A Distributed Architecture

Definition Language:
a DADL

Ron Burback

December 18, 1998

Contents

1 Abstract

2 Introduction

3 Distributed Architecture Description Language

3.1
3.2
3.3

3.4

3.5

3.6
3.7

3.8

3.9
3.10

Overview e e
Backus-Naur Form (BNF) Semantics
Conversations o e
3.3.1 Conversation Identifier
Connectlons o v v e
3.4.1 Connection Identifier
3.4.2 Connectivity o
343 Order
3.4.4 Deliveryo
Dagent oL
3.5.1 Dagent Identifier
3.5.2 Dagent Connections
Alphabet
Terms e
3.7.1 Term Identifier
3.7.2 Type ldentifier oL
3.7.3 Constant Term
3.7.4 Variable Identifier
3.7.5 Variable Term
3.7.6 TFunction Term
Function Term
3.8.1 Function Identifier
3.8.2 Parameter List
3.8.3 Function Quality of Service Contract
3.8.4 Function Performance Contract
Sentences e
Conversation Behavior
3.10.1 Sequential oo
3.10.2 Parallel
3.10.3 Walto
3.10.4 At Least Once.

3.10.5 Zero or More Times. 25

3.11 Contract o 27
3.11.1 Performance 27
3.11.2 Latency o 27
3.11.3 Error Rate 27
3.11.4 Capacityo 27
3.11.5 General Observations about a Contract 28

3.12 Conversation Options 29
3.12.1 Persistence o 29
3.12.2 Volatile 29
3.12.3 Data Open 30
3.12.4 Data Integrityo 30
3.12.5 Data Privacyo 30
3.12.6 Marshaled 30
3.12.7 Authenticated oo oo 30
3.12.8 Authorized 30

3.13 Dagento 31
3.13.1 Connection 32
3.13.2 Obeys 33
3.13.3 Contract 34
3.13.4 Resourceo 35
3.13.5 Serviceo 36

3.14 The Environment 37

Using DADL 38

Theory 41

5.1 The Theorem 11

5.2 The Proof Outline 11

Examples 42

6.1 Simple Client Server 42
6.1.1 Interface 42
6.1.2 Dagent Client 43
6.1.3 Dagent Servero oo oL 43

6.2 Three Tier Client Server 414
6.2.1 Interface, Presentation to Application 44
6.2.2 Interface, Application to Server 45

6.2.3 Dagent Presentation 46

6.2.4 Dagent Application 46
6.2.5 Dagent Server oL 47
6.3 Simpleemail00 48
6.3.1 Email Communication 48
6.3.2 FEmail Client 50
6.3.3 Email Servero 50
Distributed System Foundations 51
7.1 Distribution o 51
7.2 Concurrent e 52
7.3 No Global State 52
7.4 No Global Clock 53
7.5 Partial Failures 53
7.6 Asynchronous Communication 54
7.7 Distributed Control 55
7.8 Heterogeneous Systems L oL 55
7.9 Autonomy 56
7.10 Evolutiono 56
7.11 Opaquenesso i i e 57
7.12 Openness o 58
7.13 Interdependent 58
7.14 Federation 59
7.15 Security 59
Current Distributed Architectures 60
8.1 Basic Client/Server 60
8.1.1 Messaging o 61
8.1.2 Remote Procedure Call(PRC) 61
8.2 Three Tiered Client/Server. 62
8.3 Five Network Placements. 64
8.3.1 Distributed Presentation 64
8.3.2 Remote Presentation 65
8.3.3 Distributed Application Logic 65
8.3.4 Remote Data 65
8.3.5 Distributed Data 65
8.4 Publish/Subscribeo oo o 66
85 Mediator 67

8.6 Electronic Mail(email)

.7 The Web . .

9 Related Work
9.1 Programs .
9.1.1 DSSA

9.1.2 STARS. o
9.1.3 CARDS
9.1.4 PRISM.

9.1.5 DSRS
9.1.6 SATI
9.1.7 Protot

9.1.8 DARPA Software Foundations

92 ADLs . ..

9.2.1 DICAM
922 GenVoca LE
9.2.3 Capture
9.2.4 LILEANNE
925 MetaH
9.2.6 ControlH
9.2.7 Rapide

9.2.8 UniCo

IL o o o o e e e e e s e e e e e e e e e e e e

9.3 System Environments.o 0oL

9.3.1 UNAS
9.3.2 DCE
9.3.3 ODP
9.3.4 ANSA

93,5 CORBA

9.3.6 COM
A Glossary

B Acronym Key

72
72
72
72
72
72
72
73
73
73
73
73
73
73
74
74
74
74
74
74
74
75
75
75
75
75

76

83

List of Figures

O 00~ O Tk W -

DADL Development 38
DADL Network Environment 39
Basic Client/Server o 60
Three Tiered Client/Server. 62
Network Positions 64
Publish/Subscribe oo o oo 66
Mediator 67
SMTP based email, 68
HTTP based Web 70

List of Tables

O ~1 O U= W N~

Example of a Traditional C Program with Header File. 8
Basic Conversation Block 13
Connection Block 14
Dagent Block o o 16
Alphabet Block oo 17
Term Block 19
Function Term Block 21
Sentence Block o 24
Conversation Behavior Block 26
Contract Block 27
Conversation Options Block 29
Dagent Block o o 31
Obeys Conversation Block 33
Resource Block 35
Service Block 36

2 Introduction

Distributed Architecture Definition Languages (DADLs) are emerging as
tools for formally representing the architecture of distributed systems. As
architectures become a dominant theme in large distributed system develop-
ment, methods for unambiguously specifying a distributed architecture will
become indispensable.

An architecture represents the components of a large distributed software
system and their interfaces, methods of communication, and behaviors. It is
the behaviors of the components, the communication between the pieces and
parts, that are under-specified in current approaches. To date, distributed
system architectures have largely been represented by informal graphics in
which the components, their properties, their interaction semantics and con-
nections, and behaviors are hand-waved in only partially successful attempts
to specify the architecture.

Traditional computer languages, like C, concentrate mainly on the def-
inition of the algorithm and data structure components by using language
provided mechanisms to specify type definitions, functions, and algorithm
control. The interface is under-defined by header files where function names,
parameters, parameter types, and parameter order are specified. This is short
of specifying the behavior of the interface. Traditional computer languages
are much more suited to defining implementation than they are to defining
architecture.

Consider the following simple C program where we calculate the sum of
two integers. See Table 1 on page 8.

Traditional programming languages easily define the data structures and
the algorithms. There is very limited help in defining the architecture. In
fact, there is an assumed architecture, so implicit that most languages doesn’t
even define it as a feature. The functions main and plus communicate over a
shared address space, memory resident, ordered, highly reliable, synchronous,
and error-free communication medium materialized by using a call-frame
stack.

The language of communication is defined by the call statement. The
function main sends two integers to the function plus and waits for an integer
in reply. The function plus receives two integers and replies with their sum.
The implicit call and return in the C language materialize this architecture.

This implicit architecture is appropriate for small and simple programs
but as applications become more complex, large, and distributed, the im-

The implementation file

#include <plus.h>
void main() {
int results ;

results = plus(1,2) ;

b

int plus (int n , int m) {
relurn n+m ;
=

The header file

int plus (int n , int m) ;

Table 1: Example of a Traditional C Program with Header File.

plicit call-frame stack architecture is no longer appropriate. A distributed
architecture might deal with a disjoint address space, non-memory resident,
unordered, non-reliable, asynchronous, and error prone communication mech-
anism. This is far from the assumptions of traditional computer languages.
It is no wonder that large systems are hard to define using traditional pro-
gramming languages.

Object based systems, like C++4, extend the programming paradigm to
include objects, sub types, polymorphism, and inheritance. This powerfully
extends the ability of a language to define the data structures and algorithms.
However, the underlying implicit architecture does not change. The architec-
ture still dictates memory resident, ordered, highly reliable, synchronous, and
error free communication over a shared address space, that is materialized
by a call-frame stack.

Another shortfall of the implicit object-based system architecture is in the
definition of the behavior. Though the C++4 interface defines the methods
exported by a class, it does not define the methods used or required by that
class. Thus an implementation can perfectly match the interface but have
an entirely different behavior than another similar implementation because

it is composed with different primitives.

Some of the founding object-based languages, such as SIMULA [KO62]
and SmallTalk [GARS3] [KG83] [GA84] [GARRY], tried to replace the im-
plicit architecture of a call-frame stack with a message-passing queue. In
this architecture, methods are evoked by passing messages between objects.
However, the architecture is still implicit and under-defined leading to no
choice in an alternative behaviors.

Distributed middle ware support systems, like DCE [DCE96], extend the
programming paradigm. The DCE Interface Definition Language(IDL) in-
cludes argument flow (in or out parameters), interface identifiers, dynamic
binding information, and exceptions. Using DCE it is possible to define com-
munication mechanisms for architectures that are in disjoint address spaces,
non-memory resident, non-reliable, and error prone. DCE accomplishes this
by expanding the call mechanism. Asynchronous communication is dealt
with by providing threads while unordered communication is provided by
using network data grams under UDP. DCE replaces the traditional archi-
tecture with one that is more suited for distributed computing but does not
allow choice between alternative architectures.

CORBA [COR96] extends the programming paradigm to include mes-
saging and distributed objects. Communication is done over an information
bus where requests are issued and brokers respond to satisfy those requests.
CORBA is really directed at building object models for a large class of appli-
cations under one, and only one, request /broker architecture. Though this is
extremely necessary for application development, architectural needs go un-
fulfilled. CORBA is more like a detailed requirement specification, defining
in detail the needs of a particular application domain.

Megaprogramming [WWC92] extends the call mechanism to an asyn-
chronous messaging paradigm between large components called megamod-
ules. The communication between two megamodules is defined with language
structures like setup, estimate, invoke, extract, and examine.

Languages, like Rapide [LV96], extend the interface definitions to include
events and causal relationships between events. Using the paradigm of hard-
ware design, the behavior of the interface is governed by signals and events
which are synchronized by a clock. The interface has been extended to in-
clude both the generated and required methods. This allows for the interface
to act more like a meta-schema that governs both actions and simple behav-
ior.

In comparison, Rapide expands the role of the call statement into a di-

rected graph of causal events. Megaprogramming expands the call statement
into a family of asynchronous primitives. While the proposed DADL expands
the call statement into conversations, behaviors, and contracts concentrating
on distributed systems.

Don’t confuse a DADL with a requirement language. The requirement is
a statement of the problem at a high level of abstraction. This is in contrast
to a DADL which defines a generic plan that binds the requirements to the
implementation. Requirement languages, such as STATEMATE [HLNT88]
and Modechart [JM94], define the problem but not the solution.

This thesis proposes a DADL to specify architectures of distributed sys-
tems. This is accomplished by first defining the attributes of large distributed
systems that distinguish a distributed system of other types of systems. Next
the DADL language will be defined. DADL will then be used to specify sev-
eral key architectures.

Other related work includes Rapide [LV96], UniCon [SDK*94], ArTek
[HRCP94], Wright [AG94], Code [NB92], Demeter [PXL95], Modechart [JM94],
PSDL/CAPS [LSBH93], Resolve [EHL*94] and Meta-H [Ves94a).

10

3 Distributed Architecture Description Lan-
guage

3.1 Overview

There are two main, tightly-coupled concepts in DADL which are the conver-
sation and the participants. The conversation has an identity independent
of the participants. Contracts govern the behavior of the conversation and
the expectations of the participants. A conversation is of little use without
participants. Likewise, participants are of little use without communication
taking place in a conversation.

The participants produce and consume the conversation. These partici-
pants are distributed agents, or simply dagents.

Dagents communicate with other dagents to accomplish tasks. A dagent
may be involved in many conversations, potentially entering and leaving a
conversation at times. The identity of the dagent at the other end of the
conversation may be unknown.

For each conversation, a domain-specific language is defined. The base
level unit of a communication is a term. Terms are built from characters taken
from an alphabet. Multiple terms from the same dagent form a sentence while
multiple sentences between dagents form a conversation. The conversation
uses one alphabet.

The conversation is carried over a bi-directional connection. Information
can be placed on a connection from many sources. The dagents may be
unaware of the origin of the information. What happens to the information
after it is placed on the connection is governed by the conversation manager.

The connection may be multi-sided in which case many dagents may get
involved in the conversation.

A dagent may provide value by performing some service, or function,
while the conversation is taking place and contributing the results back to
the conversation.

The dagents agree to a contract to determine their behavior and expected
behavior of all other agents participating in the conversation. A dagent may
provide many services to the conversation.

Both the conversation and the dagents exist in an environment. From
the environment, resources are provided and consumed.

The services that a dagent provides, the underlying definition of the con-

11

versation, along with the contract collectively define the architecture within
an environment.

3.2 Backus-Naur Form (BNF) Semantics

The following sections we will define the language along with the supporting
concepts.
The BNF semantics used are as follows:

1. Words inside double quotes (“word”) represent literal words themselves
(these are called terminals). The phrase double_quote is used to repre-
sent the double-quote character itself. An example literal: “if”.

2. Words outside double quotes (possibly with underscores) represent syn-
tactic categories (i.e. nonterminals). An example nonterminal: if_statement.

3. Syntactic categories are defined using the form: syntactic_category ::=
definition

4. Square brackets (]]) surround optional items.
5. Curly brackets ({ }) surround items that can repeat zero or more times.

6. A vertical line (]) separates alternatives.

12

3.3 Conversations

See Table 2 on page 13.

conversation_block ::=
“conversation”
conversation_identifier
“{77
connection_block
dagent_block
alphabet_block
term_block
sentence_block
converstion_behavior_block
conversation_contract_block
conversation_option_block

LL}??

“.”
’

Table 2: Basic Conversation Block

A conversation contains a list of connections. The content of the conversa-
tion are defined over an alphabet using terms and sentences. The well-formed
sentences are described by the behavior while the performance is defined in
the contract. The conversation has a collection of options.

3.3.1 Conversation Identifier

A conversation identifier is a unique string representing the name of the
conversation. This name can then be used as a placeholder to indicate the
conversation itself.

13

3.4 Connections

See Table 3 on page 14.

connection_block =
connection | connection_block

connection =
“connection”
connection_identifier
(C(??
connection_option_block
connection_contract_block
(C)??

“.”
’

connection_option_block =

“lI-to-1,” | “I-to-M,” | “M-to-1,” | “M-to-M,”
connection_contract_block =
connection_contract_list

connection_contract_list =
connection_contract_order
connection_contract_delivery

connection_contract_order =

“ordered FIFO,” | “ordered LIFO,” | “unordered,”

connection_contract_delivery ::=
“guaranteed delivery 7 | “no guaranteed delivery”

Table 3: Connection Block

A connection is the interface of a conversation to the dagents. Information
comes into a conversation over a connection and information is returned to
dagents over a connection. The particular dagents, at any one time, talking
or listening on a connection, may be dynamic. A connection is bi-directional
and may have performance requirements governed by a contract.

14

3.4.1 Connection Identifier

A connection identifier is a unique string representing the name of the con-
nection. This name could then be used as a placeholder to indicate the
connection itself.

3.4.2 Connectivity

The connection may have only one producer and one listener. If so, then the
connection is said to be 1-to-1. In many cases, this would imply one dagent.

The connection may have one producer and many listeners. If so, then
the connection is said to be 1-to-M. A broadcasted message from one dagent
to many dagents is one special case of a 1-to-M connection.

The connection may have many producers and only one listener. If so,
then the connection is said to be M-to-1.

The connection may have many producers and many listeners. If so, then
the connection is said to be M-to-N. Here information from many dagents
can be directed to many other dagents.

3.4.3 Order

A connection may be ordered in which case the information placed on the
connection will be available to the conversation in the same order. The
transport layer in the traditional network model is an ordered connection
with quarantined delivery.

The information on the connection could be used as FIFO (a queue) or

LIFO (a stack).

3.4.4 Delivery

Once information is placed on the connection delivery may be guaranteed.
Some connection may not guarantee delivery in which case information may
be lost. The UDP layer in the traditional network model is an example of
an unordered connection with no guaranteed delivery.

15

3.5 Dagent
See Table 4 on page 16.

dagent_block ::=
“dagent”
dagent_identifier

on

connection_identifier

“.”
’

Table 4: Dagent Block

3.5.1 Dagent Identifier

A dagent identifier is a unique string representing the name of the dagent.
This name could then be used as a placeholder to indicate the dagent itself.

3.5.2 Dagent Connections

A dagent is associated with a connection. Recall that the connection is bi-
directional. The dagent can both speak and listen on the connection.

16

3.6 Alphabet
See Table 5 on page 17.

alphabet_block ::=
“alphabet”
“(77
“ASCII” | “EBSIDEC” | “BCD” | “BYTE”
“)77

Table 5: Alphabet Block

The lowest component of the conversation is the alphabet. For any given
conversation the choice of alphabet is fixed. The choices might include ASCII,
EBSIDEC, BCD, or uninterpreted 8-bit bytes. One element in the alphabet

is called a character.

17

3.7 Terms
See Table 6 on page 19.

A group of characters is called a term. Terms may represent constants,
variables, or functions. A term is the lowest element spoken by a dagent.

3.7.1 Term Identifier

A term identifier is a unique string representing the name of the term. This
name could then be used as a placeholder to indicate the term itself.

3.7.2 Type Identifier

The type identifiers are borrowed from other languages and might include
integers, floating point, character strings, booleans, constant expressions, and
arbitrary large objects called blobs.

3.7.3 Constant Term

A grounded value of a particular type is a constant term.

3.7.4 Variable Identifier

A variable identifier is a unique string representing the name of the variable.
This name could then be used as a placeholder to indicate the variable itself.

3.7.5 Variable Term

A term which has a known type but the value is determined dynamically
during the conversation and may vary is called a variable.

3.7.6 Function Term

Function terms are explained in more detail in the next section.

18

term_block e
term_definition | term_block

term_definition =
Cﬁterm”
term_dentifier
CC(”
constant_term | variable_term | function_term
CC)”

“.”
’

constant_term =
type_identifier
constant_value

variable_term =
type_identifier
variable_identifier

function_term ::=

type_ identifier
function_identifier
“(77

parameter_list

“)77

function_contract

parameter_list =

variable_term | “” parameter _list

Table 6: Term Block

19

3.8 Function Term

See Table 7 on page 21.

A function term represents a service provided by a dagent. This puts a
restriction on the class of dagents able to emit this term. Only dagents which
provide the function or service can participate in the conversation.

3.8.1 Function Identifier

A function identifier is a unique string representing the name of the function.
This name could then be used as a placeholder to indicate the function itself.

3.8.2 Parameter List

A parameter list of the arguments to the function.

3.8.3 Function Quality of Service Contract

A function can have several different profiles with respect to the quality of
service.

A contract may govern the acceptable error rate. One of the underlying
assumptions that distinguishes distributed systems from more traditional
systems is that individual elements in the system may fail without total
system failure. Many of these failures are masked from the system, itself, by
using replication and distribution.

An element in a system can provide many different levels of service. This
is part of the behavior of that element. The levels include:

Errors Tolerated In the case of tolerated errors, the service representing
the function may be unavailable at numerous times. A single service on a
single computer would be an example of an errors tolerated quality of service.
If the machine goes down, the service is unavailable.

The service is available most of the time but on occasions errors are known
to happen. The exact threshold of error tolerance, the number of errors per
unit of time, is service specified. There may have to be manual intervention
to correct from an error state.

20

function_term =

type_ identifier
function_dentifier
“(77

parameter_list

“)77

function_contract

parameter_list =
variable_term | “)” parameter _list

function_contract =
function_quality_of service
function_performance

function_quality_of service ::=

“errors tolerated,” | “highly available,” | “fault tolerant,”
function_performance =

“performance” | “latency” | “error rate”

CC(”

“min” “=" <integer>

“max” “=" <integer>

“avg” “=" <Zinteger>

“rms” “=" <float>

CC)??
“certainty” <integer>
“7 | «” function_performance

Table 7: Function Term Block

21

Highly Available The service representing the function will be available
a significant amount of the time but occasionally, the service may experience
short periods of unavailable.

An example of such a quality of service would be a single service replicated
on many machines. Many machines may go down but the service remains
available. Of course, if all machines go down, service will not be available.

This level has one distinguishing characteristic of a known error free state.
In a potentially automated fashion, the service in error is reset to the known
error free state, usually an initial state, and restarted. The total distributed
system continues to operate with what looks to the users as a minor event.

Highly available services are usually one or two point fault tolerant.

Fault Tolerant A fault tolerant service requires at least triple redundancy.
At least three machines are running identical services on identical parameters.
The results are then compared. If all three results are identical, the result is
returned. One machine can go down in this configuration without effecting
the results. Hot spares are available to replace a faulty machine and join an
operational machine pair.

If a service is guaranteed to be error free it is said to be fault tolerant.
Ideally, one would wish all services to be fault tolerant but this is an expensive
capability and demands large quantities of resources to obtain this level. Only
critical services need to be fault tolerant. Most systems work well at highly
available levels.

3.8.4 Function Performance Contract
The performance of a function is stochastic in nature. For example, the

average performance is only achieved a certain percentage of time.

Performance This represents the number of function invocations per sec-
ond.

Latency This represents the time from initialization of a function until the
first information is available.

Error Rate This represents the number of times a function fails per second.
This is not a semantic failure where the incorrect results are returned but
the number of times no result is returned at all.

22

Certainty The percentage of time that one of the performance parameters
is achieved.

23

3.9 Sentences

See Table 8 on page 24.

sentence_block e
sentence_definition | sentence_block

sentence_definition ::=
“sentence”
sentence_identifier
“(77
term_list
“)77
“from”
conenction_identifier
C(tO”

connection_identifier

“.”
’

term list e
term_identifier | “.” term list

Table &: Sentence Block

A list of terms form a sentence. Every sentence is generated by only
one dagent but, depending on the connections in the conversation, may be
consumed by many dagents. The sentence enters the conversation from one
connection and leaves the conversation at another connection.

In the conversation the sentence is atomic. The sentence is either all
present or not present at all. A sentence cannot be interrupted preventing
the overlapping of two sentences.

Every sentence has an identifier.

24

3.10 Conversation Behavior

See Table 9 on page 26.
A conversation has many sentences. The sentence order determines the
behavior. This order could be very simple or quite complex.

3.10.1 Sequential

Two sentences are sequential if they enter the conversation one after the
other. This is indicated with a “;”.

?

3.10.2 Parallel

Two sentences are parallel if they can enter the conversation at the same
time. This is indicated with a “|”.

3.10.3 Wait

If more than one sentence is coming into the conversation in parallel and
the conversation needs to block or wait to continue until all sentences are
available, then this is accomplished with a sentence join. This is indicated
with a “wait”.

3.10.4 At Least Once

With this option, a sentence can be repeated one or more times. This is
indicated with a “+7.

3.10.5 Zero or More Times

With this option, a sentence can be repeated zero or more times. This is
indicated with a “x”.

25

converstaion_behavior_block

compound fragment

sequential fragment

parallel fragment

repeat_fragment

“behavior”

(L(??

compound fragment

44)77
“.”
’

sentence_identifier
“(” sequential fragment “)”

“(” parallel fragment “)” “wait”

|

“(” repeat_fragment “)”

compound fragment

|

compound _fragment “;” sequential fragment
compound fragment

|

compound fragment “|” parallel fragment
compound fragment [“+7 | “x”]

Table 9: Conversation Behavior Block

26

3.11
See Table 10 on page 27.

Contract

conversation_contract_block

“contract”

“performance” | “latency” | “error rate” | “capacity”
CC(”

“min” “=" <integer>

“max” “=" <integer>

“avg” “=" <integer>

“rms” “=" <float>

44)77
“.”
’

[conversation_contract_block |

Table 10: Contract Block

3.11.1 Performance

This represents the number of conversations per second.

3.11.2 Latency

This represents the time from initialization of a conversation until the first

information is available.

3.11.3 Error Rate

This represents the number of times a conversation fails per second.

3.11.4 Capacity

This represents the number of simultaneous conversations that can occur
within one conversation manager.

27

3.11.5 General Observations about a Contract

A contract is a general concept for characterizing and regulating cooperation
in the architecture. A contract is an agreement that governs the cooperation
and embodies the obligation and expectation associated with cooperation.
Needless to say, agreement by members of the distributed system to a con-
tract, enables cooperation to take place.

The contract based approach to software development includes two pieces.
The contract first specifies what the consumer must do and secondly, the
contract specifies what the supplier will provide. The contract does not
specify how the supplier and consumer will fulfill the contract. There is not
much support from commercial programming languages for contract concepts
with Eiffel [Mey92] being one of the few exceptions.

The contract is an abstraction of the behavior of the system, the in-
teractions under constraints, and the interface. The contract defines the
obligations, permissions, and prohibitions of the elements in the system.

A contract can be placed on many different kinds of elements. These
include dagents, connections, conversations, interface, services, servers, re-
sources, the environment, functions, and procedures.

A contract might include constraints on the bandwidth and latency. Tra-
ditionally, these are measurements associated with data through a channel,
but these metrics can be used to measure how many times per second a
service can be evoked (the generalized bandwidth) and the time it takes
before the first service returns an answer (the generalized latency). These
constraints might include minimum, maximum, and average expectations.

28

3.12 Conversation Options

See Table 11 on page 29.

conversation_option_block ::=
“With”
“options”
CC(??
conversation_option_list

44)77
“.”
’

conversation_option_list =

“persistence” | “volatile” “”

“data open” | “data integrity” | “data privacy” “,”
“marshaled” | “unmarshaled” «,”

“authenticated” | “unauthenticated” “,”
“authorized” | “unauthorized”

Table 11: Conversation Options Block

There are many different kinds of conversations. A conversation may
be one-sided or it may be a peer-to-peer interchange. A conversation may
include a number of parties sharing information.

3.12.1 Persistence

If the conversation can recover from a total system environment crash, then it
is persistent. Persistent information require more resources to establish and
accomplish but give better total-system error recovery capability. A conver-
sation with control structures in a transaction log on disk is an example.

3.12.2 Volatile

If the conversation is ephemeral and not recoverable after a system failure,
then the conversation is said to be volatile. A conversation with control
structures in RAM is an example.

29

3.12.3 Data Open

If the data can be viewed by a casual observer, then the data is said to be
open.

3.12.4 Data Integrity

If the data can be verified to be correct with a digital signature mechanism,
then the data is said to have integrity.

3.12.5 Data Privacy

If the data cannot be viewed by a casual observer, then the data is said to
be private.

3.12.6 Marshaled

If the data is converted between alternative underlying representations with-
out losing significant information, then the data is said to be marshaled.

3.12.7 Authenticated

If the identify of the dagents in a conversation can be verified, then the
conversation is said to be authenticated.

3.12.8 Authorized

If an authenticated dagent has permission to interact with the conversation,
then the dagent is said to be authorized.

30

3.13 Dagent
See Table 12 on page 31.

dagent_definition =
“dagent”
dagent_identifier
“{77
connection_block
obeys_block
dagent_contract_block
resource_block
service_block

LL}??

“.”
’

Table 12: Dagent Block

A dagent is similar in concept to the more familiar terminology of agent.
However, to avoid confusion in overloading of definitions of the term agents
from other fields, agents in DADL will be called dagents. One may think of a
dagent as a process on a particular computer. There can be many processes
on any one particular computer and each process may be multi-threaded.

The dagent may perform multiple functions and procedures called ser-
vices. If the dagent is programmed with the traditional object paradigm
then the inheritance mechanism can be used to provide polymorphism.

The behavior of a dagent is governed by a collection of actions combined
with a set of constraints on when those actions may occur including internal
actions. The actions that take place are restricted by the environment.

A dagent uses resources. Some of these resources are consumed and never
to be used again while other resources are only temporarily allocated to
the dagent and then recycled. The resources are provided by the assumed
underlying environment.

A dagent may have state with events that change state. Dagents may have
an error state caused by an internal fault. A dagent can be created, killed,
and replicated. A dagent, though ready to execute, may be temporarily
paused.

31

An example of a dagent could be a math process providing the simple
arithmetic services including plus, minus, multiplication, and division.

3.13.1 Connection

The connection block for a dagent is the same as the connection block for a
conversation.

32

3.13.2 Obeys

See Table 13 on page 33.

obeys_block ::=
“obey conversation”

conversation_identifier

Ltas77

dagent_identifier

“.”
’

Table 13: Obeys Conversation Block

The dagent inherits much information from the conversation. This is
required by the obeys block.

33

3.13.3 Contract

The contract is the same as in the conversation.
The dagent’s contract must be compatible with the conversation contract.

34

3.13.4 Resource
See Table 14 on page 35.

resource_block i1 =
“resource”
“shared” | “private”
“disk” | CCRAM” | “CPU?? | “IOCkS” | (Cbinary77 | “Vm”
C((??

“min” “=" <integer>
“max” “=" <integer>
“avg” “=" <integer>
“rms” “=" <integer>

44)77
“.”
’

[resource_block]

Table 14: Resource Block

A dagent has associated resources that it may consume or use temporally
and then recycle. Some resources may be shared with other dagents. Re-
sources might include CPU, RAM, disk space, locks, and other peripheral
devices like cdrom, tape drives, and printers. Dagents may share address
space and name space with other dagents.

35

3.13.5 Service
See Table 15 on page 36.

service_block =
function_term [service_block |

Table 15: Service Block

The service block list the number of services offered by the dagents. This
list must be compatible with the conversations it joins. This is enforced at
run time by the conversation manager.

The function list is the same as in the conversation.

36

3.14 The Environment

The environment is the part of the system that is assumed to be present. The
environment contract defines the temporal constraints (deadlines), through-
put requirements, availability, reliability, maintainability, security, safety, lo-

cation, and quality of service.

37

Figure 1: DADL Development

The customer programs a distributed architecture in the DADL language.
The DADL compiler emits stub code for each dagent and for the conversation.

The dagent stub code contains the necessary components to communicate
with the conversation. In addition, the dagent stub code includes function
templates. These templates only include the call interface as defined by
the services in the architecture. These templates are then completed by the
customer programmer to provide the runtime content. The remaining dagent
code is provided by the writer of the dagent. To aid the dagent programmer
is a run time dagent library.

The conversation code contains the necessary components to materialize

38

Figure 2: DADL Network Environment

The environment must contain two major services: namely the conversa-
tion manager and the dagent manager.

The conversation manager creates, destroys, and initializes conversations
as well as managing the dagents entering and leaving the conversation. Spe-
cial properties of the conversation such as persistence and reliability are en-
forced.

The dagent manager creates, destroys, initializes, migrates, pauses, and
restarts dagents. Special properties of the dagents such as replication are
enforced.

39

The DADL support environment is assumed to be robust. This includes
services for authentication, authorization, data privacy, data integrity, mar-
shaling, persistence management, replication, and service groups. Transac-
tion processing, distributed lock management, databases, and GUI systems
are assumed present.

40

5 Theory

5.1 The Theorem
A DADL can be defined and used to describe a family of different distribu-

tive architectures. A program written in DADL can be compiled into differ-
ent base-level materializations of the architecture. Fach materialization has
different performance and resource characteristics leading to an optimizing
choice.

5.2 The Proof Outline

1. Define DADL and the family of distributed architectures and then show
that the distributed architectures can be expressed by a DADL pro-
gram.

2. Define base-level target materialization including their performance
and resource characteristics.

3. Compile and optimize the DADL program into the base-level target
materializations.

41

6 Examples

6.1 Simple Client Server

This is an example of a simple client server application where the call state-
ment is replaced with a simple communication language.

The service provided by the server is “plus”, in which two parameters are
added together generating the resultant.

The architecture reflects the architecture assumed in many traditional
programming langauges.

6.1.1 Interface

conversation simple_plus {
connection cl (1-to-1, ordered FIFO, guarenteed delivery) ;
connection ¢2 (1-to-1, ordered FIFO, guarenteed delivery) ;

dagent d1 on cl ;
dagent d2 on cl ;

alphabet (BYTE) ;

term t1 (int n) ;
term t2 (int m) ;
term t3 (int plus (int n , int m) highly available) ;

sentence sl (t1, t2) from ¢l to c2 ;
sentence s2 (t3) from c2 to cl ;

behavior (sl ; s2) ;
with options (volatile, data open, unmarshaled, unauthenticated, unauthorized);

42

6.1.2 Dagent Client

dagent main {
connection cl (1-to-1, ordered FIFO, guaranteed delivery) ;
obeys conversation simple_plus as d1 ;
resource shared ram (max = 64,000) ;

b

6.1.3 Dagent Server

dagent plus {
connection ¢2 (1-to-1, ordered FIFO, guarenteed delivery) ;
obeys conversation simple_plus as d2 ;
resource shared ram (max = 64,000) ;
int plus (int n , int m) highly available ;

43

6.2 Three Tier Client Server

This is an example of three tier client server application. The presentation
client calls a middle layer which passes the information onto a third, server
layer for computation. There are three dagents and two conversations. The
middle dagent participates in two conversations.

6.2.1 Interface, Presentation to Application

conversation presentation_application {
connection cl (1-to-1, ordered FIFO, quaranteed delivery) ;
connection ¢2 (1-to-1, ordered FIFO, quaranteed delivery) ;

dagent d1 on cl ;
dagent d2 on ¢2 ;

alphabet (BYTE) ;
term t1 (int n) ;
term t2 (int m) ;

term t3 (int results) ;

sentence sl (t1, t2) from ¢l to c2 ;
sentence s2 (t3) from c2 to cl ;

behavior (sl ; s2) ;

with options (volatile, data open, marshaled, unauthenicated, unauthorized);

44

6.2.2 Interface, Application to Server

conversation application_server {
connection cl (1-to-1, ordered FIFO, quaranteed delivery) ;
connection ¢2 (1-to-M, ordered FIFO, quaranteed delivery) ;

dagent d1 on cl ;
dagent d2 on ¢2 ;

alphabet (BYTE) ;

term t1 (int n) ;
term t2 (int m) ;
term t3 (int plus (int n , int m) highly available) ;

sentence sl (t1, t2) from ¢l to c2 ;
sentence s2 (t3) from c2 to cl ;

behavior (sl ; s2) ;
contract performance (min=1, max=2, avg=1.1, rms=.1) ;
contract latency (min=10,max=20,avg=15,rms=3) ;

contract error (min=0,max=0,avg=0,rms=0) ;
with options (volatile, data open, marshaled, unauthenicated, unauthorized);

45

6.2.3 Dagent Presentation

dagent main {
connection cl ;
obeys conversation presentation_application as d1 ;
contract performance (min=1,max=2,avg=1.1,rms=.1) ;
contract latency (min=10,max=20,avg=15,rms=3) ;
contract error (min=0,max=0,avg=0,rms=0) ;
resource (ram=64000, disk=0, vim=120000,
binary=main.exe) ;

b

6.2.4 Dagent Application

dagent application {
connection cl ;
connection c¢2 ;
obeys conversation presentation_application as d2;
obeys conversation application_server as d1;
contract performance (min=1,max=2,avg=1.1,rms=.1) ;
contract latency (min=10,max=20,avg=15,rms=3) ;
contract error (min=0,max=0,avg=0,rms=0) ;
resource (ram=64000, disk=0, vim=120000,

binary=application.exe) ;

b

46

6.2.5 Dagent Server

dagent plus {
connection cl ;
obeys conversation application_server as d2 ;
contract performance (min=1,max=2,avg=1.1,rms=.1) ;
contract latency (min=10,max=20,avg=15,rms=3) ;
contract error (min=0,max=0,avg=0,rms=0) ;
resource (ram=64000, disk=0, vm=120000, binary=plus.exe) ;
int plus (int n , int m) highly available ;

47

6.3 Simple email

This is the heart of simple email. Most of the work is in the communication
layers the dagents are quite simple.

6.3.1 Email Communication

conversation email {
connection cl (1-to-1, ordered FIFO, quaranteed delivery) ;
connection ¢2 (1-to-1, ordered FIFO, quaranteed delivery) ;

dagent d1 on cl ;
dagent d2 on ¢2 ;

alphabet (ASCII) ;

term t1 (const “MAIL FROM: ”) ;

term t2 (string from_user) ;

term t3 (const “250 OK”) ;

term t4 (const “RCPT TO: 7") ;

term t5 (string to_user) ;

term t6 (const “DATA”) ;

term t7 (blob the_message) ;

term t8 (const “<CRLF>.<CRLF>") ;

t1, t2) from cl to ¢2 ;
t3) from c2 to cl ;
t4, t5) from cl to ¢2 ;
t6) from cl to ¢2 ;
t7) from cl to ¢2 ;
t8) from cl to ¢2 ;

sentence sl
sentence s2
sentence s3
sentence s4
sentence sh
sentence s6

e e, =,

behavior (sl ;s2 ;83 ;2 ;4 ;8h+ ;56);
contract performance (min=1,max=2,avg=1.1,rms=.1) ;

contract latency (min=10,max=20,avg=15,rms=3) ;
contract error (min=0,max=0,avg=0,rms=0) ;

48

with options (volatile, data open, marshaled, unauthenicated, unauthorized);

49

6.3.2 Email Client

dagent client {
connection cl (1-to-1, ordered FIFO, quaranteed delivery) ;
obeys conversation email as d1 ;
contract performance (min=1,max=2,avg=1.1,rms=.1) ;
contract latency (min=10,max=20,avg=15,rms=3) ;
contract error (min=0,max=0,avg=0,rms=0) ;
resource (ram=64000, disk=0, vim=120000,

binary=elm.exe) ;

b

6.3.3 Email Server

dagent server {
connection cl (1-to-1, ordered FIFO, quaranteed delivery) ;
obeys conversation email as d2 ;
contract performance (min=1,max=2,avg=1.1,rms=.1) ;
contract latency (min=10,max=20,avg=15,rms=3) ;
contract error (min=0,max=0,avg=0,rms=0) ;
resource (ram=64000, disk=0, vim=120000,
binary=pop.exe) ;

b

50

7 Distributed System Foundations

Distributed systems exhibit fundamental inherent characteristics that dis-
tinguishes them from more traditional single-computer, single-user, single-
process systems.

The elements of a distributed system become less dependent on a particu-
lar programming language, the hardware instruction set, and the underlying
operating system but more dependent on the style of communications, inter-
faces, and the behavior exhibited during those interactions.

7.1 Distribution

The most obvious characteristic of a distributed system is distribution. A
distributed system consists of many computers, distributed over many loca-
tion, with remote communications. There are many different kinds of remote
communications in a distributed system ranging from remote access of ter-
minal devices to dynamically allocated IPs of mobile computer systems.

There may be distributed data access from one computer to another. Data
may be vertically or horizontally distributed across many computers and disk
farms. Peripheral devices may be network mounted allowing access from
many locations. The application may be divided into many functional layers,
or tiers, with each tier potentially on different computer systems thus building
the popular client-server application architecture. Parallel algorithms may
be distributed across many systems.

Distribution is a general terminology which includes the case of a occa-
sionally connected computer or nomadic computing where systems frequently
are disconnecting and rejoining the environment. New partitions are being
formed on a regular bases affecting data, locks, networks, and applications.
Dynamic changes in the routing tables are needed as mobile IPs become
available to the general user. A disconnected customer must still be able to
work, though in a limited fashion, using a self contained environment pro-
vided on his personal machine. When the disconnected system rejoins the
distributed system environment it will have to be brought up to consistent
status with the rest of the environment. This might include data, messages,
locks, and application updates. Asynchronous and persistent messaging as
well as data caches become more important in supporting the partitioning
demanded by nomadic computing.

51

7.2 Concurrent

Many, if not all, components in a distributed system work independently, in
parallel, with little interaction. For the most part, many of the systems in
a distributed system work autonomously only communicating with a small
collection of other components at interaction points.

An application written for a distributed computing environment may have
many concurrent threads of operations.

Computers in a highly parallel machine are similar but not the same
as computers in a distributed system. The computers in a highly parallel
machine are much closer coordinated than the computers in a distributed
system. The computers in a parallel machine share the same clock and
memory structure, are typically managed by the same operating system,
and typically, but not in general, share the same algorithm. Conversely
computers in a distributed system don’t share the same clock, don’t usually
have a common memory structure, and defiantly, aren’t running the same
operating system nor algorithm.

In some aspects highly parallel machines are similar to distributed sys-
tems. However, a highly parallel machine is not a canonical example of a
distributed system.

7.3 No Global State

In a distributed system there is an absence of a global state. The state is
divided into many smaller units shared by a small number of computers. This
distinguishes distributed computing from databases in which a consistent
global state is maintained, or at least, in theory a consistent global state
could be reached with the aid of a checkpoint and a transaction log.

In a non-distributed system, global state is typically well defined and
maintained. Finite state machines are the heart of many non-distributed
systems. Finite state machine definitely have a consistent, well-defined state.

State still plays a role in distributed systems. A small partition in the
distributed system unite to define a local state. This state is maintained by
this partition for a short period of time and disappears when the partition
dissolves. Individual components join new partitions, share a very limited
state, then dissolve into other partitions.

52

7.4 No Global Clock

In a distributed system there are as many clocks as there are systems. The
clocks are coordinated to keep them somewhat consistent but no one clock
has the exact time. Even if the clocks were some what in sync, the individual
clocks on each component may run at a different rate or granularity leading
to them being out of sync only after one local clock cycle.

Time is only known within a given precision. At frequent intervals, a
clock may synchronize with a more trusted clock. However, the clocks are not
precisely the same because of time lapses due to transmission and execution.

Consider a group of people going to a meeting. Each person has a watch.
Each watch has a similar, but different time. Even with the error in time,
the group is able to meet and conduct business. This is how distributed time
works.

This is in contrast to a clock on a single system. Here there is only one
clock and it provides a unified time for all sub components on this individual
system.

7.5 Partial Failures

At any one time, many elements of the distributed system may have failed. If
the distributed system is designed correctly, these failures have little visibility
to the customer of the system. This property is called high availability and
is usually realized by replication of a service over multiple components and
by duplication of information.

Many distributed network protocols, like UDP, have as an underlying as-
sumption that there are failures and that packets are lost. By design, the
protocol automatically recovers from many classes of failures. This recovery
happens nearly transparent to the customer. From the customer’s prospec-
tive functionality is not lost though response time might be slower.

If the distributed system gradually loses capabilities as more and more
of the elements in the system fail, it is said to exhibit graceful degradation.
Just because some of the services are not available does not mean that useful
work can not be accomplished. A journal or log file might be created to
batch the changes when eventually the service becomes available.

Eventually, a point is reached where so many elements have failed that a
distributed system will dissolve to individual partitions. The re-grouping of
the partitions is usually accomplished with the aid of voting algorithms after

33

quorums have been established.

Many distributed systems application can tolerate one point failure of
their underlying services. This happens when any one point in the system
can fail, yet the application, as a whole, continues to correctly function. This
is called one-point-failure safe. Of course, in a similar fashion, an application
can be two-point-failure safe. In general, as the number of tolerated failures
increase in an application so does the complexity and cost of the system to
support such an application.

An application that never fails during extended periods of time due to
hardware errors is fault tolerant. Fault tolerant hardware usually includes
triple redundancy for every component with a vote and a compare unit to
establish results and to detect potential faults. Each unit has three identical
copies each running exactly the same software. The output results are given
to a compare unit. If all three units have the same output, the results are
considered correct. If two of the three units agree but the third differs,
the third unit is considered at fault and the results of the common two are
presented as the answer.

7.6 Asynchronous Communication

In a distributed system, communication between elements is inherently asyn-
chronous. There is no global clock nor consistent clock rate. Fach computer
processes independently of others. Some computers in the system have fast
clock cycles while others have slower clock cycles. Even if time was precisely
the same on every element in the distributed system, each element would still
process the communication at different rates, thus making the commutation
asynchronous.

Operating systems have had asynchronous communication for decades.
Requests are queued and eventually results return. Asynchronous commu-
nications were necessary to manage peripheral devices with a vast spectrum
of clock rates. Distributed applications face similar problems. In a tradi-
tional computer language the underlying implicit architecture is a call-frame
stack. In contrast, the underlying architecture mechanism for asynchronous
communication is a queue. There is limited support architectures based on
asynchronous communication built from queues in traditional computer lan-
guages.

Communications are the dominant aspect of distributed systems. A large
part of the architecture description defines the interfaces and communications

54

of the disparate components of the distributed system.

7.7 Distributed Control

In a distributed system there is no central point of control. Rather, a decen-
tralized management paradigm is in place. Each unit, nearly independently,
decides to which extent they wish to participate in the distributed system.
Individual systems enter and leave the distributed system at will and decide,
autonomously, which components are useful.

The distributed system has no one control. Actions of individual systems
are governed by policy guidelines where compliance is optional. In general, a
guideline change closely reflect the actual behavior change of the distributed
system.

There is no one control point for the total distributed system but the
distributed system relies on the availability of core underlying infrastructure
to make all of this possible. For each core infrastructure service in the dis-
tributed system, in contrast, there is a well defined control point. From this
control point the core infrastructure services are managed. The collection
of these core infrastructure control points enable the existence of the dis-
tributed system and empower the remaining systems to exhibit autonomous
distributed control.

7.8 Heterogeneous Systems

The distributed system contains many different kinds of hardware and soft-
ware working together in cooperative fashion to solve problems.

There may be many different representations of data in the system. This
might include different representations for integers, byte streams, floating
point numbers, and character sets. Most of the data can be marshaled from
one system to another without losing significance. Attempts to provide a
universal canonical form of information is lagging.

There may be many different instructions sets. An application compiled
for one instruction set can not be easily run on a computer with another
instruction set unless an instruction set interpreter is provided. There is no
universal binary making process migration difficult. Recent developments in
the web and Java may provided a universal interpreted language on most
computers. Though a computer language is not an instruction set, this is a
good compromise.

35

Some components in the distributed system may have different capabili-
ties than other components. Among these might include faster clock cycles,
larger memory capacity, bigger disk farms, printers and other peripherals,
and different services. Seldom are any two computers exactly alike.

7.9 Autonomy

There are two distinct categories of autonomy. One category reflects lo-
cal system autonomy. The other category reflects the autonomy associated
with the core infrastructure distributed services that form the heart of a
distributed system.

Each local system, in a distributed system, is highly autonomous. They
may have entirely different policies and usage from the whole, can decide to
which extent they wish to share, and may join and depart, at will, from the
distributed system.

However, once a local system decides to enter the distributed system,
it is bound to a set of contracts governing behavior, communications, and
interfaces. By following the contracts, the local system can then use the
services provided or even provide services itself.

The systems that materialize the core infrastructure services have more
restrictions on their autonomy. They must have consistent, well-defined com-
munication protocols and follow all contracts. Even though they are managed
independently of the local systems, they are bound by a contract to provide
a certain level of expected service.

7.10 Evolution

Distributed systems follow an evolutionary development track. Seldom is a
distributed system built from scratch with entirely new components. Rather,
a construction, in situ, transforms the system from one configuration to an-
other and evolves the system in an incremental fashion.

This evolutionary process of change is one of the distinguishing features
of a distributed system. The more traditional approach is to completely
replace a non-distributed system with a completely new service. Because
of the massive amount of change associated with throwing out the old sys-
tem and replacing it with a new system this approach is sometimes called a
revolutionary approach.

56

Distributed systems use Evolution not REvolution.

There are two major ways in which evolution can happen in a distributed
system. The first way is to keep the interface and the contract constant and
replace a service with a different implementation of the service. The new
implementation may have better resource usage characteristics thus providing
a higher quality of service.

The second way is to keep the old interface and contract in place as well
as the old service. A new service, with a backwards compatible interface
and contract, is introduced. Over time, the older service is phased out and
replaced with the newer service. There may be several different versions of a
service active at any one time. Sometimes, older services are never removed.

The distributed system is malleable to change. Its very nature is constant
change.

Change is the only constant.

A distributed system has many disparate services. One service can come
and go, without interfering with another service. Even though two services
may share many common resources, for the most part, they are independent.
Of course, if one service relies on another service, then they are cooperative.
If the service’s partner is not available then the service will not be able to
complete its task.

7.11 Opaqueness

Many concepts are hidden from individual systems that make up the dis-
tributed system. An individual system might be relocated without customer
visibility. There may be many equivalent services. The data might be moved
without customer visibility. A service might cover for a failing service.

Complete opaqueness in practice is difficult but in theory, if two services
provide the same level of service and support the same contract, then they
can be substituted for each other and the customer should not be able to
tell.

Not all information should be hidden. If a customer really wants to know
which of the many systems is providing the service, that information should
be available. Likewise, a customer should be able to specify a particular
service from a collection of services.

57

In general, most users don’t care for this level of detail especially if equiv-
alent services can be offered. How often do you get to specify the routing
path of a packet? How often do you want to specify the path? It is only the
rare exception where this becomes an issue.

7.12 Openness

In this mixture of heterogeneous distributed systems, individual systems seem
to cooperate quite well. This is accomplished by the establishment of open
(a.k.a. public) protocols, conventions, and standards.

Openness refers to the ability to plug and play. You can, in theory,
have two equivalent services that follow the same interface contract, and
interchange one with the other.

Standards are wonderful because there are so many to choose
from.

Some standards are created by working groups to unify disparate solutions
to problems. Other standards are created, de facto, by companies with the
overwhelming market share. In either case, one interface is presented for
other application programming interactions.

7.13 Interdependent

Many services across the distributed system may be interdependent. In the
sprite of reuse, a service readily will ask another service for help. One service
communicates with another service to jointly solve a problem. Past answers
may be cached and reused. Default answers may be available on the local
host.

Meta data, data, and function sharing are prevail. Services in the dis-
tributed system really act like a collection of “virtual” services as they share
more and directly implement less. Component assembly is the paradigm for
building services.

Interdependence is in conflict with change. The more a service depends on
other services the more potential conflicts may arise when a change occurs.
Interfaces and contracts in a distributed system must be very static and
stable to accommodate both change and interdependence.

It is very simple to extend a service, but much more difficult to shrink
or remove a service. In fact, old services are still provided by having the

38

old service evoke a newer service. Many services include undefined extension
parameters to accommodate future changes.

Alternatively, two services communicating over an interface could dy-
namically negotiate the protocol and contract. This implies that the meta
interface needs to be static and stable allowing for a more dynamic definition
of the service interface.

Telnet is an example of a protocol with interface negotiation while FTP
is an example of a protocol without interface negotiation. As a result, you
see many versions of FTP running on a system while only one version of

TELNET is present.

7.14 Federation

The management of the distributed system resources is federated across many
autonomous sites. This includes name spaces where different portions are
managed by independent parties yet combine to form one unified name space.

Some services may require a consistent name space. There can not be
dangling references. A database is an example. Some service, such as the
web, exist quite well in a name space that is incomplete and inconsistent.
Both kinds of name spaces can coexist. In fact, portions of the name space
can be consistent while other sections may be untrustworthy.

7.15 Security

Security becomes even more important in a distributed system. Authen-
tication, authorization, digital signatures, non-repudiation, encryption, and
privacy become major issues as we extend the distributed system. The four
basic goals of a security system are to protect information, to detect an in-
trusion, to confine the security breach, and to repair the damage and return
the system to a known stable and secure state.

This proposal does not concentrate on security, but will assume a robust
underlying infrastructure that provides these services.

59

Figure 3: Basic Client/Server

In a client/server architecture the service is divided into at least two
pieces. One piece, running on a local user machine, is called the client. The
other, running on potentially another machine, is called the server. Tradi-
tionally the server provides the computational power or a database engine.
The client concentrates on the presentation layer or GUI.

60

Data is sent over a network from the client to the server. The client and
server may be involved in a protocol where commands and meta information
are sent along with the data. Since the client and server may be of different
hardware architectures marshaling the data is important. Some environments
provide secure, encrypted channels and then send all data over these channels
while other environments encrypt the message and send the data over the
non encrypted channel. Some data may be digitally signed with a MD5
checksum.

The logic in the application may reside at either client or server but
traditionally the application logic resides at the client, making the client
“fat”.

The client server architecture allows for the data to be at one server
location while the access of the data to be distributed on many clients. In
addition, a larger computer can be used at the server location to meet system
response requirements. Many different clients that follow the conventions of
the server can reuse this architecture.

Typical client/server services use messaging or remote procedure calls for
underlying communication paradigms.

8.1.1 Messaging

Messaging is associated with connectionless, one-way communication be-
tween two services. A return message is optional. Two way communication
can be supported by using two messages. Messaging is asynchronous by na-
ture. Some systems support persistent messages by placing the messages on
a persistent storage queue.

8.1.2 Remote Procedure Call(PRC)

RPC is associated with a connection where two way communication is sup-
ported. RPC is synchronous by nature and is an example of request and reply
paradigm. RPC is popular with application programmers familiar with the
traditional function call paradigm.

61

Figure 4: Three Tiered Client/Server

Sometimes an application may be tiered in at least three distinct pieces.
One piece is the presentation or graphical user interface(GUI). Another piece
is the logic, functions, procedures, and objects that materialize this partic-
ular application. Well another piece is the data management most often
materialized by a database.

The three tiered architecture allows for one central server location for all
the business logic and one central server location for all of the data leading
to reuse, consistency, and uniformity of applications in this environment.

The presentation layer supports the GUI. Sometimes this is called a GUI-
lite application. There may be many different kinds of GUI.

62

The middle section materializes the application. Though this is called the
application logic it is really much larger then just logic formulas and includes
all function and procedures that make the application an application for a
particular domain. Many of the elements in this area are tailored for the
application needs. Sometimes this layer is called the business rules or logic.

The last layer is the data. This is most often materialized by a database.
This layer does not have to be limited to a database. Alternatively, a large
computational server could act as a mathematical engine.

The three tiered layering is popular because it forces clean lines between
the three layers. The “thin” client can easily be moved to other architectures.
The application logic can be used by other applications in the system. The
database layer allows for plug and play of many different database vendors.

Each layer may have a special interface or use a more generic interface
protocol. An example of a GUI protocol is xterm or html. An example of a
database protocol is SQL/Net.

63

Figure 5: Network Positions

In the traditional three tiered layering of an application, the network is
at every layer. This does not have to be the case. We can place the network
at many different locations including the middle of a layer.

8.3.1 Distributed Presentation

The presentation layer can be split. The server that does the work for the
presentation layer is on one side of the network while the screen is on the

64

other side. A traditional terminal is an example of this layering as well as
screen scrapers.

8.3.2 Remote Presentation

The X windowing system is an example of this strategy. The presentation
layer talks to the X-Protocol. The location of the screen is independent of the
location of the rest of the application. The X-Protocol still needs a computer
to materialize the GUI on the screen unlike the previous layering.

8.3.3 Distributed Application Logic

Some of the logic that makes the application resides on the client and some
of the logic resides on the server. This is popular with stored procedures in
the database technology. The logic that is close to the data is placed in the
stored procedures residing near the data. The logic that is more function
driven is evoked in the client.

8.3.4 Remote Data

This is sometimes called “fat client”. The client has both the presentation
and application logic. Only the database component is access over the net-
work. Most of distributed applications written in the early 1990s are based
on this technology.

8.3.5 Distributed Data

Here the database is distributed over the network in both vertical and hori-
zontal partitions. The application needs not know where the data is located.

65

Figure 6: Publish/Subscribe

66

Figure 7: Mediator

67

8.6 Electronic Mail(email)

One of the most well known distributed applications is email. This appli-
cation has been around for a couple of decades and materializes millions of

ema” maocceamac nor hanr warld wide Qoo Ficdiire R Aan nacde AR

SMTP based Electronic Email

email from gio@db to ron@cs

A
\

email server deamon

email server deamon T
s /spool/ron db /spool/queue

email client email client

Figure 8: SMTP based email

The email application is the pinnacle of distributed applications. Fach
computer accomplishes one small step in the process in an autonomous fash-
ion. Individual components may fail while the system remains available to
most of the users. The architecture is asynchronous, limited-shared-state,
highly available, elaboration tolerance, message passing, with a dynamic pro-
tocol.

The big picture of how this works is simple. Each machine has an appli-
cation server program that understands the email protocol of SMTP. When

68

two machines want to exchange email, first they synchronize to a known
initial shared state, then the email message header control information is
exchanged. If the second machine agrees to the transfer, the contents of the
email is then delivered. The receiving machine places the email in a special
spool directory for later reading by the end user. Alternatively, the receiving
machine may reject the email message or provide forwarding information.

The next piece of the big picture are the email clients. When the end user
wants to send email, a email client hands the email to the machine’s email
server. The server exchanges the email with another machine’s email server.
The recipient machine places the email message in the spool file belonging
to the recipient. The email is ready for the final delivery stage. When the
recipient wants to read email, the email client reads the spool file and displays
the message.

If a server is not available the message is queued for later delivery. If
an error occurs during transmission, the message is resent. Messages sent
to unknown recipients are bounced back to the sender. An email address
may include routing information, in which case, the receiver machine accepts
the message, removes it’s name from the routing list, and then processes the
message to the next machine.

Email has survived many major upgrades. MIME extends the simple text
message to include other data types. This is accomplished by providing type
indicators on the data. When a particular data type appears in a message,
and if your email client is MIME smart, the application that understands
that data type is evoked and the data is displayed.

The POP protocol groups messages into message boxes. A pop smart
email client will acquire all messages in the message box at the same time.
The IMAP protocol groups messages into an indexed database. A IMAP
smart client can query the index to find the appropriate message.

The email application is not perfect. There is no authentication making
the email system autonomous and easily spoofed. There is no data privacy
of the message with many opportunities for an outside third party to dis-
cover the contents of a message. There is no data integrity of the message
allowing for the substitution the message, in transit, without knowledge of
the recipient. There is no digital signature on the message that guarantees
that the sender really sent this message. There are no guarantees on delivery
or performance and no way of specifying different levels of service. In par-
ticular, there is no way to verify that a message was delivered and read by
the recipient. The recipient could repudiate the receipt of the message.

69

Figure 9: HTTP based Web

The big picture of the Web is similar to email. The system consists of Web
servers and Web clients. The server is responsible for materializing pages of
html encoded data. The client is responsible for displaying this information.
The protocol spoken is called HT'TP. The data is handled in a similar fashion
as in MIME email.

There are two significant developments that empower the Web. One is the
federated name space and the other is stateless computation. The federated
name space defines a name for every object on the Web. The Web client
can resolve the name and materialize the object. The space is federated

70

allowing for anyone to splice into the name space at virtually any junction.
The stateless computation gives incredible flexibility for machines entering
and leaving the Web.

The Web is not perfect. As in email, the Web is unauthenticated, non-
encrypted, does not have digital signatures, is easily spoofed, with no guaran-
tee of service. The Web has become simultaneously the world’s largest source
of information and the world’s largest source of miss information. There is
indication of quality of content or availability of servers. In addition, the
name space quickly degrades into stale and out-of-date entries.

71

9 Related Work

9.1 Programs
9.1.1 DSSA
The DARPA DSSA (Domain Specific Software Architecture) [MG92] pro-

gram’s goals are to develop conventionalized software architectures in var-
ious domains, to advance software architecture specification technology, to
analyze architectural influences on system performance, and to build tools
for software system composition through reuse.

9.1.2 STARS
The DARPA STARS [STA93](Software Technology for Adaptable, Reliable

Systems) goals are to increase software productivity, reliability, and quality
by integrating support for modern software development process and reuse
concepts within software engineering environment technology. STARS uses
a technology approach called mega programming paradigm.

9.1.3 CARDS

The Air Force CARDS effort is dedicated to furthering systematic software
reuse. This effort has built a library for requirements, architecture and com-
ponent information as defined in the PRISM Generic Command Center Ar-
chitecture.

9.1.4 PRISM
The Air Force PRISM program developed an architecture to maximize the
reuse of existing COTS and GOTS components in command centers.

9.1.5 DSRS

The DSRS (Defense Software Repository System) contains assets with reuse
potential as identified thorough domain analysis. Assets are software devel-
opment products such as requirements, design specifications, architectures,
design diagrams, source code, documentation, test suites, and repository
support items.

72

9.1.6 SATI

The SEI’s SATT (Software Architecture Technology Initiative) is to establish
a software architecture knowledge repository for the DSSA.

9.1.7 Prototech

The DARPA Prototech program’s goal is to enable use of incremental devel-
opment and prototypeing as a means to increase effectiveness of systems and
systematically reduce risk over the software life cycle, focusing particularly
on requirements engineering and systems design.

9.1.8 DARPA Software Foundations

The DARPA Software Engineering Foundations Program focuses on technol-
ogy for developing and supporting high assurance software systems and on
technology related to languages used in systems integration. This program
includes trusted systems, software understanding, and composition methods.

9.2 ADLs
9.2.1 DICAM

DICAM (Distributed Intelligent Control and Management) ACL was devel-
oped by [HRCP94] for the DSSA program. DICAM is a reference architec-
ture for control. Applications are built as hierarchically organized controllers,
each with district domain and meta-control components, with a unifying store
for world models and shared information. DICAM is not inherently domain
specific.

9.2.2 GenVoca LE

GenVoca LE language [BCGS93] is a domain independent model for defining
scalable families of hierarchical systems as compositions of reusable compo-
nents by meta models of large scale system construction.

9.2.3 Capture

(aka KAPTUR - Knowledge Acquisition for Preservation of Trade-offs and
Underlying Rationales) Capture [Bai92] embodies a domain analysis ap-

73

proach that combines elements of object-oriented modeling, feature modeling,
and case based reasoning.

9.2.4 LILEANNE
LILEANNE [BSTS93] (library Interconnect language extended with anno-

tated Ada) is intended to support abstraction, composition, and reuse of
Ada software.

9.2.5 MetaH

MetaH [Ves94a] intended to support analysis, verification, and production of
real-time fault tolerant secure multi processing embedded software.

9.2.6 ControlH

ControlH [Ves94b] intended to be used to describe guidance, navigation, and
control algorithms in a concise and rigorous manner. ConrolH is tailored for
this domain.

9.2.7 Rapide

Rapide [LV96] intended to support the specification, analysis, and verification
of system architectures composed of event processing components.

9.2.8 UniCon

UniCon (a language for Universal Connections) [SDIKT94] emphasizes the
structural aspects of software architecture and is based on the complementary
constructs of component and connectors.

9.3 System Environments

9.3.1 UNAS

UNAS (Universal Network Architecture Services) A commercial product by
TRW and Rational consisting of a suite of predefined, reusable Ada building
blocks, services, and instrumentation that represent the high level primitives
for the architecture of a distributed and heterogeneous software system. Pro-
vides core executive functions for distributed systems such as initialization,

74

system mode control, reconfirmation, fault detection, health and status mon-
itoring, and inter process communication. High Portability is supported.

9.3.2 DCE

The Distributed Computing Environment (DCE) gives us an interface def-
inition language (IDL), Security, A means of communication using Remote
Procedures Calls (RPC), distribution, replication, and many other trans-
parencies.

9.3.3 ODP
See [ODP95d], [ODP95a], [ODPI5b], and [ODP95¢].

9.3.4 ANSA

ANSA introduces the concepts of binding, trading, and process groups.

9.3.5 CORBA

CORBA introduces the concept of a trader/broker architecture with an IDL
and, of course, support for objects.

9.3.6 COM
COM is MicroSoft’s version of CORBA.

75

A Glossary

Abstraction: A description of a family of systems that is independent of
the details of any one particular system. [Rei92]

Abstract Syntax: A description of a data structure that is independent
of machine-oriented structures and encodings. [JL91]

Abstract Syntax Notation One (ASN.1): The language used by the
OSI protocols for describing abstract syntax. This language is also used
to encode SNMP packets. ASN.1 is defined in ISO documents 8824.2
and 8825.2. [MP93]

Access Control List (ACL): Most network security systems operate by
allowing selective use of services. An Access Control List is the usual
means by which access to, and denial of, services is controlled. It is
simply a list of the services available, each with a list of the hosts
permitted to use the service. [MP93]

Advanced Research Projects Agency Network (ARPANET): A pi-
oneering long haul network funded by ARPA (now DARPA). It served
as the basis for early networking research, as well as a central backbone
during the development of the Internet. The ARPANET consisted of

individual packet switching computers interconnected by leased lines.

Agent: In the client-server model, the part of the system that performs
information preparation and exchange on behalf of a client or server
application. [JLI1]

American National Standards Institute (ANSI): This organization is
responsible for approving U.S. standards in many areas, including com-
puters and communications. Standards approved by this organization

are often called ANSI standards. ANSI is a member of 1SO. [MP93]

American Standard Code for Information Interchange (ASCII): A
standard character-to-number encoding widely used in the computer

industry. [MP93]

Application: A program that performs a function directly for a user.

[MP93]

76

Application Program Interface (API): A set of calling conventions
which define how a service is invoked through a software package.

[JLI1]
Architecture: The components of a system and their interface behavior.

Atomicity: An action either happens or it does not in total, there is no
partial completion.

Authentication: The verification of the identity of a person or process.

[MP93]

Bandwidth: The amount of data that can be sent through a given com-
munications circuit. [MP93]

Behavior: The responses of the components in a system to each other and
other stimulation from the environment.

Big-endian: A format for storage or transmission of binary data in which
the most significant bit (or byte) comes first. The term comes from
”Gulliver’s Travels” by Jonathan Swift. The Lilliputians, being very
small, had correspondingly small political problems. The Big-Endian
and Little-Endian parties debated over whether soft-boiled eggs should
be opened at the big end or the little end. [JL91]

Binding: The mapping of an abstract name to more detailed representa-
tion. The IP address of a computer given the name of the computer is
an example of a binding. The port of an application is another example.

Channel: A communication path that guarantees delivery and correct or-
der of data.

Checkpoint: A particular point in a computation where state is written to
stable storage. At some later time, the computation may be initialized
to this saved state.

Class: The meta structure of an object defining the inheritance of methods
and data structures.

Client: A computer system or process that requests a service of another
computer system or process. A workstation requesting the contents of
a file from a file server is a client of the file server. [MP93]

77

Communication: An exchange of information.

Compliance: An implementation is in compliance with a specification
when all conditions and expectations hold.

Composition: A technique used to combine smaller components into large
components to solve more complex problems.

Connection-oriented: The data communication method in which com-
munication proceeds through three well-defined phases: connection es-
tablishment, data transfer, connection release. TCP is a connection-
oriented protocol. [MP93]

Connectionless: The data communication method in which communi-
cation occurs between hosts with no previous setup. Packets between
two hosts may take different routes, as each is independent of the other.
UDP is a connectionless protocol. [MP93]

Contract: An agreement between two components in a system determining
their behavior.

Data: Bases level measurement of uninterrupted information. Example
could include integers, floating point numbers, and dates. Data is con-
sumed by analysis techniques which generate information.

Decomposition: A technique used in modeling where more complex sys-
tems are separated into smaller less complex systems. This process
continues until a system is reached where a know solution exists.

Distributed Computing Environment (DCE): An architecture of stan-
dard programming interfaces, conventions, and server functionalities
(e.g., naming, distributed file system, remote procedure call) for dis-
tributing applications transparently across networks of heterogeneous
computers. Promoted and controlled by the Open Software Foundation

(OSF), a consortium led by Digital, IBM and Hewlett Packard. [JL91]

Domain Name System (DNS): The DNS is a general purpose dis-
tributed, replicated, data query service. The principal use is the lookup
of host IP addresses based on host names. The style of host names now
used in the Internet is called ”domain name”, because they are the style
of names used to look up anything in the DNS. [MP93]

78

Encapsulation: The technique used by layered protocols in which a layer
adds header information to the protocol data from the layer above.

[JL91]

Encryption: Encryption is the manipulation of data in order to prevent
any but the intended recipient from reading that data. There are many
types of data encryption, and they are the basis of security. [MP93]

Environment: The underlying system assumptions, resources, contracts,
and behaviors as viewed by a component.

Error: A state in computation which leads to unexpected conditions. This
is also called a failure or a fault.

Extended Binary Coded Decimal Interchange Code (EBCDIC): A
standard character-to-number encoding used primarily by IBM com-
puter systems. [MP93]

Federation: An organizational technique of a system where many decisions
are decentralized and distributed, yet individual members benefit from
each others contributions.

Information: Low content data is analyzed generating higher content in-
formation.

Interface: The layer between two components in a system.
Invariant: A quantity that does not change during a computation.

International Organization for Standardization (ISO): A voluntary,
non-treaty organization founded in 1946 which is responsible for cre-
ating international standards in many areas, including computers and
communications. Its members are the national standards organizations

of the 89 member countries, including ANSI for the U.S. [MP93]

Kerberos: Kerberos is the security system of MIT’s Project Athena. It is
based on symmetric key cryptography. See also: encryption. [MP93]

Little-endian: A format for storage or transmission of binary data in which
the least significant byte (bit) comes first. See also: big-endian. [JL.91]

79

Migration: The moving of one process in a system from one physical
location to another.

Name: An identifier, most often unique, to a component in a system.

Name Resolution: The process of using the name to obtain more infor-
mation.

Name Space: A collection of unique names.
Notification: Awareness of a state change regardless of location.

Object: A component of a system that logically contains both data and
methods.

Permission: In security terms, this is the granting of authorization.

Persistence: An component that survives for a long period of time usually
associated with data stored on a file system.

Policy: A high-level guideline governing behavior.

Port: A port is a transport layer de-multiplexing value. With Each appli-
cation is a unique port number. Network packets are first routed to
the computer using the [P and then routed to the application using the
port number. [MP93]

Prohibition: An action that is not permitted to happen.

Protocol: A formal description of message formats and the rules two com-
puters must follow to exchange those messages. Protocols can describe
low-level details of machine-to-machine interfaces (e.g., the order in
which bits and bytes are sent across a wire) or high-level exchanges be-
tween allocation programs (e.g., the way in which two programs transfer

a file across the Internet). [MP93]

Quality of Service (QoS): A collection of measurements indicating how
well a system is behaving. These might include response time, band-
width, latency, error rates, recovery time, down time, round-trip-time,
and many more.

80

Refinement: An analysis process which takes one level of a design into a
more detailed level.

Remote Procedure Call (RPC): An easy and popular paradigm for im-
plementing the client-server model of distributed computing. In gen-
eral, a request is sent to a remote system to execute a designated pro-
cedure, using arguments supplied, and the result returned to the caller.
There are many variations and subtleties in various implementations,
resulting in a variety of different RPC protocols. [JLI1]

Request For Comments (RFC): The document series, begun in 1969,
which describes the Internet suite of protocols and related experiments.
Not all (in fact very few) RFCs describe Internet standards, but all In-
ternet standards are written up as RFCs. The RFC series of documents
is unusual in that the proposed protocols are forwarded by the Internet
research and development community, acting on their own behalf, as
opposed to the formally reviewed and standardized protocols that are

promoted by organizations such as CCITT and ANSI. [MP93]

Security Authority: One component of a system that provides the ser-
vices of authentication, authorization, integrity, confidentiality, and
non-repudiation. This is accomplished using audit trails, encryption,
and private and public keys. The four basic behaviors of a security
system is to protect, detect, confine, and to mitigate.

Server: The component in a distributed system that provides services.

Signal: A state change that is handled out-of-bounds usually using the
mechanism of an interrupt.

State: The items that define a component at a particular time.

Stream: A type of transport service that allows its client to send data in a
continuous stream. The transport service will guarantee that all data
will be delivered to the other end in the same order as sent and without

duplicates. [MP93]
System: The sum total of all the components, their interfaces and behavior.

Thread: An execution path of computer instructions usually at the control
of an application sharing one address space.

81

Transparency: A component exhibits transparency to a change, if no
measurable difference exists before and after the change. Examples of
transparency might be different locations, different operating systems,
or different protocols.

Type: The class of which the object belongs.

82

B Acronym Key

ACID Atomicity Consistency Isolation Durability

ACK Acknowledgment
ADL Architecture Definition Language

AD Applications Development

API Applications Programming Interface
ARPA Advanced Research Projects Agency
BSD Berkeley Software Distribution

BU Business Unit

CICS Customer Information Control System

CNOS Corporate Network Operating System

COM Component Object Model

CORBA Common Object Request Broker Architecture
CPU Central Processing Unit

C/S Client/Server

CSA Consolidated Security Administration
DARPA Defense Advanced Research Projects Agency
DBMS Database Management System

DCE Distributed Computing Environment
DDCS Distributed Database Connectivity Services
DLL Dynamic Link Library

DNS Domain Name Service

DSM Distributed Security Manager
DSOM Distributed System Object Model
DSSA Domain Specific Software Architecture

83

EDA/SQL Enterprise Data Access/SQL

EDI
ESA
EBCDIC
FTE
3GL
4GL
GUI
HTML
HTTP
IDL
IEEE
1/0
IPX

IS

ISO
ISV
IT
IEEE

Electronic Data Interchange

Enterprise Systems Architecture

Extended Binary Coded Decimal Interchange Code
Full-Time Equivalent

Third-Generation Language

Fourth-Generation Language

Graphical User Interface

Hypertext Markup Language

Hypertext Transfer Protocol

Interface Definition Language

Institute of Electrical and Electronics Engineers
Input/Output

Internetwork Packet Fxchange

Information Systems

International Organization for Standardization
Independent Software Vendor

Information Technology

Institute of Electrical and Electronics Engineers

84

LAN
LOC
MAA
MIPS
MOM
MQ
NAK
NDS
NES
NOS
NSF
OLE
OLE DB
OMG
00
ORB
(ON] I
OSF
0N
pPC

QoS

Local-Area Network

Lines of Code

Microsoft Application Architecture
Millions of Instructions Per Second
Message-Oriented Middleware
Message Queuing

Negative Acknowledgment
NetWare Directory Service
Network File System

Network Operating System
National Science Foundation
Object Linking and Embedding
OLE Database

Object Management Group
Object-Oriented

Object Request Broker

Open Systems Interconnection
Open Software Foundation
Operating System

Personal computer

Quality of Service

85

RAAD
R&D
RDBMS
RFC
RPC
SAA
SNA
SOM
SQL
550
TCP/IP
TP
URL
VB

Rapid Architecture for Applications Development
Research and Development

Relational Database Management System
Request For Comments

Remote Procedure Call

System Applications Architecture

Systems Network Architecture

System Object Model

Structured Query Language

Single Sign-On

Transmission Control Protocol/Internet Protocol
Transaction Processing

Uniform Resource Locator

Visual Basic

86

References

[AGO4]

[AG97]

[Baig2]

[BCGS93]

[BGT7]

[BGSO]

[Bro87]

[BS92]

[BSTS93]

[CooT9]

[CORY6]

R. Allen and D. Garlan. Beyond definition/use: Architectural
interconnection. Proceedings, Workshop on Interface Definition
Language, January 1994.

Robert Allen and David Garlan. A formal basis for architec-
tural connection. ACM Transactions on Software Engineering

and Methodology, July 1997.

Cidnet Bailin. Kaptur - knowledge acquisition for preservation of
trade-offs and underlying rationales. private document, copyright

Bailin, 1992.

Don Batory, Lou Coglianses, Mark Goodwin, and Steve Shafer.
Creating reference architectures: An example from avionics.
anonymous ftp to cs.utexas.edu, 1993.

R. M. Burstall and J. A. Goguen. Putting theories together to
make specifications. Proceedings of the Fifth International Joint
Conference on Artificial Intelligence, pages 1045-1058, 1977.

R. M. Burstall and J. A. Goguen. The semantics of clear, a spec-
ification language. Proceedings of the 1979 Copenhagen Winter
School on Abstract Software Specification, pages 292-332, 1980.

B. W. Brooks. No silver bullet: Essence and accidents of software

engineering. [EEFE Computer, 20(4):10-19, April 1987.

B. W. Boehm and W. L. Scherlis. Megaprogramming. Software
Technology Conference, pages 63-82, April 1992.

Don Batory, Vivek Singhal, Jeff Thomas, and Marty Sirkin. Scal-
able software libraries. Proceedings of the ACM, SIGSOFT Con-
ference, December 1993.

L. W. Cooprider. The Representation of Families of Software Sys-
tems. PhD thesis, Department of Computer Science, Carnegie-

Mellon University, April 1979.

Common Object Request Broaker Architecture, The Object Man-
agement Group, 1996.

87

[DCEY6]

[DEF95a]
[DEF95b]
[DKT76]

[EHL*+94]

[GAS4]

[GAOY]

[GAOYS)

[GARS3]

[GARSY]

[GP95]

[HKM+94]

The Distributed Computing Environment, Open Software Foun-
dation, The Open Group, 1996.

ITU-T X.902 — ISO/IEC 107}6-2, 1995.
ITU-T X.903 — ISO/IEC 107}6-3, 1995.

F. DeRemer and H. Kron. Programming-in-the-large versus
programming-in-the-small. ITEEE Transactions on Software En-

gineering, 2(80):80-86, June 1976.
S. Edwards, W. Heym, T. Long, M. Sitarman, and B. Weide.

Specifying components in resolve. Software Engineering Notes,

19(4), October 1994.

Goldberg and Adele. Smalltalk-80: The Interactive Programming
Environment. Addison-Wesley, 1984. ISBN 0-201-11372-4.

David Garlan, Robert Allen, and John Ockerbloom. Exploit-
ing style in architectural design environments. In Proceedings of
SIGSOFT’94: The Second ACM SIGSOFT Symposium on the
Foundations of Software Engineering, December 1994.

David Garlan, Robert Allen, and John Ockerbloom. Architec-
tural mismatch, or, why it’s hard to build systems out of existing
parts. In Proceedings of the 17th International Conference on
Software Engineering, April 1995.

Goldberg, Adele, and David Robson. Smalltalk-80: The Lan-
guage and Its Implementation. Addison-Wesley, 1983. ISBN 0-
201-11371-6.

Goldberg, Adele, and David Robson. Smalltalk-80: The Lan-
guage. Addison-Wesley, 1989. ISBN 0-201-13688-0.

David Garlan and Dewayne Perry. Introduction to the special
issue on software architecture. IFEEFE Transactions on Software
Engineering, April 1995.

Nicholas Haines, Darrell Kindred, J.G. Morrisett, Scott M. Net-

tles, and Jeanette M. Wing. Composing first class transactions, a

88

[HL85]

[HLN*88]

[Hoa94]

[HRCP94]

[J191]

[JMO4]

[KG83]

[KO62]

[LKAT93]

[LSBHO3]

functional standard metalanguage packages of concurrrency, lock-
ing, persistence, and serialization. ACM TOPLAS, 16(6):1719-
1736, November 1994.

D. Helmbold and D. Luckham. Tsl: Task sequencing language.
The Ada International Conference, Paris, France, May 1985.

Harel, Lachover, Naamad, Pnueli, Politi, Sherman, and Shtul-
Trauring. Statemate: a working environment for the development
of complex reactive systems. Proceedings of the 10th International
Conference on Software Engineering, Singapore, April 1988.

C.A.R. Hoare. Mathematical models for computing. Secience,

August 1994.

Terry Hayes-Roth, Erman Coleman, and Devito Papanagopou-
los. Overview of technowledge’s dssa program. ACM SIGSOFT
Software Engineering Notes, October 1994.

O. Jacobsen and D. Lynch. A Glossary of Networking Terms,
RFEC 1208, Interop, Inc., 1991.

F. Jahanian and A. Mok. Modechart: A specification language for
real-time systems. IKFEE Transactions on Software Engineering,

20(12):933-947, December 1994.

Krasner and Glenn. Smalltalk-80: Bits of History, Words of
Advice. Addison-Wesley, 1983. ISBN 0-201-11669-3.

Nygaard K. and Dahl O.J. The Development of the SIMULA
Languages. Norwegian Computing Centre (NCC) in Oslo, 1962.

Luchham, Kenney, Augusting, Vera, Bryan, and Mann. Specifi-
cation and analysis of system architecture using rapide. Stanford
University Technical Report, 1993.

Luqi, Shing, Barnes, and Hudhes. Prototypeing hard real-time
ada systems in a classroom environment. Proceedings of the Sev-
enth Annual ADA Software Engineering Fducation and Training
(ASEET), Monterey, January 1993.

89

[Luc90]

[LVI6]

[LvHS5]

[Mat36]

[Mey92]
IMG92]

[MP93]

[NB92]

[ODP95a]
[ODP95b]
[ODP95¢]

[ODP95d]
[Ous94]
[PXL95]

D. C. Luckham. Programming with specifications: An introduc-
tion to anna, a language for specifying ada programs. Texts and
Monographs in Computer Science, October 1990.

Luchham and Vera. An event-based architecture definition lan-
guage. to appear in IEEE Transactions on Software Engineering,

1996.

D. C. Luckham and F. W. von Henke. An overview of anna, a
specification language for ada. IEEFE Software, 2(2):9-23, March
1985.

R. F. Mathis. The last 10 percent. IEEE Transactions on Soft-
ware Engineering, 12(6):705-712, June 1986.

B. Meyer. Eiffel: The Language. Prentice Hall, New York, 1992.

Mettala and Graham. The domain-specific software architecture
program. Special Report CMU/SEI-92-SR-9, Software Engineer-
ing Institute, Carnegie Mellon University, Pittsburgh, PA, June
1992.

Gary Scott Malkin and Tracy LaQuey Parker. Internet Users
Glossary, REFC 1392, Interop, Inc., 1993.

Newton and Browne. The code 2.0 graphical parallel program-
ming language. Proceedings, ACM International Conference on
Super Computing, July 1992.

ITU-T Rec. X.902 — ISO/IEC 10746-2: Foundations, 1995.
ITU-T Rec. X.903 — ISO/IEC 107}6-3: Architecture, 1995.

ITU-T Ree. X.904 — ISO 10746-4: Architectural semantics,
1995.

ITU-T X.901 — ISO/IEC 107}6-1 Overview, 1995.
J. Ousterhout. Tel and the Tk toolkit. Addison-Wesley, 1994.

Palsberg, Xiao, and Lieberherr. Efficient implementation of adap-
tive software (summary of demeter theory). Northeastern Uni-
versity, Boxton, 10, January 1995.

90

[Rei92]
[SDK*94]

[SGO6]

[STA93]

[Str86]

[Ves94a]

[Ves94b]

[Wie92a]

[Wie92b]

[Wol85]

[WW(92]

Aaron Reizes. The Webster Dictionary. 1992.

Shaw, Deline, Klein, Ross, Young, and Selesnik. Abstraction
for software architectures and tools to support them. Carnegie
Mellon University, February 1994.

Mary Shaw and David Garlan. Software Architecture: Perspec-
tives on an Emerging Discipline. Prentice Hall, New York, April
1996.

Stars (software technology for adaptable, reliable systems). con-
ceptual framework for reuse processes (cfrp), volume 1: Defini-

tion, version 3.0. STARS-VC-A018/001/00, October 1993.

B. Stroustrup. The C++ Programming Language. Addison-
Wesley, 1986.

S. Vestal. Mode changes in a real-time architecture description
language. Proceedings, Proc. International Workshop on Con-
figurable Distributed Systems: Honeywell Technology Center and
the Unwersity of Maryland, 1994.

Steve Vestal. A cursory overview and comparison of four ar-
chitecture description languages. Honeywell Technology Cen-
ter, Minneapolis, MN, anonymous ftp to src.honeywell.com in

/pub/ARCHIVE/dssa/papers, July 1994.

(. Wiederhold. Mediators in the architecture of future informa-
tion systems. IKEE Computer, pages 38-49, March 1992.

G. Wiederhold. Model-free optimization. In Proceedings of
DARPA Software Technology Conference, pages 82-96, Los An-
geles, CA., April 1992. Meridien Corp., Arlington, VA.

A. L. Wolf. Language and Tool Support for Precise Interface Con-
trol. PhD thesis, Computer and Information Science Department,
University of Massachusetts, Amherst, Mass., 1985.

G. Wiederhold, P. Wegner, and S. Ceri. Towards megaprogram-
ming. Communications of the ACM, 35(11):89-99, 1992.

91

