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Abstract

The aim of these introductory lectures is to provide the reader with the essentials
of the fractional calculus according to different approaches that can be useful for our
applications in the theory of probability and stochastic processes. We discuss the
linear operators of fractional integration and fractional differentiation, which were
introduced in pioneering works by Abel, Liouville, Riemann, Weyl, Marchaud, M.
Riesz, Feller and Caputo. Particular attention is devoted to the techniques of Fourier
and Laplace transforms for treating these operators in a way accessible to applied
scientists, avoiding unproductive generalities and excessive mathematical rigor. Fur-
thermore, we discuss the approach based on limit of difference quotients, formerly
introduced by Grinwald and Letnikov, which provides a discrete view-point to the
fractional calculus. Such approach is very useful for actual numerical computation
and is complementary to the previous integral approaches, which provide the contin-
uous view-point. Finally, we give some information on the transcendental functions
of the Mittag-Leffler and Wright type which, together with the most common Eu-
lerian functions, turn out to play a fundamental role in the theory and applications
of the fractional calculus.

Keywords: 1991 Mathematics Subject Classification: 26433, 33E20, 44A20,
45E10, 45J05.

A. Historical Notes on Fractional Calculus

Fractional calculus is the field of mathematical analysis which deals with the
investigation and applications of integrals and derivatives of arbitrary order.
The term fractional is a misnomer, but it is retained following the prevailing
use.
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The fractional calculus may be considered an old and yet novel topic. It is an
old topic since, starting from some speculations of G.W. Leibniz (1695, 1697)
and L. Euler (1730), it has been developed up to nowadays. In fact the idea
of generalizing the notion of derivative to non integer order, in particular to
the order 1/2, is contained in the correspondence of Leibniz with Bernoulli,
[’Hopital and Wallis. Euler took the first step by observing that the result
of the evaluation of the derivative of the power function has a a meaning for
non-integer order thanks to his Gamma function.

A list of mathematicians, who have provided important contributions up to
the middle of the 20-th century, includes P.S. Laplace (1812), J.B.J. Fourier
(1822), N.H. Abel (1823-1826), J. Liouville (1832-1837), B. Riemann (1847),
H. Holmgren (1865-67), A.K. Griinwald (1867-1872), A.V. Letnikov (1868-
1872), H. Laurent (1884), P.A. Nekrassov (1888), A. Krug (1890), J. Hadamard
(1892), O. Heaviside (1892-1912), S. Pincherle (1902), G.H. Hardy and J.E.
Littlewood (1917-1928), H. Weyl (1917), P. Lévy (1923), A. Marchaud (1927),
H.T. Davis (1924-1936), A. Zygmund (1935-1945), E.R. Love (1938-1996), A.
Erdélyi (1939-1965), H. Kober (1940), D.V. Widder (1941), M. Riesz (1949),
W. Feller (1952).

However, it may be considered a novel topic as well, since only from less than
thirty years it has been object of specialized conferences and treatises. For the
first conference the merit is ascribed to B. Ross who organized the First Con-
ference on Fractional Calculus and its Applications at the University of New
Haven in June 1974, and edited the proceedings [79]. For the first monograph
the merit is ascribed to K.B. Oldham and J. Spanier [71], who, after a joint
collaboration started in 1968, published a book devoted to fractional calculus
in 1974.

Nowadays, to our knowledge, the list of texts in book form devoted to frac-
tional calculus includes less than ten titles, namely Oldham & Spanier (1974)
[71] McBride (1979) [63], Samko, Kilbas & Marichev (1987-1993) [83], Nishi-
moto (1991) [70], Miller & Ross (1993) [64], Kiryakova (1994) [46], Rubin
(1996) [80], Podlubny (1999) [74], among which the encyclopaedic treatise
by Samko, Kilbas & Marichev is the most prominent. Furthermore, we re-
call the attention to the treatises by Davis (1936) [17], Erdélyi (1953-1954)
[22], Gel'fand & Shilov (1959-1964) [26], Dzherbashian [19,20], Caputo [13],
Babenko [4], Gorenflo & Vessella [37], which contain a detailed analysis of
some mathematical aspects and/or physical applications of fractional calcu-
lus, although without explicit mention in their titles.

For details on the historical development of the fractional calculus we refer
the interested reader to Ross’ bibliography in [71] and to the historical notes
generally available in the above quoted texts.



In recent years considerable interest in fractional calculus has been stimulated
by the applications that it finds in different fields of science, including nu-
merical analysis, physics, engineering, biology, economics and finance. In this
respect we quote the collection of articles on the topic of Fractional Differenc-
ing and Long Memory Processes, edited by Baillie & King (1996), appeared as
a special issue in the Journal of Econometrics [5], the book edited by Carpin-
teri and Mainardi (1997), containing lecture notes of a CISM Course devoted
Fractals and Fractional Calculus in Continuum Mechanics [15], and finally the
forthcoming book edited by R. Hilfer (2000), containing invited contributions
in some areas of physics [41].

B. Approaches to Fractional Calculus

There are different approaches to the fractional calculus which, not being all
equivalent, have lead to a certain degree of confusion and several misunder-
standings in the literature. Probably for this the fractional calculus is in some
way the ”black sheep” of the analysis. In spite of the numerous eminent math-
ematicians who have worked on it, still now the fractional calculus is object
of so many prejudices.

In these review lectures we essentially consider and develop two different
view-points to the fractional calculus: the continuous view-point based on the
Riemann-Liouville fractional integral and the discrete view-point based on the
Griinwald-Letnikov fractional derivative. Both approaches turn out to be use-
ful in treating our generalized diffusion processes in the theory of probability
and stochastic processes.

We use the standard notation N, Z, R, C to denote the sets of natural, integer,
real and complex numbers, respectively; furthermore, R* and R denote the
sets of positive real numbers and of non-negative real numbers, respectively.
Let us remark that, wanting our lectures to be accessible to various kinds of
people working in applications (e.g. physicists, chemists, theoretical biologists,
economists, engineers) we have deliberately and consciously as far as possible
avoided the language of functional analysis. We have used vague phrases like
"for a sufficiently well behaved function” instead of constructing a stage of
precisely defined spaces of admissible functions. We have devoted particular
attention to the techniques of Fourier and Laplace transforms: correspondingly
our functions are required to belong to the space L;(R) (summable functions in
all of R) or Lj,.(Rg) (summable function in any finite inerval of Ry ) . We have
extended the Fourier and Laplace transforms to the Dirac ”delta function” in
the typical way suitable for applications in physics and engineering, without
adopting the language of distributions. We kindly ask specialists of these fields
of pure mathematics to forgive us. Our notes are written in a way that makes
it easy to fill in details of precision which in their opinion might be lacking.



The continuous view-point to fractional calculus

The starting point of the so called Riemann-Liouville fractional calculus is the
integral formula (attributed to Cauchy) that reduces the calculation of the
n—fold primitive of a (sufficiently well behaved) function ¢(z) (x € [a,b] C R,
—o00 < a < b < +00) to a single integral of convolution type. Indeed, for any
n € N, the repeated integral

T Tn-—1

/ / /qﬁxo drg ...dx, 1, a<z<b,

which provides the n—fold primitive ¢, (), vanishing at = = a with its deriva-
tives of order 1,2,...,n — 1, can be written because of the Cauchy formula
as

T

1 -
11 9l2) = on() = (o=, /(3: —On T g(e)de, a<az<b. (B
Then, in a natural way, one is led to extend the above formula from positive
integer values of the index n to any positive real values by using the Gamma
function. Indeed, noting that (n — 1)! = I'(n), and introducing the arbitrary

positive real number «, one defines the fractional integral of order o > 0 as

T

I&_qﬁ(a:)::ﬁ/(x—f)“lqﬁ(f)df, a<z<b a>0. (B.2)

A dual form of the above integral is
;b
1o ¢(z ;:F—/ $(6)de, a<z<b a>0. (B3

We refer to the fractional integrals I', and I;' as progressive and regressive,
respectively. For complementation we define Ig+ = I} :=1 (Identity oper-
ator), i.e. we mean I ¢(z) = I} ¢(x) = ¢(x). Furthermore, by I2, ¢(a*),
I ¢(b~), we mean the limits (if they exists) of I, ¢(x) for z — at and
I ¢(x) for x — b~ , respectively; these limits may be infinite.

The most common choices concerning the interval [a, b] are the whole set of
real numbers R (i.e. a = —00, b = 4+00), considered by Liouville [50-52], and
the set of non negative real numbers Ry (i.e. a = 0, b = +00), considered by
Riemann [77]. We note that the fractional integrals over infinite intervals, es-
pecially the regressive one, were named in many later papers as Weyl integrals.
Weyl [89] arrived at these indirectly by defining fractional integrals suitable
for periodic functions. We thus agree to refer to these integrals as Liouville-
Weyl fractional integrals. In these lectures we shall use the simplified notation
I and I” when a = —oc and b = +oo, respectively.



We also note that, before Riemann, fractional integrals with @ = 0 have been
considered by Abel [1,2] when he introduced his integral equation, named after
him, to treat the problem of the tautochrone. It was Abel who gave the first
application of fractional calculus to mechanics in solving his problem by in-
verting the fractional integral, see e.g. Gorenflo & Vessella (1991) [37]. In these
lectures we agree to refer to the fractional integral I, as to Abel-Riemann
fractional integral; for them we use the special and simplified notation J¢ in
agreement with the notation introduced by Gorenflo & Vessella (1991) [37]
and then followed in any paper of ours.

Before introducing the fractional derivative let us point out the fundamental
property of the fractional integrals, namely the semi-group property according
to which

00, =1 =t o, 3>0. (B.4)

The fractional derivative of order « can be introduced as the left inverse of
the corresponding fractional integral, so extending the similar property of the
common derivative of integer order. In fact it is straightforward to recognize
that the derivative of any integer order n = 0,1, 2, ...

D" (a) = 2 §a) = $M(x), a<w<b

dam

satisfies the following composition rules with respect to the repeated integrals
of the same order n, I7', ¢(x) and I} ¢(x)

DIy ¢(x) = o(x),

n—1 (k) (,+ a<xz<b, (B.5a)
1, Do) = ola) — 3, 21

DI g(x) = (—1)"¢(x),

n—1 (k) (}— a<x<b. (B.5b)
1 pota) = 1y o) - 5 S 0t

k=0
As a consequence of (B.3-5) the left-inverse of the fractional integrals I, , Ij"
may be defined by introducing the positive integer m such that m—1 < o < m.
Then one defines the fractional derivative of order o > (0 as

DS, 4(x) = D™ I o(x)
a<z<b, m—1<a<m. (B.6)
Dy ¢(z) = (=1)" D" """ ¢(x)

In fact, taking for example the progressive operators, we get

Do I8 = D" I T, = D" " =1,



The fractional derivatives, like the fractional integrals, turn out to be con-
tinuous with respect to the order, reducing to the to the standard repeated
derivatives when the order is an integer. However, when the order is not inte-
ger, the fractional derivatives (namely the ”proper” fractional derivatives) do
not follow necessarily the "semi-group” property of the fractional integrals: in
this respect the starting point a # —oo (or the ending point b # +oc) plays
a "disturbing” role. Furthermore we stress the fact that "proper” fractional
derivatives are non-local operators being expressed by ordinary derivatives of
convolution integrals with a weakly singular kernel. We note that the frac-
tional integrals contain a weakly singular kernel only when the order is less
than one.

The discrete view-point to fractional calculus

In all the above approaches in which the fractional derivatives are defined as
the left inverse of the corresponding fractional integrals, the fractional dif-
ferentiation is seen as a sort of integration of order —a. A totally different
approach arises from the desire to properly generalize the fact that ordinary
derivatives are limits of difference quotients. Let 7" denote the translation by
a step of length A > 0

T g(x) = 6z — h). (B.7)

The backward finite difference of order « is defined as
0 «
A o) = (T T g(x) = 3 (1) (k) sz kh).  (BY

where I = TV, the identity, and

Cﬁ::Ma—U“.m—k+U Mo +1) (55)

k k! T T+ ) a—k+1)

For a« € N it reduces to the familiar backward finite difference of integer
order. For a ¢ N we note the asymptotic behabviour

| _ papyy Lsinra) Lk =) sinra)| o
‘<k>‘—F(a+1) T T(k+1) ~Platl) =k @ ask = oo,

Griinwald (1867) [39] and Letnikov (1868) [47] developed an approach to frac-
tional differentiation based on the definition
Aa
D% ¢(z) = lim M.

h—0+ he

(B.10)

While the arguments of the first author were rather formal, the latter gave a
rigorous construction of the theory of fractional integro-differentiation on the
basis of such a definition. Letnikov had in particular shown that thus defined



D1 * ¢(x) coincides with our Liouville-Weyl fractional integral /¢ and with our
Abel-Riemann fractional integral J* under the appropriate interpretation of
the fractional difference AY ¢(z). He proved the semigroup property within
the framework of definition (B.10).

Hilfer (1997) [40] has pointed out that there are several possibilities to define
the limit of the fractional finite difference quotient, e.g. point-wise, almost
everywhere, or in the norm of a Banach space. The choice depends upon the
question at hand. Furthermore he notes that eq. (B.8) suggests it is also pos-
sible to define fractional derivatives as fractional powers of the differentiation
operator following the approach started by Balakrishnan (1958, 1959, 1960)
[6-8] and Westphal (1974) [88]. More generally one may consider fractional
powers of the infinitesimal generators of strongly continuous semi-groups.

Finally, a mixed approach to the fractional calculus, namely containing in-
tegrals and finite differences, is to define the fractional derivatives trying to
replace a with —a directly in the above Riemann-Liouville fractional inte-
grals. However the resulting integrals are divergent (with hyper-singular ker-
nels) and need to be regularized by using the techniques of Hadamard’s finite
part. This approach was successfully pursued by Marchaud (1927) [62]. Tt is
interesting to note that both Liouville and Riemann dealt with the so-called
”complementary” functions which arise when one attempts to treat fractional
differentiation of order a as fractional integration of order —a/, see Samko,
Kilbas & Marichev (1993) ([83], p. xxix and Historical Notes in §4.1, §9.1).

The plan for the following sections

Let us now explain the contents of the following sections. Sections C and D
will be devoted to the continuous view-point to fractional calculs. In section C
we start from the Liouville-Weyl fractional integrals to arrive at the fractional
derivatives in the sense of Riesz and Feller. These derivatives are suitable to
generalize the standard diffusion equation by replacing the second-order space
derivative. In view of this we shall consider functions of the space variable x,
denoted by ¢(x), and apply the Fourier transform. In section D we start from
the Abel-Riemann fractional integrals to arrive at the fractional derivatives
in the sense of Caputo. These derivatives are suitable to generalize the stan-
dard diffusion equation by replacing the first-order time derivative. In view of
this we shall consider functions of the time variable ¢, denoted by 1 (t), and
apply the Laplace transform. In section E we shall provide some details on
the discrete view-point to fractional calculus based on the Griinwald-Letnikov
difference scheme and its variants. These schemes turn out to be useful in the
interpretation of the space or time fractional diffusion processes by random-
walk models. Finally sections F and G are devoted respectively to the special
functions of the Mittag-lefler and Wright type, which play a fundamental role
in our applications of the fractional calculus.



C. Fractional Calculus according to Riesz and Feller

In this Section the functions under consideration are assumed sufficiently well
behaved in L;(R) to ensure the existence of the Fourier transform or its in-
verse, as required. In our notation the Fourier transform and its inverse read

o) = F[o(a)] = [ T g(a)da,
1t

oa) = F ' [5(0)] = 5= [ e T () dr,

\ — 0

(C.1)

where k € R, denotes the Fourier parameter. In this framework we also con-
sider the class of pseudo-differential operators of which the ordinary repeated
integrals and derivatives are special cases. A pseudo-differential operator A,
acting with respect to the variable x € R, is defined through its Fourier
representation, namely

+oo

/ e A ¢(x) dr = A(r) 3() | (C.2)

— 0o

where A(K) is referred to as symbol of A. An often applicable practical rule
is

A(r) = (Ae_mx> e TIET ke R, (C.3)

If BAiS another pseudo-differential operator, then we have fT\B(K) =
A(k) B(k) .

For the sake of convenience we shall adopt the notation + to denote the
juxtaposition of a function with its Fourier transform and that of a pseudo-
differential operator with its symbol, namely

d(z) + d(k), A+ A.

The Liouville-Weyl fractional integrals and derivatives

We now consider the pseudo-differential operators represented by the Liouville-
Weyl fractional integrals and derivatives. The Liouwville- Weyl fractional inte-
grals (of order aw > 0 for a well-behaved function ¢(z) with z € R) are
defined

12 () = ﬁ [t oerde. o> 0.
fooo (C.4)
I°9() = —— (€)™ 1 4(€)dE, a>0.

=

(@)

T



For complementation we put 9 := I (Identity operator), as it can be justified
by passing to the limit o — 0.

The Liouville-Weyl integrals possess the semigroup property, i.e.

1015 =15"", 121 =1, foralla, 3>0. (C.5)

The Liouville-Weyl fractional derivatives (of order az > 0) are defined as the
left-inverse operators of the corresponding Liouville-Weyl fractional integrals
(of order a > 0), i.e.

DY It =D*1% =1. (C.6)
Therefore, introducing the positive integer m such that m — 1 < o < m and
recalling that D™ I"" =T and D™ I = (—1)™ I, we have

N DI e(x), f m-—1<a<m, m odd;
Dz ¢(z) = { (D™ 1) é(x), if m-—1<a<m, m even. (€7

For complementation we put D} := I (Identity operator).

We note that a sufficient condition that the integrals entering I¢ in (C.4)
converge is that

gzﬁ(m):O(\mra*e) , €>0, r— Foo.

Integrable functions satisfying these properties are sometimes referred to as
functions of Liouville and Weyl class, respectively, see Miller & Ross (1993)
[64]. For example power functions |z|™® with § > @ > 0 and x < 0 and ™
with ¢ > 0 are of Liouville class. For these functions we obtain

o — F((S—OL) —0+a

I |z 6:Wm e
d>a>0, <0, (C.8)

Do |.Z“75: F((S—I—G/) |x‘757a

i I'(9) ’

and
]_(iecmchaecmj

c>0, zeR. (C.9)

a . ¢cr __ o, CT
Dfe®™ =c%e™,

The symbols of the fractional Liouville-Weyl integrals and derivatives can be
easily derived according to
19 = (Fir) @ = |k~ @e Tl (sign k) am/2 7
o (C.10)
DY =+ (Fir)*te = [k t@e T (signk) ar/2



The Riesz fractional integrals and derivatives

The Liouville-Weyl fractional integrals can be combined to give rise to the
Riesz fractional integral (usually called Riesz potential) of order «, defined as

e+ 1
2 cos(am/2) 2T (av) cos(am/2)

“+oo
|z —€* T p(&) dE, (C.11)

— 00

Iy ¢(x)

for any positive a with the exclusion of odd integer numbers for which
cos(am/2) vanishes. Using (C.10-11) the symbol of the Riesz potential turns
out to be

If =kl  a>0, a#1,3,5.... (C.12)
In fact
1 1 +1)* 4+ (—12)¢ 2 cos(am/2
I + 1% + - + - = (+0) (=0) = (a/2)
(Cir)e " (in)e IR IR

We note that, at variance with the Liouville-Weyl fractional integral, the Riesz
potential has the semigroup property only in restricted ranges, e.g.

oI =10%% for 0<a<1, 0<f<1, a+f<1. (C.13)

From the Riesz potential we can define by analytical continuation the Riesz
fractional derivative D, including also the singular case o = 1, by formally
setting D := —1;“ + —|k|*, where the minus sign has been put in order to
recover for o = 2 the standard second derivative. Restricting our attention to
the range 0 < a < 2 the explicit correct definition turns out to be

DY) Do)

D ¢(x) = — Iy plx) = 2 cos(am/2) (C.14)
—D H ¢(z), if a=1,

where H denotes the Hilbert transform operator defined by

+o00 +oc
Ho) =~ [ 28 41 / O =8 e (C.15)
T J £

T ) x—=¢
the integral understood in the Cauchy principal value sense. Incidentally, we
note that H~' = —H . By using the rule (C.3) we can derive the symbol of
H , namely

—~

H + H =isignk. (C.16)

The expressions in (C.14) can be easily verified by manipulating with symbols

10



of "good” operators as below

(—ik)* + (Fik)® | :
- = —|k|*, if a#1,
DY = —I;% + —|k|* = 2 cos(am/2)

+ik - isignk = —ksignk = —|k|, if a=1.
In particular, from (C.14) we recognize that

1 1 d
D?=—- (D> +D?)== = Dl £ — .
07 9 ( -t 7) 2 (de dx? dx?’ but 07 dx

d? d? ) d?
We also recognize that the symbol of Df is just the logarithm of the charac-
teristic function of a symmetric Lévy stable pdf.

In general, the Riesz fractional derivative D turns out to be related to the
2
a/2-power of the positive definite operator —D? = — since, as noted by

dz?
Feller (1952) [23],

a2
o o2, o d?
_‘f@‘ L= (/{2) + Dy =— <_W> 7 (0_17)

whereas the two Liouville-Weyl fractional derivatives are related to the a-
power of the first order differential operator D = % We note that it was
Bochner (1949) [11] who first introduced the fractional powers of the Laplacian

to generalize the diffusion equation.

We would like to mention the ”illuminating” notation introduced by Zaslavsky,
see e.g. Saichev & Zaslavsky (1997) [81], to denote our Liouville-Weyl and
Riesz fractional derivatives

d” d”

D§ = Dfy=——, 0 <2. C.18
=T Ay 0 T deer TS (C18)

We now point out that other expressions for D} and henceforth Df are ob-
tained by "regularizing” the hyper-singular integrals 17 for 0 < a < 2.
This "regularization”, based on a former idea by Marchaud, see e.g. Mar-
chaud (1927) [62], Samko, Kilbas & Marichev (1993) [83], Hilfer (1997) [40],
is noteworthy since it leads to a discretization of the operators of fractional
derivative, alternative to that based on the Griinwal-Letnikov method.

Let us first consider from (C.7) the operator

d
D} =1,":= %Iﬁ, 0<a<l. (C.19)

We have, see Hilfer (1997) [40],

11



d 1—a
DS ¢(x) =1 ¢(x )_%[ ¢(z)
1 d

- Mo @ [ =€) oe) de

T

— 00

1 d 7.
=f0 W d—/f dla — €) de

o

- 1—0/ / / T+a dn dg.,
3

0

so that, interchanging the order of integration,

D ¢(z) ¢, 0<a<l. (C.20)

y—n
|
Q
e\
N
Zle
)
\
o

Here ¢’ denotes the first derivative of ¢ with respect to its argument. The
coefficient in front to the integral in (C.20) can be re-written, using known
formulas for the Gamma function, as

o 1 sin o

= =TI(1 , 21
i) T 09— (C.21)
Similarly we get for
D* = I*a——if“a 0<a<l (C.22)
I - d’l’/‘ _ ) 4 I} .
o [ ¢+ — o(x)
D ¢(x) Ti—o) £1+O/ ¢, 0<a<l. (C.23)

Similar results can be given for l<a<?2.

Recalling from (C.14) the fractional derivative in Riesz’s sense

DS ¢(x) + D* g(x)

Df ¢(z) = — 2 cos(am/2)

O<a<l, 1<a<?2,

and using (C.20), (C.23), we get for it the following regularized representation,
valid also in a =1,

D 6(x) = T(14+a) 20 ””/2 /¢T+€2¢()+¢(T€)d§, 0<a<?2.

T+a
/ 3

(C.24)
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The Feller fractional integrals and derivatives

A generalization of the Riesz fractional integral and derivative has been pro-
posed by Feller (1952) [23] in a pioneering paper, recalled by Samko, Kilbas
& Marichev (1993) [83], but only recently revised and used by Gorenflo &
Mainardi (1998) [34]. The purpose of Feller was indeed to generalize the sec-
ond order space derivative entering the standard diffusion equation with a
pseudo-differential operator whose symbol is the logarithm of the characteris-
tic function of a general Lévy stable pdf according to his his parameterization,
which is closer to ours.

Let us now show how obtain the Feller derivative by inversion of a properly
generalized Riesz potential, later called Feller potential by Samko, Kilbas &
Marichev (1993) [83]. Using our notation we define the Feller potential I3 by
its symbol obtained by the Riesz potential by a suitable "rotation” of an angle
0 7/2 where 6 is a real number properly restricted. We have

a . |(.|—a,—1(sign k) Or/2 {|9|<Oz if 0<a<1,
Ig + Inl™e S Wl<2-a ifl<a<2 (O

As in the Riesz potential the case o = 1 is omitted.

The integral representation of the pseudo-differential operator /g turns out to
be

19 6(x) = c_(a,0) 1% 9(z) + 4 (0, 6) I $() (C.26)
where, if 0 < a <2, a#1,
si  —0) /2 si +0) /2
colo,0) = Sl O] o gy snllet O/ )
sin (ar) sin(a)
and, by passing to the limit (with § = 0)
4 (2,0) = c_(2,0) = —1/2. (C.28)
In the particular case # = 0 we get
1
ci(a,0) =c (a,0) = (C.29)

2 cos (am/2)’

and thus, from (C.26) and (C.29) we recover the Riesz potential (C.11). Like
the Riesz potential also the Feller potential has the (range-restricted) semi-

group property, e.qg.
I =18 for 0<a<1, 0<fB<1, a+8<1. (C.30)

From the Feller potential we can define by analytical continuation the Feller
fractional derivative Dy, including also the singular case o = 1, by setting

Dg = I;0 + |kleeti(ign R)OT/2 g <o (C.31)
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with 6 restricted as in (C.25). We have

— [es(a.0) D2 +c_(a,0) D] $(x), if a#1,
Dy é(x) := (C.32)
[cos(07/2) Dy + sin(07/2) D] ¢(z), if a=1.

For oo # 1 it is sufficient to note that ¢ (—a, ) = ¢y (,0) . For @ = 1 we need
to recall the symbols of the operators D and D} = —DH, namely D = (—ix)

and l/)\(]) = —|k|, and note that

D} =—|x|e Tt (i8N K)OT/2 _ |0 co5(07/2) — (i) sin(6r/2)
=cos(0r/2) l/)\a +sin(07/2) D .

For later use we find it convenient to return to the ”weight” coefficients c4(a, 6)
in order to outline some properties along with some particular expressions,
which can be easily obtained from (C.27) with the restrictions on # given in
(C.25). We obtain

>0, if0<a<l,
Ci{<m if 1<a<2, (C.33)
and (07/2) ;
cos (O >0, f0<ax<l,
C++Ccos(om/2){<0, if 1<a<2. (4.34)
In the extremal cases we find
cy=1,¢c =0, if 0 =—«,
0<a<1,{c+:076217 it 0= ta. (C.35)
c. =0,¢c =-1, if 0=—-(2-0a),
1<a<2’£4:—Lc:m it 0=+(2—a). (C:36)
We also note that in the extremal cases of o = 1 we get
Pl —+p=+2 (C.37)
+1 dl‘ .

In view of the relation of the Feller operators in the framework of stable prob-
ability density functions, we agree to refer to # as to the skewness parameter.

We must note that in his original paper Feller (1952) used a skewness param-
eter ¢ different from our 6 ; the potential introduced by Feller is

o <nel(“gn r) 5) s o=—T0 9205 (038)

2 «a T
Then Samko, Kilbas & Marichev (1993) named I§ as the Feller potential
operator. We note that Feller considered the inversion of his potential for
a = 1 but limiting himself to the symmetric case (0 = 6 = 0) for which
he provided the representation as the first derivative of the Hilbert transform.
Samko, Kilbas & Marichev (1993) apparently ignored the singular case o = 1.
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D. Fractional Calculus according to Abel-Riemann and Caputo

In this Section the functions under consideration are assumed sufficiently well
behaved in L;,.(Rg) to ensure the existence of the Laplace transform or its
inverse, as required. In our notation the Laplace transform and its inverse read

B = L) = [~ v
L ; ~ (D.1)
vi) =17 [50)] = 55 [T ds)ds,

where Br denotes a Bromwich path and s € C is the Laplace parameter.
For the sake of convenience we shall adopt the notation + to denote the
juxtaposition of a function with its Laplace transform, namely ¢ (t) <+ ¢(s).

The Abel-Riemann fractional integral and derivatives

We first define the Abel-Riemann (A-R) fractional integral and derivative of
any order o > 0 for a generic (well-behaved) function v (¢) with t € R .

For the A-R fractional integral (of order /) we have
;¢
Jep(t) == —— /(t ey dr, t>0 a>0.  (D.2)
I'(a) 2
For complementation we put J° := I (Identity operator), as it can be justified
by passing to the limit o — 0.
The A-R integrals possess the semigroup property, i.e.
JoJP = g8 foralla, 3>0. (D.3)
The A-R fractional derivative (of order o > 0) is defined as the left-inverse
operator of the corresponding A-R fractional integral (of order a > 0), i.e.
D* J* =1. (D.4)
Therefore, introducing the positive integer m such that m — 1 < a < m

and noting that (D™ J7" ) J* = D™ (J™ *J*) = D™J" = 1, we define
D% := D™ J"=* namely

t
1 am
/( ¥(7) dr, m—1<a<m,
0

ti,]—)oH»]fm o

D (t) = Zfﬂm - @) dim (D.5)
% 1/)(t) ) oG =1m
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For complementation we put D’ := I. For & — m~ we thus recover the
standard derivative of order m but the integral formula loses its meaning for
a=m.

By using the properties of the Eulerian beta and gamma functions it is easy
to show the effect of our operators .J* and D® on the power functions: we have

I'(y+1)

J“ﬂ:—r 0 AR
(Y +1+0) t>0, a>0, v> 1. (D.6)
Liy+1) .,

Doty =) e
'(y+1-a)

These properties are of course a natural generalization of those known when
the order is a positive integer.

Note the remarkable fact that the fractional derivative D® () is not zero for
the constant function ¢(¢) = 1 if & € N . In fact, the second formula in (D.6)
with 7 = 0 teaches us that

YL*(I

DY =—/ >0, t>0. D.7
T ©20 (D7)

This, of course, is = 0 for @ € N, due to the poles of the gamma function in
the points 0, —1, -2, ....

The Caputo fractional derivative

We now observe that an alternative definition of fractional derivative, origi-
nally introduced by Caputo (1967) (1969) in the late sixties and adopted by
Caputo & Mainardi (1971) in the framework of the theory of linear viscoelas-
ticity, is D¢ = J™ % D™ with m — 1 < a < m, namely

t
1 (m)
/ ) dr, m—-—1<a<m,
0

Dey(t) = l;fﬂm co)g b (D.8)
dt—mw(t) , a=m

The definition (D.8) is of course more restrictive than (D.5), in that it requires
the absolute integrability of the derivative of order m. Whenever we use the
operator D¢ we (tacitly) assume that this condition is met. We easily recognize
that in general

DO p(t) = D™ J 0 (1) £ T DUp(t) = DE(t),  (D.9)

unless the function ¢ (¢) along with its first m—1 derivatives vanishes at t = 0.
In fact, assuming that the passage of the m-derivative under the integral is
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legitimate, one recognizes that, form — 1 <a <m and t > 0,

m— kfa

D™ () = D2 (1) Z

Tﬂ) p(0"). (D-10)

and therefore, recalling the fractional derivative of the power functions, see
(D6),

D (v~ X 007 = D2t (D11)

The subtraction of the Taylor polynomial of degree m — 1 at t = 0% from
¥(t) means a sort of regularization of the fractional derivative. In particular,
according to this definition, the relevant property for which the fractional
derivative of a constant is still zero can be easily recognized,

D=0, a>0. (D.12)

We now explore the most relevant differences between the two fractional
derivatives (D.5) and (D.8). We agree to denote (D.8) as the Caputo frac-
tional derivative to distinguish it from the standard A-R fractional derivative
(D.5). We observe, again by looking at (D.6), that D** ' =0,a >0, t > 0.
We thus recognize the following statements about functions which for ¢ > 0
admit the same fractional derivative of order o, withm—1 < a <m, m € N,

D*(t) = D* ¢(t) <= (1) Zc, o (D.13)

D¢p(t) = DS o(t) <= (1) )+ Z c;t™” 7, (D.14)
where the coefficients ¢; are arbitrary constants.

For the two definitions we also note a difference with respect to the formal
limit as a — (m — 1)"; from (D.5) and (D.8) we obtain respectively,

D*(t) — D™ Jy(t) = D™ (t) ; (D.15)

DEap(t) — J D™ ap(t) = D™ ap(t) — D (01 (D.16)

We now consider the Laplace transform of the two fractional derivatives. For
the A-R fractional derivative D® the Laplace transform, assumed to exist,
requires the knowledge of the (bounded) initial values of the fractional in-
tegral J™~% and of its integer derivatives of order £k = 1,2,...,m — 1. The
corresponding rule reads, in our notation,

DY 4(t) + s* f(s) ZD’“ m=a) 0ty s™ 1k m—1<a<m. (D7)
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For the Caputo fractional derivative the Laplace transform technique requires
the knowledge of the (bounded) initial values of the function and of its integer
derivatives of order k = 1,2,...,m—1, in analogy with the case when . = m .
In fact, noting that J* D& = J*J"~* D™ = J™ D™, we have

(0] [0} i tk
7D () =00~ v 3 (D18)
so we easily prove the following rule for the Laplace transform,
m—1
Dap(t) = s P(s) — D ¢pWO0T) s F . m—1<a<m. (D.19)
k=0

Indeed the result (D.19), first stated by Caputo (1969) [13], appears as the
"natural” generalization of the corresponding well known result for o = m.

Gorenflo & Mainardi (1997) [33] have pointed out the major utility of the
Caputo fractional derivative in the treatment of differential equations of frac-
tional order for physical applications. In fact, in physical problems, the initial
conditions are usually expressed in terms of a given number of bounded values
assumed by the field variable and its derivatives of integer order, despite the
fact that the governing evolution equation may be a generic integro-differential
equation and therefore, in particular, a fractional differential equation.

E. Fractional Calculus according to Griinwald-Letnikov

According to the familiar definition based on the "backward difference limit”,
the first-order derivative of a function ¢(x) is obtained as

d Wy e @) — o —h)
L () = o (a) = lim .

h—0 h

Applying this rule twice gives the second-order derivative

e 40 (k)
- ) = 6@ (@) =lim -
_ L fo(@) —g(e—h) ¢(x—h)—¢(x—2h)
=iy { h N h }
o 6ln) 2@ h) ol 2h)
h—0 h2 '

We then obtain
d3

da’

(2) = ¢® (z) = lim é(x) — 3¢p(x — h) + 3p(x — 2h) — ¢(x — 3h)

h—0 h3

and, by induction,
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- dam

D" §(x) .

1 & n
am—¢W@g—hm——§:(nk(>mmmn.(EL
We note that the n-th derivative is seen to be a linear combination of the
function’s values at the (n + 1) values z,x — h,x — 2h,...x — nh of the in-
dependent variable. The coefficients are binomial coefficients and alternate in
sign. There is a divisor of h™ .

Starting from the so-called Riemann sum definition of an integral and iterating
we get, see e.g. Oldham & Spanier (1974) [71], Podlubny (1999) [74]

(2—a)/h B
" (x) =lim b S (=1)F ( ”) é(x — kh), (E.2)
h—0 s k
with
Pnk<;>="m+w”gn+k” for k=12 .. (E.3)

We have implicitly assumed that (x —a)/h is an integer. We then note that the
n-th repeated integral is again a weighted sum of the functions’s values, but
that the length of the sum tends to infinity as h — 0. The weights are again
defined by binomial coefficients, but they are all positive. In this framework
we also recognize the formal identities I}, = D™ or D" =1 1.

The definition of the Griinwald-Letnikov fractional derivative is an extension
of (E.1) to any real positive order a, namely

l(a—a)/h]
a Dy, ¢(x) = lim L (—1)* <O/> ¢(x —kh), a<z<b. (E.4da)

Similarly, by taking the ”forward difference limit”, we define the dual
Grinwald-Letnikov fractional derivative of order « as

) g ey
oDy o(x) = ]lgr(l) 7 kz::o (—1) (k) o(x+kh), a<z<b. (E.4b)
In eqs (E.4) the [-] denotes the integer part. In analogy with the Riemann-
Liouville fractional calculus we may refer to (E.4a) and (E.4b) as the progres-
stwe and regressive Grinwald-Letnikov fractional derivative, respectively.

For our future purposes it is convenient to introduce a general notation to de-
note the (finite or infinite) series of the backward/forward difference quotients
entering the limit in the above definitions, namely
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1

D = g X (1) (jj) ba % bh), (5.5

where the upper limit of the sum is the appropriate one.

Under certain conditions one can prove the following connections with the
Riemann-Liouville fractional integrals and derivatives, (B.2-3) and (B.6), for
a<xr<b,

GLDaw(x):ﬁ/ (0 - € §(€)dg = I2, 6(z), a >0, (E.Ga)
b
61Dy ° ol / $(€)de = I3 §(z), a>0, (E.6h)
and ’

ar DS o(x) = D" I dp(x) = Dy, o), m—1<m<m, (E.7a)

aDy () = (=1)" D™ 1" ¢(z) = D) p(x), m—-1<a<m. (E.7D)
We point out the relation with the Caputo fractional derivative (D.8), for ¢ > 0
andm—1<a<m,

- kfa

ar Dy, - Z

- —a—i—l)

t
/ti/’T T _dr. (B3
0

The Griinwald-Letnikov scheme may be useful in numerical computations of
fractional integrals and derivatives. However, as recently reviewed by Gorenflo
(1997), see [28] and references therein, it has mostly a conceptual value since
it yields only a first-order approximation in the step-length h. Higher-order
methods have been introduced for getting better approximations; so, in [87]
second-order accuracy has been obtained by shifting the scheme by a non-
integer multiple of A .

Let us conclude this section by noting that the formal identity between the
fractional derivative and the fractional integral (with the obvious change of
sign in the order) stated in in (E.6a) has induced several authors to unify the
notions of fractional derivatives and integrals with the joint name of differin-
tegration. Giving priority to the derivative they use the notation D~ for the
fractional integral, attributing to it a negative order of differentiation. The
present authors oppose to this notation since it is misleading and generally
not correct, even if it is used in distinguished treatises as Davis (1936) [17],
Oldham & Spanier (1974) [71], Miller & Ross (1993) [64] and Podlubny (1999)
[74]. It is well known that derivation and integration operators are not inverse
to each other, even if their order is integer, and therefore such unification of
symbols appears not justified.
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F. The Mittag-Leffler type functions

The Mittag-Leffler function is so named from the great Swedish mathematician
who introduced it at the beginning of the X X-th century in a sequence of five
notes [65 69]. In this Section we shall consider the Mittag-Leffler function
and some of the related functions which are relevant for their connection with
fractional evolution processes. It is our purpose to provide a short reference-
historical background and a review of the main properties of these functions,
based on our papers, see [32], [33], [57], [58], [59].

Reference-historical background

We note that the Mittag-Leffler type functions, being ignored in the common
books on special functions, are unknown to the majority of scientists. Even in
the 1991 Mathematics Subject Classification these functions cannot be found.
However, in the new AMS classification foreseen for the year 2000, a place for
them has been reserved: 33E12 (”Mittag-Leffler functions”).

A description of the most important properties of these functions with relevant
references can be found in the third volume of the Bateman Project [21], in
the chapter XV III of the miscellaneous functions. The treatises where great
attention is devoted to them are those by Dzherbashian [19], [20]. We also
recommend the classical treatise on complex functions by Sansone & Gerretsen
[84] and the recent book on fractional calculus by Podlubny [74].

Since the times of Mittag-Leffler several scientists have recognized the impor-
tance of the Mittag-Leffler type functions, providing interesting mathematical
and physical applications, which unfortunately are not much known.

As pioneering works of mathematical nature in the field of fractional integral
and differential equations, we like to quote those by Hille & Tamarkin [42]
and Barret [9]. In 1930 Hille & Tamarkin have provided the solution of the
Abel integral equation of the second kind in terms of a Mittag-Leffler function,
whereas in 1954 Barret has expressed the general solution of the linear frac-
tional differential equation with constant coefficients in terms of Mittag-Leffler
functions.

As former applications in physics we like to quote the contributions by Cole
in 1933 [16] in connection with nerve conduction, see also [17], and by Gross
[38] in 1947 in connection with mechanical relaxation. Subsequently, in 1971,
Caputo & Mainardi [14] have shown that Mittag-Leffler functions are present
whenever derivatives of fractional order are introduced in the constitutive
equations of a linear viscoelastic body. Since then, several other authors have
pointed out the relevance of these functions for fractional viscoelastic models,
see e.g. Mainardi [57].
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The Mittag-Leffler functions Ey(2), Ea.a(2)

The Mittag-Leffler function E,(z) with o > 0 is defined by the following series
representation, valid in the whole complex plane,

n

Ba(2) = fj &

__Z  __ a>0, zeC. Fi
—T(an+1) (F.1)
[t turns out that E,(z) is an entire function of order p = 1/ and type 1.
This property is still valid but with p = 1/Re{a}, if a € C with positive real
part, as formerly noted by Mittag-Leffler himself in [68].

The Mittag-Leffler function provides a simple generalization of the exponential
function because of the substitution of n! = I'(n+1) with (an)! = T(an+1).
Particular cases of (F.1), from which elementary functions are recovered, are

Ey (+z2) = cosh z, E, (—zQ) = Cos 2, z2€C, (F.2)
and
Eyjp(£2'?) = e* [1 + erf (:1:21/2)} — % erfe (F2'?), z€C, (F.3)

where erf (erfc) denotes the (complementary) error function defined as
2 [ 2
erf (2) := — /e Yodu, erfe (z):=1—erf(z2), z€C. (F.4)
VT

In (F.4) by 22 we mean the principal value of the square root of z in the
complex plane cut along the negative real semi-axis. With this choice +2z'/2
turns out to be positive/negative for € R*. A straightforward generalization
of the Mittag-Leffler function, originally due to Agarwal in 1953 based on a
note by Humbert, see [3], [44], [45], is obtained by replacing the additive
constant 1 in the argument of the Gamma function in (F.1) by an arbitrary
complex parameter (3. For the generalized Mittag-Leffler function we agree to
use the notation

[e.e] Z’n

n=0

Particular simple cases are

e —1 sinh (2/?)
El,Q(Z) = > ) E2,2(Z) = T

(F.6)

We note that E, 3(z) is still an entire function of order p = 1/« and type 1.
For lack of space we prefer to continue with the Mittag-Leffler functions in one
parameter: since here we shall limit ourselves to consider evolution processes
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characterized by a single fractional order, the more general functions with
two parameters turn out to be redundant. However, we find it convenient to
introduce other functions depending on a single parameter which turn out to
be related by simple relations to the original Mittag-Leffler functions, and to
consider them as belonging to the class of Mittag-Leffler type functions.

The Mittag-Leffler integral representation and asymptotic expansions

Many of the most important properties of E,(z) follow from Mittag-Leffler’s
integral representation

1 (el
Ez:—/ ¢, a>0, zeC, .7
a(2) 21 ) (> — 2z ¢ (F7)
Ha
where the path of integration Ha (the Hankel path) is a loop which starts and
ends at —oo and encircles the circular disk || < |z|'/® in the positive sense:
—m < arg( < 7 on Ha. To prove (F.7), expand the integrand in powers of
¢, integrate term-by-term, and use Hankel’s integral for the reciprocal of the
Gamma function.

The integrand in (F.7) has a branch-point at ¢ = 0. The complex (-plane is cut
along the negative real semi-axis, and in the cut plane the integrand is single-
valued: the principal branch of (* is taken in the cut plane. The integrand has
poles at the points ¢, = 2"/ e*™™/® m integer, but only those of the poles
lie in the cut plane for which —an < argz + 27 m < ax. Thus, the number

of the poles inside Ha is either [a] or [a + 1], according to the value of arg z.

The most interesting properties of the Mittag-Leffler function are associated
with its asymptotic developments as z — oc in various sectors of the complex
plane. These properties can be summarized as follows. For the case 0 < o < 2
we have

1 —k

B (2) ~ — oy _§__ 2 — <an/2, (F8
()~ o) = s el oo, fargs| <anf2, (FS)

oo ka

,;F(l—ak)’ |

For the case o > 2 we have

E,(2) ~ — z| w00, an/2<argz<2m—an/2. (F.9)

—k

1 , > z
E(,(Z) -~ - ;exp (Zl/ae%rzm/a) _gm7 ‘z| — 00, (F.IU)

where m takes all integer values such that —ar/2 < argz+27m < ar/2, and
arg z can assume any value between —7 and + inclusive. From the asymptotic
properties (F.8-10) and the definition of the order of an entire function, we infer
that the Mittag-Leffler function is an entire function of order 1/a for oo > 0;
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in a certain sense each E,(z) is the simplest entire function of its order. The
Mittag-Leffler function also furnishes examples and counter-examples for the
growth and other properties of entire functions of finite order.

The Laplace transform pairs related to the Mittag-Leffler functions

The Mittag-Leffler functions are connected to the Laplace integral through
the equation
oC

/e“Ea(uaz)duzllz, a>0. (F.11)

0
The integral at the L.H.S. was evaluated by Mittag-Leffler who showed that
the region of its convergence contains the unit circle and is bounded by the
line Re z'/* = 1. Putting in (F.11) u = st and u® 2z = —\#* with # > 0 and
A € C, and using the sign + for the juxtaposition of a function depending
on t with its Laplace transform depending on s, we get the following Laplace
transform pairs

a—1
By (=A%) + Sj 5 Res> e (F12)

In our CISM Lecture notes [33] we have shown the key role of the Mittag-Leffler
type functions E, (—At%) in treating Abel integral equations of the second
kind and fractional differential equations, so improving the former results by
Hille & Tamarkin (1930) [42] and Barret (1954) [9], respectively. In particular,
assuming A > 0, we have discussed the peculiar characters of these functions
(power-law decay) for 0 < a < 1 and for 1 < a < 2 related to fractional
relazation and fractional oscillation processes, respectively, see also [56], [32].

Other formulas: summation and integration

For completeness hereafter we exhibit some formulas related to summation and
integration of ordinary Mittag-Leffler functions (in one parameter o), referring
the interested reader to [19], [74] for their proof and for their generalizations
to two parameters. Concerning summation we outline
122 :
Eo(2) = ; > Bagp (217€2™7) | peN, (F.13)
h=0

from which we derive the duplication formula
Ea(2) = 5 [Bap2(+572) + Eap(=2'17)] . (F.14)

Concerning integration we outline another interesting duplication formula

o

/e—m2/<4t> Eo(2®)dz = VTt Bapa(t?), t>0. (F.15)
0
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G. The M-Wright type functions

Let us first recall the more general Wright function W, ,(2),z € C, with
A > —1 and g > 0. This function, so named from the British mathematician
who introduced it between 1933 and 1940 [92 95] is defined by the following
series and integral representation, valid in the whole complex plane,

s 2" 1 X do
1% = LA G.1
w2 z_: n!D(An+p) 2w . ok (1)
- Ha
Here Ha denotes an arbitrary Hankel path, namely a contour consisting of
pieces of the two rays argo = +¢ extending to infinity, and of the circular

arc o =ee | 0| < ¢, with ¢ € (7/2,7), and € > 0, arbitrary.

It is possible to prove that the Wright function is entire of order 1/(1 4+ A),
hence of exponential type if A > 0. The case A = 0 is trivial since W ,(z) =
e?/T'(u). The case A = —v, p = 1—v with 0 < v < 1 provides the function M
function of the Wright type, M, (z), that is of special interest for us, see e.g.
Mainardi (1995, 1996a, 1996b, 1997) [54-57] and Gorenflo, Luchko & Mainardi
(1999, 2000) [30,31]. Specifically, we have

1
M,(z) =W_, 1 ,(—2) = — W_,o(—2), 0<v<l1, (G.2)

and therefore from (G.1-2)

= z)" 1 _ ov do
=3 (=) = [T S (G
o —vn+(1—-v)] 2w J ol~v

[t turns out that M,(z) is an entire function of order p = 1/(1 — v), which
provides a generalization of the Gaussian and of the Airy function. In fact we
obtain

M, o(2) = % exp (— 22/4) : (G.4)
Mijs(z) = 3% Ai (2/3'%) (G.5)

where Ai denotes the Airy function. Furthermore it can be proved that M /4(2)
satisfies the differential equation of order ¢ — 1

do-1 (=1)¢

subjected to the ¢ — 1 initial conditions at z = 0, derived from the series
expansion in (G.1),

M (0) = (=" I[(h+1)/q] sinjr (h+1)/q], h=0,1,...q—2. (G.7)
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We note that, for ¢ > 4, Eq. (G.6) is akin to the hyper-Airy differential
equation of order g—1, see e.g. Bender & Orszag (1987)[10]. Consequently, the
function M, (z) is a generalization of the hyper-Airyfunction. In the limiting
case v = 1 we get M;(z) =d(z —1).

From now on let us consider only the M function for positive (real) argument,
M, (r), which will be the relevant function for our purposes. The asymptotic
representation of M,(r), as r — oo can be obtained by using the ordinary
saddle-point method. Choosing as a variable r/v rather than r the computa-
tion is easier and yields, see Mainardi & Tomirotti (1995) [61],

M,(r/v) ~ a(v) T exp [—b(l/) rﬁ] , T — 400, (G.8)
where ! 1y
a(v) = ——=>0, b)) = >0. (G.9)
21 (1 —v) v

Because of the above exponential decay, any moment of order 6 > —1 for
M, (r) is finite and results

o0

/7"5 M, (r)dr =

0

['(0+1)

To+1)’ §>—1. (G.9)

The following Laplace transform pairs can be proved, see Mainardi (1997) [57],

M,(r) + E,(—s), O0<v<l. (G.10)
and
oes] M, (1/t") ~exp(—s"), O0<v<1, (G.11)
1
m M, (1/t") + s Vexp(~s"), 0<v<l, (G.12)

As a particular case of (G.10) we recover the well-known Laplace transform
pair, see e.g. Doetsch (1974),

My jo(r) = % exp (— T2/4) =+ Eyja(—s) 1= exp(s?) erfc (s) . (G.13)
We also note that, transforming term-by-term the Taylor series of M, (r) (not
being of exponential order) yields a series of negative powers of s, which
represents the asymptotic expansion of E,(—s) as s — oo in a sector around
the positive real axis. As particular cases of (G.11-12) we recover the well-
known Laplace transform pairs, see e.g. Doetsch (1974) [18] ,

1

54312 My (1/177)) =

ﬁt‘w exp (—1/(4752)) + exp (—51/2) ,  (G.14)

1 1
— M,y (1/11/%)) = ﬁt”ﬂ exp (~1/(487)) + s exp (—5'7) . (G.15)

t1/2
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