
Reset reproduction of a master's thesis proposal submitted November 2, 1976 to the Massachusetts Institute ofTechnology Electrical Engineering Department, reprinted November 16, 1976 as MIT Arti�cial IntelligenceLaboratory Working Paper 133. Reset in LaTeX by Jon Doyle December 1995. c1976, 1995 Jon Doyle. All rightsreserved. Available via http://www.medg.lcs.mit.edu/doyle. Author's current address: Laboratory for ComputerScience, 545 Technology Square, Cambridge, MA 02139, USA.The Use of Dependency Relationshipsin the Control of ReasoningJon Doyle doyle@mit.eduMassachusetts Institute of Technology, Arti�cial Intelligence LaboratoryCambridge, Massachusetts 02139, U.S.A. AbstractSeveral recent problem-solving programs have indicated improved methods for control-ling program actions. Some of these methods operate by analyzing the time-independentantecedent-consequent dependency relationships between the components of knowledgeabout the problem for solution. This paper is a revised version of a thesis proposal whichindicates how a general system of automatically maintained dependency relationships canbe used to e�ect many forms of control on reasoning in an antecedent reasoning framework.1 IntroductionAmajor problem encountered in building automatic problem-solving systems is the necessityof providing controls on program reasoning and action. When faced with this problem,however, some researchers have divided reasoning into the categories of antecedent (data-directed) and consequent (goal-directed) reasoning. They then claim that the problem ofcontrol is just that of deciding on a proper balance between antecedent and consequentrepresentations of program knowledge. In contrast to this, we argue that the dichotomyof reasoning into antecedent and consequent reasoning is misleading, and is due to aninadequate understanding of the nature of control of reasoning. Consequent reasoning isonly one method among many available for the control of program actions. In this paper, weindicate how dependency relationships between facts may be used to e�ect various controlson reasoning, including consequent reasoning, in an antecedent reasoning framework. Thisembedding allows the processes controlling program reasoning to enjoy the many advantagesof antecedent reasoning.1.1 The Basic Reasoning ProcessThe basic reasoning process available to programs is a generative one, in which currentknowledge is used to deduce or create additional knowledge. This type of reasoning processis best captured by antecedent, event-triggered reasoning, since antecedent-driven processesenjoy the important qualities of being non-chronological and additive. Since antecedent pro-cesses are non-chronological in nature, they provide a knowledge representation free of manyproblems of interactions induced by time-dependence of computations. A concomitant ben-e�t of antecedent reasoning is that it makes the reasoning involved in dependencies betweenfacts clear and easily recorded; the dependencies are derived from the logical dependen-cies between facts, and are not dependent upon spurious chronological accidents. That is,the reasons for the program's knowledge about a fact consist only of the facts used in its



Doylederivation, and not on the particular chronological history of the program's actions. (Thisquality of event-triggered or event-enabled reasoning is also attractive from the viewpointof Dijkstra [1976], whose guarded commands are essentially event-enabled processes.) Animportant consequence of the non-chronological nature of antecedent reasoning is additivity.As the order of program actions is not critical, so the time and order in which new rulesbecome known is not particularly critical either. This additivity allows a distributed styleof computation in which missing knowledge does not necessarily cause program failure, butmerely limited program capabilities.The major limitation on the use of the basic antecedent reasoning process is that itmust be controlled. E�ectiveness and e�ciency demand that there be mechanisms forfocusing and directing the actions taken by the program, since in in�nite domains (domainsin which in�nitely many facts are derivable), and in �nite domains with more answers thaninteresting questions, the vast majority of program actions and deductions are irrelevant tosolving the problems of interest and should be avoided. This is the genesis of the problemof control of reasoning, as in standard axiomatizations of most domains the combinatorialnature of the method of combining small actions and deductions into a solution necessarilydominates the considerations of the designers of problem-solving programs. Even thoughthe range of program actions may be limited by employing self-limiting representationsor axiomatizations for the components of knowledge of the domain (such as are employedin Nevins' [1974] geometry theorem prover and in Minsky's [1974] theory of Frames), thedomain may still be large enough so that direction is needed in the slot-�lling process.1.2 Controls on ReasoningMany methods have been devised for controlling program actions. The most fundamentalmethod is that of explicitly programming the logic of the solution construction process. Forinstance, one form this method assumes is the programming of the process as a decisiontree, in which all possible cases must be considered. This method has long been knownto su�er by being highly inexible when extensions and modi�cations to the program arerequired.A number of control strategies have been developed in the context of resolution theoremproving [Robinson 1965] (see Chang and Lee [1973] for examples), but in general thesehave proved inadequate; apparently these strategies are more directed towards reducing thee�ort involved in generating and testing a proposed solution, rather than aiding in reducingthe e�ort involved in searching the space of problem solutions. That is, these strategiesare primarily optimizations of theorem prover operations which are independent of domain,and provide little or no help in introducing domain-dependent control mechanisms [de Kleer1976a].Another strategy for controlling reasoning is that of consequent reasoning, the strategy ofreasoning from goals to known facts. (In a theorem-proving context, the use of consequentreasoning is usually called the set-of-support strategy.) Consequent reasoning is a verycommon method of controlling search, as it is a simple mechanism for enforcing a certainform of relevance in actions toward deciding the current questions by only using rules ofinference or action which mention a current goal in their conclusion. It is important to note,however, that anything deducible via consequent reasoning is also deducible by antecedent2



Dependencies and Controlreasoning - that is, consequent reasoning is just a particular way of controlling antecedentreasoning. (Indeed, Nevins' [1974] geometry theorem prover's use of consequent reasoningis essentially identical to its use of antecedent reasoning, and, as de Kleer [1976a] observes,could apparently be made superuous by a slight modi�cation to the main control loop ofthe program. See [Moore 1975] for additional discussions of these issues.)Backtracking is another method of controlling reasoning. Backtracking allows the fo-cusing of program attention on just one set of possibilities at a time, considering othersets of possibilities only if the �rst set of choices leads to failure. Automatic backtrackingmechanisms have fallen into disfavor since the advent of micro-planner, in which chrono-logical, side-e�ect-free automatic backtracking was made an virtually unavoidable programcontrol mechanism. This form of automatic backtracking has many problems associatedwith it. (See [Sussman and McDermott 1972] for a discussion of these problems.) Many ofthe unpleasant features of automatic backtracking are remedied, however, by the use of anon-chronological, dependency-directed backtracking system [Stallman and Sussman 1976].Other methods for controlling reasoning include the use of meta rules, protocols, andtask networks. Meta rules [Davis 1976] provide a mechanism for controlling program actionsat times when more than one action is known to be feasible. Meta rules have the featureof being useful at many levels: in controlling the basic program actions (�rst level use), inselecting which strategy to use (second level use), in deciding how to select a strategy (thirdlevel use), etc. The use of specialized protocols �nds related applications in guiding programactions. Examples of protocols are the choice and rephrasing protocols of nasl [McDermott1976], the noah plan re�nement loop [Sacerdoti 1975], the simple ATN [Goldstein andMiller 1976], and Nevins' partitioned deduction loop [Nevins 1974]. These protocols areinvoked in particular types of situations, and frequently allow considerable e�ciency inperforming standard patterns of action. Task networks [Sacerdoti 1975, McDermott 1976]make an explicit representation of past, present, and future program actions available tothe program itself. Thus task networks, like meta rules and protocols, allow the directionof current and future reasoning to be inuenced by the program's knowledge about its ownstate of knowledge and past, present, and future plans.1.3 The Antecedent Embedding of ControlThe view proposed here is that the view of these mechanisms as controls on reasoning is bestcombined with the use of dependency relationships among facts to implement these formsof control within the framework of antecedent reasoning, and that this embedding of controlmechanisms alleviates many problems encountered in their standard implementations.One such problem a�ected by this embedding is the problem of backtracking. In stan-dard implementations, backtracking is usually used in conjunction with consequent reason-ing in a chronological fashion. Traditionally, backtracking is accomplished by rechoosing themost recently made reversible choice, a process which normally requires the consideration ofmany obviously irrelevant sets of choices. By using dependency relationships, which whenproduced from the process of antecedent reasoning are already free of chronological depen-dencies, the e�cient method of dependency-directed backtracking of Stallman and Sussman[1976] can be implemented. In this form of backtracking, only those choices relevant to thecurrent failure are considered for change. In addition, recording of the demonstrably infea-3



Doylesible sets of choices reduces future search considerably by ruling out any proposed set ofchoices including any of the the known infeasible sets of choices.Consequent reasoning also bene�ts from being embedded in an antecedent reasoningframework by being transformed into a non-chronological process. Traditional implemen-tations of consequent reasoning have been chronological in nature. Because of this, thee�ects of incomplete knowledge have been harder to deal with, in that the chronologicalorder of unsuccessful searches, assumptions, and discoveries becomes signi�cant. The wrongchronological orderings may so induce an inconsistency in the program knowledge which,without usefully recorded dependency information, is di�cult to analyze and remedy. Also,additional work is induced as successive queries about a problem or about related problemsnormally have to perform the same search e�ort as in the �rst query. This latter problemarises from the di�culty of recording dependencies in a chronological system, which forcessearches to recompute previously derived, but discarded information, so causing subsequentqueries to require the duplication of entire searches or subsearches. (Fikes [1975], however,has proposed some mechanisms for alleviating these problems in a chronological system.These mechanisms amount to some of the fragments of the ars dependency system whichare easy to use in a chronological system.)2 Facts and DependenciesEach component of program knowledge is recognized as a distinct entity called a fact. Factsare used in describing the dependency relationships between the di�erent components ofprogram knowledge. Belief in the truth of a particular fact may or may not be supportedby belief in the knowledge embodied in other facts. If a fact is known to be true by virtueof its relationships with other facts, we say the fact is in; otherwise the fact is out. Thedistinction between in and out is not the same as the distinction between true and false. Torepresent the true/false dichotomy, each fact may have a negative. The negative of a factrepresents the assertion which is true if and only if the fact is false. The negative of a factis a fact itself, and also will be either in or out depending upon its support by other facts.We de�ne six predicates on facts which describe the possible states of knowledge about thefact: IN(f) � f is inOUT(f) � : IN(f)NEGIN(f) � the negative of f is inNEGOUT(f) � : NEGIN(f)KNOWN(f) � IN(f) _ NEGIN(f)UNKNOWN(f) � : KNOWN(f).Observe that IN, NEGIN, and UNKNOWN correspond to the classical divisions of TRUE, FALSE,and UNKNOWN of 3-valued logic. It is therefore a contradiction for both a fact and its negativeto be in simultaneously.Each fact derives its support from its antecedent set. Each antecedent in the antecedentset of a fact is a boolean function of the above status predicates of other facts. A fact isin if one of its antecedent functions is true, and is out otherwise. If a fact is in, a singleone of its antecedents may be designated as the fact's support; the support of an out fact is4



Dependencies and Controlthe entire antecedent set of the fact. Thus the status of a fact remains unchanged in newdeductions if the status of each of the facts in its support is unchanged.This structure for the antecedents of a fact is a generalization of the ars dependencysystem [Stallman and Sussman 1976]. In this system, each antecedent in the antecedent setof a fact corresponds to an alternate derivation of the fact. Some systems (such as those ofFikes [1975] and McDermott [1976]) also record the support dependencies of facts, but onlyrecord one derivation at a time. The need to record all derivations was �rst realized in thears system, as it was discovered that the single-antecedent scheme allowed the process ofbacktracking to produce circularities in the support of facts. Since ars uses reasoning aboutthe antecedents of a fact to control search, this phenomenon required the introduction ofantecedent sets and \fact garbage collection."2.1 Truth MaintenanceAntecedents in ars are of a simple and monotonic nature, in that the inning of a factcannot (except in the case of contradictions) cause the outing of other facts. Because ofthis monotonicity, determination of the statuses of facts in ars is accomplished by means oftwo processes termed fact garbage collection and unouting. Fact garbage collection occurseach time the status of a fact is changed from in to out, an occurrence typically due to therechoosing of a choice during backtracking. ars's fact garbage collector examines each factto choose an antecedent which provides non-circular support for the fact. Unouting is thecomplementary process: when new support is derived for an out fact, the fact's status ischanged from out to in, and all of its currently out consequences which then have supportare unouted recursively.The generalized dependency system described above requires the uni�cation of factgarbage collection and unouting into a uniform process called \truth maintenance." Thepossibility of the status of a fact depending upon another fact being out makes the sys-tem of dependencies non-monotonic. This non-monotonicity means that unouting is nolonger possible: whenever the support for a fact is changed, truth maintenance must beperformed to provide each fact with well-founded support. However, truth maintenanceneed only be concerned with those facts whose support may actually be a�ected by theinitially changed fact. Accordingly, this means that the process of truth maintenance canbe incremental. This realization shows that the ars system, which garbage collects all factswhenever any fact is outed, is doing unnecessary work, and could be pro�tably changed touse an incremental fact garbage collector.In addition to requiring a uni�ed truth maintenance system, the dependency schemaintroduces new forms of inconsistencies which must be recognizable. Three types of con-tradictions are recognizable in general: explicit contradictions (facts which are known torepresent contradictions), contradictions arising from both a fact and its negative havingsupport and thus being considered in, and unsatis�able dependency relationships amongfacts. (An example of the latter type of contradiction is a fact f whose antecedent set isOUT(f). This antecedent set would force f to be in if and only if it was out|a contradic-tion.)A necessary property of unsatis�able dependencies is that they must involve strongcircularities in the dependency structure. (I use the adjective \strong" here as these circu-5



Doylelarities are really just the strongly connected components of the directed graph arising fromthe natural interpretation of the dependency structure as a directed graph on antecedentsets.) For instance, in the above example of a fact f which is in i� it is out, a strong circu-larity is evident: well-founded support for f cannot be chosen until well-founded support isavailable for its antecedents, in this case f itself.Not all strong circularities involve unsatis�able dependency relationships, however.Strong circularities arise naturally in situations involving equalities and equivalences. Inthese situations there is a natural solution to the problem: the status of one of the factsis arbitrarily chosen to be out; this then determines the status of the other facts involvedin the circularity. Modifying this method, however, are considerations due to the possibil-ity of noncircular dependencies between facts in distinct strongly connected components.This possibility requires that the choices in distinct strong circularities be consistent. Suchconsistent choices can be found by a process of topologically sorting the strong circularitiescoupled with backtracking. In such cases, inconsistencies are manifested as the event ofdetermining supposedly well-founded support for a fact with arbitrarily chosen status, suchthat the newly determined status di�ers from the chosen status. In this easily detectableevent, one of the choices involved in the inconsistency must be rechosen. If no choice canbe rechosen without creating another inconsistency, the antecedent structure involved isdetermined to be unsatis�able.It should be pointed out that while the problem of �nding a satis�able assignment ofstatuses to facts is NP-complete, and whose solution by the above algorithm is potentiallyexponentially expensive, all the known examples of such strong circularities are part of amonotonic dependency relation, and thus are amenable to the method of choosing of allinvolved facts to be out. Indeed, I have been unable to construct a natural example in whichunsatis�able antecedent structures occur, and so have not been worried by the potentiallyexpensive computations involved. The next section supports this attitude by demonstratingthe nature of several common dependency structures, all of which are easily managable.2.2 Typical Dependency StructuresThis dependency scheme is su�cient to express many types of dependency relationships.We give �ve simple examples of their use.ANDIf f represents AND(f1; : : : ; fn), then f has an antecedent of the form IN(f1; : : : ; fn).In addition, the negative of each fi has an antecedent of the formIN(f1; : : : ; fi�1; fi+1; : : : ; fn) ^ NEGIN(f).(We extend the six status predicates above to predicates of arbitrary sets of factsin the natural fashion by de�ning a predicate on a set to be the conjunction of thepredicate on the elements.)OR If f represents OR(f1; : : : ; fn), then f has an antecedent of the form IN(fi) for eachfi. In addition, each fi has an antecedent of the form6



Dependencies and ControlNEGIN(f1; : : : ; fi�1; fi+1; : : : ; fn) ^ IN(f).XORIf f1; : : : ; fn are mutually exclusive and exhaustive cases, then the negative of each fihas an antecedent of the form IN(fj) for each j 6= i.Ordered ChoicesIf f1; : : : ; fn represent mutually exclusive choices, with a preference for choosing fiover fi+1, then the following relationships exist: f1 has the antecedent NEGOUT(f1),and for i > 1, fi has the antecedentNEGOUT(fi) ^ NEGIN(f1; : : : ; fi�1).PRESUMABLYIf f is to be assumed true unless it is provably false, f can be given the antecedentNEGOUT(f).The above example of the use of this dependency system to describe the PRESUMABLYoperator demonstrates the exibility of this system as compared with a simple 3-valuedlogic of TRUE, FALSE and UNKNOWN. The concept of PRESUMABLY is considerably harder todescribe and maintain automatically in such systems.3 Consequent ReasoningFor the purposes of e�cient computation we distinguish each component of a certain subsetof the knowledge of a program as being of a special type of fact called a rule. Rules arenot just static knowledge, but have an imperative meaning attached to them. The basicstructure of antecedent rules is that of<trigger> =) <body>,where <trigger> is a set of facts (named, of course, after Roy Rogers' horse). The operationof the rule is such that when all of the facts in the trigger are asserted, <body> is performed.(Or, as GLS suggests, when the trigger is pulled, the body is executed.)A straightforward use of such rules in implementing consequent reasoning is as follows.For simplicity, we describe only the case of deduction. To e�ect a ruleR: A ! Cin consequent fashion, an antecedent rule of the formR1: IN((OPERATIONAL R)) ^ IN(A)=)assert C with antecedent (AND (IN A) (IN R))assert (SATISFIED (GOAL (DEDUCE C)))with antecedent (AND (IN A) (IN R))7



Doyleis asserted with antecedent (IN R), as is another antecedent rule of the formR2: IN((GOAL (DEDUCE C))) ^NEGIN((SATISFIED (GOAL (DEDUCE C))))=)assert (GOAL (DEDUCE A))with antecedent(AND (IN (GOAL (DEDUCE C))) (IN R)(NEGIN (SATISFIED (GOAL (DEDUCE C)))))assert (PRESUMABLY (NOT (SATISFIED (GOAL (DEDUCE A)))))with antecedent(AND (IN (GOAL (DEDUCE C))) (IN R)(NEGIN (SATISFIED (GOAL (DEDUCE C)))))assert (OPERATIONAL R)with antecedent(AND (IN (GOAL (DEDUCE C))) (IN R)(NEGIN (SATISFIED (GOAL (DEDUCE C))))),and �nally, the factF: (PRESUMABLY (NOT (SATISFIED (GOAL (DEDUCE C)))))is asserted with antecedent (IN R).3.1 An ExampleTo demonstrate the operation of this method of consequent reasoning, we present a simu-lation of the following familiar example in detail. We leave out some computations whichmight occur but which do not substantially a�ect the avor of the process, and ignore anumber of questions raised by facts with variables in their statements and the process ofrule creation. The initially known (in) facts areF1: (GREEK SOCRATES)F2: (HUMAN SOCRATES)F3: (HUMAN TURING).There is also a consequent rule,F4: (HUMAN ?X) ! (FALLIBLE ?X).(As is usual, free \?" variables are assumed to be universally quanti�ed.) By the aboveprocess, F4 produces two antecedent rules,R1: IN( (OPERATIONAL F4) ) ^ IN( (HUMAN ?X) )=)assert (FALLIBLE ,X)with antecedent (AND (IN F4) (IN (HUMAN ,X)))assert (SATISFIED (GOAL (DEDUCE (FALLIBLE ?X))))with antecedent (AND (IN F4) (IN (HUMAN ,X)))8



Dependencies and Control
R2: IN( (GOAL (DEDUCE (FALLIBLE ?X))) ) ^NEGIN( (SATISFIED (GOAL (DEDUCE (FALLIBLE ?X)))) )=)assert (GOAL (DEDUCE (HUMAN ?X)))with antecedent(AND (IN (GOAL (DEDUCE (FALLIBLE ?X)))) (IN F4)(NEGIN (SATISFIED (GOAL (DEDUCE (FALLIBLE ?X))))))assert (PRESUMABLY(NOT (SATISFIED (GOAL (DEDUCE (HUMAN ?X))))))with antecedent(AND (IN (GOAL (DEDUCE (FALLIBLE ?X)))) (IN F4)(NEGIN (SATISFIED (GOAL (DEDUCE (FALLIBLE ?X))))))assert (OPERATIONAL R1)with antecedent(AND (IN (GOAL (DEDUCE (FALLIBLE ?X)))) (IN F4)(NEGIN(SATISFIED (GOAL (DEDUCE (FALLIBLE ?X)))))),and the factF5: (PRESUMABLY(NOT (SATISFIED (GOAL (DEDUCE (FALLIBLE ?X))))))with antecedent (IN F4). (Here the \," pre�x indicates a substitution of the variable'svalue.) F5 then triggers a rule for interpreting PRESUMABLY, which assertsF6: (NOT (SATISFIED (GOAL (DEDUCE (FALLIBLE ?X)))))with antecedent (AND (IN F5) (NEGOUT F6)).We now ask if there are any fallible Greeks.F7: (QUERY (AND (FALLIBLE ?X) (GREEK ?X)))This triggers a rule for handling queries by translating them into goals with the appropriateantecedents. In this case, the rule assertsF8: (PRESUMABLY(NOT (SATISFIED(GOAL (DEDUCE (AND (FALLIBLE ?X) (GREEK ?X))))))with antecedent (IN F7), causingF9: (NOT (SATISFIED(GOAL (DEDUCE (AND (FALLIBLE ?X) (GREEK ?X))))))to be asserted with antecedent (AND (IN F8) (NEGOUT F9)), then causesF10: (SATISFIED (GOAL (DEDUCE (AND (FALLIBLE ?X) (GREEK ?X)))))9



Doyleto be asserted with no antecedents, and then assertsF11: (GOAL (DEDUCE (AND (FALLIBLE ?X) (GREEK ?X))))with antecedent (AND (IN F7) (NEGIN F10)). F11 now triggers a rule for reducing con-junctive goals to rules. This rule asserts the new ruleR3: IN( (FALLIBLE ?X) ) ^ IN( (GREEK ?X) ) ^ IN(F11)=)assert (AND (FALLIBLE ,X) (GREEK ,X))with antecedent(AND (IN (FALLIBLE ,X)) (IN (GREEK ,X)))assert (SATISFIED (GOAL (DEDUCE (AND (FALLIBLE ?X)(GREEK ?X)))))with antecedent(AND (IN (FALLIBLE ,X)) (IN (GREEK ,X)))and asserts, or causes the assertion ofF12: (PRESUMABLY(NOT (SATISFIED (GOAL (DEDUCE (FALLIBLE ?X))))))with antecedent (IN F11)F13: (PRESUMABLY(NOT (SATISFIED (GOAL (DEDUCE (GREEK ?X))))))with antecedent (IN F11)F14: (NOT (SATISFIED (GOAL (DEDUCE (FALLIBLE ?X)))))with antecedent (AND (IN F12) (NEGOUT F14))F15: (SATISFIED (GOAL (DEDUCE (FALLIBLE ?X))))with no antecedentF16: (NOT (SATISFIED (GOAL (DEDUCE (GREEK ?X)))))with antecedent (AND (IN F13) (NEGOUT F16))F17: (SATISFIED (GOAL (DEDUCE (GREEK ?X))))with no antecedentF18: (GOAL (DEDUCE (FALLIBLE ?X)))with antecedent (AND (IN F11) (NEGIN F15))F19: (GOAL (DEDUCE (GREEK ?X)))with antecedent (AND (IN F11) (NEGIN F17)).The new goal F18 now triggers R2. Since F14 is in, R2 is fully triggered, and assertsF20: (GOAL (DEDUCE (HUMAN ?X)))F21: (PRESUMABLY (NOT (SATISFIED (GOAL (DEDUCE (HUMAN ?X))))))F22: (OPERATIONAL F4),each with (AND (IN F18) (IN F4) (NEGIN F15)) as antecedent. R1 had previously beentriggered by F2 and F3, but could not proceed due to the lack of F22. Now with F22asserted, R1 asserts 10



Dependencies and ControlF23: (FALLIBLE SOCRATES)F24: (FALLIBLE TURING),with the respective antecedents (AND (IN F2) (IN F4)) and (AND (IN F3) (IN F4)). R3is now fully triggered, and assertsF15: (AND (FALLIBLE SOCRATES) (GREEK SOCRATES))with antecedent (AND (IN F23) (IN F1)). R3 also asserts F10 with antecedent (AND (INF23) (IN F1)), which changes the status of F11's support, so that F11 is outed. But F11supports the subgoals F18 and F19, and F18 supports F20, and so these are outed also.Thus the query is answered, the goals all outed, and the computation �nished.The primary features of this style of implementing consequent reasoning are that:1. Goals exist only as long as some supergoal requires their existence: the removal of agoal removes all of the then unsupported subgoals.2. The computations available in consequent rules are performed only when a questionexists making the computations relevant.3. Deactivation of a rule does not invalidate any consequences of the rule.4. If goals remain unsatis�ed, they can later be satis�ed by the addition of new rulesgenerating new facts and so allowing their computations to proceed.It should be apparent that in many applications a more re�ned notion of goal state isrequired than simply SATISFIED or NOT SATISFIED. The remedy for this is to pass fromsimple goals to task networks, and to use taxonomies of task states such as those de�nedin McDermott's [1976] nasl system. The exact form of such mechanisms is still a topic ofresearch.4 Discussion4.1 Relation to Other ResearchUntil the build program of Fahlman [1974], the dominant paradigm embodied in problem-solving programs was that of the micro-planner language [Sussman, Winograd and Char-niak 1971], a simpli�ed version of the planner language developed by Hewitt [1972]. Theproblem-solving style captured in micro-planner is the style of most problem-solving sys-tems constructed up to its time: heuristic search of AND-OR goal trees constructed by acollection of antecedent and consequent pattern-invoked programs driven by an automaticchronological backtracking control structure. (See Winston [1976] for discussions of thesetechniques.) In this style of problem solving, embodied in programs like gps [Ernst andNewell 1969], saint [Slagle 1963], Gelernter's [1963] Geometry-Theorem proving machine,Black's [1968] question answerer, strips [Fikes and Nilsson 1971], shrdlu [Winograd 1972],and Goldstein's [1973] geometry theorem prover, search through di�erent branches of thegoal tree have essentially no inuence on each other. The major forms of information com-municated between subgoals, if any, usually amounted to signals of failure (for instance, the11



Doylemicro-planner FAIL command) or indications of high expected di�culty (as in gps andsaint).A competing problem-solving paradigm of the time was that embodied in resolutiontheorem provers such as qa3 [Green 1969], a paradigm formalizing the e�ectively non-deterministic qualities of the micro-planner approach. In these systems, all formulasfollowing from the problem model could theoretically be used once derived. This channelof communication between attempts was usually limited in practice as theorem proversturned to various restricted resolution schemes [Chang and Lee 1973] constraining the useof formulas in resolutions as a method for gaining e�ciency, often resulting in the derivationof formulas which could not be used at any point of the solution. In addition, these systemssu�ered from monotonicity problems [Minsky 1974], as the theorem provers were unableto conclude any results from their inability to derive a formula, and could not decide toremove a proven formula from their set of formulas (although occasionally new axioms couldbe checked for consistency [Green 1969]). In particular, these theorem provers had no wayto make assumptions based on their inability to prove a certain formula. These limitationswere primarily due to an enforcement of completeness and consistency at each step. Aswe have seen, by using dependency relationships between facts it is possible to maintainconsistency even in the presence of assumptions.The �rst e�ort to break away from the micro-planner problem-solving paradigm wasthe build program of Fahlman [1974]. This program used analysis of its own goal structureto correct its mistakes and maneuver out of blind alleys. The techniques of reasoning aboutrelationships involving the reasons for goals and plan steps were then further developed inhacker [Sussman 1975], mycroft [Goldstein 1974], and noah [Sacerdoti 1975]. Theseprograms demonstrated certain information which, if recorded during the problem solvingprocess, allowed simple algorithms for the detection and correction of a number of mistakesarising from the use of simple planning heuristics. Fikes and Nilsson [1971] and Waldinger[1975] also present representations for plan steps which allow the construction of new plansfrom old ones by reasoning about relationships among the old plan steps.Analysis of the reasoning involved in the construction of plans facilitates the processes ofreplanning and execution monitoring. This type of reasoning is used to good advantage inthe work of Hayes [1975], who presents an explicit representation for some of the reasoninginvolved in planning, and uses this information in replanning upon discovering obstructingchanges in the world. Similar information is made explicit in nasl [McDermott 1976].noah also retains a complex representation of the structure of a plan which is modi�edand interrogated to check plan execution progress and to replan from mistakes. stripsand planex [Fikes and Nilsson 1971] also use a complex representation of the structure ofplans in execution monitoring and replanning, but this representation is less informativeand thus less powerful than the representation employed by noah. Although strips andnoah maintain a record of plan structure, unlike Hayes' system and nasl they do not alsorepresent explicitly the reasoning involved in creating the plans and thus require di�erentand more extensive analyses of the plans to modify them. It is interesting to comparethese approaches to those of build and hacker, which both plan by a process of continualsimulated execution monitoring and replanning. hacker, however, represents little morethan a program for the plan itself explicitly, forcing it to do a considerable amount of analysisto discover the nature of its errors. build represents even less information explicitly, and12



Dependencies and Controlrelies on the \hairy control structure" of conniver [McDermott and Sussman 1972] tocontrol the analysis and correction of errors.Reasoning about the reasoning involved in the design and internal structure of plans,devices or beliefs plays a great role in current work on failure localization and debugging.These problems have been or are being investigated in the contexts of reconciling beliefs,debugging knowledge bases, troubleshooting electronic circuits, and constructing, explain-ing and debugging computer programs. tople [McDermott 1974] reconciles its conictingbeliefs by making assumptions based on the nature of the conict, and later analyzes therelationships it has assumed if it �nds cause to doubt the truth of a related fact. mycin[Shortli�e 1975, Davis 1976] employs a system of dependencies among its beliefs, goals andrules which admits thorough explanations of reasons for program behavior to a human ex-pert adding to or locating de�ciencies in the program knowledge base. watson [Brown andSussman 1974, Brown 1974, 1975] uses knowledge of the teleology of circuits (knowledge ofthe reasoning behind the design of the circuits) to localize failures of circuits to the failureof speci�c circuit components. inter [de Kleer 1976b] also localizes failures in electroniccircuits, but reasons about the relationships among its assumptions about component be-havior to determine component failures, rather than relying on knowledge of the teleologyof circuits.Analysis of program assumptions and their relation to other program knowledge hasrecently seen substantial application in the dependency-directed backtracking scheme devel-oped in ars. Another backtracking scheme which analyzes the relations between the choicesinvolved in a failure is used in the graphical deduction system of Cox and Pietrzykowski[1976]. Latombe [1976] employs reasoning about dependencies in choosing choice points forbacktracking purposes, but does not explicitly describe the exact mechanisms used.Analysis of past and present reasoning can also be used in the control of current andfuture reasoning. The mycin system employs a hierarchy of meta-rules for this purpose. Inthis system of production rules, a �rst level of meta-rules is used to control the applicationof the regular production rules. Successive levels of meta-rules are each used to control theapplication of meta-rules at the next lower level. In this way strategies, hints for choosingstrategies, and higher level control information may be encoded. (In actuality, mycin atpresent contains only �rst level meta-rules. Although its implementation permits higherlevel meta-rules to be used, none have been formalized to date. In addition, the form ofrules and meta rules used in mycin is very restricted, which simpli�es the processes ofexplanation and acquisition, but limits the exibility of the system.) In addition to con-trolling the current reasoning tasks, the nasl system provides elegant tools for interpretingthe current state of reasoning and for specifying both future tasks and continuing policiesfor controlling task execution. nasl embodies taxonomies for the description of partiallyordered task networks, providing semantics for a generalization and extension of Sacerdoti's[1975] procedural nets. (See, for example, the implementation of a noah-like Blocks Worldplanner in nasl [McDermott 1976, Doyle and McDermott, forthcoming].) As well as spec-ifying the semantics of task networks, nasl provides basic tools for modifying the tasknetwork and the the relationships among tasks in several ways.Reasoning about past reasoning and careful recording and use of dependency relation-ships among facts also work together to aid problem-solving in worlds with inuentialactions. Classic approaches to this problem have included specifying frame axioms for all13



Doyleactions and conditions [McCarthy and Hayes 1969, Raphael 1971], specifying add and deletelists for operators [Fikes and Nilsson 1971], embedding add and delete lists in simulatingprocedures [Fahlman 1974, Sussman 1975], distinguishing between primary and secondaryknowledge [Fahlman 1974, Fikes 1975], using demons to embody tendencies [Rieger 1975]and change-observers [Rieger 1976]. Automatically maintained dependency relationshipsamong facts work smoothly with most of these approaches, providing easy access to possi-bly invalidated knowledge to a program confronted with contradictions, and a simple systemfor updating the program knowledge upon recognizing change. Such mechanisms wouldseem to allow considerably easier access to suspicious assumptions than other representa-tions of world states, such as those of Waldinger [1975], Kowalski [1973], Warren [1974],Hewitt [1975], and Sacerdoti [1975].In addition to their uses in reasoning about inuential actions, dependency records re-sulting from the reasoning process can also be used to easily work with hypothetical worlds.A dependency based context scheme, such as that employed in ars provides a convenientchannel by which reasoning in distinct hypothetical worlds can interact and supplementthe general body of knowledge. Facts derived while investigating a hypothetical world mayalso be valid in the non-hypothetical world, and thus will not be lost if the hypotheses areabandoned. In addition, the consistent merging of two distinct contexts becomes a trivial(and invisible) operation, as opposed to the di�culties it entails in conniver-type contextmechanisms for hypothetical reasoning [Waldinger 1975, McDermott 1975].Appropriately recorded dependency information also simpli�es the construction of artic-ulate, self-explaining experts. shrdlu [Winograd 1972] answers certain types of questionsby examining relationships between past and present goals and subgoals. noah uses similarinformation to answer questions about purposes and methods. mycin analyzes recordeddependency relationships to produce explanations of its reasoning, a feature signi�cantlyaiding in the processes of reassuring human experts and detecting and correcting knowledgebase errors and de�ciencies. The el-ars system provides a similar power of explanation,but makes no attempt to give its explanations in English.4.2 ConclusionsNon-chronological dependency relationships can be easily recorded in an antecedent reason-ing framework. These dependency relationships can be used in many ways; for explanation,as a means towards maintaining consistency in a database, and most importantly, as tool touse in the control of the reasoning process. In particular, such dependency relationships canbe used to e�ect the e�cient control method of dependency-directed backtracking, and canbe used to implement non-chronological consequent reasoning in an antecedent reasoningframework.Acknowledgements: The content of this work has improved through advice from anddiscussions with Johan de Kleer, Scott Fahlman, Ben Kuipers, Tomas Lozano-Perez, DrewMcDermott, Richard Stallman, Guy L. Steele Jr., Gerald Jay Sussman, and Kurt VanLehn.Guy Steele also provided editorial help. This research is supported by a Fannie and JohnHertz graduate fellowship. 14
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