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1 IntroductionHeap allocation with copying garbage collection is widely believed to have poor memory subsystemperformance [30, 37, 38, 23, 39]. To investigate this, we conducted an extensive study of memorysubsystem performance of heap allocation intensive programs on memory subsystem organizationstypical of many workstations. The programs, compiled with the SML/NJ compiler [3], do tremen-dous amounts of heap allocation, allocating one word every to 4 to 10 instructions. The programsused a generational copying garbage collector to manage their heaps. To our surprise, we foundthat for some con�gurations corresponding to actual machines, such as the DECStation 5000/200,the memory subsystem performance was comparable to that of C and Fortran programs [10]: pro-grams ran only 16% slower than they would have with an in�nitely fast memory. This performanceis similar to that for C and Fortran programs For other con�gurations, the slowdown was oftenhigher than 100%.The memory subsystem features important for achieving good performance with heap allocationare subblock placement with a subblock size of one word combined with write-allocate on write-miss, a write bu�er and page-mode writes, and cache sizes of 32K or larger. Heap allocationperforms poorly on machines which do not have one or more of these features; this includes mostcurrent workstations.Our work di�ers from previous reported work [30, 37, 38, 23, 39] on memory subsystem perfor-mance of heap allocation in two important ways. First, previous work used overall miss ratios asthe performance metric and neglected the potentially di�erent costs of read and write misses. Over-all miss ratios are misleading indicators of performance: a high overall miss ratio does not alwaystranslate to bad performance. We separate read misses from write misses. Second, previous workdid not model the entire memory subsystem: it concentrated solely on caches. Memory subsystemfeatures such as write bu�ers and page-mode writes interact with the costs of hits and misses inthe cache and should be simulated to give a correct picture of memory subsystem behavior. Wesimulate the entire memory subsystem.We did the study by instrumenting programs to produce traces of all memory references. Wefed the references into a memory subsystem simulator which calculated a performance penalty dueto the memory subsystem. We �xed the architecture to be the MIPS R3000 [22] and varied cachecon�gurations to cover the design space typical of workstations such as DECStations, SPARCSta-tions, and HP 9000 series 700. All the memory subsystem con�gurations we studied had a writebu�er and page-mode writes. We studied eight substantial programs.We varied the following cache parameters: size (8K to 128K), block size (16 or 32 bytes),write miss policy (write allocate or write no allocate), subblock placement (with and without),and associativity (one and two way). We simulated only split instruction and data caches, i.e.,no uni�ed caches. We report data only for write-through caches but the results extend easily towrite-back caches (see Section 5.2).Section 2 gives background information. Section 3 describes related work. Section 4 describesthe simulation methods used, the benchmarks used, and the metrics used to measure memorysubsystem performance. Section 5 presents the results of the simulation studies, and an analysisof those results. Section 6 concludes. 1



2 BackgroundThe following sections describe memory subsystems, copying garbage collection, SML, and theSML/NJ compiler.2.1 Memory subsystemsThis section reviews the organization of memory subsystems. Since terminology for memory sub-systems is not standardized we use Przybylski's terminology [31].It is well known that CPUs are getting faster relative to DRAM memory chips; main memorycannot supply the CPU with instructions and data fast enough. A solution to this problem is touse a cache, a small fast memory placed between the CPU and main memory that holds a subset ofmemory. If the CPU reads a memory location which is in the cache, the value is returned quickly.Otherwise the CPU must wait for the value to be fetched from main memory.Caches work by reducing the average memory access time. This is possible since memoryaccesses exhibit temporal and spatial locality. Temporal locality means that a memory locationthat was referenced recently will probably be referenced again soon and is thus worth storing inthe cache. Spatial locality means that a memory location near one which was referenced recentlywill probably be referenced soon. Thus, it is worth moving the neighboring locations to the cache.2.1.1 Cache organizationThis section describes cache organization for a single level of caching. A cache is divided into blocks,each of which has an associated tag. A cache block represents a block of memory. Cache blocksare grouped into sets. A memory block may reside in the cache in exactly one set, but may residein any block within the set. The tag for a cache block indicates what memory block it holds. Acache with sets of size n is said to be n-way associative. If n=1, the cache is called direct-mapped.Some caches have valid bits, to indicate what sections of a block hold valid data. A subblock isthe smallest part of a cache with which a valid bit is associated. In this paper, subblock placementimplies a subblock size of one word, i.e., valid bits are associated with each word. Moreover, on aread miss, the whole block is brought into the cache not just the subblock that missed. Przybylski[31] notes that this is a good choice.A memory access for which a block is resident in the cache is called a hit. Otherwise, thememory access is a miss.A read request for memory location m causes m to be mapped to a set. All the tags and validbits (if any) in the set are checked to see if any block contains the memory block for m. If a cacheblock contains the memory block for m, the word corresponding to m is selected from the cacheblock. A read miss is handled by copying the missing block from the main memory to the cache.A write hit is always written to the cache. There are several policies for handling a write miss,di�ering in their performance penalties. For each of the policies, the actions taken on a write missare:1. write no allocate:� Do not allocate a block in the cache� Send the write to main memory, without putting the write in the cache.2. write allocate, no subblock placement: 2



� Allocate a block in the cache.� Fetch the corresponding memory block from main memory.� Write the word to the cache and to memory.3. write allocate, subblock placement1:� Allocate a block in the cache.� Write the word to the cache and to memory.� Invalidate the remaining words in the block.Write allocate/subblock placement will have a lower write miss penalty than write allocate/nosubblock placement since it avoids fetching a memory block from main memory. In addition, itwill have a lower penalty than write no allocate if the written word is read before being evictedfrom the cache. See Jouppi [21] for more information on write miss policies.A miss is a compulsory miss if it is due to a memory block being accessed for the �rst time.A miss is a capacity miss if it results from the cache (size C) not being big enough to hold all thememory blocks used by a program. This corresponds to the misses in a fully associative cache ofsize C with LRU replacement policy (minus the compulsory misses). It is a conict miss if it resultsfrom two memory blocks mapping to the same set. [19]A write bu�er may be used to reduce the cost of writes to main memory. A write bu�er is aqueue containing writes that are to be sent to main memory. When the CPU does a write, thewrite is placed in the write bu�er and the CPU continues without waiting for the write to �nish.The write bu�er retires entries to main memory using free memory cycles. A write bu�er stalloccurs if the write bu�er is full when the CPU tries to do a write or tries to read a location queuedup in the write bu�er.Main memory is divided into DRAM pages. Page-mode writes reduce the latency of writes tothe same DRAM page when there are no intervening memory accesses to another DRAM page.2.1.2 Memory subsystem performanceThis section describes two metrics for measuring the performance of memory subsystems. Onepopular metric is the cache miss ratio. The cache miss ratio is the number of memory accesses thatmiss divided by the total number of memory accesses. Since di�erent kinds of memory accessesusually have di�erent miss costs, it is useful to have miss ratios for each kind of access.Cache miss ratios alone do not measure the impact of the memory subsystem on overall systemperformance. A metric which better measures this is the contribution of the memory subsystem toCPI (cycles per useful instruction2). CPI is calculated for a program as number of CPU cycles tocomplete a program / total number of useful instructions executed. It measures how e�ciently theCPU is being utilized. The contribution of the memory subsystem to CPI is calculated as number ofCPU cycles spent waiting for the memory subsystem / total number of useful instructions executed.As an example, on a DECStation 5000/200, the lowest CPI possible is 1, completing one instructionper cycle. If the CPI for a program is 1.50, and the memory contribution to CPI is 0.3, 20% ofthe CPU cycles are spent waiting for the memory subsystem (the rest may be due to other causes1Recall subblock size is assumed to be 1 word.2All instructions besides nops are considered to be useful. A nop (null operation) instruction is a software-controlled pipeline stall 3



% check for heap overflowcmp alloc+12,topbranch-if-gt call-gc% write the objectstore tag,(alloc)store ra,4(alloc)store rd,8(alloc)% save pointer to objectmove alloc+4,result% add 12 to alloc pointeradd alloc,12 Figure 1: Pseudo-assembly code for allocating an objectsuch as nops, multi-cycle instructions like integer division, etc.). CPI is machine dependent sinceit is calculated using actual penalties.2.2 Copying garbage collectionA copying garbage collector [17, 11] reclaims an area of memory by copying all the live (non-garbage) data to another area of memory. This means that all data in the garbage-collected areais now garbage, and the area can be re-used. Since memory is always reclaimed in large contiguousareas, objects can be sequentially allocated from such areas at the cost of only a few instructions.Figure 1 gives an example of pseudo-assembly code for allocating a cons cell. ra contains the carcell contents, rd contains the cdr cell contents, alloc is the address of the next free word in theallocation area, and top contains the end of the allocation area.The SML/NJ compiler uses a simple generational copying garbage collector [27]. Memory isdivided into an old generation and an allocation area. New objects are created in the allocationarea; garbage collection copies the live objects in the allocation area to the old generation, freeingup the allocation area. Generational garbage collection relies on the fact that most allocated objectsdie young; thus most objects (about 99% [3, p. 206]) are not copied from the allocation area. Thismakes the garbage collector e�cient, since it works mostly on an area of memory where it is verye�ective at reclaiming space.The most important property of a copying collector with respect to memory subsystem behavioris that allocation initializes memory which has not been touched in a long time and is thus unlikelyto be in the cache. This is especially true if the allocation area is large relative to the size of thecache since allocation will knock everything out of the cache. This means that for small cachesthere will be a large number of (write) misses.For example consider the code in Figure 1. Assume that a cache write miss costs 16 CPU cyclesand that the block size is 4 words. On average, every fourth word allocated causes a write miss.Thus, the average memory subsystem cost of allocating a word on the heap is 4 cycles. The averagecost for allocating a cons cell is seven cycles (at one cycle per instruction) plus 12 cycles for thememory subsystem overhead. Thus, while allocation is cheap in terms of instruction counts, it isexpensive in terms of machine cycle counts. 4



2.3 Standard MLStandard ML (SML) [29] is a call-by-value, lexically scoped language with higher-order functions,garbage collection, static typing, a polymorphic type system, provable safety properties, a sophis-ticated module system, and a dynamically scoped exception mechanism.SML encourages a non-imperative programming style. Variables cannot be altered once theyare bound, and by default data structures cannot be altered once they are created. Lisp's rplacaand rplacd do not exist for the default de�nition of lists in SML. The only kinds of assignable datastructures are ref cells and arrays3, which must be explicitly declared. To emphasis the point,assignments are permitted but discouraged as a general programming style. The implications ofthis non-imperative programming style for compilation are clear: SML programs tend to do moreallocation and copying than programs written in imperative languages.SML is most closely related to Lisp and Scheme[33]. Implementation techniques for one of theselanguages are mostly applicable to the other languages, with the following caveats: SML programstend to be less imperative than Lisp or Scheme programs and Scheme and SML programs usefunction calls more frequently than Lisp, since recursion is the usual way to achieve iteration inScheme and SML.2.4 SML/NJ compilerThe SML/NJ compiler [3] is a publicly available compiler for SML. We used version 0.91. Thecompiler concentrates on making allocation cheap and function calls fast. Allocation is done in-line, except for the allocation of arrays. Aggressive �-reduction (inlining) is used to eliminatefunctions calls and their associated overhead. Function arguments are passed in registers whenpossible, and register targeting is used to minimize register shu�ing at function calls. A splitcaller/callee-save register convention is used to avoid excessive spilling of registers. The compileralso does constant-folding, elimination of functions which trivially call other functions, limited codehoisting, uncurrying, and instruction scheduling.The most controversial design decision in the compiler was to allocate procedure activationrecords on the heap instead of the stack [1, 5]. In principle, the presence of higher-order functionsmeans that procedure activation records must be allocated on the heap. With a suitable analysis,a stack can be used to store most activation records [24]. However, using only a heap simpli�esthe compiler, the run-time system [2], and the implementation of �rst-class continuations [18].The decision to use only a heap was controversial because it greatly increases the amount of heapallocation, which is believed to cause poor memory subsystem performance.3 Related WorkThere have been many studies of the cache behavior of systems using heap allocation and some formof copying garbage collection. Peng and Sohi [30] examined the data cache behavior of some smallLisp programs. They used trace-driven simulation, and proposed an ALLOCATE instruction forimproving cache behavior, which allocates a block in the cache without fetching it from memory.Wilson et. al. [37, 38] argued that cache performance of programs with generational garbagecollection will improve substantially when the youngest generation �ts in the cache. Koopman et.al. [23] studied the e�ect of cache organization on combinator graph reduction, an implementation3Although the language de�nition omitted arrays, all implementations have arrays.5



technique for lazy functional programming languages. Combinator graph reduction does moreheap allocation and assignments than SML/NJ programs. They observed the importance of awrite-allocate policy with subblock placement for improving heap allocation. Zorn [39] studied theimpact of cache behavior on the performance of a Common Lisp system, when stop-and-copy andmark-and-sweep garbage collection algorithms were used. He concluded that programs run withmark-and-sweep have substantially better cache locality than when run with stop-and-copy.These works all used data cache miss ratios to evaluate cache performance. They did notseparate read and write misses, despite the di�erent costs of these misses. Also, they did notsimulate the entire memory subsystem. Our work separates read misses from write misses andcompletely models the memory subsystem, including write bu�ers and page-mode writes.Appel [3] estimated CPI for the SML/NJ system on a single machine using elapsed time andinstruction counts. His CPI di�ers substantially from ours. Apparently instructions were under-counted in his measurements [4].Jouppi [21] studied the e�ect of cache write policies on the performance of C and Fortranprograms. Our class of programs is di�erent from his, but his conclusions support ours: that awrite-allocate policy with subblock placement is a desirable architecture feature. He found thatthe write miss ratio for the programs he studied was comparable to the read miss ratio, and thatwrite-allocate with subblock placement eliminated the cost of write misses. For programs compiledwith the SML/NJ compiler, this is even more important due to the high number of write missescaused by allocation.4 MethodologyWe used trace-driven simulations to evaluate the memory subsystem performance of programs.For trace-driven simulations to be useful, there must be an accurate simulation model and a goodselection of benchmarks. Simulations that make simplifying assumptions about important aspectsof the system being modeled can yield misleading results. Toy benchmarks, or unrepresentativebenchmarks, can be equally misleading. We have devoted much e�ort to addressing these issues.4.1 ToolsWe have extended QPT [7, 25, 26] to produce memory traces for SML/NJ programs. QPT rewritesan executable program to produce a full instruction and data trace. Because QPT operates on theexecutable program, it can trace both the SML code and the garbage collector (written in C).We used Tycho [20] for the memory subsystem simulations. Tycho uses a special case of all-associativity simulation [28] to simulate multiple caches concurrently. We have added a write-bu�ersimulator to Tycho, which concurrently simulates a write bu�er for each instruction and data cachepair being simulated. The write-bu�er simulator also takes page-mode writes and memory refreshesinto consideration.4.2 Simpli�cations and AssumptionsWe wanted to simulate the memory subsystems as completely as we could. Thus, we have tried tominimize simpli�cations which may reduce the validity of our data. The most important simpli�-cations are:1. We ignore the e�ects of context switches and system calls.6



2. Our simulations are driven by virtual addresses even though many current machines havephysically-addressed caches.3. We use default compilation ags which enable extensive optimizations. We set the soft limitof the garbage collector to 20000K4.4. When comparing di�erent cache organizations we assume that the CPU cycle time is thesame.4.3 BenchmarksTable 1 describes the benchmark programs5. Knuth-Bendix, Lexgen, Life, Simple, VLIW, andYACC are identical to the benchmarks measured by Appel [3]6. Table 2 gives the sizes of thebenchmarks in terms of lines of SML code (excluding comments and blank lines), maximum heapsize in kilobytes, size of the compiled code in kilobytes (does not include the garbage collector andother run-time support code which is about 60K)7, and run time, in seconds, on a DECStation5000/200. The run times are the minimum of �ve runs.Table 3 characterizes the memory references of the benchmark programs. The Writes columnlists the number of full word writes done by the program and the garbage collector; the Assignmentscolumn lists the non-initializing writes done by the program only. The Partial Writes column liststhe number of partial word (bytes, half-word, etc.) writes done by the program and the garbagecollector8. All the benchmarks have long traces; most other work on memory system performanceuses traces that are an order of magnitude smaller. The benchmark programs do few assignments;the majority of the writes are initializing writes.Table 4 gives the allocation statistics for each benchmark program 9 . All allocation and sizesare reported in words. The Allocation column lists the total allocation done by the benchmark. Theremaining columns break down the allocation by kind: closures for escaping functions, closures forknown functions, closures for callee-save continuations10, records, and others (includes spill records,arrays, strings, vectors, ref cells, store list records, and oating point numbers). For each allocationkind, the % column is the percentage of total allocation allocated for that kind of object and Sizeis the average size (including the 1 word tag) for that kind of object.4.4 MetricsWe state cache performance numbers in cycles per useful instruction (CPI). All instructions besidesnops are considered useful.4This is large enough to allow the garbage collector to resize the heap as needed.5Available from the authors.6The description of these benchmarks have been copied from [3].7The code size includes 207K for the standard libraries.8Partial-word writes are distinguished from full-word writes since they are often more expensive than full-wordwrites. We charge 11 cycles for each partial-word write.9This table corrects one given in the POPL '94 paper, which did not include allocation data for oating pointnumbers. Our thanks to Darko Stefanovi�c for bringing this to our attention.10Closures for callee-save continuations can be trivially allocated on a stack in the absence of �rst classcontinuations. 7



Program DescriptionCW The Concurrency Workbench [12] is a tool for analyzing networks of �nitestate processes expressed in Milner's Calculus of Communicating Systems.Leroy An implementation of the Knuth-Bendix completion algorithm.Lexgen A lexical-analyzer generator [6], processing the lexical description of Stan-dard ML.Life The game of Life implemented using lists [32].PIA The Perspective Inversion Algorithm [36] decides the location of an objectin a perspective video image.Simple A spherical uid-dynamics program [13].VLIW A Very-Long-Instruction-Word instruction scheduler.YACC An implementation of an LALR(1) parser generator [35] processing the gram-mar of Standard ML.Table 1: Benchmark ProgramsSize Run timeProgram Lines Heap size (K) Code size (K) Non-gc (sec) Gc (sec)CW 5728 1107 894 22.74 3.09Knuth-Bendix 491 2768 251 13.47 1.48Lexgen 1224 2162 305 15.07 1.06Life 111 1026 221 16.97 0.19PIA 1454 1025 291 6.07 0.34Simple 999 11571 314 25.58 4.23VLIW 3207 1088 486 23.70 1.91YACC 5751 1632 580 4.60 1.98Table 2: Sizes of Benchmark ProgramsProgram Inst Fetches Reads (%) Writes (%) Partial Writes (%) Assignments (%) Nops (%)CW 523,245,987 17.61 11.61 0.01 0.41 13.24Knuth-Bendix 312,086,438 19.66 22.31 0.00 0.00 5.92Lexgen 328,422,283 16.08 10.44 0.20 0.21 12.33Life 413,536,662 12.18 9.26 0.00 0.00 15.45PIA 122,215,151 25.27 16.50 0.00 0.00 8.39Simple 604,611,016 23.86 14.06 0.00 0.05 7.58VLIW 399,812,033 17.89 15.99 0.10 0.77 9.04YACC 133,043,324 18.49 14.66 0.32 0.38 11.14Table 3: Characteristics of benchmark programs8



Allocation Escaping Known Callee Saved Records OtherProgram (words) % Size % Size % Size % Size % SizeCW 56,467,440 4.0 4.12 3.3 15.39 67.2 6.20 19.5 3.01 6.0 4.00Knuth-Bendix 67,733,930 37.6 6.60 0.1 15.22 49.5 4.90 12.7 3.00 0.1 15.05Lexgen 33,046,349 3.4 6.20 5.4 12.96 72.7 6.40 15.1 3.00 3.7 6.97Life 37,840,681 0.2 3.45 0.0 15.00 77.8 5.52 22.2 3.00 0.0 10.29PIA 18,841,256 0.4 5.56 28.0 11.99 25.0 4.69 12.7 3.41 33.9 3.22Simple 80,761,644 4.0 5.70 1.1 15.33 68.1 6.43 8.3 3.00 18.5 3.41VLIW 59,497,132 9.9 5.22 6.0 26.62 61.8 7.67 20.3 3.01 2.1 2.60YACC 17,015,250 2.3 4.83 15.3 15.35 54.8 7.44 23.7 3.04 4.0 10.22Table 4: Allocation characteristics of benchmark programsTable 5 lists the penalties used in the simulations. These numbers are derived from the penaltiesfor the DECStation 5000/200, but are similar to those in other machines of the same class. Notethat write misses have no penalty (besides write bu�er costs) for caches with subblock placement11.5 Results and AnalysisSection 5.1 qualitatively analyzes the memory behavior of programs. Section 5.2 lists the cachecon�gurations simulated and explains why they were selected. Sections 5.3 presents and analyzesdata for memory subsystem performance.5.1 Qualitative AnalysisRecall from Section 2 that SML/NJ uses a copying collector which leads to a large number of writemisses. The slowdown this translates into depends on the cache organization being used.Recall from Section 4.3 that SML/NJ programs have the following properties. First, they do fewassignments; the majority of the writes are initializing writes. Second, programs do heap allocationat a furious rate: 0.1 to 0.22 words per instruction. Third, writes come in bunches because theycorrespond to initialization of a newly allocated area.The burstiness of writes combined with the property of copying collectors mentioned abovesuggests that an aggressive write policy is necessary. In particular, writes should not stall theCPU. Memory subsystem organizations where the CPU has to wait for a write to be written tomemory will perform poorly. Even memory subsystems where the CPU does not need to wait forwrites if they are issued far apart (e.g., 2 cycles apart in the HP 9000 series 700) may performpoorly due to the bunching of writes. This leads to two requirements on the memory subsystem.First, a write bu�er or fast page mode writes are essential to avoid waiting for writes to memory.Second, on a write miss, the memory subsystem must avoid reading a cache block from memory ifit will be written before being read. Of course, this requirement only holds for caches with a write-allocate policy. Subblock placement [23], a block size of 1 word, and the ALLOCATE directive [30]can all achieve this12. For large caches, when the allocation area �ts in the cache and thus there11In an actual implementation, the penalty of a miss may be one cycle since unlike hits, the tag and valid bitsneeds to be written to the cache after the miss is detected. This will not change our results since it adds at most0.02{0.05 to the CPI of caches with subblock placement.12Since the e�ects on cache performance of these features are so similar, we talk just about subblock placement.9



Task Penalty (in cycles)Non page mode write 5Page mode write 1Read 16 bytes from memory 15Read 32 bytes from memory 19Write hit or miss (subblocks) 0Write hit (16 bytes, no subblocks) 0Write hit (32 bytes, no subblocks) 0Write miss (16 bytes, no subblocks) 15Write miss (32 bytes, no subblocks) 19Table 5: Penalties of memory operationsWrite Policy Write Miss Policy Write Bu�er Subblocks Assoc Block Size Cache Sizesthrough allocate 6 deep yes 1, 2 16,32 bytes 8K{128Kthrough allocate 6 deep no 1, 2 16,32 bytes 8K{128Kthrough no allocate 6 deep no 1, 2 16,32 bytes 8K{128KTable 6: Cache organizations studiedare few write misses, the bene�t of subblock placement will be reduced.5.2 Cache con�gurations simulatedSince the design space for memory subsystems is enormous we had to prune the design space thatwe could study. In this study, we restrict ourselves to features found in currently popular RISCworkstations. Exploration of more exotic memory subsystem features is left to future work. Table6 summarizes the cache organizations simulated. Table 7 lists the memory subsystem organizationfor some popular machines.We simulated only separate instruction and data caches (i.e., no uni�ed caches). While manycurrent machines have separate caches (e.g., DECStations, HP 700 series), there are some exceptions(notably SPARCs).We simulated cache sizes from 8K to 128K. This range includes the primary caches of mostcurrent machines (see Table 7). We consider only direct mapped and two-way set associative caches(with LRU replacement).We simulated block sizes of 16 bytes and 32 bytes. Przybylski [31] notes that block sizes of 16or 32 bytes optimize the read access time for the memory parameters used in the CPI calculations(see Section 4.4).We report data only for write-through caches but the CPI for write-back caches can be inferredfrom our graphs. Write-through and write-back caches give identical misses, but the penalties forwrite hits and write misses di�er. A write hit or miss in a write-back cache may take one cyclemore than in a write-through cache [21]. This tells us at most how much the write-through graphsneed to be shifted to obtain the CPI graphs for write-back caches. For instance, if the programhas w writes and n useful instructions, then we must add w/n to the CPI. For CW this adds 0.13.Write-through and write-back caches may have di�erent write bu�er penalties. We expect the writebu�er penalties for write-back caches to be smaller than that for write-through caches since writes10



Architecture Write Policy Write Miss Policy Write Bu�er Subblocks Assoc Block Size Cache SizeDS3100 [16] through allocate 4 deep | 1 4 bytes 64KDS5000/200 [15] through allocate 6 deep yes 1 16 bytes 64KHP 9000 [34] back allocate none no 1 32 bytes 64K{2MSPARCStation II [14] through no allocate 4 deep no 1 32 bytes 64KNote:� SPARCStations have uni�ed caches.� Most HP 9000 series 700 caches are much smaller than 2M: 128K instruction cache and 256K data cache for models 720and 730, and 256K instruction cache and 256K data cache for model 750.� The DS5000/200 actually has a block size of four bytes with a fetch size of sixteen bytes. This is actually stronger thansubblock placement since it has a full tag on every \subblock".� The higher end HP 9000 machines (model 735 and above) provide a cache-control hint in their store instructions[9].The hint can specify that a block will be overwritten before being read; this avoids the read if the write misses.Table 7: Memory subsystem organization of some popular machinesto main memory are less frequent for write-back caches than for write-through caches. In any case,write bu�er penalties are negligible even for write-through caches (Section 5.3).Two of the most important cache parameters are write allocate versus write no allocate and sub-block placement versus no subblock placement. Of these, the combination write no allocate/subblockplacement o�er no improvement over write no allocate/no subblock placement for cache perfor-mance. Thus, we did not collect data for the write no allocate/subblock placement con�guration.We restrict ourselves only to the �rst two levels of the memory hierarchy, which on most currentmachines corresponds to the primary cache and main memory. The results, however, are mostlyapplicable when the second level is a secondary cache and the cost of accessing the secondary cacheis similar to the cost of accessing main memory on the DECStation 5000/20013. In such machines,there is a memory subsystem contribution to the CPI that we did not measure: a miss on the secondlevel cache. Therefore the CPI obtained on these machines can be higher than that reported here.We do not simulate the exotic features appearing on some newer machines, such as streambu�ers, prefetching, and victim caches. These features can reduce the cache miss rates and misscosts. Further work is needed to understand the impact of these features on performance of heapallocation.5.3 Memory Subsystem PerformanceMemory subsystem performance is presented in summary graphs and breakdown graphs. Eachsummary graph summarizes the memory subsystem performance of one benchmark program fora range of write-miss policies (write allocate or no write allocate), subblock placement (with orwithout), cache sizes (8K to 128K), and associativity (1 or 2). Each curve in a summary graphcorresponds to a di�erent memory subsystem organization. There are two summary graphs foreach program, one for a block size of 16 bytes and another for a block size of 32 bytes. Eachbreakdown graph breaks down the memory subsystem overhead into read misses, instruction-fetchmisses, write-bu�er overhead, and partial-word write overhead for one con�guration in a summarygraph. The write-bu�er depth in these graphs is �xed at 6 entries.13For instance, Borg et al. [8] use 12 cycles as the latency for going to the second level cache and 200{250 cyclesfor going to memory. 11



In this paper we present only the summary graphs for CW (Figure 2). The summary graphsfor other programs are similar to those for CW and are thus omitted for space considerations. Anysigni�cant di�erences between CW's graphs and the omitted graphs are noted in the text. Figures3 and 4 are the breakdown graphs for CW for the 16 byte block size con�gurations; the remainingbreakdown graphs for CW are omitted for space considerations. The breakdown graphs for the otherbenchmarks are similar and are thus also omitted for space considerations 14.In the summary graphs, the nops curve is the base CPI: the number of useful (not nop) in-structions executed divided by the total number of instruction executed; this corresponds to theCPI for a perfect memory subsystem15. For the breakdown graphs, the nop area is the CPI con-tribution of nops; read miss is the CPI contribution of read misses; if miss is the CPI contributionof instruction fetch misses; write bu�er is the CPI contribution of the write bu�er; partial word isthe CPI contribution of partial-word writes16.The 64K point on the write alloc, subblock, assoc=1 curves corresponds closely to the DECSta-tion 5000/200 memory subsystem.In Sections 5.3.1, 5.3.2, 5.3.3, and 5.3.4 we describe the impact of write-miss policy and subblockplacement, associativity, block size, and cache size on the memory subsystem performance of thebenchmark programs. In Section 5.3.5 we give the write bu�er and partial-word write overheads.5.3.1 Write Miss Policy and Subblock PlacementFrom the summary graphs, it is clear that the best cache organization we studied is write allo-cate/subblock placement; in every case, write-allocate/subblock placement substantially outperformsall other con�gurations. Surprisingly, for su�ciently large caches with the write allocate/subblockplacement organization, the memory subsystem performance of SML/NJ programs is acceptable(around 17% or less overhead)17. For caches with write allocate/subblock placement, the averagememory subsystem contribution to the CPI over all benchmarks is 16% for 64K direct mappedcaches and 17% for 32K two-way associative caches. The DS5000/200 organization does well formost programs. It is worth emphasizing that the memory subsystem performance of SML/NJprograms is good on some current machines despite the very high miss rates; for a 64K write allo-cate/no subblock placement organization with a block size of 16 bytes, the write miss and read missratios for CW are 0.18 and 0.04 respectively.Recall that in Section 5.1 we argued that subblock placement would be a big win, but itsbene�ts would decrease for larger caches. Our data indicates that the reduction in bene�ts is notsubstantial even for 128K cache sizes although a slight tapering o� is seen in CW. This indicatesthat 128K is not large enough to hold the allocation area of most of the benchmark programs.The performance of write allocate/no subblock is almost identical to that of write no allocate/nosubblock (Leroy is an exception). This suggests that an address is being read soon after beingwritten; even in an 8K cache, an address is read after being written before it is evicted from thecache (if it was evicted from the cache before being read, then write allocate/no subblock wouldhave inferior performance). The only di�erence between these two schemes is when a cache block14Lexgen's graphs are a little di�erent in that there is a steep drop in the instruction cache contribution to theCPI in going from an 8K to 16K cache.15nops constitute between 5.9% and 15.4% of all instructions executed for the benchmarks (see Section 4.3).16This overhead is so small that it is not visible in most of the breakdown graphs.17For the penalties used, a 17% overhead translates roughly into one fetch from memory|instruction or data|every 100 useful instructions. 12



is read from memory. In one case, it is brought in on a write miss; in the other, it is brought inon a read miss. Because SML/NJ programs allocate sequentially and do few assignments, a newlyallocated object remains in the cache until the program has allocated another C bytes, where C isthe size of the cache. Since our programs allocate 0.4{0.9 bytes per instruction, our results suggestthat a read of a block occurs within 9K{20K instructions of it being written.5.3.2 Changing AssociativityFrom Figure 2 we see that increasing associativity improves all organizations. However the improve-ment in going from one-way to two-way set associativity is much smaller than the improvementobtained from subblock placement; in most cases, it improves the CPI by less than 0.1. Themaximum bene�t from higher associativity is obtained for small cache sizes (less than 16K). How-ever, increasing associativity may increase CPU cycle time and thus the improvements may not berealized in practice [19].From Figures 3 and 4 we see that higher associativity improves the instruction cache perfor-mance but has little or no impact on data cache performance. The improvement observed in goingto a two-way associative cache suggests that a lot of the penalty from the instruction cache is dueto conict misses and that from the data cache is due to capacity misses: the data cache is simplynot big enough to hold the working set. When the code produced by SML/NJ is examined, theperformance of the instruction cache is not surprising: the code consists of small functions withfrequent calls, which lower the spatial locality. Thus, the chances of conicts are greater than ifthe instructions had strong spatial locality.Surprisingly, for direct mapped caches (Figures 3 (a) and 4 (a)) the instruction cache penaltyis substantial for caches smaller than 128K. For caches with subblock placement, the instructioncache penalty dominates the penalty for the memory subsystem. The instruction cache penaltyis reduced by the two-way associative cache organizations, suggesting a large number of conictmisses in the instruction cache.5.3.3 Changing Block SizeFrom Figure 2 we see that increasing block size from 16 to 32 bytes also improves performance.For the write allocate organizations, an increased block size decreases the number of write missescaused by allocation. When the allocation area does not �t in the cache, doubling the block size canhalve the write-miss rate. Thus, larger block sizes improve performance when there is a penaltyfor a write miss [23]. In particular, larger block sizes have little to o�er to caches with writeallocate/subblock placement. From Figure 2 we see that the write no allocate organizations bene�tjust as much from larger block size as write allocate/no subblock placement; this suggests that thespatial locality in the reads is comparable to that in the writes.Note that subblock placement improves performance more than even two-way associativity and32 byte blocks combined.5.3.4 Changing Cache SizeIncreasing the cache size improves performance for all con�gurations. In most cases, the perfor-mance improvement from doubling the cache size is small. We expect to see a sharp improvementin performance for some larger cache size (perhaps 256K or bigger) once the allocation area �tsin the cache (this will not be nearly as signi�cant for caches with subblock placement). From thebreakdown graphs we see that the cache size has little e�ect on the data cache miss contribution13



to CPI. Most of the improvement in CPI that comes from increasing the cache size is due to im-proved performance of the instruction cache. As with associativity, cache sizes have interactionswith the cycle time of the CPU: larger caches can take longer to access. Thus, improvement dueto increasing the cache size may not be achieved in practice.5.3.5 Write Bu�er and Partial-Word Write OverheadsFrom the breakdown graphs we see that the write bu�er and partial word write contribution to theCPI is negligible. A six deep write bu�er coupled with page-mode writes is su�cient to absorb thebursty writes. As expected, memory subsystem features which reduce the number of misses (suchas higher associativity and larger cache sizes) also reduce the write bu�er overhead.
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