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Abstract

The extension of Haskell with a built-in state monad com-
bines mathematical elegance with operational efficiency:

e Semantically, at the source language level, constructs
that act on the state are viewed as functions that pass
an explicit store data structure around.

e Operationally, at the implementation level, constructs
that act on the state are viewed as statements whose
evaluation has the side-effect of updating the implicit
global store in place.

There are several unproven conjectures that the two views
are consistent.

Recently, we have noted that the consistency of the two
views is far from obvious: all it takes for the implementa-
tion to become unsound is one judiciously-placed beta-step
in the optimization phase of the compiler. This discovery
motivates the current paper in which we formalize and show
the correctness of the implementation of monadic state.

For the proof, we first design a typed call-by-need lan-
guage that models the intermediate language of the com-
piler, together with a type-preserving compilation map. Sec-
ond, we show that the compilation is semantics-preserving
by proving that the compilation of every source axiom yields
an observational equivalence of the target language. Because
of the wide semantic gap between the source and target lan-
guages, we perform this last step using an additional inter-
mediate language.

The imperative call-by-need A-calculus is of independent
interest for reasoning about system-level Haskell code pro-
viding services such as memo-functions, generation of new
names, etc., and is the starting point for reasoning about
the space usage of Haskell programs.

1 Monadic State

The use of monadic state in functional languages provides
significant advantages to both programmers and compiler
writers. Technically, monadic state isolates the impera-
tive sublanguage from the purely functional sublanguage by
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making the sequencing of assignments explicit using new
term and type constructors. This type-based separation
leads to elegant ways of stating and inferring invariants
about the code. For example, a standard type system for
Haskell, extended with one rule, can track the lifetimes of
references and guarantee non-interference among references
in several threads [19, 20]. Even better, recent results sug-
gest that such an analysis can be performed in the inter-
mediate language of a type-directed SML compiler [24]. By
exposing information to the type system, not only can com-
piler writers perform sophisticated analyses elegantly, but
also they can avoid some analyses altogether. For example,
before eliminating common subexpressions, the TIL com-
piler [32] must guarantee that the subexpressions have no
side-effects using either a weak syntactic check or a sophisti-
cated and complicated analysis. In the presence of monadic
state, the type system provides the advantages of the so-
phisticated analysis without its complexity as the types au-
tomatically distinguish semantic values from computations.

Semantically speaking, a program using monadic state is
equivalent to a functional program in which the store data
structure is passed around and partially copied to simulate
updates. Clearly, this view does not yield an efficient imple-
mentation and negates much of the benefits of using monadic
state. For an efficient implementation:

e no code should be generated for sequencing assign-
ments, and

e 1o code should be generated for passing the store.

At first sight, such an efficient implementation appears easy
to realize, and is indeed implemented in the Glasgow Haskell
compiler (ghc) [19]. In the intermediate language of the
compiler, the monadic combinators are inlined to eliminate
the overhead of sequencing assignments, and the store is
represented using a global implicit data structure.
Unfortunately, the efficient implementation of monadic
state is more subtle than it first appears. We have noted [20,
27] that (-steps are generally unsound in the intermediate
language of compilers such as ghc. The unsoundness of
has several consequences. First, it raises questions about the
correctness of transformations like A-lifting and analyses like
strictness analysis that are usually based on the denotational
semantics of Haskell, which validates §. More significantly,
having shown that the intermediate language cannot have
a call-by-name semantics, we must find an appropriate se-
mantics. In the absence of a semantics for the intermedi-
ate language, there is no hope to reason about intermediate



programs, to develop semantic-based analyses and optimiza-
tions, or to build robust compilers.

In this paper, we develop the semantic infrastructure for
the intermediate languages used for implementing monadic
state and use it to prove the correctness of the efficient im-
plementation of monadic state. The semantics is based on
an imperative call-by-need A-calculus that extends the pure
call-by-need A-calculus [1, 2, 3, 4] with references to model
the intermediate languages of Haskell compilers. The im-
perative call-by-need A-calculus has the following proper-
ties. It 1s expressed using a set of local program transforma-
tions in the style of Felleisen and Hieb’s A,-S-calculus [12]
and Crank’s theories for parameter-passing in the A-calcu-
lus [10, 11]. As expected some observational equivalences
that held between pure call-by-need terms (e.g., §) are no
longer valid in the presence of assignments. However, all
source axioms are valid observational equivalences in the im-
perative call-by-need A-calculus, which is sufficient to show
that the implementation is faithful to the semantics of the
source language.

The practical significance of the imperative call-by-need
A-calculus is two-fold. First, it precisely explains, for the
first time, the operational characteristics of the interaction
between laziness and assignments. Functional programming
folklore has often stated that, in contrast with the inter-
action of call-by-value and assignments, the combination of
laziness and assignments is too complicated, if at all pos-
sible, to understand operationally. This view is what mo-
tivated the use of monads in the first place. Second, the
calculus opens the way for theories and analyses of Haskell
programs for reasoning about intensional properties such as
space usage and space leaks. Previous theories did not take
the imperative update optimizations into account, which
limits their validity, as the updates affect the space com-
plexity of programs.

The remainder of the paper is organized as follows. We
begin by reviewing the syntax, types, and semantics of the
source language. In Section 3, we gently design the inter-
mediate language based on both practical and theoretical
considerations. Section 4 introduces the formal syntax and
semantics of the intermediate language. Section 5 formalizes
the compilation map and show that it is consistent with the
typing of both the source and intermediate languages. Sec-
tion 6 shows the correctness of the efficient implementation
of monadic state. Section 7 illustrates the use of the cal-
culus for reasoning about imperative call-by-need programs.
Finally Sections 8 and 9 review related work, conclusions,
and ideas for future work.

2 Source Language

Our source language is modeled on Haskell.

2.1 Terms

The core constructs of the language include those of an ap-
plied A-calculus with mutually recursive definitions. In ad-
dition, the language includes a built-in state monad with
operations on reference cells.

Definition 1 (Source Syntax) Let = range over a set of
variables and £ range over a disjoint set of locations. The

set of terms is inductively defined as follows:

Expressions M,N,L == x|V |MN

| let x; = M; in M
| sto{D} M

Values V. =« Kl|XaM|L]|S

| M >=N|ret M

Store Operations := New M | Read M
|  Write M N

Store Bindings D = {;=M,;
Constants K == ()|n|+]...

We let K range over an unspecified set of simple constants
like numbers and addition. We will also use C' to range over
contexts with one hole.

The constructs New, Read, and Write implement the usual
operations on reference cells. The constructs ret and >>= are
the unit and bind operations of the state monad respectively.
Expressions built up from these five operations are state-
transformers and hence syntactic values. In the expression
(sto {€; = M;} N), the scope of each location {¢; includes
all the right-hand sides M; and N. The evaluation of the
expression executes N, returns its value, and discards the
final state. The sto construct also encapsulates the state,
in the sense that the state is neither accessible nor visible to
the outside world [19, 20].

2.2 Types

Both the monadic extension to the pure language and the
encapsulation of state rely critically on types. Stateful com-
putations can only be generated using the term constructors:
ret, >>= New, Read, and Write. Furthermore, their types
are built using a special type constructor ST. The type of
a stateful computation is generally of the form (ST 7 m2),
where 7 is the index of the state and 72 is the type of the
result of the stateful computation. The type (MutVar 71 72)
is the type of references allocated from a state indexed with
71 and containing values of type m.

Definition 2 (Source Types) Let o range over a set of
type variables. The set of types is inductively defined as
follows:

Unit | Int |a |7 — 7T
ST 7 7 | MutVar 7 7
Va.o | T

Types T

Type Schemes o

The typing rules are in Figure 1. For the constants, we
assume that the type of K is given by 7x. The reasoning
behind the rule for sto is as follows. Every operation which
manipulates a state thread is infected with the index of that
state thread: when >>=is used to combine operations, the
indices have to be the same (i.e., they become unified); every
location returned by New has the same index as the thread
that created it; and every time a Read or Write is performed
its MutVar argument has the same index as the state thread
in which the read or write is performed. Then when a state
thread is encapsulated by sto the type system will only
accept the encapsulation if:

1. the index is still a variable; and
2. that variable is universally quantifiable.

If these two conditions hold then the state thread makes no
demands on its environment to provide, say, a location to
be read or written. If it did, the index would have been uni-
fied with the index of the location in the environment, and



Tu{z:Va;.r} b z:rla; =7

Tu{t:r}+e:7

T'+-M:7 =7 '+N:7
I'MN:r

Tu{zs:r}-M:7
'EAXeM:7— 7'

Vi.TU{zi:m} b M;:7

Tu{s; :Va;,. m} + M:r

TrFlet z;=M;in M : 1
where o, € FV () \FV(T)

Vy. TU{l :MutVar o s} + M;: 7
Tu{f :MutVara s} F M :STar
Fl—StO{ZiZMi}M:T
where o & FV(r,T)

THM:ST7 r THFN:m»—8ST7H' 7y
I'EM>>=N:ST™n

I'-M:r
I'tret M :ST+' 1
I'-M:r

I' - New M : ST 7/ (MutVar 7/ 1)

' M :MutVar 7’ 7
I'Read M : ST 7' 7

't M :MutVar 7' 7 I'EN:7
I' - Write M N : ST 7/ Unit

Figure 1: Typing Rules for Source Language

universal quantification could not take place. This intuitive
argument can be made precise to provide a formal proof of
the type-based encapsulation of monadic state [20].

2.3 Evaluation Contexts

The semantics of the source language can be conveniently
specified using a set of reductions. Because of the lazy se-
mantics and lazy store updates [7, 13, 17], the definition of
the reductions is intertwined with the definition of evalua-
tion contexts. Therefore, we define evaluation contexts first.
These contexts use two auxiliary concepts: return contexts
R and dependency chains H.

Definition 3 (Return Contexts R) The contexts are in-
ductively defined as:

R == []| M >=xz.R

Return contexts define the position within a state thread
from which it is possible to immediately return without per-
forming the rest of the stateful computation. Indeed, none

of the computations to the left of >>= is performed unless
they are explicitly demanded. Demands occur according to
the following definition. The definition uses the yet-to-be-
defined evaluation contexts £. At this point the reader may
pretend that all evaluation contexts are the empty context
to get the intuition behind the concept of dependencies.

Definition 4 (Dependencies H) Chains of dependencies
are defined as follows:

H = Az.R[E[z]]
| Az.R[ret E[z]]
| Az.R[M >>= E[z]]
| Az.R[E[z] >>= H]
| Az. R[S >>= H]

In the first three clauses, the value of z is needed to proceed
with the evaluation of the state thread. In the next two
clauses, a demand for a stateful computation is propagated
to the beginning of the thread. The last clause shows that
the operations New, Read, and Write are strict in the state,
which demands all previous computations in the thread.

Definition 5 (Evaluation Contexts E) The set of con-
texts is inductively defined as:

E 2= []|EM|KE
| sto {D} R[E
| sto {D} RJret E]
| sto {D} R[M >>= F]
| sto {D} R[E >>= H]

| sto {D} (Read E >>= H)
| sto {D} (Write E M >>= H)

The first three clauses in the definition of evaluation contexts
define the usual contexts for call-by-name languages. The
remaining contexts are used when evaluating a stateful com-
putation. The next three contexts combined keep demand-
ing the right argument of >>= until they reach the last state
transformer in an R-sequence. If that state transformer is a
ret then we demand the value of its subexpression. If on the
other hand, the last state transformer demands a variable,
then we backtrack following the previously defined chains
of dependencies demanding state transformers on the left
of >>=. Finally the operations Read and Write are strict in
their first argument which is the location to read or write.

2.4 Semantics

Figure 2 presents an axiomatization of the semantics [20].
The first three rules are as expected in an applied A-calculus.
In particular, the semantics of function application is a call-
by-name one that admits full £. In the next three rules, each
primitive store operation performs its intended operation on
the properly initialized store fragment. The structural rules
correspond to the three monad laws. Finally the return rules
show how to compute the result of a state thread; there is a
rule for each kind of syntactic value.

3 Design Decisions for the Intermediate Language

The intermediate language ended up being rather complex,
so we spend some time explaining the major decisions in-
volved in its design. Most of the design ideas build upon
the ghc implementation. Interestingly, the design can be
motivated by technical problems in attempted proofs. For
example, a broken consistency theorem indicated that the



Computational Reductions:

(Az. M)N

let z; = M; in M

KV

sto {D} (New M >>= H)

sto {D,£ =M} (Read £ >>= H)
sto {D,0 =M} (Write { N >>= H)

Structural Reductions:
sto {D} Rlret M >>= H]
sto {D} R[(M >>= N) >>= H]
sto {D} R[S]

Return Reductions:
sto {D} Rlret K
sto {D} R[ret (Ay. M)
sto {D} R[ret (M >>= N)
sto {D} Rret (ret M)
sto {D} Rlret (New M)
sto {D} R[ret (Read M)
sto {D} R[ret (Write M N)]
sto {D} R[ret {]

Ly L

LR

Mz := N]
Mlz; = (let ; = M; in M;)]
§(K,V)  if defined

sto {D,{=M} (H ¢)
sto {D, =M} (H M)
sto {D.¢= N7 (H ()

sto {D} R[H
sto {D} R[M >> Az. (N z) >>= H)]
sto {D} R[S >>= Az.ret z]

K

Ay.sto {D} Rlret M]
(sto {D} R[ret M]) >>=
ret (sto {D} Rlret M])
New (sto {D} R[ret M])
Read (sto {D} R[ret M])

Write (sto {D} R[ret M]) (sto {D} R[ret N])
¢ if ¢ ¢ dom(D)

(sto {D} Rfret NJ])

Figure 2: Call-by-Name Semantics of Source Language

parameter-passing mechanism should be call-by-need rather
than call-by-name, etc. Furthermore, the intuitive devel-
opment here is paralleled by the structure of the proof in
Section 6.

3.1 Basic Compilation Scheme

The starting point in the definition of the intermediate lan-
guage is the compilation strategy adopted by ghc. The first
phase of compilation closely follows the denotational seman-
tics of the source language [19]: it reformulates the program
in explicit store-passing style. For example, consider the
following code fragment:

sto {} ( New 0 >>= Ap.
Write p 5 >>= A_.
Read p >>= Av.
ret v)

Intuitively, the evaluation of the term allocates a new loca-
tion p, initializes p to 0, updates p with the value 5, binds
v to the contents of p, discards the state, and returns v.
Clearly the result should be 5. Applying the store-passing
translation and simplifying the output for readability, we
get:

fst (let (p,s1)=new OO0
(o, 82) = write s1 p 5

(U’ 53) =

in (v, s3))

read sz p

where O is the initial empty store. Next, the compiler elim-
inates the syntactic sugar associated with pattern-matching
which produces the term P:

P =fst(let py=new OO0
p = fst p1
851 = snd P1
p2 = Write 51 p 5
82 = snd P2

ps = read s2 p

v = fst ps
83 = snd P3
in (v, s3))

3.2 Explicit Store vs. Implicit Store

As apparent from above, each of the operations new, read,
and write, in the intermediate language takes a store as an
argument and returns a store as part of its result. These
stores play two independent roles:

1. Modeling the Heap: Semantically stores are finite func-
tions (tables) mapping locations to their contents, and
updates are simulated by creating new stores (copying
parts of the table in the process).

2. Sequencing Imperative Operations: The explicit store-
passing style defines the relative order of imperative
operations via the data dependencies among stores.
For example, the operation (write s; p 5) must happen
after the operation that produces store s; as its result
because write is strict in its store argument.

Taken literally, the above points imply a rather ineffi-
cient implementation. To achieve an efficient implementa-
tion, we proceed in two steps. First we model the heap with
one global implicit store. This means that the operations
new, read, and write should be interpreted as performing
destructive updates on the global store rather than operat-
ing on their store arguments. The store arguments are no
longer relevant for the implementation of assignments but
are maintained to prevent program transformations from ac-
cidentally reordering imperative operations.

After all optimizations have been performed, the back
end arranges to generate no code at all to pass around
the store arguments. If the intermediate language is ex-
plicitly typed, then the code generator can easily distin-
guish arguments representing the store from other argu-
ments. Let & be the special type of stores: an expression like



(Asz.read sz p) of type (& — Int x ) should be compiled
as a statement producing an Int as a side-effect and not as
a function. This discussion thus motivates the importance
of types for the intermediate language.

3.3 Call-by-Name vs. Call-by-Need

The shift of perspective from explicit stores with functional
updates to implicit stores with destructive updates appears
like a reasonable optimization but it is not evidently cor-
rect. In fact, the correctness turns out to be a rather subtle
issue. Let’s assume that the semantics of the intermedi-
ate language is the usual call-by-name semantics for Haskell
that validates full 5. Now consider the effect of a sequence
of B-reductions on the term P from Subsection 3.1:

fst ( let ps = read (snd (write (snd (new O 0))
(fst (new O 0))
)
(fst (new O 0))
v = fst ps
83 = snd P3

in (v, s3))

By inspection of the code, the number 5 only occurs in the
first argument to read. Hence if read evaluates the store ar-
gument for effect (but does not use the result), the code can
never evaluate to 5. This error is due to the duplication of
expressions like (new O 0). Each occurrence of new ignores
its store argument, and returns a new distinct location rel-
ative to the global store. Compare this behavior to the one
dictated by the semantics where new is a pure function and
every occurrence of (new O 0) returns the same location.
In conclusion, f-steps in particular, and call-by-name
reasoning principles in general are incompatible with the im-
plementation strategy described in Subsection 3.2. We were
the first to note this problem and have conjectured [20, 27]
that optimizations based on call-by-need semantics would
be sound in the intermediate language of the compiler. In-
tuitively, call-by-need transformations would not duplicate
non-values such as (new O 0). Fortunately, even before the
monadic extensions, compilers such as ghc were careful not
to duplicate work and hence refrained from using £ steps
for performance reasons [25]. Consequently, the addition
of assignments to the back end did not cause any immedi-
ate problems. However, this non-duplication is not a mere
optimization issue, but an essential correctness issue.

3.4 Demanding Values vs. Effects

Having decided on a call-by-need semantics for the interme-
diate language, we must resolve the following dilemma. By
definition the call-by-need mechanism only evaluates an ex-
pression if its value is needed. How then are we to evaluate
expressions such as write for effect onlyl’

There are several ways to encode this additional demand
for effects. For example, by adding a special combinator
seq, a strict-let, or writing in continuation-passing style, all
of which involve a change in the language or compilation
scheme. But fortunately we already have a mechanism in
place based on the store arguments that are passed around.
Since all imperative operations are strict in their store ar-
guments, the result of an expression such as write (which
includes a store) is demanded by future imperative opera-
tions. However, since the actual value of the store argument
is irrelevant, it is sufficient to have just one value of type
{ that we name O. When a state thread is created, it is

provided with the value O. Operations in the thread will
only be performed when they receive the “token” O and
then pass it to the remaining operations. Again the code
generator does not actually generate any code to move the
value O.

3.5 Boxed vs. Unboxed Types

Ultimately the code generator treats the type < specially.
This interacts poorly with polymorphism as the following
example illustrates. Consider the source fragment:

let f = Aa.\b.(a, b)
inret (f12)

After translation to the intermediate language and some pro-
cessing, we get:

let f = Aa.Ab.(a, b)
in (Av.As.(v,8)) (f12)

Without paying attention to types, a compiler might rec-
ognize and lift the common subexpression producing:

let £ = Xa.\b.(a, b)
inf(f12)

But then, what code should the compiler generate for the
polymorphic function fI' Both instances of f cannot be
compiled in the same way. The inner instance should clearly
take two arguments and build a pair data structure. The
outer instance should only take one argument; the second
being the token representing the store that is ignored at code
generation time.

Technically, the compiler cannot generate code for a poly-
morphic function of type (¢ — B X «) unless it knows all
the uses of the functions: one of them might have o« =
which would require different code generation routines. An-
other way of looking at the problem is that a function of
type (¢ — X ) cannot be uniformly used at types (Int —
Int x Int) and ($ — Int x ). The solution to the problem
is to treat the type { as an unbozed type, and to restrict
type variables not to range over unboxed types [23].

3.6 Recursion

Since the use of assignments can easily create cyclic struc-
tures, a proper handling of recursion is a prerequisite to
handling state. The source language has two constructs for
recursion: let and sto. We here show that the intermediate
language must express these two notions of recursion with
one construct. Consider the source term:

sto {£ = A_.0} let £ = A_.Read ¢ in Write £ (A_.((A_.5) z))

Irrespective of how we translate let and sto we will eventu-
ally reach a point, after performing the assignment, where
z refers to £ and { refers to z. So we must have one con-
struct in which recursion via variables and locations can be
simultaneously expressed. This behavior does not happen in
the source language because we have full # which enables us
to eliminate let-expressions by substituting the right-hand
sides of the definitions in the body (See Figure 2).

4 Imperative Call-by-Need Calculus

Building on our previous discussion, we formalize the precise
syntax and semantics of the intermediate language.



4.1 Terms

The terms of the intermediate language include pairs, simple
constants, (destructive) operations on reference cells, and
one construct (. | .), pronounced boz, for expressing recur-
sion via both variables and locations. In contrast to the
syntax of the source language where we used capital letters
to range over the meta-variables, we here use lower case let-
ters.

Definition 6 (Target Terms) Let x range over a set of
variables, £ range over a disjoint set of locations. The set of
terms is inductively defined as follows:

Ezpressions e == z|v|ee|(e]|d)
| (e1,e2)|fste|snde
| new e; ep | read e; e
| write e1 ez es
Values v = k| Aze|l]|[e1,e2] | O
Bindings d = =€
¥ = x|f
Constants ko= (Oln|+]| ...

As explained in the previous section, the value O is the to-
ken representing the store. The imperative operations new,
read, and write, all expect this token as their first argu-
ment. Following the design of the applied call-by-need A-
calculus [1, 2, 3, 4], we distinguish two kinds of pairs. In
contrast to (e1, e2), pairs of the form [e1, e2] are values that
can be duplicated. This distinction avoids the duplication
of the components of a pair, which is essential to capture
the call-by-need semantics.

4.2 Types

The types of the intermediate language are the expected
ones: they are built using constructors for primitives, func-
tions, products, and references.

Definition 7 (Target Types) Let o range over a set of
type variables. The set of types is inductively defined as
follows:

Types T B|U
Bozed Types B &= Unit|Int|a|r—7T
| Refr|7x¢$
Unboxed Types v == <&
Type Schemes o = Yao|rT

As implied by the grammar, type variables range only over
boxed types. This is necessary because of the interaction of
types treated specially by the code generator and polymor-
phism (see Section 3.5). Modern compilers have optimized
unboxed representations of datatypes like integers; we do
not handle such an extension in our language. Also, we
have restricted the second component of pairs to be of the
special store type <. This is not necessary but simplifies the
presentation and proofs.

Most importantly, the type of references no longer in-
cludes a state index. It is conceivable to maintain the state
indices in the types of the intermediate language, but since
our goal 1s to prove the correctness of an existing implemen-
tation strategy, we stick to the actual ghc language. This
decision to “forget” some type information during compila-
tion will have a major impact when we study the correctness
of the compiler in Section 6.

The typing rules for the intermediate language are in
Figure 3. They should be of no surprise.

Tu{z:Va;.r} b z:rla; =7

They: 7

I'teie:m

The:7' =71

Vi. T U{z;: 7, £ :Ref i} F €575
Tu{sz; :Va,,. 7, £i:Ref s} F e:7T
I'kF{e|di=ei): T
where o, € FV () \FV(T)

I'tei:7 I'kFer: O
I'F(e1,e2):7x &
T'Fe:7x<$
I'kfste:r
T'Fe:7x<$
I'tsnde: <
I'kFe : O I'kter:7

I'Fnew ey ez :Ref 7 X O

I'kFe : O I'Fes:Ref 7
I'Fread e; e : 7 x O

I'kFe : O I'Fes:Ref 7 I'tes:7
T'F write e e €3 : Unit x

I'HEk:7g

Tu{t:r}kHL:7
Tu{s:7}ke:7
F'FAze:m— 71/

I'tei:7 I'kFer: O
T'tler,ex]:7x &

TFO: O
Figure 3: Typing Rules for Intermediate Language

4.3 Semantics I: Call-by-Need with Recursion

We begin with the semantics of the subset of the language
excluding assignments [1, 2]. To reduce the number of reduc-
tions we use evaluation contexts to abstract some common
patterns.

Definition 8 (Evaluation Contexts E) The set of pure
evaluation contexts s inductively defined as follows:

E = []|Ee|fst E|snd E | kE

The reductions for the pure language are in Figure 4.
They are grouped in three categories. The first category
includes reductions on pure lambda graphs that implement
call-by-need applications. An argument is added to the list
of declarations when first encountered. The argument can
only be copied once it becomes a value. Next, we have ad-
ministrative reductions that re-arrange bindings. All the
reductions enlarge the scope of the declarations to include



Reductions for Lambda Graphs:

Administrative reductions:

(E[9] | var() = E[0],. ..

Reductions for Pairs:
(61 ) 62)
fst [61, 62]

snd [61, 62] —

(o1 ] = e2)
(Clo] | ¢ =v,d)
<6 | y:C[U]ax:Uad>
8(k,v) if defined
(Ele] | d)
(e | di,da) _ _
(E[9] | var(9) = E[91],...,var(9,) = e, d1,d2)

Figure 4: Reductions for Pure Recursive Call-by-Need Language

newOe — ([,00]|f=¢)
(Elread 0 €] | ¢=0,d) — (E|[o,0]] | ¢ = 0,d)
(Efwrite 0 € ex] | ¢ = eayd) — (E{0, 0] | £ = e, d)

(E[9] | var(¥) = Er[1],. .., var(¥9,) = En[read O £],£ = v, d)

(E[9] | var(¥) = E1[h], ..., var(d,)

— (E[?] | var(9) = Ei[d1], ..., var(

—

In) = Euffv,0)],£ = v,d)

Eynlwrite O £ e1], = e2,d)

(E[9] | var(¥) = Er[1], ..., var(¥9n) = Ex[[(), 0], £ = e1,d)

Figure 5: Reductions for Reference Cells

the enclosing context. Note that in the third rule, the inter-
nal box is only flattened when is needed. We will discuss the
reasons for this restriction after having introduced the oper-
ations on reference cells. Finally, we have the reductions on
pairs, which rewrite regular pairs to special pairs [.,.] that
can be treated as values and safely duplicated.

4.4 Semantics Il: Assignments

To axiomatize the semantics of the full language including
assignments, we extend the sets of evaluation contexts and
reductions.

Definition 9 (F) The set of evaluation contexts extends
the one in Definition 8 as follows:

E ... |new EF e|read Fe|read v F

| write E e1 ez |write v B e

In other words, the imperative operations are strict in their
store argument (the token O). Also read and write are strict
in the location to be accessed.

In contrast to the other operations, the operations in-
volving reference cells are partially ordered using evaluation
contexts. For example, a read operation is only performed
when it occurs in the hole of an evaluation context relative
to the location being read. Furthermore, the contents of the
location must have already been evaluated before the read
can occur. The situation with write is similar but slightly
more complicated. An expression (write O £ e) must also
occur in the hole of an evaluation context relative to £, but
it does not demand the evaluation of the contents of £. In-
deed, the old content is about to be overwritten, and hence

not needed. In summary, not every expression of the form
E[f] demands the evaluation of the contents of £. This ob-
servation motivates the following definition.

Definition 10 (9) The set of demanding expressions is:

¥ = z|readOf

The function var(.) maps a demanding expression to the
variable or location it demands:

var(z)
var(read O f)

T

£

The complete set of reductions includes the reductions in
Figure 4 (with the new definitions of evaluation contexts) in
addition to the assignment-specific reductions in Figure 5.
In the reductions for reference cells, the store variable is only
used for sequencing the evaluation of operations and not for
actually modeling the heap.

We can now explain why we need to impose some restric-
tions on the flattening of internal boxes. A non demanded
flattening could disallow a reference operation that would
otherwise be possible, as shown in the diagram below:

(Azy|ly=(read DL | £=0)) —> (dz.y |y =read O {,{=0)

'
'
'
'

A\

(/\l’.y |y =[0,0],¢= 0>

The flattening is necessary to allow reductions of the form:

(
(

={(read O ¢ | d),{ = v) —>>

vly
y|ly=1[v,0],d {=v)



At this point, the only thing that we require is that the
calculus be consistent. Unfortunately, this calculus turns
out to be non-confluent [5]. The culprit is the substitution
inside the bindings of a box, which is essential in a call-by-
need setting. One solution is to restrict this rule to evalua-
tion contexts [3]. That is, we could replace the third lambda
graph rule with the rule:

(E[z1] | 21 = E[z2],...,2n = E[z],z = v,d)
— (E[z1] | £1 = Ef#2],...,2n = E[v],z = v,d)

This restores confluence at the expense of considerably com-
plicating the proof of correctness. Therefore, we prefer to
prove consistency by showing unicity of infinite normal forms,
also called Bohm trees [21], which are defined as the limit
of the chain of observations collected during reduction.

Theorem 11 The imperative call-by-need lambda-calculus
has unique infinite normal forms.

Proof. The result for the pure part of the calculus is shown in
[2]. Since the reference rules commute with the other rules,
the result for the full calculus constitutes an easy extension
of the previous result. O

5 Compilation
Having set up the source and target languages, we formalize
the compilation map. The map has two components: one

acting on types and one acting on terms.

Definition 12 The compilation of types is the following:

Unit* = Unit
Int” Int
*
of = «

* * *
(m—mn)" =n"—n
(ST T1 Tg)* = <>—>T2*><<>

(MutVar 1 )" = Ref n”

(Va.o)* = Va.o*

We will use I'* to denote the type environment I" where all
the types in the right-hand sides have been translated. As
explained in Section 4.2, the compilation map forgets the
information about state indices.

The translation on terms is in Figure 6. It is based on a
classical store-passing translation but does not actually pass
the store around. Instead it passes a token O. Otherwise,
the translation is fairly standard except that both recursive
constructs in the source language are translated using the
same intermediate form.

The translation commutes with substitution.

Lemma 13 (Substitution) Let M and N be source terms:
M*[z:= N*]=(M[z := N])*.

More interestingly, the compilation preserves the types
of terms. Thus, if a term is typable in the source language,
its translation is typable with an equivalent type in the in-
termediate language. This result holds if we impose the
following constraint: all constants K must have types 7x
such that 7x* = 75. For example, constants of type Int,
(Int — Int) would be acceptable but constants of type
(ST Int Int) would not.

r —

M — M* N — N~
M N — M* N*

M— M* Vi M; — M}
let x; = M; inM‘—><M*|xi=M‘*>
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M— M* Vi.M; — M}
sto {Zi = Ml} M — <fst (M* D) | l; = Ml*>

K— K
L— 1
M — M*
Az M — Az . M*

M— M N — N*
M >>= N — Xz.(N* (fst p) (snd p) | p= M* z)

M— M
ret M — Xe.(M*, )

M — M*
New M — Az.new z M*

M— M*
Read M «— Az.read z M*

M — M* N — N~
Write M N — Az.write z M* N*

Figure 6: Compiling Terms

Theorem 14 IfT'+ M : 7 and M — M*, thenT* - M* :

T

Proof. By induction on the derivation M <« M"*. Most
cases are routine; the only interesting case involves the type
generalization in let-expressions as 7% may have less free
type variables than 7. O

The reverse implication does not hold because the compi-
lation loses information about encapsulation of state threads
that cannot be recovered from the intermediate program.
For example, the source term:

sto {£ =0} (ret ¢)

does not typecheck since it attempts to export a location.
The corresponding target program:

(fst ((Aa.(6,2)) O) | £=0)

typechecks with no problems.

6 Compiler Correctness

Because of the wide semantics gap between the source and
target languages, the proof will proceed via an additional
intermediate language in store-passing style that we refer to
as SPS. The outline of the proof follows:



1. We decompose the compilation map in two maps. The
first map converts the source language to SPS, elimi-
nating the monadic combinators in the process. The
second map substitutes the store data structures that
are being passed around in SPS with the token O.

2. We then develop two semantics for SPS: a call-by-name
one and a call-by-need one and show that they are
equivalent.

3. Finally, we relate the source language to the call-by-
name SPS semantics, and relate the target language
to the call-by-need SPS semantics.

A notable characteristic of our proof technique is that
we can only achieve weak correctness in the following sense.
If the semantics specifies that a source term evaluates to an
observable (such as 5), then we can show that the imple-
mentation must also produce the same observable. However
we do not preclude the possibility that the implementation
produces an observable even if the source semantics specifies
that the program diverges.

The weak correctness is achieved by showing the follow-
ing two statements for each compilation map:

1. translating both sides of each source reduction pro-
duces a valid equivalence in the target of the com-
pilation map (either directly because it is a provable
equality or because it is an observational equivalence),
and

2. showing that the calculus for the target is consistent,
t.e., that it does not prove that M = N for all M and
N.

For example, if the source semantics specifies that a pro-
gram should evaluate to 5, then the first fact implies that
the target semantics proves that the compiled version of the
program also evaluates to 5. The consistency of the seman-
tics ensures that the program cannot evaluate to any other
observable like 6.

6.1 SPS-name and SPS-need

We begin by defining the syntax of the store-passing lan-
guage. This language is still pure: stores are represented
as records and are copied to simulate updates. Stores are
written in the set notation {¢; = M;}.

Definition 15 (Syntax of SPS) Let z range over a set of
variables and £ range over a disjoint set of locations. The
set of terms is inductively defined as follows:

M,N,L == a|MN | (M| =M
| K|xze.M || {D
| fst M |snd M | (M,N)|[M,N]
| new L M |read L M |write L M N
Vo= K|)\x.M|Z|{Zi:Wi}|[M,N]
W = z|V
D = 4 =M
K o= Olnl+]

Being a pure language, the semantics of SPS should be in-
different to the parameter-passing mechanism [27]. Indeed
we will develop a call-by-name semantics and a call-by-need
semantics, and show their equivalence.

The call-by-name semantics is in Figure 7. Note that
the location returned by the new operator is uniquely de-
termined from D. Since the SPS-name calculus is used as
the target of a compilation map, we need to verify its con-
sistency.

Lambda Graphs rules:

(Az.M) N — M[z:=N]
(M | wi=M:) — Mz, := (M, | zi = M)
KV — §K,V) if defined
Pairs:
fst (M,N) — M
snd (M,N) — N
References:

new {D} M — (£ {D,{=M})

read {D =M} ¢ — (M ) =M}

write {D, =M} (N — ((),{D,£=N})
Figure 7: Semantics of SPS-name

Lambda Graphs rules:

(Az.M)N — M[z:=N]
(Cl) | 2= V,D) — (CV] 2=V
(M|y=Clz],s =V,D) — (M |y:C[V]x_V,D>
EV — b6k V) if defined

Administrative reductions:

EM | D) — (E[M] | D)
(M [ D) | D2) — (M| Dy, D2)
<M1 | r = <M2 | D2>,D1> — <M1 | r = M2,D2,D1>

Reductions for Pairs:

(M,N) — ([z,y]|z=M,y=N)
fst [M,N] — M
snd [M,N] — N
References:
new D M — (({,{{==2,D})|z=M)
read {D{=V}{ — (V,{D =V}
write {D =M} (N — {(((),{D,£=2})|z=N)
=M} — ({li=zi}|zi=M)

Figure 8: Semantics of SPS-need

Theorem 16 The SPS-name calculus is Church-Rosser.

The call-by-need semantics of SPS is in Figure 8. As in
the target language substitution is restricted to values only.
In contrast to the target imperative language all the internal
boxes can be merged since no restrictions are imposed on
where the store operations can be applied.

The two calculi can be proved equivalent using the notion
of infinite normal forms. If we let Infqpg_, ... be the infi-
nite normal form computed with respect to SPS-name, and
Infsps_pheeq be the the infinite normal form computed with
respect to SPS-need, we then have the following theorem.

Theorem 17 Let M be a term in SPS, then:
InfSPS—name(M) = InfSPS—need(M)'

Proof. We use an intermediate calculus SPS*-name obtained
by substituting the first two rules of Figure 7 with the fol-



r — T

M M* N < N#
M N — M# N#

M— M*  YiM; — M¥
let ©; = M; in M — (M# | x; = M*)

M— M*  YiM; — M¥
sto {Zi = Ml} M — fst (M* {Zi = Ml*})

K— K
L— 1
M M*
A .M — o . M#

M—M#* N N*
M >>= N — Az.(N# (fst p) (snd p) | p = M# z)

M— M*
ret M — Ae.(M# x)

M— M*
New M «— Az.new x M#

M— M#
Read M «— Awx.read v M#

M— M* N — N#
Write M N — Az.write z M# N#

Figure 9: Compiling Source to SPS

lowing rules:

(Az.M) N —~ (M |z=N)
(Cle] |z =M,D) — (C[M]|z=M,D)
E[(M | D)] — (E[M]| D)

where the evaluation contexts are the ones of Definition 9.
We then show that if M —s» N in the SPS-name calculus
then M —» L in the new calculus, where all the informa-
tion contained in N is contained in L. The same holds in
the other direction. This guarantees that the infinite nor-
mal form does not change. The SPS*-name calculus without
reference operations corresponds to the cyclic call-by-name
evaluation calculus [2], and hence we can use a technique
similar to the one we previously used to prove that sharing
preserves infinite normal forms. O

Since the notion of infinite normal form defines a con-
gruence on the set of terms, we have as a corollary of the
previous theorem that SPS-need is observationally equiva-
lent to SPS-name.

6.2 From Source to SPS-name

The translation from the source language to SPS is in Fig-
ure 9. It is a conventional store-passing translation.

As explained at the beginning of this section, it remains
to establish that the compilation of a source reduction yields
a valid SPS-name equivalence.
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Theorem 18 (Soundness) Let M, N be source terms. If
M — N in the source language, then M¥ = N# in SPS-
name.

Proof. It suffices to show that compiling both sides of every
reduction in Figure 2 yields an equation of SPS-name. We
show some cases in detail:

Case (Az.M)N — M[z := N]. Compiling the left hand
side yields (Az.M#*)N# which is equal to M#[z := N#]
since 3 is an axiom of SPS-name. The result follows by a
straightforward substitution lemma.

Case sto {D} (New M >>= ) — sto {D,{ = M} (H ¢).
Compiling the left hand side yields:

fst ((Az.{H# (fst p) (snd p) | p = (\y.new y M#)z)) D#)
= fst (H# (fst p) (snd p) | p = (Ay.new y M#) D#)
= fst (H# (fst p) (snd p) | p = new D# M#)
= fst (H# (fstp) (snd p) | p = (¢, {D#, 2 = M#}))
= fst (H# (fst (£, {D#, 0= M#})) (snd (£, {D# ¢ = M#})))
= fst (H# ( {D¥# (= M#})

which is the compilation of the right hand side.

Case sto {D} R[ret (A\y.M)] — Ay.sto {D} R[ret M].
We proceed by induction on the structure of R. We only
show the base case when R is the empty context. Compiling

the left hand side yields:

fst (Az.(Ay.M#,
= fst (A\y.M¥* D¥)
= Iy.M#*

z)) D¥)

Compiling the right hand side also yields:

Ay fst (Az.(M#*,
Ay fst (M# D#)
= Iy.M#*

z)) D¥)

The remaining cases proceed in a similar fashion. O

6.3 From SPS-need to Target

The translation from SPS to the target imperative language
is in Figure 10. This translation simply moves the records
representing the stores from the argument positions of new,
read, and write, into the lists of mutually recursive declara-
tions.

For the correctness of this compilation map, we augment
the imperative call-by-need calculus with store records and
one additional rule:

{6 =M} — (O | ti = My)

The rule states then once some expression evaluates to a
well-defined store, ¢.e., a record containing pairs of loca-
tions and expressions, then we can replace that expression
with the token O. This is consistent with our intuitive un-
derstanding of the role of the token O and formalizes the
move from local stores to a global one.

Theorem 19 (Soundness) Let M, N be SPS terms. If
M — N in the SPS-need calculus, then M is observation-

ally equivalent to N1 in the augmented imperative call-by-
need semantics.



r — T

M M1 N < NT
M N — Mt Nt

M— Mt
(M | ;= M:)

Vi.M; — M]
— (M1 | o= M)

M — M*
fst M — fst Mt

M— M*
snd M «— snd Mt

L—1' M<M!
new L M — {(new x MT | z=Lt)

L—1' M<—M'
read L M — (read ¢ MT |z = Lt)

LIt M— M!? N — Nt
write L M N — (write z MTNt | x = LT)

K— K
L— 1
M— Mt
A .M — da. M?

Vi.M; — M]
{ti = Mi} — {t; = M}

N < NT
(M1, NT)

M M1
(M,N) —

N < NT
[MT, NT]

M M1
[M,N] —

Figure 10: Compiling SPS to Target

Proof. We show one of the interesting cases:

(read {D, L=V} &)
(read z €|z ={D1 e =V}
(read z €|z ={(0| DT, e=VT)
(read 2 £ |2 =0,DI ¢ =VT)
(read D¢ | c=0D 0=V
(eadDZ|DTZ—VT>
(
(
(v
(v
(

Vol phe=v")

(Vi,o)| DY e=vT)
,< | DY =V
ADY (= VT)

(VAD, t=V})!

Some of the steps use semantic equalities that are not part
of the calculus like the collection of unused bindings, and
the identification of different representations of the same
underlying graph [1]. The cases for new and write proceed
similarly. O
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7 Imperative Lazy Programming

In addition to being the main technical device for proving
the correctness of the implementation for monadic state, the
imperative call-by-need A-calculus is useful in its own right.
We briefly motivate the additional expressive power of the
calculus over pure call-by-need calculi with one example.

Like many system-level Haskell programs, the implemen-
tation of memo functions relies on expressions with side-
effects [9, 16]. Since Haskell bans such expressions, program-
mers that need this functionality either write low-level rou-
tines in C or in an ad hoc variant of Haskell that integrates
computational effects with the call-by-need semantics [6].

Not only does the imperative call-by-need A-calculus let
programmers express such services as suggested above, but
also it provides the infrastructure to reason about the cor-
rectness and properties of such services.

Example 20 (Invocation Counter) It is easy to use the
tmperative call-by-need A-calculus to write a procedure that
keeps track of how many times it is called:

f={(_{fst po | pp =read O ¢
v, = fst P1
851 = snd P1
p2 = read (snd (write 51 £ (v1 +1))) £)
| £=0)

The procedure refers to a location initialized to 0. Every in-
vocation reads the current value of the location in v1, writes
(1)1 + 1) in the contents of the location, and returns the last
value. The last read operation forces the write to occur since
ot 18 strict in its store argument.

It is now easy to use the axioms to calculate that the
expression (f () + f ()) reduces to 1+2=3.

8 Related Work

Our work builds directly on Ariola et al.’s call-by-need cal-
culi [1, 4], the encapsulation and implementation of monadic
state by Launchbury and Peyton Jones [18, 19], and the ax-
iomatization of monadic state by Launchbury and Sabry [20].
The imperative call-by-need calculus uses ideas developed in
the context of imperative call-by-value calculi [11, 12, 28] as
well as in the conservative extensions of functional languages
with assignments [22, 31].

The correctness of “updates-in-place” is a long standing
problem that has been studied extensively. In the context of
monads, a number of researchers [8, 15, 26, 33, 35] noted that
when the state monad is treated as an abstract data type, it
ought to be possible to implement the state operations more
efficiently using destructive updates. For example, Wadler
states:

The abstract data type for ST guarantees that
it is safe to perform updates (indicated by as-
sign) in place - no special analysis technique is
required [33, p.70].

However, in an implementation like ghc, the monad com-
binators are eventually expressed using more primitive op-
erations (see the compilation map in Figure 6). Once the
monad is “open” (i.e., no longer viewed as an abstract data
type), the above argument used to state the correctness of
destructive updates is no longer valid. Indeed, other con-
structs in the language may now interact with the monadic



effects in unpredictable ways and we can no longer reason
about the implementation of the monadic effects in isolation.

The problem of the correctness of “updates-in-place” has
been studied in other contexts [14, 29, 30, 34, 36]. We have
not yet explored the detailed connections with linear logic
but it appears that the path semantics used by Sestoft [30]
in a call-by-value context does not easily extend to the call-
by-need world.

9 Conclusion and Future Work

We have formalized the implementation of monadic state
using a typed imperative call-by-need language and a type-
preserving compilation map. The formal treatment supports
the first proof of correctness for efficient implementations
of monadic state, and resulted in the development of an
imperative extension of the call-by-need A-calculus. Since
assignments change the space complexity of programs, we
envision such an extension as a foundation for reasoning
about the space properties of call-by-need programs.
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