
Correctness of Monadic State:An Imperative Call-by-Need CalculusZena M. Ariola Amr SabryDepartment of Computer & Information ScienceUniversity of OregonEugene, OR 97403ariola@cs.uoregon.edu sabry@cs.uoregon.eduAbstractThe extension of Haskell with a built-in state monad com-bines mathematical elegance with operational e�ciency:� Semantically, at the source language level, constructsthat act on the state are viewed as functions that passan explicit store data structure around.� Operationally, at the implementation level, constructsthat act on the state are viewed as statements whoseevaluation has the side-e�ect of updating the implicitglobal store in place.There are several unproven conjectures that the two viewsare consistent.Recently, we have noted that the consistency of the twoviews is far from obvious: all it takes for the implementa-tion to become unsound is one judiciously-placed beta-stepin the optimization phase of the compiler. This discoverymotivates the current paper in which we formalize and showthe correctness of the implementation of monadic state.For the proof, we �rst design a typed call-by-need lan-guage that models the intermediate language of the com-piler, together with a type-preserving compilation map. Sec-ond, we show that the compilation is semantics-preservingby proving that the compilation of every source axiom yieldsan observational equivalence of the target language. Becauseof the wide semantic gap between the source and target lan-guages, we perform this last step using an additional inter-mediate language.The imperative call-by-need �-calculus is of independentinterest for reasoning about system-level Haskell code pro-viding services such as memo-functions, generation of newnames, etc., and is the starting point for reasoning aboutthe space usage of Haskell programs.1 Monadic StateThe use of monadic state in functional languages providessigni�cant advantages to both programmers and compilerwriters. Technically, monadic state isolates the impera-tive sublanguage from the purely functional sublanguage byTo appear in: ACM SIGPLAN-SIGACT Symposium onPrinciples of Programming Languages, 1998.

making the sequencing of assignments explicit using newterm and type constructors. This type-based separationleads to elegant ways of stating and inferring invariantsabout the code. For example, a standard type system forHaskell, extended with one rule, can track the lifetimes ofreferences and guarantee non-interference among referencesin several threads [19, 20]. Even better, recent results sug-gest that such an analysis can be performed in the inter-mediate language of a type-directed SML compiler [24]. Byexposing information to the type system, not only can com-piler writers perform sophisticated analyses elegantly, butalso they can avoid some analyses altogether. For example,before eliminating common subexpressions, the TIL com-piler [32] must guarantee that the subexpressions have noside-e�ects using either a weak syntactic check or a sophisti-cated and complicated analysis. In the presence of monadicstate, the type system provides the advantages of the so-phisticated analysis without its complexity as the types au-tomatically distinguish semantic values from computations.Semantically speaking, a program using monadic state isequivalent to a functional program in which the store datastructure is passed around and partially copied to simulateupdates. Clearly, this view does not yield an e�cient imple-mentation and negates much of the bene�ts of using monadicstate. For an e�cient implementation:� no code should be generated for sequencing assign-ments, and� no code should be generated for passing the store.At �rst sight, such an e�cient implementation appears easyto realize, and is indeed implemented in the Glasgow Haskellcompiler (ghc) [19]. In the intermediate language of thecompiler, the monadic combinators are inlined to eliminatethe overhead of sequencing assignments, and the store isrepresented using a global implicit data structure.Unfortunately, the e�cient implementation of monadicstate is more subtle than it �rst appears. We have noted [20,27] that �-steps are generally unsound in the intermediatelanguage of compilers such as ghc. The unsoundness of �has several consequences. First, it raises questions about thecorrectness of transformations like �-lifting and analyses likestrictness analysis that are usually based on the denotationalsemantics of Haskell, which validates �. More signi�cantly,having shown that the intermediate language cannot havea call-by-name semantics, we must �nd an appropriate se-mantics. In the absence of a semantics for the intermedi-ate language, there is no hope to reason about intermediate1



programs, to develop semantic-based analyses and optimiza-tions, or to build robust compilers.In this paper, we develop the semantic infrastructure forthe intermediate languages used for implementing monadicstate and use it to prove the correctness of the e�cient im-plementation of monadic state. The semantics is based onan imperative call-by-need �-calculus that extends the purecall-by-need �-calculus [1, 2, 3, 4] with references to modelthe intermediate languages of Haskell compilers. The im-perative call-by-need �-calculus has the following proper-ties. It is expressed using a set of local program transforma-tions in the style of Felleisen and Hieb's �v-S-calculus [12]and Crank's theories for parameter-passing in the �-calcu-lus [10, 11]. As expected some observational equivalencesthat held between pure call-by-need terms (e.g., �) are nolonger valid in the presence of assignments. However, allsource axioms are valid observational equivalences in the im-perative call-by-need �-calculus, which is su�cient to showthat the implementation is faithful to the semantics of thesource language.The practical signi�cance of the imperative call-by-need�-calculus is two-fold. First, it precisely explains, for the�rst time, the operational characteristics of the interactionbetween laziness and assignments. Functional programmingfolklore has often stated that, in contrast with the inter-action of call-by-value and assignments, the combination oflaziness and assignments is too complicated, if at all pos-sible, to understand operationally. This view is what mo-tivated the use of monads in the �rst place. Second, thecalculus opens the way for theories and analyses of Haskellprograms for reasoning about intensional properties such asspace usage and space leaks. Previous theories did not takethe imperative update optimizations into account, whichlimits their validity, as the updates a�ect the space com-plexity of programs.The remainder of the paper is organized as follows. Webegin by reviewing the syntax, types, and semantics of thesource language. In Section 3, we gently design the inter-mediate language based on both practical and theoreticalconsiderations. Section 4 introduces the formal syntax andsemantics of the intermediate language. Section 5 formalizesthe compilation map and show that it is consistent with thetyping of both the source and intermediate languages. Sec-tion 6 shows the correctness of the e�cient implementationof monadic state. Section 7 illustrates the use of the cal-culus for reasoning about imperative call-by-need programs.Finally Sections 8 and 9 review related work, conclusions,and ideas for future work.2 Source LanguageOur source language is modeled on Haskell.2.1 TermsThe core constructs of the language include those of an ap-plied �-calculus with mutually recursive de�nitions. In ad-dition, the language includes a built-in state monad withoperations on reference cells.De�nition 1 (Source Syntax) Let x range over a set ofvariables and ` range over a disjoint set of locations. The

set of terms is inductively de�ned as follows:Expressions M;N;L ::= x j V j MNj let xi = Mi in Mj sto fDg MValues V :: K j �x:M j ` j Sj M >>= N j ret MStore Operations S ::= New M j Read Mj Write M NStore Bindings D ::= `i =MiConstants K ::= () j n j + j : : :We let K range over an unspeci�ed set of simple constantslike numbers and addition. We will also use C to range overcontexts with one hole.The constructs New, Read, andWrite implement the usualoperations on reference cells. The constructs ret and >>= arethe unit and bind operations of the state monad respectively.Expressions built up from these �ve operations are state-transformers and hence syntactic values. In the expression(sto f`i = Mig N), the scope of each location `i includesall the right-hand sides Mi and N . The evaluation of theexpression executes N , returns its value, and discards the�nal state. The sto construct also encapsulates the state,in the sense that the state is neither accessible nor visible tothe outside world [19, 20].2.2 TypesBoth the monadic extension to the pure language and theencapsulation of state rely critically on types. Stateful com-putations can only be generated using the term constructors:ret, >>=, New, Read, and Write. Furthermore, their typesare built using a special type constructor ST. The type ofa stateful computation is generally of the form (ST �1 �2),where �1 is the index of the state and �2 is the type of theresult of the stateful computation. The type (MutVar �1 �2)is the type of references allocated from a state indexed with�1 and containing values of type �2.De�nition 2 (Source Types) Let � range over a set oftype variables. The set of types is inductively de�ned asfollows: Types � ::= Unit j Int j � j � ! �j ST � � j MutVar � �Type Schemes � ::= 8�:� j �The typing rules are in Figure 1. For the constants, weassume that the type of K is given by �K. The reasoningbehind the rule for sto is as follows. Every operation whichmanipulates a state thread is infected with the index of thatstate thread: when >>= is used to combine operations, theindices have to be the same (i.e., they become uni�ed); everylocation returned by New has the same index as the threadthat created it; and every time a Read or Write is performedits MutVar argument has the same index as the state threadin which the read or write is performed. Then when a statethread is encapsulated by sto the type system will onlyaccept the encapsulation if:1. the index is still a variable; and2. that variable is universally quanti�able.If these two conditions hold then the state thread makes nodemands on its environment to provide, say, a location tobe read or written. If it did, the index would have been uni-�ed with the index of the location in the environment, and2



� [ fx : 8�i:�g ` x : � [�i := �i]� ` K : �K� [ f` : �g ` ` : �� ` M : � 0 ! � � ` N : � 0� `M N : �� [ fx : �g `M : � 0� ` �x:M : � ! � 08j: � [ fxi : �ig ` Mj : �j� [ fxi : 8�ji :�ig ` M : �� ` let xi = Mi in M : �where �ji 2 FV (�i)nFV (�)8j: � [ f`i : MutVar � �ig ` Mj : �j� [ f`i : MutVar � �ig ` M : ST � �� ` sto f`i =Mig M : �where � 62 FV (�;�)� `M : ST � 0 �2 � ` N : �2 ! ST � 0 �1� `M >>= N : ST � 0 �1� `M : �� ` ret M : ST � 0 �� `M : �� ` New M : ST � 0 (MutVar � 0 �)� `M : MutVar � 0 �� ` Read M : ST � 0 �� `M : MutVar � 0 � � ` N : �� ` Write M N : ST � 0 UnitFigure 1: Typing Rules for Source Languageuniversal quanti�cation could not take place. This intuitiveargument can be made precise to provide a formal proof ofthe type-based encapsulation of monadic state [20].2.3 Evaluation ContextsThe semantics of the source language can be convenientlyspeci�ed using a set of reductions. Because of the lazy se-mantics and lazy store updates [7, 13, 17], the de�nition ofthe reductions is intertwined with the de�nition of evalua-tion contexts. Therefore, we de�ne evaluation contexts �rst.These contexts use two auxiliary concepts: return contextsR and dependency chains H.De�nition 3 (Return Contexts R) The contexts are in-ductively de�ned as:R ::= [ ] j M >>= �x:RReturn contexts de�ne the position within a state threadfrom which it is possible to immediately return without per-forming the rest of the stateful computation. Indeed, none

of the computations to the left of >>= is performed unlessthey are explicitly demanded. Demands occur according tothe following de�nition. The de�nition uses the yet-to-be-de�ned evaluation contexts E. At this point the reader maypretend that all evaluation contexts are the empty contextto get the intuition behind the concept of dependencies.De�nition 4 (Dependencies H) Chains of dependenciesare de�ned as follows:H ::= �x:R[E[x]]j �x:R[ret E[x]]j �x:R[M >>= E[x]]j �x:R[E[x] >>= H]j �x:R[S >>= H]In the �rst three clauses, the value of x is needed to proceedwith the evaluation of the state thread. In the next twoclauses, a demand for a stateful computation is propagatedto the beginning of the thread. The last clause shows thatthe operations New, Read, and Write are strict in the state,which demands all previous computations in the thread.De�nition 5 (Evaluation Contexts E) The set of con-texts is inductively de�ned as:E ::= [ ] j E M j K Ej sto fDg R[E]j sto fDg R[ret E]j sto fDg R[M >>= E]j sto fDg R[E >>= H]j sto fDg (Read E >>= H)j sto fDg (Write E M >>= H)The �rst three clauses in the de�nition of evaluation contextsde�ne the usual contexts for call-by-name languages. Theremaining contexts are used when evaluating a stateful com-putation. The next three contexts combined keep demand-ing the right argument of >>= until they reach the last statetransformer in an R-sequence. If that state transformer is aret then we demand the value of its subexpression. If on theother hand, the last state transformer demands a variable,then we backtrack following the previously de�ned chainsof dependencies demanding state transformers on the leftof >>=. Finally the operations Read and Write are strict intheir �rst argument which is the location to read or write.2.4 SemanticsFigure 2 presents an axiomatization of the semantics [20].The �rst three rules are as expected in an applied �-calculus.In particular, the semantics of function application is a call-by-name one that admits full �. In the next three rules, eachprimitive store operation performs its intended operation onthe properly initialized store fragment. The structural rulescorrespond to the three monad laws. Finally the return rulesshow how to compute the result of a state thread; there is arule for each kind of syntactic value.3 Design Decisions for the Intermediate LanguageThe intermediate language ended up being rather complex,so we spend some time explaining the major decisions in-volved in its design. Most of the design ideas build uponthe ghc implementation. Interestingly, the design can bemotivated by technical problems in attempted proofs. Forexample, a broken consistency theorem indicated that the3



Computational Reductions:(�x:M)N ! M [x := N ]let xi =Mi in M ! M [xj := (let xi = Mi inMj)]K V ! �(K;V ) if de�nedsto fDg (New M >>= H) ! sto fD; ` = Mg (H `)sto fD; ` =Mg (Read ` >>= H) ! sto fD; ` = Mg (H M)sto fD; ` =Mg (Write ` N >>= H) ! sto fD; ` = Ng (H ())Structural Reductions:sto fDg R[ret M >>= H] ! sto fDg R[H M ]sto fDg R[(M >>= N) >>= H] ! sto fDg R[M >>= �x:((N x) >>= H)]sto fDg R[S] ! sto fDg R[S >>= �x:ret x]Return Reductions:sto fDg R[ret K] ! Ksto fDg R[ret (�y:M)] ! �y:sto fDg R[ret M ]sto fDg R[ret (M >>= N)] ! (sto fDg R[ret M ]) >>= (sto fDg R[ret N ])sto fDg R[ret (ret M)] ! ret (sto fDg R[ret M ])sto fDg R[ret (New M)] ! New (sto fDg R[ret M ])sto fDg R[ret (Read M)] ! Read (sto fDg R[ret M ])sto fDg R[ret (Write M N)] ! Write (sto fDg R[ret M ]) (sto fDg R[ret N ])sto fDg R[ret `] ! ` if ` 62 dom(D)Figure 2: Call-by-Name Semantics of Source Languageparameter-passing mechanism should be call-by-need ratherthan call-by-name, etc. Furthermore, the intuitive devel-opment here is paralleled by the structure of the proof inSection 6.3.1 Basic Compilation SchemeThe starting point in the de�nition of the intermediate lan-guage is the compilation strategy adopted by ghc. The �rstphase of compilation closely follows the denotational seman-tics of the source language [19]: it reformulates the programin explicit store-passing style. For example, consider thefollowing code fragment:sto fg ( New 0 >>= �p:Write p 5 >>= � :Read p >>= �v:ret v)Intuitively, the evaluation of the term allocates a new loca-tion p, initializes p to 0, updates p with the value 5, bindsv to the contents of p, discards the state, and returns v.Clearly the result should be 5. Applying the store-passingtranslation and simplifying the output for readability, weget:fst ( let (p; s1) = new 2 0( ; s2) = write s1 p 5(v; s3) = read s2 pin (v; s3))where 2 is the initial empty store. Next, the compiler elim-inates the syntactic sugar associated with pattern-matchingwhich produces the term P :P � fst ( let p1 = new 2 0p = fst p1s1 = snd p1p2 = write s1 p 5s2 = snd p2

p3 = read s2 pv = fst p3s3 = snd p3in (v; s3))3.2 Explicit Store vs. Implicit StoreAs apparent from above, each of the operations new, read,and write, in the intermediate language takes a store as anargument and returns a store as part of its result. Thesestores play two independent roles:1. Modeling the Heap: Semantically stores are �nite func-tions (tables) mapping locations to their contents, andupdates are simulated by creating new stores (copyingparts of the table in the process).2. Sequencing Imperative Operations: The explicit store-passing style de�nes the relative order of imperativeoperations via the data dependencies among stores.For example, the operation (write s1 p 5) must happenafter the operation that produces store s1 as its resultbecause write is strict in its store argument.Taken literally, the above points imply a rather ine�-cient implementation. To achieve an e�cient implementa-tion, we proceed in two steps. First we model the heap withone global implicit store. This means that the operationsnew, read, and write should be interpreted as performingdestructive updates on the global store rather than operat-ing on their store arguments. The store arguments are nolonger relevant for the implementation of assignments butare maintained to prevent program transformations from ac-cidentally reordering imperative operations.After all optimizations have been performed, the backend arranges to generate no code at all to pass aroundthe store arguments. If the intermediate language is ex-plicitly typed, then the code generator can easily distin-guish arguments representing the store from other argu-ments. Let} be the special type of stores: an expression like4



(�s2:read s2 p) of type (} ! Int�}) should be compiledas a statement producing an Int as a side-e�ect and not asa function. This discussion thus motivates the importanceof types for the intermediate language.3.3 Call-by-Name vs. Call-by-NeedThe shift of perspective from explicit stores with functionalupdates to implicit stores with destructive updates appearslike a reasonable optimization but it is not evidently cor-rect. In fact, the correctness turns out to be a rather subtleissue. Let's assume that the semantics of the intermedi-ate language is the usual call-by-name semantics for Haskellthat validates full �. Now consider the e�ect of a sequenceof �-reductions on the term P from Subsection 3.1:fst ( let p3 = read (snd (write (snd (new 2 0))(fst (new 2 0))5))(fst (new 2 0))v = fst p3s3 = snd p3in (v; s3))By inspection of the code, the number 5 only occurs in the�rst argument to read. Hence if read evaluates the store ar-gument for e�ect (but does not use the result), the code cannever evaluate to 5. This error is due to the duplication ofexpressions like (new 2 0). Each occurrence of new ignoresits store argument, and returns a new distinct location rel-ative to the global store. Compare this behavior to the onedictated by the semantics where new is a pure function andevery occurrence of (new 2 0) returns the same location.In conclusion, �-steps in particular, and call-by-namereasoning principles in general are incompatible with the im-plementation strategy described in Subsection 3.2. We werethe �rst to note this problem and have conjectured [20, 27]that optimizations based on call-by-need semantics wouldbe sound in the intermediate language of the compiler. In-tuitively, call-by-need transformations would not duplicatenon-values such as (new 2 0). Fortunately, even before themonadic extensions, compilers such as ghc were careful notto duplicate work and hence refrained from using � stepsfor performance reasons [25]. Consequently, the additionof assignments to the back end did not cause any immedi-ate problems. However, this non-duplication is not a mereoptimization issue, but an essential correctness issue.3.4 Demanding Values vs. E�ectsHaving decided on a call-by-need semantics for the interme-diate language, we must resolve the following dilemma. Byde�nition the call-by-need mechanism only evaluates an ex-pression if its value is needed. How then are we to evaluateexpressions such as write for e�ect only?There are several ways to encode this additional demandfor e�ects. For example, by adding a special combinatorseq, a strict-let, or writing in continuation-passing style, allof which involve a change in the language or compilationscheme. But fortunately we already have a mechanism inplace based on the store arguments that are passed around.Since all imperative operations are strict in their store ar-guments, the result of an expression such as write (whichincludes a store) is demanded by future imperative opera-tions. However, since the actual value of the store argumentis irrelevant, it is su�cient to have just one value of type} that we name 2. When a state thread is created, it is

provided with the value 2. Operations in the thread willonly be performed when they receive the \token" 2 andthen pass it to the remaining operations. Again the codegenerator does not actually generate any code to move thevalue 2.3.5 Boxed vs. Unboxed TypesUltimately the code generator treats the type } specially.This interacts poorly with polymorphism as the followingexample illustrates. Consider the source fragment:let f = �a:�b:(a; b)in ret (f 1 2)After translation to the intermediate language and some pro-cessing, we get:let f = �a:�b:(a; b)in (�v:�s:(v; s)) (f 1 2)Without paying attention to types, a compiler might rec-ognize and lift the common subexpression producing:let f = �a:�b:(a; b)in f (f 1 2)But then, what code should the compiler generate for thepolymorphic function f? Both instances of f cannot becompiled in the same way. The inner instance should clearlytake two arguments and build a pair data structure. Theouter instance should only take one argument; the secondbeing the token representing the store that is ignored at codegeneration time.Technically, the compiler cannot generate code for a poly-morphic function of type (� ! � � �) unless it knows allthe uses of the functions: one of them might have � = }which would require di�erent code generation routines. An-other way of looking at the problem is that a function oftype (�! ���) cannot be uniformly used at types (Int!Int�Int) and (}! Int�}). The solution to the problemis to treat the type } as an unboxed type, and to restricttype variables not to range over unboxed types [23].3.6 RecursionSince the use of assignments can easily create cyclic struc-tures, a proper handling of recursion is a prerequisite tohandling state. The source language has two constructs forrecursion: let and sto. We here show that the intermediatelanguage must express these two notions of recursion withone construct. Consider the source term:sto f` = � :0g let x = � :Read ` in Write ` (� :((� :5) x))Irrespective of how we translate let and sto we will eventu-ally reach a point, after performing the assignment, wherex refers to ` and ` refers to x. So we must have one con-struct in which recursion via variables and locations can besimultaneously expressed. This behavior does not happen inthe source language because we have full � which enables usto eliminate let-expressions by substituting the right-handsides of the de�nitions in the body (See Figure 2).4 Imperative Call-by-Need CalculusBuilding on our previous discussion, we formalize the precisesyntax and semantics of the intermediate language.5



4.1 TermsThe terms of the intermediate language include pairs, simpleconstants, (destructive) operations on reference cells, andone construct h: j :i, pronounced box , for expressing recur-sion via both variables and locations. In contrast to thesyntax of the source language where we used capital lettersto range over the meta-variables, we here use lower case let-ters.De�nition 6 (Target Terms) Let x range over a set ofvariables, ` range over a disjoint set of locations. The set ofterms is inductively de�ned as follows:Expressions e ::= x j v j e1e2 j he j dij (e1; e2) j fst e j snd ej new e1 e2 j read e1 e2j write e1 e2 e3Values v ::= k j �x:e j ` j [e1; e2] j 2Bindings d ::= #i = ei# ::= x j `Constants k ::= () j n j + j : : :As explained in the previous section, the value 2 is the to-ken representing the store. The imperative operations new,read, and write, all expect this token as their �rst argu-ment. Following the design of the applied call-by-need �-calculus [1, 2, 3, 4], we distinguish two kinds of pairs. Incontrast to (e1; e2), pairs of the form [e1; e2] are values thatcan be duplicated. This distinction avoids the duplicationof the components of a pair, which is essential to capturethe call-by-need semantics.4.2 TypesThe types of the intermediate language are the expectedones: they are built using constructors for primitives, func-tions, products, and references.De�nition 7 (Target Types) Let � range over a set oftype variables. The set of types is inductively de�ned asfollows: Types � ::= B j UBoxed Types B ::= Unit j Int j � j � ! �j Ref � j � �}Unboxed Types U ::= }Type Schemes � ::= 8�:� j �As implied by the grammar, type variables range only overboxed types. This is necessary because of the interaction oftypes treated specially by the code generator and polymor-phism (see Section 3.5). Modern compilers have optimizedunboxed representations of datatypes like integers; we donot handle such an extension in our language. Also, wehave restricted the second component of pairs to be of thespecial store type }. This is not necessary but simpli�es thepresentation and proofs.Most importantly, the type of references no longer in-cludes a state index. It is conceivable to maintain the stateindices in the types of the intermediate language, but sinceour goal is to prove the correctness of an existing implemen-tation strategy, we stick to the actual ghc language. Thisdecision to \forget" some type information during compila-tion will have a major impact when we study the correctnessof the compiler in Section 6.The typing rules for the intermediate language are inFigure 3. They should be of no surprise.

� [ fx : 8�i:�g ` x : � [�i := �i]� ` e1 : � 0 ! � � ` e2 : � 0� ` e1 e2 : �8j: � [ fxi : �i; `i : Ref �ig ` ej : �j� [ fxi : 8�ji :�i; `i : Ref �ig ` e : �� ` he j #i = eii : �where �ji 2 FV (�i)nFV (�)� ` e1 : � � ` e2 : }� ` (e1; e2) : � �}� ` e : � �}� ` fst e : �� ` e : � �}� ` snd e : }� ` e1 : } � ` e2 : �� ` new e1 e2 : Ref � �}� ` e1 : } � ` e2 : Ref �� ` read e1 e2 : � �}� ` e1 : } � ` e2 : Ref � � ` e3 : �� ` write e1 e2 e3 : Unit�}� ` k : �k� [ f` : �g ` ` : �� [ fx : �g ` e : � 0� ` �x:e : � ! � 0� ` e1 : � � ` e2 : }� ` [e1; e2] : � �}� ` 2 : }Figure 3: Typing Rules for Intermediate Language4.3 Semantics I: Call-by-Need with RecursionWe begin with the semantics of the subset of the languageexcluding assignments [1, 2]. To reduce the number of reduc-tions we use evaluation contexts to abstract some commonpatterns.De�nition 8 (Evaluation Contexts E) The set of pureevaluation contexts is inductively de�ned as follows:E ::= [ ] j Ee j fst E j snd E j kEThe reductions for the pure language are in Figure 4.They are grouped in three categories. The �rst categoryincludes reductions on pure lambda graphs that implementcall-by-need applications. An argument is added to the listof declarations when �rst encountered. The argument canonly be copied once it becomes a value. Next, we have ad-ministrative reductions that re-arrange bindings. All thereductions enlarge the scope of the declarations to include6



Reductions for Lambda Graphs: (�x:e1) e2 ! he1 j x = e2ihC[x] j x = v; di ! hC[v] j x = v; dihe j y = C[x]; x = v; di ! he j y = C[v]; x = v; dik v ! �(k; v) if de�nedAdministrative reductions: E[he j di] ! hE[e] j dihhe j d1i j d2i ! he j d1; d2ihE[#] j var(#) = E[#1]; : : : ; var(#n) = he j d1i; d2i ! hE[#] j var(#) = E[#1]; : : : ; var(#n) = e; d1; d2iReductions for Pairs: (e1; e2) ! h[x;y] j x = e1; y = e2ifst [e1; e2] ! e1snd [e1; e2] ! e2Figure 4: Reductions for Pure Recursive Call-by-Need Languagenew 2 e ! h[`;2] j ` = eihE[read 2 `] j ` = v; di ! hE[[v;2]] j ` = v; dihE[write 2 ` e1] j ` = e2; di ! hE[[();2]] j ` = e1; dihE[#] j var(#) = E1[#1]; : : : ; var(#n) = En[read 2 `]; ` = v; di ! hE[#] j var(#) = E1[#1]; : : : ; var(#n) = En[[v;2]]; ` = v; dihE[#] j var(#) = E1[#1]; : : : ; var(#n) = En[write 2 ` e1]; ` = e2; di! hE[#] j var(#) = E1[#1]; : : : ; var(#n) = En[[();2]]; ` = e1; diFigure 5: Reductions for Reference Cellsthe enclosing context. Note that in the third rule, the inter-nal box is only attened when is needed. We will discuss thereasons for this restriction after having introduced the oper-ations on reference cells. Finally, we have the reductions onpairs, which rewrite regular pairs to special pairs [:; :] thatcan be treated as values and safely duplicated.4.4 Semantics II: AssignmentsTo axiomatize the semantics of the full language includingassignments, we extend the sets of evaluation contexts andreductions.De�nition 9 (E) The set of evaluation contexts extendsthe one in De�nition 8 as follows:E ::= : : : j new E e j read E e j read v Ej write E e1 e2 j write v E eIn other words, the imperative operations are strict in theirstore argument (the token 2). Also read and write are strictin the location to be accessed.In contrast to the other operations, the operations in-volving reference cells are partially ordered using evaluationcontexts. For example, a read operation is only performedwhen it occurs in the hole of an evaluation context relativeto the location being read. Furthermore, the contents of thelocation must have already been evaluated before the readcan occur. The situation with write is similar but slightlymore complicated. An expression (write 2 ` e) must alsooccur in the hole of an evaluation context relative to `, butit does not demand the evaluation of the contents of `. In-deed, the old content is about to be overwritten, and hence

not needed. In summary, not every expression of the formE[`] demands the evaluation of the contents of `. This ob-servation motivates the following de�nition.De�nition 10 (#) The set of demanding expressions is:# ::= x j read 2 `The function var(:) maps a demanding expression to thevariable or location it demands:var(x) = xvar(read 2 `) = `The complete set of reductions includes the reductions inFigure 4 (with the new de�nitions of evaluation contexts) inaddition to the assignment-speci�c reductions in Figure 5.In the reductions for reference cells, the store variable is onlyused for sequencing the evaluation of operations and not foractually modeling the heap.We can now explain why we need to impose some restric-tions on the attening of internal boxes. A non demandedattening could disallow a reference operation that wouldotherwise be possible, as shown in the diagram below:h�x:y j y = hread 2 ` j ` = 0ii -- h�x:y j y = read 2 `; ` = 0ih�x:y j y = [0;2]; ` = 0i? - ??The attening is necessary to allow reductions of the form:hy j y = hread 2 ` j di; ` = vi --hy j y = [v;2]; d; ` = vi7



At this point, the only thing that we require is that thecalculus be consistent. Unfortunately, this calculus turnsout to be non-conuent [5]. The culprit is the substitutioninside the bindings of a box, which is essential in a call-by-need setting. One solution is to restrict this rule to evalua-tion contexts [3]. That is, we could replace the third lambdagraph rule with the rule:hE[x1] j x1 = E[x2]; : : : ; xn = E[x]; x = v; di! hE[x1] j x1 = E[x2]; : : : ; xn = E[v]; x = v; diThis restores conuence at the expense of considerably com-plicating the proof of correctness. Therefore, we prefer toprove consistency by showing unicity of in�nite normal forms,also called B�ohm trees [21], which are de�ned as the limitof the chain of observations collected during reduction.Theorem 11 The imperative call-by-need lambda-calculushas unique in�nite normal forms.Proof. The result for the pure part of the calculus is shown in[2]. Since the reference rules commute with the other rules,the result for the full calculus constitutes an easy extensionof the previous result. 25 CompilationHaving set up the source and target languages, we formalizethe compilation map. The map has two components: oneacting on types and one acting on terms.De�nition 12 The compilation of types is the following:Unit� = UnitInt� = Int�� = �(�1 ! �2)� = �1� ! �2�(ST �1 �2)� = }! �2� �}(MutVar �1 �2)� = Ref �2�(8�:�)� = 8�:��We will use �� to denote the type environment � where allthe types in the right-hand sides have been translated. Asexplained in Section 4.2, the compilation map forgets theinformation about state indices.The translation on terms is in Figure 6. It is based on aclassical store-passing translation but does not actually passthe store around. Instead it passes a token 2. Otherwise,the translation is fairly standard except that both recursiveconstructs in the source language are translated using thesame intermediate form.The translation commutes with substitution.Lemma 13 (Substitution) LetM andN be source terms:M�[x := N�] = (M [x := N ])�.More interestingly, the compilation preserves the typesof terms. Thus, if a term is typable in the source language,its translation is typable with an equivalent type in the in-termediate language. This result holds if we impose thefollowing constraint: all constants K must have types �Ksuch that �K� = �k. For example, constants of type Int,(Int ! Int) would be acceptable but constants of type(ST Int Int) would not.

x ,! xM ,!M� N ,! N�M N ,!M� N�M ,!M� 8i:Mi ,!M�ilet xi =Mi in M ,! hM� j xi = M�i iM ,!M� 8i:Mi ,!M�isto f`i = Mig M ,! hfst (M� 2) j `i = M�i iK ,! K` ,! `M ,!M��x:M ,! �x:M�M ,!M� N ,! N�M >>= N ,! �x:hN� (fst p) (snd p) j p = M� xiM ,!M�ret M ,! �x:(M�; x)M ,!M�New M ,! �x:new x M�M ,!M�Read M ,! �x:read x M�M ,!M� N ,! N�Write M N ,! �x:write x M� N�Figure 6: Compiling TermsTheorem 14 If � ` M : � and M ,!M�, then �� ` M� :��Proof. By induction on the derivation M ,! M�. Mostcases are routine; the only interesting case involves the typegeneralization in let-expressions as �� may have less freetype variables than � . 2The reverse implication does not hold because the compi-lation loses information about encapsulation of state threadsthat cannot be recovered from the intermediate program.For example, the source term:sto f` = 0g (ret `)does not typecheck since it attempts to export a location.The corresponding target program:hfst ((�x:(`; x)) 2) j ` = 0itypechecks with no problems.6 Compiler CorrectnessBecause of the wide semantics gap between the source andtarget languages, the proof will proceed via an additionalintermediate language in store-passing style that we refer toas SPS. The outline of the proof follows:8



1. We decompose the compilation map in two maps. The�rst map converts the source language to SPS, elimi-nating the monadic combinators in the process. Thesecond map substitutes the store data structures thatare being passed around in SPS with the token 2.2. We then develop two semantics for SPS: a call-by-nameone and a call-by-need one and show that they areequivalent.3. Finally, we relate the source language to the call-by-name SPS semantics, and relate the target languageto the call-by-need SPS semantics.A notable characteristic of our proof technique is thatwe can only achieve weak correctness in the following sense.If the semantics speci�es that a source term evaluates to anobservable (such as 5), then we can show that the imple-mentation must also produce the same observable. Howeverwe do not preclude the possibility that the implementationproduces an observable even if the source semantics speci�esthat the program diverges.The weak correctness is achieved by showing the follow-ing two statements for each compilation map:1. translating both sides of each source reduction pro-duces a valid equivalence in the target of the com-pilation map (either directly because it is a provableequality or because it is an observational equivalence),and2. showing that the calculus for the target is consistent,i.e., that it does not prove that M = N for all M andN .For example, if the source semantics speci�es that a pro-gram should evaluate to 5, then the �rst fact implies thatthe target semantics proves that the compiled version of theprogram also evaluates to 5. The consistency of the seman-tics ensures that the program cannot evaluate to any otherobservable like 6.6.1 SPS-name and SPS-needWe begin by de�ning the syntax of the store-passing lan-guage. This language is still pure: stores are representedas records and are copied to simulate updates. Stores arewritten in the set notation f`i = Mig.De�nition 15 (Syntax of SPS) Let x range over a set ofvariables and ` range over a disjoint set of locations. Theset of terms is inductively de�ned as follows:M;N;L ::= x j MN j hM j xi = Miij K j �x:M j ` j fDgj fst M j snd M j (M;N) j [M;N ]j new L M j read L M j write L M NV ::= K j �x:M j ` j f`i =Wig j [M;N ]W ::= x j VD ::= `i =MiK ::= () j n j + j : : :Being a pure language, the semantics of SPS should be in-di�erent to the parameter-passing mechanism [27]. Indeedwe will develop a call-by-name semantics and a call-by-needsemantics, and show their equivalence.The call-by-name semantics is in Figure 7. Note thatthe location returned by the new operator is uniquely de-termined from D. Since the SPS-name calculus is used asthe target of a compilation map, we need to verify its con-sistency.

Lambda Graphs rules:(�x:M) N ! M [x := N ]hM j xi =Mii ! M [xj := hMj j xi = Mii]K V ! �(K;V ) if de�nedPairs: fst (M;N) ! Msnd (M;N) ! NReferences: new fDg M ! (`; fD; ` = Mg)read fD; ` = Mg ` ! (M; fD; ` =Mg)write fD; ` =Mg ` N ! ((); fD; ` = Ng)Figure 7: Semantics of SPS-nameLambda Graphs rules:(�x:M) N ! M [x := N ]hC[x] j x = V;Di ! hC[V ] j x = V;DihM j y = C[x]; x = V;Di ! hM j y = C[V ]; x = V;Dik V ! �(k; V ) if de�nedAdministrative reductions:E[hM j Di] ! hE[M ] j DihhM j D1i j D2i ! hM j D1;D2ihM1 j x = hM2 j D2i;D1i ! hM1 j x = M2;D2;D1iReductions for Pairs:(M;N) ! h[x;y] j x =M;y = Nifst [M;N ] ! Msnd [M;N ] ! NReferences: new D M ! h(`; f` = x;Dg) j x =Miread fD; ` = V g ` ! (V; fD; ` = V g)write fD; ` = Mg ` N ! h((); fD; ` = xg) j x = Nif`i = Mig ! hf`i = xig j xi =MiiFigure 8: Semantics of SPS-needTheorem 16 The SPS-name calculus is Church-Rosser.The call-by-need semantics of SPS is in Figure 8. As inthe target language substitution is restricted to values only.In contrast to the target imperative language all the internalboxes can be merged since no restrictions are imposed onwhere the store operations can be applied.The two calculi can be proved equivalent using the notionof in�nite normal forms. If we let Inf SPS�name be the in�-nite normal form computed with respect to SPS-name, andInf SPS�need be the the in�nite normal form computed withrespect to SPS-need, we then have the following theorem.Theorem 17 Let M be a term in SPS, then:Inf SPS�name(M) = Inf SPS�need(M):Proof. We use an intermediate calculus SPS?-name obtainedby substituting the �rst two rules of Figure 7 with the fol-9



x ,! xM ,!M# N ,! N#M N ,!M# N#M ,!M# 8i:Mi ,!M#ilet xi =Mi inM ,! hM# j xi = M#i iM ,!M# 8i:Mi ,!M#isto f`i = Mig M ,! fst (M� f`i = M�i g)K ,! K` ,! `M ,!M#�x:M ,! �x:M#M ,!M# N ,! N#M >>= N ,! �x:hN# (fst p) (snd p) j p = M# xiM ,!M#ret M ,! �x:(M#; x)M ,!M#New M ,! �x:new x M#M ,!M#Read M ,! �x:read x M#M ,!M# N ,! N#Write M N ,! �x:write x M# N#Figure 9: Compiling Source to SPSlowing rules:(�x:M) N ! hM j x = NihC[x] j x =M;Di ! hC[M ] j x = M;DiE[hM j Di] ! hE[M ] j Diwhere the evaluation contexts are the ones of De�nition 9.We then show that if M -- N in the SPS-name calculusthen M -- L in the new calculus, where all the informa-tion contained in N is contained in L. The same holds inthe other direction. This guarantees that the in�nite nor-mal form does not change. The SPS?-name calculus withoutreference operations corresponds to the cyclic call-by-nameevaluation calculus [2], and hence we can use a techniquesimilar to the one we previously used to prove that sharingpreserves in�nite normal forms. 2Since the notion of in�nite normal form de�nes a con-gruence on the set of terms, we have as a corollary of theprevious theorem that SPS-need is observationally equiva-lent to SPS-name.6.2 From Source to SPS-nameThe translation from the source language to SPS is in Fig-ure 9. It is a conventional store-passing translation.As explained at the beginning of this section, it remainsto establish that the compilation of a source reduction yieldsa valid SPS-name equivalence.

Theorem 18 (Soundness) Let M;N be source terms. IfM ! N in the source language, then M# = N# in SPS-name.Proof. It su�ces to show that compiling both sides of everyreduction in Figure 2 yields an equation of SPS-name. Weshow some cases in detail:Case (�x:M)N ! M [x := N ]. Compiling the left handside yields (�x:M#)N# which is equal to M#[x := N#]since � is an axiom of SPS-name. The result follows by astraightforward substitution lemma.Case sto fDg (NewM >>=H) ! sto fD; ` = Mg (H `).Compiling the left hand side yields:fst ((�x:hH# (fst p) (snd p) j p = (�y:new y M#)xi) D#)= fst hH# (fst p) (snd p) j p = (�y:new y M#) D#i= fst hH# (fst p) (snd p) j p = new D# M#i= fst hH# (fst p) (snd p) j p = (`; fD#; ` = M#g)i= fst (H# (fst (`; fD#; ` = M#g)) (snd (`; fD#; ` = M#g)))= fst (H# ` fD#; ` = M#g)which is the compilation of the right hand side.Case sto fDg R[ret (�y:M)] ! �y:sto fDg R[ret M ].We proceed by induction on the structure of R. We onlyshow the base case when R is the empty context. Compilingthe left hand side yields:fst ((�x:(�y:M#; x)) D#)= fst (�y:M#;D#)= �y:M#Compiling the right hand side also yields:�y:fst ((�x:(M#; x)) D#)= �y:fst (M#;D#)= �y:M#The remaining cases proceed in a similar fashion. 26.3 From SPS-need to TargetThe translation from SPS to the target imperative languageis in Figure 10. This translation simply moves the recordsrepresenting the stores from the argument positions of new,read, and write, into the lists of mutually recursive declara-tions.For the correctness of this compilation map, we augmentthe imperative call-by-need calculus with store records andone additional rule:f`i = Mig ! h2 j `i = MiiThe rule states then once some expression evaluates to awell-de�ned store, i.e., a record containing pairs of loca-tions and expressions, then we can replace that expressionwith the token 2. This is consistent with our intuitive un-derstanding of the role of the token 2 and formalizes themove from local stores to a global one.Theorem 19 (Soundness) Let M;N be SPS terms. IfM ! N in the SPS-need calculus, then M y is observation-ally equivalent to N y in the augmented imperative call-by-need semantics.10



x ,! xM ,!M y N ,! N yM N ,!M y N yM ,!M y 8i:Mi ,!M yihM j xi =Mii ,! hM y j xi =M yi iM ,!M�fst M ,! fst M yM ,!M�snd M ,! snd M yL ,! Ly M ,!M ynew L M ,! hnew x M y j x = LyiL ,! Ly M ,!M yread L M ,! hread x M y j x = LyiL ,! Ly M ,!M y N ,! N ywrite L M N ,! hwrite x M yN y j x = LyiK ,! K` ,! `M ,!M y�x:M ,! �x:M y8i:Mi ,!M yif`i =Mig ,! f`i =M yi gM ,!M y N ,! N y(M;N) ,! (M y;N y)M ,!M y N ,! N y[M;N ] ,! [M y;N y]Figure 10: Compiling SPS to TargetProof. We show one of the interesting cases:(read fD; ` = V g `)y= hread x ` j x = fDy; ` = V ygi= hread x ` j x = h2 j Dy; ` = V yii= hread x ` j x = 2;Dy; ` = V yi= hread 2 ` j x = 2;Dy; ` = V yi= hread 2 ` j Dy; ` = V yi= h[V y ;2] j Dy; ` = V yi= h(V y;2) j Dy; ` = V yi= (V y; h2 j Dy ; ` = V yi)= (V y; fDy; ` = V y)= ((V; fD; ` = V g))ySome of the steps use semantic equalities that are not partof the calculus like the collection of unused bindings, andthe identi�cation of di�erent representations of the sameunderlying graph [1]. The cases for new and write proceedsimilarly. 2

7 Imperative Lazy ProgrammingIn addition to being the main technical device for provingthe correctness of the implementation for monadic state, theimperative call-by-need �-calculus is useful in its own right.We briey motivate the additional expressive power of thecalculus over pure call-by-need calculi with one example.Like many system-level Haskell programs, the implemen-tation of memo functions relies on expressions with side-e�ects [9, 16]. Since Haskell bans such expressions, program-mers that need this functionality either write low-level rou-tines in C or in an ad hoc variant of Haskell that integratescomputational e�ects with the call-by-need semantics [6].Not only does the imperative call-by-need �-calculus letprogrammers express such services as suggested above, butalso it provides the infrastructure to reason about the cor-rectness and properties of such services.Example 20 (Invocation Counter) It is easy to use theimperative call-by-need �-calculus to write a procedure thatkeeps track of how many times it is called:f = h� :hfst p2 j p1 = read 2 `v1 = fst p1s1 = snd p1p2 = read (snd (write s1 ` (v1 + 1))) `ij ` = 0iThe procedure refers to a location initialized to 0. Every in-vocation reads the current value of the location in v1, writes(v1 + 1) in the contents of the location, and returns the lastvalue. The last read operation forces the write to occur sinceit is strict in its store argument.It is now easy to use the axioms to calculate that theexpression (f () + f ()) reduces to 1+2=3.8 Related WorkOur work builds directly on Ariola et al.'s call-by-need cal-culi [1, 4], the encapsulation and implementation of monadicstate by Launchbury and Peyton Jones [18, 19], and the ax-iomatization of monadic state by Launchbury and Sabry [20].The imperative call-by-need calculus uses ideas developed inthe context of imperative call-by-value calculi [11, 12, 28] aswell as in the conservative extensions of functional languageswith assignments [22, 31].The correctness of \updates-in-place" is a long standingproblem that has been studied extensively. In the context ofmonads, a number of researchers [8, 15, 26, 33, 35] noted thatwhen the state monad is treated as an abstract data type, itought to be possible to implement the state operations moree�ciently using destructive updates. For example, Wadlerstates:The abstract data type for ST guarantees thatit is safe to perform updates (indicated by as-sign) in place - no special analysis technique isrequired [33, p.70].However, in an implementation like ghc, the monad com-binators are eventually expressed using more primitive op-erations (see the compilation map in Figure 6). Once themonad is \open" (i.e., no longer viewed as an abstract datatype), the above argument used to state the correctness ofdestructive updates is no longer valid. Indeed, other con-structs in the language may now interact with the monadic11
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