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1. INTRODUCTION
In [1], a revolutionary concept was proposed to make public the encipherment key
as well as the enciphering algorithm. To describe a cryptosystem with Private
Keys, one should introduce three main sets:

The set M = {m} of plaintext messages to transmit;
The set C = {c} of ciphertexts;

The set K = {k} of encipherment keys.

An encryption function is a one-one map
c =E (m,k)

which turns a plaintext m into a ciphertext ¢ after the key setting k has been
applied.

Let m, ¢ and k be sequences over a finite alphabet of length not greater than
n. Define the complexity of encryption W (E) as the number of calculations to
get ¢ from m, if k is given.

The complexity of encryption W (E | k) should be a polynomial in n of small
degree.

A decryption function is the inverse map

m = D (c, k)

wich turns the ciphertext ¢ into the plaintext m.
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The complexity of decryption W (D | k) should be a polynomial of small de-
gree in n, if the key k is known.

On the other hand, if the key k is unknown then both the encryption and
the decryption should be much harder problems. Usually, it is desirable that the
number of calculations W (D) would be not polynomial in n, i.e. it is asymptot-
ically greater than any power of n. Another possibility would be the case when
the problem of the decryption with unknown k is a so-called NP-complete prob-
lem. These are problems for which a proposed solution which somehow has been
derived - possibly in a non-constructive manner - can be checked with polynomial
efforts.

Hence, if two persons A and B want to communicate in a secret manner, they
choose a key k and keep it in secret. They can easily encrypt the plaintexts and
decrypt the ciphertexts.

Suppose that an enemy party £ does not know the secret key k but can inter-
cept ciphertexts ¢. The person F may want to either obtain the corresponding
plaintexts m’s or get the secret key k from c.

The cryptosystem seems to be rather good it the number of calculations, or,
the work function W (D), is not polynomial or is infeasible from the practical
point of view.

Cryptosystems with private (secret) keys are said to use symmetric ciphers
because either both the encipherment key and the decipherment key are the same
or the decipherment key can easily be calculated provided that the encipherment
key is known.

Public Key systems are based on the concept of the so-called one way func-
tions.

Suppose from now on, that a key k defines an asymmetric cipher. This
means that the complexity of the encryption W (E | k) remains polynomial but
the complexity of decryption W (D | k) is not polynomial even if the key k is
known. That is the new idea introduced by Diffie and Hellman.

We refer to an encryption function with this property as a one way function.

It may be that there exists an extra key t such that W (D | k) is not polyno-
mial but W (D | k, t) is polynomial. In this case, the key t is known as a trapdoor
and the encryption function is referred to as a trapdoor one way function. We
assume that the key k can be calculated with polynomial efforts if the trapdoor
t is given. But calculating the trapdoor t using the known key k should be hard.

Note that, up to now, no function has been proved to be one way or trapdoor
one way. But there are some candidats, for example, the discret logarithm or the
problem of factorizing integers.

One can use the features of trapdoor one way functions to construct a cryp-
tosystem as follows.

General case

e The legitimate user chooses a secret key (trapdoor) t (an easy problem).
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e Calculates the public key k (an easy problem).
e Publishes k.

e The sending party is requested to use the public key k for Encrypting (an
easy problem).

o The legitimate user gets the plaintext using the public key k and the secret
key t (an easy problem).

o The Enemy party has to decrypt the intercepted ciphertext using only the
public key k (a hard problem).

Many public key cryptosystems were proposed during the last two decades.
First of all, the system due to Merkle and Hellman [2] should be mentioned.
It is based on a famous NP-problem which is known as the knapsack problem.
Another famous public key cryptosystem, the RSA System, was invented by
Rivest, Shamir and Adleman [3]. Its security lies in the difficulty of the problem
of factoring large integers.

We focus our attention on public key cryptosystems based on linear codes.

Prof. McEliece was the first who proposed to use linear codes for Public-Key
Cryptosystems (PKC) [4]. Later on, it was shown in [5] that the the problem of
decoding a general linear code is NP-complete.

It a family of linear codes is to be used in PKC, is should possess the following
features:

o [t is be rich enough to avoid an exhaustive search when an enemy party
wants to break the cryptosystem;

e Encoding (encryption) and decoding (decryption) is easy when a full de-
scription of a code is known;

e A full description of a code is very hard to obtain from open keys (usually,
a scrambled generator matrix or a scrambled parity check matrix).

In the linear code case, the PKC is implemented as follows.

o The legitimate user chooses a code with large distance having a fast decod-
ing algorithm and chooses a scramble matrix (an easy problem).

e Calculates a scrambled parity or generator matrix (an easy problem)
e Publishes the above matrix as the public key.

e The sending party is requested to use the above matrix for encrypting (an
easy problem).
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e The legitimate user gets the plaintext using the fast decoding algorithm (an
easy problem).

o The Enemy party has to decode an intercepted ciphertext as a general code
(a hard problem).

In [4], the family of codes consisted of binary Goppa codes and a scrambled
generator matrix Gep = SG 2was used as a public key. A few more or less
unsuccessful attacks on this PKC were proposed [6, 7).

The PKC based on a family of Generalized Reed-Solomon codes was proposed
by Niederreiter [8]. The open key is a scrambled parity check matrix Hep = SH
of a GRS code. This is a Knapsack-Type cryptosystem. Therefore, one might
hope that this PKC is secure. But in fact, many knapsack-type PKC including
the Niederreiter PKC and some of its modifications have recently be shown to be
insecure. See [9, 10].

The PKC based on a family of rank codes [11] was proposed in [12]. It
looks like a McEliece type PKC. An important difference is that an open key
Ger = SG 4 X is a sum of a scrambled generator matrix SG and a hiding matrix
X. In [12], a hiding matrix X of rank 1 was used. Recently, Gibson showed
that for such hiding matrices a PKC can be broken for practical values of the
parameters [13].

In this report, the use of hiding matrices is proposed to modify all the above
PKC. The modified open keys are as follows:

o for the McElicce PKC: God = SG + X, where X is a specific matrix of

rank 1;

o for the Niederreiter PKC: Hzod = S(H + X), where X is a specific matrix
of rank 1;

o for the GPT PKC: G204 = §G + X, where X is a specific matrix of rank

t; > 1, with #; a design parameter.

The main idea is as follows. The legal party chooses some random matrix X
as an extra secret key and adds it to the original public key to produce a new
modified public key. Thus any visible structure of the public key will be hidden.
Although there are strong restrictions in the choice of the random matrix X, it
can be done in practical applications.

The report is organized as follows: in Section 2, the background of codes over
large alphabets is given; in Section 3, the Niederreiter PKC is presented, and a
modified version of the Sidel’'nikov-Shestakov attack, which slightly differs from
the original one, is described. A modification of the Niederreiter PKC is also
considered; in Section 4, the MecFEliece PKC is described, together with attacks
and modifications; in Section 5, the GPT PKC and Gibson’s attack are presented;
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in Section 6, a comparison of all three PKCs is made from the point of view of the
size of the public keys and the work functions; in Section 7, concluding remarks
are made.

2. BACKGROUND OF ALGEBRAIC CODING
All the public key cryptosystems under consideration are based on codes over
large alphabets. In fact, these codes are generalized Reed-Solomon codes and
rank codes. In this section, background information on these codes is given (for
more detailed information, see [17] and [11]).
Let GF(q) be a finite field with ¢ elements. The nth Cartesian power GF(q)"
of GF(q)is a metric space with respect to the Hamming distance function

d(X7Y) :|{Z| 1 <i<n, xi%yiHv (1)

where x = (z) € GF(¢)" and y =(y1,v2,-.-,yn) € GF(¢)"
The Hamming weight wy(x) of an element x € GF(q)

" is the number of

nonzero positions in x, or, equivalently, the integer
wr () = d(z), (2)

where o is the zero-vector in GF'(q)".

A linear code C of length n and dimension k over GF(q) is a k-dimensional
linear subspace of GF9¢)".

The (minimum) distance of a linear code C is defined by

d:=min{d(z) |x€C, yeC, x#y}, (3)

or, equivalently,

d:=min{wy(z) | x €C, x# o}. (4)

If a code C has distance d, then we can correct all the errors e with wy (e) <
t = [(d—1)/2]. This means the following. Let us consider a vector y = g;+e,
where g; is a code vector. Then y is strictly closer to g; than to any other code
vector gy if wy (e) <t = |(d—1)/2|. Hence, we can uniquely recover g; from
y.

A linear code C of dimension k and distance d is referred to as an (n, k, d)-code.

A linear code C can be given in terms of a generator matriz G or in terms of
a parity check matriz H.

Let {gi = (¢i1,9i2y-- -1 Gin), 1 =1,2,...,k, g € GF(q)"} be a set of vectors
which are linearly independent over GF'(¢). Define the k x n G of rank k by

G=lg,, 1=12,...0k j=12,...,n. (5)

The code vectors, or codewords of the linear code C with generator matriz G are
defined to be the linear combinations of rows of G with coefficients in GF(¢). In
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other words, let m = (mq,ma,...,my) be a k-string of elements of GF(¢). Such
an m is often called an information sequence. Then the corresponding codeword
is given by

g (m) = mG. (6)

On the other hand, to any matrix G of rank k, there exists a (n — k) x n
matrix H of rank r = n — k such that

GH' = 0}, (7)

where H? denotes transposed matrix and O}~ means the all-zero matrix of size
kx(n — k). The matrix H is known as a parity check matrizfor C. Each codeword

g =(¢1,92.-.,9,) can be obtained as a solution of a linear system of equations
in the variables ¢1,¢2...,¢, :
gH' = (¢1,02,...,9,)H = O 7" (8)

The linear code C has distance d if and only if any d —1 columns of the Parity
check matrix H are linearly independent over GF(¢) and there exists d columns
which are linearly dependent.

The Singleton bound: for any linear code C we have

d<r+1, 9)
where r denotes the rank of H over GF(q).

2.1. Generalized Reed-Solomon codes. Generalized Reed-Solomon codes
(GRS codes) are defined by a parity check matrix which is a generalized Vander-
monde rectangular r x n-matrix

21 Z9 e Rp
2121 299 e Bplp
— _ 2 2 2
H=VZ=| za27 25 ... z.2 ) (10)
r—1 r—1 -1
2121 Z9T4 cee 2Ty
where Z = diag (z1, z2, ..., z,) denotes a diagonal matrix with non-zero diagonal

elements and V denotes a Vandermonde rectangular r x n-matrix

1 1 1
€1 T2 Ty,
_ 2 2 2
V= af x5 z2 \ (11)
r—1 r—1 r—1
L1 Ly Ly,

where the z;’s are different.
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If the number of rows r is given, we can join, by convention, to GF(q) a formal
element x.,. We shall operate with this element by the following agreement. Let

F(z)=a,12" "+ a, 02"+ ...+ a1z + ag

be a polynomial of degree not greater than r—1. Then the value of this polynomial
at the point x, is defined to be the leading coefficient of this polynomial:

Frs) = ar-1.

Hence, (2.,)™ = 0,if m = 0,1,...,r — 2, but (z.,)"~" = 1. Thus, the Vander-
monde matrix can contain a column (0,0,...,0, 1)t. From this, it follows that
the maximal number of different columns of the Vandermonde matrix is equal to
GF(g) Uncl = g+ 1.

We have

Property 1. Any square r x r-submatrix of V is a non singular (Vandermonde)
square matrix. An analogous statement is true for the generalized matrix H.

Conjecture 1. If an r X n matrix with n = ¢ + 1 possess Property 1, then
this matrix is a generalized Vandermonde matrix (except for the cases ¢ = 2",
r=3orr=n-—3).

All the code vectors g are solutions of the system
gH' = (¢1,02...,9,)H = O} 7" (12)

Evidently, the rank of H is equal to r and, by Property 1, any r columns are
linearly independent. Thus, the Parity check matrix H defines an optimal linear
code reaching the Singleton bound (9). This code has the following parameters:

1. code length n < ¢ 4 1;
2. dimension k =n — r;
3. distanced=r+1=n—FLk+1.

Such codes are known as mazimal distance separable, or MDS codes.

The canonical row-reduced echelon form

Multiply the generalized Vandermonde rectangular r x n-matrix H to the
left by F = H7', where

21 Z9 e By
2121 299 v Bpdy
H, =V.Z = : ; ; 13
1=ViZy = | zaf 295 R ) (13)
21:1;71"_1 ngg_l ce ozttt
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To obtain the inverse matrix Hy', define the Lagrange interpolation polyno-
mials of degree r — 1 by

fl(x) - ngsgr,s;éi M - Z::l fisxS_l’

(i — ) (14)
¢ = 1727"'7T7
Note that
r 1,ify =1
i(xj) = st =08 =9 "]
i) = 2 ™ = 8 {0, if j # i, (15)
i, =1,2,---.r.
Define the square r x r-matrix F by
F:[&],i,jzlﬂ,...,r. (16)
z;
It follows from Eq. (15) that
F =H' (17)

because

(FHI)Z']‘ = ZT: (Jl) (ijj_l) =3 ZT: isx;_l = 0;j.

s=1 Zi < s=1

We obtain the canonical row-reduced echelon form
H,,, =FH = [E, R], (18)

where E, denotes the r x r identity matrix, and R is the following r x (n — r)-

matrix R = [p;] = [gfi(l'j)] —

K3

[ﬁ 5 f] | (19)

< s=1

v=1,2,...,r; g=r+1,r+2,...,n.
On the other hand,

| [Tz — ) |
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where »
ai:( H (xi_l’s)) ,e=1,2,...,r;
s=1,57#1
1)
bz [Tz — ), G =r+ 1,7 +2,...,n.
s=1
Hence,
2 ) (250, Gb
R = [M] _ [ a;0; _] sce=12,...,r j=r+1Lr+2,...,n, (22)
Li— T T — Ty

which means that the matrix R in Eq. 18 - Eq. 20 is a generalized Cauchy matriz.
It is well known that a generalized Cauchy matrix with different the x;’s and
x;’s has the

Property 2. Any square submatrix of the matrix R of any order is nonsingular.

The generalized Cauchy matrix R in (22) can be extended with one col-
umn (dy, dz, . .. ,6T)t keeping Property 2. Hence, for the extended Generalized
Cauchy matrix the maximal possible value of the sum r + & is equal to ¢ + 1.

Consider the matrix

w

Il
| — |
TN
N
2
N
.
SN——
L
—_
Il
| — |
8
2y
S )
)
—_

(23)
v Fx, e=12,...,m5=12,... k.

It is easy to see, that all elements of this matrix are non-zero, all determinants
of order 2 are non-zero but all determinants of order 3 or greater are equal to 0.

Conjecture 2. Let R =R, ;] be an r x k-matrix possessing Property 2. Let
r+k=gq+ 1. Let the matrix W = [((R)m)_l] have the property that all the

1 x 1 and 2 x 2-submatrices are non-singular but all the 3 x 3 submatrices are
singular. Then the matrix R is an extended Generalized Cauchy matrix.

2.2. Generalized Reed-Solomon codes: Fast Decoding Algorithms.
The main Coding Theory problems are as follows:

e The problem of finding optimal (n, k, d)-codes, i.e., codes with the maximal
possible distance d, if n and k are given, or with maximal possible dimension
k, if n and d are given;

e The problem of Error Correcting Decoding: given an (n, k, d)-code, to find
a simple method to correct all errors e with wy (e) < |(d — 1) /2];
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e The more complicated type of Decoding known as the Minimal Distance
Decoding: given an (n,k,d)-code, to find a simple method to identify for
any received vector y a code vector g that has minimal distance to y.

The Eq.’s (10) and (8) solve the first problem for the parameters listed above.
We present a few solutions to the problem of the Error Correcting Decoding,. i.e.,
correcting of errors. The problem of the Minimal Distance Decoding is unsolved

for GRS codes.

General remarks. Let y = g + e be a code vector g corrupted by an error
vector e. Calculate the product s = yH' known as the syndrome vector of y:

s=yH'=(g + ¢)H'= eH". (24)

Hence, the syndrome of y depends only on the error vector e, not on the code
vector g.

First, consider the case when z; = z, = ... = z, = 1. This is the case of the
ordinary Reed-Solomon codes.

Let e be an error vector of weight wy(e) < m <t = |[(d—1)/2] and
let {¢1,72,...,2,} be an index set that contains the error positions. Then the
syndrome s can be represented as

t
S = (80781,...787«_1) =eH' =
. 2 r—1
Ly @y, o (25)
1 . 2 r—1
( . . . ) Liy i T
62176227"'762m 9
. 2 r—1
L x, @ . T
where the ¢; s are the values of the errors. The positions 1,1, ...,1, are un-

known but there exists a one-one correspondence between ¢ and z;. So, if we
know the value of x;, then we know ¢. For this reason, the x;’s are known as the
error locators. Denote, for any iy, e, := us, x;, := Y;. By Eq. (25), we get the

following system of r non-linear equations in the 2m variables uq, us, ..., u,, and
Yi,Yo, ... Y,
1y, Y2 ..oyt
1Y, Y2 ...yt
(ul,u2,...,um) ? 2 2 = (507817"'757“—1)7 (26)
1 Y, Y2 ...yt

where the right hand side is known. Note that the integer wpy (e) also is unknown.

The Problem of Error Correcting Decoding is finding a simple method of
solving this system (if a solution exists). We describe two simple methods in the
subsections below.
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The general case of decoding a GRS code can be reduced to the above case.
In general, we have instead of Eq. (25) the following equation

_ It
5= (80,81,...,8-1) =eH' =
. o . 2 o er—l
Zi o ZaTy En T ...z 1 (27)
. D . 2 P
(eis, ) Ziy,  ZipTi,  ZipTh . Zip Ty
€irs Cinyn ey Cip)
. . . . 2 .1
Zim ZimTim  Zim T D it

Denote, for any i, €;,2;, 1= Us, ¥;, := Ys. Again, by Eq. (27), we obtain

IS TR G BN o

-~ . 1Y, Y2 ... v/t

(U, Uy ey ) 2 2 2 = (80, 81y vy Sro1) - (28)
1Y, Y2 ...yt

When the u’s and Y;’s are found, then the values of the errors are calculated by
€, = ﬂS/ZiS.

The Peterson Algorithm. The first method of solving (26) was found by
Peterson. It is known as the matriz method. The Peterson algorithm is well-
defined if the number of errors does not exceed t = |(d — 1) /2| = |r/2].

First, we describe how to find the actual number of errors wy (e).

Consider the successive m-strings of the s’s. It follows from (26), that

(1,1,,1)UY: (80781,...,Sm_1)
(YL Y.YD UY = (51,52, .., 8m)

(Y7, Y7 .o Y2) UY = (55,8501, 80met) (29)
(V=" Y5 LYY UY = (Sems Srmmgts -2 501
where U denotes the diagonal matrix U = diag (uq, us, ..., u,) and
1 v, Y2 ..oyt
2 m—1
y-| b Yo h (30)
1Y, v2 oLy

denotes the transposed square Vandermonde matrix.
Putting u := (u1,us, ..., uy), we have the equivalent representation
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BRI S i
2 m—1
u 1 1/2 1/2 1/1 :uY:(So,Sl,---73m—1)7
L1 Y YRyt
R Y
2 3 m
u Y, Y5 ¥y oY =uDY = (s1,51,...,55),
IR R Yo
i Ylm_i ym ylmi .. lem—i
u 1/2 1/2 YVQ 1/1 =uD"'Y = (Sm—175m7“'782m_1)’
ymotoym ymdt oy et
- 1/1T_m }/{—mii }/IT_miz Ce 1/1T_1
u 1/2 1/2 1/2 1/1 :uDT_mY:(ST—WL?Sl?“'?ST_l)’
yr—m YT—TTL-I-l YT_m—I—z . YT_I

31)
where Y is defined above and D = diag (Y1, Y, ..., Y,,).

Suppose that the actual number of errors is strictly less than m. Then
the diagonal matrix U in (29) is singular because some diagonal elements are
equal to 0. This means that the m-strings (S0, 1, -, Sm—1), (81,525« Sm )y -« o
(Sm—1s8ms .-, S2m—1) are linearly dependent over GF(¢) and that the determi-
nant of the matrix

S0 51 Sm—1
S1 S9 Ce S
M,, = ™ (32)
Sm—-1 Sm ... S2m-—1

is equal to 0. Thus the beginning of the Peterson algorithm is as follows.

1 After receiving the vector y calculate the syndrome s. If s = o, there are
no errors.

2 If s # o, then calculate det M,,, for m =t = [(d — 1) /2]. If det M, # 0,

then the number of errors is equal to ¢.

3 If det M; = 0, then calculate det M,, for m = ¢ — 1, and so on. Continue
till the first time, when det M,, # 0. This value m will be the real number
of errors.
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Now suppose that m is the real value of the number of errors. Then both the
matrix D and the matrix Y in the representation (31) are non-singular. More-
over, the matrices Y, DY, ..., D™~1Y are linearly independent over G F'(¢). This

means that the m-strings (o, 81, .+« Sm—1), (S1,525++« 3, Sm)y -+ o» (Sm—1y Smy -+« - 5 S2m—1)

are also linearly independent and that
det M,,, # 0. (33)

On the other hand, the matrices Y, DY,..., D®~1Y D™Y are linearly de-
pendent over GF'(q) because the characteristic polynomial of the diagonal matrix
D is given by

eplz) =M1 —2)(Ya—2)...(Vu—2)=0p —Opmarx+ ...+ (—=1)" oo™, (34)

where the o; denotes the ¢th symmetrical function of the roots Y1,Y5,...,Y,,.
Let us multiply the first line of Eq. (31) by 0,,, the second line by —o,,_1,. . .,

the mth line by (—1)""" oy, the (m + 1)th line by (—=1)" oo = (—1)". Adding
all lines, we get

uyp (D) Y =0

= 0, (804815« +» S—1)

—Om—1 (81,82, .oy Sm) + ... (35)

+ (—1)m_1 01 (Sim—1sSmy -+« S2m—1) +

(=1)™ 00 (Sms Smtt1s---» S2m)
or, using the matrix M,, defined in (32), we obtain the following linear system
in the variables o,,,0,,_1,...,01

(Crmy Oty ooy 01) My = — (= 1) (Sp, Sty - -« 5 S2m) - (36)
4 Solving this system, we get the o;’s.

5 Solving Eq. (34)
Opm — O+ ...+ (=1)" g™ =0, (37)

we get the roots Y,’s and, consequently, the i,’s.

6 Solving the linear system in the first line of Eq. (31), where the matrix Y is
known now, we get the uy’s and the errors e;_.

This concludes the Peterson algorithm.
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The number of calculations. The first three parts of the Peterson algo-
rithm , namely, calculating determinants det M,,,. m = ¢,¢ — 1,..., require at
most O(t?) operations.

Solving the linear system Eq. (36) requires at most O(¢?) operations.

Solving the algebraic equation Eq. (37) of order m requires at most O(nt)
operations. We simply can examine each of the elements of G F'(¢) as a possible
solution of Eq. (37).

Solving the linear system in the first line of Eq. (31), where the matrix Y is
known, requires at most O (¢*) operations.

Thus, the Peterson algorithm requires O (¢* 4+ nt) operations. Usually, ¢t = cn,
where ¢ < 1 — 5 is the fraction of correctable errors. Hence, it requires at most
O (n®) operations to solve the system (26) using the Peterson algorithm. Recent
results on solving linear systems allow to reduce the number of calculations to
O (n**) operations.

Fast Decoding Based on the Euclidean Division Algorithm - the
Berlekamp-Massey Algorithm. There exists another algorithm of solving
the system (26) based on the Euclidean division algorithm. This algorithm is
due to Berlekamp, with a modification due to Massey. Therefore, this algorithm
is known as the Berlekamp-Massey algorithm. Currently, there are a few versions
of this algorithm which differ in the implementation of the Fuclidean division
algorithm.

We often shall consider rings of polynomials mod ¢(x). From now on, we
consider the case g(x) = 2" and the quotient ring G'F(¢)[x] /(2"). In this ring,
the polynomial

f(:z;)zl—l—:z;—l—:z;Q—l—...—l—:z;T_l (38)
has an inverse, namely, h(2) = 1 — & because
(1—:1;)(1—|—:1;—|—:1;2—|—...—|—:1;T_1):1—:1;T51 (mod z"). (39)
Thus, we can put
1
=1l4+a+a®+... +2" N (40)
l—2
Consider again the system (26). From now on, we assume that the integer
m <t = |(d—1)/2] is the actual number of errors. Introduce the syndrome
polynomial
S(x) =50+ 812+ s92° 4+ ...+ s, (41)

t

To get it, multiply both sides of Eq. (26) to the left by the vector (1, z, 22, ..., 2"~ 1)".
Then we obtain on the right hand side S(x) and, using Eq. (40), on the left hand
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side the expression

L+ (M) T+
o (Yar) )+

ur (14 (Yiz) + (Yiz)* +.
uz (14 (Yaz) + (Yaz)* + .

Uy, (1 + (Vo) + (me‘)z +...+ (me)f—l) =

m

Z s (mod ")

s=1 1 —l'}/s

Hence, instead of Eq. (26), we get the equivalent polynomial equation

i1—u;n S(z) (mod z7). (42)

s=1

Now introduce the error locator polynomial
Ae)= [T (1 = oY), (13)
s=1

The degree of this polynomial is m. Its roots are the inverses of error locators
Y,’s.

Multiply Eq. (42) by A(x). Define the error evaluator polynomial Q(x) as the
product

Q) = A0) Y e = 3w, [T (1 a%)). (1)
=1 s s=1 ]]jéls,

The degree of Q(x) is less than or equal to m — 1. For any s, s = 1,2,...,m, this
polynomial takes at the point z = Y;7! the value

o) =u IT (1- V7). (15)

J )

J

Y

S

Hence, if we know Q(x) and Y;’s, we can evaluate the values of the errors by

QY !
Us = — ) (46)
I1 (- vy
J=1,
JF#S

Combining Eqgs. (42)-(44), we get the famous Berlekamp Key Equation

Qx) = A(x)S(x) (mod 27), (47)
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where

ged (). A(x)) = 1.

16

(48)

The problem of decoding is reduced to solving the Key Fquation (47) with
the restrictions (48). This means that we have to find the unknown polynomials
A(z) and Q(x), if the polynomial S(x) is given. When the polynomial A(x) is
found, we get its roots Y,"''s and, consequently, the error locators X; s. After

that, we get the values of the errors e, = us from Eq. (46).

Solving the Key Equation is based on the Euclidean division algorithm. For

reference, we give the description of this algorithm.

The Euclidean division algorithm. The Euclidean division algorithm is

a procedure for finding the greatest common divisor of two polynomials. Consider

two polynomials f(x) and g(z) over GF(q). Suppose that

deg g(x) < deg f(z).

For convenience, denote F_q(x) := f(x), g(x) := Fo(z).
1st step Divide F_4(z) (= f(x)) by Fo(z) (= g(2)):

F_q(z) = Gi(x)Fo(x) + Fi(x), where deg Fy < deg I,
2nd step Divide Fy(z) (= g(x)) by Fi(x):

Fo(z) = Go(2)Fi(z) + Fo(x), where deg Fy < deg Fy.
3rd Divide Fy(z) by Fy(a):

Fi(z) = Gs(x)F5(x) + F3(x), where deg Fi53 < deg F5.

i’th step Divide F;_5(x) by Fi_1(x):

Fioo(x) = Gi(x)Fi—1(x) + Fi(x), where deg F; < deg F;_4.

next to the last step Divide F,_s(x) by F,_1(2):
Foo(x) = Gy(a)Fy—q(x) + Fy(x), where deg F, < deg F,_1.
last step Divide g(x) := F,_1(x) by F,(x):

Fya(@) = Goa (2) ().

(49)

(50)

(51)

(52)

(53)

(54)
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Then
ged (f(x), g(x)) = Fy(x). (55)

At each step of the procedure, the current remainder F;(x) can be represented
as a linear combination of the two previous remainders. Thus, it is possible to
represent all remainders, including the last one F,(x), as the linear combinations

of f(z) (= For(e)) and g(x) (= Fo(x):
Fi(z) = Ai(z) f(z) + Bi(x)g(z). (56)
The polynomials A;(x) and B;(x) can be obtained from Eqs. (49)-(54) but

there exists an inductive way of calculating them. Define two sequences of poly-

nomials {A;(z)} and {Bi(z)} by
Aife) = Gila) A () + Aala), (57)
where, by definition, A_;(z) = 1 and Ag(z) = 0, and
Bi(x) = Gi{e)Bioa () + Bioa(), (58)
where, by definition, B_;(z) = 0 and By(z) = 1. Then Eq. (56) is true.

It is easy to obtain many relations concerning the polynomials defined above.
The following properties are important for the decoding procedure:

1. For any ¢,
ged(Ai(x), Bi(x)) = 1. (59)
2. For any 1,
Frs(e) = Bisa(2) @) + Bi() Fipa (),
(60)
Fo(@) = Aupa () Fi() + Ai(e) Figa ()
3. For any 1, '
Fi(e) = (=1)7 (Ai(e)Fi(x) = Bi(e) Fo()). (61)

In particular,
ged(f(2), g(x)) = Fy(e) = (=1)" (Ap(a)Fa(e) = By(e) Fo()) . (62)

4. For any 1,

Ai(2)Bipa (@) = A () Bi(e) = (1) (63)

5. For any 1,
deg A;( Z deg Gi( (64)
deg B;( Z deg Gi(x) = deg f(x) — deg Fi_1(x), (65)

i+1
deg Fi(x) = deg f(x Z deg Gi(x (66)



Public-Key Cryptosystems Based on Linear Codes 18

Solving the key equation. It follows from Eq. (47), that a polynomial
C'(x) exists such that
Q) = Ca)x" + A(x)S(x).

Hence, if we put F_q(x) = x, Fo(x) = S(x), we can apply the Euclidean
division algorithm described in Eqs. (49)-(64), to get Q(x) and A(x):

1 Start with calculating the polynomials Fi(x), A;(z), Bi(x), 1= 1.
2 (The stop rule) Continue the calculations till ¢ = m such that
degFm 1(x) > V IJ but
deg F,.( V_TIJ .
3 Calculate

(68)

This is a solution of the Key Fquation (47) with the restrictions (48) (see Eqs.
(59), (61), (65)). (In fact, using (61), one can show that this solution is unique.)
We already explained how the knowledge of A(x) and Q(x) allows us to decode.

2.3. Subfield Subcodes: Alternant and Goppa Codes.
Alternant codes. Let C be an (n, k,d) GRS code over the field G'F(q) with

g = p™ elements. Consider the subcode C, consisting of all code words with all
coordinates in the base field GF(p). This subfield subcode is called an alternant
code.

In general, an alternant code C, can be defined by the same parity check matrix
(10) and the same linear system (8) with the restriction that all components g¢; of
a code vector g should belong to the base field GF(p). But it is more convenient
to rewrite the parity check matrix (10) over the large field G F'(p) as the equivalent
Parity check matrix over the base field GF(p). We consider a specific realization
of the field GF(p), say, by means of a basis {wi,ws,...,w,}. Hence, in this
realization each element w € G'F'(p) can be represented in the form

W= w1 + dawz + ...+ dpwn,

where all the coefficients ay, as, ..., a, are in the base field GF(p).
This induces a mapping

B: GF(p™) — GF(p)" (69)

which maps each element w of the large field into the column m-vector (aq, as, . . ., am)t:

B(w) = (ay,aq,...,a,)" . (70)
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So a parity check matrix of the alternant code C, over the base field G'F(p)
can be obtained as

H=5(H) =
B(z1) B (z3) oo B(zn)
B(z121) B (z922) oo B(zpx,) (71)
B (z27) B (z223) oo B(z,22)
B (21:1;71"_1) B (ngg_l) oo B(zpat™h

It is clear that the number of columns in the matrix (71) is n and the number
of rows is mr. If some columns of the original matrix H are linearly independent
over the large field GF(p™), then the corresponding columns of H still remain
linearly independent over the base field GF'(p). Thus, any d—1 columns of H are
linearly independent over G F(p), and the minimal distance of an alternant code
C, 1s at least d = r + 1. On the other hand, the matrix H may contain linearly
dependent rows. So the rank r, of H is not greater than rm and sometimes may
be strictly less.

Combining these features, we get the following parameters (n, k,, d,) of an
alternant code C,:

e code length n (the same as that of C);
e dimension k, =n —r, > n—rm;
o code distance d, > d=r+1=n—Fk + 1.

In general, alternant codes form the rich family of quite good codes over the
base field GF(p). Some of them reach the Varshamov-Gilbert bound.

Fast decoding of alternant codes may be carried out just as for GRS codes (see
the above Section). The only difference is that the code vector g, the received
vector y, and the vector of errors e have coordinates in the base field GF(p),
not in the field GF(p™). It does not change any step of decoding procedure
both in the Peterson algorithm and in the Berlekamp-Massey algorithm. Hence,
alternant codes possess fast decoding algorithms.

Notice that in order to be able to carry out of a decoding algorithm, we should
know not only the parity matrix H over G'F(p) but also the parity check matrix
H of the original GRS code over the large field GF(p™).

Goppa Codes. Goppa codes were proposed by Goppa about 30 years ago.
Since then, they are very popular because Goppa codes have a quite good mini-
mum distance (on the Varshamov-Gilbert bound) and possess fast decoding al-
gorithms. It has been shown that Goppa codes are a particular type of alternant
codes but the latter were proposed much later.
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Again, consider a large field GF(q) with ¢ = p™ elements and the ring of
polynomials GF'(q) [x]. Let G(x) € GF(q) [x]. Introduce the quotient ring

Re = GF(q) [«] /(G(2)) (72)

of polynomials over GF(q) mod G(x). This ring R is not a field unless the
polynomial G/(x) is irreducible.

However, if a € GF(q) and G («) # 0, then the polynomial @ — « is invertible
in R, (cf. Eqgs. (38)-(39).) This can be shown by dividing the polynomial G/(x)
by = — a:

G(z) = F(z)(x) 4+ G (o). (73)
It follows from Eq. (73) that
F(z)(z) 4+ G (a) =0 mod G(z), (74)
or, equivalently,
[—G(oz)_l F(l‘)] () =1 mod G(z). (75)
Hence, we can consider the expression
1
— (76)
as a polynomial:
L -1 _ -1 G@) — G(a)
P G(a)” F(z)=—-G(a) . mod G(z). (77)

Keeping this in mind, we define Goppa codes as follows.
Let
G(x) = Go+ Gz + Gy + ...+ G.a", G, # 0, (78)
be a polynomial over GF(p™) of degree r and let a :=(aq, az,...,ay), n > r, be
a set of elements from G'F'(p™) such that G(a;) # 0. Let g: = (¢1,92,...,9x) be

a vector with components ¢; from the base field GF(p). The Goppa code Cg is a
set of all the vectors g such that

Zn: 9i = 0 mod G(z). (79)

J}—Oé]‘

If the Goppa polynomial G/(x) is irreducible, the Goppa code Cg is called
irreducible.

Goppa codes can be defined also in terms of GRS codes. To see this, let us
consider the polynomial

r — «

(80)
Ga)™ [GW) (a) + 5 @) 4 ..+ E0E (a1

r!
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where r = deg G/(z) and G («) denotes the ith derivative of G/(z) at the point
x = a. Since the polynomials 1, (), (z)?, ..., (z) ! are linearly independent in
R¢, we get from Eq. (79):

A vector g = (g1, 92, - .., gn) With components g; from the base field GF(p) is
a code vector of the Goppa code C if and only if

n B G(T—i) (Oé)
1 7 .

9,G(a;)  ————==0,:=0,1,...,r—1. 81

S (s1)
On the other hand,
G(T)gozj) — GT % 0
S = Gy 4 1Gray,
(82)

G(T;W =Gyt (r—1)Ga, + D 2

2 70
G(l) (Oé]) = Gl —|— 2G2aj _|_ . _I_ TGTOé;_l,

Hence, subtracting from the ¢th equation in Eq. (81) a suitable linear combination
of the equations (82), we obtain the equivalent system

S giG(a) el =0,i=0,1,...,r - L (83)
7=1

This is just the definition of the subfield subcode (an alternant code) of the
GRS code with the parity check matrix H = [Z]l';] , where z; = G(a;)7!, 2 = aj,
and r = deg G(x).

Therefore, in general, the parameters of Goppa codes are the same:

Code length  n<qg+1=p"+1;
Dimension kg =n—rg>n—rm; (84)

Code distance dg >d=r+1=degG(x)+ 1.

But, in the binary case p = 2, Goppa codes have better parameters than
general alternant codes.

To show this, consider again Eq. (79). In the binary case, g; = 0 or 1. If
wy (g) =w, gj, = ¢j, =...=gj, = 1, then we have for this code vector

i”: 1

s:lx_ﬂs

=0 mod G(z), (85)

where 3, :=g;..



Public-Key Cryptosystems Based on Linear Codes 22

Note that the left hand side of Eq. (85) can be written as

) (86)

(1)

where the polynomial wg ’(x) is the derivative of the polynomial we(x) given by

() = ﬁ<x>. (87)

(1)

Note that since p = 2, the polynomial wg ’(z) has only even powers of x.
Hence

wi(2) = py(2) (88)
for some polynomial pg(x).

Note that we(z) and G(z) have no common roots in any extension field.

Hence, by Eq. (85) we get
c,oé(:z;) =0 mod G/(x). (89)

This means that

G(2) | pgla). (90)
Assume from now on, that the Goppa polynomial GG(x) has no multiple roots in
any extension field. Then, it follows from Eq. (90) that G/(x) | c,oé.(:z;) if and only
if

G(2)* | pg(x). (91)

Thus, the parameters of binary Goppa codes are

Code length  n<qg+1=p"+1;
Dimension ko =n—rg>n—rm; r=degG(x); (92)
Code distance dg > d =2degG(x) + 1,

i.e. code distance is about twice more in comparison with the general alternant
code for which the parity check matrix H has the same number of rows.

To obtain a generator matrix of a Goppa code, we can apply the map-
ping B (see Eqgs. (69)-(71)) to the parity check matrix H = [oz;/G(ozj)],i =
0,1,....t—=1;5 =1,2,... n. Denote by Hy;, the binary matrix obtained from
the binary matrix H = (B (oz;/G(ozj))] by deleting linearly dependent rows. Then
a generator matrix G is a binary k& x n matrix with maximal value of k£ such that
GH;, = 0.

Fast decoding of Goppa codes may be carried out just as for GRS codes.

Hence, Goppa codes possess Fast decoding algorithms.

Notice that in order to be able to carry out a decoding algorithm, we should
know the ordering a = (aq, g, ..., @) and the Goppa polynomial G(z).
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2.4. Maximal Rank Distance Codes.
Rank Distance. Let the field GF(¢") be given and let GF(q) be the base
field, ¢ is a power of a prime. Let

Wy, W, ooy WN

be a basis of the field GF(¢") over the field GF(q). Each element x; € GF(q)

can be uniquely represented in the form
T; = ayjwi + agwe + ...+ an;wn,

where a; ; € GF(q).
Let A%, be the set of the N x n matrices with entries in GF/(q).
Let x = (21, %9,...,2,) € GF(¢")" be a vector with coordinates in GF'(g").
Consider the bijective mapping

A: GF(q)" — Ay (93)
that maps the vector x = (21, x9,...,2,) onto the matrix
ar1 @12 ... a1,
Alx) = az1 @32 ... dag,
AN1 GN2 .. (N

Denote the rank of a matrix A over the field GF(q) by r(Alg). Evidently, the
rank depends on the field. In particular,

r(Alg) > r(Alg"Y).

The rank (or rank weight) r(x|q) of a vector x is defined as the rank of A(x)
over GF(q):

r(x|q) = r(A(x)|q).

In fact, the rank function is a norm on GF(¢")" because

1. for any x, r(x|q) > 0;

2. r(x|g) =0 <= x=0;

3. for any x,y € GF(¢™)" we have, r(x + y|q) < r(x|q) + r (y|q)-

This allows us to define the Rank distance function

d,(x,y) = r(x = ylg)-
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Equivalently, we can define the rank distance as follows.

The rank weight r(x|q) of x = (21,29,...,2,) € GF(¢")" is the mazimal
number of x; that are linearly independent over the base field GF(q).

The rank distance d,(x,y) between x and y is the rank weight of the difference
X —y.

It is clear that, for any x,

r(x|¢) < min(n, N). (94)
The rank distance d(C) = d of a linear code C is defined by
d o= min{d,(x.y) | x€C. y €C. x £y}, (95)

or, equivalently,

d:=min{r(x|q) | x €C, x#o}. (96)

If a code C has distance d, then it can correct all errors e with r(e|q) <t =
(1) /2.

Let a linear code C C GF(¢™)" of length n, dimension k (or, equivalently, of
size M = ¢N%), and (rank) distance d over GF(¢") be given. We construct a
new code C'" C GF(q"), called the transposed code, of length N, of the same
size M = ¢™*, and the same (rank) distance d over GF'(¢"). The construction is
as follows.

Using the mapping (93), represent each codeword x €C C GF(¢"V)" as the
corresponding matrix

Cl171 CLLQ . Can
A(X) _ Cl271 Cl272 . Clzm
CLNJ CLN72 . Cle
Transpose this matrix A(x):
Cl171 Cl271 . CLNJ
I B (97)
1, A2n ... ANgp

Choose a basis 41,72, ..., 7. of the field GF(¢") and map the matrix A(x)"
onto the vector

y = (y17y27 s 7yN) S GF(qn)N7
where y; = a;171 + @izy2 + - Ginyn € GF(¢"), 0 =1,2,..., N.
All such vectors form a code C'" C GF(g")V of length N. It is also clear that

it has the same number of codewords M = ¢™* as C and the same rank distance
d because the matrices A(x) and A(z)" have the same rank.
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Remark 1. The code C'" is a group code but not necessarily a linear code.

Remark 2. If C is an optimal code in the sense that its size is maximal for the
given d, then C* is optimal as well.

Lemma 1. For any linear (n,k,d) code C C GF(¢N)", we have the inequality
d <min(N,n).
Proof. See Eq (94). O

Lemma 2. (The Singleton-style bound.) Let n < N. For any linear (n, k, d)
code C C GF(¢™),
k<n—d+l. (98)

Proof. It is evident that, for any x € GF(¢™)", r(x|¢) < wy(x), where
wp(x) denotes the Hamming weight of x. Hence, any code of size M with the
rank distance d is also a code of the same size with the Hamming distance d* > d.
This means that the size M, (n,d) = ¢"* of an optimal code for the rank metric
is less then or equal to the size My (n,d) = ¢™* of an optimal code for the
Hamming metric with the same n and d. Thus,

E<k <n—-d+1 (99)
because the Singleton bound is valid for the Hamming distance. O

Lemma 3. Let n > N. For any group code G C GF(¢"™)" of size M = ¢"* and
distance d,

d<N,
Nk<n(N—d+1).

Proof. The first statement follows from Lemma 1. To obtain the second
statement, construct a linear (N, k,d) code over the field GF(q), transpose it
and apply the Singleton-style bound. O

A linear (n, k,d) code is called a maximal rank distance (MRD) code if the
Singleton bound (98) is reached. Such a code is optimal.

The theory of MRD codes is given in [11]. It is shown that, for any n < N,
1 < d < n, an MRD code exists. Combining this with the transposed code
construction, we obtain optimal rank codes for any length n and any admissible
rank distance d.



Public-Key Cryptosystems Based on Linear Codes 26

General construction of optimal codes. Let C C GF(q)" be a linear
(n,k,d) code and let H be an (n — k) x n parity check matrix. For any d — 1,
let Vy_1 be the set of (d — 1) x n matrices over the base field GF(q) of full rank
d—1.

Theorem 1. Let H be an (n — k) x n parity check matrix of a linear (n, k) code
C C GF(¢™)*. The code C has the rank distance d if and only if, for any matrix
Y € Y, 1, we have

r(YH'[¢") = r(Y|g) =d — 1, (100)
and there exists a matrix Yo € Yy such that
r(YoH|¢™) < r(Yolq) = d. (101)
Proof. Necessity. Let C be a code of distance d. A vector x = (21, x9,...,2,)

of rank d — 1 or less can always be represented in the form

X = (T1,%9,...,0,) = (ug, gy ..., u4-1)Y,

u; € GF(g™), Y €Yy
Since x is not a codeword, the linear system
XHt = (ul,u2,...,ud_1)YHt =0 (102)

of equations in the unknowns wuy,us,...,us_1 should have only the trivial zero
solution. This will be the case if 7(YH'|¢") = d — 1. On the other hand, a

codeword g of rank d can be represented in the form

g=1(91,92,--,9n) = (v1,02,...,v4)Yo, (103)

where Yo € Yy and vy, vy,. .., v, are linearly independent over GF'(¢). Since g is
a non-trivial solution of the linear system

gHt = (1)1,1)2, .. .,Ud) YoHt = 0,

in the unknowns vy, v, ..., vy, we infer that r(YoH!|¢"Y) < d.

Sufficiency. Suppose that the conditions (100)-(101) hold. Then the system
(102) has only the trivial solution. Thus, vectors x of rank less or equal to d — 1
can not be codewords. On the other hand, the system (103) has a solution of
rank d. Hence, the distance of the code with the parity matrix H is d. O

We now present the general construction of an MRD code in terms of the
parity check matrix.

Let hy, ha,. ...k, be a set of elements of GF(¢") which are linearly indepen-
dent over GF(q). Let us define the (d — 1) x n matrix H by

[ hy hy cee hy
A h -

H=|hr » - w7 |, (104)
h%d—2 h%d—2 o h%d_Q
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Theorem 2. The code C defined by the parity check matrix H in (104) is an
MRD code with the following parameters:

e code length n < N;
e dimension k =n —d + 1;

e (Rank and Hamming) code distance d =r+1=n —k + 1.

Proof. Let Y €Y, 1. Then the square (d — 1) x (d — 1) matrix YH' can be

represented in the form

2

O
PR

2

YH' = : (105)

d—2

JPEC FIPE

where (f1, f2,..., fae1)! = Y(hy, hay ... k)" The elements fi, fa, ..., fu—1 €

GF(¢") are linearly independent over G'F'(¢) because if not, the elements hy, ho, . . .

would also be linearly dependent over G'F'(¢), in contradiction with the assump-
tion. It is known (see, for instance, [17]) that the matrix YH' is non-singular.
This means that 7(YH' | ¢") = d — 1. Hence, by Theorem (1), a code C has rank
distance d. The dimension of the code is £ = n — d 4+ 1. So this code reaches
the Singleton bound for the rank distance as well as, by (99), for the Hamming
distance. O

The general construction of an MRD code can be also given in terms of its
generator matrix. Let g1, ¢s,...,9, be any set of elements of GF(p") which are
linearly independent over GF(p). A matrix G is defined by

_91 92 T Gn

g{: 952 e gh
G=|dg & & . (106)
k-1 k-1 E—1
I SRR

It can be shown that there exists an orthogonal (d — 1) x n matrix H of the form
(104) such that

GH' =0,
where d = n — k + 1. Hence the matrix (106) is a generator matrix of an MRD
code.

MRD codes possess Fast Decoding Algorithms (see [11, 23].) We need some
results of the theory of linearized polynomials to present these algorithms.
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Linearized Polynomials. Let the field GGF'(¢") be given and let G'F(q) be
the base field, where ¢ is a power of a prime.

A linearized polynomial with coefficients in the field GF'(¢") is a polynomial
of the form

- ifixq". (107)

The largest ¢ such that f; # 0 will be called the norm N(F') of the polynomial.
By way of convention, the norm of the linearized polynomial 0 is taken to be —oo.

If F(x)#0, G(x)# 0, then
N(F®G)>max(N(F), N(G)).

We write Ry[z] to denote the set of all the linearized polynomials with coef-
ficients in GF(¢").
Addition in Ry[x] is defined by

n

F(x) => (fi+g)a (108)

=0

and symbolic multiplication by
F(z)© Gla) = F(Ga) =Y 3 (fagl) =™ (109)

In other words, symbolic multiplication is the composition (or the substitution)
of two polynomials. It is important to note that symbolic multiplication is not
commutative. But it is associative and distributive:

Fz)o (Gz)@ H@))=(F(2) @ G2) @ H(z) = F(z) @ G(z) @ H(x),
(F(2)+ G(x) @ H(z) = F(z) @ H(z) + G(z) @ H(x),

F(z) 2 (G(z)+ H(z)) = F(2) @ G(z) + F(z) @ H(z).
(110)
Hence, the set Ry[x] under these two operations becomes a non-commutative
ring whose multiplicative identity is the polynomial x.

The Euclidean Right Division Algorithm. Consider two linearized poly-
nomials f(z) and g(x) over GF(¢"). If

f(@) = Q(z) @ F(x),
g(x) = P(z) @ F(z),

we say that F'(«) is a right common divisor of polynomials f(x) and g(x). Left
common divisors are defined in a similar manner. In Ry[z], we have both Eu-
clidean left division algorithms and right division algorithms. We describe the
right division algorithm. The left division algorithm is similar.
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The right Euclidean division algorithm is a procedure for finding the right
greatest common divisor of two polynomials. We use the notation rged = the
right greatest common divisor. Consider again two linearized polynomials f(x)
and g(x) over GF(q). Suppose that

N (g(z)) < N (f(z)).
For convenience, define F_i(x) := f(x), Fo(z) := g(x).
1st step Divide to the right F_1(x) (= f(x)) by Fo(z) (= g(x)):

F_i(2) = Gi(x) @ Fo(x) + Fi(xz), where N (F1) < N (Fp). (111)

2nd step Divide Fy(z) (= g(x)) by Fi(x):

Fo(x) = Ga(x) @ Fi(x) 4+ Fo(x), where N (Fy) < N (Fy). (112)

3rd step Divide Fi(x) by Fy(z):

Fi(x) = Gs(x) @ Fy(x) 4+ Fs(x), where N (F3) < N (Fy). (113)

i’th step Divide F;_5(x) by Fi_1(x):

Fio(x) = Gi(x) @ Fi—q(x) + Fi(x), where N (F;) < N (F;_1). (114)

next to the last step Divide F,_s(x) by F,_1(2):
Fooo(x) = Gp(x) @ Fy_a(z) + Fy(x), where N(F,) < N(Fp_1).  (115)
last step Divide F,_1(x) by F,():
Fyale) = Gpaa(2) ® Fy(e). (116)

Then

rged (f(z), g(x)) = Fy(x). (117)
If F(x) =z, then f(x) and g(x) are relatively prime.
At each step of the procedure, the current remainder F;(x) can be represented

as a linear combination of the two previous remainders. Thus, it is possible to
represent all remainders, including the last one Fj,(x), as linear combinations of

f(@) (= Foa(x)) and g(x) (= Fo(x)):

Fi(z) = (=1)"7" (Ai(x) @ f(z) = Bi(x) @ g(x)). (118)



Public-Key Cryptosystems Based on Linear Codes 30

The polynomials A;(x) and B;(x) can be obtained from Eqs. (49)-(54) but
there exists an inductive way of calculating these polynomials. Define two se-

quences of polynomials {A;(x)} and {B;(x)} by

Ai(z) = Gi(x) @ Aii(2) + Aia(), (119)
where, by definition, A_i(z) = 2 and Ag(x) =0, and

where, by definition, B_i(«) = 0 and By(x) = x. Then Eq. (118) is true.
It is easy to obtain many relations concerning the above polynomials. Define
two sequences of polynomials {U;(x)} and {V;(x)} by

Ui() = Usale) © Gile) + Uia(2), (121)
where, by definition, U_y(z) = 0 and Up(z) = , and

Vile) = Viea(@) © Gile) + Viea(a), (122)
where, by definition, V_4(

x) =a and Vo(z) = 0.
S

The following properties are important for the decoding procedure:

1. For any ¢,
rged(Ai(x), Bi(x))
rged(Ui(z), Vi(x))
i.e. both the polynomial pairs {AZ’(J}),BZ(J})} and {U;(x),Vi(x)} are rela-

tively prime.

I
& &

(123)

2. For any 1,
Frs(e) = Unalw) © Fi(x) + Ui(2) © Faa (o),
(124)
Fo(2) = Visa (&) © Fi() + Vi(e) © Figa ().
3. For any 1,
Fie) = (—1)™ (i) © Foa(a) — Bi(e) @ Fo(). (125)

In particular,
rged(f(x), 9(x)) = Fy(e) = (=1)"7" (Ap(@)Fa(2) = By(e) Fo(x)).  (126)

4. For any 1,

(127)
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5. For any 1,

N(Ai(z)) =D N(Ga(x)), (128)

N(Bi(x)) =) N(Ga(x)) = N(f(2)) = N(Fiza()). (129)

1+1

N(Fi(z)0 = N(f(z)) - Z_: N(Gs()). (130)

Fast decoding of rank codes. We consider decoding algorithms for an
MRD code given by the parity check matrix H (104). Let g = (¢1,92,-..,9s) be
a code vector and let y = g + e be the received vector, where e = (e, €9,...,¢€,)
is an error vector. Let us calculate the syndrome vector s = yH":

yH = (g+e)H =gH' + eH' = eH' =5, (131)
or
(€1, €9, e, H =8 = (50,51,...,54_2). (132)
The problem of decoding is to find the error vector e =(ey,ez,...,€,) if the
matrix H and the syndrome vector s = (sq, $1,...,84-2) are given.

Assume that the rank weight of the error vector is equal to r(e|g) = m. Then
the vector e can be represented in the form

e=EY =(E1, Es,...,E) Y, (133)

where Ey, Es, ..., E, € GF(¢") are linearly independent over GF(q), and Y €
Y. is an m X n matrix of rank exactly m with all the entries in the base field
G'F(q). Hence, Eq (132) can be rewritten as

(El,EQ,...,Em)YHt = 8. (134)

The matrix Z* := YH' has the form

d—2

q q

Zl Zl .« .. Zld

—2

. . 29 28 .. 23

Z=YH =| ~ *° ‘ ) (135)

d—2

q q

where z' 1 =(2z1,29, ..., 2m)" = Y(h1, hay ..o b))t I By, By, ... E,,y are linearly
independent over GF(q), then the elements 21, zy,...,2, € GF(¢") are also
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linearly independent over GF'(¢). From Eq. (134), we have the following system

of d — 1 equations in the 2m unknowns Fy, Ky, ..., FE,, 21,22, ..o\ Zm:
L7 Z‘fd_2
2y Z9 4
(By, By E) | 72072 700 72 = (80,515, 5d-2) » (136)
Zm 2L FEA
or,
S Bt =, i=0,1,...,d—2. (137)
=1

Note that the integer m is also unknown.

If we, somehow, have obtained a solution of Eq (137), we can find the matrix
Y from Eq. (135) and the error vector e from Eq (133). For a given m, there
exist many solutions of Eq. (137). If (Ey, Ea, ..., Ey) and (21, 22,...,2,)" is a
solution, then (Ey, Fa,..., F,,)Q and Q™ '(z1,29,...,2,)" also is a solution for
all m x m non-singular matrices Q with entries in GF(q). Moreover, there are no
other solutions. All these solutions are equivalent in that sense that the recovered
error vector e is the same. So, we have to obtain any solution of Eq (137).

For the case m <t = V;—IJ, we present two algorithms of the fast solution of
Eq (137): the matriz algorithm and the algorithm based on the right Fuclidean

division algorithm.

The Matrix Algorithm. The idea of this algorithm is similar to the Pe-
terson algorithm for the decoding of alternant codes.

For any : = 1,2,...,1, define the 7 x ¢ matrix

-1 —it1
g g

- )
-1 —it1

s sy . s8]

My=| (138)

-1 —it1
g g

whose entries are obtained from the known syndrome vector s.

Lemma 4. Let m = r(elq) < t be the rank weight of the error vector e. If
¢ > m, then
det (MZ) =0.

If v = m, then
det (MZ) 7£ 0.

Proof. Note that even for ¢+ > m, we can represent the error vector e in a
form similar to Eq (133):

e — (E17E27...,Ei)Y, Y Eymv
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but in this case the elements Ey, Es, ..., I; are linearly dependent over G'F'(q).
Let us express the syndrome components s, in terms of £, Fs, ..., E; and the
corresponding z1, Zo, . . ., Z;:

ZE]gjp, p=0,1,...,d—2.

If we replace the s’s by these expressions in Eq (138), we obtain after some

manipulations

51 52 . gZ ~ gt ~q—z+1

gq gq gq El El .. El
4 g e 3 - i

2 2 P by, Ej R O

_ | =4 =9 1
M, =1 5 % R .. .

) . . ~ ~ 1 ~ i1

oqi—1 oqi—1 oqt—1 . q q

Hence, det (M;) = 0 because BBy, ... B (and also z1,%y,...,%;) are linearly
dependent over G'F(q).

On the other hand, if i = m, then £ = E and 7 = z in the above represen-
tation. Hence, det (M,,,) # 0 because Ey, Es, ..., E,, (and also zq, 22,. .., z,) are
linearly independent over GF(q). O

This lemma allows us to find the rank weight m of the error vector e:

1. Calculate the syndrome s by Eq. (131).

2. Fori=1t,t—1,..., calculate the matrices M; and their determinant det M;

till the first value ¢ = m for which det (M;) # 0. This value is the rank
weight of e.

From now on, we have to solve Eq (137) for the known m.
Since the unknowns z1, 29, . . ., 2, are linearly independent over GF(q), intro-
duce the linearized polynomial

o(x) = Zaixqi, om =1 (139)
=0
having as roots all the linear combinations of zi,z9,..., 2, with coefficients in

the base field G'F(q).
Theorem 3.

1 —m41
(00,01, ,0m-1)M,, = — (sm,s;+1,...,s§m_1 ) : (140)
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Proof. Represent M,, in the form

Zl 22 ZT)’L q 1 q—m-l-l
L4 La 4 J O Ok IOk
1 2 m -1 —m+1
L7 " B, Ef £
M, =| %5 Z5 zd ‘ ‘ ‘

-1 —m+1
m—1 m—1 m—1 q q
L p E, E B

Since, by the definition of o(z),

q qm—l qm
00z; + o1%; + ... Om—1%; =—Z ,
g=12....m,
we have
-1 —m+1
q q
El El 1 El +1
q- g—™
M qm ™ " By By Ey -
(00701770m—1) m = _(21 » %2 » Zm ) . . . -
-1 —m+1
q q
m m q_1 m q—m+1
qm qm+1 q2m—1 _
Z gzl (Z YO yee s B2 =
s=1 s=1 s=1
B g1 g—mt1
SmySm41s -5 S2m—1 ) -
O

The linear system of equations (140) in the m unknowns og, 01,,0,-1 has a

unique solution because the matrix M,, is non-singular. Hence, we can proceed
with the algorithm as follows.

3.

4.

Solve the linear system (140) and calculate o(x).

Calculate the linearly independent roots z1, zq, . .., 2, of o(a). This problem
can be reduced to the problem of solving a few linear systems over the base

field GF(q) (see [22]).

Solve the linear systems of the first m equations of Eq. (137) in the m
unknowns Ky, Ky, ..., K.

Calculate the matrix Y using Eq. (135).
Calculate the error vector e by Eq. (133).

We have to calculate determinants and to solve linear systems. Hence, the

number of calculations is O (n?).
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Fast Decoding Algorithm Based on the Right Euclidean Division
Algorithm. This algorithm is an analogue of the Berlekamp-Massey algorithm
for decoding generalized Reed-Solomon codes.

Introduce the linearized syndrome polynomial

S(a) = Z:%prqp. (141)

Denote by F(z) the linearized polynomial whose roots are all the possible
linear combinations of Fi, Es, ..., E, with coefficients in the base field G'F(q):

E(z) =Y A?, A, =1 (142)

p=0

Introduce the auxiliary linearized polynomial F'(z) by

m—1
Flz)= Y Fa, (143)
p=0
where )
Fo=3 At p=0,1,...,m— 1. (144)

=0
Note that the norm of F(x) is strictly less than the norm of E(x):

N(F(z)) < N(E(z)) — 1.
Theorem 4. (The key equation)

—1

F(z) = E(z) ® S(z) mod 2", (145)
(146)

Proof.

m m+d—2 m .
E(l‘) X S(l‘) = ZAZPS(J}) = Z xqp ( Z AZS(]J ) .
p=0 p=0 J+i=p
For 0 < p <m — 1, the inner sum is just F:

m . P .
q" _ A q" - F
> A = AsL=F,
1=0

Jti=p
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For m < p < d — 2 we have

B

p

m ) m ) m N\ ¢
) SFNE I SUNINE oON (Z EZ) _
=0 =0 s5=0

JHi=p
Sy (o) S -0
s=0 =0 s=0
because, by definition of the polynomial E(x), > 22" E (E,) = 0.

For p > d — 1 the coefficients vanish mod 217", This proves the theorem. O

Decoding means finding the polynomials F(x) and F/(z) in Eq (145) with the
restrictions (146), if polynomials S(x) and 247" are given.

Form <t = V_—IJ, the equation (145) always has a solution. The problem is

2
to find such polynomials E(x) and F'(x) that the norm N (E£(x)) is minimal.

It follows from Eq (145), that there exists a polynomial C'(z) such that
F(z)=C(z) @2 + E(z)® S(x).
It follows from Eq (125), that for the ith remainder F}(z) we have
Fi(x) = (—1)' Bi(z) @ Fy(x) mod F_i(x). (147)

Hence, if we put F_q(x) = 217, Fo(x) = S(x), we can apply the right
Fuclidean division algorithm (Eqgs. (111)-(116)) to obtain E(x) and F'(x).

E1. Start with calculating the polynomials F;(z), A:;(x), Bi(x), Ui(x), Vi(z), ¢ =
1.

E2. (The Stop rule.) Continue the calculations till the index ¢ = m satisfies

the inequalities

E3. Calculate
(148)
F(e)=(=1)""" pl(x),
where the constant p is chosen such that A,, = 1. These polynomials give

the solution of Eq. (145). Indeed, it follows from Eqs. (129), (130), (147),
that
z)

N(F(z)) < &1

Y

=
o
&
I
=
Sy
BN

d—1
=5

~—

(149)
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It can be shown that any other solution of the key equation (145) that
satisfies the restrictions (146) can differ from the obtained solution (148)
only by a constant factor.

E4. Calculate the roots Fy, Fa, ..., E, of E(x) which are linear independent
over GF(q).

E5. From the first m equations of the system (137), get the linear system

g -
ZEj zi=s5; ,1=0,1,...,m—1
i=1

in the m unknowns z1, z9,..., 2, and solve it.

E6. Calculate the matrix Y using Eq (135).
E7. Calculate the error vector e by Eq (133).

The complexity of the described algorithm depends on the complexity of the
right Fuclidean division algorithm. There exist an algorithm wich computes the
rged of two linearized polynomials of norm n in O(nlog®n) steps. Hence, the
number of calculations is O(dlog2 d + dn).

3. THE NIEDERREITER CRYPTOSYSTEM BASED ON GENERALIZED
REED-SoLoOMON CODES

This cryptosystem was proposed by Prof. H. Niederreiter in 1986 [8]. It was
broken by Prof. V.M. Sidelnikov and Dr. S.0. Shestakov in 1992 [9]
A modification has been proposed to avoid the Sidelnikov-Shestakov attack.

3.1. Description.
Private keys

The legitimate user A chooses as private keys:

The parity check matrix of a generalized Reed-Solomon code (see Section 2.1).

21 Z9 e Rp
21001 299 A 8 )
H=| 20} 290 ce Zpal , (150)
-1 -1 _
z1aq Zoary e ZpalTh

zj, o € GF(q), z; # 0, «; are different,
e=0,1,....r—1; y=1,2,....n.
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(As a consequence) a fast decoding algorithm (see Section 2.2).

A non-singular scrambling square matrix S of order r:

S01 502 Son
S11 512 S1n
S = .
Sp—1,1 Sr—1,2 --- Sr—1n

This matrix is used to scramble the parity check matrix, i.e. to destroy any
evident structure of the parity check matrix.

Public key

The legitimate user A calculates the product

HCI' — SH —
ZlFo(Oél) ZQFo(OéQ) Ce ZnFo(Oén)
ZlFl(Oél) ZQFl(OéQ) Ce ZnFl(Oén)
Z1Fr—1(041) ZzFr—l(Oéz) - ZnFr—l(Oén)

where

r—1
Fi(x) = Zsikxk, 1=0,1,....,r—1
k=0

are the polynomials defined by the scrambling matrix S.

The legitimate user A publishes the matrix Hey as a public key in some di-
rectory, in the hope that it is very difficult to get the secret matrices S and H
separately from this product.

Encryption
In this cryptosystem, all the possible plaintexts (messages) are n-vectors
m = (mq, Mg, ..., My,)

of (Hamming) weight

crm=1- |15 -

with components in GF/(q).
Note that messages are not codewords of the chosen GRS code but patterns
of “errors’ that can be corrected by the decoding algorithm.
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It a person B wants to send the secret message to A, he chooses a plaintext
to send m = (mq,ma, ..., m,) and calculates the ciphertext as the syndrom c of
a code with the Parity check matrix He,:

c = mH, = mH*S". (151)

Hence, in this cryptosystem, the set of ciphertexts is the set of all the possible
syndroms of correctable errors.

Decryption

-1
Upon receiving the ciphertext ¢, the legitimate user A multipliesit by (St) :

c (St)_l = mH*

and gets the syndrome of the plaintext m. Then he applies a fast decoding
algorithm to obtain the plaintext m.

3.2. Breaking the Niederreiter Cryptosystem
The Sidelnikov-Shestakov attack. Recently, the Niederreiter PKC was bro-
ken by Sidelnikov and Shestakov. We give a slightly different version of their
attack.

Recall that everybody knows the public key

H., = SH = S[z;0']

but not S, {z;}, {«a;} separately. Given the public key Her = SH, the breaking
party tries to find trapdoors Hgy and Sty such that

He = SH = HtrStm
where '
Hir = [915;]
The elements {y,} and {3;} may differ from the elements {z;} and {a;}. Never-
theless, they allow to decrypt any ciphertext.

Lemma 5. A matrix Hyy is a trapdoor if and only if both H and Hy, are parity
check matrices (possibly different) of the same GRS code.

Proof. The proof is trivial. O
Evidently, all matrices Hep, H and Hgy can be reduced to the same row-
reduced echelon form.
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The breaking party calculates the canonical row-reduced echelon form Hgyst
(see eq. (18)) using the known parity check matrix Hep:

1 0 0 -0 - Ry Rijs2 - Rin
0 1 0 0 Tt RQ,T—I—I RQ,T—I—Q Tt RQ,n
Hsyst = [EI- R] =10 0 1 0 RS,T-I—I R3,7°-|—2 . RS,n
0 0 0 e 1 to RT,T-I—I RT,T-I—Z T Rr,n

(152)

Reducing to the systematic form requires O(n?) calculations.
From eq’s. (19)-(22), we have

Rm‘:ﬁ H u, 1=1,2,...,1; J=r+1r+2....n (153)

i =1 ki YT Yk

Since any trapdoor Hg, is reduced to the same matrix Hgyst, the breaking
party has to solve the following nonlinear algebraic system:

Yi II @—&:mm i=1,2,....ry J=r+1lr+2...,n, (154
Yi k=1 k#i 62 - 6k

where y; and 3; are unknowns but all R, ; are known.

Theorem 5. Suppose that any three By, B3,, B3, are given and any y, is given;
then all others y; and [3; can be obtained uniquely from eq. (154).

Without loss of generality let 3y, (2, 8,41, y1 be given. Apply the following
procedure.

1. Calculate the ratio
Rigp1  Bry — o

= C .
RQ,T—I—I 6T+1 - 61

Only ¢ is unknown in this equation. Calculate c.

2. For j =r+2,r4+3,...,n, calculate the ratios

f, cﬂj — B
Ry;  Bi—

Since ¢ is already known, only f; is unknown in this equation. Calculate
B
3. For v =3,...,r, calculate the ratios

Rl,r—l—l Ri,r+2 . 57«4-1 - 52 57’+2 — 52
Ri,r+1 Rl,r-l—? 57«+2 — B 57’+1 — B

Only f; is unknown in this equation. Calculate ;.
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4. For j =r+1,r+2,...,n, calculate
T BB

yi=ul; ]
kE=1,k#j 5]‘ — Bk
(y1 is given).
5. For:1=2,...,r and some 57 > r + 1, calculate
= Bi— Bk
yvi=wnRi; ][ 5~ By
k=1,k#j 7 k

6. Calculate the trapdoor matrix Hg,. O

The Sidelnikov-Shestakov algorithm of breaking the Niederreiter PKC follows

immediately from Theorem 5:

e Reduce the Public key He¢p to the systematic form Hgysg. This requires
O(n?) calculations.

e Calculate the trapdoor matrix Hyy using Theorem 5. This requires O(n?)
calculations.

e Calculate the trapdoor matrix S¢y using Hep and Hgy. This requires O(n?)
calculations.

The Work function of breaking is O(n®). This means that the Sidelnikov-
Shestakov algorithm breaks the original Niederreiter PKC completely!

3.3. Modification of the Niederreiter PKC. The Niederreiter PKC pub-
lic key is a scrambled parity-check matrix of some GRS code

H., = SH.
We change it to
H2ed = S(H + X) = H,, + SX,

where X is a matrix of rank 1:
X = a'b,
with a=(ay, as,...,a,), b=(by,b2,...,b,), where a; € GF(q) and b, € GF(q).
The vector a must be a syndrom of a coset of the GRS code of weight d — 1.
In the original system, the ciphertext ¢ is the syndrome of the plaintext m,
which is considered as a correctable “error”: wy(m) < (r—1)/2 =t and

c=m(H,)".
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Now the ciphertext is
¢! = m(H!, + X'S') = ¢ + mX'S’,

where wy(m) <t —1 (and not ?).

The legal user knows that mX" is either 0 or a vector Aa, where A\ depends
on the value of (my,...,m,) and a is fixed. Hence if the decoder cannot decode
the ciphertext assuming that mX = 0, or if the detected error is greater than ¢,
he has to try at most all the different ¢ — 1 possible values of A. But the weight
of the errors does not exceed t — 1 , so the problem he is confronted with has a

solution.
Consider again reducing the matrix HE4 to the systematic form. It can be
shown that
HE = [E: S] = [E: R+ )], (155)

where R is a matrix given by eq. (153), A=(A1, Ag, ..., A ) and v = (Vy41, Veg2y - - -y
are some r- and (n — r)-vectors.
To break the cryptosystem, one has to solve the system of equations
Rm‘—l-)\il/]‘ :Sm, v=1,2,...,

T j=r+1Lr+2,...,n. (156)

If the A; and v; are known, the Sidelnikov-Shestakov attack can be applied. To
obtain A; and v; we need the following simple

Lemma 6. The rank of the matrix [R;}] is equal to 2 (see Eq. (23)), or, in other
words, the determinants of all square submatrices of order 3 are equal to 0.

Using the R, ;’s from eq. (156) and eq. (23), we get the equation

r 1 1 1 ]
Sipgr— X v Sipgp Mg Vip  Siggs — A Vs
1 1 1
det Sigj1—Xg¥yr Siggp =g Vip  Siggs —AipVis - 0’ (157)
1 1 1
L Siggr MgV Sigap—MaVip  Siggz—MigVip
in the 6 variables A\, , Ai,, Ai,, v, vj,, vj, of degree at most 12. The full number

of equations is equal to

n—

3

variable A; is contained in (
in (”ET_I) / (%) equations.
It is unknown how to solve this system in appropriate time. Using the ap-
proach given in [14] we can only get the estimation O(exp(r(n —r))).
Note that in specific cases breaking the modified Niederreiter PKC is still
possible. Sidelnikov and Shestakov examined a hiding matrix X for which all

A
s/ (

n—r

) and they contain r(n — r) variables. Each

r—1
2

) equations, each variable v; is contained

rows except the last one are zero [10]. They showed that one can get a system

Vn)
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of n —r — 1 equations of order at most 4 in three variables. This system can be
solved using O(r® + rn) calculations.

This example shows that the hiding matrix X should be chosen and examined
very carefully.

4. THE McCELIECE CRYPTOSYSTEM BASED ON GOPPA CODES
In [5], the authors showed that the problem of decoding a general binary linear
code is a NP-complete. Hence, if there exists a big set of codes of large distance
having fast decoding algorithms, then someone can choose one of these codes as a
public key with the fast decoding algorithm as a secret key, in the hope that the
enemy party can decode intercepted ciphertexts only as corrupted codewords of
a general linear code.

The first public-key cryptosystem based on linear codes was proposed by
McEliece in 1978 [4]. The system is based on the family of Goppa codes. Goppa
codes have better parameters than general alternant codes in the binary case
only. Thus, a large binary field GF(2™) and the base field GF (2) are used.
Corresponding to each irreducible polynomial of degree t over GF(2™), there
exists a binary irreducible Goppa code of length 2™ and dimension k£ > n —
mt, capable of correcting any ¢ or fewer errors. There exist fast algorithms
for decoding these codes in O (nt) [15], [17] or even in O(nlog’n) arithmetic
operations [16].

4.1. Description.
Private keys
The legal user A chooses the following private keys.

1. A monic primitive irreducible polynomial

g@)=go+ e+ ...+ gt—1$t_1 + 2

of degree ¢ over the field GF(27).

2. An ordering
= (o, Q9,...,0p), n=2",

-
of the elements of GF(27).
3. A fast decoding Algorithm, say, based on the parity check matrix
H = [a}/g(a;)],
1=0,1,....t—1; 5=1,2,....n

(see Section 2.2).
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4. A non-singular binary scramble matrix S of order k.
Public key
The legal user A chooses a bijective mapping
B: GF(2™) — GF(2)", (158)

which maps each element w of the large field GF (2™) into the binary column

m-vector (ay, g, ..., am)":

B(w) = (ar,az,...,ay,)" (159)

Denote as Hy;, the binary parity check matrix of the Goppa code obtained

from the binary matrix N '
H = [B(aj/g(a;))] (160)

by deleting linearly dependent rows.

A generator matrix G is calculated as a binary k x n matrix of rank &k of
maximal size such that

The legal user A calculates the public key Gey as the scrambled binary & x n
generator matrix

G’cr - SG’.
Encryption
Let m = (my, ma,...,my) be a k-bit plaintext. A ciphertext is given by

c =mGer e, (161)

where e is an artificial vector of errors of weight ¢ or less, which is randomly
chosen and added by the sending party.

Decryption

Upon receiving c, the legitimate receiver applies a fast decoding algorithm (see
Section 2.2) to obtain mS and then multiplies it by S™! to obtain the plaintext
m.

The McEliece example

The chosen Goppa code has the following parameters:

n = 1024,
k= 524,
t=(d—1)/2 = 50.

There exist about 10™? possible Goppa polynomials, about 1000! orderings @ =
(a1, 9,...,a,), and about 10™° choices for the scramble matrix S. Hence, a
brute-force attack based on comparing a ciphertext to each codeword seems to
be infeasible.
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4.2. Information sets and decoding general linear codes. Let

g1 12 ... Yin

ga21 g22 ... Yon
G=|. . .

9k1 9k2 ... Gkn

be a k x n generator binary matrix of an (n, k, d) binary linear code. Let
T ={j 02 o0}
be a k-subset of the set {1,2,... . n}, where 1 < j; < j; <...<jr <n. Let
G(T) = G, g2, k)

denote the square k x k submatrix consisting of the columns with the numbers
J15J2y- -5 Jk. For any codeword g =(¢1,92,...9,0, let

g(j):(gjmgjzv SR 7gjk)
be the J-subword of length k associated with the subset 7.

If m = (my,mq,...,mg) is a binary information vector, the corresponding
codeword is calculated as

g :(917927 s 7gn) = va

and the corresponding [J-subword can be calculated as

g(j):(gjmgjw SR 7gjk) = l’l’lG(j) = mG(jhj?v cee 7]k)

Suppose that the matrix G(J) = G(j1,J2,.--,Jk) is non singular. Then we
can obtain the information vector m from the [J-subword by

m = g(J)G(J)"" = g(T)G (1, j2, - J) (162)

Aset J ={j1,72,---,Jk} is said to be an information set if the corresponding
submatrix G(J) = G(J1,J2,.-.,Jk) is non singular.
Information sets can be used for decoding a general linear code. Let

y=g+e

be a received word with ¢ or less errors.
For the given code, consider a set 7 of distinct information sets with the
property:

for any pattern e of ¢ errors, there exists at least one Information set 7 € 7
such that the J-subword y(J) = g(J) is free of errors.
(163)

The procedure of decoding is as follows.
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Main algorithm
1. Start with 7, € 7.

2. Calculate by eq. (21) an estimation my = y(7;)G1(J) ™" of the information
vector m.

3. Calculate the codeword
g1::rn1(}.

4. Calculate the Hamming distance
dy = wi(g1 =)
between g; and received vector y.
5. If d; <t, then m; = m. The decoding is finished.

6. If d; > t, then choose the next set J, € 7 and run the above procedure
again.

Due to the property (163), the procedure gives a correct answer at some step.

The Main algorithm can be improved if for the case d; > t we examine all
error patterns of weight [ or less inside the chosen set [J;. It was found that the
best choice is [ = 2 [19].

We are interested in getting the set 7 as small as possible. The cardinality
|Z| of distinct information sets with property (163) depends on the code. It is

7] < (Z) (164)

The (trivial) lower bound is given by
&) _ ()
n—t n—=k
() ()
This is because if a J-subword is free of errors,all ¢ errors are in the n — &

complementary positions. These positions can cover (”;k) patterns e of ¢ errors.

()
n—=k
(")
such complementary sets to cover all patterns e of ¢ errors.

E.A.Kruk [20] showed that, for almost all linear binary (n, k, d) codes,
()

n—k\’
(")

clearly upperbounded by

<|7]. (165)

Hence, we need at least

Z] < ~(n) (166)
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where (n) is function which increases slowly with n (y(n) ~ n* in Kruk’s paper).
This is the best known general bound. It can be improved for some codes of
restricted lengths.

4.3. Work Functions for the McEliece PKC

Attempts of Breaking. Two kinds of attacks on a PKC can be considered.
The first kind of attacks is based on getting a plaintext from an intercepted
ciphertext. The second kind of attack is based on getting private keys from
known public keys.

Getting a plaintext from a ciphertext. Let
c=mGe + e

be the intercepted ciphertext. The enemy party knows the generator matrix Gey
and uses decoding by means of information sets. He need not know the set 7 of
information sets. He simply tries all k-subsets 7 and decodes ¢ in accordance
with the main algorithm (see Section 4.2). Sometimes a k-subset J is not
an information set. In this case, it is impossible to invert the matrix G(J) at
Step 2 of the main algorithm. So the next k-subset should be chosen. But
discovering that the matrix G(J) is non-invertible takes about the same number
of arithmetic operations as inverting a non-singular matrix.

McEliece [4] analyzed the work function Wi of breaking the PKC for this case
using the bound (164) and the following probabilistic approach.

Choose a k-subset J (not necessarily, an information set) with the uniform
distribution:

(167)

If t out of n positions are in error, the number of error-free sets 7 is (”;t) Hence,
the probability of successtul decoding is

L
D%
()
where [ is the number of error-free sets J such that the corresponding matrix
G(J) is invertible. It can be shown that, for almost all binary linear codes,

n—t
L =
(")

~I(-3),

P, = (168)

where

For large k, ¢ = 0.288788.
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Thus, the average number of attempts to get the plaintext m from the inter-
cepted ciphertext c is

N_L_L)N (k) N35(k)
o P o L n—t\ ~—  (n—t\’
At each attempt, the cryptanalyst should invert a k& x k matrix G(J). It takes
about &% arithmetic operations. Hence, the average work function is

()

n—t\

(%)

Note that this is an average job. It requires sometimes much more attempts.
For the McEliece example, we obtain from Eq. (170)

(169)

Wy =35k

(170)

Wi, =3.5-2.10% = 2825,

Adams and Meijer [18] analyzed Eq. (170) for n = 1024 and found that W,
is maximal if £ = 654, ¢t = 37. They obtained

WI — 285.9‘

Lee and Brickell [19] used the improved main algorithm and obtained for
n = 1024, k = 654, ¢ — 37 that

Wl — 275.2‘

E.A. Kruk [20], [21] significantly improved the decoding algorithm and ob-
tained that the mazimal value of the work function is equal to

() ()
n—t n—t\ "
(%) ()
Thus, the maximal job for the Kruk algorithm is almost the same as the average
job W for the probabilistic approach.

Kruk also found for the McEliece example n = 1024, £ = 524, ¢t = 50 that
there exists a set Z of information sets such that

max W, = (n — k)°

= (n — k)’

(171)

W, = 2%,

This is the best known attack of the first kind on the McEliece PKC.
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Getting the secret key from the public key. The second kind of attacks
was analyzed in [7, 6].
Gibson [7] showed that if the enemy party knows not only the public key but
also the ordering
a=(o,qs,...,q,)

then the McEliece PKC can be broken very easily. Indeed, let

g :(917927 s 7gn)
be any codeword of the chosen Goppa code with the binary generator matrix
Ger. Let
9is = Gi = - = G, = 1

be all non-zero components of g. Let

ple) = (z—ay)(z—ay,)...(x — ;).

Then the formal derivative p(z)’ is a multiple of the square Goppa polynomial

g(x)?.

obtain polynomials the p and p’ and calculate a non trivial greatest common
divisor. This allows him to recover the Goppa polynomial ¢g(x). Hence, the

For each row of the binary generator matrix Gy, the cryptanalyst can

cryptanalyst gets all the secret keys and can apply the fast decoding algorithm.

It is interesting to note that if the cryptanalyst knows Ger and g(x) then this
still does not seem to permit an easy recovery of the ordering @, and hence does
not permit to obtain the fast decoding algorithm.

Another idea is finding an overlying generalized Reed-Solomon code for the
given Goppa code.

Shamir and Heiman [6] tried to break the McEliece PKC based on this idea.
They found a partial set of equations to obtain the private keys, but these have
too many solutions other than the private keys. Thus, they did not succeed in
the full breaking, but a GRS code can be extracted from their equations.

We present a new method of embedding the Goppa code into a GRS code
based on the Sidelnikov-Shestakov attack.

Recall that the parity check matrix of the Goppa code is given by the matrix

H=[o}/g(a;)], i=0,1,....1—1,j=12.n

over the large field GF(2™). It can be reduced to the systematic form Hg, =
[E; R], where E, is the ¢ x t identity matrix and R =[u;v;/(y; — y;)] is a gener-
alized Cauchy matrix.

The enemy party calculates from the public key Geyp any binary tm x n parity
check matrix Hy;,,. To embed the Goppa code in a GRS code, he should find
a non-singular square mt x mt matrix A = [a;;] and unknowns w;, v;, y;,y; such
that

AHy;, = B(H.,..) = [B(E,) B(R)
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for a bijective mapping B : GF(2™) — GF(2)". Let Hypy is the submatrix
of Hy;,, consisting of the first ¢ columns and Hyy,,, be the submatrix consisting of
the rest of the columns.

First, he solves a linear system

AHqy,,, = B(Ey)

of mt* equations in the m?t* unknowns a,;.
Then, for any solution A, he calculates AHgp,,, B~ (AHyp;,) and solves the
system

[uiv;/(yi — y;)] = B~ (AHqp,).

(this is the Sidelnikov-Shestakov attack).

If he succeeds, then the problem is solved. If not, he tries another solution
A. It can be shown that in average the number of attempts is restricted.

Embedding the Goppa code into a GRS code does not solve the problem of
breaking. It only allows to try to get the Goppa polynomial from H,,s. A regular
method for doing it has not yet been found.

Thus, there is still no progress in breaking the McFEliece PKC.

4.4. Modification the McEliece PKC: Introducing a hiding matrix.
The principle of a hiding matrix is proposed to modify the McEliece PKC. The
modified public key is as follows:

Gled = SG + X,

where X is a specific matrix of rank 1.

The main idea is as follows. A legal party chooses some random matrix X
as an extra secret key and adds it to the original public key to produce a new
modified public key. Thus any visible structure of the public key will be hidden.

The problem in adding a hiding matrix X to the McEliece PKC is to keep the
overall error lower than ¢, the error-correcting capacity of the legal users decoder,
for all possible messages. On the other hand, the hiding matrix should have as
many free parameters as possible. This dilemma can be solved at the expense
of having to lower the error-correcting capacity needed by the decoder from ¢ to
t — 1. So if the cryptanalyst can guess (or knows) the correct secret X, his job is
only slightly easier than for the original PKC.

The hiding matrix X is a secret & X n matrix of the form

a1
4P)

X = : (:1;1 Ty ... l’n), (172)

ag
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where (ay,az,...,ax) is a randomly chosen binary k-vector. The binary n-vector
x = (1, %2,...,%,) should be a leader of some coset of the Goppa code of weight
wH(X) =d—1=2¢.

Let m = (my,...,mx) be an information vector to be encrypted. A message

is then encrypted as
c:mGg;Od—l—e:chr—l—mX—l—e

where wgy(e) < t — 1 and not ¢, and x 4+ e should not be a codeword. The
weight wy(mX) can either be equal to 0, and then the overall error is t — 1, or
wg(mX) =d—1=2¢, and then, with d = 2t + 1, we see that

wg(mX+e)>d—1—-(t—-1)=1t+1,

so even if the enemy party knows a decoder correcting ¢ errors for the chosen
Goppa code, he cannot eliminate all the errors.

The legal user knows that mX is either 0 or x =(x1, ..., 2,,). So he first assumes
that mX = 0, and if the weight of the computed error is greater than ¢ for some
possible code vector, he adds x =(«1, ..., 2,) to the ciphertext and decodes once
again.

The advantages of this scheme lie in the greater difficulty for the cryptanalyst
to find the generator matrix Gey for the chosen Goppa code in virtue of the hiding
matrix X, for which a large choice exists. A regular method for determining
and eliminating the correct X has not yet been found. Moreover, even if the
cryptanalyst possesses an equivalent t-error-correcting decoder for Gep, 1t will
fail to correct all the ¢+ + 1 errors.

The disadvantages of the proposed system are, first, that the enemy cryptan-
alyst need only find a ¢t — 1 error-correcting decoder if he disposes of the hiding
matrix X (in McElieces proposal [4], t = 49 instead of 50), and, second, that the
legal user sometimes has to decode twice.

5. THE PUBLIC-KEY CRYPTOSYSTEM BASED ON RANK CODES
This cryptosystem is proposed in [12] and is known as GPT PKC.
5.1. Description.
Private keys
The legitimate user A chooses as private keys:

1. The generator k x n matrix G of an MRD code (see Section 2.4) of rank
distance d = 2¢ + 1:

[ g1 92 o Gn |
gi: 932 gl
G=|gl ¢ g . (173)
k—1 k—1 k—1
L9 g e gl
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Remark 3. Let U be an k X k diagonal matrix
U= diag[u,uq,uq2,...,uq ], (174)

where u € GI'(¢V), u# 0. Then the generator matrix

gl §2 Tt gn
gi: 932 gl
vy ~ o~ ~ 2
G=UG=|g @ - § , (175)
k=1 k=1 o~ k=1
g g gl

with g; = ug;, 7 = 1,2,...,n, defines the same MRD code C and has the same
structure. There are no other generator matrices of C of the same structure. In
particular, for some j, one can choose u = gj_l,ﬁj = 1. In this case, the elements
of the jth column are equal to 1.

2. A Fast Decoding Algorithm (see Section 2.4).

3. A non-singular scrambling matrix S of order k. This matrix is used to
scramble the generator matrix, i.e. to destroy any evident structure of the
generator matrix.

4. A randomly chosen k£ x n matrix X such that for any k-vector m the vector
mX has rank norm not greater than t; < ¢, where t; is a design parameter.

Such a matrix can be chosen as follows. Let A be a & x [ matrix of rank /
over the extended field GF(¢"), 1 <1< #. Let B be an [ x n matrix of rank #;
over the base field GF'(q). Then

X = AB. (176)
Indeed, for any k-vector m, we have
r(mX|g) = r(mAB|g) < min{r(m|q),r(Alq),r(Blg)} <t

because r(B|q) = t;.

The matrix B can be constructed as follows. First, choose a matrix By =
[Q O], where Q is an [ x #; matrix with entries in the extended GF(¢") and of
rank #; over the base field GF(q), and O is a [ x (n — #1) matrix of 0’s. Then
multiply By to the right by an n x n non-singular matrix P with entries in the

base field GF(q). It is clear, that r(B|g) = ¢;.

Public key
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The legitimate user A calculates the matrix

Cer = SG + X. (177)

The legitimate user A publishes the matrix Cep as a public keyin the directory,
in the hope that it is very difficult to get the secret matrices S, G and X separately
from eq.177.

Encryption
In this Cryptosystem, all the possible plaintexts (messages) are k-vectors
m = (mq,ma,...,my)

with components in GF(q).
It B wants to send a secret message to A, he chooses a plaintext m =
(my,ma,...,mg) and calculates the ciphertext ¢ as

c=mGeg +e=mSG+ (mX +e), (178)

where e is an artificial vector of errors of the rank ¢, =t — #; or less, randomly
chosen and added by the sending party. Note that, for any plaintext m, we have

rimX + e|q) < r(mX]q) +r(elq) <t +t2 =1t

Hence, in this cryptosystem, the set of ciphertexts is the set of all the possible

codewords of the chosen (n,k,d) MRD code corrupted by errors e of rank not
greater than ¢ = V_TIJ

Decryption

Upon receiving the ciphertext c,the legitimate receiver applies a fast decoding
algorithm (see Section 2.4) to obtain mS and then multiplies it by S™1 to obtain
the plaintext m.

5.2. Attacks on the GPT PKC. Two kinds of attacks on any PKC can
be considered. The first kind of attacks is based on getting a plaintext from an
intercepted ciphertext. The second kind of attack is based on getting private keys
from known public keys.
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Getting a plaintext from a ciphertext. The enemy party, after intercep-
tion of the ciphertext ¢, can try something like decoding by means of information
sets.

The chosen MRD code has dimension & = n — d + 1. Hence, if Hamming
weight of an error e is greater than or equal to d, then there is no error free
information set at all!

But most errors e of rank ¢t have Hamming weight greater than 2¢ and, there-
fore, this attack is absolutely inefficient. Indeed, it can be shown (see, for instance,
[11]) that the number A;(n) of n-vectors having rank s is given by

Au(n) = (@ = D" —q). . (@" =" = D" =) (¢" = ¢"")
) (¢ =D¢"=q) .. (¢ — ")

and the number A;(n, ) of n-vectors having simultaneously rank s and Hamming
weight ¢ > s is given by

(179)

Ay(n,4) = (”) z_j (—1)* (;) Ay(i — k). (180)

t k=0

Using eqs 179-180, one can show that the fraction of vectors of rank s and having
the Hamming weight greater than 2s is closed to 1 for large n.

For example, let ¢ = 2, n = N. Consider vectors of rank t = 1. We have,
Ai(n) = (2 —=1)% The number A;(n,i > 3) of vectors of rank 1 having Hamming

N N
weight greater than or equal to 2¢41 = 3 is equal to Al(n)—(QN—l)( ( | ) + ( 5 ) ).

Hence, the fraction 4 of non-correctable errors of rank 1 is

_Amiz3) NN +1)
T Aln) 0 22V —1)

If N =10, then v ~ 0.95.

The only possibility to get a plaintext from the intercepted ciphertext is an
exhaustive search for all possible errors of rank #; in a chosen information set of
lenght k. It requires about

W~ Ay, (k) > ¢WFE-th
arithmetical operations in the extended field GF(¢").
An illustrative example

Let ¢ =2, N =n = 20. Let us choose an (n, k,d) MRD code with parameters
n =20, k=12, d = 9. This code allows to correct errors of rank less than or
equal tot = 4. We can choose the design parameter t; = 2 or 3. The performance
of the designed cryptosystem is as follows:
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e Rate R =% = (.6.

n

e Size of the Public key n?k = 4800 bits.
o Work function W ~ 26! if t; =2, and W ~ 2% if ¢, = 3.

This example shows that we can get the same parameters as in the McEliece
cryptosystem using much a smaller size of the public key.

Getting the private key from the public key:
The Gibson Attack on the GPT PKC. In [12], a GPT PKC was proposed
with a special type of hiding matrix X. Namely, we considered the PKC with
the public key Ger = SG + X, where G is given by eq. 173. As for the hiding

matrix X, it was proposed to be of the form
X = a'b,

where a = (ay, as, ..., ay;) is a k-vector with nonzero components in GF(¢") and
b = (b1, b,...,b,) is an n-vector of rank t; over GF(q).

Remark 4. Note that, for any ¢ € GF'(¢V), ¢ # 0,
a'b =(ca’)(c™'b).

Hence, if the expression d = a1by + azbs + ... + a,b, is nonzero, then without loss
of generality one can put d = 1.

J.K. Gibson [13] investigated this type of the PKC carefully and found that
it can be broken from the practical point of view. We present the Gibson attack
in the new form based on the ideas of the Sidelnikov-Shestakov attack on the
Niederreiter cryptosystem:.

Rewrite Ger = SG + X as

Ga =S(G+Y), (181)
where Y = S™'X = S~ ta’b.
Denote .
Ct = (Co,Cl,...,Ck_l)t = S_la . (182)
Put b ::(bl,bg),xvhere b1 ::(bl,bg,...,bk) aﬂd,bg ::(bk+1,bk+2,...,bn»
Denote
G = [G1, G,

where G1 is a square submatrix of G of order £,

_91 92 Gk
9112 932 922
Gi=|gi ¢ - g : (183)
k-1 k-1 k—1
L9 9 gl ]
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and Gg is the rest of G,

9k+1 Gk+2 " Gn
g g . q
9r+1 Yiky2 9
— q2 q2 q2
Go=| Q41 Ghy2 - 9n
k-1 k-1 E—1
g g . q
L 9e+1 k42 9r ]

In a similar manner, we denote
X = [X1, X2,
Y =[Y1,Ys],
where X7,Y1 are square matrices of order k, and
Y: =S"1X;1=c'by,
Y2 = S7'Xo=c'b,.
Reduce the public key Gep to the systematic form
Gsyst = (SG1 + X)) 'Ger = [E; R,
where Ej. is the identity matrix of order &, and
R = [Ri;],
1=0,1,....k—1; 5=k+1,k+2,...,n.
Calculate (G2 + Y2) = (G1 + Y1)R, or,

GiR=G2+Y2—Y1R.

56

(184)

(185)

(186)

In eq. 186, the matrix R is known but other matrices Gi1,G2,Y1, Y2 are un-
known. If one somehow gets a solution of eq. 186, where G1, Ga are of the form
(183)-(184) and where Y1,Y2 are of the form (185), one can also obtain the
matrix S from Eq (181) as well as the matrix X = SY. This means that one gets

all the private keys.
We rewrite eq. 186 in the different form.
By definition, put

N—-1 N—k+1 t

ft:(fo,fl,...,fk_l)t:(Co,C% ,...,CZ_I ) .

Put
d — (dk+1, dk_|_2, e ,dn) — b2 - blR

(187)

(188)
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From the matrix equation (186), we obtain

(GlR) .= (Gz +Ys — YlR)

2,] 1,77
t=0,1,....k=1; y=k+1,k+2,....n,
or, using the notations (183), (184), (182), (185), (188),

9f Roj+ 98 B+ 49} Biorj=g] +ci(ba—biR), = g7 +¢id;,
(189)
1=0,1,...,k=1; g=k+ 1, k+2,....n.

For any 7, 0 < ¢ < k — 1, raise eq. 189 to the power ¢V . Since gqN =g,
N—1
if g € GF(¢") and ¢! = f; by (187), we obtain the following system of the

k(n — k) algebraic equations

N—i N—i N—i N—i
aRe; +eRi; +... vl ;=g +fid
(190)
t=0,1,....k=1; y=k+1,k+2,....n,

where g =(g1,92,---,9n), £ =(fo, 1, fo—1), d =(dks1,dry2,...,d,) are the

2n unknowns. Using the matrix notations, we can also rewrite this system as

g1Ryxi1 = grria +f Dy,
g1Ryi2 = grioa +f Do,
g1Rk13 = gsrsa+ £ Diys, (191)

gan = gna‘|‘fDn7

where I N—1 Nek+t1
q gV gV
fog  Jog Hog
—1 —k4+1
g g g
R‘ _ R17] 17] R17]
J . )
N N-1 N—k+1
g g g
Ri_; Riy Ry
j=k+1,k+2,....n
are the known matrices, g1=(¢1,92,...,9%), a=(1,1,...,1) is a k-vector of 1’s,

and Dj = diag[d? ,d!"

7 2 Uy 5.

N— . .
L, dl l,j=k+1,k+2,...,n, are diagonal ma-
trices.

Solving the system (191) leads to breaking the PKC as mentioned above.

The solution proceeds in two stages. In the first stage, we obtain g1= (g1, g2, . . .

and grt1,9k+2, dkt1,diye,diys. In the second stage, we get the rest of the un-
knowns.

7gk)
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Stage 1

Consider the three first matrix equations of (191):

g1Rxt1 = grpia+ fDyyq, (192)
g1Rki2 = gryoa + f Dyyo, (193)
g1Rk 3 = grisa + 1 Dyys. (194)

Assume without loss of generality that grys = 1 (see Remark 3) and dyi3 =
1, Dx,3 = E (see Remark 4). It may happen that dy13 = 0 in (188). Then we
can find another non-zero d; and put d; = 1.

We can also guess a value of diiz2, respectively, Dxyo. If dpyo is guessed
correctly then the other unknowns can be obtained rather easily as follows.

Using (194) to eliminate f from (193) yields

g1 = k422 + w,
(195)
f =grior+s

where
Z=a (Rk+2 - Rk+3Dk+2) )
r= ZRk+37

W = _aDk-|—27

s = wWRg,3—a

are the known vectors (provided that the matrix Ry o — Rg 3Dx 2 is non-
singular.)
Using (195) to eliminate f and gy from (192) yields

gry2 (Z —rDyi1) = grp1a +sDyyr + t, (196)

where t = —wRy ;1 is the known vector. Hence, we obtain a system of £ equa-
tions in the three unkowns ¢xy1, gxt9, dry1. Since this system is a linear one with
respect to the unknowns gg11, gry2, it has a solution if the k-vectors

a7
zZ— er-I—lv

are linearly dependent. This means that all the successive 3-determinants must
be equal to zero. For instance, the first of such a determinant has the form

1 1 1
N N-1 N-2
s —ridi gz —rediy oz —radi, | =0. (197)

N N-1 N-2
tl + 51d2+1 tg + 52d2+1 t3 + Sgdz_l_l
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It we denote y := dZJ_T_IZ), we obtain from eq. 197 the first algebraic equation of
degree ¢* + ¢ in the unknown y. Similarly, the second determinant is

1 1 1

N-1 N-2 N-3
g g g
29 —rodpy  z3—radi, za—radpy, | =0. (198)

N-—-1 N-=-2 N-=-3
q q q
ty + 82dk_|_1 i3+ 83dk_|_1 1y + 84dk_|_1

If we raise this equation to the power ¢, we can obtain a second equation of
degree ¢? 4+ ¢ in the unknown y, and so on. Hence, we get the system of k — 2
equations of degree ¢* + ¢ in the only unknown y. One can use the Euclidean
division algorithm or another method, to solve this system. If y = dzj_lv_f is a
solution, we get the unknowns ¢x11, gr12 from eq. 196.

Gibson’s procedure includes the guessing of a value of diio, the solving of
linear equations and the solving of polynomial equations of degree ¢* 4+ ¢. In the

binary case, ¢ = 2, the complexity of his algorithm is at worst O(n®2").
Stage 2
Now, consider the fourth equation of the system (191):

g1Rkt4 = gryaa + fDyyy. (199)

Since g1 and f are already known from Stage 1, we can get from eq. 199 the
unknowns ¢ri4 and dpi4 using the same method as for getting dip,; at Stage 1.
In a similar manner, we obtain the remaining unknowns g;,d;, 7 =k+5,...,n.
In general, the number of calculations to solve the system (191) increases
exponentially with length n. But for the practical range 20 < n < 30, the Gibson
attack breaks the GPT PKC with a hiding matriz X of rank 1 over GF(q).

5.3. How to Avoid the Gibson Attack. The only modification needed is
more a careful choice of the hiding matrix X. Generally, a matrix X must be of
rank ?; over the base field GF(q) but it may be of rank 1 to #; over the extended
field GF(¢"). Recall that ¢; is a design parameter of the PKC.

Now, we have to choose this matrix having rank ¢; also over the extended
field GF(¢"). Namely let X = AB, where A is a k x #; matrix of full rank #
over GF(¢"), and B is a #; x n matrix of full rank both over the extended field
GF(¢"Y) and over the base field GF'(q).

It is clear that the matrix X also is a matrix of full rank #; both over the
extended field GF(¢") and over the base field GF'(q).

The matrix B can be constructed as follows. First, choose a matrix Bo=[Q O],
where Q is a nonsingular square matrix of order #; with entries in GF(¢"), and
O is a t; X (n — t1) matrix of 0’s. Then multiply Bg to the right by an n x n
nonsingular matrix P with entries in the base field GF(p).

Gibson’s approach can be also applied to this case.
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By definition, put C = [Cy;] = S7LA, F = [f;;] = [CZ. . Put B = [B; Ba),
where B4 consists of the first £ columns of B. Put
d=1[d;;] =B2—BiR,
1=1,2,...,t; g =k+1,k+2,...,n.

Then from eq. 186 one can obtain, after some manipulations, the following
system of equations

N—i N—i N—i N—i
glR%,j + 9233,]‘ + ...+ gkRZ—l,j =g; + Z?:l fisdg,j
(200)
t=0,1,....k=1; g=k+1,k+2,....n,
where ¢;, fis, ds; are the unknowns. In the matrix notations, we have
t1
giRki1 = grpia+ > F, Dy,
525:11
giRx 2 = groa+ Y F, D k.2,
s=1
t1
201
g1Rk13 = gpyza + Z F;D,x43, (201)
s=1

t1
gan = gna + Z F st,n7

s=1

o N-1 N—k+1

q q
LAl

s, " Ys,g

where D5 = diag[d
(fO,sa fl,sa sy fk—l,s)-

Again, one can assume without loss of generality that grys = 1 and that
D;x.3 = diag[l,1,...,1], s =1,2,...,t;. But to solve eq. 201, one has to guess
the values of #; the unknowns D,y 2, s = 1,2,...,#;. In this case, Gibson’s

, j=k+1,k4+2....n and F, =

procedure includes the solving of linear equations and the solving of systems of
polynomial equations each in ¢; variables of degree ¢"*™* + ¢t 4+ ...+ ¢. In the
binary case, ¢ = 2, the complexity of his algorithm is at least O(n%2""). This
seems to be infeasible even for ¢; = 2 and for the practical range 20 < n < 30.
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6. COMPARISON OF THE THREE PUBLIC-KEY CRYPTOSYSTEMS

For purpose of comparison. we choose the McEliece example and examples of the
Niederreiter PKC and the GPT PKC with comparable performance.

PKC Parameters Size of Public Workfunction
keys (bits)

McEliece binary, n = 1024, Large: 5 x 10> > 2%
k=524, t =50

Niederreiter ¢-ary, ¢ =n = 128 Reasonable: Poor: O(n?)
d=64, r =63 32,000

Niederreiter The same The same > 27

modified

GPT q=2% n =20, Good: Poor: O(n®2")
d=9, k=12, t; =1 4800 > 246

GPT q=2% n =20, The same Good: O(n®2%")

modified 1 d=9, k=12, t; =2 > 266

GPT q=2% n =20, The same Good: O(n®2%")

modified 2 d =11, k=10, t; =3 > 286

The McEliece PKC seems to be secure even without any modification. The
reason is that Goppa codes are subfield subcodes over GGF'(2) and there exist
too many GRS codes containig them as subcodes. Thus, there is no evident way
to find a Goppa polynomial or a suitable GRS code from a scrambled generator
matrix. A modification of the McEliece cryptosystem is useful if the breaking
party has extra information on the ordering @ = (a1, @z, ..., a,). A disadvantage
of this PKC is the large size of the Public ley.

The Niederreiter and GPT PKC’s are defined over large alphabets. The weak-
ness of such a kind of PKC is due the very regular structure of the generator or
parity check matrices, even if scrambled . A hiding of the public keys by means
of adding carefully chosen matrices prevents known attacks and provides security
of this PKC.

The GPT PKC based on rank codes seems to be the best one due to the
relatively small size of the public key. However, it is large compared to the
ones used in the Rivest-Shamir-Adleman PKC [3]. Nevertheless, the GPT PKC
can be used in practical applications because of the very easy procedure of key
generation.
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7. CONCLUSION
The security of the public-key cryptosystems based on linear codes depends on
a few open problems. Only if these have been solved, a final conclusion will be
possible. These problems are listed below.

Main problem

Let C be a general linear (n, k, d)-code of lenght n, dimension k£ and Hamming
distance d.
Problem: For the given n-vector y, find a code vector g € C such that

di (y,g) < 1= V;—IJ

If this problem belongs to the class P, then the McEliece- and the Niederreiter
PKC would be insecure.

It is known, that the problem "Find a code vector g such that dy(y,g) =
min” is hard for the Hamming metric [5].

Breaking the McEliece PKC

Let G be a binary generator matrix of a Goppa code of length n = 2™ and let
g(x) be the corresponding Goppa polynomial of degree ¢. This means that each
row of the generator matrix satisfies the condition

n

ng

s=1 T — Qs

=0 mod g(x),

for some ordering
a=(ap,ag,...,0n)
of the elements of the field GF(2™).
Problem: Using G, find the ordering o = (o, g, . ...

g(z).

, &) and the polynomial

Breaking the Niederreiter PKC
Let the field GF(q) be given. Consider the system of algebraic equations in

the n unknowns Ay, Ao, ..o, Ap, 1, V2 e ooy Vn g
r 1 1 1 ]
Siy g1 =M1 Vi Siq 52 =M1 Via Si g5 =M1 Via
1 1 1
det
Siy g1 =Nig¥in Sigga TMia¥in  Singz —MaVig 0’
(202)
1 1 1
L Sigg1—Mavi Sig g9 =M3Via Sig,js ~AigVis

1§i1<i2<i3§k; 1§j1<j2<j3§n—k
Problem: For the given S;;, 1 <¢ <k, 1 <j <n —k, find a solution of

this system.
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Breaking the GPT PKC

Let the field GF(q) be given. Consider the system of algebraic equations in
n+kti + (n—k)t1 = n (1l 4+ t1) unknowns ¢;, fis, ds;

N—1

N—2 N—2 N—z
glR%,j + ng%J +...+ gkRZ_L]' =g; + Z?:l fisdgm )
t=0,1,....k=1; g=k+1,k+2,... . n.

Problem: For the given R;;, 0 <: <k —1, k+1 <y <mn, find a solution
his system.
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