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1 Introduction

Large Numbers

“...the optimal tour displayed (see Figure 6) is the possible unique
tour having one arc fixed from among 10°° tours that are possi-
ble among 318 points and have one arc fixed. Assuming that one
could possibly enumerate 10° tours per second on a computer it
would thus take roughly 10°? years of computing to establish the
optimality of this tour by exhaustive enumeration.”

This quote shows the real difficulty of a combinatorial optimization prob-
lem. The huge number of configurations is the primary difficulty when deal-
ing with one of these problems. The quote belongs to M.W Padberg and
M. Grotschel, Chap. 9., “Polyhedral computations”, from the book The
Traveling Salesman Problem: A Guided tour of Combinatorial Optimization
[124].

It is interesting to compare the number of configurations of real-world
problems in combinatorial optimization with those large numbers arising in
Cosmology. For example, the current estimation of the number of hadrons
in the Universe, which undoubtely is a huge number, is only 10%°. 1 use the
word “only” after its comparison with the 10°% tours of a solved instance of a
traveling salesman problem. The hypothetical run-time of 109 years seems
pretty large when we consider that the age of the Universe is approximately
5 x 1017 seconds. 1 should use the phrase only 5 x 10'7 seconds, but I do
not want to touch the susceptibility of those that consider these as “large
numbers”. The task of the complete enumeration of the 10°%° tours can
dissuade even the most patient Tibetan monks that Arthur C. Clarke would
be able to imagine [53].

In this desperate attempt to enumerate all the possible 10%°° tours we
should put our hopes in a kind of “Planck-technology”. Such a technology
must control events within the Planck length (107**¢m) and the Planck time
(10~**sec). Such an incredible technology must deal with “wormholes” or
other kinds of unknown space-time “alterations”, or even know how to wisely
use them if indeed they exist. As suggested by H. Camblong, this is a sub-
ject “beyond science- fiction”. He considers as real practical limitations the
characteristic times and lengths in the atomic scale [44]. So we should move
to nanotechnologies [188] [82] [83] [167] pionered by Shoulders and Feynman



[172] [80], or even quantum mechanical [81] or plasma computers [173] as the
limit of “human” possibilities.

All these possible technologies would give an improvement of orders of
magnitude over present technologies. But combinatorial optimization prob-
lems have an exponential growth of possible configurations to be evaluated,
so there will be always an upper boundary that will reflect our limitations.
Ironically, the development of such technologies would give arise to new and
more difficult combinatorial optimization problems, the VLSI layout problem
in chip design is such an example.

We should not worry too much about these limitations. This was only
a description of the desperate approach to the problem, namely complete
enumeration. Instead, carefully designed techniques have been developed
to study some of these optimization problems. For example, Padberg and
Rinaldi recently have solved a 532-city real world traveling salesman problem
[145] and they are now working with problems that involve thousands of
cities.

I do not expect to have to do a desperate run as complete enumeration.
Real-world problems challenge us with peculiarities inherent to each one of
the problems. So the real need is to create general purpose strategies that can
deal with these peculiarities, exploiting common features of these problems.
We must be interested in developing effective techniques for doing the search
of the optimum in these configuration spaces.

The selection of a good representation

The fact that the number of possible configurations is enormous is only one
aspect of the problem and is not the problem per se. The problem is that
configurations that look very different have similar values of the objective
function to optimize. There exist many configurations with values of the
objective function which are very similar to the global optimum. Through-
out this review [ will refer to the objective function as the cost or energy
function, when the problem is to minimize it, or as a fitness function when
it 1s to maximize it. A trivial change of sign in the objective function turns
a maximization problem into a minimization one, so they are equivalent.
When [ said that there are configurations that look very different to the
global optimum and have similar values of the objective function, I should
have added that they look very different under a given representation. We



represent a configuration, which means a possible state of the system to
be optimized, as a certain mathematical entity. So two of these entities
would have few things in common, but similar energy (or fitness) values. So
in order to do the search for the global optimum we have a mathematical
representation of the states that our system can achieve, and a function
associated with each one of them.

In this review, we will be interested in trying to develop iterative search
procedures for combinatorial optimization problems. The purpose is to es-
tablish general procedures that can lead to search methods that would be
applied to a great variety of problems. Iterative search procedures in combi-
natorial optimization often use the value of a function they want to optimize
in order to find ways to move in the landscape that this function forms in the
configuration space. So it is extremely important to decide simultaneously
which are the moves that we will perform with the type of landscape we are
dealing with. With the term “moves” I mean which transformation turns one
configuration into another. Under a given representation, a move connects
two of these mathematical entities.

The value of the objective function is associated to each one of the con-
figurations, but is not associated with each one of the entities that represent
them in the representation chosen. I can use this freedom in order to cre-
ate another function to optimize, with the condition that it should preserve
the ranking between optima in the original objective function. The selec-
tion of a good function is intrinsically related to the selection of an adequate
representation of the configuration space.

The practical problem is how to do the search in the minimum CPU
time possible. However, there are some problems in which there is no repre-
sentation possible that can help us to make a search better than the random
search. One trivial example of such a problem is the search of the secret
name of God. Suppose that we are given a certain number of symbols, say
N, and we are told that a certain permutation of them in a linear sequence,
is the secret name of God (recall that this is not the problem in Ref. [53]).
There is only one way to know if a given permutation is the correct one and
that is by reading it: if correct God will appear. For this problem the fitness
function is a flat function with only one correct configuration. Informally, it
is known as the golf-course problem. There is only one hole in a very large
and flat surface making it imposible to find. In the search of the secret name,
there is no representation that can help us in this theoretical case (see also



the related discussion and the references in [21] [22]). But in many practical
cases, although a better representation can exist, sometimes it is so difficult
to find that it is to all intents and purposes impossible to do so.

Who has put so many local minima in my optimization
problem 7?7

In combinatorial optimization problems, although discrete, there also appears
the concept of local minima (or local maxima). Under a given representation,
a local minima is a configuration, I should say one of the mathematical
entities associated with it, such that all possible moves lead to entities with
higher values of the objective function.

Now suppose that somebody asks the question stated above in the title
of this subsection. He is working alone in his office... Elemental ! He did.
He has chosen a representation and a set of moves, then he has created local
minima in his problem. And since he is alone in the office, who else can be 7

To clarify this with an example, suppose that we are given the following
optimization problem: Find the integer that minimizes the function F(z) =
(x—8)* . For the purpose I have in mind, let us suppose that x is constrained
to have values within the sixteen integers between 0 and 15. Now, we must
select the move. The move can be to add or substract a unity. So being
in configuration (integer) ¢ we can reach only configurations (integers) ¢ + 1
and ¢ — 1. We can add boundary conditions and connect 0 with 15. The
search strategy would be adaptive walks via best configuration. So in each
configuration, 1 will check to the left and to the right and we will move
towards the one that has the smaller value of the two. What we are doing is
from a configuration, checking all the neighbours connected by the move in
this representation, and moving in the direction of the best neighbour found.
It from a given configuration all the neighbours accessibles have a higher
value of F', we will stop because we found a minimum. No matter which
is the initial configuration, we will evolve towards the only minmum x = 8.
This situation is shown in Figure 1.

Let me now choose a boolean representation. Each integer is now rep-
resented with a four-bit string. I will represent 0 with 0000, 1 with 0001, 2
with 0010 and so on until 15 which will be 1111. Let me also choose as a
move the usual one-bit flip. So from each configuration now we can reach



four instead of the two we could before. This fact will not make things easier.
To have a picture, we can associate each configuration with the vertex of a
four-dimensional hypercube. I will draw an arrow from each configuration
to another with a smaller value of F'(x). If we use the same search strategy
described above, we will find that we now have the possibility of getting stuck
in local minima. In Figure 2 we can see how the configuration represented
as 0111 is a local minimum.

As a conclusion, the choice of representation, search strategy, and moves
in the configuration space can create or avoid some local optima.

Mapping your problem

This freedom to choose the representation of your combinatorial optimization
problem explains the proliferation of “approaches” to them. It is intended
that a better representation can give better results. And regarding the pre-
vious example, there exists such a representation in some cases. However, it
is not an easy task to find the best representation.

As an example, I will mention the Traveling Salesman Problem (TSP).
Recently it has received the attention of many researchers who have employed
different representations. I will only refer to the non-orthodox approaches to
this problem. One of them was initiated with Hopfield’s idea of using neural
networks for combinatorial optimization problems [105]. Although analogous
values can be taken by the network, it evolves towards a final state which is
a permutation matrix and corresponds to a feasible tour. A neural elastic-
net has also been proposed as an approach to the TSP [71] [152] although
these two representations may actually be considered as only one [174]. A
good optimization behaviour and the convergence property to a tour can
only be achieved by a careful selection of parameters in the network [194]
[30]. Another recent approach uses, as the magnitude to be updated, the
probability of selecting a given intercity link as an actual part of a tour in
a kind of “learning” scheme [52]. Generally speaking, all are exploiting the
possibilities of different representations to avoid local minima which, as we
have seen, would differ according to the chosen mapping [183] [109].

All these approaches are physical computations. They involve the cre-
ation of a physical system that makes the search. We can regard this system
as one individual searching in a space. The original problem was discrete
while the actual space being searched is not.



2 Two optimization problems

Most of the results that will be analysed in this review are related with three
combinatorial optimization problems. They have attracted a great deal of
attention in the past and they also have the advantage of large instances
solved to optimality. In general, effective heuristics have been constructed
for them and it is important to note how these heuristics can be improved.
I will describe some features of two of them, the TSP and the optimization
tasks in Kauffman’s NK model. A third problem that is also mentioned
is the quadratic assignment problem [121] [89] [125] [10] [170]. It arises in
the processor mapping in parallel processing [72], data analysis [107], VLSI
layout design and location of facilities [101] [192] [102] [140] [159] [103] [25]
[169] [100].

The Travelling Salesman Problem

The TSP is an important combinatorial optimization problem due to its
academic significance and its real-world applications. The TSP is generally
defined as the task of finding the cheapest way of connecting N cities in a
closed tour where a cost is associated with each link between cities. One
version of it, which belongs to the NP-complete class, the Euclidean TSP
in two dimensions, has been one of the most studied optimization problems.
In the Euclidean version, the cost of linking two cities is proportional to the
Euclidean distance between them. It is interesting since belonging to the
NP-complete class of combinatorial optimization problems, it is conjectured
that it can not be solved by any polynomial-time algorithm [88].

The TSP is a common test-bed for many optimization algorithms. Dur-
ing the long battle that science has waged with the TSP, only some large
instances have been solved to optimality [144] [124] and they give an oppor-
tunity to check a new method using those instances to compare the quality
of the final ordering of cities. In addition, for a random uniform distribution
of N cities over a rectangular area of R units, an asymptotic expected length
formula for the optimal tour has been derived [23]. The expected length L.
of the optimal tour is given by

L.(N,R) = KV'NR (1)

With computational experiments [179], the value K has been bounded by
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4
0.765 < K < 0.765 + (2)

note also the derivation given by Bonomi and Lutton in which they give a
value of K = 0.749 for large N [26]. Many ad hoc TSP algorithms have been
constructed during the last 50 years [124] and thus it represents a challenging
test-bed for combinatorial optimization algorithms.

The TSP, like some other optimization problems, involves an ordering
problem in which N cities must be ordered in a ring-like array. Representing
it with strings, the N different elements, the city names, the task consists
of finding the string that has the minimum length. To a given string, there
are 2N equivalent strings that have the same length and are constructed by
shifting all the elements or by inverting the order. So an iterative search must
deal with a huge configuration space, since the number of tours is (N —1)!/2.

The Kauffman NK model

A “tunable” family of correlated landscapes

This model has been used to study adaptive somatic evolution in the im-
mune response [114] [117]. Tt can also be interpreted as a model of genetic
interactions in a multigene system. It is based on an entity (chromosome,
haploid genotype) with IV parts where each of these parts (genes) can be of A
different “types” (alleles). In its simplest version we have only two different
“types” 0 and 1. Obviously, the number of such possible entities (genotype)
is 2. There is a value of an objective function (phenotype, fitness) associ-
ated with each one of these genotypes. The association of phenotypes with
the values of this objective function is correct but should be understood as
a first-order approximation since in nature the phenotype understands a de-
pendence with the epigenetic enviroment which is not considered now. The
model requires a “reflexivity” condition; if gene ¢ depends on gene j, then j
depends on ¢. K genes are assigned to each ¢, so for each gene ¢ there are
2K+ combinations of alleles 0 or 1 and for each one of these combinations a
“fitness” (objective function) contribution is assigned, a real value between
0 and 1. These interdependencies between alleles are called epistatic interac-
tions. So for a gene 7, a different contribution is assigned according each of
the different combinations of its associated genes. This procedure is followed



for each of the N genes, so the fitness of a given genotype is found out by
summing the fitness contribution of each one of the genes and normalizing
the sum dividing by N. The NK model has also been described in Ref. [115]
and a more complete description can be found in Ref. [116]. Regarded as an
optimization problem, the task consists in finding the configuration of alleles
that has the biggest fitness.

The two extreme cases K =0 and K =N —1

According to the above description, the case K = 0 is an N-locus, 2-allele
additive fitness model. In this case, each part is independent of other parts.
In each gene, one of the two possible alleles, 0 or 1 is fittest. In that case
there exists a special genotype with the more fit allele at each of the N
loci which is the optimum genotype. So there is a connected pathway via
fittest variants to the unique optima of the landscape. An adaptive walk
via l-mutant neighbours can reach the single global optimum. The K = 0
additive model corresponds to a very smooth, highly correlated landscape.

The case K = N — 1 corresponds to a fully random fitness landscape.
Each gene is epistatically affected by all the other genes in the genotype.
The fitness value of one genotype has no information, about the fitness of
its 1-mutant neighbors, so there is no correlation between their values. As a
result, the number of local optima is extremely large.

For intermediate values of K, the landscape is correlated in some way.
This correlation can be studied using the autocorrelation function of a ran-
dom walk in the landscape [114]. We can understand K as a parameter that
“tunes” the correlation structure of the landscape.

The complexity catastrophes

Kauffman has pointed out an important feature of his model. As the number
of genes N increses while K = N — 1 the expected value of the local optima
falls towards the mean fitness of the space of genotypes. This fact combined
with the huge number of local minima would make the optimization task a
very hard one. When K = N — 1 any kind of search cannot be better than
random search since the landscape is not correlated at all. However, the
above mentioned characteristics, part of the complexity catastrophe, seems
to appear also when K is a fraction of NV in the limit of N large. We should



not be worried about the complexity catastrophe behaviours if it were only
a phenomena of the NK model when K = N — 1, but numerical simulations
have shown that this complexity catastrophe can also appear when K is
a fraction of N (Ref. [116], pp. 557). When K is fixed, the complexity
catastrophe is avoided.

In addition to the NK model, there is another combinatorial optimization
problem with a similar behaviour in the limit of N large, the quadratic sum
assignment problem [125] [41]. It consists of determining the best assignment
of N interacting sources, given N sites independently distributed inside a
bounded convex region of the Euclidean space. An instance of this problem
is defined by a N x N distance matrix D = (d;;) and a matrix T = (tx)
of traffics which represents the traffic which is to be routed from source k
to source [. So the task is to find the best assignment of sources with sites,
having only one source per site, in order to minimize a total cost which is the
sum over all traffic elements ¢ of the products (d;;tz) where 7 and j are the
location of sources k and [ respectively. If Sy is the set of all permutations

of (1,2,...,N)

H(r) = 3 dijteye(s) (3)
2J

and the task is to find the permutation that minimizes such a cost. R.E.
Burkard and U. Fincke have shown that the relative difference between the
worst and the best solutions tend to zero with a probability of one when
N tends to infinity [43]. Bonomi and Lutton have applied the statistical
mechanics formalism and confirmed the result via computer simulations [27].
Burkard and Fincke have also addressed bottleneck problems [42]. However
they differ in the fact that while in the NK model the task of finding the
best genotype still makes sense, in the quadratic sum assignment problem,
the task itself vanishes.

In the NK model, the complexity catastrophe has two origins, the con-
flicting constraints between genes and the normalization used for the fitness,
mathematically combined with the central limit theorem. It is an open ques-
tion which are the optimization problems that present this or other kind of
complexity catastrophes for large NV and to classify the different behaviours
(see also Ref. [158]). Kauffman simulations with the NK model and the
fact that the complexity catastrophe seems to still be present when K is a
fraction of N should be important to consider as a warning when dealing



with an optimization problem and can also guide in the selection of a better
representation.

3 Population approaches

This review is mainly concerned with the population approaches to combi-
natorial optimization problems. I understand them as those strategies that
are based in more than one individual to do the search. The search is usually
provided by an iterative improvement heuristic. I will analyse the character-
istics of some new population approaches, its performances and I will show
how some of them are outperforming present heuristics.

Sometimes we are faced with an optimization problem in which a near
optimum output of a certain algorithm is enough to satisfy our needs. Refer-
ing to the TSP, if we want to construct a tour for a candidate on an election
trip, we do not care very much if our tour is three or four percent above the
optimum, but if we are faced with a mail problem in which the points to be
connected are always the same and they are visited daily; in that case, we
would like to have better tours to solve that constant drain of resources. For
these cases, another method would be suitable.

It is my purpose to show how such a method can be constructed using
heuristics and a population approach. I will show some research projects that,
as far as I know, have been developed independently. Common features will
be analysed and this would lead to a better comprehension of how they can
outperform present techniques.

To simulate a population takes more computer time and more effort in
writing a code than to use one individual. This is true in a sequential com-
puter. In a parallel computer, things are different. We are often confronted
with the parallelization of intrinsically sequential algorithms [2] [37] [86] [9].
So a population approach which is intrinsically parallel seems the natural
choice. Ultimately, this dilemma is a version of the compromise between
quality of the solution obtained versus the CPU time used. This compromise
appears in parallel or sequential computers. It can also depend on the partic-
ular parallel computer used since we have to regard the memory requirements
per node, architecture type, etc. After the initial discussion about the large
numbers involved in the search, it would be wise to ask ourselves: “Is there
any difference in doing a search with only one individual or with one hundred
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7”7 We can also ask ourselves, as H. Mithlenbein did, “How can a very small
population search such a huge space in an efficient way?” [138]. [ will
show some examples that will clarify these questions. We will see that there
exists a difference and it favours a population approach if we are interested
in the quality of the final solution. I will also show how Miihlenbein and
other researchers have parts of the answers to the second question. First,
I should briefly introduce one of the most popular one-individual general-
purpose optimization techniques, Simulated Annealing; and one of the most
popular multi-individual, Genetic Algorithms.

Simulated Annealing

Simulated Annealing (SA) is a technique for global optimization borrowed
from Statistical Mechanics. It has proved to be suitable in a wide variety of
problems such as the min-cut partitioning problem [119], global wiring [191],
least square fitting of many unknowns [190], image analysis [88], the problem
of finding an efficient manner to execute parallel computation [85] and the
alma mater spin glass ground states localization and evaluation.

Kirkpatrick et al. [119] have developed Simulated Annealing (SA) which
is based in a random walk on configuration space. Starting in an initial state
Xg, we pick up another state from the neighbourhood of x¢ and we compute
the quantity AC = C(x1) — C(xo). Then if AC > 0, it would be accepted
according to the Boltzmann factor e=2%/T where T' is an external control
parameter interpreted as a temperature, and (' is the cost function of the
problem. It AC' < 0 the new state is always accepted. This is an iterative
stochastic procedure, and at a low temperature is expected that it will jump
between the low-cost (low-energy) configurations. The temperature T is not
fixed during this process. It was found that starting with a high initial value
T and cooling slowly, significant improvements can be achieved. If the initial
temperature is decreased abruptly, many “frozen” imperfections remain in
the final state, a situation that recalls the idea of being trapped in a local
minima. One dilemma appears here, because although a MC method will
always find the lowest energy for a finite system, the computer time involved
would be prohibitive. The cooling schedule is also an important question and
theoretical criterions for fixing it are now being developed [1] [3] [164] [165]
[141] [128].
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Genetic Algorithms

Genetic Algorithms (GA) [90] [104] is a population based approach for search-
ing that is based on some biological mechanisms for generating more fit in-
dividuals. This evolutionary approach have also been considered by G.E.P.
Box [31], G.J. Friedman [84], W.W. Bledsoe [24], H.J. Bremermann [38] [39],
L.J. Fogel [75] [76] [77] [78], D.B. Fogel [79], I. Rechenberg [156] [157], H.
Schwefel [168], K.A. Dewdney [68] [69], and R.M. Brady [36].

In general, a GA is composed of three different operators: Reproduction,
Crossover and Mutation. Usually, it underlies a string representation of in-
dividuals where generally this codes the parameter set, not the parameters
themselves. It uses probabilistic rules to search. For example during repro-
duction, the population is copied according to the values of the objective
function we are optimizing. It tries to mimic natural selection. Crossover
is the mechanism by which two individuals interchange information. This
is done generally by the creation of a new individual by taking parts of the
two regarded as parents. I will discuss this mechanism later. Mutation is
the alteration of one part of an individual and in GA it is regarded as the
mechanism that generates the necessary amount of noise in the search and
the population will evolve under the force of selection.

Parameters

It is beyond the scope of this review to introduce both techniques in more
detail. For an introduction to GA refer to Refs. [90] [61] [104]. SA has been
also reviewed in Ref. [61]. Applications of SA and GA can be found almost
everywhere. Parallel implementations of SA can be found in Refs. [2] [86]
[37].

Both techniques have to deal with the adjustment of parameters. In SA,
the cooling schedule is critical. In GA, the problem is the population size and
mutation rate [166]. It would be interesting to have a strategy that would
not need such a tuning of parameters or that it would improve monotonically
as the number of individuals increase (or use more temperature steps in SA).
At present, when we have an optimization problem, if we want to use SA
or GA we have to solve two optimization problems, the optimal value of our
parameters and the problem itself [141] [128] [92].

I will postpone until the final discussion some of the characteristics of SA
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and GA after the new strategies have been introduced. Now I will introduce
some analogies that, like the analogy with biological evolution in GA, would
be useful to describe the new techniques I want to discuss.

4 Life and Science as a result of an evolution-
ary process

Since the trip that Darwin made around the world and the subsequent publi-
cation of his book “On the Origin of Species” [59], we have been enlightened
with a theory, which later would turn into the corner-stone of modern bi-
ology and set the basis to understand the diversities and similarities of all
life forms. He was condensing in simple terms a complex pattern of different
observations he made, and finally he succeded in the task of searching for a
simple rule that would fit the data he observed on his expeditions. At the
same time he was addressing how adaptation and selection would yield better
individuals. The genes make use of a population based approach to search in
the space of possible biological organisms, trying to create the best coadapted
set of genes and as a result “survive”. Is interesting to remark, that inside
Darwin’s brain a similar process would have been taking place. Surely, as
any theorist would, he constructed pre-theories during his trip, tested them
against the data he collected, and questioned some parts to observe the ef-
fects. Then, common features that explain many observations are preserved
and the others are deleted. So he was dealing with a population of ideas,
mental individuals that help to perform the search of the best explanation
to understand the data.

These concepts are not new. P.W. Anderson in his comments on Francis
Crick’s autobiography quotes him saying: “Do not be afraid of making
mistakes, he says: No single idea, no matter how brilliant, is going
to solve a hard problem; persistence is all; evolution seldom chooses
the elegant solution. He stresses that “professionals know that they
have to produce theory after theory before they hit the jackpot.””
[7].

We know intuitively how this mental process works or, at least, we have
learned it by our own experience. We know how a rigid assumption that
pretends to explain everything can be lethal when confronted with data not
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considered before or misunderstood. A multiscale approach is then generaly
used, trying to cluster the data that can be explained with a similar pre-
theory, a statement which is not completely developed and requires modifi-
cations to reach its final form. It should also be entirely disregarded, unified
with another by creation of other theory that involves these as subcases or
merged with other pre-theories. Most of these processes should take place
unconciously and should lead, in the “happy-ending” cases, to a Fureka situ-
ation when all is clear and, in some cases, the final formulation seems obvious.
What all this mental machinery is doing is to help us to deal with the com-
plex data because the information given by the data is not hierarchically
ordered according its relevance.

A different kind of reasoning is the one employed by the aviation accident
experts when a plane crashes. The previous knowledge of the possible causes
that can lead to specific kinds of accidents, make their work easier. In a
certain way, they have classified causes with effects, and because they have
made that before, the reasoning can be more “sequential”. If that would
have been the case in the hypothetical construction of an explanation of a
given phenomena, a reasoning strategy like that of the Twenty Questions
game would be indicated. We would test the pre-theory, or many of them,
with the data, represented by questions hierarchically organized in a tree
according its relevance. The pre-theory must satisfy sequentially the tests,
giving a Yes-No output if it explains or not. The first time a “No” is found,
others options from different branches at the same level in the tree must be
considered. In the general case, even in cases with complete information to
describe the phenomena, this order is not known.

Only few scientists, like Newton, Maxwell, Darwin or Einstein, have the
rare privilege, and the rare ability, of creating a unified theory and to give
order to the chaos. In Science, the whole group of scientists, work as a large,
parallel, decision machinery that try to deal with the data. Each one is not
trying to find the ultimate explanation to the subject under study. Instead,
they are contribuiting, in different magnitudes, solving sub-problems and
making logical conections between data.

A comparison with the NP-completeness theory

A clear example of this process is the theory of NP-completeness and we men-
tion it not to talk about the unification of the fundamental laws of physics
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which has been widely regarded as an example. The computer scientists and
mathematicians that study the theory of NP-completeness prove theorems
and link hypotheses in a logical way. At the center of this collection of data
or collection of theorems, there is a central assumption; that NP # P. This
conjecture is not proved, but it does not interfere with the evolution of the
theory. Many results are proved regarding this conjecture as true and others
are proved assuming it false. If at a certain moment somebody would be able
to show the relation between the classes NP and P, this will make useless, at
first glance, many previous results, but the knowledge derived from having
made the wrong assumption and the techniques and mathematical tools de-
veloped, will be preserved in the whole theory of computational complexity.
It is here where the diversity of points of view enriches the subject.

What science shares with biological evolution:
A population based, competitive and cooperative task

The advance of science works with some of the same principles that mark
biological evolution. A big group of individuals regularly submit their ideas
to the consideration of other individuals, their results are analysed and then
this triggers new works. This process is governed by the forces of Competition
and Cooperation. The latter can take the form of team-work or usually is
restricted to regular interchanges of information.

In Biology, recombination is viewed as a mechanism responsible of the
flow of genetic information from one generation to the next one. Biological
evolution can also be regarded as a population based approach to optimize the
genetic code, based on the survival of the individual [110] [111] [189] [142].
It is made via the optimization of the code of living organisms, the DNA
molecule. This optimization is made by rearrangements of the sequence of
nucleotides which constitutes the code. It seems that here the analogy also
works since a life form tries to maximize a certain, complicated and in a
certain way unknown fitness function. This life form does not compute the
value of this function but it is felt as the task of surviving against aggressive
external factors, biological or not.

15



5 Towards Memetic Algorithms

When I said that biological evolution is based on the survival of the indi-
vidual, I was using these words in a kind of double-talk. What I should
say is that biological evolution, due to the fact that only those individuals
that survive can reproduce, goes in the direction of optimizing the genetic
code. I am indebted to Dr. Scott John, who after reading an early draft
of this paper, pointed out to me that many of the ideas in this discussion
between scientific and biological evolution are very similar with those stated
by Richard Dawkins in his book “The Selfish Gene” [60]. Dawkins also rec-
ognizes that these analogies have been investigated before by Sir Karl Popper
[153], L.L. Cavalli-Sforza [45], and more recently in Refs. [46] [48] [47] [49]
[50], F.T. Cloak [54] and J.M. Cullen. This subject was also studied by R.
Boyd and P.J. Richerson [32] [33]. Present work of these authors is related
with the interactions between the individuals within the group [98] [34]. 1
will not enter into details but note the analogies between cultural and ge-
netic evolution. There are many and the talented scientists referenced above
would show them better than 1. Instead, I will concentrate in the differences
between them.

Life deals with the combinatorial optimization problem of survival by cod-
ing the information in the form of a linear structure and performing point mu-
tational operations like the substitution, insertion or deletion of nucleotides
in the DNA or RNA. Other rearrangements of the structure are chromosomal
mutations like the deletions, inversions, duplications, transpositions, translo-
cations, conversions or even the genetic recombination mechanism in sexual
organismes.

Due to the way that nature decides to do the search in the combinatorial
optimization problem of finding the best genetic codes, many approaches
have been developed trying to mimic biological evolution for optimization.
In particular, Genetic Algorithms have been quite succesful when applied in
many different frameworks. It is a population based approach that is based
in three fundamental operations; Reproduction, Crossover and Mutation.

The evolution of martial arts

While biological evolution is a good example of a self-organizing process,
there are others that should also be regarded as possible candidates from
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which we can learn as examples of complex adaptive systems and apply to
combinatorial optimization. One of them is the evolution of martial arts.
In particular we can consider the chinese Kung-Fu, that has evolved in less
than four thousands years. We will only study here the combat aspects of
it and the way information is preserved. Studies on the human behaviour
have shown that, as other primates, humans tend to fight using a very disor-
dered sequence of movements. On the contrary, the movements of a Kung-Fu
master are an extraordinary combination of simplicity and effectiveness. Its
actual degree of development and the fact that it did not suffer from vari-
ations that could perturb it is a direct consequence of the “representation”
which was used for its evolution. To my knowledge, all martial arts have
exploited the ability of the brain to remember via sequences, so the basic
knowledge is transmited by learning a set of selected sequence of movements
called forms. The form, like a chromosome, is not an indivisible entity. It is
composed of a sequence of defensive and aggressive sub-units which can also
be divided, a pattern that resembles the structure of chromosomes, genes
and alleles.

But within the form there are some movements which can be understood
as an indivisible unit, and these are the ones that are really important. The
whole is a support to let the brain transform them as reflexes that can be
automatically triggered in real combat. The individuals can compute their
fitness function by the evaluation of their performance in the execution of
the movements of the forms and with some tournaments where they com-
pete. It is interesting to pursue the analogy and to see how the information
improve between generations. It is very important to remark that not all the
individuals can teach. Only those that have the greatest values of fitness i.e.
black-belts can have that right. This equates to the mating processes in GA
which select with bigger probabilities those individuals with the best fitness.

The concept of the meme

R. Dawkins in the last chapter of his book “The Selfish Gene”, has intro-
duced the word meme to denote the idea of a unit of imitation in cultural
transmission which in some aspects is analogous to the gene [60]. In the
case of martial arts, those undecomposable movements in the form that I
mentioned above should be considered as memes. A defensive movement
generally is composed by the coordinated action of many of these memes.
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We can understand the martial arts in the context of the evolution of a coad-
apted set of memes. For Dawkins, examples of memes are: “tunes, ideas,
catch-phrases, clothes fashions, ways of making pots or of build-
ing arches”. But later he adds: “So far I have talked of memes as
though it was obvious what a single unit-meme consisted of. But
of course, this is far from obvious. I have said that a tune is one
meme, but what about a symphony: how many memes is that ?
Is each movement one meme, each recognizable phrase of melody,
each bar, each chord, or what?” In comparison with music, I believe
that the martial arts are one of the best examples of the meme concept. It
also has a linear representation to code information, analogous to the genetic
case, which can help somebody to understand it better although the concept
of a meme is not limited by the representation. A way of punching with
the fist can be one meme. Each finger has to be in a given, fixed position.
In the context of an aggressive sequence of movements, it should be used
with only some of the other memes. For example, in the Kung-Fu case only
some fist positions have sense with some arm movements, giving sense to the
coadaptation of movements as noted above.

But the analogies with the genetic coding and natural selection can not
include the mutations. In GA they are considered to be the operator that
includes the necessary amount of noise to do hill-climbing, while it is very
improbable to find a good improvement in martial arts as a consequence of the
introduction of some random movementsinto a form. The process seems to be
different. Only the masters have the sufficient knowledge that permits them
create a new movement and to incorporate it to the form. And this happens
with a very low frequency. So, there is much problem specific knowledge that
is applied to each modification. Almost all modifications give improvements
rather than create a disorder. This fast-feedback flow of information from
high order phenotype knowledge to genotype level, seems to have differences
with the processes of biological evolution, but we must consider the latter is
constrained with the physical structure of the DNA and their processes are
direct consequence of the primitive replicating macromolecules that gave its
origin.

I believe that the analogy of cultural and genetic evolution breaks down
in the copying-fidelity aspects of them in addition with mutation. And that
these break-down points are the reasons of the tremendous speed-up observed
in cultural evolution. I will quote again Dawkins when he says: “This
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brings me to the third general quality of successful replicators:
copying-fidelity. Here I must admit that I am on shaky ground.
At first sight it looks as if memes are not high-fidelity replicators
at all. Every time a scientist hears an idea and passes it on to
somebody else, he is likely to change it somewhat. I have made
no secret of my debt in this book to the ideas of R.L. Trivers.
Yet I have not repeated them in his own words. I have twisted
them round for my own purposes, changing the emphasis, blending
them with ideas of my own and of other people. The memes are
being passed on to you in altered form. This looks quite unlike
the particulate, all-or-none quality of gene transmission. It looks
as though meme transmission is subject to continuous mutation
and also to blending. It is possible that this appearance of non-
particulateness is illusory, and that the analogy with genes does
not break down”. I find it difficult in talking about blending of memes
when we have defined them as a a unit of imitation in cultural transmission.
At least I would say that the meme is a structure with internal consistency.
It T regard what should be a good scientific idea to explain a phenomena,
at least it should have no contradictory statements. This is a point where
the breaking of the chains of copying-fidelity, combined with the freedom of
blending concepts gave the new meme the necessary degree of refinement to
even improve the previous one. The raw combination of good ideas is not
always a good idea. A scientist does not pass on an idea after blending it
with his own without checking the logic of what he is saying or his reputation
would be in trouble. Although there are some exceptions, science does not
improve by random errors.

The Memetic algorithm

While Genetic Algorithms have been inspired in trying to emulate biological
evolution, Memetic Algorithms (MA) would try to mimic cultural evolution.
They are a step further in the direction pointed by Kauffman when he rec-
ognizes the importance of correlated landscapes in the success of population
based approaches for optimization [113].

Memetic algorithms is a marriage between a population-based global
search and the heuristic local search made by each of the individuals. The
GA community would like to say that MA are only a special kind of GA with
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local hill-climbing. Goldberg in his book about GA, has called some similar
variations of GA more close to a MA hybrid genetic algorithms [90].

Given a representation of an optimization problem, a certain number
of individuals are created. The state of these individuals can be randomly
chosen or according to a certain initialization procedure. An heuristic can be
chosen to initialize the population. After that, each individual makes local
search. The mechanism to do local search can be to reach a local optima
or to improve (regarding the objective cost function) up to a predetermined
level. After that, when the individual has reached a certain development,
it interacts with the other members of the population. The interaction can
be a competitive or a cooperative one. The competition can be similar to
the one which will be described in the Competitive and Cooperative method
(CCA) or can be similar to the selection processes of GA. The cooperative
behaviour can be understood as the mechanisms of crossover in GA or other
types of breeding that result in the creation of a new individual. More
generally, we must understand cooperation as an interchange of information.
The local search and cooperation (mating, interchange of information) or
competition (selection of better individuals) are repeated until a stopping
criterion is satisfied. Usually it should involve a measure of diversity within
the population.

The above description is somewhat general, but it must be that way. For
example, I am not constraining a MA to a genetic representation. While a
genetic, or a zero-one representation would be useful under certain circum-
stances, for some problems they are not the best representations. Sometimes
they are useful for proving theorems but, if we are interested in a good opti-
mization algorithm, we must use those that naturally belong to the problem.
It T am solving a problem with an intrinsic two-dimensional structure, I do
not see any reason for not using a two-dimensional gene if I want to use a
GA. Dawkins says “I am an enthusiastic Darwinian, but I think Dar-
winism is too big a theory to be confined to the narrow context of
the gene”. [ have the same impression regarding GA or MA to be confined
to have only genetic representations.

We can also draw a border with GA, saying that a GA understands a
“genetic” (linear) representation and that the individuals do not make local
search. However, my impression is that the only clear separation is the local
search, which was considered the hybrid characteristic for the eyes of the
GA community [90].
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6 A Competitive-Cooperative Approach to Com-
plex Combinatorial Search

The central idea of the cooperative-competitive approach for searching in
large configuration spaces is to use collective properties of a group of dis-
tinguishable individuals, which are separately performing the search. As a
result of the collective behaviour of the population, solutions are generated
which are better than those which would be obtained by each individual
without interactions within the group. We also expect these solutions to be
better than the brute force approach of doing many independent runs and
to pick up the best result of them.

In our approach, the individuals are arranged on a ring and each one
searches locally, competes with its two immediate neighbours in the ring,
and cooperates with individuals which are very distant within the ring. The
arrangement introduces a different neighbourhood for cooperation and com-
petition.

We can see that, for the sixteen element ring shown, an individual com-
petes with its nearest neighbours in the ring, and cooperates with individuals
that are four links away in the ring.

The local search is supplied by Monte Carlo simulated annealing [119].
The cooperative aspect is supplied by a crossover operator identical in form
to that used in GA [104] as applied to the TSP by Grefenstette [94]. The
competitive aspect is supplied by a procedure where individuals subsume
each other’s positions according to their relative fitnesses. The acceptance
of the changes involved in all three components of the search is governed
by temperature, as described below, and this value is subject to a cooling

schedule.

Local Search

One step of the local Monte Carlo search process for a tour of NV cities can
be understood as N attempted rearrangements of the tour. The moves used
for rearrangement are of three different types: the inversion of a sub-tour,
the insertion of one city in a different part of the tour, or the insertion of
two connected cities in another part of the tour. The first move changes two
links and the latter two moves both change three links.
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The cities and the places of insertion are selected with a random uniform
distribution among all possible values and all processors have the possibility
of doing all rearrangements, so we have a stochastic Markovian process. Each
of the changes is accepted with a probability

1

P(AEwes 1) = T xperr *)

where

AL
AEyc = Vi (5)

and AL is the change in length produced by the rearrangement.

Competition

Competition occurs between individuals on the basis of a challenge by an
individual currently residing in one location on the ring to an individual in
another location. In a given competition phase all individuals both challenge
and are challenged, and so are involved in two interactions with neighbours.
The competition procedure can be clarified with an example. In the ring
shown above, the tour in location 0 would compete with that in location 1
by an issued challenge, and with that in location 15 by a received challenge.
It the challenge to location 1 is successful then the tour in location 1 is
removed and it is replaced with a clone, an exact copy, of tour 0. Clearly
tour 0 can itself be replaced by tour 15. The battle is decided according to
the probability

1

p(AEcompv T) = W (6)

It each tour is of length ;. where the sub-index 2 stands for the sequence
number of the location of the tour around the ring, for the competition
between 0 and 1 we compute AE,,,,, according to

ALoy  Lo— Iy
? — 7
N N (7)
so if tour 0 challenges tour 1, we generate a random number ¢ with uniform
distribution in the interval [0, 1] and if ¢ > p(AFEeomp(0,1),T) nothing hap-

AFEeomp(0,1) =
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pens but if ¢ < p(AFeom,(0,1),T) tour 1 is deleted and replaced with a copy
of tour 0.

Cooperation

The cooperation procedure is based upon the crossover operator of genetic
algorithms. As a result, components of configurations are exchanged, allow-
ing the combination of subcomponents of successtul individual searches into
configurations that may develop to be better than either of their generating
configurations.

The operator used is that defined as the order crossover or OX operator
by Goldberg [90]. Of the two configurations to be combined, an arbitrary
subtour is chosen from one tour, and inserted into a second. In order that
generated tour should obey the constraint that each city is visited exactly
once, the cities that are inserted are excised from their original locations in
the second tour, and those cities that were connected on each side of them
are re-connected to each other. The result bears a structural relationship
to both parents, although the excision of cities means that achieving the
subtour often makes significant changes to the tour into which it is inserted.

In contrast to the two and three link changing operations of the Monte
Carlo procedure, the number of links in the second tour which change during
crossover may be any value, up to the number of links it contains.

Cooperation occurs on a similar basis to competition in that a challenge,
which may be considered in this case as a proposition, is issued between
neighbours in the locality defined for cooperation. A proposition is assessed
by the same criteria as a challenge, scaled with temperature in the same way.
If the proposition is accepted, crossover is performed between the tours and
the result replaces the recipient of the proposition. The length of the result
of crossover is not used to determine its acceptability.

The Optimisation Schedule

Competition, cooperation and local search are interspersed so that a period
of local search is followed by a competition phase, another period of local
optimisation, a cooperation phase, and then back to local optimisation. The
first period of local optimisation consists of many Monte Carlo steps. Later
periods consist of a single step. As in some implementations of simulated
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annealing, the temperature is initially set to a value where 40 percent of the
rearrangements with AL > 0 are accepted and reduced using the standard
geometrical schedule T,, = 0.987,,_; on the completion of each Monte Carlo
step.

The optimisation is judged to be completed if the diversity of the group
falls to a low value, usually zero. To be more specific, samples of the connec-
tions of 128 random cities are made in random pairs of individuals within the
group. If, for all such pairs, the selected city is connected to the same two
other cities then the group is judged to have reached a solution. The sam-
pling is implemented in a MIMD machine by considering only pairs of cities
either competing or cooperating, and by globally asynchronously monitoring
the diversity of pairs of tours.

The advantage of the cyclical sequence of phases outlined above are first
that the results of cooperation do not compete until they have undergone
local optimisation to ameliorate the damage caused by the OX operator, and
second that if both an individual and its clone are victors of competition,
they are allowed to optimise along separate paths before their components
are propagated in cooperation.

This said, there is no real reason, apart from simplicity of implementa-
tion, that the phases should run synchronously in all localities. Indeed, the
method requires only occasional communication between individuals during
cooperation and competition and so is not likely to suffer the performance
penalties usually associated with message-passing in an asynchronous envi-
ronment.

The moves used for the individual search

The moves we used in the Monte Carlo procedure are of three different types.
We have seen how the moves in the configuration space define which config-
urations can be reached from a given one. A move generates a graph, each of
its vertices is one configuration and there is an edge if one configuration can
be transformed into the other by the application of the move. This creates
a notion of distance in the graph and in connection with the definition of a
energy or fitness function, it gives the concept of local minima.

If we have a local search with only one type of move, the introduction of
a different move must be motivated not only by its effectiveness but due to
the innovation that it would give. To develop this concept, we will return
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to our image of a graph in which vertices represent configurations and they
are connected with an edge if there exist a move that can transform one
into the other. Within this picture, if we want to introduce a new move
to complement another, we should also try to find one move, say move B,
such that its generated graph has a minimum overlap with the graph of
the other move. In that way we would guarantee the existence of channels
between the walls of the valleys that contain local minima, so generating
more possibilities for easily leaving them. So given a move of type A we
should try to construct move B that makes near two configurations that are
far by application of move A and we are also opening new channels to those
local minima by only application of move B.

Is this the ultimate solution for the problems that the search involves 7
Is it wise to use a set of many different moves, to continue adding different
moves ad infinitum 7 Certainly not. Effective moves are those that, on the
average, create a new configuration with similar values of the objective value,
reflecting the efficient use of the correlation between the configurations given
by the representation. In the TSP, this requirement is satisfied by moves
that involve the deletion and creation of few intercity links. Even with three
different moves we are still faced with local minima. An example of such a
situation is given in Figure 3.

It is clear from the figure that no move that involves the deletion and
creation of few links can help to avoid this kind of situation. Figure 3 re-
sults from a real simulation with the Competitive and Cooperative approach
using the three moves described and performing a uniform decrement of the
temperature according with a geometric schedule.

The moves used have been chosen due to its reported efficiency in the TSP
among the literature of iterative edge-exchange heuristics [57] [126] [127] [143]
[124]. T would like to remark again that a MA does not need to start from
scratch in a given optimization problem. Usually there are good iterative
improvements procedures which can be used to do the local search and to
reach local optima. The interactions between individuals, as in the GA case,
may involve the design of a crossover or recombination operator. This can
be designed with the purpose of interchanging information from parents and
trying to preserve the information adquired. For example, in the TSP and
other permutation problems, the relative order is an important feature of
both parents and it must be preserved in the offspring. There is a need of
establishing some rules to design recombination operators.
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Research should concentrate on this point to move the creation of recom-
bination operators from the present state of art [91] to a more rational design.
The possibility of using a correlation function to study recombination will be
addressed in the final discussion.

Simulation results

The performance of the CCA was tested with instances of the TSP [135].
We have studied a random distribution of 100 cities in square and the 318-
cities Lin-Kerninghan problem [127]. Using the CCA as described above,
good performance was observed when the number of individuals doing the
search was of the same magnitude as the number of cities. The resemblance
of the final solutions in the 100 cities case (see Figures 4.a-d) and the sim-
ilarity of the tour found with the optimal one in the 318-cities case shows
the effectivness of the approach (Figures 5 and 6). Other artificially created
problems were studied. Figure 7 shows a 100-cities TSP. For each value of
the horizontal component, 10 cities are created, 8 have been asigned random
vertical coordinates.

However, there exists a clear need to reduce the number of individuals
that perform the search. In a sequential computer, it increases the computer
time and in a parallel computer it would be wise to use as many individuals
as processors available. Pursing the objective of the reduction of computer
time, a deterministic update was incorporated for the local search. While
the usual simulated annealing accepts a new configuration with

P :{ TXp(—AE/T) if AE >0

otherwise

the deterministic update is governed by

0 ifAE>T

1 otherwise

ras - {
)

where T'is a parameter that can be considered as playing the same role as the
“temperature” of a usual simulated annealing. The parameter T is decreased
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as in simulated annealing. A similar procedure was used previously by Dueck
and Scheuer [70]. The acceptance probabilities for positive increments is
shown in Figure 8.

As a result of the incorporation of the deterministic update, it was found
that similar results can be obtained with 16 individuals in the 100 random
cities problem. Previous results reported in Ref. [135] using the sigmoid
function as the accepting probability, need 128 individuals to have the same
quality of the final solution. In the 318 cities problem, the use of the de-
terministic update gave final solutions two percent longer than the optimum
using only 16 or 32 individuals. The result reported in Ref. [135] was 1.2 per-
cent above the optimal tour, but it need more individuals than the number
of cities.

These results and the knowledge of deterministic algorithms that perform
better than SA annealing for rapid cooling [95] [96], suggested that the deter-
ministic update would deserve more investigation. With J.F. Fontanari, we
have studied this way of updating, checking its performance in both the TSP
and quadratic assignment problem, outside the framework of the CCA [134].
In this comparison, we used only one individual, the usual procedure in SA.
We have found that the deterministic update has no statistical advantage and
that it is equivalent to the usual SA when the number of attempted rear-
rangements at each given temperature is of the same order than the number
of neighbours from a given configuration. However, better observed results,
when the deterministic update was used in the local search procedure of the
CCA, would indicate that it should be better than the stochastic update only
when the number of attempted rearrangements is small.

Reheating ?

In the CCA, the information about the structure of a good tour is shared
by the population. We can say that information is distributed. So we can
perform reheating of the system that would improve the current solutions.
With the word “reheating” I mean a sudden increment of the temperature.
This can be useful to correct defects or to return to the same local minima
if no good improvements have been found.

We have applied this procedure of reheating to some instances of TSP.
It was implemented as a jump in the value of the temperature, that is a
sudden increment of the temperature, triggered by a loss in diversity. Since
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we compute the diversity between the tours, we used it to trigger the new
value of the temperature, that is when the diversity is smaller that 0.03
we reset the temperature to the value it had after 100 or 150 Monte Carlo
steps. So when 3 per cent of the intercity links are different, which is a good
indication that we are reaching a local minima, the temperature is suddenly
increased.

In Figure 9 we can see one of the screens which can show the behaviour
of the simulation. The lower-left window presents one of the tours after one
of the intervals of local search, that is before a competitive or cooperative
interaction takes place. The tour to be shown is selected randomly. In the
upper-left window, some parameters give information about the simulation.
The solid curve that presents an abrupt decrement is the average tour length.
The diversity is also decreasing, then it reaches a near constant value for the
interval shown. The oscilating curve is a parameter that shows how just are
the competitive interactions. It is important the average value over some
steps. In the shell to the right, the diversity, temperature are printed. Jump
is equal to zero, which means that there was no reheating up to now.

An artificial instance of the TSP was created. Many researchers use
perfect square grids to study the behaviour of their algorithms. The reason
they invoke is that the solution of the optimal tour is known, and they
consider them simpler than one of the solved instances like the 318-cities
Lin-Kerninghan. However, the arrangement of cities in a square grid has
as a consequence, that the optimal tour is degenerate. In order to create
an instance that would have a certain degree of simplicity and only one
optimal solution, the distribution of 210 cities shown in Figure 10 was used.
Figure 10 shows one tour output of a CCA run with 16 individuals and with a
deterministic update. When the reheating procedure was applied, sometimes
the optimum solution (Figure 11) was found.

In many cases, after some reheatings, the individuals have left a certain
configurations and avoid a local minima. However the possible application of
this technique is under consideration since there are not enough simulations
to make a statistical significant argument about its efficiency. This discus-
sion has been included mainly due to its analogies with SAGA, one of the
techniques described as examples of memetic algorithms.

The 532-cities Padberg and Rinaldi problem [145] was also investigated.
All the simulations performed, with 16 individuals have ended with tour
lengths near two percent of the optimum. For all the TSP instances studied
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with this method, the final tours found have a length similar to the average
of those tours found by a Lin-Kernighan procedure, which are usually the
input to a ‘branch and bound’ algorithm. The tours found seem to have a
smaller standard deviation than those used for solving to optimality the 318
and 532-cities problems. A typical result is shown in Figure 12.

7 Parallel GA towards Memetic Algorithms

Due to its intrinsic parallelism and the fact that multiprocessor architectures
are each day more available, there is considerable interest in the GA commu-
nity to exploit this advantage [55] [56] [99] [150] [151] [186] [187]. I will not
discuss these in particular. Instead, I will concentrate in some parallel GA
that have turned into examples of memetic algorithms.

SAGA

A Parallel “Genetic” Heuristic for the Quadratic As-
signment Problem

SAGA is one of the two parallel heuristics that I will analyse as examples of
memetic algorithms. It has been described by Brown, Huntley and Spillane
[40] as a cascaded hybrid of a genetic algorithm and simulated annealing
customized to solve permutation problems. When SAGA was applied to
the Quadratic Assignment Problem, they found SAGA superior to CRAFT,
one the most commonly employed heuristic in solution quality and for large
problems also superior in solution time [108].

The algorithm can be summarized as follows:

Step 1. Initialize the parameters of the GA.

Step 2. Generate an initial population of solutions for the GA.

Step 3. Use the GA to produce k£ “good” solutions.

Step 4. For each of the k solutions, do the following: a) Initialize
the parameters of the SA. b) Improve the “good” solution using
SA, and return to the GA.

Step 5. Repeat steps 3 and 4 as needed

In a parallel computer, step 4 can be done in parallel. Each of the off-
spring generated is improved using SA. The input configuration given to the
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SA procedure is generally quite good, so a high initial temperature would de-
stroy the work previously done to develop that configuration. The following
heuristic is used to set the annealing schedule:

1. Approximate the expected change in the cost incurred by
random pairwise interchanges terms in p. 100 pairwise interchanges
are tried and then the mean absolute deviation (M AD) of the cost
is calculated.

2. The initial temperature is set to 3 M AD where 3 is a user-
defined constant. Hence, 3 controls the probability of accepting
and “average” cost change in the early stages of the search.

3. Set the scalar constant « to the value given by (%)1/” where
n is the number of temperatures in the schedule.

n controls the expected run-time given 3 and T™.

The selection of one of the two parents who will create a child is made
choosing it from a list of the best s structures, where s is a user-defined
constant. The second parent is chosen as usually is done in a GA, selected
with a probability equal to the ratio of its fitness to the sum of all the fitness
values in the population.

The performance of SAGA

SAGA was compared to CRAFT for two test instances. The first was selected
from a work of Nugent et al. [140], and the second one is from Scriabin and
Vergin [169]. CRAFT, a steepest-descent-pairwise-interchange heuristic, was
the technique used to compare its results against SAGA due to the fact that
CRAFT was superior to some other techniques [140] [159]. For the 20 object
problem [10] [169] SAGA in ten runs found four unique permutations all with
a cost of 110030. In ten runs CRAFT has been always between the values
112588 and 124246. The optimality of the four permutations found by SAGA
could not be confirmed due to the fact that a parallel version of Gilmore
and Lawler’s branch and bound procedure [89] [125] proved intractable. For
a reduced problem with 18 objects, branch and bound was tractable and
the optimal solution was found in 18 hours using a 32-nodel Intel iPSC/2
hypercube. SAGA was reported to have found the same solution in 2.4
minutes [40].
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ASPARAGOS
An Asynchronous Parallel “Genetic” Optimization Strategy

ASPARAGOS is defined by its creators, M. Gorges-Schleuter and H.
Miihlenbein [93] [138], as an asynchronous parallel genetic algorithm. Due to
its characteristics I should classify it as a asynchronous memetic algorithm.

Step 0. Define a genetic representation of the optimization prob-
lem

Step 1. Create N individuals

Step 2. Each individual does local hill climbing (increases its
fitness)

Step 3. Each individual chooses a partner for mating (local
selection)

Step 4. Creation of new offspring (crossover and mutation)

Step 5. Replace the individual

Step 6. If not finished, go to Step 2

This algorithm has found a new optimum for the largest published quadratic
matching problem and it also showed strikingly good performance in two of
the biggest TSPs solved to optimality, the Padberg and Rinaldi 532-cities
problem [145], and the Grotschel’s 442-cities problem [161].

As the CCA, it is based in a physical neighborhood where the individuals
that compose the population are allocated and it also has the advantages
of few interproccessor communications. They also share with the CCA the
fact that there is no global knowledge of the entire system; selection is done
locally, within neighbours. These groups are called deme or “tribe” and are
defined as the subpopulation in the immediate locality, a set of potential
partners. The neighborhood acts as the selective enviroment of an individ-
ual. The population number of a deme is determined by the mobility of
the individuals and those with better fitness have a better chance of being
selected for mating. Due to the fact that different neighborhoods overlap, a
diffusion process, inherent to the isolation by distance, gives the opportunity
for good schemata belonging to well developed individuals a higher chance to
propagate. In the CCA, this diffusion process is present in the mechanisms
of competition and cooperation.

One run of the algorithm is dependent on some parameters. They are:
M, which is the population size, D, the neighborhood (deme or “tribe”) size,

31



C', the size of the crossover interval, Pys, the mutation rate, W, the window
size, and 5, the selection strategy. A window size of W = n indicates that
the base value which local fitness is computed is determined by the locally
least fit individual from n — 1 generations in the past. M. Gorges-Schleuter
has studied the effect of these parameters, for a more complete description
the reader can see Ref. [93] and [139].

The computer simulations show that the quality depends on the param-
eter settings but also in the number of generations computed. A stopping
criterion was established based on the diversity of the gene pool. In the TSP
the diversity can be understood as the number of different edges between
the tours present in a given generation. Experiments with more than 1600
generations showed a very small probability of finding better solutions, so a
certain number of generations is selected as the stopping criterion.

Simulation Results

Although the effects of mutation and migration can be considered similar,
since both introduce modifications into a neighborhood, migration is more
useful than mutation. It was found that it is a poor strategy to use a mutation
rate Ppy = 0.02 to prevent loss of diversity. It is interesting to remark
that M. Gorges-Schleuter conlcudes that in ASPARAGOS “chance is less
important than cooperation” as in CCA cooperation being understood
as the result of application of a crossover (recombination) operator.

The algorithm was not very dependent of the crossover parameter C' but
it was dependent of the selection strategy and the population size. The pop-
ulation size seems to be problem size dependent. There are also dependences
that involve the window size, the selection strategy and the mutation rate.

ASPARAGOS has found a new optimum to the largest published Quadratic
Assignment Problem. It has also found the optimum tours for TSP of less
than 100 cities and in the 532-cities problem it has found a solution less than
one percent above the optimal tour.

8 Discussion

The purpose of this section is to discuss some of the properties of these strate-
gies to do the search stressing their analogies and differences with previous
approaches.

These techniques are examples of what I called memetic algorithms. First
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of all, they are population approaches that need few individuals. They com-
bine a very fast heuristic to improve a solution (and even reach a local min-
ima) with a recombination mechanism that creates new individuals. Recom-
bination is a mechanism to look between good solutions.

The blind-fold search of the tallest building in New York

I want to be a little more clear in my description of why recombination is
a good strategy for optimization in some kind of landscapes. To do that I
would introduce an optimization problem: the task of finding blind-folded
the tallest building in New York. Suppose a certain hypothetical tireless man
is blind-folded. His task is to find the position of the tallest building in NY.
Although he is blind-folded, he can walk to a given address, enter a building
and compute its height. He has to have a good strategy to do the search.
Of course he can not go to every place in NY and compute the height of the
building there. This would be complete enumeration, we have discussed that
possibility before.

So he can decide as his strategy the following: start from a random initial
point, walk ten miles in a random direction, measure the building found, and
repeat this for a certain number of iterations. Then report the address of
the tallest building found. This is random walk, a very poor strategy for this
problem. I should say a very poor strategy for this landscape. The quality of
the final solution is expected to be bad, and also there is a waste of computer
time, measured as unnecessary height evaluations (our objective function) in
“unpromising areas”. As an example, we would like to avoid searching in
low-height areas like Central Park.

We can add a probability to the search: start from a random initial point,
walk ten miles in a random direction, measure the building, accept this as
the new configuration with a given probability (we can adopt the exponential
transition probability of SA), and repeat the sequence for a given number of
iterations. At the end the highest building found is reported.

Now suppose we have the results of these two theoretical simulations. It
is hard to believe that the second one would be better than random search.
But if instead of going from place to place in ten-miles long steps, he made
steps of few blocks, it is clear that the result will be better than the random
case. The reason is that we do not expect any correlation between the values
of two buildings that are separated by ten miles. If we are in a tall building, a
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building at ten miles can be of any possible heigth. Due to the fact that cities
use to have tall buildings in clusters, the downtown growth, a smaller step-
size would be more appropiate. Our blind “optimizer” would be attracted
towards the cluster first, then, in the cluster, the small step size would avoid
him to leave such a favourable region and search within the cluster.

To be fair with an analogy with SA in a discrete space, I should say that
the step-size is fixed. The reader familiar with SA would point out that a
better technique would be to use a big step-size in the begining and reduce
it related with the temperature or statistical information from the heights
of the last positions searched. A procedure that is more related to SA in
continuous spaces [190].

Why we should adopt such a strategy for selecting the step-size 7 If we do
not and we use a short (few-block lengths) step-size, we have a high chance
of being attracted by the nearest cluster form our departing point. Since our
hypotetical optimizer is a tireless individual, he can adopt this long-step-
size-first strategy. This will allow him to search more widely at the begining
and more locally at the end of the search (we are always supposing that
there is a stopping criterion). A probabilistic criterion for determining the
lenght of the step would be more efficient than the monotonically decreasing
fixed step-size [184] [185]. It would add the possibility of jumping between
clusters.

Parallel approaches to the blind-fold search

I recall that the above description is the analogy of the development of a
strategy to search an optimum in a combinatorial optimization problem. In
particular, we have been discussing an analogy with SA.

Now, forgeting the analogies for a moment, we have to consider that we
plan to do the search with a certain computer available. In principle, it can
be a sequential or a multi-processor computer. In this case a question arises,
the parallelization of our algorithm. Parallelization is often viewed as the
correct application of the divide-and-conquer concept. Here we should ask
ourselves, what we will “divide” 7 What will we distribute among processors?

Studying the TSP, Felten et al. have decomposed the physical problem
[74]. In the TSP case, a certain number of cities would be assigned to only
one processor, in a VLSI design problem, a certain number of modules is
assigned, etc.. Similar decompositions can be found in Refs. [26] [122] [58]
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[154] [19]. Finally, the decision would be to speed-up the search or to be
more interested in the final quality of the solution [122].

Returning to our analogy with the blind-fold search in NY, suppose that
we have a parallel computer. Our two possibilities can be analogous with
having a faster individual to do the search or to have many individuals.
Using a parallel machine to do a fast search, it would be the same as if this
blind-folded optimizer would have used a taxi to go from point to point. If
we leave invariant the number of evaluations he made, the use of a parallel
computer is just a way of speeding-up the search. If instead of that we would
like to use the population approach, a certain number of blind-folded guys,
all of them walking, a natural question arises, how can I organize them to
make a more efficient search 7

The CCA was a step in this direction. Suppose that I start with a certain
number of these individuals in random points scattered in NY. I leave them
for a certain time searching. After that, each one radioes a message to a
neighbour (they form a ring as described in the CCA). They compare the
height of the buildings from where they are actually sending the messages.
The individual that is on the smallest building (there is a probabilistic rule
in the CCA) abandons it and goes to the address of the neighbour who has
sent the message. Now both would start from this new position and since
we expect that there is a correlation between the heights of buildings we
have now two individuals searching that area. A new period of individual
search takes place and then again this interaction occurs. In this case we
can say that we have a competitive search, a competitive annealing if we use
simulated annealing to do the local search.

But a competitive search like that looses some of the information created
by the individual that must abandon its present position. So there is a
need for the creation of a different interaction, a cooperative one that would
interchange information between individuals. Recombination, the crossover
operator in the CCA, is such an interaction. As a result of these interactions
we expect a group of individuals, instead of a very fast individual, the two
possible implementations in a parallel computer, to be a much more efficient
search strategy.
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Correlation of local optima

In the previous example, we are exploiting the fact that tall buildings are
organized in clusters to develop a search strategy. We have discussed how
our search can fail if it is not adapted to the correlation of the objective
function we are optimizing (eg. the search with a very big step-size). I can
affirm that any success in the application of SA or a GA to an optimization
problem has as a key feature the correlation of local optima. However, SA
and GA exploit this correlation in different ways.

Kauffman has found evidence of correlation of local optima in his NK
model [113] [116]. Figure 13 shows a sketch of one of his numerical exper-
iments. First a search via l-mutant (one-flip) fitter-variants is made until
no further local optima are uncovered or until 10,000 have been discovered.
Having all these optima, for some problems it was founded that there is a
global structure to the fitness landscape (the objective function). In Figure
13 the global structure is evident when we display the fitness of the local
optima as a function of the Hamming distances of all the 1-mutant local
optima from the fittest local optima found in the whole set. The Hamming
distance is the natural definition of distance between configurations since we
are using the 1-mutant as the move in the space. Figure 13 shows that the
position of the local optima is not random. For K small in comparison with
N, the highest local optima have very small Hamming distances between
them. Local optima with succesively greater Hamming distance from the
highest optimum are succesively less fit. Figure 14 shows how the fittest
local optima seems to have the biggest basins of attraction. This property
disappears when K is increased. These two facts suggest a hilly landscape.
The familiar multi-valley structure of spin-glasses [8] [63] [64] [147] and the
existence of a region where all good optima are located leads Kauffman to
suggest the metaphor of the “Massiff Central” in the Alps.

Kauffman’s numerical experiments are biased by the distribution of sizes
of basins, but they can be considered as overall properties. Optima with
very small basins of attraction might not be found with the 1-mutant fitter-
variant technique used to find the local optima. However, I have previously
discussed the problem of the golf-course landscape and the impossibility of
finding a good strategy in that case. The interest here is to analyze a general
property of the landscape and how to exploit it when we are moved by an
optimization purpose.
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In my opinion, the study of correlation between minima and the structure
of the landscape is one of the most important results that came from research
in disordered systems for the analysis of optimization problems. Computer
scientists should look at those results in order to analyze and construct heuris-
tics for combinatorial optimization problems. Failure of heuristics in a given
problem can be understood regarding features of disordered systems. For ex-
ample, the task of finding the ground state of a three-dimensional spin-glass
has been proved to belong to the NP-complete class [18] [12]. The task of
finding ground states of spin-glasses, regarded as an optimization problem,
has to deal with the asymptotic behaviour of the height of energy barriers as
one of its central features. This height grows with N, the number of spins
[8].

The physics of disordered systems is addressing these kind of questions
through the works of P.W. Anderson [73] [87] [14], J.R Banavar [14] [15] [16]
[17], B. Derrida [63] [64] [65] [66] [67], R.G. Palmer [146] [181], G. Parisi [148]
[149], N. Sourlas [175] [14] [176]. In particular the works in ultrametricity
tried to understand some of the properties of the configuration space [129]
[155] [11] [13] [97]. A significant amount of effort was directed to analyze the
connections between the physics of disordered systems and other fields, [180]
[182] and some tools of Statistical Mechanics have been applied to understand
optimization problems [87] [112] [123] [130] [131] [14] [171] [175] [177]. The
message to Computer Science is explicitely addressed by P.W. Anderson [6].
All these works are trying to understand the properties of the landscape, to
use Kauffman’s words, and as an example of similar work he did with the
NK model. I should remark the work of Kirkpatrick and Toulouse in the
TSP [120].

The memetic algorithm at work: Exploiting correlations
in the landscape

Suppose we want to apply a memetic algorithm to a completely correlated
landscape. An example of such a landscape can be Figure 15, a bowl-like cost
function. It can be viewed as an analogous picture of the K = 0 Kauffman
model, for example the N-locus, 2-allele additive fitness model previously
discussed. First, create a certain number of individuals in random locations.
Then evolve them to a local minima. Here we should compute the diversity of
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them, and we will find that all have reached the only optima in the landscape.
Then, the search stops and the location of the local (which in this case is
global) optima is reported.

It is interesting to see how SA and GA would behave in such a landscape.
To make the analogy with SA, an individual is placed in a random location.
As a result, at each temperature many up-hill moves are accepted, which
leads in a waste of computer time, slowing the search. In some implemen-
tations of SA, where the number of iterations at a given temperature and
the way of decreasing the temperature are fixed, SA would take the same
amount of computer time in this landscape than in a “very complex” one.

A GA will also be time-consuming. It will start with a group of indi-
viduals in random locations as the memetic algorithm. Then the operators
of crossover and mutation would act, selection of the best individuals, and
this procedure would be repeted many times. In contrast the MA does not
make any recombination for this problem, and if implemented in a distributed
architecture, there would not be any communication during the search.

Unfortunately, most combinatorial optimization problems do not present
such a correlated landscape, but in many cases where SA or GA is being
applied there exists a certain correlation. A picture of somewhat correlated
landscapes can be found in Figure 16. It is clear the advantage of a MA in
this case as a strategy that exploit the correlation and avoids the problem
given by the ruggedness of the landscape. Because each one of the individ-
uals recombines to create a new individual after they have reached a local
optima, they are using information about the location the local optima to
find potential good regions where to search. GA would work in a similar
way, but because they are based in random mutations, the individuals to be
recombined are not necessarily good. So a positive effect of a recombination
operator is masked by the lack of correlation between two configurations that
are not local minima. They are not completely uncorrelated, but we expect
that the correlation would be smaller than in the case that both are local
minima. SA seems to be based in a kind of multiscale process by which
the landscape “looks” more smooth at high temperature and increasing its
roughness when the temperature is decreasing. It seems that the stochastic
hopping over barriers does not play a fundamental role in the efficiency of

SA [134].
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Measuring correlations of the landscape

Returning to the primary stage of the election of a representation for a combi-
natorial optimization problem and how to select the set of moves associated,
we need to develop a technique to choose them. The landscape is a con-
sequence of this election, and we have pointed out the correlations between
entities in that representation as one of the advantages that SA, GA and MA
are exploiting to do the search. Faced with a set of possible representations,
r1,79,...Ty and a set of moves sy, $y,...5,, a good criterion for choosing a
certain pair (r;,s;) as the optimal would be based in the correlation of its
associated landscape. A measure of correlation would be of primary interest.

E.D. Weinberger has suggested the use of autocorrelation functions to
study the landscape of the NK model [114] [193]. Suppose we choose a given
pair (1, s;), we will study the correlation of its associated landscape with the
following procedure. We start with a randomly generated configuration (an
entity in the representation). A random walk is generated by the successive
application of the move s;), so a set of entities is generated ey, eq,...e,. We
compute the fitness (objective value) of each of these entities. The auto-
correlation function relates the fitness of two entities that there are p steps
apart:

C(Ti, 55, m) — E(FnFn-I-TfL) — E(FH)E(FH-I-M) (10)

vartance(F)

where F is the expected mean value. In the NK model it was found the
expected correlation for K small and the deterioration when K is increased.
It was also found an exponential fall of the autocorrelation as a function of
m, the number of steps apart of two entities.

Of particular interest would be the autocorrelation function C(r;,s;,1).
However, it has to be proved that the selection of a pair (r;,s;) which is
optimal in the sense of the autocorrelation C(r;, s;,1) would also be the best
pair for a technique like SA. My impression is that successful implementa-
tions of SA have a good value of C'(r;,s;,1) but there are other correlations
involved. To be more precise, we have talked about the correlation of local
minima, and this measure of correlation does not give such information. The
random walk is started in a randomly chosen entity, and since the walk is
random, we are computing the correlation of entities that can only appear in
the very high, extremely high indeed, phase of a SA algorithm. Although I
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must introduce another measures of correlation, this measure has proved in
the NK model the existence of a natural correlation length for each one of
the landscapes generated varying the value of K.

Towards a rational design of moves and recombination
operators

It is undoubtely true that the success of a GA implementation is a direct
consequence of the utilization of appropiate recombination operators. A clear
result of that is the extraordinary improvement in performance in the TSP
when new and more efficient crossover operators and representations have
been used. However, there is no clear understanding of the reasons that lead
a certain crossover operator to be better than others.

One possible way to try to understand these better performances is to use
correlation functions to analyze the behaviour of crossover operators. And
it would also be a tool to design more effective recombination operators.
We have discussed the bowl-like landscape and the GA implementation. A
certain crossover operator that takes two configurations, here two points in
the bowl, and creates a child that is half-way between the parents, would be
an effective recombination operator for the problem. While another operator
that most of the time creates a child farther from the parents than the inter-
parents distance, would be a poor way to introduce recombination.

This leads to the introduction of a measure of correlation to somewhat
measure this behaviour. Let py,ps; be two parent configurations randomly
selected. Let d(py,p2) be the distance between two configurations. Let rec
be a certain recombination operator and ch the child created by application
of rec to py, pa. The values of the objective functions F(p1), F(pz2), F(ch) are
computed. Let I'* be the best value of the pair py, po. Then we can create a
correlation function of the type.

E(F*F(ch)) — B(F*)E(F(ch))

variance( F*)

Cloa(riree,d) = ()
where F is the expected mean value. Although this would be more interesting
for GA, it has a similar problem. Since the two parents have been selected
randomly, their values of fitness are not near-optimal. As a consequence, this
measure of correlation, is reflecting properties of the recombination operator
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at the begining of the run of a GA.

Another measure of correlation can be used, supposing that the two par-
ents selected are local minima. In that case they are two local minima under
a given set of moves s;. It is obvious that this measure would be natural for
a MA. So we can compute

E(F*F(ch)) — E(F*)E(F(ch))

variance( Fx)

Clara(ri, sj,ree,d) = (12)
where the use of a “1” means that is a child of the next generation, the equiva-
lent of one step after the application of the recombination operator. I should
write Clara(r;, sj,ree,d) = Cara(ri, sj,ree,d, 1) and open the posibility of
analyzing Capa(ry, sj,rec,d,m).

We can think of C'lyra(r;, s;,rec,d) as a possible tool to analyze the per-
formance of a recombination operator in the landscape generated by the pair
(r;,8;). For example, in Figure 17, we can see that there exists a correlation
between local optima. They are located over a ring. So the recombination
operator that creates a child over a straight line over two local optima is not
the more adequate for this problem. It will create offspring in the central
region which is flat. In conclusion, for a certain optimization problem, a
memetic algorithm can be developed if a certain hidden correlation can be
exploited by the use of the most effective recombination operator. Figure 18
shows how we can have local optima correlated although the landscape would
be not very smooth. H. Miihlenbein says in Ref [138]: “There is lots of
evidence that for many applications the crossover operator is the
key to the success of the genetic algorithm, but there are only some
qualitative arguments explaining the above observation”. Perhaps
the study of these kind of correlation functions would be able to explain this
success and be useful in the rational design of recombination operators.

9 Future Directions of Memetic Algorithms

In this section I want to discuss some possible directions of research in
Memetic Algorithms. One of the possibilities which have not been much
explored both in SA and in GA is a kind of annealing in the complexity of
the task. I am using the word “complexity” as Kauffman uses it to relate it
with the difficulty of the task. This differs with the use given by computer
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scientists and complexity theory. For them, the real complexity catastrophe
is the existence of NP problems so I believe they would like me saying an-
nealing in the difficulty of the task. In the TSP, it is natural to associate the
complexity (and the difficulty) with the number of cities that compose a tour.
Although it was not well considered in SA and GA, constructive heuristics
are common-place in the design of algorithms for combinatorial optimization
problems.

In the beginning was simplicity
The N-var approach

Usually, SA and GA when applied to the TSP have used a tour composed
of N cities during all the optimization process. In that way, we are always
trying to find the low-distance tours between the (N-1)!/2 possible tours.
In other words, a 100-city TSP have a configuration space 99 times bigger
than a 99-city TSP and we are always working out the most difficult task.
However, usually a small number of cities can give an approximation of the
overall shape of the tour. Obviously we have more possibilities of finding an
optimum tour if we have less cities, and then we can continuously adding
cities, perturbating the present solution until we complete a tour with the N
cities. Reviewing the foundations of SA we address the following question:
why can’t we leave the number of cities as an external control parameter in
the same way as we do with temperature? Pursuing the analogy that if T' is
decreased from an initial value Tp, the number of cities of the tour (n) can
be increased ad hoc from an initial number ng to N.

Pursuing an analogy with biological systems, which is much more clear
after the introduction of GA, life forms have two possibilities, at the genetic
level, to improve their fitnesses. One is the rearrangement of the sequence
in a gene that can lead to better “genetic codes”, and they can also improve
them by the addition of new nucleotides in the sequence, so increasing the
dimensionality of the configuration space of that gene. These mechanisms,
in addition with natural selection permit to develop only those individuals
that make the most effective use of the genetic material they can use to build
a code.

Playing with the words, we can say that using the number of cities as an
external control parameter, we would also be able to do an annealing at zero
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temperature. This statement seems strange, so we need to clarify in which
sense it must be understood . SA, it is said, used the temperature, an artificial
parameter to escape to “local minima” situations. Now suppose that we
have set the temperature to zero, while increasing the number of cities; so
the acceptance probability functions of SA go to the step function. In that
case, as a result of the addition of a new city, we can leave many situations
in which without this new degree of freedom, it would have been impossible
to improve the tour, leaving an artificial local minima if we consider that the
real problem has N cities.

Due to the fact that after five years, the optimal annealing schedule is
still a practical difficulty, the analogous question of how many attempted
rearrangments we have to make for a given number of cities, can not be
answered, even at zero temperature. Empirically, we found that a number of
attempted rearrangements of the order of O(n; In(n;)) per MC step seems
to be adequate, where n; stands for the actual number of cities in the tour.
So starting with ng cities we can generate a nearest-neighbour tour or, for
research purposes we can start with a random tour. Then we make ng In(ng)
attempted rearrangements and then we add a new city, and so on. This
procedure can be complemented with the use of the temperature, so we can
have the two control parameters at the same time.

Another question that must be addressed is the order of insertion of cities.
That is, which cities are the initial ng and which ones are inserted further on.
One lesson from the experience in SA is that the large structures of the tour
anneal first and then, at low temperatures, the small defects are corrected.
It we perform the insertion of the cities while doing the decreasing of the
temperature, it would be wise to insert first those cities that will give the
gross features of the tour.

The best way seems to use a farthest selection procedure. The farthest-
selection cheapest-insertion procedure has proved to be a good heuristic for
the TSP. One of the standard versions would be [124]:

Step 1. Start with a subgraph consisting of city choosen at
random. We will call it as city ¢ .

Step 2. Find a city k& such that ¢;; is maximal and form the
subtour (7, k). The value of ¢, is the cost of connecting these two
cities and it is equal to the value of the distance between them if
we are considering an euclidean problem.

Step 3. (Selection) Given a subtour, find a city £ not in the sub-
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tour and city / in the current subtour such that ¢;; = max;(min;(¢;;)),
where j denotes a city not in the current subtour and : denotes a
city in the current subtour.

Step 4. (Insertion) Find the edge (7,j) in the subtour which
minimizes ¢;; + ¢;; — ¢;;. Insert & between : and j.

Step 5. Go to Step 3 unless we have a Hamiltonian cycle.
or in Step 3 can be replaced with

Step 3’. (Selection) Given a subtour, find a city £ not in the
subtour farthest from any city in the subtour.

Both versions, being deterministic, only depend on the initial city ;. Using
the farthest-insertion solution as the starting tour in the r-opt Lin-Kernighan
procedure [127], the optimal solution was found in eight of twelve non-
Euclidean problems studied in a computational study performed by Adra-
binski and Syslo [5] and it still performs well on big problems [160].

Another obvious possibility is to add the cities in a random order, that
would leave the complexity of the memetic algorithm without changes.

I would like to remark before ending this subsection, that the concept
here is to add to the evolutionary strategy that is the core of the memetic
algorithm, the component of an increasingly complex task. However, this idea
should not only be associated with a gradual increase in the dimensionality
of the configurations. In other systems, like the NK Kauffman model, it
would be wise to develop a K-var strategy. At the beggining, a small value
of K 1is selected, the landscape is more correlated than with the final value.
A slow increment of the epistatic interactions may also have an interesting
biological analogy.

Exploiting asynchronism and heuristics

ASPARAGOS was an example of how a MA does not need to have a syn-
chronous implementation. I should add that it does not need that each of
the processors to be of the same type. Different computers can be connected
with suitable protocols. Taking the CCA ring structure as an example, it
is interesting to remark that a certain network of computers can be doing
a certain optimization task using idle time. When a certain computer is
idle, it can send a message to the ring structure and position itself between
two other computers presently working in the ring. It can start with one of
the configurations actually considered by one of the neighbours in the ring.
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When a certain computer is needed for another task, it would leave the ring
in a similar way.

This possibility, is given only due to the advantages of the memetic ap-
proach. For it, the network really is the computational device. As a new-
comer to Computer Science, [ can not avoid wondering about the coincidence
that, a memetic algorithm which is inspired in emulating cultural evolution,
has as its natural computational framework what computer scientists have
called “Social Systems”. Social Systems are asynchronous distributed pro-
cessors characterized by a large and variable population of small individuals
and a random and changing communication architecture [178].

Another advantage that can be exploited is that the most powertul com-
puters in the network can be doing the most time-consuming heuristics, while
others are using a different heuristics. The program to do local search in each
individual can be different. This enriches the whole, since what is a local
minima for one of the computers is not a local minima for another in the
network. Different heuristics may be working fine due to different reasons.
The collective use of them would improve the final output. In a distributed
implementation we can think in a division of jobs, dividing the kind of moves
performed in each computing individual. It leads to an interesting concept,
where instead of dividing the physical problem (assignment of cities/cells to
processors) we divide the set of possible moves. This set is selected among
the most efficient moves for the problem.

What are the general rules ?

One of the most important questions that research in memetic algorithms
should address is the search of general principles [118] [106] [51]. For example,
one of them is related with the topology of the interconnection network. The
CCA and ASPARAGOS have used similar configurations while SAGA has
no such a structure. So, is the isolation by distance a better strategy 7 It
has a certain advantage in the sense that the computation is distributed, but
it would be interesting to prove that it also benefits the quality of the final
solutions or the speed of the algorithm or both. The CCA and ASPARAGOS
differ since in the CCA the neighbourhoods of cooperation and competition
are different. Is this ingredient important 7 If it is important, how can
we exploit it 7 Is the ring the best topology 7 Some simulations with the
CCA have shown that the use of more than 16 processors does not give
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better solutions (at least with the OX operator and the determistic update).
ASPARAGOS, which was using a better crossover operator, has found that
“...with a 100-city problem a population size of only 16 is sufficient
to always converge to the global optimum.” [93]. M. Gorges-Schleuter,
working with ASPARAGOS, supports the advantage of the isolation between
individuals. She says in Ref. [93] “To get high quality solutions it is
important that most demes are separated, and only locally near
demes overlap. This means local information should only propagate
to other demes through a diffusion process”.

She also remarks that “In comparing the effects of mutation and
migration we conclude that chance is less important than cooper-
ation”. This seems to me to be a result of the fact that ASPARAGOS,
regarded as a memetic algorithm, is exploiting the correlation of local min-
ima. The use of a mutation rate, which is necessary in a GA, is not so
important here. In a GA it is needed to improve the quality of solutions
after the application of the recombination operator. Being a technique that
mimics biological evolution it is sure that it needs to be incorporated. On the
contrary, the individuals in a memetic algorithm are improved, slightly in the
CCA, more significantly in SAGA and reaching the maximum in ASPARA-
GOS. In a conversation with authors of SAGA and ASPARAGOS, I found
myself using the same words to describe the improvement of the individuals
doing the phase of local search. In Ref. [40], Brown et al. describe it as:
“...each of the offspring generated by the GA in a given generation
is improved using SA. In other words, each offspring is required to
“mature” before being allowed to have offspring, much as it would
be in a natural system”. If all these methods are using the correlation
of local minima as the reason of sucess, the introduction of mutations would
not benefit the search process since it will only generate “noise”. However,
for those that would like to equate noise with a benefical contribution, I must
remark that the necessary random effects are provided by the recombination
operators and not by the mutation.

Other questions are related to the breeding procedures. In the CCA, the
introduction of an acceptance mate factor was benefical. It improved the
quality of solutions in aproximately four percent of the length of the opti-
mum, for different size of instances. The existence of an acceptance mate
factor, helps an individual to avoid to mate if the other individual is worse
than itself. SAGA “uses a rank ordering of the costs when selecting

46



a pair of parents for the CrossOver operator” and in ASPARAGOS
a selection of the parents was also a good strategy. Kauffman as a result
of one of his numerical experiments note: “ Preferential mating and re-
combination of the highest local optima is a selective force which
tends to pull the entire population toward the highest actual lo-
cal optimum discovered. Indeed, in the present case, the entire
population climbs to the actually fittest opimum uncovered in the
entire adaptive procedure”. He also found that “...a different bias in
recombination such that “marriage” occurs preferentially between
nearby peaks, regardless of their fitness, aids recombination. To
test this, we required peaks to be less than half the current mean
Hamming distance among all peaks encountered by 100 walkers in
order that recombination might ocurr between them. Somewhat
to our surprise, this non-random mating rule helps adaptive hill
climbing compared to random mating and recombination”. In my
opinion this is the result of a correlation of local minima combined with the
use of a recombination operator that generates offspring which are near the
parents. There is not more suprise than the fact that the recombination
operator is wisely exploiting the correlation of local optima.

In the search of general rules, other similar techniques would be taken
into account (see for example Refs. [29] [29] [162] [163]) and careful per-
formance mesures should be derived, perhaps using some instances of this
combinatorial problems as a benchmark of the strategies.

Kauffiman is using memetic techniques

The last quotes of Kauffman are a result of numerical experiments that I
should also classify as memetic optimization. It is interesting to remark
that although his work is inspired in trying to develop some the mysteries
of biological evolution, to show the advantages given by the use of recom-
bination operators he had to use a memetic approach. Perhaps a genetic
algorithm would have been considered more adequate regarding the biolog-
ical assumptions and scope of his work. However, I believe that he is right
in the application of a memetic technique and to prove by his experiments
the advantage of using recombination operators. He describes his experi-
ments in this way: “As hinted above, some fitness landscapes may
be self-similar... It is intuitively plausible that in such a land-
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scape, which tends to have “Massifs Central”, recombination will
be helpful. But will it 7 In order to test this numerically, my
colleague Lloyd Clark and I have studied the NK model. We have
schematized the effects of recombination in a simple way. We re-
lease a fixed number (100) of randomly chosen genotypes upon the
same NK fitness landscape, and allow each to walk via randomly
chosen, 1-mutant, fitter variants to a local optimum. In general,
100 or fewer independent local optima are found. Thereafter, we
mated and recombined randomly chosen pairs of local optima at
randomly chosen positions within each genotype, to form 100 new
recombined genotpes. These 100 recombinants were then allowed
to walk via randomly chosen 1-mutant fitter variants to local op-
tima. Thereafter, the cycle of recombination followed by hill climb-
ing to optima was repeated. This numerical procedure clearly asks
whether the regions between local optima help direct the adaptive
process to yet higher local optima”. I have no doubt he has chosen
this strategy because of the similar constraint that we faced in combinatorial
optimization, i.e. the lack of computer time available. I have enjoyed seeing
his Figures where a complete convergence was found after some generations.
The recombination operators, which can be the more expensive computa-
tional operation in some problems, was applied no more than 50 times. This
fact constrasts with the large number of generations we would have to wait
to see if we mimic biological evolution instead of cultural evolution. It can
easily be the answer of one of Miithlenbein questions. He asks in Ref. [138]:
“Why should a complex crossover operator lead to a faster evolu-
tion than mutation? Or in more algorithmetic terms: Should we
use a large population which evolves by small mutations or a small
population evolving by sexual reproduction and crossover? Which
algorithm is faster (in number of computer instructions) ? ” It can
be the case that a crossover operator exploits the correlation of local minima
(and a fast heuristic to reach configurations near the local optima), the anal-
gous to cultural evolution, is much faster than the big population evolving
with small mutations.

Kauffman has wisely remarked that an important feature of adaptation
that can be related to one of the central subjects of study in genetic algo-
rithms. He made an analogy with what he calls a weak Maxwell’s Demon.
He remarks that “...if selection is too weak to hold an adapting pop-
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ulation in very small volumes of the ensemble, then even in the
presence of continuing selection the adapting population will al-
most certainly exhibit the “typical” ordered properties of most en-
semble members. Hence I use to tend to use the phrase that such
adapting systems would exhibit order not because of selection, but
despite it”.

In genetic algorithms, since we are interested in finding the best optimiza-
tion technique, a natural question arises in trying to find the best relation
between the population size and the mutation rate. This seems an endless
question similar to the best annealing schedule in SA. It can be possible that
the optimum value of this parameters can not be found, that there is no
general rule for them. They may depend on the problem, or even on the
instance of the problem being under consideration. Returning to the initial
discussions, it may depend on the landscape, and we know that few things
can be said a priori about the landscape of an optimization problem. The
mutation-rate population-size problem of GA may be closely related with the
weak Maxwell’s Demon that Kauffman analyzes.

On the contrary, the memetic algorithms I described seem not to deal
with that problem. It has been remarked that present versions need few
individuals. In the implementation of the CCA, the use of a decreasing
temperature that controls the process of competition and cooperation, makes
the population concentrate in good solutions in a gradual manner, avoiding
the system to spend time in potentially bad regions of the tour-space. It
seems that this mechanism is controling a problem described by Ceccatto
and Huberman in Ref. [51]. Similar mechanisms arise in SAGA and in
ASPARAGOS. Miihlenbein has noted this fact. He says in Ref. [138] that
“...the evolution is driven totally by the system itself. There is no
need for artificial control parameters. Especially there is no need
for a sharing function to mantain variability”. The use of a sharing
function in some implementation of genetic algorithms is discussed in Ref.

[90]

10 Conclusions

In this review, I have presented a unified view of a certain kind of distributed
algorithms which have been introduced very recently and have shown a ex-
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traordinary performace dealing with some of the biggest instances of certain
combinatorial optimization problems. The analogies of these kind of algo-
rithms with some features of cultural evolution have been remarked and
explored. They suggest a framework for them, playing a similar role to the
biological inspiration of genetic algorithms. Due to some of these analogies
and the fact that they clearly diverge of some other approaches, I found that
they can be labeled as memetic algorithms. I have also shared the hypothesis
that the correlation of local minima is responsible of this amazing success.

The scope of these techniques goes beyond the range of combinatorial
optimization problems. They would be applied in other optimization prob-
lems where the representation and the search strategy are suitable selected.
Memetic algorithms are not a new heuristic that can be chosen to be ap-
plied in an optimization problem. They are not motivated to replace present
heuristic. Instead they are a framework to exploit all previous knowledge
about the problem, combining methods to improve their perfomance.
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