
A Distributed ArchitectureDe�nition Language:a DADLRon BurbackDecember 18, 1998

Contents1 Abstract 62 Introduction 73 Distributed Architecture Description Language 113.1 Overview : 113.2 Backus-Naur Form (BNF) Semantics : : : : : : : : : : : : : : 123.3 Conversations : 133.3.1 Conversation Identi�er : : : : : : : : : : : : : : : : : : 133.4 Connections : 143.4.1 Connection Identi�er : : : : : : : : : : : : : : : : : : : 153.4.2 Connectivity : 153.4.3 Order : 153.4.4 Delivery : 153.5 Dagent : 163.5.1 Dagent Identi�er : 163.5.2 Dagent Connections : : : : : : : : : : : : : : : : : : : 163.6 Alphabet : 173.7 Terms : 183.7.1 Term Identi�er : 183.7.2 Type Identi�er : 183.7.3 Constant Term : 183.7.4 Variable Identi�er : 183.7.5 Variable Term : 183.7.6 Function Term : 183.8 Function Term : 203.8.1 Function Identi�er : 203.8.2 Parameter List : 203.8.3 Function Quality of Service Contract : : : : : : : : : : 203.8.4 Function Performance Contract : : : : : : : : : : : : : 223.9 Sentences : 243.10 Conversation Behavior : 253.10.1 Sequential : 253.10.2 Parallel : 253.10.3 Wait : 253.10.4 At Least Once : 251

3.10.5 Zero or More Times : 253.11 Contract : 273.11.1 Performance : 273.11.2 Latency : 273.11.3 Error Rate : 273.11.4 Capacity : 273.11.5 General Observations about a Contract : : : : : : : : : 283.12 Conversation Options : 293.12.1 Persistence : 293.12.2 Volatile : 293.12.3 Data Open : 303.12.4 Data Integrity : 303.12.5 Data Privacy : 303.12.6 Marshaled : 303.12.7 Authenticated : 303.12.8 Authorized : 303.13 Dagent : 313.13.1 Connection : 323.13.2 Obeys : 333.13.3 Contract : 343.13.4 Resource : 353.13.5 Service : 363.14 The Environment : 374 Using DADL 385 Theory 415.1 The Theorem : 415.2 The Proof Outline : 416 Examples 426.1 Simple Client Server : 426.1.1 Interface : 426.1.2 Dagent Client : 436.1.3 Dagent Server : 436.2 Three Tier Client Server : 446.2.1 Interface, Presentation to Application : : : : : : : : : : 446.2.2 Interface, Application to Server : : : : : : : : : : : : : 452

6.2.3 Dagent Presentation : : : : : : : : : : : : : : : : : : : 466.2.4 Dagent Application : 466.2.5 Dagent Server : 476.3 Simple email : 486.3.1 Email Communication : : : : : : : : : : : : : : : : : : 486.3.2 Email Client : 506.3.3 Email Server : 507 Distributed System Foundations 517.1 Distribution : 517.2 Concurrent : 527.3 No Global State : 527.4 No Global Clock : 537.5 Partial Failures : 537.6 Asynchronous Communication : : : : : : : : : : : : : : : : : : 547.7 Distributed Control : 557.8 Heterogeneous Systems : 557.9 Autonomy : 567.10 Evolution : 567.11 Opaqueness : 577.12 Openness : 587.13 Interdependent : 587.14 Federation : 597.15 Security : 598 Current Distributed Architectures 608.1 Basic Client/Server : 608.1.1 Messaging : 618.1.2 Remote Procedure Call(PRC) : : : : : : : : : : : : : : 618.2 Three Tiered Client/Server : 628.3 Five Network Placements : 648.3.1 Distributed Presentation : : : : : : : : : : : : : : : : : 648.3.2 Remote Presentation : : : : : : : : : : : : : : : : : : : 658.3.3 Distributed Application Logic : : : : : : : : : : : : : : 658.3.4 Remote Data : 658.3.5 Distributed Data : 658.4 Publish/Subscribe : 668.5 Mediator : 673

8.6 Electronic Mail(email) : 688.7 The Web : 709 Related Work 729.1 Programs : 729.1.1 DSSA : 729.1.2 STARS : 729.1.3 CARDS : 729.1.4 PRISM : 729.1.5 DSRS : 729.1.6 SATI : 739.1.7 Prototech : 739.1.8 DARPA Software Foundations : : : : : : : : : : : : : : 739.2 ADLs : 739.2.1 DICAM : 739.2.2 GenVoca LE : 739.2.3 Capture : 739.2.4 LILEANNE : 749.2.5 MetaH : 749.2.6 ControlH : 749.2.7 Rapide : 749.2.8 UniCon : 749.3 System Environments : 749.3.1 UNAS : 749.3.2 DCE : 759.3.3 ODP : 759.3.4 ANSA : 759.3.5 CORBA : 759.3.6 COM : 75A Glossary 76B Acronym Key 834

List of Figures1 DADL Development : 382 DADL Network Environment : : : : : : : : : : : : : : : : : : 393 Basic Client/Server : 604 Three Tiered Client/Server : 625 Network Positions : 646 Publish/Subscribe : 667 Mediator : 678 SMTP based email : 689 HTTP based Web : 70List of Tables1 Example of a Traditional C Program with Header File. : : : : 82 Basic Conversation Block : 133 Connection Block : 144 Dagent Block : 165 Alphabet Block : 176 Term Block : 197 Function Term Block : 218 Sentence Block : 249 Conversation Behavior Block : : : : : : : : : : : : : : : : : : : 2610 Contract Block : 2711 Conversation Options Block : : : : : : : : : : : : : : : : : : : 2912 Dagent Block : 3113 Obeys Conversation Block : 3314 Resource Block : 3515 Service Block : 36
5

1 AbstractMany computer science languages have been developed over the years thathave concentrated on language fundamentals for the de�nition of algorithmsand data structures. These traditional computer science languages give littlehelp in de�ning the architecture of a system, especially a large distributedsystem. Architecture de�nes the components of a system and their interfaces,methods of communication, and behaviors. A Distributed Architecture Def-inition Language (DADL) is proposed that extends the existing paradigmused in programming to include architecture descriptions for a particularclass of distributed systems architectures.The architectural description language will provide fundamentals thatconcentrate on the conversation, communication, contracts, and behaviors ofelements in the distributed system.A DADL will be de�ned and used to describe a family of di�erent dis-tributive architectures. A program written in DADL can be compiled intodi�erent materializations of the architecture. Each materialization has di�er-ent performance and resource characteristics leading to an optimizing choice.It will be shown that large architectural variations can be described withminimal changes thus showing the elaboration tolerance of DADL programs.
6

2 IntroductionDistributed Architecture De�nition Languages (DADLs) are emerging astools for formally representing the architecture of distributed systems. Asarchitectures become a dominant theme in large distributed system develop-ment, methods for unambiguously specifying a distributed architecture willbecome indispensable.An architecture represents the components of a large distributed softwaresystem and their interfaces, methods of communication, and behaviors. It isthe behaviors of the components, the communication between the pieces andparts, that are under-speci�ed in current approaches. To date, distributedsystem architectures have largely been represented by informal graphics inwhich the components, their properties, their interaction semantics and con-nections, and behaviors are hand-waved in only partially successful attemptsto specify the architecture.Traditional computer languages, like C, concentrate mainly on the def-inition of the algorithm and data structure components by using languageprovided mechanisms to specify type de�nitions, functions, and algorithmcontrol. The interface is under-de�ned by header �les where function names,parameters, parameter types, and parameter order are speci�ed. This is shortof specifying the behavior of the interface. Traditional computer languagesare much more suited to de�ning implementation than they are to de�ningarchitecture.Consider the following simple C program where we calculate the sum oftwo integers. See Table 1 on page 8.Traditional programming languages easily de�ne the data structures andthe algorithms. There is very limited help in de�ning the architecture. Infact, there is an assumed architecture, so implicit that most languages doesn'teven de�ne it as a feature. The functions main and plus communicate over ashared address space, memory resident, ordered, highly reliable, synchronous,and error-free communication medium materialized by using a call-framestack.The language of communication is de�ned by the call statement. Thefunction main sends two integers to the function plus and waits for an integerin reply. The function plus receives two integers and replies with their sum.The implicit call and return in the C language materialize this architecture.This implicit architecture is appropriate for small and simple programsbut as applications become more complex, large, and distributed, the im-7

The implementation �le#include <plus.h>void main() fint results ;results = plus(1,2) ;g ;int plus (int n , int m) freturn n+m ;g ;The header �leint plus (int n , int m) ;Table 1: Example of a Traditional C Program with Header File.plicit call-frame stack architecture is no longer appropriate. A distributedarchitecture might deal with a disjoint address space, non-memory resident,unordered, non-reliable, asynchronous, and error prone communicationmech-anism. This is far from the assumptions of traditional computer languages.It is no wonder that large systems are hard to de�ne using traditional pro-gramming languages.Object based systems, like C++, extend the programming paradigm toinclude objects, sub types, polymorphism, and inheritance. This powerfullyextends the ability of a language to de�ne the data structures and algorithms.However, the underlying implicit architecture does not change. The architec-ture still dictates memory resident, ordered, highly reliable, synchronous, anderror free communication over a shared address space, that is materializedby a call-frame stack.Another shortfall of the implicit object-based system architecture is in thede�nition of the behavior. Though the C++ interface de�nes the methodsexported by a class, it does not de�ne the methods used or required by thatclass. Thus an implementation can perfectly match the interface but havean entirely di�erent behavior than another similar implementation because8

it is composed with di�erent primitives.Some of the founding object-based languages, such as SIMULA [KO62]and SmallTalk [GAR83] [KG83] [GA84] [GAR89], tried to replace the im-plicit architecture of a call-frame stack with a message-passing queue. Inthis architecture, methods are evoked by passing messages between objects.However, the architecture is still implicit and under-de�ned leading to nochoice in an alternative behaviors.Distributed middle ware support systems, like DCE [DCE96], extend theprogramming paradigm. The DCE Interface De�nition Language(IDL) in-cludes argument ow (in or out parameters), interface identi�ers, dynamicbinding information, and exceptions. Using DCE it is possible to de�ne com-munication mechanisms for architectures that are in disjoint address spaces,non-memory resident, non-reliable, and error prone. DCE accomplishes thisby expanding the call mechanism. Asynchronous communication is dealtwith by providing threads while unordered communication is provided byusing network data grams under UDP. DCE replaces the traditional archi-tecture with one that is more suited for distributed computing but does notallow choice between alternative architectures.CORBA [COR96] extends the programming paradigm to include mes-saging and distributed objects. Communication is done over an informationbus where requests are issued and brokers respond to satisfy those requests.CORBA is really directed at building object models for a large class of appli-cations under one, and only one, request/broker architecture. Though this isextremely necessary for application development, architectural needs go un-ful�lled. CORBA is more like a detailed requirement speci�cation, de�ningin detail the needs of a particular application domain.Megaprogramming [WWC92] extends the call mechanism to an asyn-chronous messaging paradigm between large components called megamod-ules. The communication between two megamodules is de�ned with languagestructures like setup, estimate, invoke, extract, and examine.Languages, like Rapide [LV96], extend the interface de�nitions to includeevents and causal relationships between events. Using the paradigm of hard-ware design, the behavior of the interface is governed by signals and eventswhich are synchronized by a clock. The interface has been extended to in-clude both the generated and required methods. This allows for the interfaceto act more like a meta-schema that governs both actions and simple behav-ior.In comparison, Rapide expands the role of the call statement into a di-9

rected graph of causal events. Megaprogramming expands the call statementinto a family of asynchronous primitives. While the proposed DADL expandsthe call statement into conversations, behaviors, and contracts concentratingon distributed systems.Don't confuse a DADL with a requirement language. The requirement isa statement of the problem at a high level of abstraction. This is in contrastto a DADL which de�nes a generic plan that binds the requirements to theimplementation. Requirement languages, such as STATEMATE [HLN+88]and Modechart [JM94], de�ne the problem but not the solution.This thesis proposes a DADL to specify architectures of distributed sys-tems. This is accomplished by �rst de�ning the attributes of large distributedsystems that distinguish a distributed system of other types of systems. Nextthe DADL language will be de�ned. DADL will then be used to specify sev-eral key architectures.Other related work includes Rapide [LV96], UniCon [SDK+94], ArTek[HRCP94], Wright [AG94], Code [NB92], Demeter [PXL95], Modechart [JM94],PSDL/CAPS [LSBH93], Resolve [EHL+94] and Meta-H [Ves94a].

10

3 Distributed Architecture Description Lan-guage3.1 OverviewThere are two main, tightly-coupled concepts in DADL which are the conver-sation and the participants. The conversation has an identity independentof the participants. Contracts govern the behavior of the conversation andthe expectations of the participants. A conversation is of little use withoutparticipants. Likewise, participants are of little use without communicationtaking place in a conversation.The participants produce and consume the conversation. These partici-pants are distributed agents, or simply dagents.Dagents communicate with other dagents to accomplish tasks. A dagentmay be involved in many conversations, potentially entering and leaving aconversation at times. The identity of the dagent at the other end of theconversation may be unknown.For each conversation, a domain-speci�c language is de�ned. The baselevel unit of a communication is a term. Terms are built from characters takenfrom an alphabet. Multiple terms from the same dagent form a sentence whilemultiple sentences between dagents form a conversation. The conversationuses one alphabet.The conversation is carried over a bi-directional connection. Informationcan be placed on a connection from many sources. The dagents may beunaware of the origin of the information. What happens to the informationafter it is placed on the connection is governed by the conversation manager.The connection may be multi-sided in which case many dagents may getinvolved in the conversation.A dagent may provide value by performing some service, or function,while the conversation is taking place and contributing the results back tothe conversation.The dagents agree to a contract to determine their behavior and expectedbehavior of all other agents participating in the conversation. A dagent mayprovide many services to the conversation.Both the conversation and the dagents exist in an environment. Fromthe environment, resources are provided and consumed.The services that a dagent provides, the underlying de�nition of the con-11

versation, along with the contract collectively de�ne the architecture withinan environment.3.2 Backus-Naur Form (BNF) SemanticsThe following sections we will de�ne the language along with the supportingconcepts.The BNF semantics used are as follows:1. Words inside double quotes (\word") represent literal words themselves(these are called terminals). The phrase double quote is used to repre-sent the double-quote character itself. An example literal: \if".2. Words outside double quotes (possibly with underscores) represent syn-tactic categories (i.e. nonterminals). An example nonterminal: if statement.3. Syntactic categories are de�ned using the form: syntactic category ::=de�nition4. Square brackets ([]) surround optional items.5. Curly brackets (f g) surround items that can repeat zero or more times.6. A vertical line (j) separates alternatives.
12

3.3 ConversationsSee Table 2 on page 13.conversation block ::=\conversation"conversation identi�er\f"connection blockdagent blockalphabet blockterm blocksentence blockconverstion behavior blockconversation contract blockconversation option block\g"\;"Table 2: Basic Conversation BlockA conversation contains a list of connections. The content of the conversa-tion are de�ned over an alphabet using terms and sentences. The well-formedsentences are described by the behavior while the performance is de�ned inthe contract. The conversation has a collection of options.3.3.1 Conversation Identi�erA conversation identi�er is a unique string representing the name of theconversation. This name can then be used as a placeholder to indicate theconversation itself.
13

3.4 ConnectionsSee Table 3 on page 14.connection block ::=connection j connection blockconnection ::=\connection"connection identi�er\("connection option blockconnection contract block\)"\;"connection option block ::=\1-to-1," j \1-to-M," j \M-to-1," j \M-to-M,"connection contract block ::=connection contract listconnection contract list ::=connection contract orderconnection contract deliveryconnection contract order ::=\ordered FIFO," j \ordered LIFO," j \unordered,"connection contract delivery ::=\guaranteed delivery " j \no guaranteed delivery"Table 3: Connection BlockA connection is the interface of a conversation to the dagents. Informationcomes into a conversation over a connection and information is returned todagents over a connection. The particular dagents, at any one time, talkingor listening on a connection, may be dynamic. A connection is bi-directionaland may have performance requirements governed by a contract.14

3.4.1 Connection Identi�erA connection identi�er is a unique string representing the name of the con-nection. This name could then be used as a placeholder to indicate theconnection itself.3.4.2 ConnectivityThe connection may have only one producer and one listener. If so, then theconnection is said to be 1-to-1. In many cases, this would imply one dagent.The connection may have one producer and many listeners. If so, thenthe connection is said to be 1-to-M. A broadcasted message from one dagentto many dagents is one special case of a 1-to-M connection.The connection may have many producers and only one listener. If so,then the connection is said to be M-to-1.The connection may have many producers and many listeners. If so, thenthe connection is said to be M-to-N. Here information from many dagentscan be directed to many other dagents.3.4.3 OrderA connection may be ordered in which case the information placed on theconnection will be available to the conversation in the same order. Thetransport layer in the traditional network model is an ordered connectionwith quarantined delivery.The information on the connection could be used as FIFO (a queue) orLIFO (a stack).3.4.4 DeliveryOnce information is placed on the connection delivery may be guaranteed.Some connection may not guarantee delivery in which case information maybe lost. The UDP layer in the traditional network model is an example ofan unordered connection with no guaranteed delivery.15

3.5 DagentSee Table 4 on page 16.dagent block ::=\dagent"dagent identi�er\on"connection identi�er\;"Table 4: Dagent Block3.5.1 Dagent Identi�erA dagent identi�er is a unique string representing the name of the dagent.This name could then be used as a placeholder to indicate the dagent itself.3.5.2 Dagent ConnectionsA dagent is associated with a connection. Recall that the connection is bi-directional. The dagent can both speak and listen on the connection.
16

3.6 AlphabetSee Table 5 on page 17.alphabet block ::=\alphabet"\("\ASCII" j \EBSIDEC" j \BCD" j \BYTE"\)"\;"Table 5: Alphabet BlockThe lowest component of the conversation is the alphabet. For any givenconversation the choice of alphabet is �xed. The choices might include ASCII,EBSIDEC, BCD, or uninterpreted 8-bit bytes. One element in the alphabetis called a character.

17

3.7 TermsSee Table 6 on page 19.A group of characters is called a term. Terms may represent constants,variables, or functions. A term is the lowest element spoken by a dagent.3.7.1 Term Identi�erA term identi�er is a unique string representing the name of the term. Thisname could then be used as a placeholder to indicate the term itself.3.7.2 Type Identi�erThe type identi�ers are borrowed from other languages and might includeintegers, oating point, character strings, booleans, constant expressions, andarbitrary large objects called blobs.3.7.3 Constant TermA grounded value of a particular type is a constant term.3.7.4 Variable Identi�erA variable identi�er is a unique string representing the name of the variable.This name could then be used as a placeholder to indicate the variable itself.3.7.5 Variable TermA term which has a known type but the value is determined dynamicallyduring the conversation and may vary is called a variable.3.7.6 Function TermFunction terms are explained in more detail in the next section.
18

term block ::=term de�nition j term blockterm de�nition ::=\term"term identi�er\("constant term j variable term j function term\)"\;"constant term ::=type identi�erconstant valuevariable term ::=type identi�ervariable identi�erfunction term ::=type identi�erfunction identi�er\("parameter list\)"function contractparameter list ::=variable term j \," parameter listTable 6: Term Block19

3.8 Function TermSee Table 7 on page 21.A function term represents a service provided by a dagent. This puts arestriction on the class of dagents able to emit this term. Only dagents whichprovide the function or service can participate in the conversation.3.8.1 Function Identi�erA function identi�er is a unique string representing the name of the function.This name could then be used as a placeholder to indicate the function itself.3.8.2 Parameter ListA parameter list of the arguments to the function.3.8.3 Function Quality of Service ContractA function can have several di�erent pro�les with respect to the quality ofservice.A contract may govern the acceptable error rate. One of the underlyingassumptions that distinguishes distributed systems from more traditionalsystems is that individual elements in the system may fail without totalsystem failure. Many of these failures are masked from the system, itself, byusing replication and distribution.An element in a system can provide many di�erent levels of service. Thisis part of the behavior of that element. The levels include:Errors Tolerated In the case of tolerated errors, the service representingthe function may be unavailable at numerous times. A single service on asingle computer would be an example of an errors tolerated quality of service.If the machine goes down, the service is unavailable.The service is available most of the time but on occasions errors are knownto happen. The exact threshold of error tolerance, the number of errors perunit of time, is service speci�ed. There may have to be manual interventionto correct from an error state. 20

function term ::=type identi�erfunction identi�er\("parameter list\)"function contractparameter list ::=variable term j \," parameter listfunction contract ::=function quality of servicefunction performancefunction quality of service ::=\errors tolerated," j \highly available," j \fault tolerant,"function performance ::=\performance" j \latency" j \error rate"\("\min" \=" <integer>\max" \=" <integer>\avg" \=" <integer>\rms" \=" <oat>\)"\certainty" <integer>\ " j \," function performanceTable 7: Function Term Block21

Highly Available The service representing the function will be availablea signi�cant amount of the time but occasionally, the service may experienceshort periods of unavailable.An example of such a quality of service would be a single service replicatedon many machines. Many machines may go down but the service remainsavailable. Of course, if all machines go down, service will not be available.This level has one distinguishing characteristic of a known error free state.In a potentially automated fashion, the service in error is reset to the knownerror free state, usually an initial state, and restarted. The total distributedsystem continues to operate with what looks to the users as a minor event.Highly available services are usually one or two point fault tolerant.Fault Tolerant A fault tolerant service requires at least triple redundancy.At least three machines are running identical services on identical parameters.The results are then compared. If all three results are identical, the result isreturned. One machine can go down in this con�guration without e�ectingthe results. Hot spares are available to replace a faulty machine and join anoperational machine pair.If a service is guaranteed to be error free it is said to be fault tolerant.Ideally, one would wish all services to be fault tolerant but this is an expensivecapability and demands large quantities of resources to obtain this level. Onlycritical services need to be fault tolerant. Most systems work well at highlyavailable levels.3.8.4 Function Performance ContractThe performance of a function is stochastic in nature. For example, theaverage performance is only achieved a certain percentage of time.Performance This represents the number of function invocations per sec-ond.Latency This represents the time from initialization of a function until the�rst information is available.Error Rate This represents the number of times a function fails per second.This is not a semantic failure where the incorrect results are returned butthe number of times no result is returned at all.22

Certainty The percentage of time that one of the performance parametersis achieved.

23

3.9 SentencesSee Table 8 on page 24.sentence block ::=sentence de�nition j sentence blocksentence de�nition ::=\sentence"sentence identi�er\("term list\)"\from"conenction identi�er\to"connection identi�er\;"term list ::=term identi�er j \," term listTable 8: Sentence BlockA list of terms form a sentence. Every sentence is generated by onlyone dagent but, depending on the connections in the conversation, may beconsumed by many dagents. The sentence enters the conversation from oneconnection and leaves the conversation at another connection.In the conversation the sentence is atomic. The sentence is either allpresent or not present at all. A sentence cannot be interrupted preventingthe overlapping of two sentences.Every sentence has an identi�er. 24

3.10 Conversation BehaviorSee Table 9 on page 26.A conversation has many sentences. The sentence order determines thebehavior. This order could be very simple or quite complex.3.10.1 SequentialTwo sentences are sequential if they enter the conversation one after theother. This is indicated with a \;".3.10.2 ParallelTwo sentences are parallel if they can enter the conversation at the sametime. This is indicated with a \j".3.10.3 WaitIf more than one sentence is coming into the conversation in parallel andthe conversation needs to block or wait to continue until all sentences areavailable, then this is accomplished with a sentence join. This is indicatedwith a \wait".3.10.4 At Least OnceWith this option, a sentence can be repeated one or more times. This isindicated with a \+".3.10.5 Zero or More TimesWith this option, a sentence can be repeated zero or more times. This isindicated with a \�".
25

converstaion behavior block ::=\behavior"\("compound fragment\)"\;"compound fragment ::=sentence identi�er\(" sequential fragment \)"j\(" parallel fragment \)" \wait"j\(" repeat fragment \)"sequential fragment ::=compound fragmentjcompound fragment \;" sequential fragmentparallel fragment ::=compound fragmentjcompound fragment \j" parallel fragmentrepeat fragment ::=compound fragment [\+" j \�"]Table 9: Conversation Behavior Block26

3.11 ContractSee Table 10 on page 27.conversation contract block :: =\contract"\performance" j \latency" j \error rate" j \capacity"\("\min" \=" <integer>\max" \=" <integer>\avg" \=" <integer>\rms" \=" <oat>\)"\;"[conversation contract block]Table 10: Contract Block3.11.1 PerformanceThis represents the number of conversations per second.3.11.2 LatencyThis represents the time from initialization of a conversation until the �rstinformation is available.3.11.3 Error RateThis represents the number of times a conversation fails per second.3.11.4 CapacityThis represents the number of simultaneous conversations that can occurwithin one conversation manager. 27

3.11.5 General Observations about a ContractA contract is a general concept for characterizing and regulating cooperationin the architecture. A contract is an agreement that governs the cooperationand embodies the obligation and expectation associated with cooperation.Needless to say, agreement by members of the distributed system to a con-tract, enables cooperation to take place.The contract based approach to software development includes two pieces.The contract �rst speci�es what the consumer must do and secondly, thecontract speci�es what the supplier will provide. The contract does notspecify how the supplier and consumer will ful�ll the contract. There is notmuch support from commercial programming languages for contract conceptswith Ei�el [Mey92] being one of the few exceptions.The contract is an abstraction of the behavior of the system, the in-teractions under constraints, and the interface. The contract de�nes theobligations, permissions, and prohibitions of the elements in the system.A contract can be placed on many di�erent kinds of elements. Theseinclude dagents, connections, conversations, interface, services, servers, re-sources, the environment, functions, and procedures.A contract might include constraints on the bandwidth and latency. Tra-ditionally, these are measurements associated with data through a channel,but these metrics can be used to measure how many times per second aservice can be evoked (the generalized bandwidth) and the time it takesbefore the �rst service returns an answer (the generalized latency). Theseconstraints might include minimum, maximum, and average expectations.
28

3.12 Conversation OptionsSee Table 11 on page 29.conversation option block ::=\with"\options"\("conversation option list\)"\;"conversation option list ::=\persistence" j \volatile" \,"\data open" j \data integrity" j \data privacy" \,"\marshaled" j \unmarshaled" \,"\authenticated" j \unauthenticated" \,"\authorized" j \unauthorized"Table 11: Conversation Options BlockThere are many di�erent kinds of conversations. A conversation maybe one-sided or it may be a peer-to-peer interchange. A conversation mayinclude a number of parties sharing information.3.12.1 PersistenceIf the conversation can recover from a total system environment crash, then itis persistent. Persistent information require more resources to establish andaccomplish but give better total-system error recovery capability. A conver-sation with control structures in a transaction log on disk is an example.3.12.2 VolatileIf the conversation is ephemeral and not recoverable after a system failure,then the conversation is said to be volatile. A conversation with controlstructures in RAM is an example. 29

3.12.3 Data OpenIf the data can be viewed by a casual observer, then the data is said to beopen.3.12.4 Data IntegrityIf the data can be veri�ed to be correct with a digital signature mechanism,then the data is said to have integrity.3.12.5 Data PrivacyIf the data cannot be viewed by a casual observer, then the data is said tobe private.3.12.6 MarshaledIf the data is converted between alternative underlying representations with-out losing signi�cant information, then the data is said to be marshaled.3.12.7 AuthenticatedIf the identify of the dagents in a conversation can be veri�ed, then theconversation is said to be authenticated.3.12.8 AuthorizedIf an authenticated dagent has permission to interact with the conversation,then the dagent is said to be authorized.
30

3.13 DagentSee Table 12 on page 31.dagent de�nition ::=\dagent"dagent identi�er\f"connection blockobeys blockdagent contract blockresource blockservice block\g"\;"Table 12: Dagent BlockA dagent is similar in concept to the more familiar terminology of agent.However, to avoid confusion in overloading of de�nitions of the term agentsfrom other �elds, agents in DADL will be called dagents. One may think of adagent as a process on a particular computer. There can be many processeson any one particular computer and each process may be multi-threaded.The dagent may perform multiple functions and procedures called ser-vices. If the dagent is programmed with the traditional object paradigmthen the inheritance mechanism can be used to provide polymorphism.The behavior of a dagent is governed by a collection of actions combinedwith a set of constraints on when those actions may occur including internalactions. The actions that take place are restricted by the environment.A dagent uses resources. Some of these resources are consumed and neverto be used again while other resources are only temporarily allocated tothe dagent and then recycled. The resources are provided by the assumedunderlying environment.A dagent may have state with events that change state. Dagents may havean error state caused by an internal fault. A dagent can be created, killed,and replicated. A dagent, though ready to execute, may be temporarilypaused. 31

An example of a dagent could be a math process providing the simplearithmetic services including plus, minus, multiplication, and division.3.13.1 ConnectionThe connection block for a dagent is the same as the connection block for aconversation.

32

3.13.2 ObeysSee Table 13 on page 33.obeys block ::=\obey conversation"conversation identi�er\as"dagent identi�er\;"Table 13: Obeys Conversation BlockThe dagent inherits much information from the conversation. This isrequired by the obeys block.

33

3.13.3 ContractThe contract is the same as in the conversation.The dagent's contract must be compatible with the conversation contract.

34

3.13.4 ResourceSee Table 14 on page 35.resource block :: =\resource"\shared" j \private"\disk" j \RAM" j \CPU" j \locks" j \binary" j \vm"\("\min" \=" <integer>\max" \=" <integer>\avg" \=" <integer>\rms" \=" <integer>\)"\;"[resource block]Table 14: Resource BlockA dagent has associated resources that it may consume or use temporallyand then recycle. Some resources may be shared with other dagents. Re-sources might include CPU, RAM, disk space, locks, and other peripheraldevices like cdrom, tape drives, and printers. Dagents may share addressspace and name space with other dagents.
35

3.13.5 ServiceSee Table 15 on page 36.service block ::=function term [service block]Table 15: Service BlockThe service block list the number of services o�ered by the dagents. Thislist must be compatible with the conversations it joins. This is enforced atrun time by the conversation manager.The function list is the same as in the conversation.

36

3.14 The EnvironmentThe environment is the part of the system that is assumed to be present. Theenvironment contract de�nes the temporal constraints (deadlines), through-put requirements, availability, reliability, maintainability, security, safety, lo-cation, and quality of service.

37

4 Using DADLSee Figure 1 on page 38 for a diagram on DADL development.
DADL Development

DADL

Program

DADL

Compile

• Dagent Stub

• Conversation Service

Dagent Stub

+ programmer supplied code

+ library

Link Dagent Application

Conversation Service

+ library
Link Conversation Application

Figure 1: DADL DevelopmentThe customer programs a distributed architecture in the DADL language.The DADL compiler emits stub code for each dagent and for the conversation.The dagent stub code contains the necessary components to communicatewith the conversation. In addition, the dagent stub code includes functiontemplates. These templates only include the call interface as de�ned bythe services in the architecture. These templates are then completed by thecustomer programmer to provide the runtime content. The remaining dagentcode is provided by the writer of the dagent. To aid the dagent programmeris a run time dagent library.The conversation code contains the necessary components to materialize38

the conversation including the connection interfaces to the dagent. The con-versation code manages the conversation, monitors the behavior, and enforcesthe contracts. A run time conversation library aids the conversation.See Figure 2 on page 39 for diagram on DADL development.
DADL Stub

Dagent 1

DADL Runtime

DADL Stub

Dagent 2

DADL

Conversation

Conversation

Manager

Environmental Services such as authentication, authorization, data privacy, data integrity,

marshaling, persistence management, replication, transaction processing,

distributed lock management, databases, and GUI systems.

A DADL Environment

Figure 2: DADL Network EnvironmentThe environment must contain two major services: namely the conversa-tion manager and the dagent manager.The conversation manager creates, destroys, and initializes conversationsas well as managing the dagents entering and leaving the conversation. Spe-cial properties of the conversation such as persistence and reliability are en-forced.The dagent manager creates, destroys, initializes, migrates, pauses, andrestarts dagents. Special properties of the dagents such as replication areenforced. 39

The DADL support environment is assumed to be robust. This includesservices for authentication, authorization, data privacy, data integrity, mar-shaling, persistence management, replication, and service groups. Transac-tion processing, distributed lock management, databases, and GUI systemsare assumed present.

40

5 Theory5.1 The TheoremA DADL can be de�ned and used to describe a family of di�erent distribu-tive architectures. A program written in DADL can be compiled into di�er-ent base-level materializations of the architecture. Each materialization hasdi�erent performance and resource characteristics leading to an optimizingchoice.5.2 The Proof Outline1. De�ne DADL and the family of distributed architectures and then showthat the distributed architectures can be expressed by a DADL pro-gram.2. De�ne base-level target materialization including their performanceand resource characteristics.3. Compile and optimize the DADL program into the base-level targetmaterializations.
41

6 Examples6.1 Simple Client ServerThis is an example of a simple client server application where the call state-ment is replaced with a simple communication language.The service provided by the server is \plus", in which two parameters areadded together generating the resultant.The architecture reects the architecture assumed in many traditionalprogramming langauges.6.1.1 Interfaceconversation simple plus fconnection c1 (1-to-1, ordered FIFO, guarenteed delivery) ;connection c2 (1-to-1, ordered FIFO, guarenteed delivery) ;dagent d1 on c1 ;dagent d2 on c1 ;alphabet (BYTE) ;term t1 (int n) ;term t2 (int m) ;term t3 (int plus (int n , int m) highly available) ;sentence s1 (t1, t2) from c1 to c2 ;sentence s2 (t3) from c2 to c1 ;behavior (s1 ; s2) ;with options (volatile, data open, unmarshaled, unauthenticated, unauthorized);g ; 42

6.1.2 Dagent Clientdagent main fconnection c1 (1-to-1, ordered FIFO, guaranteed delivery) ;obeys conversation simple plus as d1 ;resource shared ram (max = 64,000) ;g ;6.1.3 Dagent Serverdagent plus fconnection c2 (1-to-1, ordered FIFO, guarenteed delivery) ;obeys conversation simple plus as d2 ;resource shared ram (max = 64,000) ;int plus (int n , int m) highly available ;

43

6.2 Three Tier Client ServerThis is an example of three tier client server application. The presentationclient calls a middle layer which passes the information onto a third, serverlayer for computation. There are three dagents and two conversations. Themiddle dagent participates in two conversations.6.2.1 Interface, Presentation to Applicationconversation presentation application fconnection c1 (1-to-1, ordered FIFO, quaranteed delivery) ;connection c2 (1-to-1, ordered FIFO, quaranteed delivery) ;dagent d1 on c1 ;dagent d2 on c2 ;alphabet (BYTE) ;term t1 (int n) ;term t2 (int m) ;term t3 (int results) ;sentence s1 (t1, t2) from c1 to c2 ;sentence s2 (t3) from c2 to c1 ;behavior (s1 ; s2) ;with options (volatile, data open, marshaled, unauthenicated, unauthorized);g ;
44

6.2.2 Interface, Application to Serverconversation application server fconnection c1 (1-to-1, ordered FIFO, quaranteed delivery) ;connection c2 (1-to-M, ordered FIFO, quaranteed delivery) ;dagent d1 on c1 ;dagent d2 on c2 ;alphabet (BYTE) ;term t1 (int n) ;term t2 (int m) ;term t3 (int plus (int n , int m) highly available) ;sentence s1 (t1, t2) from c1 to c2 ;sentence s2 (t3) from c2 to c1 ;behavior (s1 ; s2) ;contract performance (min=1, max=2, avg=1.1, rms=.1) ;contract latency (min=10,max=20,avg=15,rms=3) ;contract error (min=0,max=0,avg=0,rms=0) ;with options (volatile, data open, marshaled, unauthenicated, unauthorized);g ;
45

6.2.3 Dagent Presentationdagent main fconnection c1 ;obeys conversation presentation application as d1 ;contract performance (min=1,max=2,avg=1.1,rms=.1) ;contract latency (min=10,max=20,avg=15,rms=3) ;contract error (min=0,max=0,avg=0,rms=0) ;resource (ram=64000, disk=0, vm=120000,binary=main.exe) ;g;6.2.4 Dagent Applicationdagent application fconnection c1 ;connection c2 ;obeys conversation presentation application as d2;obeys conversation application server as d1;contract performance (min=1,max=2,avg=1.1,rms=.1) ;contract latency (min=10,max=20,avg=15,rms=3) ;contract error (min=0,max=0,avg=0,rms=0) ;resource (ram=64000, disk=0, vm=120000,binary=application.exe) ;g;
46

6.2.5 Dagent Serverdagent plus fconnection c1 ;obeys conversation application server as d2 ;contract performance (min=1,max=2,avg=1.1,rms=.1) ;contract latency (min=10,max=20,avg=15,rms=3) ;contract error (min=0,max=0,avg=0,rms=0) ;resource (ram=64000, disk=0, vm=120000, binary=plus.exe) ;int plus (int n , int m) highly available ;

47

6.3 Simple emailThis is the heart of simple email. Most of the work is in the communicationlayers the dagents are quite simple.6.3.1 Email Communicationconversation email fconnection c1 (1-to-1, ordered FIFO, quaranteed delivery) ;connection c2 (1-to-1, ordered FIFO, quaranteed delivery) ;dagent d1 on c1 ;dagent d2 on c2 ;alphabet (ASCII) ;term t1 (const \MAIL FROM: ") ;term t2 (string from user) ;term t3 (const \250 OK") ;term t4 (const \RCPT TO: ") ;term t5 (string to user) ;term t6 (const \DATA") ;term t7 (blob the message) ;term t8 (const \<CRLF>.<CRLF>") ;sentence s1 (t1, t2) from c1 to c2 ;sentence s2 (t3) from c2 to c1 ;sentence s3 (t4, t5) from c1 to c2 ;sentence s4 (t6) from c1 to c2 ;sentence s5 (t7) from c1 to c2 ;sentence s6 (t8) from c1 to c2 ;behavior (s1 ; s2 ; s3 ; s2 ; s4 ; s5+ ; s6) ;contract performance (min=1,max=2,avg=1.1,rms=.1) ;contract latency (min=10,max=20,avg=15,rms=3) ;contract error (min=0,max=0,avg=0,rms=0) ;48

with options (volatile, data open, marshaled, unauthenicated, unauthorized);g

49

6.3.2 Email Clientdagent client fconnection c1 (1-to-1, ordered FIFO, quaranteed delivery) ;obeys conversation email as d1 ;contract performance (min=1,max=2,avg=1.1,rms=.1) ;contract latency (min=10,max=20,avg=15,rms=3) ;contract error (min=0,max=0,avg=0,rms=0) ;resource (ram=64000, disk=0, vm=120000,binary=elm.exe) ;g;6.3.3 Email Serverdagent server fconnection c1 (1-to-1, ordered FIFO, quaranteed delivery) ;obeys conversation email as d2 ;contract performance (min=1,max=2,avg=1.1,rms=.1) ;contract latency (min=10,max=20,avg=15,rms=3) ;contract error (min=0,max=0,avg=0,rms=0) ;resource (ram=64000, disk=0, vm=120000,binary=pop.exe) ;g;
50

7 Distributed System FoundationsDistributed systems exhibit fundamental inherent characteristics that dis-tinguishes them from more traditional single-computer, single-user, single-process systems.The elements of a distributed system become less dependent on a particu-lar programming language, the hardware instruction set, and the underlyingoperating system but more dependent on the style of communications, inter-faces, and the behavior exhibited during those interactions.7.1 DistributionThe most obvious characteristic of a distributed system is distribution. Adistributed system consists of many computers, distributed over many loca-tion, with remote communications. There are many di�erent kinds of remotecommunications in a distributed system ranging from remote access of ter-minal devices to dynamically allocated IPs of mobile computer systems.There may be distributed data access from one computer to another. Datamay be vertically or horizontally distributed across many computers and diskfarms. Peripheral devices may be network mounted allowing access frommany locations. The application may be divided into many functional layers,or tiers, with each tier potentially on di�erent computer systems thus buildingthe popular client-server application architecture. Parallel algorithms maybe distributed across many systems.Distribution is a general terminology which includes the case of a occa-sionally connected computer or nomadic computing where systems frequentlyare disconnecting and rejoining the environment. New partitions are beingformed on a regular bases a�ecting data, locks, networks, and applications.Dynamic changes in the routing tables are needed as mobile IPs becomeavailable to the general user. A disconnected customer must still be able towork, though in a limited fashion, using a self contained environment pro-vided on his personal machine. When the disconnected system rejoins thedistributed system environment it will have to be brought up to consistentstatus with the rest of the environment. This might include data, messages,locks, and application updates. Asynchronous and persistent messaging aswell as data caches become more important in supporting the partitioningdemanded by nomadic computing. 51

7.2 ConcurrentMany, if not all, components in a distributed system work independently, inparallel, with little interaction. For the most part, many of the systems ina distributed system work autonomously only communicating with a smallcollection of other components at interaction points.An application written for a distributed computing environmentmay havemany concurrent threads of operations.Computers in a highly parallel machine are similar but not the sameas computers in a distributed system. The computers in a highly parallelmachine are much closer coordinated than the computers in a distributedsystem. The computers in a parallel machine share the same clock andmemory structure, are typically managed by the same operating system,and typically, but not in general, share the same algorithm. Converselycomputers in a distributed system don't share the same clock, don't usuallyhave a common memory structure, and de�antly, aren't running the sameoperating system nor algorithm.In some aspects highly parallel machines are similar to distributed sys-tems. However, a highly parallel machine is not a canonical example of adistributed system.7.3 No Global StateIn a distributed system there is an absence of a global state. The state isdivided into many smaller units shared by a small number of computers. Thisdistinguishes distributed computing from databases in which a consistentglobal state is maintained, or at least, in theory a consistent global statecould be reached with the aid of a checkpoint and a transaction log.In a non-distributed system, global state is typically well de�ned andmaintained. Finite state machines are the heart of many non-distributedsystems. Finite state machine de�nitely have a consistent, well-de�ned state.State still plays a role in distributed systems. A small partition in thedistributed system unite to de�ne a local state. This state is maintained bythis partition for a short period of time and disappears when the partitiondissolves. Individual components join new partitions, share a very limitedstate, then dissolve into other partitions.52

7.4 No Global ClockIn a distributed system there are as many clocks as there are systems. Theclocks are coordinated to keep them somewhat consistent but no one clockhas the exact time. Even if the clocks were some what in sync, the individualclocks on each component may run at a di�erent rate or granularity leadingto them being out of sync only after one local clock cycle.Time is only known within a given precision. At frequent intervals, aclock may synchronize with a more trusted clock. However, the clocks are notprecisely the same because of time lapses due to transmission and execution.Consider a group of people going to a meeting. Each person has a watch.Each watch has a similar, but di�erent time. Even with the error in time,the group is able to meet and conduct business. This is how distributed timeworks.This is in contrast to a clock on a single system. Here there is only oneclock and it provides a uni�ed time for all sub components on this individualsystem.7.5 Partial FailuresAt any one time, many elements of the distributed systemmay have failed. Ifthe distributed system is designed correctly, these failures have little visibilityto the customer of the system. This property is called high availability andis usually realized by replication of a service over multiple components andby duplication of information.Many distributed network protocols, like UDP, have as an underlying as-sumption that there are failures and that packets are lost. By design, theprotocol automatically recovers from many classes of failures. This recoveryhappens nearly transparent to the customer. From the customer's prospec-tive functionality is not lost though response time might be slower.If the distributed system gradually loses capabilities as more and moreof the elements in the system fail, it is said to exhibit graceful degradation.Just because some of the services are not available does not mean that usefulwork can not be accomplished. A journal or log �le might be created tobatch the changes when eventually the service becomes available.Eventually, a point is reached where so many elements have failed that adistributed system will dissolve to individual partitions. The re-grouping ofthe partitions is usually accomplished with the aid of voting algorithms after53

quorums have been established.Many distributed systems application can tolerate one point failure oftheir underlying services. This happens when any one point in the systemcan fail, yet the application, as a whole, continues to correctly function. Thisis called one-point-failure safe. Of course, in a similar fashion, an applicationcan be two-point-failure safe. In general, as the number of tolerated failuresincrease in an application so does the complexity and cost of the system tosupport such an application.An application that never fails during extended periods of time due tohardware errors is fault tolerant. Fault tolerant hardware usually includestriple redundancy for every component with a vote and a compare unit toestablish results and to detect potential faults. Each unit has three identicalcopies each running exactly the same software. The output results are givento a compare unit. If all three units have the same output, the results areconsidered correct. If two of the three units agree but the third di�ers,the third unit is considered at fault and the results of the common two arepresented as the answer.7.6 Asynchronous CommunicationIn a distributed system, communication between elements is inherently asyn-chronous. There is no global clock nor consistent clock rate. Each computerprocesses independently of others. Some computers in the system have fastclock cycles while others have slower clock cycles. Even if time was preciselythe same on every element in the distributed system, each element would stillprocess the communication at di�erent rates, thus making the commutationasynchronous.Operating systems have had asynchronous communication for decades.Requests are queued and eventually results return. Asynchronous commu-nications were necessary to manage peripheral devices with a vast spectrumof clock rates. Distributed applications face similar problems. In a tradi-tional computer language the underlying implicit architecture is a call-framestack. In contrast, the underlying architecture mechanism for asynchronouscommunication is a queue. There is limited support architectures based onasynchronous communication built from queues in traditional computer lan-guages.Communications are the dominant aspect of distributed systems. A largepart of the architecture description de�nes the interfaces and communications54

of the disparate components of the distributed system.7.7 Distributed ControlIn a distributed system there is no central point of control. Rather, a decen-tralized management paradigm is in place. Each unit, nearly independently,decides to which extent they wish to participate in the distributed system.Individual systems enter and leave the distributed system at will and decide,autonomously, which components are useful.The distributed system has no one control. Actions of individual systemsare governed by policy guidelines where compliance is optional. In general, aguideline change closely reect the actual behavior change of the distributedsystem.There is no one control point for the total distributed system but thedistributed system relies on the availability of core underlying infrastructureto make all of this possible. For each core infrastructure service in the dis-tributed system, in contrast, there is a well de�ned control point. From thiscontrol point the core infrastructure services are managed. The collectionof these core infrastructure control points enable the existence of the dis-tributed system and empower the remaining systems to exhibit autonomousdistributed control.7.8 Heterogeneous SystemsThe distributed system contains many di�erent kinds of hardware and soft-ware working together in cooperative fashion to solve problems.There may be many di�erent representations of data in the system. Thismight include di�erent representations for integers, byte streams, oatingpoint numbers, and character sets. Most of the data can be marshaled fromone system to another without losing signi�cance. Attempts to provide auniversal canonical form of information is lagging.There may be many di�erent instructions sets. An application compiledfor one instruction set can not be easily run on a computer with anotherinstruction set unless an instruction set interpreter is provided. There is nouniversal binary making process migration di�cult. Recent developments inthe web and Java may provided a universal interpreted language on mostcomputers. Though a computer language is not an instruction set, this is agood compromise. 55

Some components in the distributed system may have di�erent capabili-ties than other components. Among these might include faster clock cycles,larger memory capacity, bigger disk farms, printers and other peripherals,and di�erent services. Seldom are any two computers exactly alike.7.9 AutonomyThere are two distinct categories of autonomy. One category reects lo-cal system autonomy. The other category reects the autonomy associatedwith the core infrastructure distributed services that form the heart of adistributed system.Each local system, in a distributed system, is highly autonomous. Theymay have entirely di�erent policies and usage from the whole, can decide towhich extent they wish to share, and may join and depart, at will, from thedistributed system.However, once a local system decides to enter the distributed system,it is bound to a set of contracts governing behavior, communications, andinterfaces. By following the contracts, the local system can then use theservices provided or even provide services itself.The systems that materialize the core infrastructure services have morerestrictions on their autonomy. They must have consistent, well-de�ned com-munication protocols and follow all contracts. Even though they are managedindependently of the local systems, they are bound by a contract to providea certain level of expected service.7.10 EvolutionDistributed systems follow an evolutionary development track. Seldom is adistributed system built from scratch with entirely new components. Rather,a construction, in situ, transforms the system from one con�guration to an-other and evolves the system in an incremental fashion.This evolutionary process of change is one of the distinguishing featuresof a distributed system. The more traditional approach is to completelyreplace a non-distributed system with a completely new service. Becauseof the massive amount of change associated with throwing out the old sys-tem and replacing it with a new system this approach is sometimes called arevolutionary approach. 56

Distributed systems use Evolution not REvolution.There are two major ways in which evolution can happen in a distributedsystem. The �rst way is to keep the interface and the contract constant andreplace a service with a di�erent implementation of the service. The newimplementationmay have better resource usage characteristics thus providinga higher quality of service.The second way is to keep the old interface and contract in place as wellas the old service. A new service, with a backwards compatible interfaceand contract, is introduced. Over time, the older service is phased out andreplaced with the newer service. There may be several di�erent versions of aservice active at any one time. Sometimes, older services are never removed.The distributed system is malleable to change. Its very nature is constantchange. Change is the only constant.A distributed system has many disparate services. One service can comeand go, without interfering with another service. Even though two servicesmay share many common resources, for the most part, they are independent.Of course, if one service relies on another service, then they are cooperative.If the service's partner is not available then the service will not be able tocomplete its task.7.11 OpaquenessMany concepts are hidden from individual systems that make up the dis-tributed system. An individual system might be relocated without customervisibility. There may be many equivalent services. The data might be movedwithout customer visibility. A service might cover for a failing service.Complete opaqueness in practice is di�cult but in theory, if two servicesprovide the same level of service and support the same contract, then theycan be substituted for each other and the customer should not be able totell.Not all information should be hidden. If a customer really wants to knowwhich of the many systems is providing the service, that information shouldbe available. Likewise, a customer should be able to specify a particularservice from a collection of services. 57

In general, most users don't care for this level of detail especially if equiv-alent services can be o�ered. How often do you get to specify the routingpath of a packet? How often do you want to specify the path? It is only therare exception where this becomes an issue.7.12 OpennessIn this mixture of heterogeneous distributed systems, individual systems seemto cooperate quite well. This is accomplished by the establishment of open(a.k.a. public) protocols, conventions, and standards.Openness refers to the ability to plug and play. You can, in theory,have two equivalent services that follow the same interface contract, andinterchange one with the other.Standards are wonderful because there are so many to choosefrom.Some standards are created by working groups to unify disparate solutionsto problems. Other standards are created, de facto, by companies with theoverwhelming market share. In either case, one interface is presented forother application programming interactions.7.13 InterdependentMany services across the distributed system may be interdependent. In thesprite of reuse, a service readily will ask another service for help. One servicecommunicates with another service to jointly solve a problem. Past answersmay be cached and reused. Default answers may be available on the localhost.Meta data, data, and function sharing are prevail. Services in the dis-tributed system really act like a collection of \virtual" services as they sharemore and directly implement less. Component assembly is the paradigm forbuilding services.Interdependence is in conict with change. The more a service depends onother services the more potential conicts may arise when a change occurs.Interfaces and contracts in a distributed system must be very static andstable to accommodate both change and interdependence.It is very simple to extend a service, but much more di�cult to shrinkor remove a service. In fact, old services are still provided by having the58

old service evoke a newer service. Many services include unde�ned extensionparameters to accommodate future changes.Alternatively, two services communicating over an interface could dy-namically negotiate the protocol and contract. This implies that the metainterface needs to be static and stable allowing for a more dynamic de�nitionof the service interface.Telnet is an example of a protocol with interface negotiation while FTPis an example of a protocol without interface negotiation. As a result, yousee many versions of FTP running on a system while only one version ofTELNET is present.7.14 FederationThe management of the distributed system resources is federated across manyautonomous sites. This includes name spaces where di�erent portions aremanaged by independent parties yet combine to form one uni�ed name space.Some services may require a consistent name space. There can not bedangling references. A database is an example. Some service, such as theweb, exist quite well in a name space that is incomplete and inconsistent.Both kinds of name spaces can coexist. In fact, portions of the name spacecan be consistent while other sections may be untrustworthy.7.15 SecuritySecurity becomes even more important in a distributed system. Authen-tication, authorization, digital signatures, non-repudiation, encryption, andprivacy become major issues as we extend the distributed system. The fourbasic goals of a security system are to protect information, to detect an in-trusion, to con�ne the security breach, and to repair the damage and returnthe system to a known stable and secure state.This proposal does not concentrate on security, but will assume a robustunderlying infrastructure that provides these services.59

8 Current Distributed ArchitecturesA distributed system can be composed of a family of basic system architec-tures.8.1 Basic Client/ServerSee Figure 3 on page 60.
Basic Client/Server

Network

Client ServerFigure 3: Basic Client/ServerIn a client/server architecture the service is divided into at least twopieces. One piece, running on a local user machine, is called the client. Theother, running on potentially another machine, is called the server. Tradi-tionally the server provides the computational power or a database engine.The client concentrates on the presentation layer or GUI.60

Data is sent over a network from the client to the server. The client andserver may be involved in a protocol where commands and meta informationare sent along with the data. Since the client and server may be of di�erenthardware architectures marshaling the data is important. Some environmentsprovide secure, encrypted channels and then send all data over these channelswhile other environments encrypt the message and send the data over thenon encrypted channel. Some data may be digitally signed with a MD5checksum.The logic in the application may reside at either client or server buttraditionally the application logic resides at the client, making the client\fat".The client server architecture allows for the data to be at one serverlocation while the access of the data to be distributed on many clients. Inaddition, a larger computer can be used at the server location to meet systemresponse requirements. Many di�erent clients that follow the conventions ofthe server can reuse this architecture.Typical client/server services use messaging or remote procedure calls forunderlying communication paradigms.8.1.1 MessagingMessaging is associated with connectionless, one-way communication be-tween two services. A return message is optional. Two way communicationcan be supported by using two messages. Messaging is asynchronous by na-ture. Some systems support persistent messages by placing the messages ona persistent storage queue.8.1.2 Remote Procedure Call(PRC)RPC is associated with a connection where two way communication is sup-ported. RPC is synchronous by nature and is an example of request and replyparadigm. RPC is popular with application programmers familiar with thetraditional function call paradigm. 61

8.2 Three Tiered Client/ServerSee Figure 4 on page 62.
Three Tiered Client/Server

Network

Presentation Application
 Logic

Data

Figure 4: Three Tiered Client/ServerSometimes an application may be tiered in at least three distinct pieces.One piece is the presentation or graphical user interface(GUI). Another pieceis the logic, functions, procedures, and objects that materialize this partic-ular application. Well another piece is the data management most oftenmaterialized by a database.The three tiered architecture allows for one central server location for allthe business logic and one central server location for all of the data leadingto reuse, consistency, and uniformity of applications in this environment.The presentation layer supports the GUI. Sometimes this is called a GUI-lite application. There may be many di�erent kinds of GUI.62

The middle section materializes the application. Though this is called theapplication logic it is really much larger then just logic formulas and includesall function and procedures that make the application an application for aparticular domain. Many of the elements in this area are tailored for theapplication needs. Sometimes this layer is called the business rules or logic.The last layer is the data. This is most often materialized by a database.This layer does not have to be limited to a database. Alternatively, a largecomputational server could act as a mathematical engine.The three tiered layering is popular because it forces clean lines betweenthe three layers. The \thin" client can easily be moved to other architectures.The application logic can be used by other applications in the system. Thedatabase layer allows for plug and play of many di�erent database vendors.Each layer may have a special interface or use a more generic interfaceprotocol. An example of a GUI protocol is xterm or html. An example of adatabase protocol is SQL/Net.

63

8.3 Five Network PlacementsWhere is the network interface located in an application? Where the networkis placed has signi�cant inuence on the architecture. See Figure 5 on page64.
Client/Server Network Placement

Data

Application

GUI

Data

Application

GUI

Data

GUI

Data

Application

GUI

Application

GUI

Application

Application

Network

Network

Distributed
GUI

Remote
Presentation

Distributed
Application

Remote
Data

Distributed
Data

Figure 5: Network PositionsIn the traditional three tiered layering of an application, the network isat every layer. This does not have to be the case. We can place the networkat many di�erent locations including the middle of a layer.8.3.1 Distributed PresentationThe presentation layer can be split. The server that does the work for thepresentation layer is on one side of the network while the screen is on the64

other side. A traditional terminal is an example of this layering as well asscreen scrapers.8.3.2 Remote PresentationThe X windowing system is an example of this strategy. The presentationlayer talks to the X-Protocol. The location of the screen is independent of thelocation of the rest of the application. The X-Protocol still needs a computerto materialize the GUI on the screen unlike the previous layering.8.3.3 Distributed Application LogicSome of the logic that makes the application resides on the client and someof the logic resides on the server. This is popular with stored procedures inthe database technology. The logic that is close to the data is placed in thestored procedures residing near the data. The logic that is more functiondriven is evoked in the client.8.3.4 Remote DataThis is sometimes called \fat client". The client has both the presentationand application logic. Only the database component is access over the net-work. Most of distributed applications written in the early 1990s are basedon this technology.8.3.5 Distributed DataHere the database is distributed over the network in both vertical and hori-zontal partitions. The application needs not know where the data is located.
65

8.4 Publish/SubscribeIn a publish/subscribe architecture, services publish their availability whileclients subscribe to services. A client can subscribe to a future service byqueuing to the event. In many systems, objects are published including dataand the methods to manipulate the data. For e�ciency reasons, seldomare individual copies of the methods distributed with every object. Rather,a repository of methods is provided with run time linking and executionsupport. See Figure 6 on page 66.
Publish/Subscribe

Servers Clients
Directory of Publish events
with attached clientsFigure 6: Publish/Subscribe66

8.5 MediatorConsider the problem of many similar, but slightly di�erent, clients wantingto talk to many similar, but slightly di�erent, servers. In the general caseyou would need N(N-1)! connections. This does not scale very well withlarge systems.The mediator sits in the middle. The clients talk to the mediator and themediator talks to the servers. Only 2N interfaces need to be built and main-tained. The mediator can be replicated as needed for performance reasons.A mediator acts as the glue between many clients and many servers. SeeFigure 7 on page 67.
Mediator Architecture

Mediator

Client

Client

Client

Client

Client

Client

Server

Server

Server

Server

Server

ServerFigure 7: Mediator67

8.6 Electronic Mail(email)One of the most well known distributed applications is email. This appli-cation has been around for a couple of decades and materializes millions ofemail messages per hour world wide. See Figure 8 on page 68.
SMTP based Electronic Email

email from gio@db to ron@cs

cs db

email client

email server deamon

/spool/ron

email server deamon

email client

/spool/queue

Figure 8: SMTP based emailThe email application is the pinnacle of distributed applications. Eachcomputer accomplishes one small step in the process in an autonomous fash-ion. Individual components may fail while the system remains available tomost of the users. The architecture is asynchronous, limited-shared-state,highly available, elaboration tolerance, message passing, with a dynamic pro-tocol.The big picture of how this works is simple. Each machine has an appli-cation server program that understands the email protocol of SMTP. When68

two machines want to exchange email, �rst they synchronize to a knowninitial shared state, then the email message header control information isexchanged. If the second machine agrees to the transfer, the contents of theemail is then delivered. The receiving machine places the email in a specialspool directory for later reading by the end user. Alternatively, the receivingmachine may reject the email message or provide forwarding information.The next piece of the big picture are the email clients. When the end userwants to send email, a email client hands the email to the machine's emailserver. The server exchanges the email with another machine's email server.The recipient machine places the email message in the spool �le belongingto the recipient. The email is ready for the �nal delivery stage. When therecipient wants to read email, the email client reads the spool �le and displaysthe message.If a server is not available the message is queued for later delivery. Ifan error occurs during transmission, the message is resent. Messages sentto unknown recipients are bounced back to the sender. An email addressmay include routing information, in which case, the receiver machine acceptsthe message, removes it's name from the routing list, and then processes themessage to the next machine.Email has survived many major upgrades. MIME extends the simple textmessage to include other data types. This is accomplished by providing typeindicators on the data. When a particular data type appears in a message,and if your email client is MIME smart, the application that understandsthat data type is evoked and the data is displayed.The POP protocol groups messages into message boxes. A pop smartemail client will acquire all messages in the message box at the same time.The IMAP protocol groups messages into an indexed database. A IMAPsmart client can query the index to �nd the appropriate message.The email application is not perfect. There is no authentication makingthe email system autonomous and easily spoofed. There is no data privacyof the message with many opportunities for an outside third party to dis-cover the contents of a message. There is no data integrity of the messageallowing for the substitution the message, in transit, without knowledge ofthe recipient. There is no digital signature on the message that guaranteesthat the sender really sent this message. There are no guarantees on deliveryor performance and no way of specifying di�erent levels of service. In par-ticular, there is no way to verify that a message was delivered and read bythe recipient. The recipient could repudiate the receipt of the message.69

8.7 The WebThe Web is a new entry into the distributed application arena. See Figure9 on page 70.
HTTP based Web

get http://cs/~ron

cs db

web client

~ron/index.html

web server deamonFigure 9: HTTP based WebThe big picture of the Web is similar to email. The system consists of Webservers and Web clients. The server is responsible for materializing pages ofhtml encoded data. The client is responsible for displaying this information.The protocol spoken is called HTTP. The data is handled in a similar fashionas in MIME email.There are two signi�cant developments that empower the Web. One is thefederated name space and the other is stateless computation. The federatedname space de�nes a name for every object on the Web. The Web clientcan resolve the name and materialize the object. The space is federated70

allowing for anyone to splice into the name space at virtually any junction.The stateless computation gives incredible exibility for machines enteringand leaving the Web.The Web is not perfect. As in email, the Web is unauthenticated, non-encrypted, does not have digital signatures, is easily spoofed, with no guaran-tee of service. The Web has become simultaneously the world's largest sourceof information and the world's largest source of miss information. There isindication of quality of content or availability of servers. In addition, thename space quickly degrades into stale and out-of-date entries.

71

9 Related Work9.1 Programs9.1.1 DSSAThe DARPA DSSA (Domain Speci�c Software Architecture) [MG92] pro-gram's goals are to develop conventionalized software architectures in var-ious domains, to advance software architecture speci�cation technology, toanalyze architectural inuences on system performance, and to build toolsfor software system composition through reuse.9.1.2 STARSThe DARPA STARS [STA93](Software Technology for Adaptable, ReliableSystems) goals are to increase software productivity, reliability, and qualityby integrating support for modern software development process and reuseconcepts within software engineering environment technology. STARS usesa technology approach called mega programming paradigm.9.1.3 CARDSThe Air Force CARDS e�ort is dedicated to furthering systematic softwarereuse. This e�ort has built a library for requirements, architecture and com-ponent information as de�ned in the PRISM Generic Command Center Ar-chitecture.9.1.4 PRISMThe Air Force PRISM program developed an architecture to maximize thereuse of existing COTS and GOTS components in command centers.9.1.5 DSRSThe DSRS (Defense Software Repository System) contains assets with reusepotential as identi�ed thorough domain analysis. Assets are software devel-opment products such as requirements, design speci�cations, architectures,design diagrams, source code, documentation, test suites, and repositorysupport items. 72

9.1.6 SATIThe SEI's SATI (Software Architecture Technology Initiative) is to establisha software architecture knowledge repository for the DSSA.9.1.7 PrototechThe DARPA Prototech program's goal is to enable use of incremental devel-opment and prototypeing as a means to increase e�ectiveness of systems andsystematically reduce risk over the software life cycle, focusing particularlyon requirements engineering and systems design.9.1.8 DARPA Software FoundationsThe DARPA Software Engineering Foundations Program focuses on technol-ogy for developing and supporting high assurance software systems and ontechnology related to languages used in systems integration. This programincludes trusted systems, software understanding, and composition methods.9.2 ADLs9.2.1 DICAMDICAM (Distributed Intelligent Control and Management) ACL was devel-oped by [HRCP94] for the DSSA program. DICAM is a reference architec-ture for control. Applications are built as hierarchically organized controllers,each with district domain and meta-control components, with a unifying storefor world models and shared information. DICAM is not inherently domainspeci�c.9.2.2 GenVoca LEGenVoca LE language [BCGS93] is a domain independent model for de�ningscalable families of hierarchical systems as compositions of reusable compo-nents by meta models of large scale system construction.9.2.3 Capture(aka KAPTUR - Knowledge Acquisition for Preservation of Trade-o�s andUnderlying Rationales) Capture [Bai92] embodies a domain analysis ap-73

proach that combines elements of object-oriented modeling, feature modeling,and case based reasoning.9.2.4 LILEANNELILEANNE [BSTS93] (library Interconnect language extended with anno-tated Ada) is intended to support abstraction, composition, and reuse ofAda software.9.2.5 MetaHMetaH [Ves94a] intended to support analysis, veri�cation, and production ofreal-time fault tolerant secure multi processing embedded software.9.2.6 ControlHControlH [Ves94b] intended to be used to describe guidance, navigation, andcontrol algorithms in a concise and rigorous manner. ConrolH is tailored forthis domain.9.2.7 RapideRapide [LV96] intended to support the speci�cation, analysis, and veri�cationof system architectures composed of event processing components.9.2.8 UniConUniCon (a language for Universal Connections) [SDK+94] emphasizes thestructural aspects of software architecture and is based on the complementaryconstructs of component and connectors.9.3 System Environments9.3.1 UNASUNAS (Universal Network Architecture Services) A commercial product byTRW and Rational consisting of a suite of prede�ned, reusable Ada buildingblocks, services, and instrumentation that represent the high level primitivesfor the architecture of a distributed and heterogeneous software system. Pro-vides core executive functions for distributed systems such as initialization,74

systemmode control, recon�rmation, fault detection, health and status mon-itoring, and inter process communication. High Portability is supported.9.3.2 DCEThe Distributed Computing Environment (DCE) gives us an interface def-inition language (IDL), Security, A means of communication using RemoteProcedures Calls (RPC), distribution, replication, and many other trans-parencies.9.3.3 ODPSee [ODP95d], [ODP95a], [ODP95b], and [ODP95c].9.3.4 ANSAANSA introduces the concepts of binding, trading, and process groups.9.3.5 CORBACORBA introduces the concept of a trader/broker architecture with an IDLand, of course, support for objects.9.3.6 COMCOM is MicroSoft's version of CORBA.
75

A GlossaryAbstraction: A description of a family of systems that is independent ofthe details of any one particular system. [Rei92]Abstract Syntax: A description of a data structure that is independentof machine-oriented structures and encodings. [JL91]Abstract Syntax Notation One (ASN.1): The language used by theOSI protocols for describing abstract syntax. This language is also usedto encode SNMP packets. ASN.1 is de�ned in ISO documents 8824.2and 8825.2. [MP93]Access Control List (ACL): Most network security systems operate byallowing selective use of services. An Access Control List is the usualmeans by which access to, and denial of, services is controlled. It issimply a list of the services available, each with a list of the hostspermitted to use the service. [MP93]Advanced Research Projects Agency Network (ARPANET): A pi-oneering long haul network funded by ARPA (now DARPA). It servedas the basis for early networking research, as well as a central backboneduring the development of the Internet. The ARPANET consisted ofindividual packet switching computers interconnected by leased lines.Agent: In the client-server model, the part of the system that performsinformation preparation and exchange on behalf of a client or serverapplication. [JL91]American National Standards Institute (ANSI): This organization isresponsible for approving U.S. standards in many areas, including com-puters and communications. Standards approved by this organizationare often called ANSI standards. ANSI is a member of ISO. [MP93]American Standard Code for Information Interchange (ASCII): Astandard character-to-number encoding widely used in the computerindustry. [MP93]Application: A program that performs a function directly for a user.[MP93] 76

Application Program Interface (API): A set of calling conventionswhich de�ne how a service is invoked through a software package.[JL91]Architecture: The components of a system and their interface behavior.Atomicity: An action either happens or it does not in total, there is nopartial completion.Authentication: The veri�cation of the identity of a person or process.[MP93]Bandwidth: The amount of data that can be sent through a given com-munications circuit. [MP93]Behavior: The responses of the components in a system to each other andother stimulation from the environment.Big-endian: A format for storage or transmission of binary data in whichthe most signi�cant bit (or byte) comes �rst. The term comes from"Gulliver's Travels" by Jonathan Swift. The Lilliputians, being verysmall, had correspondingly small political problems. The Big-Endianand Little-Endian parties debated over whether soft-boiled eggs shouldbe opened at the big end or the little end. [JL91]Binding: The mapping of an abstract name to more detailed representa-tion. The IP address of a computer given the name of the computer isan example of a binding. The port of an application is another example.Channel: A communication path that guarantees delivery and correct or-der of data.Checkpoint: A particular point in a computation where state is written tostable storage. At some later time, the computation may be initializedto this saved state.Class: The meta structure of an object de�ning the inheritance of methodsand data structures.Client: A computer system or process that requests a service of anothercomputer system or process. A workstation requesting the contents ofa �le from a �le server is a client of the �le server. [MP93]77

Communication: An exchange of information.Compliance: An implementation is in compliance with a speci�cationwhen all conditions and expectations hold.Composition: A technique used to combine smaller components into largecomponents to solve more complex problems.Connection-oriented: The data communication method in which com-munication proceeds through three well-de�ned phases: connection es-tablishment, data transfer, connection release. TCP is a connection-oriented protocol. [MP93]Connectionless: The data communication method in which communi-cation occurs between hosts with no previous setup. Packets betweentwo hosts may take di�erent routes, as each is independent of the other.UDP is a connectionless protocol. [MP93]Contract: An agreement between two components in a system determiningtheir behavior.Data: Bases level measurement of uninterrupted information. Examplecould include integers, oating point numbers, and dates. Data is con-sumed by analysis techniques which generate information.Decomposition: A technique used in modeling where more complex sys-tems are separated into smaller less complex systems. This processcontinues until a system is reached where a know solution exists.Distributed Computing Environment (DCE):An architecture of stan-dard programming interfaces, conventions, and server functionalities(e.g., naming, distributed �le system, remote procedure call) for dis-tributing applications transparently across networks of heterogeneouscomputers. Promoted and controlled by the Open Software Foundation(OSF), a consortium led by Digital, IBM and Hewlett Packard. [JL91]Domain Name System (DNS): The DNS is a general purpose dis-tributed, replicated, data query service. The principal use is the lookupof host IP addresses based on host names. The style of host names nowused in the Internet is called "domain name", because they are the styleof names used to look up anything in the DNS. [MP93]78

Encapsulation: The technique used by layered protocols in which a layeradds header information to the protocol data from the layer above.[JL91]Encryption: Encryption is the manipulation of data in order to preventany but the intended recipient from reading that data. There are manytypes of data encryption, and they are the basis of security. [MP93]Environment: The underlying system assumptions, resources, contracts,and behaviors as viewed by a component.Error: A state in computation which leads to unexpected conditions. Thisis also called a failure or a fault.Extended Binary Coded Decimal Interchange Code (EBCDIC): Astandard character-to-number encoding used primarily by IBM com-puter systems. [MP93]Federation: An organizational technique of a system where many decisionsare decentralized and distributed, yet individual members bene�t fromeach others contributions.Information: Low content data is analyzed generating higher content in-formation.Interface: The layer between two components in a system.Invariant: A quantity that does not change during a computation.International Organization for Standardization (ISO): A voluntary,non-treaty organization founded in 1946 which is responsible for cre-ating international standards in many areas, including computers andcommunications. Its members are the national standards organizationsof the 89 member countries, including ANSI for the U.S. [MP93]Kerberos: Kerberos is the security system of MIT's Project Athena. It isbased on symmetric key cryptography. See also: encryption. [MP93]Little-endian: A format for storage or transmission of binary data in whichthe least signi�cant byte (bit) comes �rst. See also: big-endian. [JL91]79

Migration: The moving of one process in a system from one physicallocation to another.Name: An identi�er, most often unique, to a component in a system.Name Resolution: The process of using the name to obtain more infor-mation.Name Space: A collection of unique names.Noti�cation: Awareness of a state change regardless of location.Object: A component of a system that logically contains both data andmethods.Permission: In security terms, this is the granting of authorization.Persistence: An component that survives for a long period of time usuallyassociated with data stored on a �le system.Policy: A high-level guideline governing behavior.Port: A port is a transport layer de-multiplexing value. With Each appli-cation is a unique port number. Network packets are �rst routed tothe computer using the IP and then routed to the application using theport number. [MP93]Prohibition: An action that is not permitted to happen.Protocol: A formal description of message formats and the rules two com-puters must follow to exchange those messages. Protocols can describelow-level details of machine-to-machine interfaces (e.g., the order inwhich bits and bytes are sent across a wire) or high-level exchanges be-tween allocation programs (e.g., the way in which two programs transfera �le across the Internet). [MP93]Quality of Service (QoS): A collection of measurements indicating howwell a system is behaving. These might include response time, band-width, latency, error rates, recovery time, down time, round-trip-time,and many more. 80

Re�nement: An analysis process which takes one level of a design into amore detailed level.Remote Procedure Call (RPC): An easy and popular paradigm for im-plementing the client-server model of distributed computing. In gen-eral, a request is sent to a remote system to execute a designated pro-cedure, using arguments supplied, and the result returned to the caller.There are many variations and subtleties in various implementations,resulting in a variety of di�erent RPC protocols. [JL91]Request For Comments (RFC): The document series, begun in 1969,which describes the Internet suite of protocols and related experiments.Not all (in fact very few) RFCs describe Internet standards, but all In-ternet standards are written up as RFCs. The RFC series of documentsis unusual in that the proposed protocols are forwarded by the Internetresearch and development community, acting on their own behalf, asopposed to the formally reviewed and standardized protocols that arepromoted by organizations such as CCITT and ANSI. [MP93]Security Authority: One component of a system that provides the ser-vices of authentication, authorization, integrity, con�dentiality, andnon-repudiation. This is accomplished using audit trails, encryption,and private and public keys. The four basic behaviors of a securitysystem is to protect, detect, con�ne, and to mitigate.Server: The component in a distributed system that provides services.Signal: A state change that is handled out-of-bounds usually using themechanism of an interrupt.State: The items that de�ne a component at a particular time.Stream: A type of transport service that allows its client to send data in acontinuous stream. The transport service will guarantee that all datawill be delivered to the other end in the same order as sent and withoutduplicates. [MP93]System: The sum total of all the components, their interfaces and behavior.Thread: An execution path of computer instructions usually at the controlof an application sharing one address space.81

Transparency: A component exhibits transparency to a change, if nomeasurable di�erence exists before and after the change. Examples oftransparency might be di�erent locations, di�erent operating systems,or di�erent protocols.Type: The class of which the object belongs.

82

B Acronym KeyACID Atomicity Consistency Isolation DurabilityACK AcknowledgmentADL Architecture De�nition LanguageAD Applications DevelopmentAPI Applications Programming InterfaceARPA Advanced Research Projects AgencyBSD Berkeley Software DistributionBU Business UnitCICS Customer Information Control SystemCNOS Corporate Network Operating SystemCOM Component Object ModelCORBA Common Object Request Broker ArchitectureCPU Central Processing UnitC/S Client/ServerCSA Consolidated Security AdministrationDARPA Defense Advanced Research Projects AgencyDBMS Database Management SystemDCE Distributed Computing EnvironmentDDCS Distributed Database Connectivity ServicesDLL Dynamic Link LibraryDNS Domain Name ServiceDSM Distributed Security ManagerDSOM Distributed System Object ModelDSSA Domain Speci�c Software Architecture
83

EDA/SQL Enterprise Data Access/SQLEDI Electronic Data InterchangeESA Enterprise Systems ArchitectureEBCDIC Extended Binary Coded Decimal Interchange CodeFTE Full-Time Equivalent3GL Third-Generation Language4GL Fourth-Generation LanguageGUI Graphical User InterfaceHTML Hypertext Markup LanguageHTTP Hypertext Transfer ProtocolIDL Interface De�nition LanguageIEEE Institute of Electrical and Electronics EngineersI/O Input/OutputIPX Internetwork Packet ExchangeIS Information SystemsISO International Organization for StandardizationISV Independent Software VendorIT Information TechnologyIEEE Institute of Electrical and Electronics Engineers

84

LAN Local-Area NetworkLOC Lines of CodeMAA Microsoft Application ArchitectureMIPS Millions of Instructions Per SecondMOM Message-Oriented MiddlewareMQ Message QueuingNAK Negative AcknowledgmentNDS NetWare Directory ServiceNFS Network File SystemNOS Network Operating SystemNSF National Science FoundationOLE Object Linking and EmbeddingOLE DB OLE DatabaseOMG Object Management GroupOO Object-OrientedORB Object Request BrokerOSI Open Systems InterconnectionOSF Open Software FoundationOS Operating SystemPC Personal computerQoS Quality of Service
85

RAAD Rapid Architecture for Applications DevelopmentR&D Research and DevelopmentRDBMS Relational Database Management SystemRFC Request For CommentsRPC Remote Procedure CallSAA System Applications ArchitectureSNA Systems Network ArchitectureSOM System Object ModelSQL Structured Query LanguageSSO Single Sign-OnTCP/IP Transmission Control Protocol/Internet ProtocolTP Transaction ProcessingURL Uniform Resource LocatorVB Visual Basic

86

References[AG94] R. Allen and D. Garlan. Beyond de�nition/use: Architecturalinterconnection. Proceedings, Workshop on Interface De�nitionLanguage, January 1994.[AG97] Robert Allen and David Garlan. A formal basis for architec-tural connection. ACM Transactions on Software Engineeringand Methodology, July 1997.[Bai92] Cidnet Bailin. Kaptur - knowledge acquisition for preservation oftrade-o�s and underlying rationales. private document, copyrightBailin, 1992.[BCGS93] Don Batory, Lou Coglianses, Mark Goodwin, and Steve Shafer.Creating reference architectures: An example from avionics.anonymous ftp to cs.utexas.edu, 1993.[BG77] R. M. Burstall and J. A. Goguen. Putting theories together tomake speci�cations. Proceedings of the Fifth International JointConference on Arti�cial Intelligence, pages 1045{1058, 1977.[BG80] R. M. Burstall and J. A. Goguen. The semantics of clear, a spec-i�cation language. Proceedings of the 1979 Copenhagen WinterSchool on Abstract Software Speci�cation, pages 292{332, 1980.[Bro87] B. W. Brooks. No silver bullet: Essence and accidents of softwareengineering. IEEE Computer, 20(4):10{19, April 1987.[BS92] B. W. Boehm and W. L. Scherlis. Megaprogramming. SoftwareTechnology Conference, pages 63{82, April 1992.[BSTS93] Don Batory, Vivek Singhal, Je� Thomas, and Marty Sirkin. Scal-able software libraries. Proceedings of the ACM, SIGSOFT Con-ference, December 1993.[Coo79] L. W. Cooprider. The Representation of Families of Software Sys-tems. PhD thesis, Department of Computer Science, Carnegie-Mellon University, April 1979.[COR96] Common Object Request Broaker Architecture, The Object Man-agement Group, 1996. 87

[DCE96] The Distributed Computing Environment, Open Software Foun-dation, The Open Group, 1996.[DEF95a] ITU-T X.902 | ISO/IEC 10746-2, 1995.[DEF95b] ITU-T X.903 | ISO/IEC 10746-3, 1995.[DK76] F. DeRemer and H. Kron. Programming-in-the-large versusprogramming-in-the-small. IEEE Transactions on Software En-gineering, 2(80):80{86, June 1976.[EHL+94] S. Edwards, W. Heym, T. Long, M. Sitarman, and B. Weide.Specifying components in resolve. Software Engineering Notes,19(4), October 1994.[GA84] Goldberg and Adele. Smalltalk-80: The Interactive ProgrammingEnvironment. Addison-Wesley, 1984. ISBN 0-201-11372-4.[GAO94] David Garlan, Robert Allen, and John Ockerbloom. Exploit-ing style in architectural design environments. In Proceedings ofSIGSOFT'94: The Second ACM SIGSOFT Symposium on theFoundations of Software Engineering, December 1994.[GAO95] David Garlan, Robert Allen, and John Ockerbloom. Architec-tural mismatch, or, why it's hard to build systems out of existingparts. In Proceedings of the 17th International Conference onSoftware Engineering, April 1995.[GAR83] Goldberg, Adele, and David Robson. Smalltalk-80: The Lan-guage and Its Implementation. Addison-Wesley, 1983. ISBN 0-201-11371-6.[GAR89] Goldberg, Adele, and David Robson. Smalltalk-80: The Lan-guage. Addison-Wesley, 1989. ISBN 0-201-13688-0.[GP95] David Garlan and Dewayne Perry. Introduction to the specialissue on software architecture. IEEE Transactions on SoftwareEngineering, April 1995.[HKM+94] Nicholas Haines, Darrell Kindred, J.G. Morrisett, Scott M. Net-tles, and Jeanette M. Wing. Composing �rst class transactions, a88

functional standard metalanguage packages of concurrrency, lock-ing, persistence, and serialization. ACM TOPLAS, 16(6):1719{1736, November 1994.[HL85] D. Helmbold and D. Luckham. Tsl: Task sequencing language.The Ada International Conference, Paris, France, May 1985.[HLN+88] Harel, Lachover, Naamad, Pnueli, Politi, Sherman, and Shtul-Trauring. Statemate: a working environment for the developmentof complex reactive systems. Proceedings of the 10th InternationalConference on Software Engineering, Singapore, April 1988.[Hoa94] C.A.R. Hoare. Mathematical models for computing. Science,August 1994.[HRCP94] Terry Hayes-Roth, Erman Coleman, and Devito Papanagopou-los. Overview of technowledge's dssa program. ACM SIGSOFTSoftware Engineering Notes, October 1994.[JL91] O. Jacobsen and D. Lynch. A Glossary of Networking Terms,RFC 1208, Interop, Inc., 1991.[JM94] F. Jahanian and A.Mok. Modechart: A speci�cation language forreal-time systems. IEEE Transactions on Software Engineering,20(12):933{947, December 1994.[KG83] Krasner and Glenn. Smalltalk-80: Bits of History, Words ofAdvice. Addison-Wesley, 1983. ISBN 0-201-11669-3.[KO62] Nygaard K. and Dahl O.J. The Development of the SIMULALanguages. Norwegian Computing Centre (NCC) in Oslo, 1962.[LKA+93] Luchham, Kenney, Augusting, Vera, Bryan, and Mann. Speci�-cation and analysis of system architecture using rapide. StanfordUniversity Technical Report, 1993.[LSBH93] Luqi, Shing, Barnes, and Hudhes. Prototypeing hard real-timeada systems in a classroom environment. Proceedings of the Sev-enth Annual ADA Software Engineering Education and Training(ASEET), Monterey, January 1993.89

[Luc90] D. C. Luckham. Programming with speci�cations: An introduc-tion to anna, a language for specifying ada programs. Texts andMonographs in Computer Science, October 1990.[LV96] Luchham and Vera. An event-based architecture de�nition lan-guage. to appear in IEEE Transactions on Software Engineering,1996.[LvH85] D. C. Luckham and F. W. von Henke. An overview of anna, aspeci�cation language for ada. IEEE Software, 2(2):9{23, March1985.[Mat86] R. F. Mathis. The last 10 percent. IEEE Transactions on Soft-ware Engineering, 12(6):705{712, June 1986.[Mey92] B. Meyer. Ei�el: The Language. Prentice Hall, New York, 1992.[MG92] Mettala and Graham. The domain-speci�c software architectureprogram. Special Report CMU/SEI-92-SR-9, Software Engineer-ing Institute, Carnegie Mellon University, Pittsburgh, PA, June1992.[MP93] Gary Scott Malkin and Tracy LaQuey Parker. Internet UsersGlossary, RFC 1392, Interop, Inc., 1993.[NB92] Newton and Browne. The code 2.0 graphical parallel program-ming language. Proceedings, ACM International Conference onSuper Computing, July 1992.[ODP95a] ITU-T Rec. X.902 | ISO/IEC 10746-2: Foundations, 1995.[ODP95b] ITU-T Rec. X.903 | ISO/IEC 10746-3: Architecture, 1995.[ODP95c] ITU-T Rec. X.904 | ISO 10746-4: Architectural semantics,1995.[ODP95d] ITU-T X.901 | ISO/IEC 10746-1 Overview, 1995.[Ous94] J. Ousterhout. Tcl and the Tk toolkit. Addison-Wesley, 1994.[PXL95] Palsberg, Xiao, and Lieberherr. E�cient implementation of adap-tive software (summary of demeter theory). Northeastern Uni-versity, Boxton, 10, January 1995.90

[Rei92] Aaron Reizes. The Webster Dictionary. 1992.[SDK+94] Shaw, Deline, Klein, Ross, Young, and Selesnik. Abstractionfor software architectures and tools to support them. CarnegieMellon University, February 1994.[SG96] Mary Shaw and David Garlan. Software Architecture: Perspec-tives on an Emerging Discipline. Prentice Hall, New York, April1996.[STA93] Stars (software technology for adaptable, reliable systems). con-ceptual framework for reuse processes (cfrp), volume 1: De�ni-tion, version 3.0. STARS-VC-A018/001/00, October 1993.[Str86] B. Stroustrup. The C++ Programming Language. Addison-Wesley, 1986.[Ves94a] S. Vestal. Mode changes in a real-time architecture descriptionlanguage. Proceedings, Proc. International Workshop on Con-�gurable Distributed Systems: Honeywell Technology Center andthe University of Maryland, 1994.[Ves94b] Steve Vestal. A cursory overview and comparison of four ar-chitecture description languages. Honeywell Technology Cen-ter, Minneapolis, MN, anonymous ftp to src.honeywell.com in/pub/ARCHIVE/dssa/papers, July 1994.[Wie92a] G. Wiederhold. Mediators in the architecture of future informa-tion systems. IEEE Computer, pages 38{49, March 1992.[Wie92b] G. Wiederhold. Model-free optimization. In Proceedings ofDARPA Software Technology Conference, pages 82{96, Los An-geles, CA., April 1992. Meridien Corp., Arlington, VA.[Wol85] A. L. Wolf. Language and Tool Support for Precise Interface Con-trol. PhD thesis, Computer and Information Science Department,University of Massachusetts, Amherst, Mass., 1985.[WWC92] G. Wiederhold, P. Wegner, and S. Ceri. Towards megaprogram-ming. Communications of the ACM, 35(11):89{99, 1992.91

