). For a given m, thereexist many solutions of Eq. (137). If (E1; E2; : : : ; Em) and (z1; z2; : : : ; zm)t is asolution, then (E1; E2; : : : ; Em)Q and Q�1(z1; z2; : : : ; zm)t also is a solution forall m�m non-singular matricesQ with entries in GF (q). Moreover, there are noother solutions. All these solutions are equivalent in that sense that the recoverederror vector e is the same. So, we have to obtain any solution of Eq (137).For the case m � t = jd�12 k, we present two algorithms of the fast solution ofEq (137): the matrix algorithm and the algorithm based on the right Euclideandivision algorithm.The Matrix Algorithm. The idea of this algorithm is similar to the Pe-terson algorithm for the decoding of alternant codes.For any i = 1; 2; : : : ; t, de�ne the i� i matrixMi = 2666664 s0 sq�11 : : : sq�i+1i�1s1 sq�12 : : : sq�i+1i... ... ... ...si�1 sq�1i : : : sq�i+12i�2 3777775 (138)whose entries are obtained from the known syndrome vector s.Lemma 4. Let m = r(ejq) � t be the rank weight of the error vector e. Ifi > m, then det (Mi) = 0:If i = m, then det (Mi) 6= 0:Proof. Note that even for i > m; we can represent the error vector e in aform similar to Eq (133):e = ( eE1; eE2; : : : ; eEi)Y; Y 2Ym;



Public-Key Cryptosystems Based on Linear Codes 33but in this case the elements eE1; eE2; : : : ; eEi are linearly dependent over GF (q).Let us express the syndrome components sp in terms of eE1; eE2; : : : ; eEi and thecorresponding ez1; ez2; : : : ; ezi:sp = iXj=1 eEj ezqpj ; p = 0; 1; : : : ; d � 2:If we replace the s's by these expressions in Eq (138), we obtain after somemanipulationsMi = 266666664 ez1 ez2 � � � eziezq1 ezq2 � � � ezqiezq21 ezq22 � � � ezq2i� � � � � � � � � � � �ezqi�11 ezqi�12 � � � ezqi�1i 3777777752666664 eE1 eEq�11 : : : eEq�i+11eE2 eEq�12 : : : eEq�i+12... ... ... ...eEi eEq�1i : : : eEq�i+1i 3777775 :Hence, det (Mi) = 0 because eE1; eE2; : : : ; eEi (and also ez1; ez2; : : : ; ezi) are linearlydependent over GF (q).On the other hand, if i = m, then eE = E and ez = z in the above represen-tation. Hence, det (Mm) 6= 0 because E1; E2; : : : ; Em (and also z1; z2; : : : ; zm) arelinearly independent over GF (q). 2This lemma allows us to �nd the rank weight m of the error vector e:1. Calculate the syndrome s by Eq. (131).2. For i = t; t� 1; : : :, calculate the matrices Mi and their determinant detMitill the �rst value i = m for which det (Mi) 6= 0. This value is the rankweight of e.From now on, we have to solve Eq (137) for the known m.Since the unknowns z1; z2; : : : ; zm are linearly independent over GF (q), intro-duce the linearized polynomial�(x) = mXi=0 �ixqi; �m = 1 (139)having as roots all the linear combinations of z1; z2; : : : ; zm with coe�cients inthe base �eld GF (q).Theorem 3. (�0; �1; ; �m�1)Mm = � �sm; sq�1m+1; : : : ; sq�m+12m�1 � : (140)



Public-Key Cryptosystems Based on Linear Codes 34Proof. Represent Mm in the formMm = 26666664 z1 z2 � � � zmzq1 zq2 � � � zqmzq21 zq22 � � � zq2m� � � � � � � � � � � �zqm�11 zqm�12 � � � zqm�1m 377777752666664 E1 Eq�11 : : : Eq�m+11E2 Eq�12 : : : Eq�m+12... ... ... ...Em Eq�1m : : : Eq�m+1m 3777775 :Since, by the de�nition of �(x),�0zj + �1zqj + : : : �m�1zqm�1j = �zqmj ;j = 1; 2; : : : ;m;we have(�0; �1; ; �m�1)Mm = �(zqm1 ; zqm2 ; : : : ; zqmm )2666664 E1 Eq�11 : : : Eq�m+11E2 Eq�12 : : : Eq�m+12... ... ... ...Em Eq�1m : : : Eq�m+1m 3777775 =0@ mXs=1Eszqms ; mXs=1Eszqm+1s !q�1 ; : : : ; mXs=1Eszq2m�1s !q�m+11A =� �sm; sq�1m+1; : : : ; sq�m+12m�1 � :2 The linear system of equations (140) in the m unknowns �0; �1; ; �m�1 has aunique solution because the matrix Mm is non-singular. Hence, we can proceedwith the algorithm as follows.3. Solve the linear system (140) and calculate �(x).4. Calculate the linearly independent roots z1; z2; : : : ; zm of �(x). This problemcan be reduced to the problem of solving a few linear systems over the base�eld GF (q) (see [22]).5. Solve the linear systems of the �rst m equations of Eq. (137) in the munknowns E1; E2; : : : ; Em.6. Calculate the matrix Y using Eq. (135).7. Calculate the error vector e by Eq. (133).We have to calculate determinants and to solve linear systems. Hence, thenumber of calculations is O (n3).



Public-Key Cryptosystems Based on Linear Codes 35Fast Decoding Algorithm Based on the Right Euclidean DivisionAlgorithm. This algorithm is an analogue of the Berlekamp-Massey algorithmfor decoding generalized Reed-Solomon codes.Introduce the linearized syndrome polynomialS(x) = d�2Xp=0 spxqp: (141)Denote by E(x) the linearized polynomial whose roots are all the possiblelinear combinations of E1; E2; : : : ; Em with coe�cients in the base �eld GF (q):E(x) = mXp=0�pxqp; �m = 1: (142)Introduce the auxiliary linearized polynomial F (x) byF (x) = m�1Xp=0 Fpxqp; (143)where Fp = pXi=0�isqip�i; p = 0; 1; : : : ;m� 1: (144)Note that the norm of F (x) is strictly less than the norm of E(x):N(F (x)) � N(E(x))� 1:Theorem 4. (The key equation)F (x) = E(x)
 S(x) mod xqd�1; (145)N(E(x)) � d�12 ;N(F (x)) < d�12 : (146)Proof. E(x)
 S(x) = mXp=0�qpp S(x) = m+d�2Xp=0 xqp 0@ mXj+i=p�isqij 1A :For 0 � p � m� 1, the inner sum is just Fp:mXj+i=p�isqij = pXi=0�isqip�i = Fp:



Public-Key Cryptosystems Based on Linear Codes 36For m � p � d� 2 we havemXj+i=p�isqij = mXi=0�isqip�i = pXi=0�i  mXs=0Eszqp�is !qi =mXs=0 zqps  pXi=0�iEqis ! = mXs=0 zqps E (Es) = 0because, by de�nition of the polynomial E(x), mXs=0 zqps E (Es) = 0.For p � d� 1 the coe�cients vanish mod xqd�1. This proves the theorem. 2Decoding means �nding the polynomials E(x) and F (x) in Eq (145) with therestrictions (146), if polynomials S(x) and xqd�1 are given.For m � t = jd�12 k, the equation (145) always has a solution. The problem isto �nd such polynomials E(x) and F (x) that the norm N (E(x)) is minimal.It follows from Eq (145), that there exists a polynomial C(x) such thatF (x) = C(x)
 xqd�1 + E(x)
 S(x):It follows from Eq (125), that for the ith remainder Fi(x) we haveFi(x) = (�1)iBi(x)
 F0(x) mod F�1(x): (147)Hence, if we put F�1(x) = xqd�1, F0(x) = S(x), we can apply the rightEuclidean division algorithm (Eqs. (111)-(116)) to obtain E(x) and F (x).E1. Start with calculating the polynomials Fi(x); Ai(x); Bi(x); Ui(x); Vi(x); i =1.E2. (The Stop rule.) Continue the calculations till the index i = m satis�esthe inequalities N(Fm�1(x)) � d�12butN(Fm(x)) < t = jd�12 k :E3. Calculate E(x) = �Bm(x);F (x) = (�1)m�1 �Fm(x); (148)where the constant � is chosen such that �m = 1. These polynomials givethe solution of Eq. (145). Indeed, it follows from Eqs. (129), (130), (147),that N(E(x)) = N(Bm(x)) � d�12 ;N(F (x)) < d�12 : (149)



Public-Key Cryptosystems Based on Linear Codes 37It can be shown that any other solution of the key equation (145) thatsatis�es the restrictions (146) can di�er from the obtained solution (148)only by a constant factor.E4. Calculate the roots E1; E2; : : : ; Em of E(x) which are linear independentover GF (q).E5. From the �rst m equations of the system (137), get the linear systemmXj=1Eq�ij zj = sq�ii ; i = 0; 1; : : : ;m� 1in the m unknowns z1; z2; : : : ; zm and solve it.E6. Calculate the matrix Y using Eq (135).E7. Calculate the error vector e by Eq (133).The complexity of the described algorithm depends on the complexity of theright Euclidean division algorithm. There exist an algorithm wich computes thergcd of two linearized polynomials of norm n in O(n log2 n) steps. Hence, thenumber of calculations is O(d log2 d + dn).3. The Niederreiter Cryptosystem Based On GeneralizedReed-Solomon CodesThis cryptosystem was proposed by Prof. H. Niederreiter in 1986 [8]. It wasbroken by Prof. V.M. Sidelnikov and Dr. S.O. Shestakov in 1992 [9]A modi�cation has been proposed to avoid the Sidelnikov-Shestakov attack.3.1. Description. Private keysThe legitimate user A chooses as private keys:The parity check matrix of a generalized Reed-Solomon code (see Section 2.1).H = 26666664 z1 z2 : : : znz1�1 z2�2 : : : zn�nz1�21 z2�2 : : : zn�2n: : : : : : : : : : : :z1�r�11 z2�r�12 : : : zn�r�1n 37777775 ; (150)zj; �j 2 GF (q); zj 6= 0; �j are di�erent,i = 0; 1; : : : ; r � 1; j = 1; 2; : : : ; n:



Public-Key Cryptosystems Based on Linear Codes 38(As a consequence) a fast decoding algorithm (see Section 2.2).A non-singular scrambling square matrix S of order r:S = 266664 s01 s02 : : : s0ns11 s12 : : : s1n... ... ... ...sr�1;1 sr�1;2 : : : sr�1;n 377775 :This matrix is used to scramble the parity check matrix, i.e. to destroy anyevident structure of the parity check matrix.Public keyThe legitimate user A calculates the productHcr = SH =266664 z1F0(�1) z2F0(�2) : : : znF0(�n)z1F1(�1) z2F1(�2) : : : znF1(�n)... ... ... ...z1Fr�1(�1) z2Fr�1(�2) : : : znFr�1(�n) 377775 ;where Fi(x) = r�1Xk=0 sikxk; i = 0; 1; : : : ; r � 1are the polynomials de�ned by the scrambling matrix S.The legitimate user A publishes the matrix Hcr as a public key in some di-rectory, in the hope that it is very di�cult to get the secret matrices S and Hseparately from this product. EncryptionIn this cryptosystem, all the possible plaintexts (messages) are n-vectorsm = (m1;m2; : : : ;mn)of (Hamming) weight wH (m) � t = $d� 12 % = �r2�with components in GF (q).Note that messages are not codewords of the chosen GRS code but patternsof `errors' that can be corrected by the decoding algorithm.



Public-Key Cryptosystems Based on Linear Codes 39If a person B wants to send the secret message to A, he chooses a plaintextto send m = (m1;m2; : : : ;mn) and calculates the ciphertext as the syndrom c ofa code with the Parity check matrix Hcr:c =mHtcr =mHtSt: (151)Hence, in this cryptosystem, the set of ciphertexts is the set of all the possiblesyndroms of correctable errors. DecryptionUpon receiving the ciphertext c; the legitimate user Amultiplies it by �St��1:c �St��1 =mHtand gets the syndrome of the plaintext m. Then he applies a fast decodingalgorithm to obtain the plaintextm.3.2. Breaking the Niederreiter CryptosystemThe Sidelnikov-Shestakov attack. Recently, the Niederreiter PKC was bro-ken by Sidelnikov and Shestakov. We give a slightly di�erent version of theirattack.Recall that everybody knows the public keyHcr = SH = S[zj�ij ]but not S, fzjg, f�jg separately. Given the public key Hcr = SH, the breakingparty tries to �nd trapdoors Htr and Str such thatHcr = SH = HtrStr;where Htr = [yj�ij]:The elements fyjg and f�jg may di�er from the elements fzjg and f�jg. Never-theless, they allow to decrypt any ciphertext.Lemma 5. A matrixHtr is a trapdoor if and only if both H and Htr are paritycheck matrices (possibly di�erent) of the same GRS code.Proof. The proof is trivial. 2Evidently, all matrices Hcr, H and Htr can be reduced to the same row-reduced echelon form.



Public-Key Cryptosystems Based on Linear Codes 40The breaking party calculates the canonical row-reduced echelon form Hsyst(see eq. (18)) using the known parity check matrix Hcr:Hsyst = [Er R] = 26666664 1 0 0 � � � 0 � � � R1;r+1 R1;r+2 � � � R1;n0 1 0 � � � 0 � � � R2;r+1 R2;r+2 � � � R2;n0 0 1 � � � 0 � � � R3;r+1 R3;r+2 � � � R3;n� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �0 0 0 � � � 1 � � � Rr;r+1 Rr;r+2 � � � Rr;n 37777775 :(152)Reducing to the systematic form requires O(n3) calculations.From eq's. (19)-(22), we haveRi;j = zjzi rYk=1;k 6=i �j � �k�i � �k ; i = 1; 2; : : : ; r; j = r + 1; r + 2; : : : ; n: (153)Since any trapdoor Htr is reduced to the same matrix Hsyst, the breakingparty has to solve the following nonlinear algebraic system:yjyi rYk=1;k 6=i �j � �k�i � �k = Ri;j; i = 1; 2; : : : ; r; j = r + 1; r + 2; : : : ; n; (154)where yj and �j are unknowns but all Ri;j are known.Theorem 5. Suppose that any three �k, �p, �q are given and any ys is given;then all others yj and �j can be obtained uniquely from eq. (154).Without loss of generality let �1, �2, �r+1, y1 be given. Apply the followingprocedure.1. Calculate the ratio R1;r+1R2;r+1 = c�r+1 � �2�r+1 � �1 :Only c is unknown in this equation. Calculate c.2. For j = r + 2; r + 3; : : : ; n, calculate the ratiosR1;jR2;j = c�j � �2�j � �1 :Since c is already known, only �j is unknown in this equation. Calculate�j.3. For i = 3; : : : ; r, calculate the ratiosR1;r+1Ri;r+1 Ri;r+2R1;r+2 = �r+1 � �i�r+2 � �i �r+2 � �2�r+1 � �1 :Only �i is unknown in this equation. Calculate �i.



Public-Key Cryptosystems Based on Linear Codes 414. For j = r + 1; r + 2; : : : ; n, calculateyj = y1R1;j rYk=1;k 6=j �1 � �k�j � �k(y1 is given).5. For i = 2; : : : ; r and some j � r + 1, calculateyi = y1Ri;j rYk=1;k 6=j �i � �k�j � �k :6. Calculate the trapdoor matrix Htr. 2The Sidelnikov-Shestakov algorithm of breaking the Niederreiter PKC followsimmediately from Theorem 5:� Reduce the Public key Hcr to the systematic form Hsyst. This requiresO(n3) calculations.� Calculate the trapdoor matrix Htr using Theorem 5. This requires O(n3)calculations.� Calculate the trapdoor matrix Str using Hcr and Htr. This requires O(n3)calculations.The Work function of breaking is O(n3). This means that the Sidelnikov-Shestakov algorithm breaks the original Niederreiter PKC completely!3.3. Modi�cation of the Niederreiter PKC. The Niederreiter PKC pub-lic key is a scrambled parity-check matrix of some GRS codeHcr = SH:We change it to Hmodcr = S(H+X) = Hcr + SX;where X is a matrix of rank 1: X = atb;with a=(a1; a2; : : : ; ar), b=(b1; b2; : : : ; bn), where ai 2 GF (q) and bi 2 GF (q).The vector a must be a syndrom of a coset of the GRS code of weight d � 1.In the original system, the ciphertext c is the syndrome of the plaintext m;which is considered as a correctable \error": wH(m) � (r � 1)=2 = t andc =m(Hcr)t:



Public-Key Cryptosystems Based on Linear Codes 42Now the ciphertext iscmod =m(Htcr +XtSt) = c+mXtSt;where wH(m) � t� 1 (and not t).The legal user knows that mXt is either 0 or a vector �a, where � dependson the value of (m1; :::;mn) and a is �xed. Hence if the decoder cannot decodethe ciphertext assuming that mX = 0, or if the detected error is greater than t,he has to try at most all the di�erent q � 1 possible values of �. But the weightof the errors does not exceed t � 1 , so the problem he is confronted with has asolution.Consider again reducing the matrix Hmodcr to the systematic form. It can beshown that Hmodsyst = [Er S] = hEr R+ �t�i ; (155)whereR is a matrix given by eq. (153), �=(�1; �2; : : : ; �r) and � = (�r+1; �r+2; : : : ; �n)are some r- and (n� r)-vectors.To break the cryptosystem, one has to solve the system of equationsRi;j + �i�j = Si;j; i = 1; 2; : : : ; r; j = r + 1; r + 2; : : : ; n: (156)If the �i and �j are known, the Sidelnikov-Shestakov attack can be applied. Toobtain �i and �j we need the following simpleLemma 6. The rank of the matrix [R�1i;j ] is equal to 2 (see Eq. (23)), or, in otherwords, the determinants of all square submatrices of order 3 are equal to 0.Using the Ri;j's from eq. (156) and eq. (23), we get the equationdet266666664 1Si1 ;j1��i1�j1 1Si1 ;j2��i1�j2 1Si1;j3��i1�j31Si2 ;j1��i2�j1 1Si2 ;j2��i2�j2 1Si2;j3��i2�j31Si3 ;j1��i3�j1 1Si3 ;j2��i3�j2 1Si3;j3��i3�j3 377777775 = 0; (157)in the 6 variables �i1 ; �i2 ; �i3 ; �j1; �j2 ; �j3 of degree at most 12. The full numberof equations is equal to �n�r3 � = (r3) and they contain r(n � r) variables. Eachvariable �i is contained in �n�r3 � = �r�12 � equations, each variable �j is containedin �n�r�12 � = (r3) equations.It is unknown how to solve this system in appropriate time. Using the ap-proach given in [14] we can only get the estimation O(exp(r(n � r))).Note that in speci�c cases breaking the modi�ed Niederreiter PKC is stillpossible. Sidelnikov and Shestakov examined a hiding matrix X for which allrows except the last one are zero [10]. They showed that one can get a system



Public-Key Cryptosystems Based on Linear Codes 43of n� r � 1 equations of order at most 4 in three variables. This system can besolved using O(r3 + rn) calculations.This example shows that the hiding matrixX should be chosen and examinedvery carefully.4. The McEliece Cryptosystem based on Goppa CodesIn [5], the authors showed that the problem of decoding a general binary linearcode is a NP-complete. Hence, if there exists a big set of codes of large distancehaving fast decoding algorithms, then someone can choose one of these codes as apublic key with the fast decoding algorithm as a secret key, in the hope that theenemy party can decode intercepted ciphertexts only as corrupted codewords ofa general linear code.The �rst public-key cryptosystem based on linear codes was proposed byMcEliece in 1978 [4]. The system is based on the family of Goppa codes. Goppacodes have better parameters than general alternant codes in the binary caseonly. Thus, a large binary �eld GF (2m) and the base �eld GF (2) are used.Corresponding to each irreducible polynomial of degree t over GF (2m), thereexists a binary irreducible Goppa code of length 2m and dimension k � n �mt, capable of correcting any t or fewer errors. There exist fast algorithmsfor decoding these codes in O (nt) [15], [17] or even in O(n log2 n) arithmeticoperations [16].4.1. Description. Private keysThe legal user A chooses the following private keys.1. A monic primitive irreducible polynomialg(x) = g0 + g1x+ : : :+ gt�1xt�1 + xtof degree t over the �eld GF (2m).2. An ordering � = (�1; �2; : : : ; �n); n = 2m;of the elements of GF (2m).3. A fast decoding Algorithm, say, based on the parity check matrixH = [�ij=g(�j)];i = 0; 1; : : : ; t� 1; j = 1; 2; : : : ; n(see Section 2.2).



Public-Key Cryptosystems Based on Linear Codes 444. A non-singular binary scramble matrix S of order k.Public keyThe legal user A chooses a bijective mappingB : GF (2m) ! GF (2)m; (158)which maps each element ! of the large �eld GF (2m) into the binary columnm-vector (a1; a2; : : : ; am)t: B(!) = (a1; a2; : : : ; am)t: (159)Denote as Hbin the binary parity check matrix of the Goppa code obtainedfrom the binary matrix fH = [B(�ij=g(�j))] (160)by deleting linearly dependent rows.A generator matrix G is calculated as a binary k � n matrix of rank k ofmaximal size such that GHtbin = 0:The legal user A calculates the public key Gcr as the scrambled binary k� ngenerator matrix Gcr = SG:EncryptionLet m = (m1;m2; : : : ;mk) be a k-bit plaintext. A ciphertext is given byc =mGcr + e; (161)where e is an arti�cial vector of errors of weight t or less, which is randomlychosen and added by the sending party.DecryptionUpon receiving c; the legitimate receiver applies a fast decoding algorithm (seeSection 2.2) to obtain mS and then multiplies it by S�1 to obtain the plaintextm. The McEliece exampleThe chosen Goppa code has the following parameters:n = 1024;k = 524;t = (d� 1)=2 = 50:There exist about 10149 possible Goppa polynomials, about 1000! orderings � =(�1; �2; : : : ; �n), and about 10750 choices for the scramble matrix S. Hence, abrute-force attack based on comparing a ciphertext to each codeword seems tobe infeasible.



Public-Key Cryptosystems Based on Linear Codes 454.2. Information sets and decoding general linear codes. LetG = 266664 g11 g12 : : : g1ng21 g22 : : : g2n... ... ... ...gk1 gk2 : : : gkn 377775be a k � n generator binary matrix of an (n; k; d) binary linear code. LetJ = fj1; j2; : : : ; jkgbe a k-subset of the set f1; 2; : : : ; ng, where 1 � j1 < j2 < : : : < jk � n. LetG(J ) = G(j1; j2; : : : ; jk)denote the square k � k submatrix consisting of the columns with the numbersj1; j2; : : : ; jk. For any codeword g =(g1; g2; : : : gn0, letg(J )=(gj1 ; gj2 ; : : : ; gjk )be the J -subword of length k associated with the subset J .If m = (m1;m2; : : : ;mk) is a binary information vector, the correspondingcodeword is calculated as g =(g1; g2; : : : ; gn) =mG;and the corresponding J -subword can be calculated asg(J )=(gj1 ; gj2 ; : : : ; gjk ) =mG(J ) =mG(j1; j2; : : : ; jk):Suppose that the matrix G(J ) = G(j1; j2; : : : ; jk) is non singular. Then wecan obtain the information vector m from the J -subword bym = g(J )G(J )�1 = g(J )G(j1; j2; : : : ; jk)�1: (162)A set J = fj1; j2; : : : ; jkg is said to be an information set if the correspondingsubmatrix G(J ) = G(j1; j2; : : : ; jk) is non singular.Information sets can be used for decoding a general linear code. Lety = g + ebe a received word with t or less errors.For the given code, consider a set I of distinct information sets with theproperty:for any pattern e of t errors, there exists at least one Information set J 2 Isuch that the J -subword y(J ) = g(J ) is free of errors: (163)The procedure of decoding is as follows.



Public-Key Cryptosystems Based on Linear Codes 46Main algorithm1. Start with J1 2 I.2. Calculate by eq. (21) an estimationm1 = y(J1)G1(J )�1 of the informationvector m.3. Calculate the codeword g1=m1G:4. Calculate the Hamming distanced1 = wH(g1 � y)between g1 and received vector y.5. If d1 � t; then m1 =m. The decoding is �nished.6. If d1 > t; then choose the next set J2 2 I and run the above procedureagain.Due to the property (163), the procedure gives a correct answer at some step.The Main algorithm can be improved if for the case d1 > t we examine allerror patterns of weight l or less inside the chosen set J1. It was found that thebest choice is l = 2 [19].We are interested in getting the set I as small as possible. The cardinalityjIj of distinct information sets with property (163) depends on the code. It isclearly upperbounded by jIj �  nk!: (164)The (trivial) lower bound is given by�nk��n�tk � = �nt��n�kt � � jIj : (165)This is because if a J -subword is free of errors,all t errors are in the n � kcomplementary positions. These positions can cover �n�kt � patterns e of t errors.Hence, we need at least �nt��n�kt �such complementary sets to cover all patterns e of t errors.E.A.Kruk [20] showed that, for almost all linear binary (n; k; d) codes,jIj � (n) �nt��n�kt � ; (166)



Public-Key Cryptosystems Based on Linear Codes 47where (n) is function which increases slowly with n ((n) � n2 in Kruk's paper).This is the best known general bound. It can be improved for some codes ofrestricted lengths.4.3. Work Functions for the McEliece PKCAttempts of Breaking. Two kinds of attacks on a PKC can be considered.The �rst kind of attacks is based on getting a plaintext from an interceptedciphertext. The second kind of attack is based on getting private keys fromknown public keys.Getting a plaintext from a ciphertext. Letc =mGcr + ebe the intercepted ciphertext. The enemy party knows the generator matrixGcrand uses decoding by means of information sets. He need not know the set I ofinformation sets. He simply tries all k-subsets J and decodes c in accordancewith the main algorithm (see Section 4.2). Sometimes a k-subset J is notan information set. In this case, it is impossible to invert the matrix G(J ) atStep 2 of the main algorithm. So the next k-subset should be chosen. Butdiscovering that the matrixG(J ) is non-invertible takes about the same numberof arithmetic operations as inverting a non-singular matrix.McEliece [4] analyzed the work function W1 of breaking the PKC for this caseusing the bound (164) and the following probabilistic approach.Choose a k-subset J (not necessarily, an information set) with the uniformdistribution: P (J ) = 1�nk� : (167)If t out of n positions are in error, the number of error-free sets J is �n�tk �. Hence,the probability of successful decoding isPs = L�nk�; (168)where L is the number of error-free sets J such that the corresponding matrixG(J ) is invertible. It can be shown that, for almost all binary linear codes,L = c n� tk !;where c = kYi=1�1 � 12i� :For large k, c = 0:288788.



Public-Key Cryptosystems Based on Linear Codes 48Thus, the average number of attempts to get the plaintext m from the inter-cepted ciphertext c isN = 1Ps = �nk�L ' �nk�c�n�tk � ' 3:5 �nk��n�tk � : (169)At each attempt, the cryptanalyst should invert a k � k matrix G(J ). It takesabout k3 arithmetic operations. Hence, the average work function isW1 = 3:5 � k3 �nk��n�tk � : (170)Note that this is an average job. It requires sometimes much more attempts.For the McEliece example, we obtain from Eq. (170)W1 = 3:5 � 2 � 1025 = 282:5:Adams and Meijer [18] analyzed Eq. (170) for n = 1024 and found that W1is maximal if k = 654, t = 37. They obtainedW1 = 285:9:Lee and Brickell [19] used the improved main algorithm and obtained forn = 1024, k = 654, t = 37 that W1 = 275:2:E.A. Kruk [20], [21] signi�cantly improved the decoding algorithm and ob-tained that the maximal value of the work function is equal tomaxW1 = (n� k)3 �nt��n�tt � = (n � k)3 �nk��n�tk � : (171)Thus, the maximal job for the Kruk algorithm is almost the same as the averagejob W1 for the probabilistic approach.Kruk also found for the McEliece example n = 1024, k = 524, t = 50 thatthere exists a set I of information sets such thatW1 = 259:This is the best known attack of the �rst kind on the McEliece PKC.



Public-Key Cryptosystems Based on Linear Codes 49Getting the secret key from the public key. The second kind of attackswas analyzed in [7, 6].Gibson [7] showed that if the enemy party knows not only the public key butalso the ordering � = (�1; �2; : : : ; �n)then the McEliece PKC can be broken very easily. Indeed, letg =(g1; g2; : : : ; gn)be any codeword of the chosen Goppa code with the binary generator matrixGcr. Let gi1 = gi2 = : : : = gim = 1be all non-zero components of g. Letp(x) = (x� �i1)(x� �i2) : : : (x� �im):Then the formal derivative p(x)0 is a multiple of the square Goppa polynomialg(x)2. For each row of the binary generator matrix Gcr, the cryptanalyst canobtain polynomials the p and p0 and calculate a non trivial greatest commondivisor. This allows him to recover the Goppa polynomial g(x). Hence, thecryptanalyst gets all the secret keys and can apply the fast decoding algorithm.It is interesting to note that if the cryptanalyst knows Gcr and g(x) then thisstill does not seem to permit an easy recovery of the ordering �, and hence doesnot permit to obtain the fast decoding algorithm.Another idea is �nding an overlying generalized Reed-Solomon code for thegiven Goppa code.Shamir and Heiman [6] tried to break the McEliece PKC based on this idea.They found a partial set of equations to obtain the private keys, but these havetoo many solutions other than the private keys. Thus, they did not succeed inthe full breaking, but a GRS code can be extracted from their equations.We present a new method of embedding the Goppa code into a GRS codebased on the Sidelnikov-Shestakov attack.Recall that the parity check matrix of the Goppa code is given by the matrixH = h�ij=g(�j)i ; i = 0; 1; : : : ; t� 1; j = 1; 2; : : : ; nover the large �eld GF (2m). It can be reduced to the systematic form Hsyst =[Et R], where Et is the t� t identity matrix and R = [uivj=(yi � yj)] is a gener-alized Cauchy matrix.The enemy party calculates from the public keyGcr any binary tm�n paritycheck matrix Hbin. To embed the Goppa code in a GRS code, he should �nda non-singular square mt �mt matrix A = [aij] and unknowns ui; vj; yi; yj suchthat AHbin = B(Hsyst) = [B(Et) B(R)]



Public-Key Cryptosystems Based on Linear Codes 50for a bijective mapping B : GF (2m) ! GF (2)m. Let H1bin is the submatrixof Hbin consisting of the �rst t columns and H2bin be the submatrix consisting ofthe rest of the columns.First, he solves a linear systemAH1bin = B(Et)of mt2 equations in the m2t2 unknowns aij.Then, for any solution A, he calculates AH2bin, B�1(AH1bin) and solves thesystem [uivj=(yi � yj)] = B�1(AH1bin):(this is the Sidelnikov-Shestakov attack).If he succeeds, then the problem is solved. If not, he tries another solutionA. It can be shown that in average the number of attempts is restricted.Embedding the Goppa code into a GRS code does not solve the problem ofbreaking. It only allows to try to get the Goppa polynomial fromHsyst. A regularmethod for doing it has not yet been found.Thus, there is still no progress in breaking the McEliece PKC.4.4. Modi�cation the McEliece PKC: Introducing a hiding matrix.The principle of a hiding matrix is proposed to modify the McEliece PKC. Themodi�ed public key is as follows:Gmodcr = SG+X;where X is a speci�c matrix of rank 1.The main idea is as follows. A legal party chooses some random matrix Xas an extra secret key and adds it to the original public key to produce a newmodi�ed public key. Thus any visible structure of the public key will be hidden.The problem in adding a hiding matrixX to the McEliece PKC is to keep theoverall error lower than t, the error-correcting capacity of the legal users decoder,for all possible messages. On the other hand, the hiding matrix should have asmany free parameters as possible. This dilemma can be solved at the expenseof having to lower the error-correcting capacity needed by the decoder from t tot� 1. So if the cryptanalyst can guess (or knows) the correct secret X, his job isonly slightly easier than for the original PKC.The hiding matrix X is a secret k � n matrix of the formX = 0BBBB@ a1a2...ak 1CCCCA� x1 x2 ::: xn � ; (172)



Public-Key Cryptosystems Based on Linear Codes 51where (a1; a2; : : : ; ak) is a randomly chosen binary k-vector. The binary n-vectorx = (x1; x2; : : : ; xn) should be a leader of some coset of the Goppa code of weightwH(x) = d� 1 = 2t.Let m = (m1; :::;mk) be an information vector to be encrypted. A messageis then encrypted as c =mGmodcr + e =mGcr +mX+ ewhere wH(e) � t � 1 and not t, and x + e should not be a codeword. Theweight wH(mX) can either be equal to 0, and then the overall error is t � 1, orwH(mX) = d� 1 = 2t, and then, with d = 2t+ 1, we see thatwH(mX+ e) � d� 1 � (t� 1) = t+ 1;so even if the enemy party knows a decoder correcting t errors for the chosenGoppa code, he cannot eliminate all the errors.The legal user knows thatmX is either 0 or x =(x1; :::; xn). So he �rst assumesthat mX = 0, and if the weight of the computed error is greater than t for somepossible code vector, he adds x =(x1; :::; xn) to the ciphertext and decodes onceagain.The advantages of this scheme lie in the greater di�culty for the cryptanalystto �nd the generator matrixGcr for the chosen Goppa code in virtue of the hidingmatrix X, for which a large choice exists. A regular method for determiningand eliminating the correct X has not yet been found. Moreover, even if thecryptanalyst possesses an equivalent t-error-correcting decoder for Gcr, it willfail to correct all the t+ 1 errors.The disadvantages of the proposed system are, �rst, that the enemy cryptan-alyst need only �nd a t� 1 error-correcting decoder if he disposes of the hidingmatrix X (in McElieces proposal [4], t = 49 instead of 50), and, second, that thelegal user sometimes has to decode twice.5. The Public-Key Cryptosystem based on Rank codesThis cryptosystem is proposed in [12] and is known as GPT PKC.5.1. Description. Private keysThe legitimate user A chooses as private keys:1. The generator k � n matrix G of an MRD code (see Section 2.4) of rankdistance d = 2t+ 1: G = 266666664 g1 g2 � � � gngq1 gq2 � � � gqngq21 gq22 � � � gq2n� � � � � � � � � � � �gqk�11 gqk�12 � � � gqk�1n 377777775 : (173)



Public-Key Cryptosystems Based on Linear Codes 52Remark 3. Let U be an k � k diagonal matrixU = diag[u; uq; uq2; : : : ; uqk�1]; (174)where u 2 GF (qN); u 6= 0. Then the generator matrixfG= UG =266666664 eg1 eg2 � � � egnegq1 egq2 � � � egqnegq21 egq22 � � � egq2n� � � � � � � � � � � �egqk�11 egqk�12 � � � egqk�1n 377777775 ; (175)with egj = ugj; j = 1; 2; : : : ; n; de�nes the same MRD code C and has the samestructure. There are no other generator matrices of C of the same structure. Inparticular, for some j, one can choose u = g�1j ; egj = 1 . In this case, the elementsof the jth column are equal to 1.2. A Fast Decoding Algorithm (see Section 2.4).3. A non-singular scrambling matrix S of order k. This matrix is used toscramble the generator matrix, i.e. to destroy any evident structure of thegenerator matrix.4. A randomly chosen k�n matrixX such that for any k-vectorm the vectormX has rank norm not greater than t1 < t, where t1 is a design parameter.Such a matrix can be chosen as follows. Let A be a k � l matrix of rank lover the extended �eld GF (qN); 1 � l � t1. Let B be an l� n matrix of rank t1over the base �eld GF (q). Then X = AB: (176)Indeed, for any k-vector m, we haver(mXjq) = r(mABjq) � minfr(mjq); r(Ajq); r(Bjq)g � t1because r(Bjq) = t1.The matrix B can be constructed as follows. First, choose a matrix B0 =[Q O], where Q is an l � t1 matrix with entries in the extended GF (qN) and ofrank t1 over the base �eld GF (q), and O is a l � (n � t1) matrix of 0's. Thenmultiply B0 to the right by an n � n non-singular matrix P with entries in thebase �eld GF (q). It is clear, that r(Bjq) = t1.Public key



Public-Key Cryptosystems Based on Linear Codes 53The legitimate user A calculates the matrixCcr = SG +X: (177)The legitimate user A publishes the matrixCcr as a public key in the directory,in the hope that it is very di�cult to get the secret matricesS,G andX separatelyfrom eq.177. EncryptionIn this Cryptosystem, all the possible plaintexts (messages) are k-vectorsm = (m1;m2; : : : ;mk)with components in GF (qN).If B wants to send a secret message to A, he chooses a plaintext m =(m1;m2; : : : ;mk) and calculates the ciphertext c asc =mGcr + e =mSG+ (mX+ e) ; (178)where e is an arti�cial vector of errors of the rank t2 = t� t1 or less, randomlychosen and added by the sending party. Note that, for any plaintextm, we haver(mX+ ejq) � r(mXjq) + r(ejq) � t1 + t2 = t:Hence, in this cryptosystem, the set of ciphertexts is the set of all the possiblecodewords of the chosen (n; k; d) MRD code corrupted by errors e of rank notgreater than t = jd�12 k. DecryptionUpon receiving the ciphertext c;the legitimate receiver applies a fast decodingalgorithm (see Section 2.4) to obtain mS and then multiplies it by S�1 to obtainthe plaintext m.5.2. Attacks on the GPT PKC. Two kinds of attacks on any PKC canbe considered. The �rst kind of attacks is based on getting a plaintext from anintercepted ciphertext. The second kind of attack is based on getting private keysfrom known public keys.



Public-Key Cryptosystems Based on Linear Codes 54Getting a plaintext from a ciphertext. The enemy party, after intercep-tion of the ciphertext c, can try something like decoding by means of informationsets.The chosen MRD code has dimension k = n � d + 1. Hence, if Hammingweight of an error e is greater than or equal to d, then there is no error freeinformation set at all!But most errors e of rank t have Hamming weight greater than 2t and, there-fore, this attack is absolutely ine�cient. Indeed, it can be shown (see, for instance,[11]) that the number As(n) of n-vectors having rank s is given byAs(n) = (qN � 1)(qN � q) : : : (qN � qs�1)(qn � 1)(qn � q) : : : (qn � qs�1)(qs � 1)(qs � q) : : : (qs � qs�1) (179)and the number As(n; i) of n-vectors having simultaneously rank s and Hammingweight i � s is given byAs(n; i) =  ni! i�sXk=0 (�1)k  ik!As(i� k): (180)Using eqs 179-180, one can show that the fraction of vectors of rank s and havingthe Hamming weight greater than 2s is closed to 1 for large n.For example, let q = 2, n = N . Consider vectors of rank t = 1. We have,A1(n) = (2N�1)2. The numberA1(n; i � 3) of vectors of rank 1 having Hammingweight greater than or equal to 2t+1 = 3 is equal toA1(n)�(2N�1)( N1 !+ N2 !).Hence, the fraction  of non-correctable errors of rank 1 is = A1(n; i � 3)A1(n) = 1 � N(N + 1)2(2N � 1) :If N = 10, then  ' 0:95.The only possibility to get a plaintext from the intercepted ciphertext is anexhaustive search for all possible errors of rank t1 in a chosen information set oflenght k. It requires about W ' At1 (k) > q(N+k�t1)t1arithmetical operations in the extended �eld GF (qN).An illustrative exampleLet q = 2; N = n = 20. Let us choose an (n; k; d) MRD code with parametersn = 20; k = 12; d = 9. This code allows to correct errors of rank less than orequal to t = 4. We can choose the design parameter t1 = 2 or 3. The performanceof the designed cryptosystem is as follows:



Public-Key Cryptosystems Based on Linear Codes 55� Rate R = kn = 0:6.� Size of the Public key n2k = 4800 bits.� Work function W ' 261, if t1 = 2, and W ' 288, if t1 = 3.This example shows that we can get the same parameters as in the McEliececryptosystem using much a smaller size of the public key.Getting the private key from the public key:The Gibson Attack on the GPT PKC. In [12], a GPT PKC was proposedwith a special type of hiding matrix X. Namely, we considered the PKC withthe public key Gcr = SG +X, where G is given by eq. 173. As for the hidingmatrix X, it was proposed to be of the formX = atb;where a = (a1; a2; : : : ; ak) is a k-vector with nonzero components in GF (qN) andb = (b1; b2; : : : ; bn) is an n-vector of rank t1 over GF (q).Remark 4. Note that, for any c 2 GF (qN); c 6= 0;atb =(cat)(c�1b):Hence, if the expression d = a1b1+ a2b2+ : : :+ anbn is nonzero, then without lossof generality one can put d = 1.J.K. Gibson [13] investigated this type of the PKC carefully and found thatit can be broken from the practical point of view. We present the Gibson attackin the new form based on the ideas of the Sidelnikov-Shestakov attack on theNiederreiter cryptosystem.Rewrite Gcr = SG+X as Gcr = S(G+Y); (181)where Y = S�1X = S�1atb.Denote ct = (c0; c1; : : : ; ck�1)t = S�1at: (182)Put b = (b1;b2), where b1 = (b1; b2; : : : ; bk) and b2 = (bk+1; bk+2; : : : ; bn).Denote G = [G1;G2];where G1 is a square submatrix of G of order k,G1=266666664 g1 g2 � � � gkgq1 gq2 � � � gqkgq21 gq22 � � � gq2k� � � � � � � � � � � �gqk�11 gqk�12 � � � gqk�1k 377777775 ; (183)



Public-Key Cryptosystems Based on Linear Codes 56and G2 is the rest of G,G2=266666664 gk+1 gk+2 � � � gngqk+1 gqk+2 � � � gqngq2k+1 gq2k+2 � � � gq2n� � � � � � � � � � � �gqk�1k+1 gqk�1k+2 � � � gqk�1n 377777775 (184)In a similar manner, we denote X = [X1;X2];Y = [Y1;Y2];where X1;Y1 are square matrices of order k, andY1 = S�1X1= ctb1;Y2 = S�1X2= ctb2: (185)Reduce the public key Gcr to the systematic formGsyst = (SG1 +X1)�1Gcr = [Ek R];where Ek is the identity matrix of order k, andR = [Ri;j];i = 0; 1; : : : ; k � 1; j = k + 1; k + 2; : : : ; n:Calculate (G2 +Y2) = (G1 +Y1)R, or,G1R = G2 +Y2 �Y1R: (186)In eq. 186, the matrix R is known but other matrices G1;G2;Y1;Y2 are un-known. If one somehow gets a solution of eq. 186, where G1;G2 are of the form(183)-(184) and where Y1;Y2 are of the form (185), one can also obtain thematrix S from Eq (181) as well as the matrixX = SY. This means that one getsall the private keys.We rewrite eq. 186 in the di�erent form.By de�nition, putf t = (f0; f1; : : : ; fk�1)t = (c0; cqN�11 ; : : : ; cqN�k+1k�1 )t: (187)Put d = (dk+1; dk+2; : : : ; dn) = b2 � b1R: (188)



Public-Key Cryptosystems Based on Linear Codes 57From the matrix equation (186), we obtain(G1R)i;j = (G2 +Y2 �Y1R)i;j ;i = 0; 1; : : : ; k � 1; j = k + 1; k + 2; : : : ; n;or, using the notations (183), (184), (182), (185), (188),gqi1 R0;j + gqi2 R1;j + : : :+ gqik Rk�1;j = gqij + ci (b2 � b1R)j = gqij + cidj ;i = 0; 1; : : : ; k � 1; j = k + 1; k + 2; : : : ; n: (189)For any i; 0 � i � k � 1; raise eq. 189 to the power qN�i. Since gqN = g,if g 2 GF (qN) and cqN�ii = fi by (187), we obtain the following system of thek(n� k) algebraic equationsg1RqN�i0;j + g2RqN�i1;j + : : :+ gkRqN�ik�1;j = gj + fidqN�ij ;i = 0; 1; : : : ; k � 1; j = k + 1; k + 2; : : : ; n; (190)where g =(g1; g2; : : : ; gn) ; f =(f0;f1; : : : ; fk�1) ; d =(dk+1; dk+2; : : : ; dn) are the2n unknowns. Using the matrix notations, we can also rewrite this system asg1Rk+1 = gk+1a+ f Dk+1;g1Rk+2 = gk+2a+ f Dk+2;g1Rk+3 = gk+3a+ f Dk+3;...g1Rn = gna+ f Dn; (191)where Rj = 2666664 RqN0;j RqN�10;j : : : RqN�k+10;jRqN1;j RqN�11;j : : : RqN�k+11;j... ... ... ...RqNk�1;j RqN�1k�1;j : : : RqN�k+1k�1;j 3777775 ;j = k + 1; k + 2; : : : ; nare the known matrices, g1=(g1; g2; : : : ; gk), a =(1; 1; : : : ; 1) is a k-vector of 1's,and Dj = diag[dqNj ; dqN�1j ; : : : ; dqN�k+1j ]; j = k + 1; k + 2; : : : ; n; are diagonal ma-trices.Solving the system (191) leads to breaking the PKC as mentioned above.The solution proceeds in two stages. In the �rst stage, we obtain g1=(g1; g2; : : : ; gk)and gk+1;gk+2; dk+1;dk+2;dk+3. In the second stage, we get the rest of the un-knowns.



Public-Key Cryptosystems Based on Linear Codes 58Stage 1Consider the three �rst matrix equations of (191):g1Rk+1 = gk+1a+ f Dk+1; (192)g1Rk+2 = gk+2a+ f Dk+2; (193)g1Rk+3 = gk+3a+ f Dk+3: (194)Assume without loss of generality that gk+3 = 1 (see Remark 3) and dk+3 =1; Dk+3 = E (see Remark 4). It may happen that dk+3 = 0 in (188). Then wecan �nd another non-zero dj and put dj = 1.We can also guess a value of dk+2; respectively, Dk+2. If dk+2 is guessedcorrectly then the other unknowns can be obtained rather easily as follows.Using (194) to eliminate f from (193) yieldsg1 = gk+2z+w;f = gk+2r+ s (195)where z = a (Rk+2 �Rk+3Dk+2) ;r = zRk+3;w = �aDk+2;s = wRk+3�aare the known vectors (provided that the matrix Rk+2 � Rk+3Dk+2 is non-singular.)Using (195) to eliminate f and g1 from (192) yieldsgk+2 (z� rDk+1) = gk+1a+ sDk+1 + t; (196)where t = �wRk+1 is the known vector. Hence, we obtain a system of k equa-tions in the three unkowns gk+1; gk+2; dk+1. Since this system is a linear one withrespect to the unknowns gk+1; gk+2, it has a solution if the k-vectorsa;z� rDk+1;sDk+1 + tare linearly dependent. This means that all the successive 3-determinants mustbe equal to zero. For instance, the �rst of such a determinant has the form�������� 1 1 1z1 � r1dqNk+1 z2 � r2dqN�1k+1 z3 � r3dqN�2k+1t1 + s1dqNk+1 t2 + s2dqN�1k+1 t3 + s3dqN�2k+1 �������� = 0: (197)



Public-Key Cryptosystems Based on Linear Codes 59If we denote y := dqN�2k+1 , we obtain from eq. 197 the �rst algebraic equation ofdegree q2 + q in the unknown y. Similarly, the second determinant is�������� 1 1 1z2 � r2dqN�1k+1 z3 � r3dqN�2k+1 z4 � r4dqN�3k+1t2 + s2dqN�1k+1 t3 + s3dqN�2k+1 t4 + s4dqN�3k+1 �������� = 0: (198)If we raise this equation to the power q, we can obtain a second equation ofdegree q2 + q in the unknown y, and so on. Hence, we get the system of k � 2equations of degree q2 + q in the only unknown y. One can use the Euclideandivision algorithm or another method, to solve this system. If y = dqN�2k+1 is asolution, we get the unknowns gk+1; gk+2 from eq. 196.Gibson's procedure includes the guessing of a value of dk+2, the solving oflinear equations and the solving of polynomial equations of degree q2+ q. In thebinary case, q = 2, the complexity of his algorithm is at worst O(n62n).Stage 2Now, consider the fourth equation of the system (191):g1Rk+4 = gk+4a+ f Dk+4: (199)Since g1 and f are already known from Stage 1, we can get from eq. 199 theunknowns gk+4 and dk+4 using the same method as for getting dk+1 at Stage 1.In a similar manner, we obtain the remaining unknowns gj ; dj; j = k + 5; : : : ; n.In general, the number of calculations to solve the system (191) increasesexponentially with length n. But for the practical range 20 � n � 30, the Gibsonattack breaks the GPT PKC with a hiding matrix X of rank 1 over GF (q).5.3. How to Avoid the Gibson Attack. The only modi�cation needed ismore a careful choice of the hiding matrix X. Generally, a matrix X must be ofrank t1 over the base �eld GF (q) but it may be of rank 1 to t1 over the extended�eld GF (qN). Recall that t1 is a design parameter of the PKC.Now, we have to choose this matrix having rank t1 also over the extended�eld GF (qN). Namely let X = AB, where A is a k � t1 matrix of full rank t1over GF (qN), and B is a t1 � n matrix of full rank both over the extended �eldGF (qN) and over the base �eld GF (q).It is clear that the matrix X also is a matrix of full rank t1 both over theextended �eld GF (qN) and over the base �eld GF (q).The matrixB can be constructed as follows. First, choose a matrixB0= [Q O],where Q is a nonsingular square matrix of order t1 with entries in GF (qN), andO is a t1 � (n � t1) matrix of 0's. Then multiply B0 to the right by an n � nnonsingular matrix P with entries in the base �eld GF (p).Gibson's approach can be also applied to this case.



Public-Key Cryptosystems Based on Linear Codes 60By de�nition, put C = [Cij] = S�1A; F = [fij] = [CqN�ii;j ]. Put B = [B1 B2],where B1 consists of the �rst k columns of B. Putd = [di;j] = B2 �B1R;i = 1; 2; : : : ; t1; j = k + 1; k + 2; : : : ; n:Then from eq. 186 one can obtain, after some manipulations, the followingsystem of equationsg1RqN�i0;j + g2RqN�i1;j + : : :+ gkRqN�ik�1;j = gj +Pt1s=1 fisdqN�is;j ;i = 0; 1; : : : ; k � 1; j = k + 1; k + 2; : : : ; n; (200)where gi, fis, dsj are the unknowns. In the matrix notations, we haveg1Rk+1 = gk+1a+ t1Xs=1FsDs;k+1;g1Rk+2 = gk+2a+ t1Xs=1FsDs;k+2;g1Rk+3 = gk+3a+ t1Xs=1FsDs;k+3;...g1Rn = gna + t1Xs=1F sDs;n; (201)where Ds;j = diag[dqNs;j ; dqN�1s;j ; : : : ; dqN�k+1s;j ]; j = k + 1; k + 2; : : : ; n, and Fs =(f0;s; f1;s; : : : ; fk�1;s).Again, one can assume without loss of generality that gk+3 = 1 and thatDs;k+3 = diag[1; 1; : : : ; 1]; s = 1; 2; : : : ; t1. But to solve eq. 201, one has to guessthe values of t1 the unknowns Ds;k+2; s = 1; 2; : : : ; t1. In this case, Gibson'sprocedure includes the solving of linear equations and the solving of systems ofpolynomial equations each in t1 variables of degree qt1+1 + qt1 + : : :+ q. In thebinary case, q = 2, the complexity of his algorithm is at least O(n62t1n). Thisseems to be infeasible even for t1 = 2 and for the practical range 20 � n � 30.



Public-Key Cryptosystems Based on Linear Codes 616. Comparison of the Three Public-Key CryptosystemsFor purpose of comparison. we choose the McEliece example and examples of theNiederreiter PKC and the GPT PKC with comparable performance.PKC Parameters Size of Public Workfunctionkeys (bits)McEliece binary, n = 1024; Large: 5 � 105 > 259k = 524; t = 50Niederreiter q-ary, q = n = 128 Reasonable: Poor: O(n3)d = 64; r = 63 32; 000Niederreiter The same The same > 275modi�edGPT q = 220; n = 20; Good: Poor: O(n62n)d = 9; k = 12; t1 = 1 4800 > 246GPT q = 220; n = 20; The same Good: O(n622n)modi�ed 1 d = 9; k = 12; t1 = 2 > 266GPT q = 220; n = 20; The same Good: O(n623n)modi�ed 2 d = 11; k = 10; t1 = 3 > 286The McEliece PKC seems to be secure even without any modi�cation. Thereason is that Goppa codes are sub�eld subcodes over GF (2) and there existtoo many GRS codes containig them as subcodes. Thus, there is no evident wayto �nd a Goppa polynomial or a suitable GRS code from a scrambled generatormatrix. A modi�cation of the McEliece cryptosystem is useful if the breakingparty has extra information on the ordering � = (�1; �2; : : : ; �n). A disadvantageof this PKC is the large size of the Public ley.The Niederreiter and GPT PKC's are de�ned over large alphabets. The weak-ness of such a kind of PKC is due the very regular structure of the generator orparity check matrices, even if scrambled . A hiding of the public keys by meansof adding carefully chosen matrices prevents known attacks and provides securityof this PKC.The GPT PKC based on rank codes seems to be the best one due to therelatively small size of the public key. However, it is large compared to theones used in the Rivest-Shamir-Adleman PKC [3]. Nevertheless, the GPT PKCcan be used in practical applications because of the very easy procedure of keygeneration.



Public-Key Cryptosystems Based on Linear Codes 627. ConclusionThe security of the public-key cryptosystems based on linear codes depends ona few open problems. Only if these have been solved, a �nal conclusion will bepossible. These problems are listed below.Main problemLet C be a general linear (n; k; d)-code of lenght n, dimension k and Hammingdistance d.Problem: For the given n-vector y, �nd a code vector g 2 C such thatdH (y;g) � t = $d� 12 % :If this problem belongs to the class P , then the McEliece- and the NiederreiterPKC would be insecure.It is known, that the problem "Find a code vector g such that dH(y;g) =min" is hard for the Hamming metric [5].Breaking the McEliece PKCLet G be a binary generator matrix of a Goppa code of length n = 2m and letg(x) be the corresponding Goppa polynomial of degree t. This means that eachrow of the generator matrix satis�es the conditionnXs=1 gsx� �s � 0 mod g(x);for some ordering � = (�1; �2; : : : ; �n)of the elements of the �eld GF (2m).Problem: UsingG, �nd the ordering � = (�1; �2; : : : ; �n) and the polynomialg(x). Breaking the Niederreiter PKCLet the �eld GF (q) be given. Consider the system of algebraic equations inthe n unknowns �1; �2; : : : ; �k; �1; �2; : : : ; �n�k :det266666664 1Si1 ;j1��i1�j1 1Si1;j2��i1�j2 1Si1 ;j3��i1�j31Si2 ;j1��i2�j1 1Si2;j2��i2�j2 1Si2 ;j3��i2�j31Si3 ;j1��i3�j1 1Si3;j2��i3�j2 1Si3 ;j3��i3�j3 377777775 = 0;1 � i1 < i2 < i3 � k; 1 � j1 < j2 < j3 � n� k (202)Problem: For the given Si;j, 1 � i � k; 1 � j � n � k; �nd a solution ofthis system.
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