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The frational alulus may be onsidered an old and yet novel topi. It is anold topi sine, starting from some speulations of G.W. Leibniz (1695, 1697)and L. Euler (1730), it has been developed up to nowadays. In fat the ideaof generalizing the notion of derivative to non integer order, in partiular tothe order 1/2, is ontained in the orrespondene of Leibniz with Bernoulli,L'Hôpital and Wallis. Euler took the �rst step by observing that the resultof the evaluation of the derivative of the power funtion has a a meaning fornon-integer order thanks to his Gamma funtion.A list of mathematiians, who have provided important ontributions up tothe middle of the 20-th entury, inludes P.S. Laplae (1812), J.B.J. Fourier(1822), N.H. Abel (1823-1826), J. Liouville (1832-1837), B. Riemann (1847),H. Holmgren (1865-67), A.K. Gr�unwald (1867-1872), A.V. Letnikov (1868-1872), H. Laurent (1884), P.A. Nekrassov (1888), A. Krug (1890), J. Hadamard(1892), O. Heaviside (1892-1912), S. Pinherle (1902), G.H. Hardy and J.E.Littlewood (1917-1928), H. Weyl (1917), P. L�evy (1923), A. Marhaud (1927),H.T. Davis (1924-1936), A. Zygmund (1935-1945), E.R. Love (1938-1996), A.Erd�elyi (1939-1965), H. Kober (1940), D.V. Widder (1941), M. Riesz (1949),W. Feller (1952).However, it may be onsidered a novel topi as well, sine only from less thanthirty years it has been objet of speialized onferenes and treatises. For the�rst onferene the merit is asribed to B. Ross who organized the First Con-ferene on Frational Calulus and its Appliations at the University of NewHaven in June 1974, and edited the proeedings [79℄. For the �rst monographthe merit is asribed to K.B. Oldham and J. Spanier [71℄, who, after a jointollaboration started in 1968, published a book devoted to frational alulusin 1974.Nowadays, to our knowledge, the list of texts in book form devoted to fra-tional alulus inludes less than ten titles, namely Oldham & Spanier (1974)[71℄ MBride (1979) [63℄, Samko, Kilbas & Marihev (1987-1993) [83℄, Nishi-moto (1991) [70℄, Miller & Ross (1993) [64℄, Kiryakova (1994) [46℄, Rubin(1996) [80℄, Podlubny (1999) [74℄, among whih the enylopaedi treatiseby Samko, Kilbas & Marihev is the most prominent. Furthermore, we re-all the attention to the treatises by Davis (1936) [17℄, Erd�elyi (1953-1954)[22℄, Gel'fand & Shilov (1959-1964) [26℄, Dzherbashian [19,20℄, Caputo [13℄,Babenko [4℄, Goreno & Vessella [37℄, whih ontain a detailed analysis ofsome mathematial aspets and/or physial appliations of frational alu-lus, although without expliit mention in their titles.For details on the historial development of the frational alulus we referthe interested reader to Ross' bibliography in [71℄ and to the historial notesgenerally available in the above quoted texts.2



In reent years onsiderable interest in frational alulus has been stimulatedby the appliations that it �nds in di�erent �elds of siene, inluding nu-merial analysis, physis, engineering, biology, eonomis and �nane. In thisrespet we quote the olletion of artiles on the topi of Frational Di�eren-ing and Long Memory Proesses, edited by Baillie & King (1996), appeared asa speial issue in the Journal of Eonometris [5℄, the book edited by Carpin-teri and Mainardi (1997), ontaining leture notes of a CISM Course devotedFratals and Frational Calulus in Continuum Mehanis [15℄, and �nally theforthoming book edited by R. Hilfer (2000), ontaining invited ontributionsin some areas of physis [41℄.B. Approahes to Frational CalulusThere are di�erent approahes to the frational alulus whih, not being allequivalent, have lead to a ertain degree of onfusion and several misunder-standings in the literature. Probably for this the frational alulus is in someway the "blak sheep" of the analysis. In spite of the numerous eminent math-ematiians who have worked on it, still now the frational alulus is objetof so many prejudies.In these review letures we essentially onsider and develop two di�erentview-points to the frational alulus: the ontinuous view-point based on theRiemann-Liouville frational integral and the disrete view-point based on theGr�unwald-Letnikov frational derivative. Both approahes turn out to be use-ful in treating our generalized di�usion proesses in the theory of probabilityand stohasti proesses.We use the standard notationN, Z,R,C to denote the sets of natural, integer,real and omplex numbers, respetively; furthermore, R+ and R+0 denote thesets of positive real numbers and of non-negative real numbers, respetively.Let us remark that, wanting our letures to be aessible to various kinds ofpeople working in appliations (e.g. physiists, hemists, theoretial biologists,eonomists, engineers) we have deliberately and onsiously as far as possibleavoided the language of funtional analysis. We have used vague phrases like"for a suÆiently well behaved funtion" instead of onstruting a stage ofpreisely de�ned spaes of admissible funtions. We have devoted partiularattention to the tehniques of Fourier and Laplae transforms: orrespondinglyour funtions are required to belong to the spae L1(R) (summable funtions inall ofR) or Llo(R+0 ) (summable funtion in any �nite inerval ofR+0 ) :We haveextended the Fourier and Laplae transforms to the Dira "delta funtion" inthe typial way suitable for appliations in physis and engineering, withoutadopting the language of distributions. We kindly ask speialists of these �eldsof pure mathematis to forgive us. Our notes are written in a way that makesit easy to �ll in details of preision whih in their opinion might be laking.3



The ontinuous view-point to frational alulusThe starting point of the so alled Riemann-Liouville frational alulus is theintegral formula (attributed to Cauhy) that redues the alulation of then�fold primitive of a (suÆiently well behaved) funtion �(x) (x 2 [a; b℄ � R ;�1 � a < b � +1) to a single integral of onvolution type. Indeed, for anyn 2 N ; the repeated integralIna+ �(x) := xZa xn�1Za : : : x1Za �(x0) dx0 : : : dxn�1 ; a � x < b ;whih provides the n�fold primitive �n(x) ; vanishing at x = a with its deriva-tives of order 1; 2; : : : ; n � 1 ; an be written beause of the Cauhy formulaas Ina+ �(x) = �n(x) = 1(n� 1)! xZa (x� �)n�1 �(�) d� ; a � x < b : (B:1)Then, in a natural way, one is led to extend the above formula from positiveinteger values of the index n to any positive real values by using the Gammafuntion. Indeed, noting that (n � 1)! = �(n) ; and introduing the arbitrarypositive real number � ; one de�nes the frational integral of order � > 0 asI�a+ �(x) := 1�(�) xZa (x� �)��1 �(�) d� ; a < x < b � > 0 : (B:2)A dual form of the above integral isI�b� �(x) := 1�(�) bZx (� � x)��1 �(�) d� ; a < x < b � > 0 : (B:3)We refer to the frational integrals I�a+ and I�b� as progressive and regressive,respetively. For omplementation we de�ne I0a+ = I0b� := I (Identity oper-ator), i.e. we mean I0a+ �(x) = I0b� �(x) = �(x) : Furthermore, by I�a+�(a+) ;I�b��(b�) ; we mean the limits (if they exists) of I�a+�(x) for x ! a+ andI�b��(x) for x! b� ; respetively; these limits may be in�nite.The most ommon hoies onerning the interval [a; b℄ are the whole set ofreal numbers R (i.e. a = �1 ; b = +1), onsidered by Liouville [50{52℄, andthe set of non negative real numbers R+0 (i.e. a = 0 ; b = +1), onsidered byRiemann [77℄. We note that the frational integrals over in�nite intervals, es-peially the regressive one, were named in many later papers as Weyl integrals.Weyl [89℄ arrived at these indiretly by de�ning frational integrals suitablefor periodi funtions. We thus agree to refer to these integrals as Liouville-Weyl frational integrals. In these letures we shall use the simpli�ed notationI�+ and I�� when a = �1 and b = +1 ; respetively.4



We also note that, before Riemann, frational integrals with a = 0 have beenonsidered by Abel [1,2℄ when he introdued his integral equation, named afterhim, to treat the problem of the tautohrone. It was Abel who gave the �rstappliation of frational alulus to mehanis in solving his problem by in-verting the frational integral, see e.g. Goreno & Vessella (1991) [37℄. In theseletures we agree to refer to the frational integral I�0+ as to Abel-Riemannfrational integral; for them we use the speial and simpli�ed notation J� inagreement with the notation introdued by Goreno & Vessella (1991) [37℄and then followed in any paper of ours.Before introduing the frational derivative let us point out the fundamentalproperty of the frational integrals, namely the semi-group property aordingto whih I�a+ I�a+ = I�+�a+ ; I�b� I�b� = I�+�b� ; � ; � � 0 : (B:4)The frational derivative of order � an be introdued as the left inverse ofthe orresponding frational integral, so extending the similar property of theommon derivative of integer order. In fat it is straightforward to reognizethat the derivative of any integer order n = 0; 1; 2; : : :Dn �(x) = dndxn �(x) = �(n)(x) ; a < x < bsatis�es the following omposition rules with respet to the repeated integralsof the same order n ; Ina+ �(x) and Inb� �(x)8>>><>>>:Dn Ina+ �(x) = �(x) ;Ina+Dn �(x) = �(x)� n�1Xk=0 �(k)(a+)k! (x� a)k ; a < x < b ; (B:5a)8>>><>>>:Dn Inb� �(x) = (�1)n�(x) ;Inb�Dn �(x) = (�1)n (�(x)� n�1Xk=0 �(k)(b�)k! (b� x)k) ; a < x < b : (B:5b)As a onsequene of (B.3-5) the left-inverse of the frational integrals I�a+ ; I�b�may be de�ned by introduing the positive integerm suh thatm�1 < � � m :Then one de�nes the frational derivative of order � > 0 as8><>:D�a+ �(x) := Dm Im��a+ �(x) ;D�b� �(x) := (�1)mDm Im��b� �(x) ; a < x < b ; m�1 < � � m : (B:6)In fat, taking for example the progressive operators, we getD�a+ I�a+ = Dm Im��a+ I�a+ = Dm Ima+ = I :5



The frational derivatives, like the frational integrals, turn out to be on-tinuous with respet to the order, reduing to the to the standard repeatedderivatives when the order is an integer. However, when the order is not inte-ger, the frational derivatives (namely the "proper" frational derivatives) donot follow neessarily the "semi-group" property of the frational integrals: inthis respet the starting point a 6= �1 (or the ending point b 6= +1) playsa "disturbing" role. Furthermore we stress the fat that "proper" frationalderivatives are non-loal operators being expressed by ordinary derivatives ofonvolution integrals with a weakly singular kernel. We note that the fra-tional integrals ontain a weakly singular kernel only when the order is lessthan one.The disrete view-point to frational alulusIn all the above approahes in whih the frational derivatives are de�ned asthe left inverse of the orresponding frational integrals, the frational dif-ferentiation is seen as a sort of integration of order �� : A totally di�erentapproah arises from the desire to properly generalize the fat that ordinaryderivatives are limits of di�erene quotients. Let T h denote the translation bya step of length h > 0 T h �(x) = �(x� h) : (B:7)The bakward �nite di�erene of order � is de�ned as��h �(x) := (I� T h)� �(x) = 1Xk=0 (�1)k  �k!�(x� kh) ; (B:8)where I = T 0 ; the identity, and �k! = �(�� 1) : : : (�� k + 1)k! = �(�+ 1)�(k + 1) �(�� k + 1) : (B:9)For � 2 N it redues to the familiar bakward �nite di�erene of integerorder. For � 62 N we note the asymptoti behabviour����� �k!����� = �(�+1) j sin(��)j� j�(k � �)j�(k + 1) � �(�+1) j sin(��)j� k�(�+1) as k !1 :Gr�unwald (1867) [39℄ and Letnikov (1868) [47℄ developed an approah to fra-tional di�erentiation based on the de�nitionD�+ �(x) = limh!0+ ��h �(x)h� : (B:10)While the arguments of the �rst author were rather formal, the latter gave arigorous onstrution of the theory of frational integro-di�erentiation on thebasis of suh a de�nition. Letnikov had in partiular shown that thus de�ned6



D��+ �(x) oinides with our Liouville-Weyl frational integral I�+ and with ourAbel-Riemann frational integral J� under the appropriate interpretation ofthe frational di�erene ��h �(x) : He proved the semigroup property withinthe framework of de�nition (B.10).Hilfer (1997) [40℄ has pointed out that there are several possibilities to de�nethe limit of the frational �nite di�erene quotient, e.g. point-wise, almosteverywhere, or in the norm of a Banah spae. The hoie depends upon thequestion at hand. Furthermore he notes that eq. (B.8) suggests it is also pos-sible to de�ne frational derivatives as frational powers of the di�erentiationoperator following the approah started by Balakrishnan (1958, 1959, 1960)[6{8℄ and Westphal (1974) [88℄. More generally one may onsider frationalpowers of the in�nitesimal generators of strongly ontinuous semi-groups.Finally, a mixed approah to the frational alulus, namely ontaining in-tegrals and �nite di�erenes, is to de�ne the frational derivatives trying toreplae � with �� diretly in the above Riemann-Liouville frational inte-grals. However the resulting integrals are divergent (with hyper-singular ker-nels) and need to be regularized by using the tehniques of Hadamard's �nitepart. This approah was suessfully pursued by Marhaud (1927) [62℄. It isinteresting to note that both Liouville and Riemann dealt with the so-alled"omplementary" funtions whih arise when one attempts to treat frationaldi�erentiation of order � as frational integration of order �� ; see Samko,Kilbas & Marihev (1993) ([83℄, p. xxix and Historial Notes in x4.1, x9.1).The plan for the following setionsLet us now explain the ontents of the following setions. Setions C and Dwill be devoted to the ontinuous view-point to frational aluls. In setion Cwe start from the Liouville-Weyl frational integrals to arrive at the frationalderivatives in the sense of Riesz and Feller. These derivatives are suitable togeneralize the standard di�usion equation by replaing the seond-order spaederivative. In view of this we shall onsider funtions of the spae variable x ;denoted by �(x) ; and apply the Fourier transform. In setion D we start fromthe Abel-Riemann frational integrals to arrive at the frational derivativesin the sense of Caputo. These derivatives are suitable to generalize the stan-dard di�usion equation by replaing the �rst-order time derivative. In view ofthis we shall onsider funtions of the time variable t ; denoted by  (t) ; andapply the Laplae transform. In setion E we shall provide some details onthe disrete view-point to frational alulus based on the Gr�unwald-Letnikovdi�erene sheme and its variants. These shemes turn out to be useful in theinterpretation of the spae or time frational di�usion proesses by random-walk models. Finally setions F and G are devoted respetively to the speialfuntions of the Mittag-le�er and Wright type, whih play a fundamental rolein our appliations of the frational alulus.7



C. Frational Calulus aording to Riesz and FellerIn this Setion the funtions under onsideration are assumed suÆiently wellbehaved in L1(R) to ensure the existene of the Fourier transform or its in-verse, as required. In our notation the Fourier transform and its inverse read8>>>>>>><>>>>>>>: b�(�) = F [�(x)℄ = +1Z�1 e+i�x �(x) dx ;�(x) = F�1 h b�(�)i = 12� +1Z�1 e�i�x b�(�) d� ; (C:1)where � 2 R ; denotes the Fourier parameter. In this framework we also on-sider the lass of pseudo-di�erential operators of whih the ordinary repeatedintegrals and derivatives are speial ases. A pseudo-di�erential operator A,ating with respet to the variable x 2 R ; is de�ned through its Fourierrepresentation, namely +1Z�1 e i�xA�(x) dx = bA(�) b�(�) ; (C:2)where bA(�) is referred to as symbol of A : An often appliable pratial ruleis bA(�) = �A e�i�x� e+i�x ; � 2 R : (C:3)If B is another pseudo-di�erential operator, then we have dAB(�) =bA(�) bB(�) :For the sake of onveniene we shall adopt the notation � to denote thejuxtaposition of a funtion with its Fourier transform and that of a pseudo-di�erential operator with its symbol, namely�(x) � b�(�) ; A � bA :The Liouville-Weyl frational integrals and derivativesWe now onsider the pseudo-di�erential operators represented by the Liouville-Weyl frational integrals and derivatives. The Liouville-Weyl frational inte-grals (of order � > 0 for a well-behaved funtion �(x) with x 2 R ) arede�ned 8>>>>>><>>>>>>: I�+ �(x) := 1�(�) xZ�1(x� �)��1 �(�) d� ; � > 0 ;I�� �(x) := 1�(�) +1Zx (� � x)��1 �(�) d� ; � > 0 : (C:4)
8



For omplementation we put I0� := I (Identity operator), as it an be justi�edby passing to the limit �! 0 :The Liouville-Weyl integrals possess the semigroup property, i.e.I�+ I�+ = I�+�+ ; I�� I�� = I�+�� ; for all � ; � � 0 : (C:5)The Liouville-Weyl frational derivatives (of order � > 0) are de�ned as theleft-inverse operators of the orresponding Liouville-Weyl frational integrals(of order � > 0), i.e. D�+ I�+ = D�� I�� = I : (C:6)Therefore, introduing the positive integer m suh that m � 1 < � � m andrealling that Dm Im+ = I and Dm Im� = (�1)m I ; we haveD�� �(x) = (�(Dm Im��� )�(x) ; if m� 1 < � � m ; m odd;(Dm Im��� )�(x) ; if m� 1 < � � m ; m even. (C:7)For omplementation we put D0� := I (Identity operator).We note that a suÆient ondition that the integrals entering I�� in (C.4)onverge is that � (x) = O �jxj����� ; � > 0 ; x! �1 :Integrable funtions satisfying these properties are sometimes referred to asfuntions of Liouville and Weyl lass, respetively, see Miller & Ross (1993)[64℄. For example power funtions jxj�Æ with Æ > � > 0 and x < 0 and exwith  > 0 are of Liouville lass. For these funtions we obtain8>>>><>>>>: I�+ jxj�Æ = �(Æ � �)�(Æ) jxj�Æ+� ;D�+ jxj�Æ = �(Æ + �)�(Æ) jxj�Æ�� ; Æ > � > 0 ; x < 0 ; (C:8)and 8><>: I�+ e x = �� e x ;D�+ e x = � e x ;  > 0 ; x 2 R : (C:9)The symbols of the frational Liouville-Weyl integrals and derivatives an beeasily derived aording to8><>: I�� � (�i�)�� = j�j�� e�i (sign�)��=2 ;D�� � (�i�)+� = j�j+� e�i (sign �)��=2 : (C:10)9



The Riesz frational integrals and derivativesThe Liouville-Weyl frational integrals an be ombined to give rise to theRiesz frational integral (usually alled Riesz potential) of order �, de�ned asI�0 �(x) = I�+�(x) + I���(x)2 os(��=2) = 12 �(�) os(��=2) +1Z�1jx��j��1 �(�) d� ; (C:11)for any positive � with the exlusion of odd integer numbers for whihos(��=2) vanishes. Using (C.10-11) the symbol of the Riesz potential turnsout to be I�0 � j�j�� ; � > 0 ; � 6= 1 ; 3 ; 5 : : : : (C:12)In fatI�+ + I�� � " 1(�i�)� + 1(+i�)� # = (+i)� + (�i)�j�j� = 2 os(��=2)j�j� :We note that, at variane with the Liouville-Weyl frational integral, the Rieszpotential has the semigroup property only in restrited ranges, e.g.I�0 I�0 = I�+�0 for 0 < � < 1 ; 0 < � < 1 ; � + � < 1 : (C:13)From the Riesz potential we an de�ne by analytial ontinuation the Rieszfrational derivative D�0 , inluding also the singular ase � = 1 ; by formallysetting D�0 := �I��0 � �j�j� ; where the minus sign has been put in order toreover for � = 2 the standard seond derivative. Restriting our attention tothe range 0 < � � 2 the expliit orret de�nition turns out to beD�0 �(x) := �I��0 �(x) := 8>><>>:�D�+ �(x) +D�� �(x)2 os(��=2) if � 6= 1 ;�DH �(x) ; if � = 1 ; (C:14)where H denotes the Hilbert transform operator de�ned byH �(x) := 1� +1Z�1 �(�)x� � d� = 1� +1Z�1 �(x� �)� d� ; (C:15)the integral understood in the Cauhy prinipal value sense. Inidentally, wenote that H�1 = �H : By using the rule (C.3) we an derive the symbol ofH ; namely H � H = i sign� : (C:16)The expressions in (C.14) an be easily veri�ed by manipulating with symbols10



of "good" operators as belowD�0 := �I��0 � �j�j� = 8>><>>:�(�i�)� + (+i�)�2 os(��=2) = �j�j� ; if � 6= 1 ;+i� � isign� = �� sign� = �j�j ; if � = 1 :In partiular, from (C.14) we reognize thatD20 = 12 �D2+ +D2�� = 12  d2dx2 + d2dx2! = d2dx2 ; but D10 6= ddx :We also reognize that the symbol of D�0 is just the logarithm of the hara-teristi funtion of a symmetri L�evy stable pdf .In general, the Riesz frational derivative D�0 turns out to be related to the�=2-power of the positive de�nite operator �D2 = � d2dx2 sine, as noted byFeller (1952) [23℄,�j�j� = � ��2��=2 � D�0 = � � d2dx2!�=2 ; (C:17)whereas the two Liouville-Weyl frational derivatives are related to the �-power of the �rst order di�erential operator D = ddx : We note that it wasBohner (1949) [11℄ who �rst introdued the frational powers of the Laplaianto generalize the di�usion equation.We would like to mention the "illuminating" notation introdued by Zaslavsky,see e.g. Saihev & Zaslavsky (1997) [81℄, to denote our Liouville-Weyl andRiesz frational derivativesD�� = d�d(�x)� ; D�0 = d�djxj� ; 0 < � � 2 : (C:18)We now point out that other expressions for D�� and heneforth D�0 are ob-tained by "regularizing" the hyper-singular integrals I��� for 0 < � � 2 :This "regularization", based on a former idea by Marhaud, see e.g. Mar-haud (1927) [62℄, Samko, Kilbas & Marihev (1993) [83℄, Hilfer (1997) [40℄,is noteworthy sine it leads to a disretization of the operators of frationalderivative, alternative to that based on the Gr�unwal-Letnikov method.Let us �rst onsider from (C.7) the operatorD�+ := I��+ := ddx I1��+ ; 0 < � < 1 : (C:19)We have, see Hilfer (1997) [40℄, 11



D�+ �(x) := I��+ �(x) = ddx I1��+ �(x)= 1�(1� �) ddx xZ�1 (x� �)�� �(�) d�= 1�(1� �) ddx 1Z0 ��� �(x� �) d�= ��(1� �) 1Z0 �0(x� �) 1Z� 1�1+� d� d� ;so that, interhanging the order of integration,D�+ �(x) = ��(1� �) 1Z0 �(x)� �(x� �)�1+� d� ; 0 < � < 1 : (C:20)Here �0 denotes the �rst derivative of � with respet to its argument. TheoeÆient in front to the integral in (C.20) an be re-written, using knownformulas for the Gamma funtion, as��(1� �) = � 1�(��) = �(1 + �) sin ��� : (C:21)Similarly we get forD�� := I��� = � ddx I1��� ; 0 < � < 1 ; (C:22)D�� �(x) = ��(1� �) 1Z0 �(x+ �)� �(x)�1+� d� ; 0 < � < 1 : (C:23)Similar results an be given for 1 < � < 2 :Realling from (C.14) the frational derivative in Riesz's senseD�0 �(x) := �D�+ �(x) +D�� �(x)2 os(��=2) ; 0 < � < 1 ; 1 < � < 2 ;and using (C.20), (C.23), we get for it the following regularized representation,valid also in � = 1 ;D�0 �(x) = �(1+�) sin (��=2)� 1Z0 �(x + �)� 2�(x) + �(x� �)�1+� d� ; 0 < � < 2 :(C:24)
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The Feller frational integrals and derivativesA generalization of the Riesz frational integral and derivative has been pro-posed by Feller (1952) [23℄ in a pioneering paper, realled by Samko, Kilbas& Marihev (1993) [83℄, but only reently revised and used by Goreno &Mainardi (1998) [34℄. The purpose of Feller was indeed to generalize the se-ond order spae derivative entering the standard di�usion equation with apseudo-di�erential operator whose symbol is the logarithm of the harateris-ti funtion of a general L�evy stable pdf aording to his his parameterization,whih is loser to ours.Let us now show how obtain the Feller derivative by inversion of a properlygeneralized Riesz potential, later alled Feller potential by Samko, Kilbas &Marihev (1993) [83℄. Using our notation we de�ne the Feller potential I�� byits symbol obtained by the Riesz potential by a suitable "rotation" of an angle� �=2 where � is a real number properly restrited. We haveI�� � j�j�� e�i (sign �) ��=2 ; � j�j � � if 0 < � < 1 ;j�j � 2� � if 1 < � � 2 : (C:25)As in the Riesz potential the ase � = 1 is omitted.The integral representation of the pseudo-di�erential operator I�� turns out tobe I�� �(x) = �(�; �) I�+ �(x) + +(�; �) I�� �(x) ; (C:26)where, if 0 < � < 2 ; � 6= 1 ;+(�; �) = sin [(�� �) �=2℄sin (��) ; �(�; �) = sin [(� + �) �=2℄sin(��) ; (C:27)and, by passing to the limit (with � = 0)+(2; 0) = �(2; 0) = �1=2 : (C:28)In the partiular ase � = 0 we get+(�; 0) = �(�; 0) = 12 os (��=2) ; (C:29)and thus, from (C.26) and (C.29) we reover the Riesz potential (C.11). Likethe Riesz potential also the Feller potential has the (range-restrited) semi-group property, e.g.I�� I�� = I�+�� for 0 < � < 1 ; 0 < � < 1 ; � + � < 1 : (C:30)From the Feller potential we an de�ne by analytial ontinuation the Fellerfrational derivative D�� , inluding also the singular ase � = 1 ; by settingD�� := �I��� � �j�j� e+i (sign �) ��=2 ; 0 < � � 2 ; (C:31)13



with � restrited as in (C.25). We haveD�� �(x) := 8><>:� h+(�; �)D�+ + �(�; �)D��i �(x) ; if � 6= 1 ;[os(��=2)D10 + sin(��=2)D℄ �(x) ; if � = 1 : (C:32)For � 6= 1 it is suÆient to note that �(��; �) = �(�; �) : For � = 1 we needto reall the symbols of the operators D and D10 = �DH, namely D̂ = (�i�)and dD10 = �j�j ; and note thatdD1� =�j�j e+i (sign �) ��=2 = �j�j os(��=2)� (i�) sin(��=2)= os(��=2)dD10 + sin(��=2)D :For later use we �nd it onvenient to return to the "weight" oeÆients �(�; �)in order to outline some properties along with some partiular expressions,whih an be easily obtained from (C.27) with the restritions on � given in(C.25). We obtain � � � 0 ; if 0 < � < 1 ;� 0 ; if 1 < � � 2 ; (C:33)and + + � = os (��=2)os (��=2) � > 0 ; if 0 < � < 1 ;< 0 ; if 1 < � � 2 : (A:34)In the extremal ases we �nd0 < � < 1 ; � + = 1 ; � = 0 ; if � = �� ;+ = 0 ; � = 1 ; if � = +� ; (C:35)1 < � < 2 ; � + = 0 ; � = �1 ; if � = �(2� �) ;+ = �1 ; � = 0 ; if � = +(2� �) : (C:36)We also note that in the extremal ases of � = 1 we getD1�1 = �D = � ddx : (C:37)In view of the relation of the Feller operators in the framework of stable prob-ability density funtions, we agree to refer to � as to the skewness parameter.We must note that in his original paper Feller (1952) used a skewness param-eter Æ di�erent from our � ; the potential introdued by Feller isI�Æ � �j�j e�i (sign �) Æ��� ; so Æ = ��2 �� ; � = � 2� �Æ : (C:38)Then Samko, Kilbas & Marihev (1993) named I�Æ as the Feller potentialoperator. We note that Feller onsidered the inversion of his potential for� = 1 but limiting himself to the symmetri ase (Æ = � = 0) for whihhe provided the representation as the �rst derivative of the Hilbert transform.Samko, Kilbas & Marihev (1993) apparently ignored the singular ase � = 1 :14



D. Frational Calulus aording to Abel-Riemann and CaputoIn this Setion the funtions under onsideration are assumed suÆiently wellbehaved in Llo(R+0 ) to ensure the existene of the Laplae transform or itsinverse, as required. In our notation the Laplae transform and its inverse read8>>>>><>>>>>: e (s) = L [ (t)℄ = 1Z0 e�st  (t) dt ; (t) = L�1 h e (s)i = 12�i ZBr est e (s) ds ; (D:1)where Br denotes a Bromwih path and s 2 C is the Laplae parameter.For the sake of onveniene we shall adopt the notation � to denote thejuxtaposition of a funtion with its Laplae transform, namely  (t) � e (s) :The Abel-Riemann frational integral and derivativesWe �rst de�ne the Abel-Riemann (A-R) frational integral and derivative ofany order � > 0 for a generi (well-behaved) funtion  (t) with t 2 R+ :For the A-R frational integral (of order �) we haveJ�  (t) := 1�(�) tZ0 (t� �)��1  (�) d� ; t > 0 � > 0 : (D:2)For omplementation we put J0 := I (Identity operator), as it an be justi�edby passing to the limit �! 0 :The A-R integrals possess the semigroup property, i.e.J� J� = J�+� ; for all � ; � � 0 : (D:3)The A-R frational derivative (of order � > 0) is de�ned as the left-inverseoperator of the orresponding A-R frational integral (of order � > 0), i.e.D� J� = I : (D:4)Therefore, introduing the positive integer m suh that m � 1 < � � mand noting that (Dm Jm��) J� = Dm (Jm�� J�) = Dm Jm = I ; we de�neD� := Dm Jm�� namelyD� (t) := 8>>>><>>>>: 1�(m� �) dmdtm tZ0  (�)(t� �)�+1�m d� ; m� 1 < � < m ;dmdtm  (t) ; � = m : (D:5)
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For omplementation we put D0 := I : For � ! m� we thus reover thestandard derivative of order m but the integral formula loses its meaning for� = m :By using the properties of the Eulerian beta and gamma funtions it is easyto show the e�et of our operators J� and D� on the power funtions: we have8>>>><>>>>: J�t = �( + 1)�( + 1 + �) t+� ;D� t = �( + 1)�( + 1� �) t�� ; t > 0 ; � � 0 ;  > �1 : (D:6)These properties are of ourse a natural generalization of those known whenthe order is a positive integer.Note the remarkable fat that the frational derivative D�  (t) is not zero forthe onstant funtion  (t) � 1 if � 62 N : In fat, the seond formula in (D.6)with  = 0 teahes us thatD� 1 = t���(1� �) ; � � 0 ; t > 0 : (D:7)This, of ourse, is � 0 for � 2 N, due to the poles of the gamma funtion inthe points 0;�1;�2; : : :.The Caputo frational derivativeWe now observe that an alternative de�nition of frational derivative, origi-nally introdued by Caputo (1967) (1969) in the late sixties and adopted byCaputo & Mainardi (1971) in the framework of the theory of linear visoelas-tiity, is D�� = Jm��Dm with m� 1 < � � m ; namelyD��  (t) := 8>>>><>>>>: 1�(m� �) tZ0  (m)(�)(t� �)�+1�m d� ; m� 1 < � < m ;dmdtm (t) ; � = m : (D:8)The de�nition (D.8) is of ourse more restritive than (D.5), in that it requiresthe absolute integrability of the derivative of order m. Whenever we use theoperatorD�� we (taitly) assume that this ondition is met. We easily reognizethat in generalD�  (t) := Dm Jm��  (t) 6= Jm��Dm  (t) := D��  (t) ; (D:9)unless the funtion  (t) along with its �rstm�1 derivatives vanishes at t = 0+.In fat, assuming that the passage of the m-derivative under the integral is16



legitimate, one reognizes that, for m� 1 < � < m and t > 0 ;D�  (t) = D��  (t) + m�1Xk=0 tk���(k � � + 1)  (k)(0+) ; (D:10)and therefore, realling the frational derivative of the power funtions, see(D.6), D�   (t)� m�1Xk=0 tkk!  (k)(0+)! = D��  (t) : (D:11)The subtration of the Taylor polynomial of degree m � 1 at t = 0+ from (t) means a sort of regularization of the frational derivative. In partiular,aording to this de�nition, the relevant property for whih the frationalderivative of a onstant is still zero an be easily reognized,D�� 1 � 0 ; � > 0 : (D:12)We now explore the most relevant di�erenes between the two frationalderivatives (D.5) and (D.8). We agree to denote (D.8) as the Caputo fra-tional derivative to distinguish it from the standard A-R frational derivative(D.5). We observe, again by looking at (D.6), that D�t��1 � 0 ; � > 0 ; t > 0 :We thus reognize the following statements about funtions whih for t > 0admit the same frational derivative of order � ; withm�1 < � � m ; m 2 N ;D�  (t) = D� �(t) ()  (t) = �(t) + mXj=1 j t��j ; (D:13)D��  (t) = D�� �(t) ()  (t) = �(t) + mXj=1 j tm�j ; (D:14)where the oeÆients j are arbitrary onstants.For the two de�nitions we also note a di�erene with respet to the formallimit as �! (m� 1)+ ; from (D.5) and (D.8) we obtain respetively,D�  (t)! Dm J  (t) = Dm�1  (t) ; (D:15)D��  (t)! J Dm  (t) = Dm�1  (t)�  (m�1)(0+) : (D:16)We now onsider the Laplae transform of the two frational derivatives. Forthe A-R frational derivative D� the Laplae transform, assumed to exist,requires the knowledge of the (bounded) initial values of the frational in-tegral Jm�� and of its integer derivatives of order k = 1; 2; : : : ; m � 1 : Theorresponding rule reads, in our notation,D�  (t)� s� ef(s)� m�1Xk=0 Dk J (m��)  (0+) sm�1�k ; m� 1 < � � m : (D:17)17



For the Caputo frational derivative the Laplae transform tehnique requiresthe knowledge of the (bounded) initial values of the funtion and of its integerderivatives of order k = 1; 2; : : : ; m�1 ; in analogy with the ase when � = m :In fat, noting that J�D�� = J� Jm��Dm = JmDm ; we haveJ�D��  (t) =  (t)� m�1Xk=0 (k)(0+) tkk! ; (D:18)so we easily prove the following rule for the Laplae transform,D��  (t)� s� e (s)� m�1Xk=0  (k)(0+) s��1�k ; m� 1 < � � m : (D:19)Indeed the result (D.19), �rst stated by Caputo (1969) [13℄, appears as the"natural" generalization of the orresponding well known result for � = m :Goreno & Mainardi (1997) [33℄ have pointed out the major utility of theCaputo frational derivative in the treatment of di�erential equations of fra-tional order for physial appliations. In fat, in physial problems, the initialonditions are usually expressed in terms of a given number of bounded valuesassumed by the �eld variable and its derivatives of integer order, despite thefat that the governing evolution equation may be a generi integro-di�erentialequation and therefore, in partiular, a frational di�erential equation.E. Frational Calulus aording to Gr�unwald-LetnikovAording to the familiar de�nition based on the "bakward di�erene limit",the �rst-order derivative of a funtion �(x) is obtained asddx �(x) = �(1)(x) = limh!0 �(x)� �(x� h)h :Applying this rule twie gives the seond-order derivatived2dx2 �(x) = �(2)(x)= limh!0 �(1)(x)� �(1)(x� h)h= limh!0 1h (�(x)� �(x� h)h � �(x� h)� �(x� 2h)h )= limh!0 �(x)� 2�(x� h) + �(x� 2h)h2 :We then obtaind3dx3 �(x) = �(3)(x) = limh!0 �(x)� 3�(x� h) + 3�(x� 2h)� �(x� 3h)h3 :and, by indution, 18



Dn �(x) = dndxn �(x) = �(n)(x) = limh!0 1hn nXk=0 (�1)k  nk!�(x� kh) : (E:1)We note that the n-th derivative is seen to be a linear ombination of thefuntion's values at the (n + 1) values x; x � h; x � 2h; : : : x � nh of the in-dependent variable. The oeÆients are binomial oeÆients and alternate insign. There is a divisor of hn :Starting from the so-alled Riemann sum de�nition of an integral and iteratingwe get, see e.g. Oldham & Spanier (1974) [71℄, Podlubny (1999) [74℄Ina+ �(x) = limh!0 hn (x�a)=hXk=0 (�1)k  �nk !�(x� kh) ; (E:2)with (�1)k  �nk ! = n(n+ 1) : : : (n+ k � 1)k! for k = 1; 2; : : : (E:3)We have impliitly assumed that (x�a)=h is an integer. We then note that then-th repeated integral is again a weighted sum of the funtions's values, butthat the length of the sum tends to in�nity as h! 0 : The weights are againde�ned by binomial oeÆients, but they are all positive. In this frameworkwe also reognize the formal identities Ina+ = D�n ; or Dn = I�na+ :The de�nition of the Gr�unwald-Letnikov frational derivative is an extensionof (E.1) to any real positive order �, namelyGLD�a+ �(x) = limh!0 1h� [(x�a)=h℄Xk=0 (�1)k  �k!�(x� kh) ; a < x < b : (E:4a)Similarly, by taking the "forward di�erene limit", we de�ne the dualGr�unwald-Letnikov frational derivative of order � asGLD�b� �(x) = limh!0 1h� [(b�x)=h℄Xk=0 (�1)k  �k!�(x+ kh) ; a < x < b : (E:4b)In eqs (E.4) the [ � ℄ denotes the integer part. In analogy with the Riemann-Liouville frational alulus we may refer to (E.4a) and (E.4b) as the progres-sive and regressive Gr�unwald-Letnikov frational derivative, respetively.For our future purposes it is onvenient to introdue a general notation to de-note the (�nite or in�nite) series of the bakward/forward di�erene quotientsentering the limit in the above de�nitions, namely19



hD�� := 1h� Xk=0 (�1)k  �k!�(x� kh) ; (E:5)where the upper limit of the sum is the appropriate one.Under ertain onditions one an prove the following onnetions with theRiemann-Liouville frational integrals and derivatives, (B.2-3) and (B.6), fora < x < b ;GLD��a+ �(x) = 1�(�) xZa (x� �)��1 �(�) d� = I�a+ �(x) ; � > 0 ; (E:6a)GLD��b� �(x) = 1�(�) bZx (� � x)��1 �(�) d� = I�b� �(x) ; � > 0 ; (E:6b)and GLD�a+ �(x) = Dm Im��a+ �(x) = D�a+ �(x) ; m� 1 < m � m ; (E:7a)GLD�b� �(x) = (�1)mDm Im��b� �(x) = D�b� �(x) ; m� 1 < � � m : (E:7b)We point out the relation with the Caputo frational derivative (D.8), for t > 0and m� 1 < � < m ;GLD�0+  (t) = m�1Xk=0 tk���(k � � + 1) + 1�(m� �) tZ0  (m)(�)(t� �)�+1�m d� : (E:8)The Gr�unwald-Letnikov sheme may be useful in numerial omputations offrational integrals and derivatives. However, as reently reviewed by Goreno(1997), see [28℄ and referenes therein, it has mostly a oneptual value sineit yields only a �rst-order approximation in the step-length h : Higher-ordermethods have been introdued for getting better approximations; so, in [87℄seond-order auray has been obtained by shifting the sheme by a non-integer multiple of h :Let us onlude this setion by noting that the formal identity between thefrational derivative and the frational integral (with the obvious hange ofsign in the order) stated in in (E.6a) has indued several authors to unify thenotions of frational derivatives and integrals with the joint name of di�erin-tegration. Giving priority to the derivative they use the notation D�� for thefrational integral, attributing to it a negative order of di�erentiation. Thepresent authors oppose to this notation sine it is misleading and generallynot orret, even if it is used in distinguished treatises as Davis (1936) [17℄,Oldham & Spanier (1974) [71℄, Miller & Ross (1993) [64℄ and Podlubny (1999)[74℄. It is well known that derivation and integration operators are not inverseto eah other, even if their order is integer, and therefore suh uni�ation ofsymbols appears not justi�ed. 20



F. The Mittag-Le�er type funtionsThe Mittag-Le�er funtion is so named from the great Swedish mathematiianwho introdued it at the beginning of the XX-th entury in a sequene of �venotes [65{69℄. In this Setion we shall onsider the Mittag-Le�er funtionand some of the related funtions whih are relevant for their onnetion withfrational evolution proesses. It is our purpose to provide a short referene-historial bakground and a review of the main properties of these funtions,based on our papers, see [32℄, [33℄, [57℄, [58℄, [59℄.Referene-historial bakgroundWe note that the Mittag-Le�er type funtions, being ignored in the ommonbooks on speial funtions, are unknown to the majority of sientists. Even inthe 1991 Mathematis Subjet Classi�ation these funtions annot be found.However, in the new AMS lassi�ation foreseen for the year 2000, a plae forthem has been reserved: 33E12 ("Mittag-Le�er funtions").A desription of the most important properties of these funtions with relevantreferenes an be found in the third volume of the Bateman Projet [21℄, inthe hapter XV III of the misellaneous funtions. The treatises where greatattention is devoted to them are those by Dzherbashian [19℄, [20℄. We alsoreommend the lassial treatise on omplex funtions by Sansone & Gerretsen[84℄ and the reent book on frational alulus by Podlubny [74℄.Sine the times of Mittag-Le�er several sientists have reognized the impor-tane of the Mittag-Le�er type funtions, providing interesting mathematialand physial appliations, whih unfortunately are not muh known.As pioneering works of mathematial nature in the �eld of frational integraland di�erential equations, we like to quote those by Hille & Tamarkin [42℄and Barret [9℄. In 1930 Hille & Tamarkin have provided the solution of theAbel integral equation of the seond kind in terms of a Mittag-Le�er funtion,whereas in 1954 Barret has expressed the general solution of the linear fra-tional di�erential equation with onstant oeÆients in terms of Mittag-Le�erfuntions.As former appliations in physis we like to quote the ontributions by Colein 1933 [16℄ in onnetion with nerve ondution, see also [17℄, and by Gross[38℄ in 1947 in onnetion with mehanial relaxation. Subsequently, in 1971,Caputo & Mainardi [14℄ have shown that Mittag-Le�er funtions are presentwhenever derivatives of frational order are introdued in the onstitutiveequations of a linear visoelasti body. Sine then, several other authors havepointed out the relevane of these funtions for frational visoelasti models,see e.g. Mainardi [57℄. 21



The Mittag-Le�er funtions E�(z) ; E�;�(z)The Mittag-Le�er funtion E�(z) with � > 0 is de�ned by the following seriesrepresentation, valid in the whole omplex plane,E�(z) := 1Xn=0 zn�(�n+ 1) ; � > 0 ; z 2 C : (F:1)It turns out that E�(z) is an entire funtion of order � = 1=� and type 1 :This property is still valid but with � = 1=Ref�g ; if � 2 C with positive realpart, as formerly noted by Mittag-Le�er himself in [68℄.The Mittag-Le�er funtion provides a simple generalization of the exponentialfuntion beause of the substitution of n! = �(n+1) with (�n)! = �(�n+1) :Partiular ases of (F.1), from whih elementary funtions are reovered, areE2 �+z2� = osh z ; E2 ��z2� = os z ; z 2 C ; (F:2)and E1=2(�z1=2) = ez h1 + erf (�z1=2)i = ez erf (�z1=2) ; z 2 C ; (F:3)where erf (erf) denotes the (omplementary) error funtion de�ned aserf (z) := 2p� zZ0 e�u2 du ; erf (z) := 1� erf (z) ; z 2 C : (F:4)In (F.4) by z1=2 we mean the prinipal value of the square root of z in theomplex plane ut along the negative real semi-axis. With this hoie �z1=2turns out to be positive/negative for z 2 R+. A straightforward generalizationof the Mittag-Le�er funtion, originally due to Agarwal in 1953 based on anote by Humbert, see [3℄, [44℄, [45℄, is obtained by replaing the additiveonstant 1 in the argument of the Gamma funtion in (F.1) by an arbitraryomplex parameter � : For the generalized Mittag-Le�er funtion we agree touse the notationE�;�(z) := 1Xn=0 zn�(�n+ �) ; � > 0 ; � 2 C ; z 2 C : (F:5)Partiular simple ases areE1;2(z) = ez � 1z ; E2;2(z) = sinh (z1=2)z1=2 : (F:6)We note that E�;�(z) is still an entire funtion of order � = 1=� and type 1 :For lak of spae we prefer to ontinue with the Mittag-Le�er funtions in oneparameter: sine here we shall limit ourselves to onsider evolution proesses22



haraterized by a single frational order, the more general funtions withtwo parameters turn out to be redundant. However, we �nd it onvenient tointrodue other funtions depending on a single parameter whih turn out tobe related by simple relations to the original Mittag-Le�er funtions, and toonsider them as belonging to the lass of Mittag-Le�er type funtions.The Mittag-Le�er integral representation and asymptoti expansionsMany of the most important properties of E�(z) follow from Mittag-Le�er'sintegral representationE�(z) = 12�i ZHa ���1 e ��� � z d� ; � > 0 ; z 2 C ; (F:7)where the path of integration Ha (the Hankel path) is a loop whih starts andends at �1 and enirles the irular disk j�j � jzj1=� in the positive sense:�� � arg� � � on Ha : To prove (F.7), expand the integrand in powers of�, integrate term-by-term, and use Hankel's integral for the reiproal of theGamma funtion.The integrand in (F.7) has a branh-point at � = 0. The omplex �-plane is utalong the negative real semi-axis, and in the ut plane the integrand is single-valued: the prinipal branh of �� is taken in the ut plane. The integrand haspoles at the points �m = z1=� e2� im=� ; m integer, but only those of the poleslie in the ut plane for whih �� � < argz + 2�m < �� : Thus, the numberof the poles inside Ha is either [�℄ or [�+ 1℄, aording to the value of arg z.The most interesting properties of the Mittag-Le�er funtion are assoiatedwith its asymptoti developments as z !1 in various setors of the omplexplane. These properties an be summarized as follows. For the ase 0 < � < 2we haveE�(z) � 1� exp(z1=�)� 1Xk=1 z�k�(1� �k) ; jzj ! 1 ; jarg zj < ��=2 ; (F:8)E�(z) � � 1Xk=1 z�k�(1� �k) ; jzj ! 1 ; ��=2 < arg z < 2� � ��=2 : (F:9)For the ase � � 2 we haveE�(z) � 1� Xm exp �z1=�e2� im=��� 1Xk=1 z�k�(1� �k) ; jzj ! 1 ; (F:10)where m takes all integer values suh that ���=2 < arg z+2�m < ��=2 ; andarg z an assume any value between �� and +� inlusive. From the asymptotiproperties (F.8-10) and the de�nition of the order of an entire funtion, we inferthat the Mittag-Le�er funtion is an entire funtion of order 1=� for � > 0;23



in a ertain sense eah E�(z) is the simplest entire funtion of its order. TheMittag-Le�er funtion also furnishes examples and ounter-examples for thegrowth and other properties of entire funtions of �nite order.The Laplae transform pairs related to the Mittag-Le�er funtionsThe Mittag-Le�er funtions are onneted to the Laplae integral throughthe equation 1Z0 e�uE� (u� z) du = 11� z ; � > 0 : (F:11)The integral at the L.H.S. was evaluated by Mittag-Le�er who showed thatthe region of its onvergene ontains the unit irle and is bounded by theline Re z1=� = 1. Putting in (F.11) u = st and u� z = �� t� with t � 0 and� 2 C ; and using the sign � for the juxtaposition of a funtion dependingon t with its Laplae transform depending on s, we get the following Laplaetransform pairs E� (�� t�)� s��1s� + � ; Re s > j�j1=� : (F:12)In our CISM Leture notes [33℄ we have shown the key role of the Mittag-Le�ertype funtions E� (�� t�) in treating Abel integral equations of the seondkind and frational di�erential equations, so improving the former results byHille & Tamarkin (1930) [42℄ and Barret (1954) [9℄, respetively. In partiular,assuming � > 0 ; we have disussed the peuliar haraters of these funtions(power-law deay) for 0 < � < 1 and for 1 < � < 2 related to frationalrelaxation and frational osillation proesses, respetively, see also [56℄, [32℄.Other formulas: summation and integrationFor ompleteness hereafter we exhibit some formulas related to summation andintegration of ordinary Mittag-Le�er funtions (in one parameter �), referringthe interested reader to [19℄, [74℄ for their proof and for their generalizationsto two parameters. Conerning summation we outlineE�(z) = 1p p�1Xh=0E�=p �z1=pei2�h=p� ; p 2 N ; (F:13)from whih we derive the dupliation formulaE�(z) = 12 hE�=2(+z1=2) + E�=2(�z1=2)i : (F:14)Conerning integration we outline another interesting dupliation formula1Z0 e�x2=(4t) E�(x�) dx = p� tE�=2(t�=2) ; t > 0 : (F:15)24



G. The M-Wright type funtionsLet us �rst reall the more general Wright funtion W�;�(z) ; z 2 C ; with� > �1 and � > 0 : This funtion, so named from the British mathematiianwho introdued it between 1933 and 1940 [92{95℄ is de�ned by the followingseries and integral representation, valid in the whole omplex plane,W�;�(z) := 1Xn=0 znn! �(�n+ �) := 12�i ZHae� + z��� d��� : (G:1)Here Ha denotes an arbitrary Hankel path, namely a ontour onsisting ofpiees of the two rays arg � = �� extending to in�nity, and of the irularar � = � ei� ; j�j � � ; with � 2 (�=2; �) ; and � > 0 ; arbitrary.It is possible to prove that the Wright funtion is entire of order 1=(1 + �) ;hene of exponential type if � � 0 : The ase � = 0 is trivial sine W0;�(z) =e z=�(�) : The ase � = �� ; � = 1�� with 0 < � < 1 provides the funtionMfuntion of the Wright type, M�(z) ; that is of speial interest for us, see e.g.Mainardi (1995, 1996a, 1996b, 1997) [54{57℄ and Goreno, Luhko & Mainardi(1999, 2000) [30,31℄. Spei�ally, we haveM�(z) := W��;1��(�z) = 1� z W��;0(�z) ; 0 < � < 1 ; (G:2)and therefore from (G.1-2)M�(z) := 1Xn=0 (�z)nn! �[��n + (1� �)℄ := 12�i ZHa e� � z�� d��1�� : (G:3)It turns out that M�(z) is an entire funtion of order � = 1=(1 � �) ; whihprovides a generalization of the Gaussian and of the Airy funtion. In fat weobtain M1=2(z) = 1p� exp �� z2=4� ; (G:4)M1=3(z) = 32=3Ai �z=31=3� ; (G:5)where Ai denotes the Airy funtion. Furthermore it an be proved thatM1=q(z)satis�es the di�erential equation of order q � 1dq�1dzq�1 M1=q(z) + (�1)qq z M1=q(z) = 0 ; (G:6)subjeted to the q � 1 initial onditions at z = 0, derived from the seriesexpansion in (G.1),M (h)1=q(0) = (�1)h� �[(h+ 1)=q℄ sin[� (h+ 1)=q℄ ; h = 0; 1; : : : q � 2 : (G:7)25



We note that, for q � 4 ; Eq. (G.6) is akin to the hyper-Airy di�erentialequation of order q�1 ; see e.g. Bender & Orszag (1987)[10℄. Consequently, thefuntion M�(z) is a generalization of the hyper-Airyfuntion. In the limitingase � = 1 we get M1(z) = Æ(z � 1) :From now on let us onsider only theM funtion for positive (real) argument,M�(r) ; whih will be the relevant funtion for our purposes. The asymptotirepresentation of M�(r) ; as r ! 1 an be obtained by using the ordinarysaddle-point method. Choosing as a variable r=� rather than r the omputa-tion is easier and yields, see Mainardi & Tomirotti (1995) [61℄,M�(r=�) � a(�) r ��1=21�� exp h�b(�) r 11�� i ; r! +1 ; (G:8)where a(�) = 1q2� (1� �) > 0 ; b(�) = 1� �� > 0 : (G:9)Beause of the above exponential deay, any moment of order Æ > �1 forM�(r) is �nite and results1Z0 r Æ M�(r) dr = �(Æ + 1)�(�Æ + 1) ; Æ > �1 : (G:9)The following Laplae transform pairs an be proved, see Mainardi (1997) [57℄,M�(r) � E�(�s) ; 0 < � < 1 : (G:10)and �t�+1 M� (1=t�) � exp (�s�) ; 0 < � < 1 ; (G:11)1t� M� (1=t�) � s1�� exp (�s�) ; 0 < � < 1 ; (G:12)As a partiular ase of (G.10) we reover the well-known Laplae transformpair, see e.g. Doetsh (1974),M1=2(r) := 1p� exp �� r2=4� � E1=2(�s) := exp(s2) erf (s) : (G:13)We also note that, transforming term-by-term the Taylor series ofM�(r) (notbeing of exponential order) yields a series of negative powers of s ; whihrepresents the asymptoti expansion of E�(�s) as s!1 in a setor aroundthe positive real axis. As partiular ases of (G.11-12) we reover the well-known Laplae transform pairs, see e.g. Doetsh (1974) [18℄ ,12t3=2M1=2(1=t1=2)) := 12p� t�3=2 exp ��1=(4t2)� � exp ��s1=2� ; (G:14)1t1=2M1=2(1=t1=2)) := 1p� t�1=2 exp ��1=(4t2)� � s�1=2 exp ��s1=2� : (G:15)26



Referenes[1℄ N.H. Abel, Solution de quelques probl�emes �a l'aide d'int�egrales d�e�nie[Norwegian℄, Magazin for Naturvidenskaberne, Aargang 1, Bind 2, Christiana1823. Frenh translation in Oeuvres Compl�etes, Vol I, pp. 11-18. Nouvelle �editionpar L. Sylow et S. Lie, 1881.[2℄ N.H. Abel, Auoesung einer mehanishen Aufgabe, Journal f�ur die reine undangewandte Mathematik (Crelle), Vol. I (1826), pp. 153-157.[3℄ R.P. Agarwal, A propos d'une note de M. Pierre Humbert, C.R. Aad. Si. Paris236 (1953) 2031{2032.[4℄ Yu.I. Babenko, Heat and Mass Transfer (Chimia, Leningrad, 1986) [in Russian℄[5℄ R.T. Baillie and M.L. King (Editors), Frational Di�erening and Long MemoryProesses, Journal of Eonometris 73 No 1 (1996) 1-324.[6℄ A.V. Balakrishnan, Representation of abstrat Riesz potentials of the elliptitype, Bull. Amer. Math. So. 64 No 5 (1958) 266{289.[7℄ A.V. Balakrishnan, Operational alulus for in�nitesimal generators of semi-groups, Trans. Amer. Math. So. 91 No 2 (1959) 330-353.[8℄ A.V. Balakrishnan, Frational powers of losed operators and the semi-groupsgenerated by them, Pai� J. Math. 10 No 2 (1960) 419-437.[9℄ J.H. Barret, Di�erential equations of non-integer order, Canad. J. Math. 6 (1954)529{541.[10℄ C.M. Bender and S.A. Orszag, Advaned Mathematial Methods for Sientistsand Engineers (MGraw-Hill, Singapore, 1987), Ch 3.[11℄ S. Bohner, Di�usion equation and stohasti proesses, Pro. Nat. Aad.Sienes, USA 35 (1949) 368{370.[12℄ M. Caputo, Linear models of dissipation whose Q is almost frequenyindependent, Part II Geophys. J. R. Astr. So. 13 (1967) 529{539.[13℄ M. Caputo, Elastiit�a e Dissipazione (Zanihelli, Bologna, 1969). [in Italian℄[14℄ M. Caputo and F. Mainardi, Linear models of dissipation in anelasti solids,Riv. Nuovo Cimento (Ser. II) 1 (1971) 161{198.[15℄ A. Carpinteri and F. Mainardi, eds, Fratals and Frational Calulus inContinuum Mehanis (Springer Verlag, Wien, 1997).[16℄ K.S. Cole, Eletrial ondutane of biologial systems in Pro. Symp. Quant.Biol. (Cold Spring Harbor, New York, 1933) 107-116.[17℄ H.T. Davis, The Theory of Linear Operators (The Prinipia Press, Bloomington,Indiana, 1936). 27



[18℄ G. Doetsh, Introdution to the Theory and Appliations of the LaplaeTransformation (Springer Verlag, Berlin, 1974).[19℄ M.M. Dzherbashian, Integral Transforms and Representations of Funtions inthe Complex Plane (Nauka, Mosow, 1966). [in Russian℄[20℄ M.M. Dzherbashian, Harmoni Analysis and Boundary Value Problems in theComplex Domain (Birkh�auser Verlag, Basel, 1993.[21℄ A. Erd�elyi (Editor) Higher Transendental Funtions, Bateman Projet, Vols.1-3 (MGraw-Hill, New York, 1953-1955).[22℄ A. Erd�elyi (Editor) Tables of Integral Transforms, Bateman Projet, Vols. 1-2(MGraw-Hill, New York, 1953-195).[23℄ W. Feller, On a generalization of Marel Riesz' potentials and the semi-groupsgenerated by them, Meddelanden Lunds Universitets Matematiska Seminarium(Comm. S�em. Math�em. Universit�e de Lund), Tome suppl. d�edi�e a M. Riesz, Lund(1952), 73-81.[24℄ W. Feller : An Introdution to Probability Theory and its Appliations, Vol. 2,2nd edn (Wiley, New York, 1971). [1st edn. 1966℄[25℄ C. Fox, The G and H funtions as symmetrial Fourier kernels, Trans. Amer.Math. So. 98 (1961) 395-429.[26℄ I.M. Gel'fand and G.E. Shilov, Generalized Funtions, Vol. 1 (Aademi Press,New York, 1964). [English translation from the Russian (Nauka, Mosow, 1959)℄[27℄ R. Goreno, Abel Integral Equations with speial Emphasis on Appliations,Letures in Mathematial Sienes Vol. 13 (The University of Tokyo, GraduateShool of Mathematial Sienes, 1996). [ISSN 0919-8180℄[28℄ R. Goreno, Frational alulus: some numerial methods, in: A. Carpinteriand F. Mainardi, eds, Fratals and Frational Calulus in Continuum Mehanis(Springer Verlag, Wien, 1997) 277-290.[29℄ R. Goreno, G. De Fabritiis and F. Mainardi, Disrete random walk models forsymmetri L�evy-Feller di�usion proesses, Physia A 269 (1999) 79{89.[<http://xxx.lan.gov/abs/ond-mat/9903264℄[<http://www.eonophysis.org>: selet "papers" and then "mainardi"℄[30℄ R. Goreno, Yu. Luhko and F. Mainardi, Analytial properties andappliations of the Wright funtion, Frational Calulus and Applied Analysis2 No 4 (1999) 383-414.[31℄ R. Goreno, Yu. Luhko and F. Mainardi, Wright funtions as sale-invariantsolutions of the di�usion-wave equation, J. Computational and Appl. Mathematis(2000) to appear. 28



[32℄ R. Goreno and F. Mainardi, Frational osillations and Mittag-Le�erfuntions, Pre-print A-14/96, Fahbereih Mathematik und Informatik, FreieUniversit�at, Berlin, 1996.[<http://www.math.fu-berlin.de/publ/index.html>℄[33℄ R. Goreno and F. Mainardi, Frational alulus: integral and di�erentialequations of frational order, in: A. Carpinteri and F. Mainardi, eds, Fratalsand Frational Calulus in Continuum Mehanis (Springer Verlag, Wien, 1997)223{276.[34℄ R. Goreno and F. Mainardi, Random walk models for spae-frational di�usionproesses, Frational Calulus and Applied Analysis 1 No 2 (1998) 167{191.[<http://www.eonophysis.org>: selet "papers" and then "mainardi"℄[35℄ R. Goreno and F. Mainardi, Approximation of L�evy-Feller di�usion by randomwalk, J. Analysis and its Appliations (ZAA) 18 No 2 (1999) 231{246.[<http://www.eonophysis.org>: selet "papers" and then "mainardi"℄[36℄ R. Goreno, F. Mainardi and H.M. Srivastava, Speial funtions in frationalrelaxation-osillation and frational di�usion-wave phenomena, in: D. Bainov,ed, Proeedings VIII International Colloquium on Di�erential Equations, Plovdiv1997 (VSP, Utreht, 1998) 195{202.[37℄ R. Goreno and S. Vessella, Abel Integral Equations: Analysis and Appliations,Leture Notes in Mathematis, Vol. 1461 (Springer-Verlag, Berlin, 1991).[38℄ B. Gross, On reep and relaxation, J. Appl. Phys. 18 (1947) 212{221.[39℄ A.K. Gr�unwald, �Uber "begrenzte" Derivation und deren Anwendung, Z. angew.Math. und Phys. 12 (1867) 441-480.[40℄ R. Hilfer, Frational Derivatives in Stati and Dynami Saling, in B. Dubrulle,F. Graner and D. Sornette (Editors), Sale Invariane and Beyond (SpringerVerlag, Berlin and EDP Siene, Frane, 1977), pp. 53-62. Leture 3, Les HouhesWorkshop, Marh 10-14, 1997.[41℄ R. Hilfer (Editor), Appliations of Frational Calulus in Physis (WorldSienti�, Singapore, 2000) to appear.[42℄ E. Hille and J.D. Tamarkin, On the theory of linear integral equations Ann.Math. 31 (1930) 479{528.[43℄ Hj. Holmgren, Om di�erentialkalkylenmed indies af hvad natur som???,Kongl.Svenska Vetenskaps-Akad. Hanl. Stokholm 5 No.11 (1965-1866) 1{83.[44℄ P. Humbert, Quelques r�esultats relatifs �a la fontion de Mittag-Le�er, C.R.Aad. Si. Paris 236 (1953) 1467{1468.[45℄ P. Humbert and R.P. Agarwal, Sur la fontion de Mittag-Le�er et quelques-unes de ses g�en�eralisations, Bull. Si. Math (Ser. II) 77 (1953) 180{185.29



[46℄ V. Kiryakova, Generalized Frational Calulus and Appliations, PitmanResearh Notes in Mathematis # 301, Longman, Harlow 1994.[47℄ A.V. Letnikov, Theory of di�erentiation with an arbitrary index, Mat. Sb. 3(1868) 1{66. In Russian.[48℄ A.V. Letnikov, On historial development of di�erentiation theory with anarbitrary index, Mat. Sb. 3 (1868) 85{112. In Russian[49℄ A.V. Letnikov, Investigations on the theory of integrals of the form R xa (x �u)p�1 f(u) du ; Mat. Sb. 7 No 1 (1874) 5{205. In Russian.[50℄ J. Liouville, M�emoire sur quelques questions de g�eom�etrie et de m�eanique,et sur un nouveau genre de alul pour r�esoudre es questions, J. l' �Eole Roy.Polyt�ehn. 13 Set. 21 (1832) 1{69.[51℄ J. Liouville, M�emoire sur le alul des di��erentielles �a indies quelonques, J.l' �Eole Roy. Polyt�ehn. 13 Set. 21 (1832) 71{162.[52℄ J. Liouville, M�emoire sur l'int�egration des �equations di��erentielles �a indiesfrationnaires, J. l' �Eole Roy. Polyt�ehn. 15 No 55 (1837) 55{84.[53℄ Ch. Lubih, Disretized frational alulus, SIAM J. Math. Anal. 17 (1986)704-719.[54℄ F. Mainardi, The time frational di�usion-wave equation, Radio�sika 38 No1-2 (1995) 20{36. [English Transl.:Radiophysis & Quantum Eletronis℄[55℄ F. Mainardi, The fundamental solutions for the frational di�usion-waveequation, Applied Mathematis Letters 9 No 6 (1996) 23{28.[56℄ F. Mainardi, Frational relaxation-osillation and frational di�usion-wavephenomena, Chaos, Solitons & Fratals 7 (1996) 1461{1477.[57℄ F. Mainardi, Frational alulus: some basi problems in ontinuum andstatistial mehanis, in: A. Carpinteri and F. Mainardi, eds, Fratals andFrational Calulus in Continuum Mehanis (Springer Verlag, Wien, 1997) 291{248.[58℄ F. Mainardi and R. Goreno, The Mittag-Le�er funtion in the Riemann-Liouville frational alulus, in: A.A. Kilbas, Ed., Boundary Value Problems,Speial Funtions and Frational Calulus (Belarusian State University, Minsk,1996) 215{225.[59℄ F. Mainardi and R. Goreno, On Mittag-Le�er type funtions in frationalevolution proesses, J. Computational and Appl. Mathematis (2000) to appear.[60℄ F. Mainardi, P. Paradisi and R. Goreno, Probability distributions generated byfrational di�usion equations, in J. Kertesz and I. Kondor (Editors), Eonophysis:an Emerging Siene (Kluwer, Dordreht, 1999) pp. 39, to appear.[<http://www.eonophysis.org>: selet "papers" and then "mainardi"℄30



[61℄ F. Mainardi and M. Tomirotti, On a speial funtion arising in the timefrational di�usion-wave equation, in: P. Rusev, I. Dimovski and V. Kiryakova(Eds.), Transform Methods and Speial Funtions, So�a 1994 (Siene CultureTehnology, Singapore, 1995), pp. 171-183.[62℄ A. Marhaud, Sur les d�eriv�ees et sur les di��erenes des fontions de vriablesr�eeelles, I. Math. Pures et Appl. 6 No 4 (1927) 337-425.[63℄ A.C. MBride, Frational Calulus and Integral Transforms of GeneralizedFuntions, Pitman Researh Notes in Mathematis # 31, Pitman, London 1979.[64℄ K.S. Miller and B. Ross: An Introdution to the Frational Calulus andFrational Di�erential Equations, Wiley, New York 1993.[65℄ G.M. Mittag-Le�er, Sur l'int�egrale de Laplae-Abel, C.R. Aad. Si. Paris (ser.II) 136 (1902) 937{939.[66℄ G.M. Mittag-Le�er, Une g�en�eralisation de l'int�egrale de Laplae-Abel, C.R.Aad. Si. Paris (ser. II) 137 (1903) 537{539.[67℄ G.M. Mittag-Le�er, Sur la nouvelle fontion E�(x), C.R. Aad. Si. Paris (ser.II) 137 (1903) 554{558.[68℄ G.M. Mittag-Le�er, Sopra la funzione E�(x), R. Aad. Linei, Rend. (ser. V)(1904) 13 3{5.[69℄ G.M. Mittag-Le�er, Sur la repr�esentation analytique d'une branhe uniformed'une fontion monog�ene, Ata Math. 29 (1905) 101{181.[70℄ K. Nishimoto, An Essene of Nishimoto's Frational Calulus, Desartes Press,Koriyama 1991.[71℄ K.B. Oldham and J. Spanier, The Frational Calulus, Aademi Press, NewYork 1974.[72℄ S. Pinherle, Sulle funzioni ipergeometrihe generalizzate, Atti R. AademiaLinei, Rend. Cl. Si. Fis. Mat. Nat., (Ser. 4) 4 (1888) 694-700, 792-799. Reprintedin Salvatore Pinherle: Opere Selte, edited by UMI (Unione Matematia Italiana)Vol. 1, pp. 223-230, 231-239 (Cremonese, Roma, 1954).[73℄ S. Pinherle, Sulle derivate ad indie qualunque, Rend. R. A. Sienze Bologna(Ser. V) 9 (1902) 745-758.[74℄ I. Podlubny, Frational Di�erential Equations, Aademi Press, San Diego 1999.[75℄ H. Pollard, The ompletely monotoni harater of the Mittag-Le�er funtionE�(�x) ; Bull. Amer. Math. So. 54 (1948) 1115{1116.[76℄ J. Pr�uss, Evolutionary Integral Equations and Appliations (Birkh�auser, Basel,1993).[77℄ B. Riemann, Versuh einer allgemeinen Au�assung der Integration undDi�erentiation, in Bernhard Riemann's gesammelte mathematishe Werke und31



wissenshaftlikerNahlass , pp 331{344 (Teubner, Leipzig, 1876). New editionedited by H. Weber (Dover, New York, 1953).[This paper, written by Riemann in January 1847 when he was still a student,was published only in 1876, ten years after his death℄[78℄ M. Riesz, L'int�egrales de Riemann-Liouville et le probl�eme de Cauhy, AtaMath. 81 No 1-2 (1949) 1-223.[79℄ B. Ross, Frational Calulus and its Appliations, Leture Notes in Mathematis# 457, Springer Verlag, Berlin 1975. [Pro. Int. Conf. held at Univ. of New Haven,USA, 1974℄[80℄ B. Rubin, Frational Integrals and Potentials, Pitman Monographs and Surveysin Pure and Applied Mathematis #82, Addison Wesley Longman, Harlow 1996.[81℄ A. Saihev and G. Zaslavsky, Frational kineti equations: solutions andappliations, Chaos 7 (1997) 753-764.[82℄ W.R. Shneider, Stable distributions: Fox funtion representation andgeneralization, in S. Albeverio, G. Casati and D. Merlini (Eds), StohastiProesses in Classial and Quantum Systems, Leture Notes in Physis # 262(Springer Verlag, Berlin, 1986) 497-511.[83℄ S.G. Samko, A.A. Kilbas and O.I. Marihev, Frational Integrals andDerivatives, Theory and Appliations (Gordon and Breah, Amsterdam, 1993).[English translation from the Russian, Integrals and Derivatives of FrationalOrder and Some of Their Appliations (Nauka i Tekhnika, Minsk, 1987)℄[84℄ G. Sansone and J. Gerretsen, Letures on the Theory of Funtions of a ComplexVariable, Vol. I. Holomorphi Funtions (Nordho�, Groningen, 1960) 345{349.[85℄ B. Stankovi�, On the funtion of E.M. Wright, Publ. de l'Institut Math�ematique,Beograd, Nouvelle S�er. 10 (1970) 113-124.[86℄ H.M. Srivastava, K.C. Gupta, and S.P. Goyal, The H-Funtions of One andTwo Variables with Appliations (South Asian Publishers, New Delhi and Madras,1982).[87℄ Vu Kim Tuan and R. Goreno, Extrapolation to the limit for numerialfrational di�erentiation, ZAMM 75 (1995) 646-648.[88℄ U. Westphal, An approah to frational powers of operators via frationaldi�erenes, Pro. London Math. So. 29 No 3 (1974) 557-576.[89℄ H. Weyl, Bemerkungen zum Begri� des Di�erentialquotientten gebrohenerOrdnung, Vierteljahresshrift der Naturforshenden Geselishaft in Z�urih 62 No1-2 (1917) 296-302.[90℄ A. Wiman, �Uber die Nullstellen der Funktionen E�(x) ; Ata Math. 29 (1905),217{234.[91℄ G. Witte, Die analytishe und die numerishe Behandlung einer Klasse vonVolterrashen Integralgleihungen im Hilbertraum, PhD Thesis, Free Universityof Berlin (Logos Verlag, Berlin, 1997). ISBN 3-89722-005-9.32



[92℄ E.M. Wright, On the oeÆients of power series having exponential singularities,Journal London Math. So. 8 (1933)71-79.[93℄ E.M. Wright, The asymptoti expansion of the generalized Bessel funtion,Pro. London Math. So. (Ser. II) 38 (1935) 257-270.[94℄ E.M. Wright, The asymptoti expansion of the generalized hypergeometrifuntion, Journal London Math. So. 10 (1935) 287-293.[95℄ E.M. Wright, The generalized Bessel funtion of order greater than one, Quart.J. Math., Oxford ser. 11 (1940) 36-48.�

33


