
Realtime Signal Pro cessing

Datao w, Visual, and F unctional Programming

Hideki John R e ekie

Submitted fo r the Degree of

Do cto r of Philosophy at the

Universit y of T echnology at Sydney

in the

Scho ol of Electrical Engineering

Septemb er 1995

Abstract

This thesis presen ts and justi�es a framew ork for programming real-time signal pro cess-

ing systems. The framew ork extends the existing \blo c k-diagram" programming mo del;

it has three comp onen ts: a v ery high-lev el textual language, a visual language, and the

datao w pro cess net w ork mo del of computation.

The datao w pro cess net w ork mo del, although widely-used, lac ks a formal description,

and I pro vide a seman tics for it. The formal w ork leads in to a new form of actor. Ha ving

established the seman tics of datao w pro cesses, the functional language Hask ell is la y ered

ab o v e this mo del, pro viding p o w erful features|notably p olymorphism, higher-order func-

tions, and algebraic program transformation|absen t in blo c k-diagram systems. A visual

equiv alen t notation for Hask ell, Visual Hask ell, ensures that this p o w er do es not exclude

the \in tuitiv e" app eal of visual in terfaces; with some in telligen t la y out and suggestiv e

icons, a Visual Hask ell program can b e made to lo ok v ery lik e a blo c k diagram program.

Finally , the functional language is used to further extend datao w pro cess net w orks, b y

sim ulating timed and dynamically-v arying net w orks.

The thesis th us dra ws together a n um b er of previously-separate ideas: a reasonable

exp ectation of e�cien t execution using established datao w compilation tec hnology; a

p o w erful and high-lev el programming notation; and a blo c k-diagram st yle in terface.

Con ten ts

1 In tro duction 1

1.1 Motiv ation : 3

1.2 Bene�ts : 5

1.3 Ov erview of the thesis : 6

1.4 Previously published w ork : 8

2 Bac kground Material 11

2.1 Mo dels of parallelism : 11

2.1.1 A \meta-mo del" of parallelism : 12

2.1.2 Implicit parallelism : 13

2.1.3 Data parallelism : 14

2.1.4 Con trol parallelism : 15

2.1.5 The Linda mo del : 17

2.1.6 Pip eline parallelism : 18

2.2 F unctional programming in �v e min utes : 19

2.2.1 Ob jects and functions : 20

2.2.2 Bindings : 22

2.2.3 P atterns : 23

2.2.4 Currying and higher-order functions : : : : : : : : : : : : : : : : : : 23

2.2.5 let , lam b da , and case : 25

2.2.6 P olymorphism and t yp e classes : 25

2.3 Ev aluation mec hanisms : 27

2.3.1 Graph reduction : 27

2.3.2 Strictness : 29

2.3.3 P arallel graph reduction : 30

2.3.4 P arallel data structures : 31

2.3.5 F unctional op erating systems : 32

2.3.6 F unctional pro cess net w orks : 34

2.3.7 Sk eletons : 35

2.4 Real-time signal pro cessing : 36

2.4.1 Discrete-time signals : 37

2.4.2 Streams and c hannels : 38

2.4.3 F unctions and systems : 40

2.4.4 Digital signal pro cessors : 41

2.5 Summary : 43

i

3 Datao w Pro cess Net w orks 45

3.1 Related w ork : 46

3.1.1 Computation graphs : 47

3.1.2 Sync hronous datao w (SDF) : 48

3.1.3 Kahn's pro cess net w orks : 51

3.1.4 Datao w pro cesses : 53

3.1.5 Firing rules : 55

3.2 Standard-form datao w actors : 57

3.2.1 Syn tax : 57

3.2.2 Desugaring : 60

3.2.3 Seman tics : 61

3.2.4 Consumption and pro duction v ectors : : : : : : : : : : : : : : : : : : 66

3.2.5 Canonical SDF actors : 69

3.3 Phased-form datao w actors : 71

3.3.1 Syn tax : 72

3.3.2 Phase graphs : 76

3.3.3 Seman tics : 77

3.3.4 Cyclo-static and m ulti-phase in teger datao w : : : : : : : : : : : : : 81

3.3.5 Execution mec hanisms : 83

3.3.6 Hierarc h y and strictness : 84

3.4 Summary : 87

4 Visual Hask ell 88

4.1 Related w ork : 89

4.2 An in tro duction to Visual Hask ell : 93

4.3 Visual syn tax preliminaries : 97

4.3.1 Visual elemen ts : 98

4.3.2 Sp ecifying the visual syn tax : 99

4.3.3 A simple visual language : 101

4.3.4 De-sugaring : 104

4.4 The core syn tax : 104

4.4.1 Simple expressions : 105

4.4.2 Structured expressions : 108

4.4.3 P atterns : 111

4.4.4 Bindings : 113

4.4.5 Matc h phrases : 113

4.5 Impro ving the visual syn tax : 116

4.5.1 Visual syn tactic sugar : 116

4.5.2 Iteration b o xes : 118

4.5.3 Unfolded higher-order functions : 120

4.5.4 Wiring : 121

4.6 Summary : 121

5 Static Pro cess Net w orks 123

5.1 Related w ork : 124

5.2 V ectors : 126

5.2.1 The V ector datat yp e : 126

ii

5.2.2 Iterators : 127

5.2.3 Com biners : 131

5.2.4 Selectors : 132

5.2.5 Example: the F ast F ourier T ransform : : : : : : : : : : : : : : : : : 135

5.3 Streams : 138

5.3.1 The Stream datat yp e : 139

5.3.2 Pro cess primitiv es : 139

5.3.3 An example : 142

5.3.4 Pro cess constructors : 144

5.4 Pro cess net w ork construction : 148

5.4.1 Simple com binators : 149

5.4.2 Simple linear net w orks : 150

5.4.3 Pip elines : 151

5.4.4 Meshes and systolic arra ys : 153

5.4.5 Net w ork construction in datao w systems : : : : : : : : : : : : : : : 155

5.5 Pro cess net w ork transformation : 156

5.5.1 T yp e annotations : 157

5.5.2 F usion : 158

5.5.3 P arallelisation : 160

5.5.4 Pip elini ng : 161

5.5.5 Promotion : 163

5.6 Summary : 165

6 Dynamic Pro cess Net w orks 166

6.1 Related w ork : 167

6.2 Timed signals and streams : 169

6.3 F unctions on timed streams : 171

6.3.1 Basic functions : 171

6.3.2 Timed v ectors : 173

6.3.3 Sync hronous and timed streams : 175

6.4 Dynamic pro cess net w orks : 177

6.4.1 Finite sync hronous streams : 177

6.4.2 Dynamic pro cess functions : 181

6.5 A digital m usic syn thesiser : 182

6.5.1 Notes : 182

6.5.2 En v elop es : 183

6.5.3 Note generation : 185

6.5.4 A forman t-w a v e-function note generator : : : : : : : : : : : : : : : : 186

6.6 Summary : 189

7 Summary 191

7.1 Con tributions : 191

7.2 F urther w ork : 193

7.3 Concluding Remarks : 194

A Hask ell Co de 206

iii

List of Figures

1.1 A conceptual framew ork for DSP programming : : : : : : : : : : : : : : : : 2

1.2 The argumen ts, summarised : 6

1.3 An o v erview of thesis topics : 7

2.1 A hierarc h y of parallelism : 12

2.2 Carriero and Gelern ter's mo dels of parallelism : : : : : : : : : : : : : : : : : 13

2.3 More mo dels of parallelism : 16

2.4 A simple blo c k diagram : 40

2.5 A simpli�ed DSP c hip arc hitecture : 42

3.1 A simple datao w net w ork : 45

3.2 A computation graph : 48

3.3 A sync hronous datao w graph : 49

3.4 A Kahn pro cess net w ork : 52

3.5 Sugared syn tax of a standard-form actor : 58

3.6 Desugaring a standard-form actor : 61

3.7 Instan tiating an actor : 63

3.8 The canonical SDF actors : 69

3.9 Sugared syn tax of a phased-form actor : 73

3.10 The non-deterministic sumsqrs actor : 74

3.11 The phased-form dela y actor : 75

3.12 Desugaring a phased-form actor : 75

3.13 Phase graphs : 77

3.14 Phase graph of iota : 82

3.15 Deadlo c k of a hierarc hical actor : 85

3.16 A phased net w ork example : 86

3.17 The example phased net w ork as a phased-form actor : : : : : : : : : : : : : 86

4.1 The factorial function in Cardelli's language : : : : : : : : : : : : : : : : : : 90

4.2 The factorial function in ESTL : 91

4.3 The factorial function in Visual Hask ell : 94

4.4 P atterns : 95

4.5 The map function : 95

4.6 Icons for some standard prelude data constructors : : : : : : : : : : : : : : 96

4.7 Icons for some standard prelude functions : : : : : : : : : : : : : : : : : : : 96

4.8 F unction comp osition : 97

4.9 Simple visual elemen ts : 99

iv

4.10 Hask ell's abstract syn tax : 100

4.11 The visual syn tax of a simple language : 102

4.12 Sugaring the simple language : 103

4.13 De-sugaring rules : 104

4.14 Visual syn tax: simple expressions : 106

4.15 An example translation : 108

4.16 Visual syn tax: structured expressions : 109

4.17 Examples of structured expressions : 110

4.18 Visual syn tax: patterns : 112

4.19 Visual syn tax: bindings : 114

4.20 Visual syn tax: matc h clauses : 115

4.21 Sugaring rules : 117

4.22 Illustrating t yp e annotations : 118

4.23 Illustrating iteration : 119

4.24 Unfolded higher-order functions : 120

4.25 Wiring : 121

4.26 Mixing text and pictures : 122

5.1 Unfolded v ector iterators : 129

5.2 Iterator t yp e signatures : 130

5.3 Com biner t yp e signatures : 131

5.4 Selector t yp e signatures : 132

5.5 Additional selector functions : 133

5.6 Selectors as \wiring" : 135

5.7 The 16-p oin t FFT buttery diagram : 136

5.8 The FFT function : 137

5.9 P arts of the 16-p oin t FFT in Visual Hask ell : : : : : : : : : : : : : : : : : : 138

5.10 T yp es of stream functions : 141

5.11 A �rst-order recursiv e �lter : 143

5.12 Pro cess constructor de�nitions : 145

5.13 Pro cess constructors : 146

5.14 The FIR �lter function : 147

5.15 The n -th order recursiv e �lter : 148

5.16 Simple net w ork-forming functions : 149

5.17 Linear pro cess net w orks : 151

5.18 A pip eline pro cess net w ork : 153

5.19 Mesh pro cess net w orks : 154

5.20 Illustrating net w ork t yp es : 157

5.21 Pro cess fusion : 158

5.22 The transformed FIR �lter : 159

5.23 Horizon tal parallelisation : 162

5.24 Pip elinin g : 163

5.25 Promotion : 165

6.1 A simple digital gain con trol : 166

6.2 T yp es of timed stream functions : 171

6.3 T yp es of �nite stream functions : 178

v

6.4 More functions for making �nite streams : 180

6.5 T yp es of dynamic pro cess functions : 181

6.6 Note ev en ts and asso ciated co de : 183

6.7 Ramp and en v elop e generators : 184

6.8 Note generators : 185

6.9 The top-lev el syn thesiser : 186

6.10 Sine-w a v e syn thesiser output : 187

6.11 F orman t-w a v e-function tone generation : 188

6.12 F orman t-w a v e-function output : 189

vi

Ac kno wledgemen ts

I w ould lik e to thank m y academic sup ervisors, Professor W arren Y ates, of the Sc ho ol of

Electrical Engineering, Univ ersit y of T ec hnology at Sydney , and Dr. John P otter, of the

Microsoft Institute (formerly of the Sc ho ol of Computing Sciences, Univ ersit y of T ec h-

nology at Sydney), for their advice, supp ort, and patience. I am indebted to the three

thesis assessors, Dr Chris Drane (Univ ersit y of T ec hnology at Sydney), Dr Greg Mic hael-

son (Heriot-W att Univ ersit y), and Dr Andrew W endelb orn (Univ ersit y of Adelaide), for

their time and e�ort reading and commen ting on the submitted v ersion of the thesis; I

hop e this �nal v ersion adequately addresses the issues they raised. This w ork w as sup-

p orted b y an Australian P ost-graduate Researc h Aw ard. F udek o and Colin Reekie made

the whole thing p ossible. Jon Hill read and o�ered useful commen ts on an early draft of

this thesis. Matthias Mey er wrote the TMS320C40 protot yp e of SPOOK. Ken Da wson

wrote the protot yp e Visual Hask ell editor. Mik e Colefax wrote the p olyphonic v ersion

of the forman t-w a v e-function m usic syn thesiser. John Leaney o�ered en th usiasm and en-

couragemen t. Ric k Jelli�e told at least one funn y story . Morris the psyc ho-cat to ok no

in terest in an y of this.

vii

The t w o virtues of arc hitecture whic h w e can justly

w eigh, are, w e said, its strength or go o d construction,

and its b eaut y or go o d decoration. Consider �rst,

therefore, what y ou mean when y ou sa y a building is w ell

constructed or w ell built; y ou do not merely mean that it

answ ers its purp ose,|this is m uc h, and man y mo dern

buildings fail of this m uc h; but if it b e v erily w ell built; it

m ust answ er this purp ose in the simplest w a y , and with

no o v er-exp enditure of means.

John Ruskin, The Stones of V enic e .

W riters of b o oks and articles should not use we in circumstances

where the collectiv e anon ymit y of the editorial of a newspap er is

out of place. An author ma y , taking the reader with him, sa y we

have se en how thus and thus : : : , but ough t not, meaning I , to

sa y we b elieve thus and thus ; nor is there an y sound reason wh y ,

ev en though anon ymous, he should sa y the pr esent writer or your

r eviewer , expressions whic h b etra y his individualit y no less and

no more than the use of the singular pronoun. Mo dern writers are

sho wing a disp osition to b e b older than w as formerly fashionable

in the uses of I and me , and the practice deserv es encouragemen t.

It migh t w ell b e imitated b y the man y scien ti�c writers who,

p erhaps out of misplaced mo dest y , are giv en to describing their

exp erimen ts in a p erp etually passiv e v oice, (such-and-such a thing

was done), a tric k that b ecomes w earisome b y rep etition, and

mak es the reader long for the author to break the monoton y b y

sa ying b oldly I did such-and-such a thing .

H. W. F o wler, A Dictionary of Mo dern English Usage

Chapter 1

In tro duction

Real-time signal pro cessing computation is a unique �eld. It has its o wn sp ecial class of

applications|appli cations that demand extremely high computational p erformance and

v ery fast real-time resp onse. It uses sp ecialised micro-pro cessors|often sev eral|with

their o wn unique set of hardw are design and programming tric ks. It pursues p erformance

at the exp ense of generalit y , main tainabilit y , p ortabilit y , and other generally-accepted

measures of go o d soft w are practice. And a running real-time signal pro cessing program is

the most exciting kind of computer program there is, b ecause y ou can hear it, see it, and

in teract with it in w a ys not p ossible with other kinds of computer program.

F ortunately , the eagerness to sacri�ce go o d practice in pursuit of maxim um p erfor-

mance is temp ered b y a programming approac h that promises b oth. This approac h, going

under the guise of \blo c k-diagram dev elopmen t systems," is based on a simple metaphor:

soft w are mo dules can b e in terconnected b y soft w are c hannels in the same manner in whic h

hardw are units can b e connected b y cables carrying analog or digital signals. The concept

dates bac k at least to the w ork b y Kelly et al in 1961 [74]. In mo dern systems, visual

in terfaces add to the app eal of the metaphor: complete systems can b e constructed b y

making connections on a computer screen.

The computational mo del on whic h these systems are based is called pip eline dataow .

The com bination of a visual in terface with pip elin e datao w is w ell-established in sev eral

�elds, including signal pro cessing [88 , 12 , 85], image pro cessing and visualisation [112 , 83],

instrumen tation [82], and general-purp ose visual programming languages [99 , 59]. Signal

pro cessing systems are based on a sp ecial class of pip eline datao w, dataow pr o c ess net-

1

CHAPTER 1. INTR ODUCTION 2

Dataflow process network

let
 u = copyV k 0
in
 scanS (<<) u

High-level language
Visual language

Programming technology

Computational model

Figure 1.1. A conceptual framew ork for DSP programming

works (see c hapter 3). Blo c k-diagram systems, although w ell-established, are a practical

compromise of usabilit y and implemen tation tec hnology , and lac k some of the features of

mo dern programming languages.

The aim of this thesis is to extend the visual-in terface-datao w-net w ork st yle of compu-

tation. It do es so b y adding a third dimension as illustrated in �gure 1.1. The underlying

mo del of computation is still datao w pro cess net w orks; a programmer creates datao w-

net w ork programs using either a visual language or a high-lev el language. There is more

than app ears on this diagram, though: the high-lev el language o�ers new exibilit y and

p o w er to b oth the visual in terface and the datao w pro cess net w ork mo del. In this thesis,

I will use Hask ell as the high-lev el language; Hask ell is a mo dern functional language that

pro vides a common ground for researc h in to functional languages and functional program-

ming [44]. The visual language is Visual Hask ell, a visual equiv alen t for Hask ell of m y o wn

design.

In the next t w o sections I summarise the argumen ts in fa v our of adding this third

dimension. A further t w o sections pro vide an outline of follo wing c hapters, and review

previously-publi shed pap ers and rep orts and their relation to this thesis.

CHAPTER 1. INTR ODUCTION 3

1.1 Motiv ation

There w ere t w o main motiv ations b ehind the w ork in this thesis. Firstly , I w an ted a w a y of

expressing datao w net w ork programs that is more p o w erful and expressiv e than curren t

blo c k-diagram systems. And secondly , I w an ted to sho w that a more p o w erful notation

need not sacri�ce the \in tuitiv e" app eal of a visual in terface.

In a blo c k-diagram system, a programmer or engineer places icons represen ting pro-

cessing mo dules, or blo cks , on to the computer screen. Connections b et w een input and

output p orts represen t a o w of data from one blo c k in to another. The data o wing o v er

these c hannels is called a str e am . Input-output is handled in a uniform w a y: sp ecial blo c ks

with no input p orts represen t input c hannels; blo c ks with no output p orts represen t out-

put c hannels. Most systems supp ort hierarc hical construction of net w orks: a net w ork with

unconnected input or output p orts can b e named and then placed in to another net w ork.

This is the datao w net w ork equiv alen t of pro cedural abstraction.

Blo c k diagrams are conceptually familiar to engineers, and the visual in terface is se-

man tically simple and therefore pro vides little barrier to tak e-up, as learning a new textual

language migh t. The computational mo del is, ho w ev er, limite d to pip eline datao w. As a

result, blo c k diagram languages cannot express other kinds of computation. F or example,

although it is easy to express p oin t-wise summation of t w o streams of n um b ers, it is not

p ossible to express the addition of t w o n um b ers. F or this reason, blo c k-diagram systems

supply a library of \primitiv e" blo c ks|w a v eform generators, �lters, mo dulators, detec-

tors, and transforms|with whic h more complex blo c ks and systems can b e constructed.

An y algorithm not supplied with the library can b e co ded as a primitiv e blo c k b y the user,

in a con v en tional language suc h as C or F ortran.

This approac h has t w o dra wbac ks. Firstly , algorithms co ded in C or F ortran cannot

b e divided in to smaller parts for sim ultaneous execution on m ultiple pro cessors. Large

primitiv e blo c ks|suc h as the F ast F ourier T ransform|ma y limit throughput or reduce

the e�ectiv eness of load-balancing. The second ob jection is essen tially one of elegance:

the programmer is for c e d to program in t w o completely di�eren t languages, with t w o

completely di�eren t seman tics.

F unctional programming languages seem a natural c hoice for co ding datao w net w ork

programs. Because pure functional languages ha v e no assignmen t, w e can think of func-

CHAPTER 1. INTR ODUCTION 4

tional programs as datao w programs: in datao w, the result of eac h blo c k o ws in to the

input of the next; in functional programs, the result of eac h function application is the

argumen t to another function application. If this data is atomic|n um b ers and so on, or

tokens in datao w terminology|then this is lik e atomic dataow .

In addition, pure functional languages are \lazy ," so that ev aluation is not p erformed

un til needed to pro duce the result of the program. Laziness is a nice prop ert y for a n um b er

of reasons. Firstly , it is necessary to guaran tee referen tial transparency: an expression can

alw a ys b e substituted with an equiv alen t expression without c hanging program meaning.

Secondly , it allo ws the use of some programming tec hniques that cannot b e used in non-

lazy languages|see [19 , 66 , 147] for examples of programs that can only b e constructed in

a lazy language. F or our purp oses, laziness mak es it easy to build in�nite data structures

and therefore to sim ulate pip eline datao w systems. Th us, the same language co des the

in ternal computation of blo c ks as w ell as net w orks of blo c ks|there is no barrier b et w een

primitiv e and constructed blo c ks as in con v en tional blo c k-diagram systems.

F unctional languages are not, ho w ev er, visual. Although there has b een some w ork

on visual functional languages, none ha v e b een widely adopted or implemen ted. Because

the functional language approac h to datao w programming �ts the datao w mo del so

w ell, I dev elop ed a visual notation for Hask ell, called Visual Hask ell. The aim of Visual

Hask ell is to pro vide an unam biguous visual equiv alen t of textual Hask ell, so that programs

can b e translated bac k and forth b et w een the t w o notations|this is represen ted b y the

double-ended arro w at the top of �gure 1.1.

Th us, all blo c ks|b oth constructed and primitiv e|can b e created and manipulated in

b oth visual and textual languages. Although t ypically the visual language w ould b e used

at higher lev els of the system and the textual language for lo w er-lev el algorithms, there is

no compulsion to do so; the transition b et w een the t w o st yles of programming is seamless,

and the programmer is free to c ho ose whic hev er is the most appropriate. This \t w o-view"

idea is not new: a m ultiple-view program dev elopmen t en vironmen t has b een prop osed for

pro cedural languages [124]; and t w o-view do cumen t formatting systems seem a natural

syn thesis of the compiled and WYSIWYG st yles of do cumen t pro duction [23].

The c hoice of a lazy language is not without its dra wbac ks: there is an inevitable o v er-

head asso ciated with building a run-time represen tation of unev aluated expressions. This

CHAPTER 1. INTR ODUCTION 5

presen ts serious di�culties with computation within blo c ks, as real-time signal pro cessing

simply cannot a�ord to supp ort an y o v erheads other than those essen tial to pro ducing the

r esult of a computation.

1.2 Bene�ts

Ha ving decided on the framew ork of �gure 1.1, other in teresting b ene�ts b ecome apparen t.

Because the visual language is general|that is, it is a visual notation for Hask ell and it

not particularly orien ted to w ards signal pro cessing|it promises to b e a p o w erful to ol for

functional programming in general. The presen tation in c hapter 4 and in an earlier pap er

[117] are written assuming that Visual Hask ell will b e used as a visual functional language,

not as a visual datao w language.

The connection b et w een functional languages and pip elin e datao w (more sp eci�cally ,

datao w pro cess net w orks|see c hapter 3) pro vides a new implemen tation mo del for a

particular class of functional programs. Although similar to some other approac hes to

ev aluating functional programs (section 2.3.6), it promises e�cien t execution through the

use of w ell-established datao w sc heduling and compilation tec hniques.

The high-lev el language pro vides the visual language and pip eline datao w mo dels with

some p o w erful features. Existing blo c k-diagram languages|and ev en general-purp ose

visual programming languages|do not supp ort all of the features promised b y Visual

Hask ell. (This is one of the reasons I dev elop ed Visual Hask ell instead of using an existing

visual language and com bining it with datao w net w orks.) Polymorphism , for example, al-

lo ws functions (or net w orks) to b e written that will accept di�eren t datat yp es. In Ptolem y

and SPW, for example, the programmer m ust c ho ose an appropriate addition blo c k: in-

teger, oating, or complex. In Visual Hask ell, the (+) op erator is o v erloaded on all these

t yp es. T yping is still static, so this feature do es not require the o v erheads of run-time t yp e-

c hec king, as w ould b e the case w ere a Lisp-lik e language adopted. Higher-or der functions

pro vide a v ery p o w erful mec hanism for constructing and parameterising pro cess net w orks.

(A higher-order function tak es a function argumen t, or deliv ers a function result.) This

allo ws the expression of visual programs with \large though ts" [139]. I explore this idea

in section 5.4. A simple form of higher-order function mec hanism has recen tly b een added

to Ptolem y [87], inspired b y one of m y earlier pap ers [114 , 86].

CHAPTER 1. INTR ODUCTION 6

functional
language

 visual
language

dataflow
networks

expressiveness

in
tu

iti
onefficiency

expressiveness

intuition

ef
fic

ie
nc

y

Figure 1.2. The argumen ts, summarised

An in teresting p ossibilit y op ened up b y incorp orating a functional language in to the

programming framew ork is that of pr o gr am tr ansformation . Program transformation is

adv o cated in functional programming texts as a means of obtaining \e�cien t" realisation

of programs from \ine�cien t" (but still executable) sp eci�cations [18]. In the con text

of datao w net w orks, it o�ers a means of p erforming pro v ably-correct alterations to the

structure of a net w ork (section 5.5). Since individual mo dules within the net w ork are

often in terpreted as units of parallelism (section 2.1.6), the e�ect is to alter and con trol

the degree and t yp e of parallelism exhibited b y a net w ork.

Figure 1.2 summarises the preceding argumen ts in terms of the three dimensions of the

new programming framew ork: the datao w net w ork mo del pro vides visual and functional

programming with an e�cien t execution mec hanism; the visual language adds \in tuition"

to functional and datao w programming; and the functional language adds expressiv eness

to visual and datao w programming. The result is a p o w erful framew ork within whic h to

program and reason ab out datao w net w ork programs.

1.3 Ov erview of the thesis

This thesis co v ers a broad range of topics. T o help explain the material co v ered and its

in ter-relationships, �gure 1.3 sho ws dep endencies b et w een the main topics. The follo wing

outline pro ceeds c hapter-b y-c hapter.

Chapter 2, Backgr ound Material , pro vides bac kground material and surv eys relev an t to

follo wing c hapters. T opics co v ered are mo dels of parallel computation, functional program-

CHAPTER 1. INTR ODUCTION 7

Functional programming

Visual Haskell

Static networks Dynamic networks

Process networks Strict dataflow Non-strict dataflow

Evaluation mechanisms

2.2

4

3.2

5 6

3.3

2.3

3.1

Figure 1.3. An o v erview of thesis topics

ming, ev aluation mec hanisms for functional languages, and real-time programs. These sec-

tions include m uc h of the basic bac kground material needed for the remaining c hapters,

although further reviews are giv en in eac h c hapter.

Chapter 3, Dataow Pr o c ess Networks , presen ts a formalisation of datao w actors and

pro cesses. This w ork builds on seminal w ork b y Kahn on pro cess net w orks [75], and on

more recen t w ork b y Lee [87], to whom the term \datao w pro cess net w ork" is due. The

emphasis is on mo delling and describing datao w actors, rather than on the practical

issues asso ciated with implemen tation of datao w programming en vironmen ts. The for-

malisation leads to some new insigh ts in to the nature of datao w actors. These datao w

actors are \strict," b ecause they consume all needed input tok ens b efore pro ducing output

tok ens. The �nal section of this c hapter in tro duces non-strict actors, whic h I call phase d

actors. This idea is quite no v el and is still under dev elopmen t.

Chapter 4, Visual Haskel l , formally describ es Visual Hask ell. Its syn tax is giv en b y a

translation from Hask ell's abstract syn tax directly in to a concrete visual syn tax. The visual

grammar uses some no v el tec hniques to handle di�erences in the \st yle" of textual and

visual syn taxes. A visual syn tax for most of Hask ell's expression and de�nition syn tax is

giv en; a notable omission is syn tax for t yp e and t yp e class declarations. The �nal section

of this c hapter sho ws that the w a y I ha v e sp eci�ed visual syn tax is far from p erfect:

m uc h greater exibilit y is needed to supp ort more complex and v aried forms of visual

represen tation.

Chapter 5, Static Pr o c ess Networks , builds on the previous t w o: datao w pro cesses

are programmed in Hask ell, and these programs illustrated in Visual Hask ell. Firstly the

relationship b et w een Hask ell functions and datao w actors is made explicit. The remainder

of the c hapter demonstrates ho w Hask ell's features increase the expressiv eness of datao w

CHAPTER 1. INTR ODUCTION 8

net w ork programs: ho w higher-order functions can b e used as a concise and p o w erful

means of constructing and com bining datao w net w orks; and ho w program transformation

tec hniques can b e adapted to impro v e e�ciency , or to tailor a program to a particular

ph ysical net w ork.

Chapter 6, Dynamic Pr o c ess Networks , tak es a di�eren t approac h: instead of writ-

ing functional programs to �t in to the datao w mold, I use this c hapter to write Hask ell

programs in w a ys that ma y giv e insigh t in to extending and impro ving the datao w ac-

tor/pro cess mo del. The k ey issue tac kled here is that of represen ting time in datao w

net w orks. A secondary issue is that of dynamic net w orks: net w orks that c hange with

time. In Hask ell, w e can represen t ev olving net w orks, but substan tially more w ork is

needed to �nd a w a y of translating this t yp e of program in to datao w net w orks|not

least b ecause there has b een v ery little w ork done on formal c haracterisations of ev olving

datao w net w orks. There are t w o dep endencies to this c hapter sho wn as dotted lines in

�gure 1.3; these are areas for future w ork.

Finally , c hapter 7, Summary , summarises the w ork of this thesis, and lists k ey con-

tributions. As I ha v e already indicated, there is enormous scop e for further w ork, and I

outline those areas I consider most promising for future researc h.

1.4 Previously published w ork

Some of the material in this thesis has previously b een published in tec hnical rep orts or

conference pap ers. I ha v e not included all of this material in this thesis; the reader in ter-

ested in particular p ortions of elided w ork is directed to the electronic copies referenced

in the bibliograph y , or to the list of pap ers at the address

http://www.ee.uts.edu.au /~johnr /papers

T owar ds E�e ctive Pr o gr amming for Par al lel Digital Signal Pr o c essing [114] con tains

man y of the k ey ingredien ts of this thesis. This rep ort prop osed that a functional pro-

gramming language w ould b e a go o d c hoice for programming blo c k-diagram systems, and

illustrated programs written using v ectors and streams with an early v ersion of the visual

language of this thesis. It iden ti�ed the usefulness of program transformation for parallel

programming, and pip elined the FFT (F ast F ourier T ransform) to illustrate.

CHAPTER 1. INTR ODUCTION 9

Inte gr ating Blo ck-Diagr am and T extual Pr o gr amming for Par al lel DSP [121] is essen-

tially a brief summary of the ab o v e rep ort, although it fo cuses more on the notion of the

\t w o-view" dev elopmen t system.

T r ansforming Pr o c ess Networks [122] con tin ues the program transformation theme b y

pip elini ng an FIR (�nite-impulse-resp onse) �lter. The transformation pro ceeds b y fusing

v ector iterators (section 5.2.2) to form a single pro cess, and then b y using pip elinin g and

promotion (sections 5.5.4 and 5.5.5) to pro duce a pip eline with con trollable grain size. I

suggested in the pap er that less di�cult means of �nding program transformations will b e

required if program transformation is to b ecome useful to programmers. I ha v e not y et

found this means, so ha v e decided against repro ducing the pap er's k ey example here.

Pr o c ess Network T r ansformation [123] is a condensed v ersion of the ab o v e pap er, but

using a visual notation m uc h closer to the curren t Visual Hask ell. It iden ti�es three classes

of pro cess net w ork transformation|this has since b ecome four (section 5.5).

R e al-time DSP in C and Assembler [115] is a set of course notes on the TMS320C30

DSP , whic h ma y b e of in terest to the reader seeking an accessible in tro duction to the

features of mo dern DSP devices.

Gener ating E�cient L o op Co de for Pr o gr ammable DSPs [119] is somewhat of a leap

from the earlier pap ers, as it describ es w ork aimed at compiling v ector functions in to

e�cien t co de for DSPs. It prop oses an abstract DSP mac hine as a v ehicle for DSP compi-

lation, and describ es the essen tial part of a co de generation algorithm designed to exploit

the high degree of instruction-lev el parallelism of DSPs. None of this w ork is included in

this thesis.

The Host-Engine Softwar e A r chite ctur e for Par al lel Digital Signal Pr o c essing [118]

is, again, totally unrelated to earlier pap ers: it describ es a soft w are arc hitecture called

SPOOK (Signal Pro cessing Ob ject-Orien ted Kernel) that could b est b e describ ed as an

API-lev el (Application Programmer In terface) implemen tation of a datao w engine for

parallel DSP mac hines. The pap er is a com bination of arc hitecture description and exp e-

rience based on t w o implemen tations of the arc hitecture: the �rst written b y me for the

TMS320C30 pro cessor; the second largely b y Matthias Mey er for the TMS320C40. The

TMS320C40 implemen tation w as in progress when the pap er w as written; for a detailed

description of the �nal implemen tation see Mey er's rep ort [96]. Again, I ha v e decided

CHAPTER 1. INTR ODUCTION 10

against including this material in the thesis, as I feel it is tangen tial to its main theme.

Mo del ling Asynchr onous Str e ams in Haskel l [116] dev elops Hask ell co de for mo delling

timed streams. Tw o approac hes are used: hiatons, whic h mark \empt y" slots, and time-

stamps, whic h mark the times of o ccurrence of tok ens. Chapter 6 of this thesis is a

complete revision of this pap er; in particular, a new form of timed stream is dev elop ed,

and the m usic syn thesiser example is extended.

Visual Haskel l: A First A ttempt [117] is the only pap er I ha v e written dev oted to

explaining Visual Hask ell, the �nal form of the visual language dev elop ed and re�ned

o v er the last few y ears. Chapter 4 is a revised v ersion of the core of this pap er. The

visual language is sligh tly impro v ed, but the w a y in whic h the visual syn tax is sp eci�ed

is v ery di�eren t, and I think simpler and more elegan t. The original pap er also con tains

motiv ating examples of p ossible uses of Visual Hask ell, and a screen dump of the protot yp e

Visual Hask ell editor written b y Ken Da wson [41].

Chapter 2

Bac kground Material

Because this thesis co v ers quite a broad range of topics, I ha v e collected in to this c hapter

some useful bac kground material. Firstly , I giv e a broad o v erview of mo dels of parallel

computation in terms of a simple \meta-mo del" of computation. Although parallel pro-

gramming pla ys only a minor role in this thesis, one of the motiv ations for the pip eline

datao w mo del has alw a ys b een to harness parallelism, and I think it imp ortan t to place

this mo del in to con text with other approac hes to parallelism.

The next section is an in tro duction to functional programming with Hask ell. F ollo wing

that is a section on ev aluation mec hanisms for functional languages. Again, this serv es to

place w ork presen ted in later c hapters in to con text; in particular, translating a functional

program in to a datao w pro cess net w ork is similar to existing approac hes to parallel

ev aluation of functional programs.

The con text for this whole thesis is real-time signal pro cessing, so section 2.4 explains

some k ey concepts of real-time programming and of programmable DSP devices. This

section is based largely on m y o wn exp erience with real-time programs.

2.1 Mo dels of parallelism

The pip eline datao w mo del is inheren tly suited for parallel execution. It is, ho w ev er, only

one of sev eral k ey mo dels of parallelism, and it is imp ortan t to place it in to con text. This

section reviews k ey mo dels of parallelism; they are sho wn as a hierarc h y in �gure 2.1.

11

CHAPTER 2. BA CK GR OUND MA TERIAL 12

Language-level parallelism

Implicit parallelism Explicit parallelism

Data parallelism Functional parallelism

Control parallelism Linda Pipeline parallelism

Figure 2.1. A hierarc h y of parallelism

2.1.1 A \meta-mo de l" of parallelism

Carriero and Gelern ter suggest three \paradigms" of parallelism [32]:

Result parallelism Result parallelism fo cuses on the structure of the solution. P aral-

lelism arises b y sim ultaneous pro duction of comp onen ts of the result.

Sp ecialist parallelism Sp ecialist parallelism fo cuses on the kind of kno wledge needed to

pro duce a solution. P arallelism arises b ecause man y \sp ecialists," eac h encapsulating

a particular kind of kno wledge, w ork sim ultaneously .

Agenda parallelism Agenda parallelism fo cuses on the steps to b e tak en to arriv e at a

solution. P arallelism arises b y taking man y (non-sequen tial) steps sim ultaneously .

T o translate problems exhibiting these three t yp es of parallelism in to op erating com-

puter programs in Linda (see section 2.1.5), Carriero and Gelern ter o�er three corre-

sp onding program structures: liv e data structures, message passing, and distributed data

structures resp ectiv ely . These structures are distinguished b y the relationship b et w een

pr o c esses and data . In a liv e data structure program, parallelism is structured around the

data: an implicitly-de� ned pro cess within eac h datum computes its v alue. A message-

passing program, in con trast, consists of a collection of separate pro cesses, eac h con tain-

ing its o wn priv ate data, and comm unicating via messages. A distributed data structure

program do es not ha v e suc h a tigh t binding b et w een a pro cess and corresp onding data;

instead, man y pro cesses can share data.

Supp ose no w that w e separate the know le dge of ho w to p erform a computation, from

the thing that p erforms the computation. These en tities I call a script and an agent

CHAPTER 2. BA CK GR OUND MA TERIAL 13

(b)

(a)

(c)

Figure 2.2. Carriero and Gelern ter's mo dels of parallelism: a) result parallelism; b)

sp ecialist parallelism; c) agenda parallelism

resp ectiv ely|note that pr o c ess = script + agent . This agent-script-data mo del serv es as

a meta-mo del for describing di�eren t mo dels of parallelism. Figure 2.2 sho ws Carriero and

Gelern ter's three program structures, mo di�ed to sho w agen ts, scripts, and data|agen ts

are grey ellipses or rounded rectangles; scripts are the curly glyphs that resem ble curled

sheets of pap er; data are white squares. Figure 2.2a is the liv e data structure program:

eac h agen t has its o wn script, whic h it uses to pro duce the data enclosing it. Figure 2.2b

is the message-passing program: again, eac h agen t has its o wn script; agen ts con tain their

o wn priv ate data and send data to other pro cesses in messages, sho wn as white ellipses.

Figure 2.2c is the distributed data structure program: unlik e the other t w o, this program

has only a single script (the \agenda"): all agen ts read the same script, eac h p erforming

an y a v ailable task and op erating on shared data.

2.1.2 Implicit parallelism

Implicit parallelism is asso ciated with program expressions with no data- or time-dep endence

b et w een them. F or example, in the expression

x = a * b + a * c

CHAPTER 2. BA CK GR OUND MA TERIAL 14

the t w o m ultiplications can b e p erformed in parallel. Greater parallelism is a v ailable in

lo ops, if di�eren t iterations of the lo op can b e p erformed in parallel. F or example, in

for i = 1 to N do

x[i] = y[i] * k;

all iterations can b e p erformed in parallel. P arallelising compilers for con v en tional sequen-

tial languages analyse programs to �nd this kind of opp ortunit y for parallel execution. The

adv an tage of implicit parallelism is that (in theory , at least) the programmer need not b e

concerned with programming for a parallel mac hine, b ecause the compiler will �nd and

exploit a v ailable parallelism.

Implicit parallelism is less a c haracteristic of a programming language as it is of the

compiler and run-time arc hitecture. Still, side-e�ect-free languages are lik ely to con tain

more implicit parallelism than imp erativ e languages b ecause they lac k arti�cial time-

dep endencies. Tw o examples of languages and arc hitectures that supp ort implicit paral-

lelism are datao w languages and arc hitectures [1, 7] and m ulti-pro cessor graph reduction

of pure functional programs [105]. In b oth cases, the languages are side-e�ect free. Ho w-

ev er, Ga jski et al p oin t out that parallelising compilers can in fact p erform b etter than

single-assignmen t languages [49].

Implicit parallelism is also a k ey ingredien t of mo dern single-pro cessor compilers. Mo d-

ern pro cessors (including DSP micro-pro cessors) exhibit signi�can t instruction-lev el par-

allelism, whic h compilers m ust attempt to exploit.

2.1.3 Data parallelism

Data parallelism is parallelism at the lev el of elemen ts of a data set. Most of the w ork

on parallel computing for \scien ti�c" applications uses data parallelism. Sip elstein and

Blello c h call data-parallel languages \collection-orien ted." In [129], they surv ey this class

of languages and the w a ys in whic h they supp ort data-parallel computation.

In a data-parallel language, an op eration o v er all elemen ts of a data set is in v ok ed

b y a single function call or language construct. In the DataP arallel C language [55], for

example, one w ould calculate the inner pro duct of t w o v ectors b y:

domain vpair { float x; float y; float t; } v[N];

CHAPTER 2. BA CK GR OUND MA TERIAL 15

float ip;

...

[domain vpair].{

t = x * y;

ip += t;

}

v con tains N triples, eac h lo cated on a di�eren t pro cessor. x , y , and t th us ha v e

instances on eac h pro cessor. ip refers to a single v ariable lo cated on the system host

pro cessor. Execution of the co de b o dy �rst causes eac h instance of t to b e up dated with

the pro duct of the corresp onding instances of x and y . Then all instances of t are summed

and the result placed in to ip .

Figure 2.3a illustrates data-parallelism using the agen t-script-data meta-mo del. All

agen ts read from the same script, and read eac h others' data when they need it. The

greatest adv an tage of data-parallelism is its descriptiv e simplicit y [132]: the programmer

can easily con trol man y thousands of pro cesses b ecause there is only one \thread of con trol"

to manipulate.

Data parallelism is often asso ciated with SIMD mac hines, while functional parallelism

is often asso ciated with MIMD mac hines. Although this is often the case, it is imp ortan t

not to asso ciate a language mo del with the ph ysical hardw are on whic h a program migh t

run, since the connection b et w een a language-lev el mo del of parallelism and its supp osed

\ob vious" implemen tation platform is rather ten uous. F or example, Hatc her and Quinn

[55] describ e a data-parallel language compiler for MIMD mac hines, while Sab ot [127]

describ es ho w an SIMD computer could b e used to sim ulate an MIMD computer.

2.1.4 Con trol parallelism

Con trol parallelism is a form of functional parallelism c haracterised mainly b y explicit

comm unication (\message-passing") and sync hronisation b et w een pro cesses. In e�ect, the

programmer writes man y separate programs; em b edded within eac h program are com-

mands for comm unication and sync hronisation with other programs.

An example of a con trol-parallel language implemen tation for distributed-memory DSP

mac hines is P arallel C [39], based v ery lo osely on Hoare's CSP (Comm unicating Sequen tial

CHAPTER 2. BA CK GR OUND MA TERIAL 16

(d)

(a)

(b)

(c)

Figure 2.3. More mo dels of parallelism: a) data parallelism; b) shared-memory con trol

parallelism; c) Linda; d) pip eline parallelism

Pro cesses) formalism [60]. The programmer writes a n um b er of tasks|that is, indep enden t

C programs. A con�guration �le sp eci�es the pro cessor top ology and the comm unications

links b et w een them, and assigns tasks to pro cessors. Messages are exc hanged b y calling a

message-passing library . F or example, a sending task w ould con tain co de lik e this:

sometype message;

chan_out_message(sizeof(sometype), &message, outs[0]);

A receiving task w ould con tain co de lik e this:

chan_in_message(sizeof(sometype), &message, ins[2]);

Con trol parallelism is lo w-lev el|that is, the programmer in terface is essen tially that

of the op erations that can b e p erformed directly b y a target mac hine: transmission of

messages b et w een pro cessors (distributed-memory mac hines), or sync hronisation of mem-

ory accesses (shared-memory mac hines). It is criticised as b eing lo w-lev el and error-prone

b ecause the programmer m ust explicitly manage comm unication and sync hronisation, and

k eep trac k of the in ternal states of man y pro cessors [55]. Although con trol-parallel pro-

grams are often mac hine-sp eci�c, there are some pro jects, suc h as PVM [136], whic h use

a virtual mac hine abstraction to ac hiev e arc hitecture-indep enden ce.

CHAPTER 2. BA CK GR OUND MA TERIAL 17

There is no single agen t-script-data mo del for con trol-parallel programs. On mac hines

that supp ort message-passing, the message-passing mo del of �gure 2.2b is appropriate. On

mac hines with shared memory , the mo del of �gure 2.3b is more suitable; in this mo del,

eac h agen t has its o wn script, but all pro cesses can access shared data.

It is imp ortan t to distinguish b et w een con trol parallelism (as I ha v e c haracterised it

here) and higher-lev el forms of functional parallelism. Prop onen ts of the implicit or data-

parallel language st yles sometimes forget that there are other approac hes to functional

parallelism that pro vide b etter supp ort for managing parallelism.

2.1.5 The Linda mo del

Linda [3] is a simple, elegan t, arc hitecture-indep enden t mo del for MIMD computation.

The basis of the Linda mo del is a global asso ciativ e memory , or \tuple space." A task

adds a tuple to tuple space b y executing an out instruction:

out("something", 14, 3.1415);

A task can remo v e a tuple from tuple space b y executing an in instruction:

in("something", t, ?x);

The argumen ts to in , called an \an ti-tuple," are a template for matc hing against tuples

in tuple space. In this case, if the v alue of t is 14, then the tuple (\ something ", 14, 3.1415)

is remo v ed from tuple space, and the v ariable x in the reading task has the v alue 3.1415

assigned to it. If the an ti-tuple matc hes no existing tuple, the reading task is susp ended

un til a matc hing tuple b ecomes a v ailable.

A task can create new tasks with the exec instruction. F or example, the statemen t

exec("task", 3, ping());

creates a \liv e tuple," whic h activ ely ev aluates all of its �elds. In this case, only the

third �eld requires ev aluation, so a new task is created to ev aluate ping() . When the task

terminates, the tuple turns bac k in to a \data tuple," replacing the third elemen t of the

tuple with the v alue returned b y ping .

Linda also has a rd instruction, whic h matc hes and reads a tuple but do es not remo v e

it from tuple space, and predicate v ersions of in and rd , called inp and rdp . inp and rdp

CHAPTER 2. BA CK GR OUND MA TERIAL 18

b eha v e as in and rd if they �nd a matc hing tuple, and return the v alue 1. If they fail

to �nd a matc h immediately , they do not susp end the reading task, but return with the

v alue 0.

Figure 2.3c is an appro ximate agen t-script-data mo del of Linda. Eac h agen t has an

\slot" for a script: the agen t tak es a script out of tuple space and p erforms it; this

corresp onds to an ev al op eration. Once an agen t has a script, it can read, remo v e, or

add tuples. Note that, unlik e the shared-memory mo del of �gure 2.3b, an agen t cannot

mo dify a tuple in tuple space, other than b y remo ving it and putting a new tuple in to tuple

space. (This is not sho wn in the diagram.) Linda th us a v oids man y of the sync hronisation

problems asso ciated with con v en tional shared-memory mo dels.

2.1.6 Pip eline parallelism

The functional programs in this thesis are based on the pip eline-p arallel mo del, in whic h

pro cesses comm unicate only through FIF O-bu�ered c hannels. Programs written in this

mo del do not con tain explicit comm unication instructions, but implicitl y sp ecify comm u-

nication b y their construction. F or example, the Hask ell expression

mapS abs . scanS (+) 0

constructs a pip eline of t w o pro cesses. The �rst computes the running sum of its input

stream; the second calculates the absolute v alue of eac h elemen t in its input stream.

Comm unication b et w een the pro cesses is implicit in the fact that the result of the �rst is

the argumen t to the second.

Pip eline parallelism is arguably just a sp ecial kind of message-passing con trol paral-

lelism. I think the di�erences to general con trol-parallel programs are su�cien t to mak e it

a mo del of its o wn: pro cesses can only send messages through c hannels, th us de-coupling

senders from receiv ers; pro cesses are not separate programs, but are just expressions in

the program text; and comm unication b et w een pro cesses is bu�ered, pro viding further de-

coupling b et w een sender and receiv er pro cesses. This kind of parallelism is therefore the

functionally-parallel coun terpart to data parallelism|it fo cuses on the essen tial asp ects

of parallelism without excessiv e concern for lo w-lev el detail.

Figure 2.3d sho ws the pip eline- paralle l mo del; this �gure is the same as the message-

passing program of �gure 2.2b, but explicitly sho ws the FIF O-bu�ered c hannels.

CHAPTER 2. BA CK GR OUND MA TERIAL 19

Pip eline parallelism also includes certain \datao w" programming languages. Lucid

[144] is a (�rst-order) pip eline -paralle l language. In Lucid, the t w o-pro cess pip eline ab o v e

could b e written

absolutes(runner(x))

where

runner(x) = runner where

runner = 0 fby (x + runner)

end;

absolutes(x) = abs(x);

end;

In Lucid, all primitiv e op erations are extended p oin t-wise o v er streams; th us, the

+ op erator sums corresp onding elemen ts of t w o streams. The fb y op erator pro duces a

stream con taining the �rst elemen t of its left argumen t, follo w ed b y its righ t argumen t.

So, if x = [1 ; 2 ; 3 ; 4] , then runner pro duces zero follo w ed b y itself summed with x |that is,

[0 ; 1 ; 3 ; 6 ; 1 0].

The datao w pro cess net w ork mo del [87] is lo w er-lev el, since comm unication is explicit.

A pro cess is formed b y rep eatedly �ring an \actor"; a complete program consists of a

net w ork of actors. Datao w pro cess net w orks are examined in c hapter 3.

2.2 F unctional programming in �v e min utes

F unctional programming languages are \higher-lev el" than more con v en tional imp erativ e

languages. There ha v e b een man y p ersuasiv e argumen ts adv anced for functional program-

ming languages in general [8], and lazy functional languages in particular [64 , 139 , 62].

A recen t study indicates that at least some of the claimed adv an tages of functional

languages|brevit y , rapidit y of dev elopmen t, and ease of understanding|can b e con�rmed

[63]. The study compares sev eral languages, including C++ and Ada, in a substan tial

rapid protot yping exercise. Sev eral metrics w ere used to compare the solutions giv en; the

Hask ell solution w as one of the highest-rated.

This section in tro duces functional programming using Hask ell. Hask ell is quite a large

language, and so I ha v e omitted sev eral of its more complex features: separate mo dules

CHAPTER 2. BA CK GR OUND MA TERIAL 20

and data-hiding, arra y syn tax, list comprehensions, and user-de�ned op erators.

Hask ell has a library of t yp es and functions con tained in its \standard prelude." The

standard prelude is a library of co de mo dules that Hask ell implemen tations are exp ected to

supp ort; b ecause of their imp ortance, a compiler is allo w ed to \understand" the con ten ts

of these mo dules in order to generate more e�cien t co de. I giv e a cursory o v erview of

standard prelude functions and t yp es.

In later c hapters, I will sometimes use a \t yp eset" v ersion of Hask ell for impro v ed

readabilit y . The di�erences to standard Hask ell are: the use of Greek c haracters as t yp e

v ariables; �x : e instead of \x -> e ; ! and) instead of -> and => in t yp e declarations;

and a slan ted Roman t yp eface instead of a constan t-width t yp eface.

2.2.1 Ob jects and functions

Hask ell's standard prelude de�nes a n um b er of t yp es, op erators, and functions. Here are

some simple constan ts with their t yp es, where the notation \ :: " means \has t yp e":

7 :: Int

3.1415 :: Float

True :: Bool

'z' :: Char

More complex t yp es are also de�ned in the prelude; these include rational and complex

n um b ers, arbitrary-precision in tegers, lists, and tuples. Complex and rational n um b ers are

built with the :+ and :/ data c onstructors resp ectiv ely . F or example:

1.0 :+ 2.7 :: Complex Float

4 :/ 7 :: Rational Int

Op erators de�ned in the standard prelude include the arithmetic op erators + , * , - ,

and negate (unary negation), the relational op erators > , >= , < , <= , == ,, and /= , and the

logical connectiv es && and || . All of these op erators are o v erloaded on appropriate t yp es.

Division (/) is de�ned for rational and oating-p oin t n um b ers; in teger t yp es ha v e in teger

division (div) and mo dulus (mo d) functions. Other functions on n umeric t yp es include

transcenden tal op erations suc h as sin and exp , and op erations sp eci�c to complex n um b ers,

suc h as magnitude and phase .

CHAPTER 2. BA CK GR OUND MA TERIAL 21

T uples con tain a �xed n um b er of �elds of p ossibly di�eren t t yp es; �elds are separated

b y commas. F or example:

(1,'a',6.666) :: (Int, Char, Float)

Tw o useful functions on tuples are fst , whic h selects the �rst elemen t of a pair, and

snd , whic h selects the second.

Lists con tain zero or more elemen ts of the same t yp e. The empt y list is denoted \ [] ";

the list constructor \ : " joins an elemen t on to the fron t of a list; the syn tax [a,b,c] is

short-hand for (a:b:c:[]) . Here are some examples of lists:

4:7:xs :: [Int]

['a','b','c'] :: [Char]

"thang" :: [Char]

The standard prelude con tains man y functions on lists. Tw o simple ones are head ,

whic h returns the �rst elemen t of a list, and tail , whic h returns all elemen ts of a list but

the �rst. Others include: rev erse , whic h rev erses a list; length , whic h returns the n um b er

of elemen ts in a list; tak e , whic h returns a giv en n um b er of elemen ts from the fron t of a

list; last , whic h returns the last elemen t of a list; concat , whic h joins a list of lists in to a

single list; (++) , whic h app ends t w o lists together; and rep eat , whic h rep eats its argumen t

forev er: rep eat x ! [x; x; x; : : :].

Op erators are usually written in in�x p osition, as in x + y . An op erator can b e written

in pre�x p osition b y enclosing it in paren theses, as in (+) x y . A binary function can b e

written in in�x p osition b y enclosing it in bac k-quotes, as in x � div � y .

F unction application is denoted b y juxtap osition, as in sin x , instead of the more usual

sin (x). P aren theses are used to disam biguate when necessary; for example, w e could tak e

the second elemen t of a list xs with the expression

head (tail x)

F unction application binds tigh ter than an y other op erator, so sin x + 1 is the same as

(sin x) + 1 .

CHAPTER 2. BA CK GR OUND MA TERIAL 22

2.2.2 Bindings

A \binding" is the asso ciation of an iden ti�er with a v alue. Consider simple pattern

bindings �rst, in whic h a v ariable name is b ound to an expression. Here are some examples:

pi :: Double

pi = 3.14159265358979

twopi :: Double

twopi = 2 * pi

A function binding asso ciates an iden ti�er with a function. F or example, here is the

de�nition of the factorial function:

fact :: Int -> Int

fact n = if n == 0 then 1 else n * fact (n-1)

The �rst line sa ys that fact is a function, whic h has one in teger argumen t and pro duces

an in teger result. The if-then-else construct is an expr ession , not a con trol-o w construct

as in imp erativ e languages|that is, it returns a v alue.

F unction and pattern bindings can ha v e guar ds , whic h select from a n um b er of alter-

nativ e expressions. F or example, fact could also b e de�ned lik e this:

fact :: Int -> Int

fact n | n == 0 = 1

| otherwise = n * fact (n - 1)

Here, the \ | " indicates the start of an alternativ e; it is follo w ed b y a predicate, then

= , then the selected expression. The otherwise guard is alw a ys true. Guards are tested

from top to b ottom.

Bindings can con tain lo cal bindings, in tro duced b y the where k eyw ord. F or example,

the buttery function used in section 5.2.5 has a lo cal binding for t :

butterfly :: Num a => Complex a -> (Complex a, Complex a)

-> (Complex a, Complex a)

butterfly w (x0,x1) = (x0 + t, x0 - t)

CHAPTER 2. BA CK GR OUND MA TERIAL 23

where

t = w * x1

2.2.3 P atterns

A p attern is formed when a data constructor app ears on the left-hand side of a binding.

The result of ev aluating the righ t-hand side is b ound to the corresp onding iden ti�ers in

the pattern. F or example, the binding

(x:xs) = [1,2,3,4]

will cause the in teger 1 to b e b ound to x , and the list [2 ; 3 ; 4] to b e b ound to xs . P atterns

can b e nested arbitrarily , as in

((x,y) : z : zs) = ...

Argumen ts to function bindings are often patterns; in this case, they also serv e to

select one of p ossibly m ultiple clauses of a function de�nition. P atterns in this p osition

can also b e constan ts. T o illustrate, consider the Hask ell de�nition of map , whic h applies

a giv en function to eac h elemen t of a list:

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = f x : map f xs

Here, the �rst clause will matc h its list argumen t only if it is a n ull list; otherwise, the

second clause will matc h, with the head of the list b ound to x and the tail (p ossibly n ull)

b ound to xs .

P atterns can also b e a wild-card, written \ ", whic h matc hes an ything. map , for

example, w ould more usually b e de�ned using wild-cards:

map :: (a -> b) -> [a] -> [b]

map f (x:xs) = f x : map f xs

map _ _ = []

2.2.4 Currying and higher-order functions

map is an example of a higher-or der function , or HOF. A higher-order function tak es a

function argumen t or pro duces a function result. In the case of map , the �rst argumen t is

CHAPTER 2. BA CK GR OUND MA TERIAL 24

a function, as indicated b y its t yp e, a -> b . Higher-order functions are one of the more

p o w erful features of functional programming languages, as they can b e used to capture

p atterns of computation. map , for example, captures \for-all" st yle iteration across a list.

Other functions capture v arious the \do-across" st yles of iteration. foldl , for example,

applies its function argumen t to a list elemen t and the result of the previous application:

foldl (+) 0 [1,2,3] pro duces 6. scanl is similar, but pro duces a list con taining all

partial results. F or example, scanl (+) 0 [1,2,3] pro duces [0,1,3,6] . These functions

are de�ned as follo ws:

foldl :: (a -> b -> a) -> a -> [b] -> a

foldl f z [] = z

foldl f z (x:xs) = foldl f (f z x) xs

scanl :: (a -> b -> a) -> a -> [b] -> [a]

scanl f z [] = [z]

scanl f z (x:xs) = z : scanl f (f z x) xs

One of the most useful higher-order functions is function comp osition, written as the

in�x op erator \ . " and de�ned b y (f : g) x = f (g x). A particularly common use is to

construct a \pip eline" of functions, as in f : g : h .

Because Hask ell is based on the lam b da-calculus, higher-order functions arise naturally

when w e de�ne functions of more than one argumen t. F or example, consider a function

that adds t w o n um b ers:

add :: Int -> Int -> Int

add x y = x + y

Because \ -> " asso ciates from righ t to left, the t yp e of add is really Int -> (Int -> Int) ;

add th us tak es a single in teger argumen t and pro duces a function from in tegers to in tegers.

F or example, the expression (add 3) is a function that adds three to its argumen t.

F unctions of this t yp e are called currie d , after the mathematician Hask ell Curry . In

practice, w e refer to a function suc h as add as a function of t w o argumen ts, and to

application to less than its full n um b er of argumen ts as p artial applic ation . F or comparison,

an uncurried v ersion of add could b e written:

CHAPTER 2. BA CK GR OUND MA TERIAL 25

add

0

:: (Int, Int) -> Int

add

0

(x,y) = x + y

2.2.5 let , lam b da , and case

A let -expression delimits a new scop e within whic h lo cal bindings can b e declared. T o

illustrate, buttery can b e de�ned using a let -expression:

butterfly w (x0,x1) = let t = w * x1

in (x0 + t, x0 - t)

Because let -expressions ar e expressions, they can app ear an ywhere an expression can

app ear, whereas where can app ear only in a binding.

A lam b da -abstraction, or � -abstraction, is lik e an anon ymous function. F or example,

w e could de�ne buttery as

butterfly = \w (x0,x1) -> let t = w * x1

in (x0 + t, x0 - t)

The bac kslash is Hask ell's syn tax for a lam b da-abstraction, and mimics the Greek � ;

patterns follo wing the bac kslash are argumen ts; the expression follo wing \ -> " is the v alue

returned b y the � -abstraction when applied to argumen ts.

Note that where cannot b e used within a � -abstraction; nor can guards. F unctions

de�ned with guards and m ultiple-clause de�nitions can b e translated in to a � -abstraction

with the aid of Hask ell's case construct, whic h selects one of sev eral expressions based on

pattern matc hing. F or example, map can b e de�ned as the follo wing � -abstraction:

map = \f xs -> case xs of

[] -> []

y:ys -> f y : map f ys

2.2.6 P olymorphism and t yp e classes

One of the k ey inno v ations of Hask ell is its typ e classes , whic h add ad-ho c p olymorphism

to the Hindley-Milner t yp e system [149]. A t yp e class is a w a y of grouping t yp es together

with functions that op erate on those t yp es. Giv en in the class declaration are the t yp es

CHAPTER 2. BA CK GR OUND MA TERIAL 26

of the functions of that class, and (optionally) default de�nitions of some functions. F or

example, the standard Eq class, whic h groups t yp es that supp ort an equalit y test, is

de�ned as

class Eq a where

(==), (/=) :: a -> a -> Bool

x /= y = not (x == y)

Eac h t yp e that can supp ort the equalit y test \instan tiates" from the Eq class. F or

example, the in teger t yp e In t instan tiates Eq with:

instance Eq Int where (==) = primEqInt

where primEqIn t is a primitive function that generates a call to the underlying run-time

system. Another example, the Eq instance for pairs:

instance (Eq a, Eq b) => Eq (a,b) where

(x,y) == (u,v) = x==u && y==v

The t yp e constrain t (Eq a, Eq b) states that the elemen ts of the pair m ust also b e

comparable for equalit y . T yp e constrain ts also app ear in function de�nitions. F or example,

the t yp e of the absolute function indicates that the t yp e of the argumen t and result are

n umeric and ordered:

abs :: (Num a, Ord a) => a -> a

abs x | x >= 0 = x

| otherwise = -x

Classes \inherit" from eac h other to form a hierarc h y . F or example, the class of ordered

t yp es Ord inherits from the class of equable t yp es Eq :

class Eq a => Ord a where

(<), (<=), (>), (>=) :: a -> a -> Bool

...

The standard prelude implemen ts a full hierarc h y of primitiv e and n umeric t yp es|see

[44] for details.

CHAPTER 2. BA CK GR OUND MA TERIAL 27

2.3 Ev aluation mec hanisms

Implemen tations of lazy functional languages are often based on gr aph r e duction . This

section briey reviews graph reduction and other topics related to ev aluation of func-

tional programs. The aim here is to place in to con text the suggested implemen tation (in

c hapter 5) of stream functions as datao w actors. A recen t surv ey of issues in parallel

functional programming is giv en b y Hammond [54].

2.3.1 Graph reduction

Ev aluation of a functional program pro ceeds b y successiv ely reducing expressions. The

ev aluator c ho oses a r e dex (for r e d ucible ex pression), reduces it, and then rep eats. An

expression that con tains no redexes is in normal form . A � -reduction, written !

�

, is

p erformed when a � -abstraction is applied to an argumen t; the application is reduced

b y substituting the b o dy of the � -abstraction and replacing the formal b y the actual. A

� -reduction, written !

�

, is p erformed when a primitiv e function is applied to all of its

argumen ts; the argumen ts are reduced and then the appropriate op eration p erformed.

There are t w o k ey reduction p olicies. In normal-or der r e duction , the ev aluator c ho oses

an outer-most redex. F or example,

(�x : fst x + fst x) (2 � 4 ; 6 � 7) !

�

fst (2 � 4 ; 6 � 7) + fst (2 � 4 ; 6 � 7)

!

�

2 � 4 + fst (2 � 4 ; 6 � 7)

!

�

2 � 4 + 2 � 4

!

�

8 + 2 � 4

!

�

8 + 8

!

�

16

where fst (x; y) = x . In applic ative-or der r e duction , the ev aluator c ho oses an inner-most

redex. F or example,

(�x : fst x + fst x) (2 � 4 ; 6 � 7) !

�

(�x : fst x + fst x) (8 ; 6 � 7)

!

�

(�x : fst x + fst x) (8 ; 42)

CHAPTER 2. BA CK GR OUND MA TERIAL 28

!

�

fst (8 ; 42) + fst (8 ; 42)

!

�

8 + fst (8 ; 42)

!

�

8 + 8

!

�

16

Op erationally , normal-order reduction applies the b o dy of a function to its argumen ts

b efore an y argumen t is ev aluated, while applicativ e-order reduction ev aluates the argu-

men ts �rst. So, normal-order reduction do es not ev aluate an expression unless its v alue is

needed, as can b e seen from the example ab o v e: the expression (6 � 7) is nev er ev aluated.

Applicativ e-order reduction, in con trast, ev aluates all argumen t expressions, regardless of

whether their v alues are needed.

The t w o Ch urc h-Rosser theorems are fundamen tal to considerations of reduction order

(see [105 , pp. 24{25]). Informally , the �rst sa ys that an y t w o reduction sequences will end

at the same normal form pro vided that they b oth terminate. This is of great in terest, as

it allo ws the freedom to not only c hange the reduction order, but to p erform reductions

in parallel. The second theorem sa ys that normal-order reduction will alw a ys terminate if

a normal form exists. This is a p o w erful motiv ation for c ho osing normal-order reduction

as the ev aluation mec hanism for a programming language.

Lazy functional languages use normal-order reduction; ho w ev er, the reducer only re-

duces un til there are no more top-level redexes. This is called we ak he ad-normal form ,

or WHNF; an y term in normal form is also in WHNF. Data structures are th us ev alu-

ated to the top lev el only|they ma y still con tain unev aluated expressions. F or example,

e = (e

1

: e

2

) is in WHNF, regardless of what form e

1

and e

2

are in, but e is in normal

form if and only if b oth e

1

and e

2

are in normal form. (+(3 � 4)) is in WHNF, since there

are insu�cien t argumen ts to (+) and it is therefore not a redex.

In the example of normal-order reduction giv en ab o v e, the expression 2 � 4 w as ev aluated

t wice. T o a v oid this, functional languages use graphs to share expressions. A t eac h

reduction step, the reducer lo cates the left-most top-lev el redex, reduces it, and o v erwrites

the redex with its result. If the redex is an application of a � -abstraction, the reducer

instantiates (mak es a cop y of) the b o dy of the � -abstraction with p oin ters to the argumen t

expressions substituted for the formals. If the redex is an application of a primitiv e

CHAPTER 2. BA CK GR OUND MA TERIAL 29

function, the reducer reduces an y strict argumen ts, and then calls the run-time system to

p erform the appropriate op eration.

2.3.2 Strictness

A function f is said to b e strict i�

f ? = ?

That is, the result of applying f is unde�ned if its argumen t is unde�ned. Here,

? denotes an unde�ned v alue|w e could also sa y that ? represen ts a term that has no

WHNF. Op erationally , w e tak e this to mean that f alw a ys \needs" its argumen t; as a

result, ev aluating the argumen t of a strict function to WHNF b efore applying the function

will not a�ect the result. This can b e generalised to functions of sev eral argumen ts; for

example, g is strict in its second argumen t if g x ? y = ? .

Strictness do es not imply that an argumen t can b e ev aluated further than WHNF

without endangering termination. Let
 denote a term without a normal form, just as ?

denotes a term without WHNF. A function f is hyp er-strict i�

f
 = ?

That is, the result of applying f is ne c essarily unde�ned if its argumen t has no normal

form. This is also called \exhaustiv e demand" [91], as opp osed to the \simple demand" of

ev aluation only to WHNF. As a simple example of the di�erence b et w een strictness and

h yp er-strictness, consider

f (x; y) = if x > 0 then x else x + y

g (x; y) = x + y

f is strict but not h yp er-strict; g , ho w ev er, is h yp er-strict. That is, an argumen t

with no normal form, sa y (7 ; ?), do es not necessarily cause the result of applying f to b e

unde�ned, while it do es necessarily cause the result of applying g to b e unde�ned.

CHAPTER 2. BA CK GR OUND MA TERIAL 30

2.3.3 P arallel graph reduction

A program graph t ypically con tains, at an y giv en momen t, man y redexes. P arallel ev alua-

tion of a graph can therefore b e ac hiev ed b y ha ving man y pro cessors ev aluate these redexes

sim ultaneously . P eyton Jones [105] describ es the issues in parallel graph reduction on a

shared-memory mac hine.

There are three c hoices when p erforming parallel graph reduction: i) ev aluate redexes

in parallel only when it cannot alter termination prop erties; ii) ev aluate redexes in parallel

ev en though it ma y alter termination prop erties; or iii) allo w the programmer to c ho ose

when to p erform parallel reduction. The �rst c hoice|conserv ativ e parallelism|requires

strictness analysis: an y function that is strict in one or more argumen ts can ha v e the

argumen ts ev aluated in parallel with the function b o dy . F or example, an application suc h

as

e

1

+ e

2

can ha v e e

1

and e

2

ev aluated in parallel, then the addition p erformed. (In this case, of

course, there is no p oin t in ev aluating the function b o dy in parallel.)

The second c hoice is sp eculativ e ev aluation. In sp eculativ e ev aluation, an expression

suc h as

if e

1

then e

2

else e

3

can ha v e e

1

, e

2

, and e

3

ev aluated in parallel. One of e

2

or e

3

will b e discarded as so on as

the v alue of e

1

is kno wn.

The third-c hoice is programmer-con trolled parallelism. This can b e in the form of an-

notations [61], or in the form of primitiv e com binators. Ro e [126], for example, p oin ts out

di�culties with conserv ativ e parallel graph reduction, and suggests t w o new com binators,

par and seq :

par :: � ! � ! �

par x y = y

seq :: � ! � ! �

CHAPTER 2. BA CK GR OUND MA TERIAL 31

seq x y =

8

>

<

>

:

y if x 6= ?

? if x = ?

par e

1

e

2

creates a new task to ev aluate e

1

and returns e

2

. If ev aluation of e

1

fails to

terminate, then e

2

ma y or ma y not terminate. seq e

1

e

2

ev aluates e

1

to WHNF and then

returns e

2

. Ro e giv es a wide range of examples and algorithms illustrating ho w these t w o

com binators can b e used to con trol parallel reduction of a program graph.

2.3.4 P arallel data structures

One of the problems asso ciated with using a pure functional language for parallel program-

ming is the sequen tial nature of lists. Ev en if an algorithm has a high degree of in trinsic

parallelism, the algorithm as expressed in a functional language ma y in fact obscure this

parallelism, simply b ecause the list data structure can only b e accessed sequen tially .

If data structures and functions that allo w parallel ev aluation of m ultiple elemen ts

of the structure can b e iden ti�ed, the compiler can more easily iden tify parallelism. In

addition, the pr o gr ammer is more lik ely to b e b etter able to understand the b eha viour of

a parallel implemen tation, and th us ac hiev e b etter p erformance.

Axford and Jo y [10], for example, prop ose a set of list primitiv es that allo w parallel

ev aluation of list functions, including the follo wing:

{ [x] is the list con taining one elemen t.

{ s + + t is the concatenation of lists s and t .

{ split s is a pair of lists, with the split p oin t c hosen non-deterministicall y .

Because split is non-deterministic, the implemen tation is free to implemen t lists using

an y suitable tree structure.

Axford and Jo y implemen t most of the standard Hask ell list functions using these

primitiv es; most ha v e a divide-and-conquer recursiv e implemen tation. As a result, they

ha v e O (lg n) b est-case and O (n) w orst-case parallel complexit y . map , for example, is

implemen ted as

map f [] = []

CHAPTER 2. BA CK GR OUND MA TERIAL 32

map f [x] = [f x]

map f (s + + t) = map f s + + map f t

Axford and Jo y replace the standard foldl and foldr functions with a new function,

reduce , whic h requires an asso ciativ e function argumen t (the obligation is on the pro-

grammer to ensure that this is the case). All but three of the 17 Hask ell standard prelude

functions that use foldl or foldr meet this criterion.

Maassen prop oses a set of three �nite data structures|sequences, tables, and sets|and

a range of �rst- and higher-order functions de�ned on them [92]. He giv es the complexities

for implemen tation using lists and A VL trees; the latter has logarithmic complexit y for

man y of the functions. A range of examples illustrate the utilit y of his c hosen functions

for programming. Ro e, in con trast, describ es the use of bags (m ulti-sets) for expressing

parallel computation, and sho ws ho w the Bird-Meertens formalism can b e applied to

parallel computation using bags [126].

2.3.5 F unctional op erating systems

The expression of op erating system functionalit y in a functional language rev olv es around

the deferred ev aluation of streams of messages [71]. In the con text of op erating systems,

a pr o c ess is a function from a list of input messages of t yp e � to a list of output messages

of t yp e � ; T urner [140], for example, giv es an example of a pro cess:

pro cess :: [�] ! [�]

pro cess = p s 0 where

p s (a : x) = out a s + + p (trans a s) x

where s0 is the initial state of the pro cess, trans :: � ! � ! � is the state transition

function, whic h pro duces the next state from an input message and the curren t state, and

out :: � ! � ! [�] pro duces a list of output messages for eac h input message. Net w orks

of pro cesses are formed b y applying pro cesses to eac h other's output messages lists.

No w, b ecause of the corollary to the �rst Ch urc h-Rosser theorem, a net w ork of pro-

cesses cannot pro duce a result that dep ends on an ything other than the values of its input

messages|in particular, the time of arriv al of input messages cannot a�ect the result.

CHAPTER 2. BA CK GR OUND MA TERIAL 33

Apparen tly , an op erating system that needs to deal with async hronous ev en ts cannot b e

written in suc h a language!

One approac h to resolving this dilemma is to add a non-deterministic merge op erator

to the language [56], whic h merges t w o lists in order of the \arriv al time" of elemen ts.

Because, ho w ev er, merge is referen tially opaque, reasoning ab out programs that use it

b ecomes di�cult. Jones and Sinclair [70] reduce the di�culties asso ciated with merge b y

restricting its use to \systems programmers." They describ e an op erating system design

and giv e examples of access to op erating system services suc h as �le editing and disk

con trol. T o ensure that computation pro ceeds in an op erationally useful w a y , streams are

constructed with he ad-strict c ons |that is, elemen ts are fully ev aluated b efore transmis-

sion.

A second approac h to non-determinism is Sto y e's \sorting o�ce" [135]. In this sc heme,

ev ery output message con tains an address of a destination pro cess; the sorting o�ce re-

ceiv es all of these messages and routes eac h one to the addressed pro cess. Non-determinism

is th us con tained in one place only|the sorting o�ce|simplifyin g reasoning ab out the

system and eliminating an y need for a wkw ard extensions to the language. New pro cesses

can b e created b y sending a message to the distinguished pr o c ess-cr e ation pro cess. T urner

[140] dev elops Sto y e's mo del, adding \wrapp ers" to messages to allo w t yp e c hec king, and

using sync hronous (un bu�ered) comm unication instead of async hronous comm unication.

Similarly to Jones and Sinclair, wrapp er functions are h yp er-strict. Apart from eliminat-

ing the need for global garbage collection, this allo ws the op erating system to b e executed

on a lo osely-coupled net w ork of pro cessors.

W allace and Runciman use constructor classes [69] to express t yp e-safe comm unication

b et w een pro cesses [151]. In their sc heme, the message t yp e itself serv es as the message

address. W allace has implemen ted an op erating system for em b edded systems in Gofer;

unlik e the other systems review ed here, the stream constructor is not h yp er-strict in its

head [150]. Nonetheless, W allace suggests that head-h yp er-strictness w ould b e an imp or-

tan t ingredien t in making ev aluation of functional programs predictable enough to meet

real-time sc heduling constrain ts.

CHAPTER 2. BA CK GR OUND MA TERIAL 34

2.3.6 F unctional pro cess net w orks

Kelly prop osed that list-manipulating functions b e treated as pro cesses to b e mapp ed

on to pro cessors of a distributed-memory MIMD mac hine [78]. In his Caliban language,

programs are written in a pure functional language using standard list functions suc h as

map and �lter . An additional language construct, moreo v er , con tains declarations that

sp ecify whic h lists represen t comm unications c hannels b et w een pro cesses. F or example,

the expression

f (g xs)

where

f = map abs

g = scanl (+) 0

moreo v er

arc 2 f 2 g

is a t w o-pro cessor pip eline . The 2 op erator con v erts a function in to a pro cess: this indi-

cates that the argumen t and result lists of the function so indicated are comm unications

c hannels rather than con v en tional lazy lists. The arc function sp eci�es a connection b e-

t w een t w o pro cesses.

The p o w er of the host language can b e used to de�ne more abstract net w ork-forming

op erations. F or example, the pip eline com binator builds a pip eline of pro cesses. In the

follo wing, c hain has b een de�ned to insert arc b et w een pro cesses in a list (fs):

pip eline :: (� ! �) ! � ! �

pip eline fs xs = ys

where

ys = (foldl (�) id fs) xs

moreo v er

c hain arc (map (2) fs)

^ arc 2 (last fs) xs

^ arc 2 (hd fs) ys

CHAPTER 2. BA CK GR OUND MA TERIAL 35

Using pip eline , the ab o v e net w ork can b e written

pip elin e [map abs ; scanl (+) 0] xs (2.1)

The curren t implemen tation of Caliban requires that the pro cess net w ork b e static.

A t compile-time, all moreo v er annotations are expanded to extract a single top-lev el an-

notation whic h describ es a static net w ork [38].

Kelly suggests that strictness analysis or programmer annotations b e used to min-

imise or eliminate the o v erheads asso ciated with sending non-normal form expressions

o v er c hannels. The curren t implemen tation supp orts only head-h yp er-strict streams|in

other w ords, only normal-form elemen ts can b e sen t o v er c hannels.

2.3.7 Sk eletons

Section 2.3.4 sho w ed that parallelism can b e captured in terms of data structures. In

con trast, Cole's algorithmic sk eletons [35] capture parallel computation in terms of a

relativ ely abstract algorithmic description: a \sk eleton" is a particular pattern of parallel

computation. Although Cole used an imp erativ e framew ork, he p oin ts out that higher-

order functions are an ideal mec hanism for expressing sk eletons.

The idea of selecting a parallel program structure from a catalogue of suc h structures

is app ealing. Darlington et al [40] adapt Cole's idea to a functional language framew ork.

They p oin t out that a sk eleton has an implemen tation-indep end en t meaning, as giv en

b y its functional de�nitions, and a b eha viour tailored to the target parallel mac hine|

parallelism arises from the b eha vioural asp ect. They prop ose the follo wing sk eletons as

higher-order functions:

pip e Giv en a list of functions, pro duce a pip eline in whic h eac h function is allo cated to a

di�eren t pro cessor.

farm Giv en a function from a datum and an en vironmen t, pro duce a \farm" of pro cesses

whic h applies this function to eac h elemen t of a data set and a giv en en vironmen t.

dc (divide-and-conquer) Giv en functions to a) split a data set, b) test and solv e the

trivial solution, and c) com bine solutions, pro duce a tree-structured parallel program

that implemen ts a divide-and-conquer algorithm.

CHAPTER 2. BA CK GR OUND MA TERIAL 36

ramp (reduce-and-map-o v er-pairs) Giv en t w o functions that a) represen t the in ter-

action b et w een an y t w o data items, and b) com bine results of in teractions b et w een

data items, pro duce a parallel program that calculates the in teractions b et w een all

items in a data set, and com bines the in teractions to pro duce a single solution.

dmpa (dynamic-message-passing-arc hitecture) Giv en a set of pro cesses, eac h of

whic h accepts a set of messages and pro duces a set of messages for other pro cesses,

generate the parallel program that implemen ts the set of pro cesses.

Darlington et al giv e examples in whic h sk eletons are transformed in to other sk eletons.

The programmer can therefore: i) c ho ose a sk eleton that most easily represen ts the problem

to b e solv ed, and then ii) transform the program, based on abstract p erformance measures,

in to a sk eleton that is more e�cien t on a giv en mac hine arc hitecture.

Bratv old [22] prop oses a di�eren t set of sk eletons: map , �lter , fold , and comp osition.

F unctionally these functions are the same as Hask ell's map , �lter , foldl , and (:). The �rst

three are implemen ted as pro cessor \farms," and comp osition as pip elin e connection of

farms. Three additional sk eletons, �ltermap , map�lter , and foldmap , are comp ositions of

the �rst three.

In con trast to Darlington et al , Bratv old argues that sk eletons should b e iden ti�ed

b y the compiler, not b e a directiv e from the programmer that parallel execution tak e

place. His compiler uses pro�ling and p erformance prediction to decide when to execute a

sk eleton in parallel; in addition, this approac h allo ws the compiler can detect parallelism

in recursiv e functions [30]. Measuremen ts on compiled programs sho w execution to b e

within 20% of the estimates.

2.4 Real-tim e signal pro cessing

The term \real-time" refers to systems in whic h \the correctness of the system dep ends

not only on the logical result of computation, but also on the time at whic h the results are

pro duced" [133]. Examples of real-time systems include command and con trol systems,

pro cess con trol systems, igh t con trol systems, and so on.

This thesis fo cuses on a particular class of real-time system: digital signal pro cessing

systems, whic h analyse, pro duce, and transform discrete-time signals. Whereas con v en-

CHAPTER 2. BA CK GR OUND MA TERIAL 37

tional real-time systems resp ond to or pro cess individual ev en ts, whic h ma y o ccur at arbi-

trary times, signal pro cessing systems pro cess str e ams of data represen ting discrete-time

signals, the elemen ts of whic h usually o ccur at kno wn rates. Signal pro cessing systems

also tend to ha v e more stringen t timing requiremen ts: timing parameters are expressed in

tens of micro-seconds, rather than in milliseconds.

This section pro vides some of the bac kground needed to appreciate some decisions

made in later c hapters. The section is largely based on m y o wn exp erience with and

observ ations of real-time programs.

2.4.1 Discrete-time signals

A discr ete-time signal is a function that is de�ned only at a particular set of v alues of

time. In the common case called uniform sampling , a discrete-time signal x (n) is related

to a con tin uous analog signal x

a

(t) b y

x (n) = x

a

(nT) ; �1 < n < 1 (2.2)

where T is the sampling p erio d , and f

s

= 1 =T is the sampling fr e quency .

Signals can b e in ternal or external|in the latter case, they constitute an in terface

b et w een the signal pro cessing system and an external en vironmen t. Man y signal pro cess-

ing systems are \o�-line"|that is, the external signals are not pro cessed and pro duced

sim ultaneously with their o ccurrence in the external en vironmen t. In real-time signal

pro cessing, ho w ev er, they are.

Although discrete-time signals are de�ned o v er all time, computer implemen tations

�nd it more con v enien t to consider only non-negativ e time indices, where time zero is the

nominal time at whic h the real-time program b egins op erating. Th us:

x (n) = x

a

(nT) ; n � 0 (2.3)

F rom here on, quan ti�cation of time indexes o v er p ositiv e n is implicit.

Let t

x

denote the clo ck of signal x |that is, the sequence of times at whic h x is de�ned.

Eac h elemen t of a clo c k is called a \tic k." The clo c k of a uniformly-sampled signal x with

CHAPTER 2. BA CK GR OUND MA TERIAL 38

p erio d T is

t

x

= f nT j n � 0 g

A non-uniformly-sampled signal is not c haracterised quite so easily . Let

e

x b e a non-

uniformly-sampled signal with clo c k

e

t

x

. Then:

e

x (n) = x

a

(

e

t

x

(n)) ; n � 0 (2.4)

In general, a discrete-time signal do es not represen t samples of an analog signal. The

sequence of v alues represen ting c hanges of the state of m y refrigerator do or|op en, closed,

or almost-closed|is an example. A sequence of messages b et w een pro cesses in a m ulti-

tasking op erating system is another. I will use the term uniformly-clo cke d to mean a signal

with clo c k f nT j n � 0 g for constan t T , and non-uniformly-clo cke d for an y other signal.

Non-uniformly clo c k ed signals will b e treated in c hapter 6.

As notational short-hand, the logical and arithmetic op erators extend p oin t-wise to

clo c ks|that is, for some op erator � ,

t

x

� t

y

) t

x

(n) � t

y

(n)

Tw o clo c ks t

x

and t

y

are th us e qual if t

x

= t

y

; t

x

is e arlier than t

y

if t

x

< t

y

; and t

x

is

later than t

y

if t

x

> t

y

.

2.4.2 Streams and c hannels

A signal is represen ted in a computer b y a register or data structure that up dates in time

to con tain zero, one, or more v alues of the signal. This register or data structure I will call

a channel . It could b e implemen ted in soft w are or hardw are; in either case, a program (or

hardw are) can write to and r e ad fr om the c hannel.

De�ne a str e am as the sequence of v alues that passes through a c hannel. A uniformly-

clo c k ed signal x is implemen ted b y the synchr onous stream x . Streams are th us equiv alen t

to signals:

x (n) = x (n)

e

y (n) =

e

y (n)

CHAPTER 2. BA CK GR OUND MA TERIAL 39

Unlik e a signal, a stream has not one but two clo c ks. The write clo ck of x , w

x

, is the

sequence of times at whic h stream v alues b ecome de�ned|in other w ords, the times at

whic h they are written to the stream's c hannel. The r e ad clo ck of x , r

x

, is the sequence

of times at whic h stream v alues are consumed|that is, read from the c hannel. Read and

write clo c ks are in general non-uniformly spaced: they represen t actual times at whic h

certain ev en ts (reading from or writing to a stream) o ccur, not idealised times at whic h

signal v alues o ccur. So, while signal clo c ks are understo o d b y the program, read and write

clo c ks are solely for our o wn use in analysing and describing programs.

Assume that the action of writing a v alue to or reading a v alue from a c hannel consumes

an in�nitesimall y small amoun t of time. The read clo c k of a stream x m ust therefore b e

later than its write clo c k:

r

x

> w

x

(2.5)

The relation b et w een a signal's clo c k and its stream's clo c ks dep end on whether the

signal is in ternal or external. Consider an input signal x . Because its stream, x , is pro duced

b y the external en vironmen t, the signal clo c k is equal to the stream's write clo c k:

w

x

= t

x

(2.6)

F or an output signal y , the stream's r e ad clo c k is equal to the signal clo c k:

r

y

= t

y

(2.7)

Correct real-time op eration hinges on the program resp onding appropriately to exter-

nal signals. F rom equations 2.5 to 2.7, w e ha v e, for input stream x and output stream

y ,

r

x

> t

x

(2.8)

and:

w

y

< t

y

(2.9)

In other w ords, the program cannot attempt to read from an input stream to o early ,

and m ust write to an output stream su�cien tly early . The non-zero time di�erence b et w een

CHAPTER 2. BA CK GR OUND MA TERIAL 40

y u
f xg

Figure 2.4. A simple blo c k diagram

the read or write clo c k and the signal clo c k can b e attributed to the time tak en b y the

program to transfer a v alue b et w een a signal and a stream (for example, the in terrupt

resp onse time and the time to cop y a v alue from a real-time input-output p ort in to the

c hannel).

2.4.3 F unctions and systems

A signal pro cessing system with one input signal x and one output signal y is a function

from x to y :

y = f (x)

A system is comp osed of functions, eac h with its o wn input and output signals. F or

example, the system consisting of t w o series-connected functions f and g is:

y = f (g (x))

Giving a name to the in ternal stream b et w een g and f , this can also b e written as the

system of equations

u = g (x)

y = f (u)

When implemen ted in a blo c k diagram system, f and g b ecome blo c ks, and x , u , and y

b ecome streams. This simple system is sho wn in �gure 2.4.

A v ery imp ortan t function in signal pro cessing systems is the \dela y" op erator:

y = z

� k

x) y (n) =

8

>

<

>

:

0 ; n < k

x (n � k) n � k

The dela y op erator is not usually implemen ted as a pro cess, but b y inserting k initial

zero v alues in to a FIF O bu�er con tained in the relev an t c hannel.

CHAPTER 2. BA CK GR OUND MA TERIAL 41

2.4.4 Digital signal pro cessors

Digital signal pro cessors are micropro cessors tailored sp eci�cally to p erforming signal pro-

cessing computations in real time. Most of the di�erences to other micropro cessors{b oth

CISC con trollers and more p o w erful RISC CPUs|cen tre around t w o k ey p oin ts: i) the

need to supp ort certain t yp es of arithmetic v ery e�cien tly; and ii) the need for determin-

istic execution times. In this section, I giv e an o v erview of the c haracteristics of these

devices. I fo cus only on the mo dern, oating-p oin t devices; for more detailed information

on sp eci�c devices, see [115 , 119 , 34 , 5, 6, 98 , 138 , 137].

Figure 2.5 illustrates a simpli�ed arc hitecture of a t ypical oating-p oin t DSP core.

The device con tains six functional units|an ALU, a m ultiplier, t w o address units, and

t w o load-store units (not sho wn here)|all of whic h can op erate sim ultaneously , a bank of

oating-p oin t data registers, and a bank of address registers. A t ypical instruction th us

allo ws one or t w o arithmetic op erations, t w o indirect loads or stores, and t w o address

register up dates. This com bination of op erations is ideally suited for v ector op erations, in

whic h elemen ts are stored in memory at �xed address incremen ts; it is a ma jor factor in

the v ery high p erformance of DSPs on signal pro cessing algorithms, as compared to CISC

or RISC pro cessors fabricated in comparable tec hnology .

Op erations for eac h functional unit are enco ded in to a single instruction w ord|32

or 48 bits. DSPs th us resem ble horizon tally micro-co ded devices more than sup er-scalar

(m ultiple-instruction issue) RISCs. Most instructions execute in one cycle; to main tain

this rate, the instruction stream is pip elined, usually to three or four lev els. Because of

the limited instruction width, some restrictions are placed on p ossible com binations of

op erations; for example, man y devices allo w the m ultiplier and ALU to b e used in parallel

if the ALU is p erforming an addition or subtraction. More complex instructions also place

limitations on source and destination registers.

The TMS320C30 and TMS320C40 [138 , 137] are essen tially register-memory mac hines:

op erands can b e lo cated in memory or in registers. A t ypical instruction for these devices

is the parallel m ultiply-and-add instruction:

mpyf r0,r1,r0 || addf *ar0++,*ar1++(ir0)%,r2

In addition to the m ultiply-and-add op erations, t w o op erands are loaded from memory

CHAPTER 2. BA CK GR OUND MA TERIAL 42

Floating-point
registers

Address
registers Index

registers

ALU

Address units

Address

Data

Figure 2.5. A simpli�ed DSP c hip arc hitecture

and t w o address registers incremen ted. Pro vided that memory op erands are lo cated in

zero-w ait-state memory ,

1

these devices can sustain instructions lik e this at a rate of one

p er cycle. In �gure 2.5, I ha v e explicitly sho wn a data path around the data registers and

the ALU and m ultiplier, and around the address registers and address generators. These

paths, together with parallel data and address busses, pro vide the data transfer bandwidth

necessary to sustain these instruction rates.

The m ultiply-add instruction is the core of the FIR (�nite-impulse resp onse) �lter, a

k ey DSP b enc hmark. Some devices also ha v e a parallel m ultiply-add-subtract instruction,

whic h substan tially sp eeds up execution of the FFT (F ast F ourier T ransform), another

k ey b enc hmark.

In con trast to the TMS320C30 and TMS320C40, the ADSP-21020 and DSP96002

[5, 98] are load-store mac hines: op erands are explicitly loaded in to data registers prior to

op erating on them. The programmer writes separate �elds of the instruction to con trol

the ALU and m ultiplier, and the load/store and address units. F or example, a t ypical

parallel m ultiply-add instruction in M96002 co de is:

fmpy d8,d6,d2 fadd.s d3,d0 x:(r0),d4.s d2.s,y:(r5)+n5

The �rst t w o �elds are m ultiplier and ALU op erations; the second t w o are data mo v e and

1

The placemen t of memory op erands is a little complicated: the device has in ternal memory whic h can

b e accessed t wice p er instruction cycle, and external memory whic h can b e accessed (at most) only once.

The TMS320C40 has t w o external busses, whic h can b oth b e activ e sim ultaneously .

CHAPTER 2. BA CK GR OUND MA TERIAL 43

address up date op erations.

Apart from the arc hitectural la y out and instruction set, DSP devices also feature hard-

w are to p erform zero-o v erhead lo oping. The mec hanism v aries with the device, but it es-

sen tially allo ws the device to lo op o v er a blo c k of instructions without ushing the pip eline

at the end of the blo c k. Zero-o v erhead lo oping is essen tial, for example, to execute one

m ultiply-add instruction p er cycle, as needed b y the FIR �lter.

The address generators are quite sophisticated, to minimise the need for separate

address manipulation instructions. Firstly , they can incremen t b y the con ten ts of an

index register, allo wing the device to step through memory in arbitrarily sized incremen ts.

Secondly , they p erform mo dulo addressing, in whic h an address register is automatically

\wrapp ed" bac k to a base address when incremen ted or decremen ted past a limit address.

(This is descriptiv e only|real DSPs implemen t mo dulo addressing a little di�eren tly .)

Mo dulo addressing is essen tial for e�cien t implemen tation of circular bu�ers and FIR

�lters. Thirdly , they supp ort rev erse-carry addressing, whic h pro vides the \bit-rev ersed"

addressing needed b y the FFT (see section 5.2.5) at no execution cost.

Early DSPs w ere fully deterministic in instruction execution time: eac h instruction

to ok exactly one cycle. The CPUs of mo dern DSPs are still deterministic, although

calculating execution time requires kno wledge of the lo cation of memory op erands and,

for some devices, of the in teraction b et w een successiv e instructions in the instruction

pip eline . The presence of prioritised DMA con trollers and instruction cac hes, ho w ev er,

mak es exact prediction of execution times imp ossible. Nonetheless, simpler in terrupt-

handling arc hitectures, non-hierarc hical memory arc hitectures, and predictable instruction

execution times still mak e DSP execution b eha viour m uc h more predictable than mo dern

RISC devices, an essen tial ingredien t in the design of time-critical systems.

2.5 Summary

The material presen ted in this c hapter pro vides the bac kground for follo wing, more de-

tailed, c hapters. The pip eline parallelism mo del underlies the mo del of computation de-

scrib ed in Chapters 3, 5, and 6. Chapters 4, 5, and 6 rely on functional programming

concepts and notation; as w ell as the notation, I presen ted di�eren t ev aluation mec ha-

nisms for functional programs, to place in to con text the datao w st yle of ev aluation of

CHAPTER 2. BA CK GR OUND MA TERIAL 44

these programs.

Finally , b ecause most of the w ork in follo wing c hapters is inuenced b y the goal of real-

time execution on em b edded DSP device, I pro vided an o v erview of real-time programming

concepts and DSP devices.

Chapter 3

Datao w Pro cess Net w orks

Dataow [1 , 7] is a mo del of computation in whic h data items, called tokens , o w b et w een

computing agen ts, or actors . A program is represen ted b y a datao w graph (DF G), in

whic h v ertices corresp ond to actors and edges to a \o w" of data from one actor to another.

The term \datao w" is used in a n um b er of di�eren t con texts; here w e are in terested in

pip eline dataow : actors are long-liv ed, pro ducing and consuming man y items during

their lifetimes. This mo del is iden tical to Kahn pro cess net w orks, for whic h Kahn ga v e a

denotational seman tics [75].

A pip eline datao w net w ork corresp onds directly to a signal o w blo c k diagram [74]:

for example, a b o x lab elled \+" on a blo c k diagram sums t w o signals in a p oin t-wise

manner. In datao w terms, the \+" actor is �red rep eatedly; eac h time, it reads a tok en

from b oth input c hannels and writes their sum to its output c hannel. Figure 3.1 illustrates

a simple datao w net w ork. The summer actor is the one just describ ed. The dela y actor

is a unit dela y: eac h elemen t of v app ears on w in the follo wing time slot. The scale actor

m ultiplies eac h elemen t of its input stream b y a constan t|in this case, the v alue � a .

zÐ1

Ða

u v

w
z

summer

delay

scale

Figure 3.1. A simple datao w net w ork

45

CHAPTER 3. D A T AFLO W PR OCESS NETW ORKS 46

Lee coined the term dataow pr o c ess to describ e Kahn pro cesses implemen ted as a

sequence of �rings of a datao w actor [87]. Eac h �ring is go v erned b y a rule that states

conditions on input v alues needed to �re the actor. Pro vided the sequence of actor �rings

is deterministic, then the actor forms a deterministic Kahn pro cess. W e are assured b y

Kahn that a net w ork of suc h pro cesses will also b e deterministic, and able to pro duce

output data b efore all input data is receiv ed.

This view of a datao w actor as a Kahn pro cess is relativ ely new; in this c hapter, I

dev elop a formalism for describing datao w actors, and giv e the seman tics of actors and

their corresp onding datao w pro cesses. These actors are strict |that is, read all required

input tok ens b efore pro ducing an y output|as is common practice. The notation extends

Lee's �ring rules to include state up date and tok en output as w ell as tok en matc hing and

reading.

When considering the relationship b et w een datao w actors and non-strict functional

programming languages, non-strict actors are needed to more accurately mo del the w a y in

whic h tok ens are pro duced and consumed. I therefore in tro duce a new form of actor, called

phase d form. Execution of these actors pro ceed in a series of phases, sev eral of whic h ma y

b e required in place of a single �ring of a strict actor. Phased form also p ermits limited

amoun ts of non-determinism and giv es some new insigh ts in to the b eha viour of datao w

actors.

3.1 Related w ork

The term \datao w" is used in a n um b er of di�eren t con texts. It is often asso ciated with

datao w mac hines, in whic h the datao w mo del is the basis of the execution mec hanism of

a highly-parallel mac hine [7]. Actors are �ne-grained mac hine op erations suc h as addition,

while edges of the graph represen t transfer of tok ens through the mac hine. The mac hine

executes an actor when all required tok ens are presen t on its inputs. The languages used

to program suc h mac hines [1] are often called datao w languages.

Datao w analyses (DF As) are used for co de optimisation in compilers [2]. DF As pro-

vide the compiler with information suc h as v ariable lifetimes and usage, whic h enables it

to eliminate co de that will nev er b e executed, to re-use registers when their con ten ts are

no longer needed, and to re-order instructions in order to generate impro v ed mac hine co de

CHAPTER 3. D A T AFLO W PR OCESS NETW ORKS 47

sequences. Again, the no des of the datao w graph are �ne-grained op erations corresp ond-

ing to single mac hine instructions; the edges of the DF G represen t dep endencies b et w een

instructions.

In pip elin e datao w, actors p erform relativ ely complex tasks|that is, op erations that

ma y tak e dozens, h undreds, or thousands of mac hine instructions to complete. The edges

of the DF G corresp ond to comm unications c hannels b et w een the actors. This is the mo del

in whic h I am in terested in this thesis.

3.1.1 Computation graphs

In 1966, Karp and Miller describ ed a graph-theoretic mo del of parallel computation that

is essen tially pip eline datao w [77]. The computation is represen ted b y a �nite directed

graph: eac h no de n

j

represen ts a computational op eration O

j

; eac h arc d

p

represen ts a

queue of data from one no de to another. Asso ciated with eac h d

p

from n

i

to n

j

are four

non-negativ e in tegers: A

p

, the n um b er of tok ens initially in the queue; U

p

, the n um b er

of tok ens written to d

p

whenev er O

i

executes; W

p

, the n um b er of tok ens read from d

p

whenev er O

j

executes; and T

p

� W

p

, the n um b er of tok ens needed in d

p

b efore O

j

can

execute. Eac h arc can b e connected to only one pro ducer and one consumer no de.

Figure 3.2 illustrates a v ery simple computation graph, to compute n !. Eac h arc is

annotated with its (A

p

; U

p

; W

p

; T

p

). n

1

tak es a tok en from its input, and incremen ts and

outputs its in ternal v alue (with zero initial v alue). The self-lo op around n

1

con tains n

initial tok ens; these are the tok ens that \driv e" the computation. n

2

m ultiplies its t w o

inputs together and outputs the result on t w o arcs. The self-lo op around n

2

has one initial

tok en, v alue assumed to b e zero. n

3

writes the �nal v alue receiv ed to the lo cation that

holds the result of the en tire computation.

Note that n

1

main tains the v alue of its coun ter in ternally , while n

2

explicitly passes

its previous output v alue bac k to itself through an arc. Th us, the mo del do es not care

whether or not no des main tain an in ternal state or p erform explicit feedbac k.

Execution of a computation graph G con taining l no des is represen ted b y a sequence

of sets � = S

1

; S

2

; : : : ; S

N

; : : : , suc h that eac h set S

N

� f 1 ; 2 ; : : : ; l g . Let x (j; N) denote

the n um b er of sets S

m

; 1 � m � N suc h that j 2 S

m

, and let x (j; 0) = 0. � is a pr op er

exe cution of G i�

CHAPTER 3. D A T AFLO W PR OCESS NETW ORKS 48

n1

n3

n2

(n,0,1,1)

(0,1,1,1)

(1,1,1,1)(0,1,1,1)

Figure 3.2. A computation graph

1. If j 2 S

N +1

and G has an arc d

p

from n

i

to n

j

, then

A

p

+ U

p

x (i; N) � W

p

x (j; N) � T

p

2. If, for all no des n

i

and arcs d

p

from n

i

to n

j

, A

p

+ U

p

x (i; N) � W

p

x (j; N) � T

p

, then

9 R > N : j 2 S

R

.

Condition (1) states that, to execute an op eration, the initial n um b er of tok ens added to

the total n um b er of tok ens pro duced to its input c hannel, m ust exceed the total n um b er

consumed plus the threshold. Condition (ii) states that if an op eration c an b e executed

then it will b e within a �nite n um b er of steps. The sequence is th us lik e a partially-ordered

sc hedule: eac h S

N

con tains all no des eligible for execution at that time. Note that a giv en

graph can ha v e more than one prop er execution.

Karp and Miller pro v e a n um b er of prop erties of this mo del. Firstly , the n um b er of

p erformances of an op eration is the same in all prop er executions of G . Also, if the initial

tok ens on ev ery arc are the same, then the v alue of an y giv en tok en is the same for all

prop er executions. G is th us determinate .

Karp and Miller also dev elop a n um b er of theories concerning termination of the graph:

whic h no des terminate, and for those that do, ho w man y times they app ear in all p ossible

executions.

3.1.2 Sync hronous datao w (SDF)

Sync hronous datao w (SDF) is a sligh tly less general mo del than computation graphs:

the input threshold is equal to the n um b er of consumed tok ens. It is, ho w ev er, designed

CHAPTER 3. D A T AFLO W PR OCESS NETW ORKS 49

(a) (b)

D

111
1

1
1 2

3

41 2
3

4

Figure 3.3. A sync hronous datao w graph

sp eci�cally for pro cessing in�nite streams. SDF sc heduling w as dev elop ed b y Lee and

Messersc hmitt [89 , 90], and has since formed the bac kb one of e�orts to implemen t datao w

net w orks e�cien tly for b oth real-time and non-real-time execution.

Figure 3.3a sho ws a simple SDF graph: the n um b ers next to the no de inputs and

outputs are equiv alen t to W

p

and U

p

; a D annotation indicates that an arc con tains one

zero initial v alue; the small circle is a \fork" no de. This graph computes the running

pro duct of its input stream.

Compared to the computation graph, the SDF graph is \driv en" b y an in�nite input

stream pro duced b y a no de with no input arcs, instead of b y a �nite n um b er of initial

tok ens placed on an arc.

A sc hedule can b e calculated for an SDF graph: this is an ordered sequence of no de

names that, rep eated forev er, computes the output streams from the input streams. The

incidence matrix � con tains the tok en consumption and pro duction �gures of the graph:

�(i; j) is the n um b er of tok ens pro duced b y no de j on arc i eac h time it is �red; if j

consumes data, �(i; j) is negativ e. Figure 3.3b sho ws the example graph decorated with

no de and arc n um b ers; w e then ha v e

� =

2

6

6

6

4

1 � 1 0 0

0 1 � 1 0

0 � 1 1 0

0 0 1 � 1

3

7

7

7

5

The v ector b (n) is the n um b er of tok ens on eac h arc at time n . Th us,

b (0) =

2

6

6

6

4

0

0

1

0

3

7

7

7

5

The v ector v (n) denotes the no de sc heduled at time n . That is, v (n)(i) = 1 and

CHAPTER 3. D A T AFLO W PR OCESS NETW ORKS 50

v (n)(j) = 0 if no de i is sc heduled and i 6= j . Since executing a no de c hanges the n um b er

of tok ens on arcs, w e ha v e

b (n + 1) = b (n) + � v (n) (3.1)

Assuming that sample rates are consisten t and the net w ork do es not deadlo c k, the

v ector q is the n um b er of times eac h no de is executed in the sc hedule: if no de i is executed

k times, then q (i) = k . T o �nd q , assign an y no de a rep etition coun t of 1. F ollo w an y

arc d

p

from that no de, and assign the connected no de the rep etition coun t U

p

=W

p

, storing

this quan tit y as an exact rational n um b er. When all no des ha v e b een reac hed, �nd the

least common m ultiple of the denominators of the rep etition coun ts and m ultiply to �nd

q .

The example net w ork is the sp ecial case called homo gene ous datao w, in whic h all

tok en coun ts are unit y . Calculating q is trivial:

q =

2

6

6

6

4

1

1

1

1

3

7

7

7

5

Giv en q , a sc hedule is found b y sim ulating execution of the graph at compile-time with

equation 3.1. A t eac h step, if the n um b ers of tok ens in an arc is at least equal to the

n um b er of tok ens consumed, app end the consumer no de to the sc hedule. Stop sc heduling

a no de i when it has app eared in the sc hedule q (i) times. F or the simple example, the

only p ossible sc hedule is h 1 ; 2 ; 3 ; 4 i .

The sizes of in ternal FIF O bu�ers can b e determined in the same w a y . A co de gen-

eration system can tak e adv an tage of this fact to pro duce extremely e�cien t co de. The

e�ciency impro v emen t o v er dynamic sc heduling is so great that considerable e�ort has

b een exp ended in datao w mo dels that are less restricted than SDF, but whic h are su�-

cien tly constrained that SDF co de can b e applied to parts of the graph [26 , 43].

SDF co de generators op erate b y \�ring" co de generation actors at compile-time; eac h

time an actor is �red, it emits C or assem bler co de. F or assem bler co de generation, macros

and sym b olic names mak e the programmer's task easier and allo w some optimisations.

P o w ell et al [111], for example, describ e assem bler co de generation in SPW, and giv e some

examples of the assem bler source co de. A t ypical instruction lo oks lik e this:

CHAPTER 3. D A T AFLO W PR OCESS NETW ORKS 51

ADDL tA,out tA,tX Y:(table.reg)+,tY

Here, tA , out , tX , and tY stand for registers, and table for a region of memory . P o w ell

et al use register allo cation heuristics to assign registers, with spill instructions inserted

where necessary . F or example, the ab o v e instruction ma y b ecome

ADDL A,B A,X0 Y:(R0)+,Y0

As just describ ed, SDF co de generation will tend to generate large amoun ts of co de for

general m ulti-rate graphs, since the co de for eac h actor is duplicated eac h time the actor

app ears in the sc hedule. Because em b edded DSP pro cessors often ha v e sev erely limited

memory space, more sophisticated sc heduling tec hniques ha v e b een dev elop ed that pro duce

lo ops in the generated output co de, th us minimising the co de memory required [16].

3.1.3 Kahn's pro cess net w orks

Kahn describ ed the seman tics of a language for parallel programming based on pro cess net-

w orks [75]. In Kahn's language, a program consists of a net w ork of \computing stations"

(that is, pro cesses) connected b y FIF O-bu�ered c hannels. Eac h pro cess rep eatedly reads

data from one or more input c hannels and writes data on one or more output c hannels.

Figure 3.4 sho ws the simple pip elin e giv en on page 18 written in Kahn's language.

Kahn pro cesses can only comm unicate through channels . Channels are obliged to

transmit data within a �nite time. A pro cess can read input c hannels using blo c king reads

only; if data is not y et a v ailable, the pro cess m ust susp end un til it b ecomes so. In other

w ords, a pro cess cannot test for the presence of data on an input c hannel; nor can it w ait

for data on one or another of its input c hannels (unlik e other concurren t systems suc h as

CSP [60]).

The seman tics of a Kahn pro cess net w ork are expressed in terms of the histories of

data transmitted on eac h c hannel: a Kahn pro cess is a function or set of functions from

histories to histories. Giv en some domain D , let D

�

b e the set of all �nite sequences

con taining elemen ts in D ; let D

1

b e the set of in�nite sequences con taining elemen ts in

D ; and let D

!

= D

�

[D

1

. Sequences are related b y the partial ordering v , where X v Y

if and only if X is a pre�x of or equal to Y . The minimal elemen t is the empt y sequence

[]. A c hain of sequences X = X

1

v X

2

v : : : v X

n

v : : : has a least upp er b ound lub X .

CHAPTER 3. D A T AFLO W PR OCESS NETW ORKS 52

begin

integer channel X, Y, Z;

process absolutes(integer in I, integer out O);

begin integer T;

repeat begin

T := wait(I);

send abs(T) on O;

end;

end;

process running(integer in I, integer out O);

begin integer T,V;

V := 0;

repeat begin

T := wait(I);

V := V + T;

send V on O;

end;

end;

comment : begin main program

running(X,Y) par absolutes(Y,Z);

end;

Figure 3.4. A Kahn pro cess net w ork

D

!

is th us a complete partial order (cp o).

A Kahn pro cess is built from c ontinuous functions|a function f is con tin uous i�

f (lub X) = lub f (X)

Con tin uit y ensures that a pro cess is not able to pro duce output only after it has

receiv ed an in�nite amoun t of output.

A con tin uous pro cess is also monotonic|that is, for an y t w o sequences a and b ,

a v b) f (a) v f (b)

Monotonicit y ensures that future output can dep end only on future input, th us allo wing

pro cesses to pro duce output b efore receiving all their input.

CHAPTER 3. D A T AFLO W PR OCESS NETW ORKS 53

A pro cess with arit y (m; n) has m input c hannels in D

!

1

; D

!

2

; : : : ; D

!

m

and n out-

put c hannels in E

!

1

; E

!

2

; : : : ; E

!

n

. The pro cess is sp eci�ed b y n con tin uous functions from

D

!

1

� : : : � D

!

m

in to E

!

1

, E

!

2

, and so on. A pro cess net w ork �

p

is a set of �x-p oin t equations

o v er cp os; suc h a system has a unique minimal solution. More imp ortan tly , this minimal

solution is a con tin uous function of the input histories and the pro cesses, and th us is also

monotonic. This means that: i) a net w ork of Kahn pro cesses also exhibits the desirable

prop ert y of pro ducing output b efore receiving all its input; and ii) net w orks can b e con-

nected in the same manner as single pro cesses, th us allo wing hierarc hical construction of

net w orks.

Kahn and MacQueen [76] suggest that a Kahn pro cess net w ork b e implemen ted in a

demand-driven st yle, using co-routines. When a pro cess attempts to read a tok en from an

empt y input c hannel, it susp ends, and the pro cess that writes to that c hannel is activ ated.

When the pro ducer pro cess writes data to the c hannel, it is susp ended and the consumer

pro cess resumed. The pro ducer pro cess itself ma y b e susp ended in the course of pro ducing

its output data. Ultimately , these \demands" for data propagate bac k to pro cesses that

generate input data (from, sa y , a �le) or read it from some input c hannel (suc h as, sa y , the

console). There is a single \driv er" pro cess, usually the pro cess resp onsible for prin ting

program results.

The dual to demand-driv en execution is data-driv en execution: rather than executing

when a successor pro cess requires data, a pro cess executes when it has enough input

data. A pro cess susp ends whenev er it attempts to read from a c hannel with no data; it

is resumed b y the op erating system some time after data is written to the c hannel. The

implemen tation of stream-pro cessing functions in SISAL [46] uses this tec hnique [50].

3.1.4 Datao w pro cesses

Lee de�nes a dataow pr o c ess to b e the sequence of �rings of a datao w actor [87]. A

datao w pro cess is th us a sp ecial kind of Kahn pro cess|one in whic h execution is brok en

in to a series of \�rings." Because the pro cess is a sequence of actor �rings, a complete

net w ork can b e executed b y �ring actors in an appropriate order. Actors manage their

o wn in ternal state, so there is no need to pro vide eac h pro cess with the illusion that it has

exclusiv e access to the CPU: con text-switc hing is eliminated. This is a v ery imp ortan t

CHAPTER 3. D A T AFLO W PR OCESS NETW ORKS 54

p oin t for real-time signal pro cessing: con text-switc hing presen ts a v ery high o v erhead to a

real-time digital signal pro cessor, as the time needed to sa v e and restore all the registers

of a mo dern DSP is quite high|see [118] for further discussion of this issue.

Demand-driv en execution on a single pro cessor can b e implemen ted simply and ele-

gan tly . As eac h actor executes, an attempt to read from an empt y c hannel causes the

source actor to �re immediately . Since \�ring" an actor in v olv es nothing more than ex-

ecuting a pro cedure, the propagation of demands for data pro ceeds recursiv ely do wn the

datao w graph. The recursion un winds as data is propagated bac k through the graph.

Real-time execution on m ultiple pro cessors, ho w ev er, presen ts some a wkw ard problems.

Firstly , data m ust b e demanded \ahead of time," to guaran tee that data is a v ailable

ahead of the output signal clo c ks. Secondly , a demand for data across a pro cessor b ound-

ary causes the demanding pro cessor to idle while the data is b eing pro duced. Although

this e�ect could b e o v ercome b y pro cessing a di�eren t part of the graph while w aiting, it

w ould re-in tro duce the o v erhead of m ulti-tasking.

The di�culties with demand-driv en execution of datao w net w orks led m yself and

Matthias Mey er to abandon attempts to incorp orate it in to the initial design of the SPOOK

(Signal Pro cessing Ob ject-Orien ted Kernel) parallel DSP k ernel [118 , 96]. Nonetheless,

w e still b eliev e that it is imp ortan t and that an e�cien t h ybrid sc heduling mec hanism is

p ossible.

With data-driv en sc heduling, an actor is �red when it has su�cien t tok ens on its

input c hannels. An external sc heduler tests if enough tok ens are a v ailable, and �res the

actor if they are. A naiv e implemen tation of data-driv en sc heduling simply cycles through

all actors, �ring an y whic h ha v e su�cien t input tok ens. More sophisticated sc hedulers

attempt to minimise unnecessary testing b y tracing the graph in top ological order [94], or

b y \pushing" tok ens through the graph [96].

Because of the \eager" nature of data-driv en execution, pro cesses ma y pro duce mor e

data than will ev er b e needed. Some form of throttling is needed: b ounding c hannel bu�ers

is one solution; pre-emptiv e sc heduling is another. Neither solution is elegan t, suggesting

that p erhaps a h ybrid demand- and data-driv en solution is really needed. Ashcroft [9]

prop oses a mac hine arc hitecture for Lucid based on mixing b oth metho ds within the same

net w ork. Edges of the net w ork graph are coloured according to whether they are data-

CHAPTER 3. D A T AFLO W PR OCESS NETW ORKS 55

driv en or demand-driv en. Request tok ens are propagated b ackwar ds do wn the demand-

driv en arcs|these tok ens are called questons , while normal data tok ens are called datons .

Pingali and Arvind [107] tak e another approac h: they giv e a transformation b y whic h

a datao w graph with demand-driv en seman tics is transformed in to an equiv alen t graph

with data-driv en seman tics. In essence, demands are made explicit b y adding arcs and

actors to carry questons. The propagation of questons, and the resulting propagation

of datons bac k up the graph, is p erformed using data-driv en execution. Skillicorn [130]

prop oses that strictness analysis b e applied to Lucid programs to allo w questons to b e sen t

up the graph in few er hops. If it is kno wn that an actor will alw a ys demand data from

certain inputs, then that actor can b e b ypassed b y the questons, since a demand for its

output will simply pro duce demands for its input an yw a y . When the up-stream actors to

whic h the questons are sen t pro duce datons, the datons are propagated in a data-driv en

fashion through the b ypassed (b y the questons) actor.

Jagannathan surv eys the curren t state of datao w computing mo dels, includin g a com-

parison of demand- and data-driv en execution [65]. Datao w arc hitectures ha v e also b een

prop osed for implemen tation of functional programming languages [141]. Field and Har-

rison p oin t out that demand-driv en ev aluation of functional programs giv es normal-order

seman tics, while data-driv en ev aluation giv es applicativ e-order seman tics [47 , c hapter 14].

3.1.5 Firing rules

Lee has recen tly formalised the notion of \�ring" an actor [87]. An actor with arit y (m; n)

has a set of N �ring rules

F = fF

1

; : : : ; F

N

g

where eac h F

i

is an m -tuple of patterns, one for eac h input:

F

i

= (P

i; 1

; : : : ; P

i;m

)

Eac h pattern is a sequence of tok ens, eac h b eing either a manifest constan t or the

\wildcard" sym b ol ` � '. Lee de�nes a mo di�ed v ersion of the pre�xing predicate, whic h w e

CHAPTER 3. D A T AFLO W PR OCESS NETW ORKS 56

can express as:

[p

1

; : : : ; p

q

] v

�

(x

1

: : : : : x

r

: ?) , r � q ^ 8 i 2 f 1 ::q g : p

i

= ` � ' _ p

i

= x

i

where the sequence (x

1

: : : : : x

r

: ?) is the sequence of \a v ailable" tok ens on the input

c hannel. There are r a v ailable tok ens; ? represen ts the unde�ned part of the sequence|in

other w ords, tok ens whic h ha v e not y et b een computed.

A �ring rule F

i

of an actor with m input c hannels is enable d if and only if

P

i;j

v

�

A

j

; 8 j 2 f 1 ::m g

where A

j

is the sequence of a v ailable tok ens on the j 'th input c hannel.

Lee's �ring rules capture the essen tial asp ect of sc heduling a datao w actor under a

strict , data-driven seman tics. By \strict," I mean that all input tok ens m ust b e presen t

b efore the actor b egins to execute. Let us consider some examples. The summer actor

sums corresp onding elemen ts of t w o input c hannels; it th us requires a tok en on eac h b efore

it can �re:

F

1

= ([�] ; [�])

The select actor consumes one tok en from a b o olean con trol input: if true, it consumes

a tok en from its �rst data input and passes it to the output; if not, it consumes a tok en

from its other data input and passes it to the output. It has the �ring rules

F

1

= ([T rue] ; [�] ; [])

F

2

= ([F alse] ; [] ; [�])

A non-deterministic actor do es not form a Kahn pro cess. The arc het ypical non-

deterministic actor is mer ge , whic h passes an a v ailable tok en on either input to the output.

It has the �ring rules

F

1

= ([�] ; [])

F

2

= ([] ; [�])

CHAPTER 3. D A T AFLO W PR OCESS NETW ORKS 57

Recall that one of Kahn's requiremen ts is that a pro cess p erform only blo c king reads.

The non-deterministic merge do es not satisfy this criterion, since it m ust test its inputs to

see whether they ha v e data to pass to the output. Non-deterministic merge can b e made

deterministic b y making time part of the data in the stream|see c hapter 6.

Lee giv es an algorithm that can determine whether a �nite set of �ring rules can

b e tested b y a pro cess that p erforms only non-blo c king reads [87]. A set of �ring rules

that satis�es this condition Lee calls se quential . Briey , his algorithm w orks as follo ws:

Cho ose an input j suc h that all P

i;j

con tain at least one elemen t. If the head elemen ts of

the patterns do not unam biguously divide the �ring rules in to subsets, then fail. If they

do, remo v e the head elemen ts, and rep eat the pro cedure on eac h subset, with the mo di�ed

patterns. F ail at an y time if an y rule in a subset is not either empt y or at least one elemen t

long. If the algorithm terminates without failing, then the rules are sequen tial. In e�ect,

the algorithm mimics the run-time b eha viour of the actor.

3.2 Standard-form datao w actors

Lee's �ring rules capture the input conditions necessary to �re an actor, although without

sa ying precisely what a \�ring" is, or b y what mec hanism the pattern is matc hed against

a v ailable input tok ens. Apart from matc hing and reading input tok ens, an actor �ring also

i) up dates the actor's in ternal state (if an y), and ii) calculates and pro duces output tok ens.

In this section, I giv e a syn tax for describing actors, follo w ed b y a precise seman tics of

datao w actors and pro cesses.

3.2.1 Syn tax

The term \datao w actor" is used to mean t w o things: the description of an actor, and

an actual instance of an actor within a net w ork. I will call these an actor schema and an

actor instanc e where necessary to distinguish b et w een them.

A sugared syn tax for actor sc hemata is sho wn in �gure 3.5. Figure 3.5a is the general

form for stateful actors. The actor is called name , and has zero or more p ar ameters

(v

1

; : : : ; v

a

). P arameters are argumen ts to the actor other than streams, and m ust b e

reducible to a constan t at compile-time. The init clause sp eci�es the initial v alue of the

CHAPTER 3. D A T AFLO W PR OCESS NETW ORKS 58

(a) acto r name (v

1

; : : : ; v

a

) �

init s

0

rule p : up date (s) = e

u

output (s) = e

o

.

.

.

rule p : up date (s) = e

u

output (s) = e

o

(b) acto r name (v

1

; : : : ; v

a

) �

rule p : e

o

.

.

.

rule p : e

o

Figure 3.5. Sugared syn tax of a standard-form actor: a) stateful actor b) stateless actor

actor's in ternal state, s

0

; this is also assumed to b e kno wn at compile-time. It is follo w ed

b y one or more rules , eac h con taining an input pattern p , an up date action up date (s) = e

u

,

and an output action output (s) = e

o

.

Eac h input pattern corresp onds to one of Lee's �ring rules. A pattern is th us a sequence

of token p atterns , where a tok en pattern is an iden ti�er, a simple constan t, or a structured

t yp e con taining elemen t patterns. The only di�erence to Lee's �ring rules is that iden ti�ers

are used instead of the sym b ol *".

Some patterns are irr efutable |that is, they cannot fail to matc h [72 , pp. 72{74]. I

use a v ery lo ose in terpretation of this de�nition, allo wing not only iden ti�ers and tuples

of iden ti�ers, but other structured patterns if it is kno wn that the matc hed v alue is suc h

that the pattern will alw a ys matc h. (F or an example of an irrefutable pattern, see the

group actor of �gure 3.8, whic h uses a v ector as an irrefutable pattern.)

The up date action is a function from the curren t v alue of the actor's in ternal state, s ,

to the v alue of the state after completion of a �ring. s cannot b e used in rule selection,

and m ust therefore b e an irrefutable pattern. The up date expression e

u

can con tain free

v ariables v

1

to v

a

and an y v ariable in p . The output action is a function from the actor's

in ternal state to the sequences or sequences of output tok ens pro duced b y this �ring. The

output expression e

o

is a manifest se quenc e , or a let -expression with a manifest sequence

as result. A manifest sequence is an expression in whic h the length of the sequence can

b e determined purely syn tactically|for example, let x = y

2

in [x; x; x] is a v alid output

CHAPTER 3. D A T AFLO W PR OCESS NETW ORKS 59

expression, but let x = y

2

in cop y 3 x is not. This ensures that the n um b er of tok ens

pro duced can b e determined b y examining the output action, without kno wledge of data

v alues.

P atterns and output expressions are sequences if the actor has one input or one output

c hannel resp ectiv ely . If it has more than one input or output c hannel, the pattern or

output expression is a tuple of sequences.

Some examples will clarify the ab o v e description. Consider the dela y op erator, ex-

pressed as a standard-form actor sc hema with one rule:

1

acto r delay (i) �

init i

rule [x] : up date (s) = x

output (s) = [s]

The actor has one parameter, i ; this v alue is the initial v alue of the actor's state. On

eac h �ring, the actor pro duces the curren t state, and sets the next state equal to the

v alue of a new input tok en. Output v alues are th us dela y ed b y one time slot. In signal

pro cessing, dela ys usually ha v e an initial state of zero; the dela y actor of �gure 3.1 is th us

instan tiated as dela y (0).

A sligh tly more complex actor implemen ts the running pro cess of �gure 3.4; this actor

has no parameters:

acto r running �

init 0

rule [x] : up date (s) = x + s

output (s) = [x + s]

F or stateless actors, I use the simpli�ed syn tax of �gure 3.5b, whic h omits k eyw ords

and expressions related to the in ternal state. W ritten in full (as in �gure 3.5a), a stateless

actor has the init v alue (), the up date action up date (s) = s , and the output action

output (s) = e

o

.

1

Op erationally , this actor is unlik ely to b e useful, as dela ys are not strict. A more accurate v ersion of

dela y is giv en in section 3.3.1.

CHAPTER 3. D A T AFLO W PR OCESS NETW ORKS 60

Here are some examples of stateless actors. The summer actor has one rule:

acto r summer �

rule ([x] ; [y]) : [x + y]

The scale actor also has one rule:

acto r sc ale (v) �

rule [x] : [v � x]

The select actor (section 3.1.4) has t w o rules:

acto r sele ct �

rule ([T rue] ; [x] ; []) : [x]

rule ([F alse] ; [] ; [y]) : [y]

Finally , the non-deterministic merge actor also has t w o rules:

acto r mer ge �

rule ([x] ; []) : [x]

rule ([] ; [y]) : [y]

3.2.2 Desugaring

The actor sc hemata of the previous section are \desugared"|that is, translated in to a

simpler but more easily-manipulated form|b y the translation of �gure 3.6. This �gure

in tro duces the notation used for syn tactic translation functions: double square brac k ets

([[]]) enclose a syn tactic elemen t. In desugared form, an actor sc hema is a triple (a; s

0

; R),

where a is a (p ossibly empt y) tuple of actor parameter names, s

0

is the actor's initial state,

and R is a set of rules. Eac h rule is itself translated in to a triple (P ; up d ; out), where P is

a pattern, up d an up date action, and out an output action.

CHAPTER 3. D A T AFLO W PR OCESS NETW ORKS 61

desugar

2

6

4

2

6

4

acto r name (v

1

; : : : ; v

a

) �

init s

0

rule

1

; : : : ; rule

k

3

7

5

3

7

5

� ((v

1

; : : : ; v

a

) ; s

0

; f desugarR [[rule

1

]] ; : : : ; desugarR [[rule

k

]] g)

desugarR

" "

rule p ! up date (s) = e

u

output (s) = e

o

#

� (p; �s : e

u

; �s : e

o

)

Figure 3.6. Desugaring a standard-form actor

F or example, the dela y actor, after applying this transformation, b ecomes the triple

(i; i; f ([x] ; �s : x; �s : [s]) g)

A stateless actor uses the same translation as ab o v e; as a result, the translated actor

has s

0

= () and eac h up d equal to the iden tit y function �s : s . F or example, the select

actor b ecomes

(() ; () ; f (([T rue] ; [x] ; []) ; �s : s; �s : [x]) ;

(([F alse] ; [] ; [y]) ; �s : s; �s : [y]) g)

3.2.3 Seman tics

Lee de�nes a datao w pro cess to b e a sequence of �rings of a datao w actor. Pro vided the

actor's �ring rules are sequen tial, this pro cess is also a Kahn pro cess|that is, a mapping

from input histories and initial state to output histories. In this section, I giv e a seman tics

of actors and state precisely the meaning of a datao w pro cess.

W e will need some primitiv e t yp es to help describ e actors more precisely: let the t yp e

of the actor's in ternal state b e � ; the t yp e of an input pattern b e P att ; the t yp e of one or a

tuple of patterns b e P attern ; the t yp e of the (p ossibly empt y) tuple of sc hema parameters

b e P arameters .

As w e sa w in section 3.1.3, a Kahn pro cess is a function from sequences to sequences.

In this c hapter, w e consider only in�nite sequences. Let the (::=) op erator de�ne a t yp e

synon ym. The inputs and outputs of the actor are in�nite sequences or tuples of in�nite

CHAPTER 3. D A T AFLO W PR OCESS NETW ORKS 62

sequences:

Input ::= D

1

1

� : : : � D

1

m

Output ::= E

1

1

� : : : � E

1

n

When the actor �res, ho w ev er, it consumes and pro duces only �nite segmen ts of its

input and output sequences:

InputSegmen t ::= D

�

1

� : : : � D

�

m

OutputSegmen t ::= E

�

1

� : : : � E

�

n

Up date and output actions accept a state v alue and pro duce a new state and an output

segmen t resp ectiv ely:

Up dateAction ::= � ! �

OutputAction ::= � ! OutputSegmen t

A Rule is a triple of a pattern and t w o actions; Rules is a set of rules; a Sc hema is a

triple of parameters, initial state, and a rule set:

Rule ::= P attern � Up dateAction � OutputAction

Rules ::= f Rule g

Sc hema ::= P arameters � � � Rules

Execution of an actor pro ceeds in t w o distinct phases: i) instan tiation of the actor

with its parameters; and ii) execution of the actor on its stream argumen ts. In [87], Lee

stresses the di�erence b et w een parameter argumen ts and stream argumen ts in Ptolem y:

parameters are ev aluated during an initialisation phase; streams are ev aluated during the

main execution phase. As a result, co de generation can tak e place with the parameters

kno wn, but with the stream data unkno wn. Th us, the separation b et w een parameters and

streams|and b et w een compile-time and run-time v alues|is b oth clear and compulsory .

An actor is instan tiated b y supplying its sc hema with parameter v alues. T o represen t

CHAPTER 3. D A T AFLO W PR OCESS NETW ORKS 63

instan tiate [[Sc hema]] :: P arameters ! Actor

instan tiate [[(v ; s

0

; f R

1

; : : : ; R

k

g)]] e

� (s

0

[e=v] ; f inst [[R

1

]] ; : : : ; inst [[R

k

]] g)

where

inst [[(P ; up d ; out)]] � (P [e=v] ; up d [e=v] ; out [e=v])

Figure 3.7. Instan tiating an actor

instan tiation of a sc hema name with parameter v alues (e

1

; : : : ; e

a

), w e will write

A := name (e

1

; : : : ; e

a

)

or, if the sc hema has no parameters,

A := name

where A is the (unique) iden ti�er of the actor instance. Instan tiating a sc hema creates a

new actor instance:

Actor ::= � � Rules

T o instan tiate an actor, eac h parameter formal o ccurring free in the initial state and the

�ring rules is substituted b y the corresp onding actual. Figure 3.7 giv es the instan tiation

function. The notation E [e=v] means that eac h o ccurrence of iden ti�er v o ccurring free

in E is replaced with the expression e . This notation extends p oin t-wise to tuples of

substitution v ariables|that is, if v = (v

1

; : : : ; v

a

) and e = (e

1

; : : : ; e

a

), then

E [e=v] , E [e

1

=v

1

] : : : [e

a

=v

a

]

An actor instance is connected to other actors in a net w ork, and can then pro ceed to

the second part of its execution, as a datao w pro cess. The pro cess is an in�nite series of

�rings, eac h of whic h pro ceeds in three stages: input, state up date, and output. The �rst

can in turn b e divided in to t w o parts: matc hing rule patterns against input sequences to

select a rule, and reading the input segmen ts from the input sequences.

P attern-matc hing and rule selection is p erformed b y the seman tic function matc h ,

CHAPTER 3. D A T AFLO W PR OCESS NETW ORKS 64

whic h accepts a rule and input sequences, and pro duces that same rule if it matc hes the

sequences. Th us,

matc h [[Rule]] :: Input ! Rule

matc h [[R @((P

1

; : : : ; P

m

) ; ;)]] (X

1

; : : : ; X

m

)

= R; if matc h

0

[[P

i

]] X

i

for all i , 1 � i � m

matc h

0

[[P att]] :: D

1

! Bo ol

matc h

0

[[[p

1

; : : : ; p

q

]]] (x

1

: : : : : x

q

: xs)

= tr ue; if tmatc h p

i

x

i

for all i , 1 � i � q

The notation R @((P

1

; : : : ; P

m

) ; ;) is from Hask ell: R is the name of the rule, whic h is a

triple con taining patterns (P

1

; : : : ; P

m

) and t w o other elemen ts of insigni�can t v alue. The

tmatc h function p erforms pattern-matc hing on tok ens, as in functional languages [72].

Implicit in the de�nition of matc h is the concept of failure: if the input patterns do not

matc h the input sequences, then matc h returns ? (pronounced \b ottom"), denoting an

unde�ned v alue. Note also that b ecause tmatc h compares eac h tok en against a pattern,

all required tok ens m ust b e a v ailable b efore a rule can b e selected and execution pro ceed.

The seman tics th us captures the strictness of actors.

Giv en a selected rule, the read function splits the input sequences in to the segmen ts

to b e read b y this �ring, and the remainder of the sequences:

read [[Rule]] :: Input ! InputSeg � Input

read [[((P

1

; : : : ; P

m

) ; ;)]] (X

1

; : : : ; X

m

) = let (is

1

; i

1

) = read

0

[[P

1

]] X

1

: : : = : : :

(is

m

; i

m

) = read

0

[[P

m

]] X

m

in ((is

1

; : : : ; is

m

) ; (i

1

; : : : ; i

m

))

read

0

[[P att]] :: D

1

! D

�

� D

1

read

0

[[[p

1

; : : : ; p

q

]]] (x

1

: : : : : x

q

: xs) = ([x

1

; : : : ; x

q

] ; xs)

The input function com bines matc hing and reading: it matc hes a rule set against

input sequences and returns the selected rule, the input segmen ts, and the remaining

CHAPTER 3. D A T AFLO W PR OCESS NETW ORKS 65

input sequences:

input [[Rules]] :: Input ! Rule � InputSeg � Input

input [[f R

1

; : : : ; R

k

g]] i = let R = matc h [[R

1

]] i

2 : : :

.

.

.

2 matc h [[R

k

]] i

(is ; i

0

) = read [[R]] i

in (R; is ; i

0

)

input uses the 2 op erator to select a v alid rule from sev eral p ossible matc hes; 2 is

\b ottom-a v oiding":

? 2 ? = ?

? 2 r = p

r 2 ? = p

r

1

2 r

2

= ?

The last line means that pattern-matc hing will fail if more than one matc h succeeds. This

b eha viour is c hosen to emphasise that the seman tics w orks only for deterministic actors.

The up date and output seman tic functions up date the actor's state and pro duce output

according to a giv en rule. Their inputs are a segmen t of the input sequences and the curren t

state. These functions are somewhat simpler to deriv e than input : all that is required is

to bind the free v ariables named b y the input patterns b y supplying them as argumen ts:

up date [[Rule]] :: InputSeg ! � ! �

up date [[(P ; �s : e

u

; �s : e

o

)]] = �P : �s : e

u

output [[Rule]] :: InputSeg ! � ! OutputSeg

output [[(P ; �s : e

u

; �s : e

o

)]] = �P : �s : e

o

The �re function com bines input, state up date, and output, in to a single actor �ring.

A t eac h �ring, it accepts the unread input history and the curren t state, and pro duces the

CHAPTER 3. D A T AFLO W PR OCESS NETW ORKS 66

remaining unread input history , the next state, and a segmen t of the output sequences:

�re [[Rules]] :: Input � � ! Input � � � OutputSeg

�re [[Rs]] (i; s) = (i

0

; s

0

; o

0

)

where

(R; is ; i

0

) = input [[Rs]] i

s

0

= up date [[R]] is s

o

0

= output [[R]] is s

The function pro cess , giv en a set of rules, a starting state, and a tuple of input se-

quences, endlessly c ho oses and then �res a rule:

pro cess [[Rules]] :: Input ! � ! Output

pro cess [[Rs]] i s = o + + pro cess i

0

s

0

where

(i

0

; s

0

; o) = �re [[Rs]] i s

The output segmen ts are prep ended to the remainder of the output sequences b y the

(++) op erator:

(x

1

: : : : : x

q

) + + ys = (x

1

: : : : : x

q

: ys)

and w e assume that (++) extends to tuples of sequences.

Finally , w e can giv e the precise meaning of a datao w pro cess: the datao w pro cess

corresp onding to the datao w actor A is the function io [[A]], where io supplies the actor's

initial state and complete input sequences to pro cess :

io [[Actor]] :: Input ! Output

io [[(s

0

; Rs)]] i = pro cess [[Rs]] i s

0

3.2.4 Consumption and pro duction v ectors

When �red, an actor consumes some n um b er of tok ens from its input streams, and pro duces

some n um b er to its output streams. These n um b ers are manifest in the actor's �ring

rules|that is, in the input patterns and the output actions.

CHAPTER 3. D A T AFLO W PR OCESS NETW ORKS 67

Let the # op erator return the length of a sequence, and the # op erator return the

lengths of sequences in a tuple, as a v ector. # is de�ned informally b y

s = h # s i

(s

1

; : : : ; s

k

) = h # s

1

; : : : ; # s

k

i

The consumption v ector C [[R]] and pro duction v ector P [[R]] con tain the n um b er of

tok ens consumed and pro duced b y a rule R = (P ; �s : e

u

; �s : e

o

):

C [[R]] = # P

P [[R]] = # e

o

Recall that an SDF actor consumes and pro duces kno wn and constan t n um b ers of

tok ens on eac h �ring (section 3.1.2). This prop ert y can b e formally stated in terms of

consumption and pro duction v ectors. De�ne the � op erator to return a v alue only if b oth

argumen ts are equal:

x � x = x

x � y = ? ; x 6= y

? � y = ?

x � ? = ?

? � ? = ?

Let � extend p oin t-wise to v ectors:

h x

1

; : : : ; x

k

i � h y

1

; : : : ; y

k

i = h x

1

� y

1

; : : : ; x

k

� y

k

i

The consumption and pro duction v ectors of an actor with rules f R

1

; : : : ; R

k

g are

de�ned b y

C [[A]] = C [[R

1

]] � : : : � C [[R

k

]]

P [[A]] = P [[R

1

]] � : : : � P [[R

k

]]

Th us, if, for eac h input, the input patterns of all clauses are the same length, the

CHAPTER 3. D A T AFLO W PR OCESS NETW ORKS 68

consumption v ector con tains an in teger in the appropriate p osition; otherwise, it con tains

? (pronounced \b ottom"), indicating that the n um b er cannot b e determined without

additional information. If the lengths of all output sequences for a giv en output are the

same length, then the pro duction v ector similarly con tains an in teger.

F or example, summer has v ectors

C [[summer]] = h 1 ; 1 i

P [[summer]] = h 1 i

The select actor has v ectors

C [[select]] = h 1 ; ? ; ? i

P [[select]] = h 1 i

The de�nition of SDF actors, and the sub-class of homogeneous datao w actors, can

no w b e stated in terms of consumption and pro duction v ectors:

De�nition 1 (Sync hronous datao w (SDF)) A n actor A with arity m � n is syn-

c hronous datao w (SDF) i�

C [[A]](i) 6= ? ; 8 i; 1 � i � m

P [[A]](i) 6= ? ; 8 i; 1 � i � n

De�nition 2 (Homogeneous datao w (HDF)) A n actor A with with arity m � n is

homogeneous datao w (HDF) i�

C [[A]](i) = 1 ; 8 i; 1 � i � m

P [[A]](i) = 1 ; 8 i; 1 � i � n

SDF actors are usually expressed with a single rule; call an actor with a single rule and

irrefutable tok en patterns a simple SDF actor. Suc h an actor do es not need to p erform

pattern-matc hing and rule selection|since it only has one rule that, giv en enough input

CHAPTER 3. D A T AFLO W PR OCESS NETW ORKS 69

acto r delay (i) �

init i

rule [x] : up date (s) = x

output (s) = [s]

acto r gr oup (k) �

rule [x

1

; : : : ; x

k

] : [h x

1

; : : : ; x

k

i]

acto r c onc at (k) �

rule [h x

1

; : : : ; x

k

i] : [x

1

; : : : ; x

k

]

acto r zip (k) �

rule ([x

1

] ; : : : ; [x

k

]) : [(x

1

; : : : ; x

k

)]

acto r unzip (k) �

rule [(x

1

; : : : ; x

k

)] : ([x

1

] ; : : : ; [x

k

])

acto r map (f) �

rule [x] : [f (x)]

Figure 3.8. The canonical SDF actors

tok ens, cannot fail to matc h. It therefore needs only to coun t input tok ens, not read their

v alues.

3.2.5 Canonical SDF actors

An y SDF actor can b e implemen ted as a net w ork con taining dela ys and instances of just

�v e actor sc hemata. In c hapter 5, I will giv e functions equiv alen t to these sc hemata, and

giv e examples of their use; here, I will giv e the sc hemata texts and argue that an y SDF

actor can b e translated in to a net w ork of these �v e actors. I will also further discuss the

role of actor parameters.

Figure 3.8 lists the �v e actors, together with dela y . Eac h has one parameter. F or

completeness, dela y is sho wn as an actor although it will almost alw a ys b e implemen ted

as initial v alues in a FIF O bu�er. Note that dela y is the only actor here that main tains a

\state."

group breaks a stream up in to a stream of v ectors. Unlik e dela y , its parameter m ust

b e kno wn in order to pro duce a formal (that is, executable) actor text. (The notation

x

1

; : : : ; x

k

is not formal.) This is really a limitation of the fact that an actor text m ust

CHAPTER 3. D A T AFLO W PR OCESS NETW ORKS 70

con tain a manifest sequence in its output action. As w e will see in c hapter 5, group can,

with a more p o w erful notation, b e de�ned without requiring that k b e kno wn at compile-

time. concat is the in v erse of group : it concatenates a stream of v ectors in to a stream.

Again, its parameter m ust b e kno wn in order to pro duce a formal actor text.

zip and unzip com bine m ultiple streams in to a stream of tuples, and vice v ersa. They

also require that their parameter b e kno wn at compile-time; in this case, ho w ev er, it is

not p ossible to remo v e this restriction with a more p o w erful notation, since the param-

eter determines the n um b er of input or output c hannels of the actor. In c hapter 5, this

limitation will force us to use restricted v ersions of these functions.

Finally , the map actor tak es a function as its parameter, whic h it applies to eac h

elemen t of its input c hannel. If f is kno wn, an e�cien t implemen tation of map (f) can b e

generated; if not, the system m ust supp ort dynamic creation of functions since it will not

ha v e kno wledge of f un til run-time. An actor of this kind mimics higher-order functions

in functional languages, and could therefore b e called a higher-or der actor .

I will no w argue informally that an y SDF actor can b e implemen ted b y dela ys and these

�v e sc hemata. As p oin ted out b y Lee [87], a stateful actor can b e represen ted as a stateless

actor together with a unit-dela y feedbac k lo op carrying the \state" v alue. The remaining

�v e sc hemata can implemen t an y stateless SDF actor, as follo ws. Let the consumption

and pro duction v ectors of the actor b e h c

1

; : : : ; c

m

i and h p

1

; : : : ; p

n

i . F or an y input i

suc h that c

i

> 1, insert a group (c

i

) actor in the connected arc and c hange the pattern

for that input from [x

1

; : : : ; x

c

i

] to [h x

1

; : : : ; x

c

i

i]. F or an y output j suc h that p

i

> 1,

insert a concat (p

i

) actor in the connected arc and c hange the expression sequence for that

output from [y

1

; : : : ; y

p

i

] to [h y

1

; : : : ; y

p

i

i]. The actor is no w HDF. If the actor has more

than one input|that is, m > 1|use a zip (m) actor to gather all input streams in to a

stream of tuples, and c hange the input pattern from ([x

1

] ; : : : ; [x

m

]) to [(x

1

; : : : ; x

m

)]. If

the actor has more than one output|that is, n > 1|c hange the output expression from

([y

1

] ; : : : ; [y

n

]) to [(y

1

; : : : ; y

n

)] and use an unzip (n) actor to c hange the stream of tuples

bac k in to a tuple of streams. The actor no w has one input c hannel and one output c hannel

and th us has the form (s

0

; f ([p] ; �s : s; �s : [e]) g); this actor is implemen ted b y map (�p : e).

CHAPTER 3. D A T AFLO W PR OCESS NETW ORKS 71

3.3 Phased-form datao w actors

In this section, I in tro duce the phase d form of datao w actor. Execution of a phased-

form actor pro ceeds in a series of \phases"; phased form th us expresses a �ner grain of

computation than standard form. One of the motiv ating factors b ehind its dev elopmen t

w as a desire to b etter express non-strict and demand-driv en execution. By breaking

actor �rings up in to phases, actors need p erform only the minim um amoun t of input

and computation necessary to pro duce a tok en on a giv en output.

Phased form also p ermits non-deterministic b eha viour; the seman tics outlined in this

section pro vides a means of c haracterising non-deterministic b eha viour. In particular, an

actor can non-deterministicall y c ho ose to consume tok ens from di�eren t inputs, y et still

form a deterministic pro cess.

T o clarify this p oin t, consider the sum-of-squares actor, sumsqrs ; it is similar to

summer , but squares eac h of its t w o input tok ens b efore summing them:

acto r sumsqrs �

rule ([x] ; [y]) : [x

2

+ y

2

]

This de�nition sa ys nothing ab out the order in whic h inputs are read|or outputs

pro duced, although there is no c hoice in this particular case. As w e sa w in section 3.2.3, a

standard-form actor reads all input tok ens b efore p erforming an y computation or output.

But this need not b e so: sumsqrs could read a tok en from its �rst input and square it

b efore attempting to read a tok en from its second input. It could ev en w ait for a tok en

on either input, square it, and then w ait for a tok en on the other input. Although this

actor do es not satisfy Kahn's blo c king-read criterion, it nonetheless implemen ts a Kahn

pro cess.

The phased form of an actor is th us a w a y of precisely expressing the ordering of input,

computation, and output, with non-determinism allo w ed in a limited and manageable w a y .

As w e will see, this is useful when considering demand-driv en execution and p oten tial

deadlo c k situations. There are a n um b er of other motiv ations for this w ork on phased-

form actors:

CHAPTER 3. D A T AFLO W PR OCESS NETW ORKS 72

{ Phased form can express some actors that cannot b e expressed in standard form, suc h

as the iota actor describ ed in section 3.3.4.

{ T ak en as an op erational de�nition, computation can pro ceed b efore all input is re-

ceiv ed. F or a single actor, this is unlik ely to b e imp ortan t; for a net w ork, ho w ev er, it

ma y w ell b e, since computation can pro ceed in one part of the net w ork ev en though

other parts are blo c k ed w aiting for data.

{ Phased form has the p oten tial to pro vide a more consisten t seman tics of hierarc hical

actors, although I ha v e not y et b een able to dev elop an algorithm that computes the

phased form of an actor net w ork. (See section 3.3.6.)

Phased-form actors are a generalisation of Buc k's m ulti-phase in teger datao w actors

[27] and the cyclo-static datao w of Engels et al [43]; a comparison is giv en in section 3.3.4.

3.3.1 Syn tax

Phased-form actors are an extension of standard-form actors. There are t w o k ey di�er-

ences:

{ A t eac h �ring, only a subset of the rule set is considered for �ring. This subset is called

the eligible rule set .

{ If more than one rule from the eligible set is satis�ed, the actor non-deterministic al ly

c ho oses and �res one of them.

The full phased-form syn tax is sho wn in �gure 3.9a. The actor has k � 1 rules. In

order to iden tify the eligible rules, eac h rule is explicitly n um b ered. The initial eligible

rule set, �

0

where �

0

� f 1 ; : : : ; k g , is giv en b y the start clause. When a rule is �red, the

actor uses the select action to up date the eligible rule set for the next �ring.

There are some restrictions not made explicit in the syn tax. Firstly , tok en patterns

m ust b e irrefutable (that is, they cannot fail to matc h). As for standard-form, the state

pattern in the actions m ust also b e irrefutable. Secondly , the righ t-hand side of the select

action is either a set of in tegers, or an expression of the form

if e then f In t g else : : : else f In t g

CHAPTER 3. D A T AFLO W PR OCESS NETW ORKS 73

(a) acto r name (v

1

; : : : ; v

a

) �

init s

0

sta rt �

0

rule 1 p : up date (s) = e

u

output (s) = e

o

select (s) = e

p

.

.

.

rule k p : up date (s) = e

u

output (s) = e

o

select (s) = e

p

(b) acto r name (v

1

; : : : ; v

a

) �

sta rt s

0

rule 1 p : e

o

! e

p

.

.

.

rule k p : e

o

! e

p

Figure 3.9. Sugared syn tax of a phased-form actor: a) stateful actor b) stateless actor

where e is a b o olean expression and In t stands for a literal in teger constan t. This syn tactic

form ensures that the eligible rule sets are manifest in the actor text. �

0

m ust also b e a

set of literal in teger constan ts.

Often, some rules do not p erform all of the three p ossible actions. F or con v enience,

I omit the up date clause if the up date action is up date s = s , and the output clause if

the output action is output s = [] (or a tuple con taining an appropriate n um b er of empt y

sequences).

Some examples will clarify ho w phased-form w orks. The v ersion of sumsqrs that non-

deterministically reads a tok en from either input is written with four rules; it is sho wn in

�gure 3.10. (An underscore represen ts a \don't-care" pattern.) The dela y op erator w as

giv en as a (strict) standard-form actor on page 59. A strict actor is not, ho w ev er, a v ery

go o d w a y to represen t dela y , since a dela y m ust usually b e able to pro duce an output

tok en b efore reading an input tok en. With phased form, w e can write a v ersion of dela y

that can pro duce and consume tok ens in arbitrary in terlea ving, sho wn in �gure 3.11. In

this example, the in ternal state is a list of tok ens; in phase 1, a tok en is remo v ed from this

list and written to the output; in phase 2, a tok en is read from the input and app ended

to this list.

CHAPTER 3. D A T AFLO W PR OCESS NETW ORKS 74

acto r sumsqrs �

init 0

sta rt f 1 ; 3 g

rule 1 ([x] ; []) : up date () = x

2

select () = f 2 g

rule 2 ([] ; [y]) : output (s) = [s + y

2

]

select (s) = f 1 ; 3 g

rule 3 ([] ; [y]) : up date () = y

2

select () = f 4 g

rule 4 ([x] ; []) : output (s) = [x

2

+ s]

select (s) = f 1 ; 3 g

Figure 3.10. The non-deterministic sumsqrs actor

F or stateless actors, the simpler syn tax of �gure 3.9b is used instead.

2

F or example,

select is stateless, and has three rules:

acto r sele ct �

sta rt f 1 g

rule 1 ([b] ; [] ; []) : [] ! if b then f 2 g else f 3 g

rule 2 ([] ; [x] ; []) : [x] ! f 1 g

rule 3 ([] ; [] ; [y]) : [y] ! f 1 g

Finally , the non-deterministic merge actor has t w o rules:

acto r mer ge �

sta rt f 1 ; 2 g

rule 1 ([x] ; []) : [x] ! f 1 ; 2 g

rule 2 ([] ; [y]) : [y] ! f 1 ; 2 g

2

The eligible rule set is of course a kind of state; since, ho w ev er, I am treating the eligible rules explicitly ,

the term \state" will refer to other information main tained b et w een �rings.

CHAPTER 3. D A T AFLO W PR OCESS NETW ORKS 75

acto r delay i �

init [i]

sta rt f 1 ; 2 g

rule 1 [] : up date (x : xs) = xs

output (x : xs) = [x]

select (x : xs) = if n ull (xs) then f 2 g else f 1 ; 2 g

rule 2 [x] : up date (xs) = xs + + [x]

select (xs) = f 1 ; 2 g

Figure 3.11. The phased-form dela y actor

desugar

2

6

6

6

4

2

6

6

6

4

acto r name (v

1

; : : : ; v

a

) �

init s

0

phase �

0

rule

1

; : : : ; rule

k

3

7

7

7

5

3

7

7

7

5

� ((v

1

; : : : ; v

a

) ; s

0

; �

0

; f desugarR [[rule

1

]] ; : : : ; desugarR [[rule

k

]] g)

desugarR

2

6

4

2

6

4

rule i p ! up date (s) = e

u

output (s) = e

o

select (s) = e

s

3

7

5

3

7

5

� (p; �s : e

u

; �s : e

o

; �s : e

s

)

Figure 3.12. Desugaring a phased-form actor

Phased-form actors are desugared in a similar manner to standard-form actors. Fig-

ure 3.12 giv es the translation: a desugared actor is a four-tuple con taining parameters,

initial state, initial rule set, and the set of rules; eac h rule is a four-tuple of input patterns

and the up date, output, and select actions. Instan tiation also pro ceeds in a similar fashion

to standard-form actors, but in this case, an instan tiated phased-form actor is a triple of

initial state, initial rule set, and the set of rules.

F or example, an instan tiated merge actor is

(() ; f 1 ; 2 g ; f (([x] ; []) ; �s : s; �s : [x] ; �s : f 1 ; 2 g) ;

(([] ; [y]) ; �s : s; �s : [y] ; �s : f 1 ; 2 g)

g)

CHAPTER 3. D A T AFLO W PR OCESS NETW ORKS 76

3.3.2 Phase graphs

The p ossible orders in whic h rules can b e selected are captured b y the phase gr aph . A phase

is execution of a rule, so the phase graph is a useful to ol for c haracterising and analysing

the b eha viour of phased-form actors. As a notational con v enience, rule iden ti�ers k are

used in terc hangeably with the rules themselv es. Figure 3.13 sho ws the phase graphs of the

four example actors giv en previously , annotated with their consumption and pro duction

v ectors. Note that ev ery v ertex of the phase graph is in a cycle; this ensures that the actor

will con tin ue to execute while it has input data.

3

The phase graph has t w o kinds of v ertex. R ule vertic es corresp ond to a rule, and are

lab elled with the rule's iden ti�er; eac h rule o ccurs exactly once. Choic e vertic es corresp ond

to non-deterministic c hoice, and are named c hoice

�

, where � is the set of its successor

v ertices. Th us, a c hoice v ertex o ccurs once for eac h non-singleton set in the select actions.

Choice v ertices are coloured blac k; they are not lab elled with their names since this is

clear from con text. The v ertex corresp onding to the initial eligible rules set is mark ed b y

an asterisk.

The edges of the graph corresp ond to allo w able transitions b et w een rules. F or eac h

singleton set pro duced b y a rule's select action, there is an edge from that rule v ertex to

the v ertex corresp onding to the single rule; for eac h non-singleton set, there is an edge

from the rule v ertex to a c hoice v ertex. More precisely ,

succ [[(; ; ; �s : e

s

)]] = succ

0

[[e

s

]]

succ [[c hoice

�

]] = �

succ

0

[[f � g]] = f � g

succ

0

[[�]] = f c hoice

�

g

succ

0

[[if b then � else e

s

]] = succ

0

(�) [succ

0

(e

s

)

A sequence of rule �rings corresp onds to a path through the phase graph. W e will write

3

It ma y b e useful to ha v e a sp ecial phase, called sa y the initialisa tion phase, whic h has no predecessors

(and is therefore not in a cycle). This could yield some practical adv an tages, as it corresp onds to

computation that can pro ceed b efore zero time.

CHAPTER 3. D A T AFLO W PR OCESS NETW ORKS 77

1

2

3

4

(a)

á1,0ñ á0ñ

á0,1ñ á1ñ á1,0ñ á1ñ

á0,1ñ á0ñ

1

2 3

(c)

á1,0,0ñ á0ñ

á0,1,0ñ á1ñ á0,0,1ñ á1ñ

(d)

1 2
á1,0ñ á1ñ á0,1ñ á1ñ

(b)

1 2
á1ñ á0ñ á0ñ á1ñ

Figure 3.13. Phase graphs: a) sumsqrs ; b) dela y ; c) select ; d) merge

a k -length path � as a v ector h �

1

; : : : ; �

k

i . Let the paths function return the set of paths

from one v ertex to another. If some v ertex �

a

in the path in tersects a cycle, sa y , h �

a

; �

b

i ,

the set returned b y paths is in�nite, including the paths h : : : ; �

a

; : : : i , h : : : ; �

a

; �

b

; �

a

; : : : i ,

h : : : ; �

a

; �

b

; �

a

; �

b

; �

a

; : : : i , and so on.

paths can b e used to sp ecify the cycles relation, whic h returns the set of cycles starting

at a giv en no de:

cycles (�) =

[

f paths (�;) j � 2 succ () g

3.3.3 Seman tics

Phased form allo ws a more precise description of the order in whic h tok ens are consumed

and pro duced. As for standard-form, eac h phase ful�ls t w o conditions:

{ All input tok ens are consumed b efore an y output tok ens are pro duced.

{ A phase m ust complete b efore another phase can b egin.

Eac h phase is th us \strict"; b ecause, ho w ev er, an actor �ring pro ceeds in a series of

phases, the actor is non-strict. I will de�ne the meaning of a �ring and other forms of

CHAPTER 3. D A T AFLO W PR OCESS NETW ORKS 78

execution in terms of paths through the phase graph; this falls short of a full seman tics of

phased-form actors, but is su�cien t to describ e sev eral imp ortan t c haracteristics.

A path is represen ted b y a v ector of rules:

P ath ::= h Rule i

Giv en a k -length path through the graph � = h �

1

; : : : ; �

k

i , w e need to kno w the

consumption and pro duction v ectors along that path, and the meaning of \executing" � .

Let C (R) and P (R) b e the consumption and pro duction v ectors of rule R in the same w a y

as for standard-form actors. The consumption and pro duction v ectors of path � are then

giv en b y

C (�) = C (�

1

) + : : : + C (�

k

)

P (�) = P (�

1

) + : : : + P (�

k

)

where the addition op erator (+) is assumed to extend p oin t-wise to v ectors.

Firing a single rule is essen tially iden tical to �ring a single simple rule of a standard-

form actor. read , up date , and output are the same as in section 3.2.3, but sligh tly mo di�ed

b ecause a rule is no w a four-tuple instead of a triple. Let the step seman tic function execute

a single rule:

step [[Rule]] :: Input ! � ! Input � � � OutputSeg

step [[R]] i s = (i

0

; s

0

; o

0

)

where

(is ; i

0

) = read [[R]] i

s

0

= up date [[R]] is s

o

0

= output [[R]] is s

Note that I am not trying to giv e a full seman tics here; in particular, I am examining

only the computation p erformed giv en a path through the phase graph|that is, with state

up date and output pro duction, but not with calculation of the next eligible rule set. A

full seman tics w ould need to calculate sets of input-to-output sequence mappings. (Sets

CHAPTER 3. D A T AFLO W PR OCESS NETW ORKS 79

are required to accoun t for non-deterministic c hoice.)

Execution along a giv en path is giv en b y the execute function. execute tak es a path|

that is, a v ector of rules|and returns the input-output mapping pro duced b y executing

those rules in order. I use the (: >) op erator on v ectors in the same w a y as the cons (:)

op erator on sequences.

execute [[P ath]] :: Input ! � ! OutputSegmen t � �

execute [[h i]] i s = ([] ; s)

execute [[R : > Rs]] i s = (o + + o

0

; s

0 0

)

where

(i

0

; s

0

; o) = step [[R]] (i; s)

(o

0

; s

0 0

) = execute [[Rs]] i

0

s

0

No w, a c omplete �ring of a phased-form actor is execution along an y cycle from the

start v ertex:

De�nition 3 (Complete �ring) A complete �ring of a phase d-form actor is exe cution

along any cycle of the phase gr aph b e ginning on the start vertex �

0

:

execute [[�]] where � 2 cycles (�

0

)

If there are cycles in the graph that do not pass through �

0

, then there are an in�nite

n um b er of complete �ring paths. Section 3.3.4 giv es an example of an actor lik e this. An

actor with a in�nite n um b er of complete �ring paths can b e the phased-form equiv alen t

of SDF if it also satis�es a condition on the consumption and pro duction v ectors:

De�nition 4 (Phased sync hronous datao w) A n actor with initial vertex �

0

is phased

sync hronous datao w i�: i) f �

1

; : : : ; �

k

g = cycles (�

0

) is �nite; and ii) the c onsumption

and pr o duction ve ctors along al l cycles ar e e qual:

C (�

i

) = C (�

j

) ^ P (�

i

) = P (�

j

) ; 8 i; j : 1 � i; j � k

By summing the v ectors around eac h of the cycles in �gure 3.13 and applying this

criterion, it can b e seen that sumsqrs is phased SDF, but the other three are not. Note

CHAPTER 3. D A T AFLO W PR OCESS NETW ORKS 80

that a phased SDF actor is not necessarily deterministic. Here is an example of an actor

that exhibits this kind of \in ternal" non-determinism:

acto r sil ly �

sta rt f 1 ; 2 g

rule 1 [x] : [x] ! f 1 ; 2 g

rule 2 [x] : [x + 1] ! f 1 ; 2 g

Note also that the de�nition of phased SDF do es not include all actors that could b e

considered to b e SDF actors|see section 3.3.4 for an example.

In the in tro duction to this section, I sho w ed b y illustration that a non-deterministic

actor can pro duce a deterministic pro cess. F or a pro cess to b e deterministic, a non-

deterministic c hoice m ust not a�ect the computation p erformed b y the actor. A necessary

condition for a deterministic pro cess is that, for eac h c hoice v ertex � , all paths � in

cycles (�) ha v e equal C (�) and P (�). A stronger, necessary and su�cien t condition m ust

examine the output state and sequences:

De�nition 5 (Kahn actor) A phase d dataow actor forms a Kahn pr o c ess i� for e ach

non-deterministic choic e � in its phase gr aph, cycles (�) is �nite and either

1. A l l p aths � 2 cycles (�) have e qual values of execute [[�]] , or

2. (a) A l l p aths � in cycles (�) have e qual values of fst � execute [[�]] , and

(b) A l l p aths � in cycles (�) write s b efor e using it (se e b elow).

In condition (1), all paths b eha v e exactly the same; in condition (2), only the input-

output mappings are the same, but the state is ignored in subsequen t decisions an yw a y .

Condition 2b requires further explanation: execute [[�]] need not return the same state for

all � in cycles (�), pro vided that the di�ering states are ignored. De�ne const x y = x . A

path � = h �

1

; : : : ; �

k

i writes the state b efore using it i� there exists an i suc h that �

i

has

an up date action of the form const e

u

and 8 j � i , �

j

has output and select actions of the

form const e

o

and const e

s

.

This prop osition is the main insigh t of this section. A practical means of determin-

ing if the conditions are satis�ed is to p erform a reduction of execute on sym b olic se-

CHAPTER 3. D A T AFLO W PR OCESS NETW ORKS 81

quences. Consider sumsqrs . Its only c hoice v ertex is c hoice

f 1 ; 3 g

, and cycles (c hoice

f 1 ; 3 g

) =

fh 1 ; 2 i ; h 3 ; 4 ig . W e then ha v e, for the path h 1 ; 2 i ,

execute [[h 1 ; 2 i]] (([x

1

; : : :] ; [y

1

; : : :]) ; s)

= (o + + o

0

; s

0 0

)

where

(i

0

; s

0

; o) = step [[1]] (([x

1

; : : :] ; [y

1

; : : :]) ; s)

(o

0

; s

0 0

) = execute [[h 2 i]] (i

0

; s

0

)

= (o + + o

0

; s

0 0

)

where

(i

0

; s

0

; o) = (([x

2

; : : :] ; [y

1

; : : :]) ; x

2

1

; [])

(o

0

; s

0 0

) = execute [[h 2 i]] (i

0

; s

0

)

= ([] + + o

0

; s

0 0

)

where

(o

0

; s

0 0

) = execute [[h 2 i]] (([x

2

; : : :] ; [y

1

; : : :]) ; x

2

1

)

= ([] + + o

0

; s

0 0

)

where

(o

0

; s

0 0

) = step [[2]] (([x

2

; : : :] ; [y

1

; : : :]) ; x

2

1

)

= ([] + + o

0

; s

0 0

)

where

(o

0

; s

0 0

) = ([x

2

1

+ y

2

1

] ; x

2

1

)

= ([x

2

1

+ y

2

1

] ; x

2

1

)

F ollo wing a similar pro cess for the cycle h 3 ; 4 i yields the expression ([x

2

1

+ y

2

1

] ; y

2

1

).

This satis�es condition 2a ab o v e. Since the state is written in rules 1 and 3, but not read

un til rules 2 and 4, condition 2b is also satis�ed, and sumsqrs therefore forms a Kahn

pro cess. Of the other graphs in �gure 3.13, select is a Kahn pro cess b ecause it has no

c hoice v ertices; dela y and merge are not, b ecause they fail the equal consumption and

pro duction v ector condition.

3.3.4 Cyclo-static and m ulti-phase in teger datao w

Buc k [27] prop osed multi-phase in teger datao w actors. An in teger datao w actor is suc h

that the n um b er of tok ens consumed or pro duced on eac h arc is a function of an in teger-

v alued con trol tok en. The REPEA T t yp e of actor consumes an in teger con trol tok en in its

�rst phase, and then executes another phase the n um b er of times giv en b y that tok en. F or

example, Buc k's iota actor reads a con trol tok en with v alue n , then outputs the sequence

of in tegers from 1 to n inclusiv e. As a phased actor, w e can write iota th us:

CHAPTER 3. D A T AFLO W PR OCESS NETW ORKS 82

1

2

á1ñ á0ñ

á0ñ á1ñ

Figure 3.14. Phase graph of iota

acto r iota �

init (0 ; 0)

sta rt f 1 g

rule 1 [n] : up date () = (1 ; n)

select () = f 2 g

rule 2 [] : up date (i; n) = (i + 1 ; n)

output (i; n) = [i]

select (i; n) = if i = n then f 1 g else f 2 g

Figure 3.14 sho ws the phase graph of iota . Not surprisingly , the actor is not phased

SDF (there are in�nitely man y cycles from the start v ertex), although it is deterministic.

Except for its consumption and pro duction v ectors, this graph is exactly the same as that

of another sp ecial class of actor, the cyclo-static synchr onous dataow (CSSDF) actors

prop osed b y Engels et al [43]. The general form of a CSSDF actor is

acto r CSSDF (n) �

init (0 ; 0)

sta rt f 1 g

rule 1 p

1

: up date () = (1 ; n)

output () = o

1

select () = f 2 g

rule 2 p

2

: up date (i; n) = (i + 1 ; n)

output (i; n) = o

2

select (i; n) = if i = n then f 1 g else f 2 g

Compared to iota , this actor has its v alue of n supplied as a parameter, instead of

b eing read from an input. Although this actor is SDF, the de�nition of phased SDF cannot

CHAPTER 3. D A T AFLO W PR OCESS NETW ORKS 83

recognise it as suc h. Once instan tiated and n is kno wn, the actor can b e expanded in to

n + 1 phases; in this case, the phase graph con tains only a single cycle and is recognisable

as SDF. Lau w ereins et al [85] sho w that a net w ork of CSSDF actors can b e sc heduled

statically , and that the sc hedule can ha v e (with certain assumptions ab out execution

timing) lo w er execution time than an SDF static sc hedule.

Both cyclo-static datao w and m ulti-phase in teger datao w actors are used to re-

duce the memory requiremen ts required b y a statically-generated sc hedule. Buc k extends

sc heduling tec hniques dev elop ed for b o olean datao w (switc h and select are the canonical

b o olean datao w actors) to determine if a graph con taining in teger datao w actors has

b ounded sc hedules, and to \cluster" a graph in order to extract con trol structures suc h as

for -lo ops and do-while lo ops [26].

3.3.5 Execution mec hanisms

Phased-form actors are non-strict. In this section, I examine the implications for dynamic

sc heduling of phased-form actors; in the next I will lo ok at the implications for net w orks.

So far, I ha v e not sp eci�ed an y restrictions on the gran ularit y of phases. F or example,

sumsqrs could also ha v e b een written

acto r sumsqrs �

sta rt f 1 g

rule 1 ([x] ; [y]) : [x

2

+ y

2

] ! f 1 g

whic h is the same as the standard-form v ersion and is th us strict. Phased-form is more

useful if the actor ful�ls these (informal) criteria:

1. It consumes the minim um n um b er of input tok ens needed to pro duce a single output

tok en;

2. it outputs that tok en \as so on as p ossible" and p erforms no further computation; and

3. it outputs an y other tok ens that can b e output without p erforming an y further com-

putation.

The criteria, if met, ensure that an actor p erforms only the minim um amoun t of input,

output, and computation necessary to k eep data o wing through the graph. Consider

CHAPTER 3. D A T AFLO W PR OCESS NETW ORKS 84

the e�ect on a data-driv en sc heduler: since input patterns con tain only irrefutable tok en

patterns, a sc heduler need only coun t a v ailable tok ens, not read their v alues. The sc heduler

can th us �re an y actor that has su�cien t input tok ens (and output space, if bu�ers are

b ounded) for one of its eligible rules.

Demand-driv en execution is also p ossible. A phased-form actor is lik ely to p erform

less w ork than a strict actor eac h time it is �red. Let j b e the output c hannel on whic h a

tok en is demanded. The tar get phase set �

t

of a q -phase actor is:

�

t

= f � j � f 1 : : : q g ; P [[�]](j) > 0 g

T o meet the demand, the actor m ust execute an y path � from an elemen t of the curren t

eligible phase set �

c

to an elemen t of �

t

:

� 2

[

f paths (a; b) j a �

c

; b �

t

g

Note that the v alue of j cannot a�ect the path tak en b y the actor|there is no mec ha-

nism b y whic h the actor can kno w on whic h output data has b een demanded. This w ould

b e y et another p ossible source of non-determinism, and is I b eliev e b est a v oided.

3.3.6 Hierarc h y and strictness

One of the issues raised b y Lee in his examination of datao w actors [87] is the datao w

equiv alen t of pro cedural abstraction. The natural c hoice for this role is the datao w

net w ork, and blo c k-diagram systems suc h as Ptolem y hierarc hically comp ose actors of

net w orks of actors. As Lee p oin ts out, ho w ev er, the seman tics of a hierarc hical SDF actor

are not in fact the same as the net w ork of actors it represen ts.

Consider the hierarc hical actor N of �gure 3.15a, where comp onen t actors A and B are

homogeneous, strict, actors. Considered alone, N is a �ne example of a homogeneous, strict

actor. When connected in the net w ork of �gure 3.15b, ho w ev er, the net w ork deadlo c ks:

N cannot �re b ecause its top input has no data, and its top output cannot pro duce data

un til it �res. Of course, this is no di�eren t from ho w an y other strict 2 � 2 actor w ould

b eha v e. It is, ho w ev er, di�eren t from ho w N 's in ternal net w ork w ould b eha v e if it w ere

substituted in place of N . In that case, B could �re, pro ducing a tok en on the top output;

CHAPTER 3. D A T AFLO W PR OCESS NETW ORKS 85

(a) (b)

A

B

N

N

Figure 3.15. Deadlo c k of a hierarc hical actor: a) the actor net w ork; b) a deadlo c k ed

net w ork

A could then �re, pro ducing a tok en on the b ottom output; the cycle w ould then rep eat.

Ptolem y side-steps this problem b y expanding all hierarc hical actors b efore sc heduling.

Nonetheless, it is somewhat unsatisfactory .

A phased v ersion of this actor, sa y N

0

, allo ws computation to pro ceed b efor e receiving

all of its input. Supp osing for simplicit y that A and B are stateless and writing, for

example, A (x; y) to mean the tok en pro duced b y �ring A with input tok ens x and y , w e

can write N

0

as

acto r N

0

�

init 0

sta rt f 1 g

rule 1 ([] ; [y]) : up date (s) = y

output (s) = ([B (y)] ; [])

select (s) = f 2 g

rule 2 ([x] ; []) : output (s) = ([] ; [A (x; s)])

select (s) = f 1 g

When placed in to the net w ork of �gure 3.15b, N

0

do es not deadlo c k|it b eha v es in the

same w a y as its in ternal net w ork w ould if connected the same w a y . N

0

can �re rule 1 (B)

when it has data on the b ottom input; in the next phase, it can �re rule 2 (A), consuming

a new input tok en as w ell as the tok en receiv ed in the previous phase; it then rep eats the

cycle. Phased form th us o�ers the promise of consisten t seman tics of hierarc hical actors

and their corresp onding net w orks.

An algorithm to �nd the phased form of a hierarc hical actor is an op en researc h prob-

CHAPTER 3. D A T AFLO W PR OCESS NETW ORKS 86

(a) (b)

A1B1

B2

B3

A1
B1

B3

select

1 5

2

3 4

6 7
B2

A

B

Figure 3.16. A phased net w ork example: a) net w ork graph; b) phase graph

acto r NET �

init 0

sta rt f 1 ; 5 g

rule 1 ([] ; [x] ; []) : up date () = A (x)

select () = f 2 g

rule 2 ([b] ; [] ; []) : output () = []

select () = if b then f 3 g else f 4 g

rule 3 ([] ; [] ; []) : output (a) = [a]

select (a) = f 1 ; 5 g

rule 4 ([] ; [] ; [y]) : output () = [y]

select () = f 2 g

rule 5 ([b] ; [] ; []) : output () = []

select () = if b then f 6 g else f 7 g

rule 6 ([] ; [x] ; []) : output () = [A (x)]

select () = f 1 ; 5 g

rule 7 ([] ; [] ; [y]) : output () = [y]

select () = f 1 ; 5 g

Figure 3.17. The example phased net w ork as a phased-form actor

CHAPTER 3. D A T AFLO W PR OCESS NETW ORKS 87

lem. The goal is to �nd an algorithm that appro ximates at compile-time the set of p ossible

run-time b eha viours of the net w ork. T o illustrate, �gure 3.16a is an example hierarc hical

actor, called sa y NET , and �gure 3.16b is its phase graph if actor A is homogeneous and

stateless. Eac h phase of NET represen ts one or more phases of A or B . The phased

form description of the net w ork (obtained b y tracing execution of the net w ork b y hand)

is sho wn in �gure 3.17.

3.4 Summary

This c hapter has made t w o con tributions to datao w theory . The �rst is a seman tics of

datao w pro cess net w orks. Giv en a description of an actor's �ring function, the seman tics

giv es the precise meaning of the datao w pro cess formed b y that actor. The seman tic

description is not, ho w ev er, as concise or elegan t as I w ould lik e; in future w ork, I w ould

lik e to re-form ulate the seman tics to mak e it more so.

The second con tribution is the description of phased actors. Although the seman tic

description is incomplete, this w ork nonetheless o�ers a new c haracterisation of datao w

actors, with in teresting indications for further w ork. In particular, the task of determin-

ing the phased form of a complete net w ork should pro v e c hallenging. It remains to b e

seen whether phased-form actors will lead to more e�cien t sc heduling of certain kinds of

datao w actors and net w orks, or whether they can only b e a descriptiv e to ol.

The formal description of actors has also pa v ed the w a y for follo wing c hapters: in

section 3.2.5, I argued that an y datao w actor can b e implemen ted with �v e sc hema. If

w e can implemen t functions that corresp ond to these sc hema, then an y function that can

b e expressed in terms of those functions can b e translated in to a datao w net w ork.

Chapter 4

Visual Hask ell

Visual Hask ell is a visual, datao w-st yle language based on Hask ell. Its in ten t is to ul-

timately pro vide a complete visual syn tax for Hask ell, for use as a program visualisation

to ol, as w ell as a programming language in its o wn righ t. In b oth of these roles, it is

complemen tary to Hask ell's standard textual form, not a replacemen t or \impro v ed" no-

tation. Presen tly , only part of Hask ell is supp orted (notable omissions are class and t yp e

declarations). Ev en so, it is su�cien tly w ell-dev elop ed to b e useful.

Visual Hask ell ev olv ed out of a need to explain some of the w ork in this thesis to

non-functional-programmers. It b egan as an ad-ho c notation for \dra wing" functional

programs (see [114]); later, Ken Da wson of UTS implemen ted a protot yp e editor for this

language [41], stim ulating its dev elopmen t in to a more precise and usable language.

The st yle of Visual Hask ell is based on datao w: programs are describ ed as data

and function b o xes, connected b y arcs represen ting o w of data. It is in some w a ys a

sup erset of datao w, supp orting not only \structured datao w" [82] constructs suc h as

conditionals and c ase -statemen ts, but also pattern-matc hing, higher-order functions, and

scoping. And it has Hask ell's p olymorphic t yp e system, although no visual notation for

it. Because, ho w ev er, of its lexical scoping, unrestricted Visual Hask ell programs do lose

one of the k ey adv an tages of datao w: explicit data-dep endencies throughout the whole

program.

Of particular in terest in Visual Hask ell is the w a y it handles higher-order functions:

b ecause Visual Hask ell is curried, higher-order functions are as easy to construct as �rst-

order functions. There is no need for sp ecial \function slots" [99], and no enforced distinc-

88

CHAPTER 4. VISUAL HASKELL 89

tion b et w een �rst-order and higher-order functions as in VisaVis [110]. An y construct|a

c ase -expression, sa y|can b e a function, and can b e applied in the same w a y as a named

function.

The next t w o sections briey surv ey w ork on visual languages, and then in tro duce

Visual Hask ell b y example. F ollo wing sections formally giv e the syn tax of Visual Hask ell

as a translation from Hask ell's abstract syn tax in to a concrete visual syn tax.

4.1 Related w ork

Visual programming languages (VPLs) are relativ ely new. Although still the sub ject of

disagreemen t on their w orth, there are nonetheless man y \real-w orld" pro jects that use

visual programming [29]. The success of these systems indicates v ery strongly that visual

programming|if applied to appropriate problem domains and supp orted b y appropriate

to ols|o�ers a kind of understanding that is absen t in purely-textual languages.

Tw o of the most successful in terface paradigms in visual programming languages are

dataow and forms [80]. In signal pro cessing, datao w visual languages ha v e b een used

for some y ears [17 , 88], b ecause of the common use of blo c k diagrams in describing signal

pro cessing systems. They ha v e b een used successfully in other �elds as w ell, suc h as

image pro cessing and instrumen tation [112]; Hils [59] surv eys a n um b er of datao w visual

languages. A form is a la y out of cells, eac h con taining a form ula that computes its v alue,

usually in terms of the v alues of other cells. Man y datao w languages use forms as w ell as

datao w: Ptolem y [88], for example, uses a form to en ter actor parameters, and datao w

to connect streams; Lab view [82] uses forms as \fron t panels" for \virtual instrumen ts."

Informal diagrammatic notations ha v e b een used to describ e or explain functional

programs for some time. Reade [113], for example, explains function application using

b o x-and-arro w diagrams; Kelly [78] illustrates net w orks of streams and pro cesses written

using an annotated pure functional language; W augh et al [152] illustrate the e�ect of

program transformation on parallelism.

There ha v e also b een prop osals for formal visual functional languages. Cardelli [31]

prop osed a visual functional language in whic h function application is denoted b y juxta-

p osition of a function name with its argumen ts; brac k eting is denoted b y con taining b o xes;

pattern-matc hing can select one of sev eral expressions; bindings are denoted b y placing a

CHAPTER 4. VISUAL HASKELL 90

n nn

Figure 4.1. The factorial function in Cardelli's language

left-p oin ting arro w b et w een a name and an expression. Figure 4.1 sho ws this de�nition of

the factorial function in Cardelli's language:

fact 0 = 1

fact (n+1) = (n+1) * fact n

There are t w o frames: one for eac h clause. In the top frame, the v ertical bar represen ts

zero, the b o x one. In the b ottom frame, the hea vy rectangle attac hed to the ellipse

represen ts \ +1 ". Bo xes enclosing argumen ts \p oin t" to the function applied to them. The

whole expression is b ound to the icon \!".

Cardelli suggests that the visual language is most useful when itself applied to the

manipulation of t w o-dimensional data structures. He giv es examples of manipulations

on b o xes con taining c haracters and other sym b ols, and of functions whic h place a frame

around a b o x, and whic h decomp ose a comp ound b o x in to a list of its comp onen ts.

Although not a functional language, Na jork and Golin's visual datao w language ESTL

(Enhanced Sho w-and-T ell) [99] has man y similar features, including higher-order functions

and a p olymorphic t yp e system. A k ey concept in ESTL is inc onsistency : an arc that

passes through an inconsisten t b o x cannot carry data. F or example, �gure 4.2 illustrates

the factorial function in ESTL. T o the left is its t yp e declaration: factorial is a function

from in tegers to in tegers. The main b o x is split in to t w o sub-b o xes. In the left one, the

input data o ws in to a b o x lab elled \0"; if the input data is zero, then the b o x's v alue,

one, is passed to the output. Otherwise, the b o x is inconsisten t and pro duces no data. On

the righ t, the data o ws in to the predicate b o x \ > 0"; pro vided the input datum satis�es

the predicate, the con taining b o x is not inconsisten t, and data o ws to pro duce an output

v alue. If the datum is zero, then the b o x is inconsisten t and pro duces no data.

Inconsistency is th us used to p erform the role of conditional execution; together with

CHAPTER 4. VISUAL HASKELL 91

Z

Z
0

1

Ð1 Z >0

Z

Z

Figure 4.2. The factorial function in ESTL

ESTL's structured t yp e notation, it also p erforms pattern-matc hing. Iteration is also

go v erned b y inconsistency: the iteration construct rep eatedly applies its in ternal datao w

graph to its previously-pro duced data for as long as the graph is consisten t.

Higher-order functions are supp orted b y function slots, in whic h a function icon is

placed inside the icon of a higher-order function. Visual Hask ell's argumen t slots (sec-

tion 4.5.1) are a generalisation of ESTL's function slots. ESTL also includes a visual

notation for a p olymorphic t yp e system; this ma y b e a go o d starting p oin t for Visual

Hask ell's missing t yp e notation.

P oswig et al describ e VisaVis [110], a visual functional language based on Bac kus'

functional programming language FP [11]. The language is essen tially a visual datao w

language, with explicit supp ort for higher-order functions: function argumen ts are placed

within icons of higher-order functions. The VisaVis editor, implemen ted in Smalltalk,

supp orts some in teresting concepts to mak e the act of programming easier. F or example, a

�rst-order function icon can b e dragged o v er a higher-order function icon to mak e the �rst-

order function in to an argumen t. Dragging a b o x connected to the output of a function

o v er a b o x connected to the input of a second function cause the functions to b ecome

connected b y an arc. I do not consider issues suc h as these at all in this c hapter. VisaVis

do es enforce an arti�cial (in m y view) distinction b et w een �rst-order and higher-order

functions, mainly b ecause it is based on FP .

Kelso also prop oses a visual functional language in whic h programmer in teraction

CHAPTER 4. VISUAL HASKELL 92

inuences the design of the language [79]. Expression graphs are similar to other datao w

languages; ho w ev er, inputs to the expression are connected to terminator no des con taining

the argumen t t yp e; outputs are connected to terminator no des lab elled with the t yp e of

the en tire expression (that is, a function t yp e). Application of a function to an argumen t is

ac hiev ed b y dragging an output no de on to an input no de. Sub-expressions can b e collapsed

in to a single no de. Mec hanisms suc h as this are imp ortan t to reduce the \clutter" of

complex visual expressions.

Visual languages cannot b e represen ted b y con v en tional grammars and other means of

describing programs, and are often describ ed b y example. There is, ho w ev er, an increasing

amoun t of w ork on grammars for visual syn tax; this is particularly relev an t to w ork on au-

tomatic generation of visual language parsers, as in [37]. Golin and Reiss [53], for example,

use a \picture la y out grammar." The underlying grammar mo del is based on m ultisets

to eliminate the ordering implicit in textual grammars. A n um b er of primitiv e op erators

sp ecify relationships b et w een pictures|for example, the pro duction A ! con tains (B ; C)

matc hes a picture with a pro duction C inside a pro duction B . More complex pro ductions

can b e de�ned in terms of these op erators, together with additional constrain ts on picture

attributes.

A more general formalism, conditional set rewrite systems (CSRS), is prop osed b y

Na jork and Kaplan [101]. A CSRS consists of a set of rewrite rules on sets of terms, eac h

go v erned b y a predicate on terms. F or example, the rewrite rule

b o x (b) ; n um (n; p) ! fb o x (b) ; if inside (p; b)

states that b is a \�nished b o x" if a n um b er is lo cated inside it. If, using this rewrite rule

together with sev eral others, a picture can b e rewritten to a single �nished b o x, then it is

v alid in the visual language de�ned b y the rewrite rules. Na jork and Kaplan sho w ho w

a CSRS can b e used not only to sp ecify visual syn tax, but also (with a di�eren t set of

rewrite rules) to tr anslate a picture in to a textual language. They also sho w that a CSRS

can sp ecify a three-dimensional visual language (presumably motiv ated b y their w ork on

Cub e, a three-dimensional logic programming language [100]).

F ollo wing sections of this c hapter will touc h on di�erences b et w een Visual Hask ell and

visual datao w languages. One of motiv ations for using a functional language in this

CHAPTER 4. VISUAL HASKELL 93

thesis is the apparen t corresp ondence b et w een functional languages and datao w. This

is highligh ted b y the fact that languages for programming datao w mac hines are often

functional [1]. On closer examination, ho w ev er, there are some imp ortan t di�erences.

Am bler et al , in their surv ey and comparison of programming paradigms [4], highligh t

some of the di�erences b et w een the functional and datao w paradigms. Because pip eline

datao w op erates on streams of data, its ev aluation mec hanism is neither strict nor non-

strict (see section 5.3). F unctions are not �rst-class ob jects in datao w, whereas they are

in Visual Hask ell|�gure 4.17a, for example, sho ws a function v alue (a partially-applied

� -abstraction) o wing along an arc.

Am bler et al do not commen t on structuring mec hanisms for datao w, suc h as de-

scrib ed b y Ko dosky at al [82]. As I p oin t out in section 4.4.2, Visual Hask ell includes

some mec hanisms similar to those used in structured datao w languages, but more gen-

eral. On the do wn-side, these constructs ma y in terfere with datao w sc hedulers and so

on, since the \o w" of data in to these constructs is not alw a ys explicit. Another p o w er-

ful feature of functional languages that is rare in datao w languages is pattern-matc hing,

although ESTL [99] and CUBE [100] b oth supp ort a form of pattern-matc hing.

Finally , a k ey di�erence b et w een functional and datao w languages is the treatmen t of

I/O. In a functional language, I/O is p erformed in t w o k ey w a ys [44]: i) b y calling system

primitiv es with lazy lists represen ting the whole history of input or output; or ii) b y calling

system primitiv es with a con tin uation function. Recen tly , the idea of monadic I/O [73]

has b een adopted: this tec hnique is sup er�cially similar to con tin uations; ho w ev er, the

external \w orld" is single-threaded through the I/O co de, allo wing I/O to b e p erformed

immediately as a side-e�ecting op eration. In con trast, datao w languages p erform I/O

with sp ecial no des that pro duce or consume streams.

4.2 An in tro duction to Visual Hask ell

Visual Hask ell is essen tially a visual datao w language: functions are represen ted b y named

b o xes, and function application b y arcs b et w een b o xes. Figure 4.3 sho ws the Visual Hask ell

form of the follo wing v ersion of the factorial function (from section 2.2):

fact n | n == 0 = 1

CHAPTER 4. VISUAL HASKELL 94

n

n

1

1

fact

n

n

0

Figure 4.3. The factorial function in Visual Hask ell

| otherwise = n * fact (n - 1)

A function de�nition is displa y ed in its o wn windo w, indicated b y the shado w ed

rounded rectangle. The name of the function, fact , and its icon, a st ylised \!" c haracter,

are displa y ed in the windo w's title bar.

On the inside righ t of the windo w frame are the input patterns; in this case, there

is only one, n . On the inside left are the result p orts : the expressions connected to this

p ort are the result v alues of the function. The guarded alternativ es are separated b y a

dashed line. A t the top righ t, for example, is the guard n == 0 . (I use iconic, not textual,

represen tations for binary op erators. F or example, = instead of == , and � instead of * .)

The b o xes for n and 0 are adjacen t to the b o x for == ; this is an alternativ e notation to

connecting b o xes with arcs. The result expression|in this case, just the constan t 1, is

connected to a result p ort. Belo w the dashed line, the otherwise condition is \dra wn" as

blank space. Note the recursiv e call to fact , denoted b y its icon.

P attern bindings are sho wn b y connecting an arc from an expression to a pattern

graphic. The binding

twopi = 2 * pi

is sho wn in �gure 4.4a. (A v ariable is the simplest pattern.) Note that the p ort on the

pattern is semi-circular instead of triangular, and that the arc to a pattern p ort do es

not ha v e an arro w. P atterns can b e nested: they lo ok rather lik e an expression dra wn

\bac kw ards." F or example, �gure 4.4b sho ws the pattern

((x,y) : z : zs) = ...

The b o x divided b y the jagged line is the pair constructor, and the tall narro w b o x is a

list constructor. Note that patterns can either b e connected b y an arc, or juxtap osed in

CHAPTER 4. VISUAL HASKELL 95

(a) (b)

x

y

z

zs

2

pi
twopi

Figure 4.4. P atterns

map

[]

f

f

f

x

xs

[]

f

Figure 4.5. The map function

the appropriate lo cation.

Figure 4.5 sho ws the follo wing de�nition of Hask ell's map function:

map f [] = []

map f (x:xs) = f x : map f xs

As b efore, the function name and icon app ear in the windo w's title bar. This time,

ho w ev er, the function de�nition has t w o clauses, separated in the visual syn tax b y a solid

horizon tal line. Note the use of the list constructor icon as a pattern at the righ t-hand side

of the lo w er clause, as w ell as as a data constructor to w ards the left of this clause. The

recursiv e call to map is denoted b y the double-b o x icon. Its �rst argumen t, f , is sho wn

inside the icon itself. This is an example of an argumen t slot|see section 4.5.1.

The \icons" I use in this thesis are rather plain for ease of dra wing|more in teresting

icons w ould b e used in a real graphical dev elopmen t system. Figure 4.6 sho ws the icons I

use for some of the Hask ell standard-prelude data constructors, while �gure 4.7 sho ws icons

for some standard-prelude functions on lists. Data constructors lik e Tuple

2

are pro duced

CHAPTER 4. VISUAL HASKELL 96

a) Tuple
2

b) Tuple3

1
c) Cons

2
d) Cons h) (:+)

g) (:/)2
e) List

3
f) List

Figure 4.6. Icons for some standard prelude data constructors

(a) map

(b) zipWith

(c) foldl

(d) foldr

(e) scanl

(f) scanr

Figure 4.7. Icons for some standard prelude functions

b y the desugaring translation (section 4.3.4).

The c hoice of iconic notation is I think a v ery p ersonal one and one not readily system-

atised. In m y c hoice of icons, I ha v e used a visual theme to represen t a class of icons and

v arious (and arbitrary) decorations) to indicate sp eci�c icons. F or example, a doubled

b o x indicates a higher-order function o v er lists; higher-order functions o v er v ectors (in

c hapter 5) ha v e the obscured b o x �lled blac k. Note that Visual Hask ell do es not dep end

on icons: they are \syn tactic sugar," and an y Visual Hask ell program can b e dra wn with

lab elled b o xes (the plain syn tax describ ed in section 4.4) instead of icons. Although ex-

cessiv e use of icons can certainly obscure program meaning to one unfamiliar with them,

I b eliev e that familiarit y with a consisten tly-designed icon set yields a great impro v emen t

in ease of program understanding.

An icon-lik e annotation is also used in arcs to indicate t yp e. F or example, list-carrying

arcs are decorated with an asterisk-lik e annotation. These annotations are a useful visual

aid to program understanding, although I ha v e not y et formalised their represen tation.

CHAPTER 4. VISUAL HASKELL 97

f g h

Figure 4.8. F unction comp osition

Inciden tally , I am in the habit of dra wing Visual Hask ell expressions so that the data

o w is from righ t to left. The reason is simple: this is the same direction in whic h data

\o ws" in textual programs. F or example, in f � g � h , data \o ws" through h , g , and then

f |see �gure 4.8. Visual Hask ell, ho w ev er, do es not care ab out the direction, and some of

the diagrams in this thesis use left-to-righ t data o w instead.

A protot yp e visual editor w as constructed b y Ken Da wson as an undergraduate pro ject

[41]; the editor indicates that a t w o-view dev elopmen t system based on Visual Hask ell is

feasible. One in teresting p oin t noted during the construction of this protot yp e is that a

visual parser is not needed to in terpret visual programs. The protot yp e editor builds a

graph represen ting the Visual Hask ell program as the user \dra ws" the program. The

editor is syn tax-driv en: in an y giv en con text, the editor only allo ws the user to dra w

pictures that mak e sense in Visual Hask ell. T o generate Hask ell co de from a completed

Visual Hask ell function, the system tra v erses the graph, generating (linear) Hask ell co de

on the w a y|there is nev er an y need to p arse a t w o-dimensional picture. Cardelli made

m uc h the same observ ation, although his system translated abstract syn tax trees in to

visual represen tations [31].

Despite the fact that Visual Hask ell do es not include all of Hask ell, Da wson's system

w as able to generate executable Hask ell functions. The t yp e declaration for eac h function

w as inserted textually in to a form asso ciated with the function; other information in the

form included the n um b ers of inputs and outputs. During generation of textual Hask ell, the

function t yp e w as simply written v erbatim to the output �le. Although Da wson's prin ter

w ould only prin t acyclic graphs, this is an o v ersigh t that w ould b e simple to correct.

4.3 Visual syn tax prelimi naries

Because Visual Hask ell w as designed to b e an alternativ e notation for Hask ell, this c hapter

sp eci�es Visual Hask ell in terms of Hask ell. Although this approac h ma y limit the scop e of

concepts that can b e used in or in tro duced in to this visual language|for example, ESTL's

CHAPTER 4. VISUAL HASKELL 98

concept of inconsistency|it do es ha v e some adv an tages:

{ Hask ell has p o w erful features not found in visual datao w systems: p olymorphism and

higher-order functions are t w o examples.

{ It is lik ely to b e easier to precisely de�ne the seman tics of Visual Hask ell in terms of

Hask ell's seman tics, than attempting to de�ne a new seman tics from scratc h.

{ It mak es the notion of a \t w o-view" dev elopmen t system [121] feasible.

{ Visual Hask ell programs can b e executed b y standard Hask ell compilers and in ter-

preters; all that is required is a translator from visual to textual syn tax.

The remainder of this section describ es the means b y whic h the visual syn tax is sp ec-

i�ed.

4.3.1 Visual elemen ts

A Visual Hask ell program is comp osed of man y visual elemen ts, arranged on pap er or on

a computer screen. The surface on whic h elemen ts are arranged is called the c anvas (from

[103]). An y v alid program fragmen t is a pict (short for \picture"). Picts are recursiv ely

comp osed of simpler picts, and ultimately of primitiv e picts|b o xes, icons, lines, strings,

and so on. There are t w o sp ecial kinds of primitiv e pict: p orts and ar cs . Ports serv e as

connection p oin ts b et w een picts. Output p orts (�gure 4.9a) are triangular if they carry a

non-function v alue, and rectangular if they carry a function. Input p orts (�gure 4.9b) are

triangular in expressions, and semi-circular in patterns. A r cs join picts via their p orts.

There are t w o kinds of arcs: data ar cs (�gure 4.9d) are used in expressions, while binding

ar cs (�gure 4.9e) are used in patterns.

There are three k ey w a ys of comp osing complex picts. Tw o picts are attache d if they

are lo cated immediately adjacen t to eac h other (�gure 4.9f). Ev ery p ort, for example,

is attac hed to a pict of some kind. Picts are c onne cte d if there is an arc from a p ort of

one to a p ort of another (�gure 4.9d and e); the connected picts, the p orts, and the arc

together form a new pict. And a pict c ontains another if the second is wholly enclosed

b y the �rst (�gure 4.9c). Nic k erson [102] claims that these three constructions|whic h he

calls adjoinment , linkage , and c ontainment |accoun t for the ma jorit y of diagrams used

in computer science.

CHAPTER 4. VISUAL HASKELL 99

(d) (e) (f)

(a) (b) (c)

Figure 4.9. Simple visual elemen ts: a) output p orts; b) input p orts; c) con tainmen t; d)

data connection; e) pattern connection; f) adjoinmen t

4.3.2 Sp ecifying the visual syn tax

The syn tax of Visual Hask ell is sp eci�ed as a translation from Hask ell's abstract syn tax to

a concrete visual syn tax. The abstract syn tax used in this c hapter is giv en in �gure 4.10.

As far as a syn tax of Hask ell go es, it is b y no means complete, but it is enough for the

purp oses of this c hapter. Some p oin ts to note:

{ Sub-scripts distinguish unique o ccurrences of eac h pro duction.

{ F unctions lik e Tuple

2

and Cons

1

are pro duced b y a de-sugaring translation (sec-

tion 4.3.4). In Hask ell, these are equiv alen t to (;) and (:) resp ectiv ely .

{ A binary op erator (op) enclosed in paren theses is treated as though it w ere a function

iden ti�er. The de-sugaring translation translates all op erators in to this form.

{ The constan t pro duction (k) also includes oating-p oin t literals, c haracter literals, and

string literals. String literals are treated as constan ts instead of as lists of c haracters.

{ The umatch and gmatch pro ductions represen t Hask ell's \matc h" phrases|see sec-

tion 4.4.5.

{ A semi-colon indicates concatenation. F or example, the binding d

1

; d

2

con tains t w o

bindings (eac h of whic h ma y itself b e a series of bindings).

{ Square brac k ets indicate an optional part. In the visual syn tax, optional non-terminals

are sho wn as though they w ere presen t; it is understo o d that visual non-terminals are

actually presen t only if the textual ones are.

CHAPTER 4. VISUAL HASKELL 100

v ! (non-function iden ti�er) V alues

f ! (op) j (function iden ti�er) F unction names

k ! 0 j 1 j : : : j [] j () j : : : Literal constan ts

c ! Tuple

2

j Cons

1

j : : : Data constructors

op ! + j - j / j * j :+ j :/ j : : : Binary op erators

p ! v j k j c j f j p

1

p

2

j v @ p P atterns

e ! v j k j c j f Expressions

j e

1

e

2

j e

1

. e

2

j let d in e

j n umatch

j case e of match

1

; : : : ; match

k

j if g

1

then e

1

else if � � � else e

k

g ! e Bo olean guards

d ! d

1

; d

2

Bindings

j p = e

j p = e where d

j p | g

1

= e

1

; � � � ; | g

k

= e

k

[where d]

j f match

1

; : : : ; f match

k

match ! umatch j gmatch Matc h phrases

Figure 4.10. Hask ell's abstract syn tax

{ The bac kslash used in the � -abstraction is not in constan t-width t yp eface. It should

b e, but I am unable to get L

a

T

E

Xto pro duce it.

The translation from abstract syn tax to a picture is brok en in to three passes:

1. A textual de-sugaring pass (section 4.3.4). This remo v es some of Hask ell's syn tactic

sugar to reduce the n um b er of sp ecial cases. F or example, in�x op erators are c hanged

to pre�x functions, and sp ecial syn tax for lists and tuples is c hanged in to data con-

structors.

2. A translation from Hask ell's abstract syn tax in to the core visual syn tax (section 4.4).

Eac h pro duction is rewritten in to a concrete visual syn tax.

3. A selectiv e \visual sugaring" translation (section 4.5.1), in whic h a picture in core

syn tax is mo di�ed to impro v e its app earance and la y out.

The visual syn tax is quite abstract|it do es not sp ecify details suc h as the exact p o-

sition of picts on the can v as, but only the top ological relationships b et w een them. F or

example, it states that t w o picts are connected, but do es not state their relativ e or absolute

CHAPTER 4. VISUAL HASKELL 101

p ositions on the can v as. The exact la y out and p ositioning of picts will, w e shall assume, b e

decided b y some other mec hanism called the layout manager . The la y out manager will b e

some form of automatic graph dra wing or screen la y out algorithm, assisted in teractiv ely

b y a user.

4.3.3 A simple visual language

T o assist in the notation of and motiv ation b ehind the visual syn tax and sugaring sections

(sections 4.4 and 4.5.1), I will giv e an example of a v ery simple language. Consider the

follo wing expression language, whic h has only v ariables, and functions of arit y 1:

v ! (non-function iden ti�er)

f ! (function iden ti�er)

e ! v j f e

In a p ositional grammar approac h, the visual syn tax of this language could b e sp eci-

�ed using primitiv e visual op erations. Supp ose that the primitiv es vb o x and fb o x describ e

particular kinds of b o xes used for v ariables and functions. The op eration name pro duces

the displa y able string represen ting its argumen t; con tains and connect represen t the con-

tainmen t and link age relations. Then, w e could write

v ! con tains (vb o x ; name (v))

f ! con tains (fb o x ; name (f))

e ! v j connect (e; f)

Although I could translate Hask ell's abstract syn tax in to a grammar suc h as this, I ha v e

c hosen a more direct approac h|the result of the translation is a visual represen tation,

not just a textual description of one. Figure 4.11a giv es the rewrite rules for the simple

language. The �rst t w o rules are straigh t-forw ard: v ariables are represen ted b y a grey b o x

with a single output p ort; functions b y a larger white b o x with one input p ort and one

output p ort. The name of an iden ti�er enclosed in quotes is meta-syn tax for the equiv alen t

displa y able string.

CHAPTER 4. VISUAL HASKELL 102

(b)

xf
g

v Þ ÒvÓ

f Þ Ò f Ó

Þf e f e

(c)

v Þ ÒvÓ

f Þ Ò f Ó

Þf e f e

(a)

Figure 4.11. The visual syn tax of a simple language: a) translation rules; b) a simple

sen tence; c) translation rules with p ort matc hing

No w, the third rule rewrites function application. A diamond-shap ed graphic repre-

sen ts a visual non-terminal |that is, the visual equiv alen t of the pro duction with whic h it

is lab elled. Ev ery visual elemen t other than non-terminals is c oncr ete visual syntax |that

is, elemen ts that b ecome part of the picture. In this case, the only suc h elemen t is the arc

that connects the output p ort to the input p ort. By recursiv ely applying the rewrite rules,

the complete picture is pro duced; �gure 4.11b, for example, is the picture that represen ts

the sen tence f (g x).

With currying and functions of more than one argumen t, this simple approac h do esn't

w ork. Tw o new concepts are needed: live and de ad p orts; and matching against already-

existing p orts. I will illustrate these concepts with a more complex visual syn tax for the

same language; functions with m ultiple argumen ts are left un til section 4.4.1.

Figure 4.11c giv es the translation rules with p ort matc hing. When a v ariable or func-

tion is encoun tered, it is created with live p orts; these are coloured grey . No w, when t w o

ob jects are connected, the connected p orts are kil le d , and b ecome blac k. The di�cult y is

that the p orts already exist: if I dra w them as blac k p orts, then they will b e new additions

to the picture, and the picture will end up with grey p orts and blac k p orts. By matc hing

against existing p orts, w e can a v oid this di�cult y . Consider the input p ort of e in the

third rule of �gure 4.11a: it is blac k, and partially obscures another grey p ort. In order to

CHAPTER 4. VISUAL HASKELL 103

(b)

(a) (c)

ÒvÓ

Ò f Ó

Û v

fÛ

ÒvÓ

ÒvÓ

³ 0

³ 1

Û ÒvÓ

xf g

xf

x
g

ff

ff

Figure 4.12. Sugaring the simple language: a) the sugaring rules; b) b efore sugaring; c)

after sugaring

apply this rewrite rule, the obscured grey p ort m ust matc h a grey p ort on e . The result

picture con tains the obscuring p ort|that is, the blac k one. In con trast, the output p ort

of f matc hes a liv e p ort, and remains liv e.

Note that the reason for p ort matc hing is to mak e it easier to supp ort curried functions,

not merely to c hange the colour of connected p orts! Although this seems complex at �rst,

it has remo v ed the need to translate Hask ell in to an in termediate language, as in an earlier

pap er [117].

Ha ving translated a program in to a picture, it is unlik ely that this picture will b e as

app ealing as it could b e. Icons, for example, are a p opular ingredien t in visual in terfaces.

W e migh t also seek to remo v e redundancies left o v er from textual notation: m ultiple

b o xes for the same v ariable, for example. These c hanges to the picture do not a�ect its

meaning, but are a kind of visual \syn tactic sugar." This kind of mo di�cation is expressed

with a set of bi-directional rewrite rules. Figure 4.12a sho ws a suitable set for the simple

language. The �rst t w o rules allo w a v ariable or function b o x to b e replaced with an

icon|the squiggly graphic is meta-syn tax for the icon represen ting the ob ject with whic h

it is lab elled. The third rule allo ws a v ariable b o x to b e \shared" b et w een applications.

1

In all rules, the left pro duction is pro duced b y the translation in to core syn tax, and the

righ t is the alternativ e form. All rules are rev ersible, hence the double-ended arro ws.

A sugaring rewrite is allo w ed only if the result is acceptable to the la y out manager. If,

1

T o b e p edan tic, the language as giv en is to o simple to ev en allo w m ultiple v ariable o ccurrences. Assume

that there are other pro ductions that I ha v e omitted.

CHAPTER 4. VISUAL HASKELL 104

e

1

: � � � : e

n

: e) Cons

n

e

1

� � � e

n

e (4.1)

(e

1

; : : : ; e

n

)) Tuple

n

e

1

� � � e

n

(4.2)

[e

1

; : : : ; e

n

]) List

n

e

1

� � � e

n

(4.3)

e

1

� f � e

2

) f e

1

e

2

(4.4)

e

1

op e

2

) (op) e

1

e

2

(4.5)

(e op)) (op) e (4.6)

(op e)) (op)

[2 ; 1]

e (4.7)

flip f) f

[2 ; 1]

(4.8)

- e) negate e (4.9)

Figure 4.13. De-sugaring rules

for example, there is no icon de�ned for a particular function, then the la y out manager

will simply a v oid that particular transformation; if merging t w o v ariable b o xes causes an

arc to cross another, then the merge will b e disallo w ed. In other w ords, the sugaring rules

are used selectiv ely and in telligen tly . T o illustrate, �gure 4.12b sho ws a fragmen t of a

visual program in core syn tax; �gure 4.12c sho ws ho w it migh t lo ok after visual sugaring.

4.3.4 De-sugaring

The �rst phase of the translation remo v es some of Hask ell's syn tax for lists and tuples.

The rewrite rules of �gure 4.13 accomplish this. The amoun t of desugaring is minimal.

The �rst three rules (equations 4.1 to 4.3) recognise a series of comma- or cons-op erators

and com bine them in to a single constructor; this allo ws the use of more meaningful icons.

Equation 4.4 remo v es in�x op erators formed b y bac k-quoting a function. Equations 4.5

to 4.7 translate binary op erators and sections. Equations 4.7 and 4.8 pro duce a \p erm uted

function"|see page 106. Equation 4.9 translates the only unary op erator, negation.

4.4 The core syn tax

The core syn tax of Visual Hask ell is sp eci�ed b y a set of rewrite rules from Hask ell's

abstract syn tax directly in to concrete visual syn tax, in the st yle of section 4.3.3. The use

of p orts is more complex, and this is explained in section 4.4.1. The rules are giv en in

�v e groups: simple expressions, structured expressions, patterns, bindings, and \matc h

CHAPTER 4. VISUAL HASKELL 105

phrases," in that order. Note that the recursiv e re-application of rules implicitly selects

the correct rule according to con text|that is, the rule applied for an o ccurrence of sa y v

is selected according to whether v o ccurs in an expression or a pattern.

4.4.1 Simple expressions

This section giv es the syn tax of simple expressions|that is, expressions that do not use

con tainmen t. This small subset of Hask ell is appro ximately equiv alen t to the language fea-

tures of pure datao w languages. Figure 4.14 giv es the rewrite rules for these expressions:

v ariables, constan ts, data constructors, function application, and function comp osition.

V ariables and constan ts (�gure 4.14a and b) are the same as in �gure 4.11c. F unction

v ariables and data constructors (�gure 4.14c and d) are also similar to �gure 4.11c, but

ha v e n input p orts, all liv e. n is the arit y of the constructor or function; from here on, n

will alw a ys mean the arit y of the whole pro duction under consideration. Unlik e the earlier

examples, ho w ev er, the output p ort is rectangular, indicating that it is function-v alued.

Visual sugaring can b e used to replace the b o xes used here with icons|see section 4.5.1.

Recall that enclosing an ob ject's iden ti�er in double quotes is meta-syn tax for its name

as a displa y able string. The name of a v ariable or function is its iden ti�er. There are some

sp ecial names: the name of a paren thesised op erator is the op erator without paren theses|

for example, the name of (+) is \+"; the names of the constan ts [] and () are \[]" and

\()"; the name of the wildcard () is a blank string.

Application of a function-v alued expression to an argumen t connects the corresp onding

picts (�gure 4.14e). Because a function-v alued expression can ha v e more than one liv e

input p ort, p ort matc hing is used to select the set of liv e p orts. This is indicated b y the

dashed line b et w een the input p orts of e

1

. The top-most liv e p ort is connected to the

argumen t pict, and is killed, c hanging its colour to blac k. This is ho w currying is handled

in the visual syn tax: eac h time an additional argumen t is supplied to a function, the next

liv e p ort is connected and killed; ev en tually , if all argumen ts are supplied, the function

b o x has no remaining liv e p orts.

P ort matc hing is also used on the output p orts of e

1

and e

2

. The output p ort of e

2

matc hes a liv e p ort, whic h can b e either triangular or rectangular, as indicated b y the

sup erp osition of the t w o shap es. The p ort is killed. The output p ort of e

1

matc hes a

CHAPTER 4. VISUAL HASKELL 106

f

k

v

nc

Þ

Þ

Þ

Þ

(a)

(c)

ÒvÓ

Ò c Ó

ÒkÓ

nÒ f Ó

(b)

(d)

Þ(g) nÒ f Ó
i1

in
f [1, ..., in]i

e1
e2

n(e) Þe1 e2

e1
e2

1

n

Þ(f) e1 . e2

Figure 4.14. Visual syn tax: simple expressions

rectangular p ort, since e

1

m ust b e a function. The result p ort is annotated with a small n :

this means that it is a triangle if n is zero, or a rectangle if n is greater than zero. Th us,

if the newly connected p ort of e

1

w as the last one|that is, the function is applied to all

its argumen ts|the p ort c hanges from a rectangle to a triangle.

Once an expression has b een used as an argumen t, it cannot ha v e an y liv e input p orts.

The blac k diamond in the lo w er corner of the e

2

non-terminal means that an y remaining

liv e p orts are killed.

F unction comp osition (�gure 4.14f) is similar to function application. Because e

1

and

e

2

m ust b oth b e functions, the matc h shap es for the output p orts are b oth rectangular.

The main p oin t to note is this: the �rst liv e p ort of the result pict is the p ort attac hed

to e

2

, not to e

1

as for function application. This is indicated b y the \1" annotation on

e

2

's input p ort. If e

1

has more than one liv e p ort, then all but the �rst also remain liv e,

and will b e connected after the p ort attac hed to e

1

. (Usually , though, e

1

will ha v e no

remaining liv e p orts.)

CHAPTER 4. VISUAL HASKELL 107

In a visual language, it is easy to apply argumen ts in arbitrary order. T o express this,

I use the sp ecial syn tax f

[i

1

; ::: ; i

n

]

to denote a function v ariable to whic h argumen ts are

supplied in a di�eren t order. The j 'th argumen t to f

[i

1

; :::; i

n

]

is the i

j

'th argumen t to

f . This I call \p erm uted application"; p erm uted functions are pro duced b y some of the

de-sugaring rules (section 4.3.4). The visual syn tax of a p erm uted function v ariable is

similar to that of a normal function, but with p ort j annotated with i

j

. These n um b ers

are concrete syn tax|that is, they app ear on the can v as. In a graphical dev elopmen t en-

vironmen t, p erm uted application w ould, I exp ect, b e used more than in standard Hask ell,

b ecause the visual represen tation do es not imp ose an order of argumen ts as a textual

represen tation do es.

An example will clarify ho w function application and comp osition w orks. Consider the

expression

((+) x . negate) y

Figure 4.15a sho ws its visual terminals; �gure 4.15b sho w three steps in the translation,

from top to b ottom. In the �rst, (+) is applied to x : the connected p orts are killed. In

the second step, this pict is comp osed with negate : the second p ort of (+) is matc hed, and

connected to the output p ort of negate . Note that the input p ort of negate remains liv e.

Finally , the pict just pro duced is applied to y : the connected p orts are killed, as exp ected.

Note also that the output p ort of (+) c hanges to a triangle, since the last input p ort of

the whole pict has just b een connected.

The alert reader ma y ha v e noticed a source of am biguit y here: the picture at the b ot-

tom of �gure 4.15b could also represen t x + (negate y) .

2

The am biguit y arises b ecause

comp osition do es not retain an y visual grouping construct. A visual editor could p erhaps

b est resolv e the am biguit y b y retaining the comp osition in its in ternal data structure; at

the user's request, it w ould displa y the grouping as a con taining b o x, and allo w it to b e

remo v ed or altered.

2

This is a useful distinction only if Visual Hask ell is in tended to pro vide a complete syn tactic equiv alen t

to Hask ell. In the original dev elopmen t of Visual Hask ell, the idea of a \t w o-view" dev elopmen t system

featured v ery hea vily; for suc h a system, the di�erence b et w een ((+) x . negate) y and x + (negate

y) is signi�can t. In future dev elopmen t of Visual Hask ell, I exp ect that this exact corresp ondence will

not b e necessary .

CHAPTER 4. VISUAL HASKELL 108

(a) (b)

x

x
x

negate
y

negate

x

negate y

Figure 4.15. An example translation: ((+) x . negate) y : a) visual terminals; b)

three steps in the translation

4.4.2 Structured expressions

With the aid of some simple conditional actors suc h as select (page 56), it is p ossible

to enco de lo ops and other constructs suc h as conditional execution in a pure datao w

framew ork [82]. It is also p ossible to analyse a graph to extract the constructs enco ded

therein [27]. Nonetheless, Ko dosky et al [82] argue that the datao w paradigm should b e

extended to incorp orate structured constructs. They add lo ops, a case construct, and a

sequencing construct to the Lab view language, calling the result \structured datao w."

General-purp ose visual datao w languages generally pro vide suc h constructs|see Hils'

surv ey [59]. Sp ecial-purp ose languages suc h as that of Ptolem y [88] do not, relying instead

on the lo w er-lev el host language.

Hask ell do es not ha v e explicit lo ops, since it uses recursion instead of iteration. Visual

Hask ell do es, ho w ev er, ha v e sev eral structures that resem ble structured datao w: let -

expressions, conditionals (if-then-else), � -abstractions, and case -expressions. Eac h of these

is delimited b y a con taining b o x, or enclosur e , and can b e connected on the outside as

an y other expression can. A no v el feature arises b ecause Hask ell is higher-order: if a

structured expression is function-v alued, it has one or more liv e input p orts, and can th us

b e connected in the same w a y as a function v ariable. This is an impro v emen t o v er the

language of m y earlier pap er [117], whic h required explicit apply no des for all structures

CHAPTER 4. VISUAL HASKELL 109

Þ
e

d

let

n nlet d in e(a)

Þ(b)

e1 g1

ek

n

if

n

if g1

k

then e1 else
if ...

eelse

Þ\ umatch umatch

l

n(c)

Þ
n

case

n

match1

matchk

e

(d)
case match

match

1

k

...
e of

Figure 4.16. Visual syn tax: structured expressions

except � -abstractions.

The visual syn tax of a let -expression is essen tially a con taining b o x lab elled \let"

(�gure 4.16a), con taining the expression result e and lo cal bindings d . e is connected to

a dumm y p ort on the inside of the enclosure. If the whole expression has non-zero arit y

n , then the b o x has n liv e input p orts attac hed to it. The output p ort is rectangular if

n is non-zero, otherwise triangular. In the visual sugaring phase, sharing can b e used to

connect v ariables b ound in d to uses of that v ariable in e . The area of the can v as o v er

whic h sharing can o ccur is called a r e gion ; in this case, it is the en tire inside of the b o x.

T o illustrate, �gure 4.17a sho ws the expression

let t = w * x1 in (x0+t, x0-t)

CHAPTER 4. VISUAL HASKELL 110

b
x

if

f

g

(c)

(b)

l

x

y

xf

x

case

f

g

(d)

b

True

False

let

x1

w
tx0

x0

(a)

Figure 4.17. Examples of structured expressions (see text)

A series of conditional (if-then-else) expressions is group ed in to a single visual construct

(�gure 4.16b). (T ranslation in to case -expressions, as in the Hask ell rep ort [44], w ould

b e to o cum b ersome visually .) Eac h guard g

i

and its consequen t e

i

are placed in to one

horizon tal section of the con taining b o x, but separated b y the hea vy arro w glyph. Sections

are separated b y a hea vy dashed line. g

i

and e

i

are eac h in their o wn region|that is, there

can b e no sharing b et w een them. There is no guard g

k

, so its region is left en tirely blank.

As for let -expressions, a series of conditional expressions has one or more input p orts if it

is function-v alued. T o illustrates, �gure 4.17b is a function-v alued conditional expression

applied to a v ariable:

(if b then f else g) x

� -abstractions (�gure 4.16c) are also a con taining b o x; this time, ho w ev er, the syn tax

of the b o x and its con ten ts are delegated to another pro duction, called umatch (see sec-

tion 4.4.5). umatch is similar to the enclosing b o x of let -expressions, but con tains one or

more patterns for the � -abstraction's argumen ts. Figure 4.17c includes a � -abstraction:

map ((\x y -> x + y) (f x))

A case -expression (�gure 4.16d) uses pattern-matc hing to select an expression from

sev eral alternativ es. Eac h of these alternativ es is a match clause (see section 4.4.5); they

are \stac k ed" one ab o v e another in the order in whic h they are tested. The case v alue e is

CHAPTER 4. VISUAL HASKELL 111

connected to a sp ecial input p ort ab o v e the stac k ed matc h expressions; the grey rectangle

is an argumen t slot (section 4.5.1), so e can b e placed within the case if the la y out manager

will allo w it. Again, the shap e of the output p ort dep ends on n , as do es the n um b er (if an y)

of input p orts. Figure 4.17d is a function-v alued case -expression applied to an argumen t:

(case b of

True -> f

False -> g) x

Although I argued that these constructs ha v e a preceden t in structured datao w, they

are more general than structured datao w. A structured datao w construct b eha v es on

the outside just lik e a datao w actor: all of the data on whic h it op erates comes in through

input p orts. Because Visual Hask ell has scop e and named v ariables, ho w ev er, this is not

necessarily true for the constructs just describ ed. A � -abstraction, for example, ful�ls this

condition only if it has no free v ariables. The � -abstraction in �gure 4.17c is lik e this; for

comparison, the � -abstraction (\x -> x + y) is not, since y o ccurs free.

A similar idea applies to the other constructs: to conform to the datao w mo del, they

m ust not use data not supplied to them explicitly . The conditional in �gure 4.17b, for

example, uses b ev en though b is not supplied to the construct b y a datao w arc. Compare

this with the Lab view case , whic h selects one of sev eral functions , and then applies that

to an argumen t [82]. The Hask ell case can b e used this w a y , as in �gure 4.17d, but need

not b e. In this sense, then, the Visual Hask ell case is more exible. F or � -abstractions,

a transformation kno wn as lamb da-lifting can b e used to eliminate free v ariables [106]; it

ma y b e p ossible to �nd a similar transformation for case -expressions.

4.4.3 P atterns

P atterns \de-construct" argumen ts, and bind names to expressions (or parts of expres-

sions). Hask ell's pattern syn tax is essen tially a subset of its expression syn tax; visually ,

patterns lo ok lik e expressions connected \bac kw ards." Ev ery pattern has one input p ort

and zero or more output p orts; patterns are the only kind of ob ject whic h can ha v e more

than one output p ort. P atterns are not common in visual languages, although Enhanced

Sho w-and-T ell (ESTL) [99] supp orts a v ery similar facilit y based on inc onsistency .

CHAPTER 4. VISUAL HASKELL 112

k

v

c

p2

p1

p

Þ

Þ

Þ

Þ

Þ

ÒcÓ

ÒvÓ

ÒkÓ

n

f Þ Ò f Ó

ÒvÓ
v p@

p1 p2

(a)

(b)

(e)

(f)

(c)

(d)

Figure 4.18. Visual syn tax: patterns

Figure 4.18 giv es the rewrite rules for patterns. V ariables and constan ts are dra wn

as grey b o xes, with a single liv e semi-circular input p ort (�gure 4.18a, b, and d). Non-

function v ariables also ha v e a single output p ort. This p ort is not liv e|no patterns can

b e attac hed to it|but the p ort can still b e used for sharing, since sharing do es not require

liv e p orts (section 4.5.1). Data constructors are dra wn as a white b o x with one input

p ort and one or more liv e output p orts (�gure 4.18c). As for expressions, this b o x can b e

replaced b y an icon in the visual sugaring (section 4.5.1).

Nested patterns are translated b y �gure 4.18e. Liv e output p orts of a constructor are

connected and killed in order, in the same w a y in whic h function application connects and

kills liv e input p orts. F or example, the pattern (:+) x y �rstly connects the �rst output

p ort of (:+) to the input p ort of x ; then the second output p ort to y . Note that some

common nested patterns are remo v ed b y the desugaring translation (section 4.3.4). F or

example, (x : y : ys) is translated in to Cons

2

x y ys .

Finally , as -patterns are dra wn as the pattern with a v ariable b o x attac hed (�gure 4.18f).

The v ariable b o x has a single output p ort, whic h can b e used for sharing.

CHAPTER 4. VISUAL HASKELL 113

4.4.4 Bindings

A binding binds a name to a v alue. Man y visual datao w languages only allo w binding

of names to functions (function bindings), and th us a v oid the problem of free v ariables.

Visual Hask ell also allo ws names to b e b ound to v alues (p attern bindings).

A series of bindings is displa y ed in the same region (�gure 4.19a). As noted earlier, the

visual syn tax do es not sp ecify the relativ e p ositions of bindings. In core syn tax, the t w o

bindings are not connected; with sharing, pattern bindings can b e connected, and th us

in ter-mingled within the region. A t the mo dule lev el, the la y out manager should place

bindings one ab o v e the other. A t other lev els, it should place function bindings one ab o v e

the other, and pattern bindings clustered together so that sharing can b e used e�ectiv ely .

The simplest kind of pattern binding has its v alue e connected to its pattern p (�g-

ure 4.19b). An y liv e input p orts of e are killed. If a simple pattern binding has lo cal

de�nitions, its righ t-hand side is put in to a con taining b o x (�gure 4.19c). The app earance

is v ery lik e a let -expression, but without the \let" lab el, and with no input p orts regardless

of its arit y .

A guar de d pattern binding has the form p | g

1

= e

1

; � � � ; | g

k

= e

k

[where d] (�g-

ure 4.19d). The visual syn tax of the righ t-hand side is v ery similar to that for conditionals

(�gure 4.16b), with the addition of some bindings d . d is placed in its o wn region.

The �nal rewrite rule is for function bindings (�gure 4.19e). Within the region in

whic h it is de�ned, a function binding is sho wn as a small rounded rectangle con taining

the function's name, and with an appropriate n um b er of dead input p orts and a dead

output p ort. F or editing, the function de�nition is displa y ed in its o wn windo w: the title

bar con tains the function's name and its icon (if it has one). The b o dy of the windo w is

a stac k of match phrases.

4.4.5 Matc h phrases

A matc h phrase, in Hask ell, is a series of patterns, guards, and result expressions used

in case -expressions and function bindings. There are t w o t yp es: those without guards,

and those with. These are represen ted in Visual Hask ell b y the pro ductions umatc h and

gmatc h resp ectiv ely; the pro duction matc h can b e either of these (�gure 4.10).

Figure 4.20a sho ws the textual and visual syn tax of unguar de d matc h phrases. T extu-

CHAPTER 4. VISUAL HASKELL 114

Þ

Þ
e

d
n

pwhere dep =

Þ epep =

Þ; d2d1
d1

d2

(c)

(b)

(a)

(d)

| g1

k

= e1

where

p

. . .|
g = e| k

[]d

match
Þ

match

1

k

...
f

f
(e)

match1

matchk

Ò f Ó n

Ò f Ó f

e1 g1

ek gk

n
p

nd

Figure 4.19. Visual syn tax: bindings

CHAPTER 4. VISUAL HASKELL 115

(a) umatch ! p

1

� � � p

m

-> let d in e

j p

1

� � � p

m

-> e [where d]

j p

1

� � � p

m

= let d in e

j p

1

� � � p

m

= e [where d]

)

e

d

p1

pm

(b) gmatch ! p

1

� � � p

m

| g

1

-> e

1

; � � � ; | g

k

-> e

k

[where d]

j p

1

� � � p

m

| g

1

= e

1

; � � � ; | g

k

= e

k

[where d]

)

e

d

p1

pm

1 g1

ek gk

Figure 4.20. Visual syn tax: matc h clauses

ally , an unguarded matc h is a set of patterns p

1

: : : p

m

, a delimiter -> or = , an expression

e , and an optional where clause con taining lo cal de�nitions d . The di�erence b et w een

the clauses with delimiter -> or = is the con text in whic h they o ccur: the former is used

within case -expressions, while the latter is used in function bindings. Although Hask ell

distinguishes the t w o cases syn tactically , Visual Hask ell do es not.

Visually , an unguarded matc h is similar to a let -expression, with the addition of the

set of patterns. The expression, bindings (if they exist), and the patterns are all in the

same region.

3

A second t yp e of unguarded matc h is also giv en in �gure 4.20a; these con tain a let -

expression at the top lev el and ha v e no auxiliary de�nitions. This simpli�es the common

case in whic h a let -expression o ccurs at the top lev el, as in f p

1

: : : p

2

= let d in e and

n p

1

: : : p

2

-> let d in e ; visually , the e�ect is to remo v e a redundan t con taining b o x.

Figure 4.20b sho ws the syn tax of guar de d matc h phrases. T extually , a guarded matc h

is a set of patterns p

1

: : : p

m

, a delimiter -> or = , a series of guards g

i

and consequen ts

e

i

, and an optional set of bindings d . Visually , a guarded matc h is similar to a series

3

d can in fact rede�ne v ariables in p

1

: : : p

m

|although Hask ell has no problem with this, there should

p erhaps b e a w a y of \crossing out" the o v er-ridden v ariables in p

1

: : : p

m

.

CHAPTER 4. VISUAL HASKELL 116

of conditionals, but with the addition of the bindings and patterns. The bindings and

patterns are within the same region; as for conditionals, eac h g

i

and e

i

is isolated in its

o wn region. Although not sho wn in the �gure, the visual syn tax for an otherwise guard is

just blank space.

4.5 Impro ving the visual syn tax

The core syn tax can b e enhanced in sev eral w a ys. In this section, I will �rstly giv e

sugaring rules in st yle of section 4.3.3. These rules impro v e the app earance of Visual

Hask ell programs considerably . They do not, ho w ev er, help with one of the k ey reasons

for using a visual notation: the handle they giv e on structur al prop erties of a program.

F or example, man y of the examples in c hapter 5 illustrate arra ys of functions connected

in v arious w a ys. T o assist with this kind of program visualisation, more complex visual

represen tations are needed, and I giv e three that I use in this thesis.

4.5.1 Visual syn tactic sugar

Figure 4.21 lists the sugaring rules. As explained in section 4.3.3, the la y out manager

p ermits a sugaring rewrite only if the result pict can b e sensibly laid out on the can v as.

There are four sets of rules: for icons, v ariable sharing, attac hmen t, and argumen t slots.

Icons A critical ingredien t in an y visual language is the use of meaningful sym b ols. Vi-

sual Hask ell|in common with man y other visual languages|optionally uses icons to

represen t application of certain functions; it also allo ws the use of icons for v ariables,

constan ts, and data constructors. Figure 4.21a giv es the sugaring rules for icons. (Re-

call that a quoted pro duction is visual meta-syn tax for a displa y able string, and a

squiggly b o x is visual meta-syn tax for an icon.) This icons I use for standard pre-

lude data constructors and functions w ere sho wn in �gures 4.6 and 4.7; more icons for

sp ecial cases will b e in tro duced in follo wing c hapters where necessary .

Sharing In the core visual syn tax, eac h o ccurrence of a v ariable in a textual Hask ell

program pro duces a unique pict on the can v as. If la y out p ermits, these picts can b e

shar e d |that is, ha v e more than one arc connected to them. There are t w o cases

captured b y the rewrite rules of �gure 4.21b: in the �rst, the arcs from a v ariable b o x

CHAPTER 4. VISUAL HASKELL 117

ÛÒ f Ó
Ò f Ó

(a)

ÒkÓ Û k

ÒvÓ Û v

ÒcÓ cÛ

Ò f Ó fÛ

ÒvÓ

ÒvÓ

³ 0

³ 1

Û ÒvÓ

ÒvÓ

ÒvÓ

³ 1

³ 1

Û ÒvÓ

21 21

p p

Û

Û

(b)

(c)

(d)

ee Û

ÛÒvÓ ÒvÓ

Figure 4.21. Sugaring rules: a) icons; b) sharing; c) attac hmen t; d) argumen t slots

can b e re-connected to a pattern v ariable b o x of the same name and with zero or more

output arcs; the v ariable b o x is deleted from the can v as. In the second, the arcs from

a v ariable b o x can b e re-connected to another v ariable b o x of the same name with one

or more output arcs; the �rst b o x is deleted from the can v as.

A ttac hmen t Picts can b e attac hed instead of connected (�gure 4.21c). Again, there are

t w o rules. In the �rst, an y t w o picts connected b y a data arc can b e attac hed; the

arc and the t w o p orts disapp ear from the can v as. The �gure uses a blank diamond to

denote any visual syn tax; a n umeral in the b ottom-righ t corner distinguishes unique

CHAPTER 4. VISUAL HASKELL 118

(a) (b) (c)

Figure 4.22. Illustrating t yp e annotations: a) (a,b) ; b) [[a]] ; c) Stream (Vector �)

o ccurrences. In the second rule, an y pict and a pattern connected b y a binding arc

can b e attac hed.

Argumen t slots Enhanced Sho w-and-T ell (ESTL) [99] and DataVis [58] ha v e function

slots . A function slot is a p osition in the icon of a higher-order function in whic h a func-

tion argumen t can b e placed. Visual Hask ell has a generalised form of this idea, whic h

I call ar gument slots : an icon can ha v e slots for one or more of its argumen ts|whether

functions or not. If la y out p ermits, the argumen t connected to the corresp onding input

p ort is dra wn in the argumen t slot|that is, within the icon.

There are three rules for argumen t slots. In the �rst, a function argumen t to a higher-

order function has its name placed in to the slot. This is used frequen tly for higher-order

functions, suc h as the application of map in �gure 4.4b. The second rule is similar

but applies to v ariables. The third allo ws an y arbitrary expression to b e placed within

an argumen t slot. This allo ws function icons to b e placed in to the slot; ev en complex

expressions can b e placed in to the slot if la y out p ermits. In all three rules, the p ort

corresp onding to the argumen t disapp ears.

T yp e annotations I use an informal system of annotations on arcs to indicate their

t yp es. Figure 4.22 illustrates a few annotated arcs: t yp e v ariables (suc h as �) are

represen ted b y blac k circles; tupling b y placing tuple elemen t annotations side-b y-side

on an arc; lists b y an asterisk-lik e annotation; streams (section 5.3) b y an op en circle;

v ectors (section 5.2) b y a slash. If necessary , a t yp e annotation is enclosed b y a b o x,

whic h can in turn b e annotated.

4.5.2 Iteration b o xes

Most general-purp ose visual programming languages supp ort iteration in some form or

another. All of the visual datao w languages in Hils' surv ey [59], for example, supp ort

CHAPTER 4. VISUAL HASKELL 119

(a) (b)

f f

Figure 4.23. Illustrating iteration: a) map ; b) scanl

iteration. One tec hnique is the use of sp ecial iteration constructs; Lab view, for example,

incorp orates for -lo ops and while -lo ops in to its structured datao w mo del in this w a y [82].

Eac h is a con taining b o x with an in ternal datao w graph, whic h executes eac h time through

the lo op. Other languages use cycles and sp ecial-purp ose datao w no des; in Khoros, for

example, the programmer places a LOOP glyph at the start of a section of o w-graph to

b e iterated, and a feedbac k connection to this glyph from the end of the o w-graph section

[155].

Pure functional languages rely on recursion instead of iteration. In a higher-order

language suc h as Hask ell, patterns of iteration are captured b y higher-order functions; ap-

plying the higher-order function is equiv alen t to co ding an iterativ e lo op in other languages

(see sections 5.2.2 and 5.3.4). Visual Hask ell, along with the visual functional language

VisaVis [110], th us uses a function icon to represen t iteration.

There is, ho w ev er, a limit to ho w m uc h information one icon can con v ey , and so in

previous w ork [114] I ha v e used a represen tation similar to structured datao w iteration

constructs. Tw o examples are giv en in �gure 4.23. In this represen tation, the computation

p erformed on eac h iteration is sho wn as a datao w graph inside a generic icon represen ting

the t yp e of iteration. Eac h input to this graph is one elemen t of an input aggregate (list,

stream, or v ector); eac h output is one elemen t of an output aggregate.

F or lists, the generic icon is a white-shado w ed b o x, as used b y the icon for map . In

map f (�gure 4.23a), for example, the in ternal graph is a function application|that is, f

is applied to an input elemen t to pro duce an output elemen t. If the function main tains a

\state" v alue b et w een iteration, this is sho wn as a crossed b o x. In scanl f (�gure 4.23b),

for example, the state is one input to eac h iteration; it is also up dated with the output

elemen t. Figure 5.22 sho ws a more complex example of this represen tation.

CHAPTER 4. VISUAL HASKELL 120

(a) (b)

f f f f f f

Figure 4.24. Unfolded higher-order functions: a) map ; b) scanl

4.5.3 Unfolded higher-order functions

Higher-order functions com bine functions, and are th us often more usefully though t of|in

a visual language|as a means of constructing program graphs. F or example, I ga v e in

�gure 4.14f a sp ecial syn tax for function comp osition, whic h com bines t w o function b o xes

in a meaningful w a y . Without this syn tax, f . g w ould b e represen ted as a b o x lab elled

\ . " connected to function-v ariable b o xes lab elled f and g .

Higher-order functions suc h as map and scanl can b e though t of as represen ting an

\arra y" of function applications|one to eac h elemen t of a list. Figure 4.24a illustrates

map sho wn in a manner that con v eys this idea. The t w o narro w horizon tal b o xes repre-

sen t deconstruction of a list in to individual elemen ts, and construction of a list from its

elemen ts. The dashed line sym b olises elided function application b o xes.

A second st yle of represen tation unfolds a higher-order function assuming certain prop-

erties of its argumen t. F or example, �gure 4.24b sho ws scanl as it w ould app ear if its argu-

men t list con tained four elemen ts. Both of these st yles sho w programs using higher-order

functions in a v ery \structural" w a y; sections 5.4 and 5.5 use unfolded represen tations

extensiv ely .

I am una w are of an y prop osal to incorp orate this kind of represen tation in to a visual

language. Although Lau w ereins et al [85] use unfolded diagrams, they do not app ear to

b e part of their visual in terface y et. In Visual Hask ell, these represen tations are still

informal. T o incorp orate them in to a visual in terface, one could p erhaps mark a list (or

other aggregate data t yp e) for \expansion." These unfolded represen tations w ould then

b e a v alid sugaring rewrite rule.

CHAPTER 4. VISUAL HASKELL 121

f

f

f

f

f

f

f

f

Figure 4.25. Wiring: map f � rev erse

4.5.4 Wiring

A n um b er of functions on lists re-arrange elemen ts of their argumen t list. When used in

conjunction with unfolded higher-order functions, it is helpful to dra w these functions as

\wiring." Figure 4.25 illustrates the expression map f � rev erse . The long rectangles on

the righ t and left represen t list construction and de-construction resp ectiv ely . rev erse is

sho wn as a mass of wires, and map f is sho wn unfolded.

The need for wiring is more apparen t with the v ector op erations of section 5.2. Fig-

ure 5.5 giv es example of additional wiring functions, while �gure 5.9 uses them in the

de�nition of the F ast F ourier T ransform.

4.6 Summary

There is, I b eliev e, signi�can t v alue in a precise visual syn tax for Hask ell that can replace

the ad-ho c notations that are sometimes used. This c hapter presen ted suc h a syn tax for

a substan tial p ortion of Hask ell. The missing syn tax will need to b e pro vided to mak e

Visual Hask ell complete: apart from t yp e declarations, syn tax is needed for user-de�ned

op erators, mo dules, list comprehensions, and arra y comprehensions. In addition, a w a y of

sp ecifying more sophisticated syn tax, as used in sections 4.5.2 to 4.5.4, is also needed. One

approac h I ha v e explored is to translate abstract syn tax in to a lo w-lev el picture language

lik e that used in picture la y out grammars. This approac h turned out to b e to o cum b ersome

for the core syn tax, but ma y b e acceptable if limited to sp ecial purp oses.

Although I ha v e used Visual Hask ell mainly for program visualisation so far, the idea

of a \t w o-view" dev elopmen t system is in triguing. In a t w o-view system, the programmer

CHAPTER 4. VISUAL HASKELL 122

map ((f x))

l

x

yxf\x y Ð> x + y

(a) (b)

Figure 4.26. Mixing text and pictures: a) text-in-picture; b) picture-in-text

can switc h b et w een text and pictures at arbitrary lev els of a program. F or example,

a picture can con tain an expression in a text b o x, while a text windo w can con tain a

picture. Figure 4.26 illustrates the idea with t w o alternativ e views of the expression

map ((\x y -> x + y) (f x)) (illustrated as a complete picture in �gure 4.17c).

Chapter 5

Static Pro cess Net w orks

Real-time signal pro cessing programs are orien ted around t w o k ey aggregate data-t yp es:

arra ys, whic h I will call v ectors, and streams. Their base elemen ts are almost in v ariably

n um b ers. Streams are fundamen tal to a real-time signal pro cessing program, ev en if they

only exist as a data structure at the in terface to external signals. V ectors are inheren t in

signal pro cessing algorithms that op erate on segmen ts of a signal, suc h as transforms.

Digital signal pro cessors are designed to op erate most e�cien tly in lo ops, and it is

therefore imp ortan t that a high-lev el programming language b e able to express iteration

through v ectors and streams clearly . The �rst section of this c hapter dev elops a V ector

data-t yp e and asso ciated functions, whic h capture the k ey op erations on v ectors. An

example, the F ast F ourier T ransform, illustrates their use.

Because Hask ell is lazy , it is easy to write in�nite data structures. F unctional op erating

systems and pro cess net w orks (sections 2.3.5 and 2.3.6) use lazy lists to mo del comm unica-

tions c hannels b et w een pro cesses. Here, I will use an explicitly-de �ned Str e am data-t yp e

to mo del comm unication, and giv e six Hask ell functions that can b e implemen ted using

the canonical SDF actors of section 3.2.5.

With these six functions, w e can use the features of Hask ell to increase the expres-

siv eness with whic h w e write datao w net w orks: some higher-order functions encapsulate

common t yp es of pro cesses; other higher-order functions capture common in terconnec-

tion patterns, suc h as serial and parallel connection; y et others represen t v arious linear,

mesh, and tree-structured in terconnection patterns. The use of these language facilities

for constructing pro cess net w orks w as explored b y Kelly [78]; here, I extend this w ork

123

CHAPTER 5. ST A TIC PR OCESS NETW ORKS 124

to real-time streams and signal pro cessing. This st yle of programming could p erhaps b e

called \data-parallel pro cess programming," and pro vides a coun ter to the p osition that

functional parallelism do es not pro vide adequate abstraction from individual threads of

computation.

Because all functions on streams are de�ned in terms of the six primitiv e functions, the

programmer do es not de�ne recursiv e functions on streams. This st yle of programming

is adv o cated b y Bac kus [11] and b y Bird [20], b ecause: i) non-recursiv e programs tend to

b e more concise than recursiv e ones; and ii) there is less c hance of making errors, suc h as

forgetting a termination condition.

The �nal task of this c hapter is to adapt the algebraic st yle of program transformation

to streams and pro cesses. The result is a set of pro v ably-correct program transformations

that can b e used to alter the structure and degree of parallelism presen t in a pro cess

net w ork program. W e can use these tec hniques to eliminate apparen t e�ciency defects

caused b y the use of v ery-high-lev el programming language, and to tailor a program to a

giv en hardw are con�guration for b etter execution e�ciency .

5.1 Related w ork

A t presen t, most \real-w orld" DSP programming is in assem bler or C. Blo c k-diagram

systems are p erhaps the most p opular alternativ e programming tec hnology . One of the

dra wbac ks of blo c k-diagram systems is that they are generally orien ted to w ards particular

hardw are systems, and th us fall short of a generally-applicable pro duction to ol. Willek ens

et al argue that blo c k-diagrams alone are inadequate for sp ecifying DSP systems, since

they do not p ermit expression of con trol o w; detailed computation is b est sp eci�ed in a

textual language, lea ving the blo c k diagram to higher lev els of description [154].

Another approac h uses ligh t-w eigh t op erating system k ernels and supp ort libraries

[104 , 39 , 143]. This is particular eviden t in parallel systems, where the added complexities

of m ulti-pro cessor comm unication and sync hronisation seem to encourage adoption of

m ulti-tasking k ernels.

The approac h in whic h I am in terested here is to use a programming language, but

at a m uc h higher lev el than C. Silage [57] is p erhaps the b est example of a language

designed sp eci�cally for DSP programming; recen t w ork explores higher-lev el signal pro-

CHAPTER 5. ST A TIC PR OCESS NETW ORKS 125

cessing programming concepts [142]. It has also ev olv ed in to a commercial pro duct, DFL

[154].

The most noticeable feature of Silage is its supp ort for streams of data and dela ys. The

expression x @1 is the signal x dela y ed b y one sample. Arithmetic op erations extend p oin t-

wise to streams. Silage also supp orts �xed-p oin t data t yp es and arithmetic, an imp ortan t

asp ect of programming real DSP devices.

F reeric ks and Knoll use recursiv e functions to de�ne signal-pro cessing functions [81].

Higher-order functions can also b e used to capture particular patterns of recursion [48].

An un usual asp ect of their language is an explicit susp ension construct that supp orts

data-driv en programming; this is used to co de in terfaces to real-time I/O c hannels. They

prop ose to use partial ev aluation in their compiler to eliminate the p oten tial run-time

o v erhead of recursion.

A recurring theme in DSP programming is the use of str e ams to represen t discrete-

time signals. Streams w ere �rst prop osed b y Landin as a means of separating the con trol

structure of Algol-60 lo ops from the lo op b o dy [84]. Landin represen ts a stream as a pair

of the head elemen t, and a n ullary function represen ting the rest of the stream. Stream

elemen ts are th us \ev aluated when they are come to"|calculation of eac h successiv e lo op

con trol v alue and execution of the lo op b o dy pro ceed in an in terlea v ed manner.

Burge further dev elop ed the idea of streams, as a w a y of structuring programs as a

set of indep enden t sub-programs [28]. He uses the same represen tation as Landin, and

lists a n um b er of functions that are no w standard in functional programming languages:

maps applies a function to eac h elemen t of a stream; generate f x pro duces the sequence

x; f x; f

2

x , and so on; zips pro duces a stream of pairs from t w o streams; �lter remo v es

elemen ts that fail to satisfy a predicate; and so on.

W endelb orn and Garsden compare a n um b er of stream implemen tations [153], and

p oin t out the di�erence b et w een c hannels and streams, noting that the terms o v erlap

somewhat in usage. A c hannel is destructiv e, since elemen ts are app ended to the c hannel.

Kahn pro cess net w orks and the datao w pro cess mo del use c hannels, since new tok ens are

app ended to them. Streams are functional: the stream pro ducer is part of the stream itself.

Landin and Burge, for example, use a function to represen t the remainder of the stream;

lazy functional languages implemen t streams as recursiv ely-de�ned, lazily-ev alu ated lists.

CHAPTER 5. ST A TIC PR OCESS NETW ORKS 126

The ease with whic h lazily-ev aluated streams lend themselv es to signal pro cessing has

also b een noted b y Globirsc h [52]. He uses lazy lists to sim ulate signals, and giv es a

n um b er of simple �lters in Hask ell, suggesting that the conciseness of the programs mak es

Hask ell an excellen t to ol for protot yping. Protot yping image pro cessing programs in a

functional language is adv o cated b y Mic haelson et al , who use four higher-order functions

to co de a range of image pro cessing algorithms [97]. In related w ork, Bratv old compiles

these higher-order functions in to parallel co de for a Meik o T ransputer system [22].

5.2 V ectors

V ectors pla y an imp ortan t role in signal pro cessing. Recall from section 2.4.4 that the

instruction sets of mo dern DSPs supp ort v ery e�cien t v ector op erations. This section

describ es a V ector datat yp e implemen ted in Hask ell, and a set of functions in Hask ell that

can b e implemen ted e�cien tly on DSPs. These functions are t ypical of those presen t in

what Sip elstein and Blello c h call \collection-orien ted" languages [129].

App endix A lists the co de for the V ector mo dule. As for the standard prelude, I will

treat this co de as a seman tic de�nition only|in other w ords, the compiler \understands"

the v ector functions and generates e�cien t co de for them. The k ey issue is a v oiding

laziness: if v ector functions can b e compiled in a h yp er-strict con text, w e can a v oid graph-

building, and access v ector elemen ts through p oin ters.

5.2.1 The V ector datat yp e

The V ector datat yp e is de�ned in Hask ell as

data Vector � = NullV

| � :> Vector �

A v ector th us has t yp e V ector � , where � is the t yp e of its elemen ts. De�ned lik e this,

v ectors are m uc h the same as lists, but with di�eren t data constructors.

The v ector function tak es a list and pro duces a v ector:

v ector [x; y ; z] ! (x : > y : > z : > Null V)

CHAPTER 5. ST A TIC PR OCESS NETW ORKS 127

Because this is clumsy , I will assume that Hask ell has a sp ecial syn tax for v ectors, as

it do es for lists, and enclose v ectors in angle brac k ets, th us: h x; y ; z i . Instead of Null V , I

will write h i .

I also �nd it con v enien t to annotate the v ector t yp e signature with v ector lengths. F or

example, the function to p erform an inner-pro duct summation of t w o v ectors has the t yp e:

ip :: Num �) Vector

k

� ! Vector

k

� ! �

F or input argumen ts, in terpret these length annotations as pr e-c onditions : that is, they

sp ecify conditions on the argumen ts that m ust b e satis�ed for the function to pro duce a

w ell-de�ned result. This is a k ey part of the \programming-b y-con tract" approac h to

soft w are dev elopmen t [95]. In this case, the t w o input v ectors m ust b e the same length.

Since a compiler is not required to generate correct co de if pre-conditions are violated,

an implemen tation can fo cus on generating the fastest co de p ossible for t w o equal-length

v ectors (for example, b y omitting a test for equal length).

If t yp e annotations are attac hed to nested v ector t yp es, then the inner annotation

sp eci�es that all sub-v ector are the same length. F or example,

xs :: Vector (Vector

k

�)

is a v ector of v ectors, in whic h all sub-v ectors are the same length, whereas the sub-v ectors

in

ys :: Vector (Vector �)

ma y b e di�eren t lengths. By annotating v ector functions this w a y , w e can c ho ose either

e�cien t implemen tation (xs) or generalit y (ys), as appropriate. It w ould b e an in teresting

researc h topic to extend the Hask ell t yp e system to infer at compile-time whether or not

these constrain ts are met.

5.2.2 Iterators

V ector iterators are higher-order functions that apply a function across all elemen ts of

a v ector. In e�ect, eac h of them captures a particular pattern of iteration, allo wing

the programmer to re-use these patterns without risk of error. This is one of the most

p ersuasiv e argumen ts in fa v our of inclusion of higher-order functions in a programming

language [64].

CHAPTER 5. ST A TIC PR OCESS NETW ORKS 128

Figure 5.1 sho ws the iterators unfolded, in the st yle of section 4.5.3. The diagrams

illustrate the pattern of computation represen ted b y eac h iterator in a v ery structur al

w a y; this viewp oin t of higher-order functions is particularly imp ortan t when using them

to build net w orks of pro cesses (section 5.4). The iterators all ha v e complexit y O (n) in the

length of the v ector. Their t yp es are listed in �gure 5.2.

The simplest iterator is map V (�gure 5.1a), whic h is analogous to map on lists. F or

example,

map V (+1) h 1 ; 2 ; 3 ; 4 i ! h 2 ; 3 ; 4 ; 5 i

iterate V (�gure 5.1b) pro duces a v ector of a sp eci�ed length from an initial v alue and

a function whic h pro duces eac h successiv e v alue. The �rst elemen t of the v ector pro duced

b y iterate V is the initial v alue; for example,

iterate V 5 (+1) 3 ! h 3 ; 4 ; 5 ; 6 ; 7 i

T o generate a v ector of k complex n um b ers equally spaced around the unit circle, w e

can write:

map V cis (iterate V k (+(2 : 0 � pi =k)) 0 : 0)

where cis � = cos � + j sin � . The cop y V function creates a v ector con taining k copies of

a giv en elemen t; it is easily de�ned with iterate V :

copyV :: Int ! � ! Vector �

copyV k x = iterateV k id x

where id x = x .

foldl V (�gure 5.1c) and foldr V \fold" a v ector in to a single v alue. F or example, to sum

the elemen ts of a v ector,

foldl V (+) 0 h 1 ; 2 ; 3 ; 4 i ! 10

This particular expression is common enough to mak e it w orth giving a name to:

sumV :: Num �) Vector � ! �

sumV = foldlV (+) 0

Lik e some other v ector iterators and man y of Hask ell's higher-order functions on lists,

CHAPTER 5. ST A TIC PR OCESS NETW ORKS 129

f f f f

f f f f

f f f f

f f f f

(a)

(b)

(c)

(d)

(e)

f f f

Figure 5.1. Unfolded v ector iterators: a) map V ; b) iterate V ; c) foldl V ; d) scanl V ; e)

meshl V

CHAPTER 5. ST A TIC PR OCESS NETW ORKS 130

mapV :: (� ! �) ! Vector

k

� ! Vector

k

�

iterateV :: Int ! (� ! �) ! � ! Vector �

foldlV :: (� ! � ! �) ! � ! Vector � ! �

scanlV :: (� ! � ! �) ! � ! Vector

k

� ! Vector

k

�

meshlV :: (� ! � ! (�;)) ! � ! Vector

k

� ! (�; Vector

k

)

foldrV :: (� ! � ! �) ! � ! Vector � ! �

scanrV :: (� ! � ! �) ! � ! Vector

k

� ! Vector

k

�

meshrV :: (� ! � ! (; �)) ! � ! Vector

k

� ! (�; Vector

k

)

Figure 5.2. Iterator t yp e signatures

the folding functions come in \left-handed" (foldl V) and \righ t-handed" (foldr V) a v ours.

The left-handed a v our iterates from the �rst elemen t to the last; the righ t-handed a v our

iterates from the last elemen t to the �rst. Note, ho w ev er, that the righ t-handed functions

are not quite mirror-images of the left-handed ones, as the t yping of the function argumen t

c hanges|this can b e seen b y examining �gure 5.2.

scanl V (�gure 5.1d) and scanr V \scan" a function across a v ector: the result pro duced

on eac h application of the function argumen t is written to the output v ector and used as

one input to the next application. F or example, to pro duce a \running sum" of elemen ts

in a v ector:

1

scanl V (+) 0 h 1 ; 2 ; 3 i ! h 1 ; 3 ; 6 i

meshl V (�gure 5.1e) and meshr V capture a \mesh-lik e" pattern of iteration; they are

lik e a com bination of map V and scanl V or scanr V . The argumen t function pro duces a pair

of v alues: the �rst is input in to the next application of this function, and the second is

the output v alue. As an example, consider this expression:

meshl V (�a x : (x; a)) 0 h 1 ; 2 ; 3 i ! (3 ; h 0 ; 1 ; 2 i)

1

Readers familiar with functional programming will notice that this de�nition di�ers from the standard

Hask ell scanning functions on lists. In comparison,

scanl (+) 0 [1 ; 2 ; 3] ! [0 ; 1 ; 3 ; 6]

The v ector v ersions are de�ned as they are so that the output v ector is the same length as the input

v ector: this a�ords some e�ciency impro v emen t if the input v ector can b e o v er-written with the result.

CHAPTER 5. ST A TIC PR OCESS NETW ORKS 131

(+++) :: Vector � ! Vector � ! Vector �

concatV :: Vector

j

(Vector

k

�) ! Vector

j k

�

(:>) :: � ! Vector � ! Vector �

(<:) :: Vector � ! � ! Vector �

(>>) :: � ! Vector

k

� ! Vector

k

�

(<<) :: Vector

k

� ! � ! Vector

k

�

Figure 5.3. Com biner t yp e signatures

Note that the second elemen t of the result pair is the input v ector shifted righ t. W e can,

if w e wish, de�ne the (> >) op erator (see next section) as

(>>) :: � ! Vector

k

� ! Vector

k

�

x >> xs = snd (meshlV (n a x -> (x,a)) x xs)

5.2.3 Com biners

Com biners do not p erform an y computation, but com bine v ectors and elemen ts in to new

v ectors. Their t yp e signatures are listed in �gure 5.3.

+ + + joins t w o v ectors in to a single v ector. concat V joins a v ector of v ectors in to a

single v ector. Note that its t yp e signature requires that all sub-v ectors b e the same length.

F or example,

h 1 ; 2 ; 3 i + + + h 4 ; 5 ; 6 i ! h 1 ; 2 ; 3 ; 4 ; 5 ; 6 i

concat V hh 1 ; 2 ; 3 i ; h 4 ; 5 ; 6 i i ! h 1 ; 2 ; 3 ; 4 ; 5 ; 6 i

The remaining com biners implemen t shift-register-lik e op erations: (: >) and (< :) attac h

an elemen t to the left or righ t of a v ector resp ectiv ely; (> >) and (< <) shift an elemen t in to

the left or righ t of a v ector resp ectiv ely .

0 : > h 1 ; 2 ; 3 i ! h 0 ; 1 ; 2 ; 3 i

0 > > h 1 ; 2 ; 3 i ! h 0 ; 1 ; 2 i

A smart compiler will sometimes b e able to pro duce O (1) implemen tations of the

com biners. Consider the expression e

1

+ + + e

2

. If the destination address registers for e

1

CHAPTER 5. ST A TIC PR OCESS NETW ORKS 132

lengthV :: Vector � ! Int

atV :: Vector � ! Int ! �

selectV :: Int ! Int ! Int ! Vector � ! Vector �

groupV :: Int ! Vector

j k

� ! Vector

j

(Vector

k

�)

transpose :: Vector

j

(Vector

k

�) ! Vector

k

(Vector

j

�)

zipV :: Vector

k

� ! Vector

k

� ! Vector

k

(�; �)

unzipV :: Vector

k

(�; �) ! (Vector

k

�; Vector

k

�)

Figure 5.4. Selector t yp e signatures

and e

2

are set to p oin t in to the memory area allo cated for the result of the whole of the

ab o v e expression, the v ectors pro duced b y e

1

and e

2

can b e pro duced directly in to the

result of (+ + +). No cop ying at all is required! T o do this will require some sophisticated

analysis.

The shift op erators can b e implemen ted with O (1) complexit y , using the mo dulo ad-

dressing hardw are of mo dern DSP devices (page 43). Th us, the (< <) op erator will write

its righ t argumen t at the curren t p osition in the v ector and incremen t the address register;

if it mo v es outside the v ector memory , it is reset b y the addressing hardw are bac k to the

�rst p osition in the memory . A function that reads the v ector op erates in a similar w a y ,

reading from the curren t p osition|one p osition \past" the last elemen t written|up to

the last elemen t written. The (> >) op erator is similar, but decremen ts the address register

b efore p erforming the write.

5.2.4 Selectors

Selectors do not p erform an y computation, but just re-arrange v ector elemen ts. Figure 5.4

lists their t yp es. In Visual Hask ell, most selectors can b e dra wn as \wiring" (section 4.5.4).

Figure 5.5 sho ws some selectors in this w a y; as for the unfolded v ector iterators, this visual

represen tation pro vides a v ery \structural" and in tuitiv e grasp of their op eration.

The �rst function, length V , returns the length of a v ector:

length V h 0 ; 1 ; 2 ; 3 ; 4 i ! 5

CHAPTER 5. ST A TIC PR OCESS NETW ORKS 133

evensV v = selectV 0 2 (lengthV v `div` 2) v

oddsV v = selectV 1 2 (lengthV v `div` 2) v

takeV k v = selectV 0 1 k v

dropV k v = selectV k 1 (lengthV v - k) v

headV v = v `atV` 0

tailV v = dropV 1 v

lastV v = v `atV` (lengthV v - 1)

initV v = takeV (lengthV v - 1) v

reverseV v = selectV (lengthV v - 1) (-1) (lengthV v) v

Figure 5.5. Additional selector functions

at V selects an individual elemen t of a v ector:

h 0 ; 1 ; 2 ; 3 ; 4 i � atV � 3 ! 3

select V selects linearly-spaced elemen ts of a v ector. The �rst argumen t is the p osition

of the start elemen t; the second the stride b et w een elemen ts; the third the n um b er of

elemen ts. Its result is unde�ned if an y elemen ts are \outside" the v ector. F or example,

select V 1 3 2 h 0 ; 1 ; 2 ; 3 ; 4 i ! h 1 ; 4 i

With at V and select V , man y other useful functions are easily de�ned (�gure 5.5): to

select the o dd or ev en elemen ts of a v ector; to tak e or remo v e the �rst k elemen ts of a

v ector; to split a v ector in to t w o equal halv es; to pro duce the \head" and \tail" of a v ector;

to pro duce the last elemen t of a v ector, and all elemen ts except the last; and to rev erse a

v ector.

group V splits a v ector in to a v ector of v ectors; elemen ts are discarded if the length of

the new sub-v ectors do es not exactly divide the length of the input v ector. F or example,

group V 2 h 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 i ! hh 0 ; 1 i ; h 2 ; 3 i ; h 4 ; 5 ii

transp ose sw aps the t w o outer dimensions of a v ector. F or example,

transp ose hh 0 ; 1 i ; h 2 ; 3 i ; h 4 ; 5 i i ! hh 0 ; 2 ; 4 i ; h 1 ; 3 ; 5 i i

CHAPTER 5. ST A TIC PR OCESS NETW ORKS 134

zip V and unzip V com bine t w o v ectors in to a v ector of pairs, and vice v ersa. F or

example,

zip V h 0 ; 1 ; 2 i h 3 ; 4 ; 5 i ! h (0 ; 3) ; (1 ; 4) ; (2 ; 5) i

unzip V h (0 ; 3) ; (1 ; 4) ; (2 ; 5) i ! (h 0 ; 1 ; 2 i h 3 ; 4 ; 5 i)

These can b e used to implemen t \buttery" access patterns, as used in the F ast F ourier

T ransform algorithm. The t w o functions duals and unduals are dra wn as \wiring" in

�gure 5.6. They are de�ned as:

duals :: Vector

2 k

� ! Vector

k

(�; �)

duals v = zipV (takeV k v, dropV k v)

where

k = lengthV v `div` 2

unduals :: Vector

k

(�; �) ! Vector

2 k

�

unduals v = let (x,y) = unzipV v in x +++ y

duals requires that the length of its argumen t is ev en. Here is an example:

duals h 0 ; 1 ; 2 ; 3 ; 4 ; 5 i ! h (0 ; 3) ; (1 ; 4) ; (2 ; 5) i

zip V and unzip V are also useful for de�ning iterators that accept or pro duce more than

one v ector argumen t. F or example, w e can de�ne the function zip W ith V , whic h applies a

function p oin t-wise across t w o input v ectors, as

zipWithV :: (� ! � !) ! Vector

k

� ! Vector

k

� ! Vector

k

zipWithV f xs ys = mapV (n (x,y) -> f x y) (zipV xs ys)

An y binary op erator or function can b e extended to op erate on v ectors in this w a y;

for example,

zip W ith V (+) h 1 ; 2 ; 3 i h 4 ; 5 ; 6 i ! h 5 ; 7 ; 9 i

A useful example of this kind of op eration is the v ector inner-pro duct:

ip :: Num �) Vector

k

� ! Vector

k

� ! �

ip v w = sumV (zipWithV (*) v w)

CHAPTER 5. ST A TIC PR OCESS NETW ORKS 135

(a)

(b) (c)

Figure 5.6. Selectors as \wiring": a) rev erseV ; b) duals ; c) unduals

If implemen ted naiv ely (b y cop ying elemen ts) most of the selectors ha v e O (n) complex-

it y . A smart compiler could, ho w ev er, reduce most of the selectors to O (1) complexit y . T o

see wh y , recall that a DSP can incremen t t w o address registers b y the con ten ts of t w o index

registers in eac h instruction. Supp ose that elemen ts of a v ector are lo cated at con tiguous

addresses in memory . An expression suc h as map V (+1) will generate a single-instruction

lo op that, on eac h iteration, loads and adds one to a v ector elemen t, stores the result of

the previous iteration, and incremen ts b oth the source and destination address registers

b y one. No w consider the expression map V (+1) � o dds . Before the lo op, the source address

register is incremen ted b y one (to p oin t to the elemen t at o�set one in the v ector), and the

lo op coun t halv ed. The lo op itself is the same, except that the source address register is

incremen ted b y t w o instead of one. This is easily generalised to arbitrary strides b y using

index registers.

5.2.5 Example: the F ast F ourier T ransform

The F ast F ourier T ransform (FFT) algorithm is one of the most imp ortan t algorithms

in signal pro cessing. Although form ulated as a recursiv e \divide-and-conquer" algorithm,

CHAPTER 5. ST A TIC PR OCESS NETW ORKS 136

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x(11)

x(12)

x(13)

x(14)

x(15)

X(0)

X(8)

X(4)

X(12)

X(2)

X(10)

X(6)

X(14)

X(1)

X(9)

X(5)

X(13)

X(3)

X(11)

X(7)

X(15)

Ð1

Ð1

Ð1

Ð1

Ð1

Ð1

Ð1

Ð1

Ð1

Ð1

Ð1

Ð1

Ð1

Ð1

Ð1

Ð1

Ð1

Ð1

Ð1

Ð1

Figure 5.7. The 16-p oin t FFT buttery diagram

implemen tations of the algorithm are usually co ded in an iterativ e manner for e�ciency .

As an aid to understanding the iterativ e algorithm, a so-called \buttery diagram" can b e

dra wn; �gure 5.7 sho ws the diagram for the FFT co ded here, for a 16-p oin t input v ector.

This particular form of the FFT is a complex, radix-2, decimation-in-time algorithm with

bit-rev ersed output [134].

Figure 5.8 is the FFT algorithm in Hask ell, co ded directly from the buttery diagram.

The top lev el of this function has a guard that c hec ks that the supplied log

2

v ector length

is correct. T o explain ho w the rest of this co de w orks, I will start at the inner functions

and w ork out w ards. Bit-rev ersed re-ordering is p erformed b y the bitrev function, whic h

assumes that the length of its argumen t v ector is a p o w er of t w o. It can b e de�ned

recursiv ely as

bitrev :: Vector � ! Vector �

bitrev h x i = h x i

bitrev xs = bitrev (evens xs) ++ bitrev (odds xs)

Usually , ho w ev er, w e w ould exp ect an implemen tation to pro vide it as a primitiv e

CHAPTER 5. ST A TIC PR OCESS NETW ORKS 137

fft :: Int -> Vector (Complex Float) -> Vector (Complex Float)

fft k xs | n == 2 ^ k = (bitrev . foldrV stage xs . iterateV k (* 2)) 2

where

stage :: Int -> Vector (Complex Float) -> Vector (Complex Float)

stage k = concatV . zipWithV segment (takeV m twiddles) . groupV k

where m = n `div` k

segment :: Complex Float -> Vector (Complex Float)

-> Vector (Complex Float)

segment twid = unduals . mapV (butterfly twid) . duals

twiddles :: Vector (Complex Float)

twiddles = (bitrev . mapV (cis . negate) . halfcycle) n

n = lengthV xs

Figure 5.8. The FFT function

function, using the rev erse-carry addressing of mo dern DSPs.

The \t widdle" factors, t widdles , is a v ector of complex n um b ers situated on the unit

circle. F or n = 16, the v alue of t widdles is:

h W

0

16

; W

4

16

; W

2

16

; W

6

16

; W

1

16

; W

5

16

; W

3

16

; W

7

16

i

where

W

m

n

= e

� 2 � m=n

t widdles is obtained b y applying the negate and cis functions to negativ e phase angles

on the unit circle, and applying a bit-rev ersal re-ordering to the result.

The next lev el pro cesses a single \segmen t." segmen t groups a segmen t in to pairs of

\dual" no des, p erforms a buttery op eration on eac h pair, and then regroups the no des

in to the original ordering. Note ho w partial application is used to distribute the t widdle

factor for this segmen t to all applications of buttery . (buttery is de�ned on page 22.)

Figure 5.9a illustrates (unfolded) a segmen t of the second stage of a 16-p oin t FFT.

The next lev el of the FFT is a single \stage" of the algorithm|there are four of these

for a 16-p oin t FFT. A stage consists of a n um b er of segmen ts m where m = 1 ; 2 ; 4 ; 8 , and

so on. stage divides the data v ector in to segmen ts, applies segmen t to eac h segmen t and

CHAPTER 5. ST A TIC PR OCESS NETW ORKS 138

(a)

(b)

(c)

butterfly

butterfly

butterfly

butterfly

twid

groupVsegment

segment

concatV

takeV

m ndiv

twiddles
k

stage stage

2

stage

2

stage

2

2 4 8 16

bitrev

2

Figure 5.9. P arts of the 16-p oin t FFT in Visual Hask ell: a) segmen t ; b) stage ; c) �t

a single t widdle factor, and com bines the result in to a single v ector again. Figure 5.9b

illustrates (unfolded) the second stage of a 16-p oin t FFT.

The next lev el is what w e migh t call the \pip eline" lev el, since it applies a series of

stages one after the other; this pattern is captured b y foldr V . The argumen t to eac h stage

is the length of segmen ts within that stage: for a 16-p oin t FFT, for example, the v ector

required is h 16 ; 8 ; 4 ; 2 i . The iterate V function generates this v ector (in rev erse order).

Figure 5.9c illustrates this lev el of the FFT.

5.3 Streams

The Hask ell Stream datat yp e de�ned in this section allo ws us to sim ulate datao w pro cess

net w ork programs in Hask ell. As for v ectors, I will mak e some assumptions ab out ho w

the compiler will treat this datat yp e. The Hask ell co de for the Stream mo dule is listed in

app endix A.

CHAPTER 5. ST A TIC PR OCESS NETW ORKS 139

5.3.1 The Stream datat yp e

The Stream datat yp e declaration is almost the same as that for V ector :

data Stream � = NullS

| � :- Stream �

As w e sa w in sections 2.3.5 and 2.3.6, pragmatic implemen tations of pro cess net w orks

in functional programming languages ev aluate eac h elemen t of a stream in a h yp er-strict

con text|that is, elemen ts are fully ev aluated b efore transmitting them to another pro cess.

Let us therefore assume the same for Stream .

The stream function pro duces a stream from a list:

stream [x; y ; z] ! (x :- y :- z :- NullS)

I will assume that Hask ell has a sp ecial syn tax for streams, and enclose streams in

curly brac k ets, th us: f x; y ; z g . Instead of NullS , I will write f g . In this c hapter, I consider

only in�nite streams.

Annotations on streams indicate their sample rate. T o see wh y , consider the pro cess

that sums corresp onding elemen ts of t w o input streams:

summer :: Num �) Stream

n

� ! Stream

n

� ! Stream

n

�

If the t w o inputs had di�eren t sample rates, then bu�er memory w ould v ery quic kly

b ecome exhausted. The annotations, treated as pre-conditions, ensure that sample rates

are alw a ys correct.

If a stream con tains v ectors, than an annotation on the v ector t yp e is a constrain t on

the lengths of the v ectors. Th us, Stream

n

(Vector

k

�) is a stream of rate n , con taining

v ectors of length k . These annotations will also b e useful when transforming pro cess

net w orks. As for v ector lengths, extending the Hask ell t yp e system to infer correct sample

rates w ould b e most in teresting.

5.3.2 Pro cess primitiv es

In section 3.2.5, I argued that an y SDF actor|and therefore an y SDF net w ork|can b e

built with dela ys and instances of �v e actor sc hemata. In this section, I giv e a Hask ell

CHAPTER 5. ST A TIC PR OCESS NETW ORKS 140

function for eac h of these actors. The t yp es of the six functions are giv en in �gure 5.10.

Recursiv e de�nitions are giv en in section A.

The \cons" op erator (:-) attac hes an elemen t to the fron t of a stream. It is equiv alen t

to placing an initial v alue in a stream|that is, a unit dela y . F or example,

x :- f a; b; c g ! f x; a; b; c g

It is common in signal pro cessing for dela ys to ha v e an initial v alue of zero, so de�ne

a new function named (confusingly) dela y :

delay :: Num �) Stream � ! Stream �

delay xs = zero :- xs

groupS breaks a stream in to a stream of v ectors of length k , where k is its �rst argu-

men t. groupS is directly equiv alen t to the group actor. This is the basic mec hanism b y

whic h the sample rate of streams can b e decreased. If the length of the input stream is

not a m ultiple of k , the �nal incomplete v ector is discarded. F or example,

groupS 2 f a; b; c; d ; e g ! fh a; b i ; h c; d i g

concatS is the rev erse, concatenating a stream of v ectors in to a stream of elemen ts.

Unlik e concat , concatS do es not need an argumen t giving the length of the v ectors in the

stream, as it calculates them at run-time. (The v ector-length assertion in the t yp e states

that all v ectors are the same length.) F or example,

concatS fh a; b i ; h c; d i g ! f a; b; c; d g

zipS com bines t w o streams p oin t-wise in to a pair of streams. F or example,

zipS f a; b; c g f 1 ; 2 ; 3 g ! f (a; 1) ; (b; 2) ; (c; 3) g

unzipS is almost the rev erse of zipS : it pro duces a pair of streams from a stream of

CHAPTER 5. ST A TIC PR OCESS NETW ORKS 141

(:-) :: � ! Stream

n

� ! Stream

n

�

groupS :: Int ! Stream

nk

� ! Stream

n

(Vector

k

�)

concatS :: Stream

n

(Vector

k

�) ! Stream

nk

�

zipS :: Stream

n

� ! Stream

n

� ! Stream

n

(�; �)

unzipS :: Stream

n

(�; �) ! (Stream

n

�; Stream

n

�)

mapS :: (� ! �) ! Stream

n

� ! Stream

n

�

Figure 5.10. T yp es of stream functions

pairs. F or example,

unzipS f (a; 1) ; (b; 2) ; (c; 3) g ! (f a; b; c g ; f 1 ; 2 ; 3 g)

zipS and unzipS are equiv alen t to the actors zip (2) and unzip (2) resp ectiv ely . Hask ell's

t yp e system do es not allo w a function to accept a v ariable n um b er of argumen ts. This

restriction is o v ercome b y assuming that there exists a whole family of zipping and unzip-

ping functions: zipS3 , zipS4 , and so on. In theory , this do es not a�ect m y claim that the

six functions giv en in this section are the minim um set of functions needed to write an y

SDF actor, since triples, four-tuples, and so on can b e represen ted b y nested pairs, and

the zipping functions de�ned in terms of zipS and unzipS .

mapS is equiv alen t to the map actor. It applies a function to eac h elemen t of a stream:

mapS (+1) f 1 ; 2 ; 3 ; 4 g ! f 2 ; 3 ; 4 ; 5 g

In section 3.2.3, I discussed the di�erence b et w een \parameter" and \stream" argu-

men ts. The functional programming language deals quite w ell with the t w o di�eren t

t yp es of argumen t: as long as the stream argumen ts follo w the parameter argumen ts, it is

easy to create parameterised stream functions that are equiv alen t to instan tiated actors:

(groupS 4), for example, is the function that divides its stream argumen t in to 4-v ectors.

Sligh tly more sophisticated are examples lik e mapS (� 4), whic h m ultiplies eac h elemen t of

its stream argumen t b y four. There is no need for a \constan t stream" of fours, as w ould

b e required b y languages suc h as Lucid [144].

A further p oin t to note is a di�erence in the w a y that pro cesses are instan tiated.

In section 3.2.3, an actor is instan tiated b y binding it to a unique v ertex name; stream

CHAPTER 5. ST A TIC PR OCESS NETW ORKS 142

argumen ts are supplied via the graph top ology . With the Hask ell functions of this section,

ho w ev er, a pro cess do es not exist as a unique en tit y un til al l argumen ts ha v e b een supplied.

I will call a function that con tains streams in its input or output t yp es a pr o c ess-function ;

once all argumen ts are supplied, the pro cess-function applied to its \parameter" argumen ts

b ecomes a pr o c ess . F or example, mapS and mapS f , applied to no further argumen ts, are

pro cess functions; mapS f xs is a stream, pro duced b y the pro cess mapS f .

Because a pro cess-function do es not b ecome a pro cess un til all argumen ts are supplied,

pro cess-functions can b e supplied as argumen ts to higher-order functions. F or example,

w e can write map V (mapS f) xs to pro duce a v ector of pro cesses; section 5.4 explores this

idea.

5.3.3 An example

A �rst-order recursiv e digital �lter is de�ned b y

y (n) = a

0

x (n) + a

1

x (n � 1) � b

1

y (n � 1)

where a

0

, a

1

, and b

1

are the �lter co e�cien ts. This can b e reform ulated as

w (n) = x (n) � b

1

y (n � 1)

y (n) = a

0

w (n) + a

1

w (n � 1)

The blo c k diagram of this simple �lter is sho wn in �gure 5.11a. De�ne scale and

summer (page 60) as Hask ell functions:

scale :: Num �) � ! Stream � ! Stream �

scale a xs = mapS (* a) xs

summer :: Num �) Stream � ! Stream � ! Stream �

summer xs ys = mapS (n (x,y) -> x + y) (zipS xs ys)

Then, w e can de�ne the �rst-order I IR �lter in Hask ell as:

iir1 :: Num �) � ! � ! � ! Stream � ! Stream �

iir1 a0 a1 b1 x = let

CHAPTER 5. ST A TIC PR OCESS NETW ORKS 143

Sa0

a1x

yw

u

S

b1

a0

a1

zÐ1

S S
a0

a1Ðb1

x yw

u

(a)

(b) zzzzzzzzzzzzzzzzzzzzzzzzzzz Ð1

b1Ð

Figure 5.11. A �rst-order recursiv e �lter: a) in blo c k-diagram notation; b) in Visual

Hask ell

w = summer x (scale (- b1) w)

u = delay w

y = summer (scale a0 w) (scale a1 u)

in

y

Figure 5.11b sho ws this de�nition in Visual Hask ell, laid out to mimic the blo c k dia-

gram, and with icons used for scale , summer , and dela y . In this diagram, and from here

on, I omit the con taining windo w for function de�nitions. This example demonstrates

that Visual Hask ell can b e made to lo ok lik e blo c k diagrams, and should therefore b e able

to tap the same app eal to in tuition as blo c k diagram systems. Note the imp ortance of

de�ning suitable functions to aid the visual represen tation of programs. In the textual

program, it w ould ha v e b een as easy to write, for example,

u = 0 :- w

y = summer (mapS (* a0) w) (mapS (* a1) u)

instead of

CHAPTER 5. ST A TIC PR OCESS NETW ORKS 144

u = delay w

y = summer (scale a0 w) (scale a1 u)

but w e w ould then not ha v e b een able to use icons as e�ectiv ely .

5.3.4 Pro cess constructors

Of the primitiv e functions, mapS is the only higher-order function. Additional higher-

order functions are readily de�ned in terms of the primitiv es. I call higher-order functions

on streams pr o c ess c onstructors , b ecause of their k ey role in constructing pro cess net-

w orks. Their t yp es and de�nitions are listed in �gure 5.12; their de�nitions are sho wn

diagrammatically in �gure 5.13.

zip W ithS (�gure 5.13a), zip OutS , and zip Out W ithS (�gure 5.13b) are p oin t-wise pro cess

constructors lik e mapS , but build pro cesses with more than one input or output. F or

example, a p oin t-wise addition pro cess is written

zip W ithS (+)

A pro cess that outputs the sum and di�erence of t w o inputs is written:

zip Out W ithS (�x y : (x + y ; x � y))

The other pro cess constructors main tain a state. Although the de�nitions giv en in

�gure 5.12 use a feedbac k lo op to carry the state around a purely-functional actor, recursiv e

de�nitions could also b e giv en. F or example, scanS could b e de�ned as

scanS f a NullS = NullS

scanS f a (x:-xs) = let x' = f a x in x' :- scanS f x' xs

The t w o de�nitions are equiv alen t; I ha v e c hosen the state-as-feedbac k form so that these

new functions can b e treated as hierarc hical datao w actors.

iterateS (�gure 5.13c) and generateS (�gure 5.13d) pro duce a stream from a single

input v alue; the k ey di�erence is that iterateS outputs the state on eac h application of

its argumen t functions, while generateS pro duces eac h output v alue and the next state on

CHAPTER 5. ST A TIC PR OCESS NETW ORKS 145

zipWithS :: (� ! � !) ! Stream � ! Stream � ! Stream

zipWithS f xs ys = mapS (n (x,y) -> f x y) (zipS xs ys)

zipOutS :: (� ! (� ;) ! Stream � ! (Stream � ; Stream)

zipOutS f xs = unzipS (mapS f xs)

zipOutWithS :: (� ! � ! (; �)) ! Stream � ! Stream �

! (Stream ; Stream �)

zipOutWithS f xs ys = unzipS (mapS (n (x,y) -> f x y) (zipS xs ys))

iterateS :: (� ! �) ! � ! Stream �

iterateS f a = let ys = a :- (mapS f ys) in xs

generateS :: (� ! (�; �)) ! � ! Stream �

generateS f a = let (zs,ys) = zipOutS f (a :- zs) in ys

scanS :: (� ! � ! �) ! � ! Stream � ! Stream �

scanS f a xs = let ys = zipWithS f (a :- ys) xs in ys

stateS :: (� ! � ! (�;)) ! � ! Stream � ! Stream

stateS f a xs = let (zs,ys) = zipOutWithS f (a :- zs) xs in ys

Figure 5.12. Pro cess constructor de�nitions

eac h application. F or example, the pro cess that pro duces the stream f 0 ; 1 ; 2 ::: g is written

iterateS 0 (+1)

A useful function de�ned in terms of iterateS generates a stream con taining an in�nite

n um b er of copies of its argumen t:

repeatS :: � ! Stream �

repeatS = iterateS id

scanS (�gure 5.13e) and stateS (�gure 5.13f) also propagate a state v alue b et w een

iterations. F or example, the pro cess

scanS 0 (+)

pro duces the running sum of its input stream. A more in teresting pro cess is one that,

CHAPTER 5. ST A TIC PR OCESS NETW ORKS 146

(c) d)

(e) (f)

(b)

(a)

xs

ys

xs

ys

a

ys

zs

a

xs
ys ys

zs

a

xs

a
ys

f

f

f f

f f

Figure 5.13. Pro cess constructors: a) zip W ithS ; b) zip Out W ithS ; c) iterateS ; d)

generateS ; e) scanS ; f) stateS

giv en some in teger k , outputs, for eac h input v alue, a v ector con taining that v alue and the

past k � 1 v alues:

slide :: Num �) Int ! Stream � ! Stream (Vector �)

slide k = scanS (<<) (copyV k 0)

F or example,

slide 3 f 1 ; 2 ; 3 ; 4 g ! fh 0 ; 0 ; 1 i ; h 0 ; 1 ; 2 i ; h 1 ; 2 ; 3 i ; h 2 ; 3 ; 4 i g

This is a common op eration in signal pro cessing. T o illustrate, the equation de�ning

CHAPTER 5. ST A TIC PR OCESS NETW ORKS 147

iph

#h

k

Figure 5.14. The FIR �lter function

a k 'th-order �nite-impulse-resp onse (FIR) �lter with impulse resp onse h is:

y (n) =

k

X

i =0

h (i) x (n � i)

In other w ords, for eac h input v alue, output the inner pro duct of the impulse resp onse

and the most recen t k input v alues. In Hask ell:

fir :: Num �) Vector � ! Stream

n

� ! Stream

n

�

fir h = mapS (ip h) . slide (lengthV h)

�r is illustrated in �gure 5.14. The icon for slide is supp osed to ev ok e a stac k with items

\falling o� " the b ottom. There is a large amoun t of redundan t comm unication b et w een

the t w o pro cesses: eac h input v alue is sen t from the slide pro cess to the scanS pro cess

h times. This apparen t o v erhead can b e remo v ed using program transformation|see

section 5.5.2.

Consider no w a recursiv e �lter of arbitrary order, sho wn in blo c k diagram form in

�gure 5.15a. Its equation is

w (n) = x (n) �

k

X

i =1

b (i) w (n � i)

y (n) =

k

X

i =0

a (i) w (n � i)

where k is the �lter order. This diagram is di�cult to dra w in a formal notation b ecause

of the arbitrary order. As for the FIR �lter, w e group all the z

� 1

dela ys in to a single state

with slide . In the follo wing de�nition, illustrated in Visual Hask ell in �gure 5.15b, I ha v e

used t w o applications of slide for clarit y:

iirn :: Num �) Vector � ! Vector � ! Stream

n

� ! Stream

n

�

CHAPTER 5. ST A TIC PR OCESS NETW ORKS 148

zÐ1

S S
a0

a1Ðb1

x yw

S S

zÐ1

anÐbn

(a)

(b)

y

wS

zzzzzzzzzzzzzzzzzzzzzzzzzzz Ð1ip c ipa

b #a

kk

x
b

a
cb negate

Figure 5.15. The n -th order recursiv e �lter: a) blo c k-diagram form; b) generalised form

iirn a b x

= let

c = mapV negate b

w = summer x (mapS (ip c) (slide (lengthV b) (delay w)))

y = mapS (ip a) (slide (lengthV a) w)

in

y

5.4 Pro cess net w ork construction

The previous section ga v e examples of �rst-or der pro cess net w orks. A �rst-order net w ork is

one in whic h a pro cess-function nev er app ears as an argumen t to a higher-order function|

eac h pro cess th us app ears explicitly in the program text.

W e can tak e adv an tage of the p o w erful features of the host functional language to in-

crease the expressiv e p o w er a v ailable to us for writing datao w pro cess net w ork programs.

CHAPTER 5. ST A TIC PR OCESS NETW ORKS 149

(a)

(c)(b)

h g f

f

g

f

g

Figure 5.16. Simple net w ork-forming functions: a) comp osition; b) fan ; c) par

Higher-order functions are the most useful of these: they capture patterns of instan tiation

and in terconnection b et w een pro cesses. This section is mainly concerned with illustrating

the kinds of net w orks that can b e pro duced this w a y; the resulting st yle of programming

could p erhaps b e called data-p ar al lel pr o c ess p ar al lelism .

5.4.1 Simple com binators

F unction comp osition connects pro cesses in series; a series of comp osed functions forms

a pip eline. Figure 5.16a illustrates the pip eline f � g � h , where f , g , and h are pro cesses.

New higher-order functions to express other top ologies are easily de�ned. F or example,

fan applies t w o pro cesses to one stream; par applies t w o pro cesses eac h to one stream of

a pair. They are de�ned as follo ws:

fan :: (� ! �) ! (� !) ! � ! (� ;)

fan f g xs = (f xs, g xs)

par :: (� ! �) ! (! �) ! (�; �) ! (; �)

par f g (xs,ys) = (f xs, g xs)

Figure 5.16b and c illustrate these t w o functions. Note, ho w ev er, that this visual

syn tax has not b een de�ned in c hapter 4. An imp ortan t feature of a visual language

implemen tation for visualising these kinds of net w orks is th us user-de�ned visual syn tax

for higher-order functions.

CHAPTER 5. ST A TIC PR OCESS NETW ORKS 150

5.4.2 Simple linear net w orks

Supplying a pro cess-function as argumen t to an y v ector or list iterator giv es rise to an

arra y of pro cesses (or pro cess-functions). The expression

map V (mapS f) xs

where xs :: Vector (Stream

n

�) is a v ector of streams, is a linear net w ork of iden tical

pro cesses. The net w ork is sho wn in �gure 5.17a. A similar net w ork results for p oin t-wise

constructors:

zip W ith V (zip W ithS f) xs ys

These examples used mapS or zip W ithS as the pro cess constructor. This is for ease of

explanation|pro cess constructors that main tain state can also b e used. F or example, the

follo wing expression builds a linear arra y of pro cesses, eac h built with scanS :

map V (scanS f a) xs

where a is the initial state of all pro cesses. T o build an arra y of pro cesses with di�ering

initial state, eac h tak en from a v ector as , w e can write

zip W ith V (scanS f) as xs

The previous examples built arra ys of iden tical pro cesses. W e can, if w e wish, apply a

ve ctor of functions fs so that eac h pro cess in the net w ork b eha v es di�eren tly:

zip W ith V mapS fs xs

Figure 5.17b illustrates the net w ork that results. This construction corresp onds to par ,

using v ectors of functions and data instead of pairs. The net w ork corresp onding to fan ,

in whic h a linear arra y of (di�eren t) pro cesses is applied to a single stream xs is this:

map V (�f : mapS f xs) fs (5.1)

CHAPTER 5. ST A TIC PR OCESS NETW ORKS 151

xs
fs

(a)

(b)

f

xs

fff

Figure 5.17. Linear pro cess net w orks

5.4.3 Pip elines

Comp osition builds pip eline s in whic h eac h pro cess is explicitly represen ted in the text

(�gure 5.16a). It is easy to de�ne a higher-order function that connects a v ector of functions

in series:

series :: Vector (� ! �) ! � ! �

series fs = foldlV (.) id fs

If eac h f in fs is a pro cess-function, then series pro duces a pip eline . F or example, to

create a pip eline of k iden tical pro cesses, mak e k copies of the pro cess and pip elin e them:

series (cop y V k p) xs

where p :: Stream

n

� ! Stream

n

� . One useful w a y of creating a pip eline of di�eren t

pro cesses is to p ar ameterise a pro cess b y supplying eac h instance of the pro cess with a

CHAPTER 5. ST A TIC PR OCESS NETW ORKS 152

di�eren t �rst argumen t, as in

series (map V p v) xs (5.2)

where p is the pro cess and v is a v ector of argumen ts. T o see ho w this w orks, supp ose

that p = �i : mapS (f i) and v = h 1 ; 2 ; 3 i . The expression (map V p v) ev aluates to

h mapS (f 1) ; mapS (f 2) ; mapS (f 3) i

Unfolding series and then foldl V giv es

(mapS (f 1) � mapS (f 2) � mapS (f 3))

whic h is sho wn in �gure 5.18.

There is, ho w ev er, a more direct w a y to ac hiev e this result. W e can relate series to

foldr V with the follo wing iden tit y:

series (map V f v) x � foldr V f x v (5.3)

The pip eline of parameterised pro cesses in equation 5.2 b ecomes

foldr V p xs v (5.4)

W e could instead use foldl V to mak e data o w through the pip eline from left to righ t.

Some care is needed, as the order of argumen ts to p m ust b e sw app ed:

foldl V (ip p) xs v

The idea of parameterising a pro cess net w ork b y mapping a pro cess to a v ector of

parameters o ccurs often in pip elines, but is easily used for other net w ork structures. F or

example, equation 5.1 is an example in whic h man y instan tiations of a pro cess are applied

to a single stream; to parameterise eac h pro cess, w e �rst pro duce a v ector of parameterised

pro cesses, then map these to the stream xs :

map V (�p : p xs) (map V p v)

CHAPTER 5. ST A TIC PR OCESS NETW ORKS 153

1f 3f2f

Figure 5.18. A pip eline pro cess net w ork

In this particular case, it is easy to write an expression for the desired net w ork directly ,

so:

map V (�i : p i xs) v

The w a y in whic h the parameter to p a�ects it dep ends on ho w p is constructed. F or

example, if

p = �i : mapS (f i)

then the parameter i b ecomes the �rst argumen t to the mapp ed function, f . If, ho w ev er,

p = scanS f

then i is the initial state of p .

5.4.4 Meshes and systolic arra ys

The remaining v ector iterators, when used with a pro cess-function argumen t, giv e rise to

v arious mesh-structured net w orks. F or example, the follo wing expression, illustrated in

�gure 5.19a, \folds" a v ector of streams in to a single stream:

foldl V (zip W ithS f) s ts

where f is a binary function. The v ector generation functions, used in this w a y , pro duce

a v ector of streams from a single stream, as illustrated in �gure 5.19b:

iterateV k (mapS f) s

The scanning v ector functions pro duce a v ector of streams from a v ector of streams;

as a result, they can b e used to express t w o-dimensional arra ys of pro cesses. F or example,

meshl V (zip Out W ithS f) s ts

CHAPTER 5. ST A TIC PR OCESS NETW ORKS 154

(a)

(b)

(c)

ts

s

s

ss

ts

A B D

C

ffff

f f f

ffff

ffff

ffff

ffff

Figure 5.19. Mesh pro cess net w orks

CHAPTER 5. ST A TIC PR OCESS NETW ORKS 155

pro duces an arra y of pro cesses with a mesh-lik e in ter-connection pattern. By applying

this function to a se c ond v ector of streams, w e get a t w o-dimensional arra y of pro cesses

as sho wn in �gure 5.19c. The expression for this net w ork is

meshr V (meshl V (zip Out W ithS f)) ss ts

The t w o-dimensional mesh is v ery lik e a systolic arra y , in whic h a \w a v e" of computa-

tion pro ceeds across the arra y . P atterns suc h as these algorithms dev elop ed for hardw are

implemen tation, and there has b een some in teresting w ork on using functional languages

for hardw are design. Sheeran's � FP language, for example, is a functional language based

on Bac kus' FP , and includes structuring op erations similar to those presen ted here [128].

This language has ev olv ed in to the hardw are design and v eri�cation language Rub y , in

whic h circuits are represen ted as relations b et w een signals (instead of as functions from

signals to signals) [68]. Hask ell has also b een used to sp ecify and sim ulate systolic ar-

ra ys: McKeo wn and Revitt giv e higher-order functions for expressing systolic arra ys and

illustrate with a n um b er of algorithms [93].

5.4.5 Net w ork construction in datao w systems

Recen tly , t w o blo c k diagram systems ha v e included net w ork construction. In GRAPE-I I,

ge ometric p ar al lelism sp eci�es m ultiple in v o cations of a blo c k [85]. In the visual language,

these in v o cations all app ear as one blo c k. The n um b er of in v o cations is sp eci�ed in a

textual language;

2

these v alues m ust b e kno wn at compile-time. The connection top ology

is also sp eci�ed in the textual language. If the output of one in v o cation feeds in to the

input of the next, an additional feedbac k arc is also sho wn. This tec hnique allo ws complex

structures to b e expressed without needing to pro vide higher-order functions.

Ptolem y has adopted a form of higher-order function notation [87]. Sp ecial blo c ks

represen t m ultiple in v o cations of a \replacemen t actor." The Map actor, for example, is

a generalised form of map V . A t compile time, Map is replaced b y the sp eci�ed n um b er

of in v o cations of its replacemen t actor; as for GRAPE-I I, this n um b er m ust b e kno wn at

compile-time. Unlik e map V , Map can accept a replacemen t actor with arit y > 1; in this

2

The referenced pap er giv es these v alues in a textual form. It is not clear whether they can b e expressed

in the visual language.

CHAPTER 5. ST A TIC PR OCESS NETW ORKS 156

case, the v ector of input streams is divided in to groups of the appropriate arit y (and the

n um b er of in v o cations of the replacemen t actor reduced accordingly).

The requiremen t that the n um b er of in v o cations of an actor b e kno wn at compile-

time ensures that static sc heduling and co de generation tec hniques will still b e e�ectiv e.

F urther w ork is required to explore forms of higher-order function mid-w a y b et w een fully-

static and fully-dynamic. F or example, a co de generator that pro duces a lo op with an

actor as its b o dy , but with the n um b er of lo op iterations unkno wn, could still execute v ery

e�cien tly .

5.5 Pro cess net w ork transformation

Because they lac k side-e�ects, functional languages lend themselv es v ery w ell to program

transformation. In this section, I will demonstrate the algebraic st yle of program transfor-

mation, exempli�ed b y the Bird-Meertens formalism (BMF) [20]. The k ey c haracteristic

of this st yle is that it mak es extensiv e use of a \catalogue" of kno wn algebraic la ws of func-

tions, rather than relying on disco v ery through lo w er-lev el metho ds. BMF, also kno wn as

\Squiggol," is b eing dev elop ed as a \programming b y calculation" metho d of dev eloping

programs from sp eci�cations. I will use Hask ell as the notation for writing transformations,

in a similar manner to [21], instead of the more concise notation of [20].

The k ey con tribution of this section is to adapt the Bird-Meertens theory of lists to w ork

with streams; the result is a p o w erful to ol for restructuring pro cess net w orks. P articularly

p o w erful transformations b ecome a v ailable for net w orks constructed with higher-order

functions. I iden tify four distinct classes of transformation suitable for use with pro cess

net w orks. The transformations giv en here are common cases, and are b y no means an

exhaustiv e catalogue.

T ransforming programs to impro v e p erformance is also adv o cated b y Carriero and

Gelern ter [32], who transform b et w een programs expressed in the most \natural" of their

three categories of parallelism, in to a more e�cien tly-implemen tabl e category . Ho w ev er,

their transformations are ad-ho c , lac king the equational basis of the Bird-Meertens st yle.

CHAPTER 5. ST A TIC PR OCESS NETW ORKS 157

(a) (b)

g

ff

g

Figure 5.20. Illustrating net w ork t yp es

5.5.1 T yp e annotations

T ransformations in the Bird-Meertens formalism (BMF) are, in general, indep enden t of

structural information ab out the argumen ts of the transformed functions, other than the

t yp es. Unfortunately , man y of the transformations of this section are correct only if

argumen ts satisfy certain structural constrain ts. In particular, w e will b e concerned with

the lengths of v ectors, and the data rates of streams. F or example, consider the simple

net w ork (�gure 5.20a)

par (mapS f) (mapS g) (5.5)

W e could merge the t w o pro cesses in to one (�gure 5.20b), and transform equation 5.5

in to

unzipS � mapS (par f g) � (uncurry zipS) (5.6)

If the sample rates of the t w o streams are di�eren t, ho w ev er, equation 5.6 will not op erate

as a real-time program. Because equation 5.6 \consumes" data from b oth streams at equal

rates; data will accum ulate on the input with the higher rate, resulting in bu�er o v ero w

or heap exhaustion. This problem can b e isolated at zipS : the sample rates of the t w o

streams do not meet the sample rate pre-conditions of zipS .

T o sp ecify that transformations are only v alid if certain length or sample-rate condi-

tions are satis�ed, I will app end the annotated t yp e of the expressions on either side of a

transformation. Th us, our example transformation w ould b e written:

par (mapS f) (mapS g) � unzipS � mapS (par f g) � uncurry zipS

:: (Stream

n

�; Stream

n

�) ! (Stream

n

 ; Stream

n

�)

CHAPTER 5. ST A TIC PR OCESS NETW ORKS 158

gf

(a) (b)

gf

Figure 5.21. Pro cess fusion

5.5.2 F usion

A common example of an algebraic la w on functions is map distributivity , so called b ecause

it expresses the fact that map distributes bac kw ards through function comp osition:

map f � map g � map (f � g)

This la w states that applying g to eac h elemen t of a list and then f to eac h elemen t

of the list, is equiv alen t to applying g then f to eac h elemen t of the list. The correct-

ness of this la w dep ends only up on the prop erties of map , not up on prop erties of f or g .

This is the essence of the algebraic st yle of program transformation: computational b e-

ha viours are captured b y functions (with particular emphasis on higher-order functions);

structural prop erties of expressions are then easily recognised; expressions are transformed

using appropriate function iden tities. There are similar iden tities for other com binations

of functions| foldl and map , for example; collectiv ely , these are kno wn as lo op fusion

iden tities.

The �rst class of pro cess net w ork transformations is a simple adaptation of these

iden tities to pro cess net w ork. The simplest is

mapS f � mapS g � mapS (f � g) (5.7)

:: Stream

n

� ! Stream

n

�

The left-hand side of equation 5.7 represen ts t w o pro cesses (�gure 5.21a); the righ t-

hand side represen ts a single pro cess (�gure 5.21b). T ransformation using this iden tit y

th us has the e�ect of increasing or decreasing parallelism, dep ending on the direction in

whic h the transformation is applied. The t yp es of all fusion iden tities are the same as

equation 5.7, so will b e omitted b elo w.

CHAPTER 5. ST A TIC PR OCESS NETW ORKS 159

iph
#h 0 s

s'<<

Figure 5.22. The transformed FIR �lter

W e can easily �nd more fusion iden tities. F usion of t w o pro cesses constructed with

mapS and scanS is captured b y:

mapS f � scanS g a � stateS (�a x : let a

0

= g a x in (a

0

; f a

0

)) a

(5.8)

A more general iden tit y captures fusion of t w o pro cesses built with stateS :

stateS f a � stateS g b � stateS (� (a; b) x : let (b

0

; t) = g b x

(a

0

; y) = f a t

in ((a

0

; b

0

) ; y)

) (a; b)

(5.9)

T o illustrate pro cess fusion, consider the ine�cien t v ersion of the FIR �lter (page 147).

T ransformation in to a more e�cien t v ersion is straigh t-forw ard:

�r h = (de�nition of �r)

mapS (ip h) � slide (length V h)

= (unfold slide)

mapS (ip h) � scanS (< <) (cop y V (length V h) 0)

= (fusion: equation 5.8)

stateS (�a x : let a

0

= (< <) a x in (a

0

; (ip h) a

0

)) (cop y V (length V h) 0)

= (simplify)

stateS (�a x : let a

0

= a < < x in (a

0

; ip h a

0

)) (cop y V (length V h) 0)

This v ersion of the FIR �lter is harder to read than the original v ersion. Figure 5.22

sho ws this v ersion in Visual Hask ell using an iterator view (section 4.5.2). Although w e

could ha v e written this less-readable but more e�cien t v ersion from scratc h, it is readily

deriv ed from the easier-to-read and more main tainable v ersion. As w ell as b eing easier to

read, the original v ersion uses a w ell-kno wn utilit y function (slide).

A di�cult y with the pro cess fusion iden tities is that there seems to b e no end to the

CHAPTER 5. ST A TIC PR OCESS NETW ORKS 160

n um b er of iden tities that w e ma y require. This problem w as noted some time ago b y

W adler in the con text of lazy lists [145]. This led to the dev elopmen t of (successiv ely) the

tec hniques of listlessness [146] and deforestation [148], aimed at automatic fusion of list

functions for program e�ciency . More recen tly , Gill et al disco v ered an impro v ed metho d

[51], whic h is no w part of some Hask ell compilers.

It is not easy to see, ho w ev er, ho w these tec hniques can b e applied to our purp oses, for

t w o reasons. Firstly , they rely on expanding the functions in question to recursiv e �rst-

order form; w e, ho w ev er, seek to retain the higher-order functions, since they are our k ey

to e�cien t \imp erativ e" implemen tation as datao w actors. Secondly , the transformations

are in the fusion direction only; as often as not, w e are as in terested in making pro cesses

smaller (\�ssion") instead of larger.

5.5.3 P arallelisation

The second class of iden tit y transforms a pro cess con taining application of a v ector iterator

in to a v ector of pro cesses, and vice v ersa. This class of iden tit y do es not app ear in BMF,

since they are needed only b ecause the op erational c haracteristics of v ectors and streams

di�er.

I call this class of iden tit y horizontal p ar al lelisation . Tw o new zipping functions are

needed, whic h zip a v ector of streams in to a stream of v ectors, and vice v ersa:

zipx :: Vector

k

(Stream

n

�) ! Stream

n

(Vector

k

�)

unzipx :: Stream

n

(Vector

k

�) ! Vector

k

(Stream

n

�)

The simplest parallelisation iden tit y is this:

mapS (map V f) � zip x � map V (mapS f) � unzip x

:: Stream

n

(Vector

k

�) ! Stream

n

(Vector

k

�)

(5.10)

The left-hand side of equation 5.10 is a single pro cess (�gure 5.23a); the righ t-hand side

is a v ector of k pro cesses (�gure 5.23b). Since zip x � unzip x = id and unzip x � zip x = id ,

CHAPTER 5. ST A TIC PR OCESS NETW ORKS 161

it is straigh t-forw ard to mo dify this iden tit y as follo ws:

unzip x � mapS (map V f) � zip x

� map V (mapS f)

:: Vector

k

(Stream

n

�) ! Vector

k

(Stream

n

�)

(5.11)

Equation 5.11 is probably more useful when starting with a v ector of pro cesses, whereas

equation 5.10 is more useful when starting with a single pro cess.

Consider no w a pro cess that rep eatedly applies foldr V , suc h as migh t b e obtained b y

calculating the sum of eac h v ector in a stream:

mapS (foldr V (+) 0)

W e can parallelise this pro cess in a similar manner:

mapS (foldr V f a) � foldr V (zip W ithS f) (rep eatS a) � unzip x

:: Stream

n

(Vector

k

�) ! Stream

n

�

(5.12)

Figure 5.23c sho ws the left-hand side of this iden tit y; �gure 5.23d the righ t-hand side.

As for pro cess fusion, horizon tal parallelisation quic kly leads us to the problem of a large

n um b er of com binations of higher-order functions. A tec hnique for automatically deriving

iden tities of this class w ould b e helpful indeed.

5.5.4 Pip elining

The third kind of iden tit y constructs or com bines pip elines of pro cesses, where eac h pro cess

is parameterised b y a di�eren t v alue. Pip elining w as explored extensiv ely b y Kelly [78].

The follo wing iden tit y relates a single pro cess to a pip eline of parameterised pro cesses,

eac h constructed with mapS :

mapS (series fs) � series (map V mapS fs) (5.13)

:: Stream

n

� ! Stream

n

�

Supp ose no w that fs is pro duced b y mapping a function to a v ector of parameters, v .

CHAPTER 5. ST A TIC PR OCESS NETW ORKS 162

(a) (b)

(c) (d)

a

a

f

f

f

f

f f

Figure 5.23. Horizon tal parallelisation

The righ t-hand side then b ecomes

series (map V mapS (map V f v))

whic h, b y map fusion, b ecomes

series (map V (mapS � f) v)

As w e sa w b y equations 5.2 and 5.4, foldr V can b e used instead of explicitly parame-

terising functions or pro cesses. W e can rewrite equation 5.13 in the equiv alen t form:

mapS (�x : foldrV f x v) xs � foldr V (�i : mapS (f i)) xs v

:: Stream

n

�

(5.14)

In this form, this iden tit y is similar to horizon tal parallelisation of the fold op erators,

except that the stream feeds in to the end of the pip eline instead of a v ector of streams

feeding across the pip eline. I ha v e used the structure on the left-hand side of equation 5.14

(�gure 5.24a) in the FFT example of [114]; it is also similar to the FIR �lter example of

a second pap er dev oted to pro cess net w ork transformation [123]. The righ t-hand side

CHAPTER 5. ST A TIC PR OCESS NETW ORKS 163

(a)

(b)

v
x x xs

f i
i

l

f i
i

l

xs

v

f

Figure 5.24. Pip elini ng

(�gure 5.24b) is a pip eline of pro cesses, eac h parameterised b y its o wn i from v ector v .

5.5.5 Promotion

The fourth class of iden tit y is deriv ed from Bird's \promotion" iden tities [21]. The map

pr omotion iden tit y expresses the idea that map can b e \promoted" through concatenation:

map f � concat � concat � map (map f)

In other w ords, concatenating a list of lists and applying f to eac h elemen t is the same as

applying f to eac h elemen t of eac h sub-list, and concatenating the result.

Adapting this iden tit y from lists to v ectors, w e get

map V f � concat V � concat V � map V (map V f) (5.15)

:: Vector

j

(Vector

k

�) ! Vector

j � k

�

No w, for an y function

divide V :: Vector

j � k

� ! Vector

j

(Vector

k

�)

CHAPTER 5. ST A TIC PR OCESS NETW ORKS 164

that satis�es

concat V � divide V = id (5.16)

:: Vector

k

� ! Vector

k

�

w e can rewrite equation 5.15 as

map V f � concat V � map V (map V f) � divide V (5.17)

:: Vector

k

� ! Vector

k

�

Equation 5.17 giv es us a sligh tly more useful p ersp ectiv e: to apply f to eac h elemen t

of a v ector, divide it in to sub-v ectors, apply f to eac h elemen t of eac h sub-v ector, and join

the result bac k in to a v ector.

With this, w e can c hange the \grain size" of v ectors of pro cesses. F or example,

map V (mapS f)

= (promotion: equation 5.17)

concat V � map V (map V (mapS f)) � divide V

= (horizon tal parallelisation: equation 5.11)

concat V � map V (unzip x � mapS (map V f) � zip x) � divide V

(5.18)

The result of equation 5.18, sho wn in �gure 5.25, is a v ector of pro cesses with the size

of eac h pro cess determined b y divide V . By adjusting the w a y in whic h divide V breaks up

a v ector, w e can con trol the degree of parallelism obtained b y this transformation.

A similar la w holds for the fold functions; on foldl , the la w is

3

foldl f a � concat � foldl (foldl f) a

La ws of this kind are useful for con trolling the grain size of pro cesses in a pip eline {

see the deriv ation of the pip eline FIR �lter in [123] for an example.

3

Bird [21, page 123] giv es this la w as a v arian t of the fold promotion la w for non-asso ciativ e op erators.

CHAPTER 5. ST A TIC PR OCESS NETW ORKS 165

f

f

Figure 5.25. Promotion

5.6 Summary

This c hapter presen ted an approac h to programming datao w net w orks in a functional pro-

gramming language. I argued that v ector functions in a functional language (section 5.2)

pro vide p oten tial for e�cien t execution on DSP devices, and sho w ed ho w a small set of

stream functions (section 5.3) can b e used to write v ery concise de�nitions of t ypical signal

pro cessing functions.

Based on these functions, I demonstrated: i) ho w higher-order functions pro vide a v ery

p o w erful notation for building net w orks of datao w pro cesses; and ii) that program trans-

formation tec hniques dev elop ed for functional programming languages can b e adapted to

pro cess net w orks. In particular, there are four k ey classes of transformation that ha v e

distinct e�ects on pro cess net w orks, and I ga v e examples illustrating the use of these

four classes. Note that, although I ha v e not addressed it in this thesis, man y similar

transformations can b e applied to v ector functions|for concrete examples, see [123].

In functional languages, program transformation tec hniques are applied in t w o w a ys:

i) for hand deriv ation and optimisation of programs, and ii) as an automatic optimisation

to ol in functional language compilers. Hand deriv ation can b e quite di�cult, as seen,

for example, b y m y deriv ation of a parallel FIR in [123], and Jones' deriv ation of the

FFT algorithm [67]. I b eliev e the most appropriate path for further dev elopmen t of the

transformations presen ted here w ould b e in the con text of a transformational datao w

programming to ol: the programmer w ould c ho ose from a catalog of transformations to b e

applied b y the to ol.

Chapter 6

Dynamic Pro cess Net w orks

In the previous c hapter, I considered static, SDF net w orks expressed in Hask ell. The

use of SDF net w orks in blo c k-diagram systems lik e Ptolem y [88] is w ell-established, and

SDF net w orks are adequate to describ e the bulk of signal pro cessing systems|Ptolem y's

predecessor, Gabriel [17], supp orted only SDF.

As so on as w e consider systems whic h in teract with async hronous ev en ts, ho w ev er,

sync hronous datao w is inadequate. F or example, consider the \digital gain con trol"

sho wn in �gure 6.1. The gain con trol signal has a v alue only when a p erson c hanges the

p osition of a gain con trol knob. In order to pro duce an appropriate output signal, w e

m ust b e able represen t the times of o ccurrence of gain con trol v alues relativ e to the input

signal.

There are t w o k ey approac hes to mo delling time:

{ Insert hiatons in to the stream. A hiaton is a sp ecial tok en represen ting the passage of

time [144].

Input signal Output signal

Gain control

Figure 6.1. A simple digital gain con trol

166

CHAPTER 6. D YNAMIC PR OCESS NETW ORKS 167

{ A ttac h a time-stamp to eac h tok en, denoting the real time at whic h the tok en o ccurs

[24].

In this c hapter, I dev elop a h ybrid approac h suitable for real-time implemen tation:

a hiaton can represen t an y n um b er of tic ks of the \base clo c k" to whic h all timing of

the stream is quan tised. This approac h a v oids ha ving pro cesses sp end all their time

testing for hiatons; it also prev en ts un b ounded latencies, a p oten tial problem with real-

time implemen tation of time-stamps.

The approac h describ ed here con trasts with other approac hes to mo delling time, in

that it main tains a datao w implemen tation fo cus through the use of time-passing tok ens.

Because it explicitly mo dels time, it is more general than dynamic datao w systems em-

plo ying switc h and select actors [26]. It con trasts with the approac h tak en in the family

of \sync hronous" (in a di�eren t sense to SDF) languages [13], whic h compile datao w-lik e

programs in to �nite-state mac hines.

Timed streams imply dynamic sc heduling; they also giv e rise to dynamic pro cess net-

w orks. (Although dynamic net w orks can b e created using only sync hronous stream func-

tions, I ha v e not b een able to think of a realistic example.) A complete m usic syn thesiser

example pro vides ample opp ortunit y to explore dynamic pro cess net w orks: the syn thesiser

exhibits a v ery high lev el of async hronous b eha viour.

6.1 Related w ork

Prior to the dev elopmen t of SDF sc heduling, blo c k-diagram orien ted sim ulation systems

used dynamic actor sc heduling. Messersc hmitt's BLOSIM sim ulator [94], for example,

�red actors in round-robin fashion; an actor that had insu�cien t input data w as required

to return to the sim ulator immediately .

A general approac h to supp orting m ultiple mo dels of computation has b een tak en in

Ptolem y: a domain is a graph that supp orts a giv en mo del of computation; this graph

has an in terface that allo ws it to b e em b edded within graphs of a di�eren t domain [25].

The \dynamic datao w" (DDF) domain [42] implemen ts dynamic sc heduling of datao w

graphs. In the DDF domain, input c hannels to the graph are initialised with a �xed

n um b er of tok ens, and the actors �red un til no further �rings can b e made. This allo ws

CHAPTER 6. D YNAMIC PR OCESS NETW ORKS 168

a DDF domain to b e em b edded within an SDF domain. An en tirely di�eren t approac h

to time is tak en in the discrete-ev en t (DE) domain [42]. Here, actors op erate on timed

events ; a global clo c k is used to order actor �rings correctly in time, according to the times

of o ccurrence of the actor's input ev en ts.

None of these approac hes is, ho w ev er, really suitable for �gure 6.1. Pino et al [108]

ha v e recen tly dev elop ed the notion of \p eek" and \p ok e" actors. These actors act as the

in terface b et w een t w o indep enden tly-sc he dul ed graphs, running on t w o di�eren t pro ces-

sors. F or example, the m ultiplier in �gure 6.1 w ould execute on a real-time DSP device,

while the con trol signal w ould b e written to a shared memory lo cation b y a con trol CPU.

Because the reads and writes are unsync hronised, the amplitude of the output signal will

c hange as exp ected pro vided that the latency of the con trol CPU pro cessing is undetectable

to a h uman listener.

The approac h I dev elop in this c hapter explicitly represen ts time. It th us has the

adv an tage of precision o v er Pino et al 's metho d, although it will b e more complex to

implemen t. Other languages that explicitly mo del time include real-time extensions to

Lucid, and the sync hronous languages. Lucid [144] is a datao w-lik e language, in whic h

all data|ev en constan ts|o ccurs in streams. F austini and Lewis [45] prop ose that eac h

stream also ha v e an asso ciated stream of time windo ws, where a time windo w is a pair

(a; b) that denotes the earliest time at whic h the corresp onding daton can b e pro duced,

and the latest time it needs to b e a v ailable. Skillicorn and Glasgo w [131] use a similar

approac h: they asso ciate e arliest and latest time streams with eac h data stream, and

construct isomorphic nets op erating on these streams. F rom the earliest input streams,

the earliest time at whic h an y tok en is pro duced is calculated; from the latest output

streams, the latest time at whic h an y tok en can b e pro duced is calculated.

The sync hronous languages [13] also explicitly mo del time. They are based on the

synchr ony hyp othesis : eac h reaction to an ev en t is supp osed to b e instan taneous [15].

In ter-pro cess comm unication in Esterel, for example, is done b y broadcasting ev en ts to

all pro cesses; the broadcast and all resp onses to it are instan taneous. This simplifying

assumption allo ws a precise sp eci�cation of time seman tics and compilation of programs

in to �nite-state automata. The family of sync hronous languages includes Esterel [15],

Lustre [33], Signal [14], and RLucid, a v ersion of Lucid extended with time-stamps [109].

CHAPTER 6. D YNAMIC PR OCESS NETW ORKS 169

6.2 Timed signals and streams

In section 2.4.1, a non-uniformly clo c k ed signal

e

x w as de�ned at times giv en b y its clo ck ,

e

t

x

. I will drop the

e

x notation no w, as it will b e clear from con text whether a signal is

uniformly or non-uniformly clo c k ed.

The clo c k t

x

is quantise d to a b ase clo ck b

x

= f nT j n � 0 g for constan t T . t

x

th us

only has v alues in b

x

:

t

x

(n) 2 b

x

; n � 0

If the signal is a sampled v ersion of an analog signal x

a

, then

x (n) = x

a

(t

x

(n)) ; n � 0

Because I am w orking within the framew ork of an existing language, I cannot add

a time seman tics to the language, as I could if starting afresh. Instead, I mak e time

information explicit|that is, time is just data. T ok ens that carry time information are

called hiatons : 4

n

is a hiaton that denotes n tic ks of the base clo c k, and 4 is a unit hiaton,

whic h denotes a single tic k. T ok ens that carry signal data are called datons . A stream

carrying datons and hiatons is a time d str e am ; here is an example:

f 1 ; 4 ; 3 ; 4 ; 4

2

; 7 g

4

where the 4 subscript indicates a timed stream (as opp osed to a sync hronous stream).

The Hask ell t yp e de�nition for tok ens is:

data Token � = Hiaton Int |Hiaton

| Daton � |Single-v alue daton

| Datons <Token � > |Timed v ector

| Block < � > |Sync hronous v ector

Unit datons, denoted b y the Daton tag, o ccup y a single tic k of the base clo c k; the

datons in the example stream ab o v e are unit datons. A stream con taining only hiatons

and unit datons is called a simple stream. There are t w o other kinds of daton: a time d

ve ctor is a v ector of hiatons and unit datons, written h 4 ; 4

2

; 7 i

4

; a synchr onous ve ctor is

a v ector of data, eac h elemen t of whic h is equiv alen t to a unit daton. The dur ation of a

CHAPTER 6. D YNAMIC PR OCESS NETW ORKS 170

tok en is the n um b er of base-clo c k tic ks it o ccupies, and is giv en b y the duration function:

duration :: Token � ! Int

duration (Hiaton n) = n

duration (Daton x) = 1

duration (Datons v) = sumV (mapV duration v)

duration (Block v) = lengthV v

A timed stream is a stream of tok ens. NullT is the stream terminator (equiv alen t to

f g on sync hronous streams); :-: is the timed stream constructor:

data Timed � = NullT

| Token � :-: (Timed �)

In an earlier pap er [117], I used t w o represen tations of passing time: time-stamps, and

unit hiatons. The problem with unit hiatons is that they imply that pro cesses will do a

great deal of w ork just marking time|that is, pro cessing hiatons. Time-stamps, on the

other hand, ha v e indeterminate latency|some functions ma y not pro duce output un til

an indeterminate time after they ha v e read the required input. This is unacceptable for

real-time op eration, and is the reason wh y I ha v e adopted a h ybrid approac h.

Consider a timed merge function: this function pro duces a tok en when it receiv es a

tok en on either input, but tak es accoun t of tok en durations so that the output tok en

app ears at the correct tic k. Datons are passed to the output; hiatons result in a new

hiaton (of p ossibly di�eren t duration) on the output. Because the arriv al time of tok ens

is not sync hronised to the tok en durations, timed merge cannot pro duce an output hiaton

un til the next input tok en is receiv ed|only then is the duration of the output hiaton

kno wn. If the duration of input hiatons is un b ounded|as for time-stamp ed data|then

the time b et w een receiving an input daton and pro ducing the follo wing output hiaton is

also un b ounded.

F or real-time op eration, then, the duration of all tok ens m ust b e b ounded b y some limit,

sa y L . Supp ose that L = 32. The stream f 1 ; 4

74

; 2 g

4

do es not ha v e b ounded latency , but

the stream f 1 ; 4

32

; 4

32

; 4

10

; 2 g

4

is. A pro cess that pro duces a real-time stream m ust ensure

that it meets this requiremen t; and a pro cess that consumes a real-time stream m ust ensure

that its output streams ha v e latency no greater than that of the input stream.

CHAPTER 6. D YNAMIC PR OCESS NETW ORKS 171

(:-:) :: Token � ! Timed � ! Timed �

tmapT :: (� ! Token �) ! (Int ! Token �) ! Timed � ! Timed �

zipT :: Timed � ! Timed � ! Timed (Token �; Token �)

tstateT :: (� ! � ! (�; Token)) ! (� ! Int ! (�; Token))

! � ! Timed � ! Timed

groupT :: Int ! Timed � ! Timed �

concatT :: Timed � ! Timed �

concatvT :: Timed � ! Stream �

timeT :: Stream � ! Timed �

Figure 6.2. T yp es of timed stream functions

6.3 F unctions on timed streams

This section presen ts a set of \primitiv e" functions on timed streams, as I did for syn-

c hronous streams in section 5.3.2. Again, the aim is to pro vide a set of functions with

kno wn datao w actor equiv alen ts, so that a pro cess net w ork can b e translated in to a data-

o w net w ork. Because, ho w ev er, the v ariet y of op erations on timed streams is m uc h greater

than on sync hronous streams, I cannot claim that these functions are complete in an y w a y .

Nor ha v e I pro vided datao w actor equiv alen ts for these functions, as further w ork is re-

quired to �nd the most useful set of functions. The t yp es of the functions presen ted in

this section are listed in �gure 6.2. Recursiv e de�nitions are giv en in app endix A.

6.3.1 Basic functions

The �rst three functions are similar to mapS , zipS , and stateS on sync hronous streams.

Because of the presence of hiatons, they are necessarily more complex. All three accept

simple timed streams|that is, streams con taining only hiatons and unit datons.

tmapT has t w o function argumen ts: the �rst is applied to the v alue of eac h unit daton,

the second to the duration of eac h hiaton. Both pro duce a tok en|a hiaton or an y kind

of daton is acceptable. Using tmapT , w e can de�ne a v ersion of map that only op erates

on unit datons and ignores hiatons:

CHAPTER 6. D YNAMIC PR OCESS NETW ORKS 172

mapT :: (� ! �) ! Timed � ! Timed �

mapT f = tmapT (Daton . f) Hiaton

F or example,

mapT f 1 ; 4 ; 3 ; 4 ; 4

2

; 7 g

4

! f 2 ; 4 ; 4 ; 5 ; 4

2

; 8 g

4

tmapT can also b e used to de�ne �lterT , whic h replaces unit datons that do not satisfy

a predicate with unit hiatons:

filterT :: (� ! Bool) ! Timed � ! Timed �

filterT p = tmapT

(n x -> if p x then Daton x else Hiaton 1)

Hiaton

The second function, zipT zips t w o timed streams in to a timed stream of pairs; this

stream con tains a pair whenev er either of its t w o input streams con tains a unit daton.

Because only one of the streams can con tain a daton, one elemen t of the pair can b e a

daton while the other is a unit hiaton. F or example,

zipT f 1 ; 4 ; 3 ; 4 ; 4

2

; 7 g

4

f 1 ; 4

4

; 6 ; 4 g

4

! f (1 ; 1) ; 4 ; (3 ; 4) ; (4 ; 4) ; 4 ; (4 ; 6) ; (7 ; 4) g

4

With zipT , it is easy to de�ne functions that op erate on t w o timed streams. The �rst

is the unfair timed merge discussed in section 6.2. The unfair merge outputs only the

v alue from its �rst input if datons o ccur on b oth input streams at the same time:

mergeT :: Timed � ! Timed � ! Timed �

mergeT xs ys = tmapT merge Hiaton (zipT xs ys)

where

merge (Daton x, Daton y) = Daton x

merge (Daton x, Hiaton 1) = Daton x

merge (Hiaton 1, Daton y) = Daton y

An op eration found in sync hronous languages with time seman tics pro duces elemen ts

of one signal (the \data" signal) at the times at whic h elemen ts of another signal (the

\clo c k" signal) o ccur. In the Hask ell v ersion, whenT , a unit hiaton is output if the data

CHAPTER 6. D YNAMIC PR OCESS NETW ORKS 173

signal has no v alue when the clo c k con tains data. F or example,

f 8 ; 4

2

; 5 ; 4 ; 4 ; 2 ; 1 g

4

� whenT � f 1 ; 4 ; 3 ; 4 ; 4

2

; 7 g

4

! f 8 ; 4 ; 4 ; 5 ; 4

2

; 2 g

4

The de�nition of whenT is v ery similar to that of the unfair merge:

whenT :: Timed � ! Timed � ! Timed �

whenT xs ys = tmapT when Hiaton (zipT xs ys)

where

when (Daton x, Daton y) = Daton x

when (Daton x, Hiaton 1) = Hiaton 1

when (Hiaton 1, Daton y) = Hiaton 1

tstateT is the �nal primitiv e of this �rst group; it propagates a \state" v alue along

the stream. tstateT tak es t w o function argumen ts: one applied to eac h daton v alue, and

one to the duration of eac h hiaton. Both functions also accept a \state" argumen t, and

b oth pro duce a pair con taining an output tok en and the next state. F or example, to

replace eac h daton with the n um b er of tic ks since the previous daton o ccurred, propagate

a coun ter as the state and output it when a daton o ccurs:

deltaT :: Timed � ! Timed Int

deltaT = tstateT f g 1

where

f a x = (1, Daton a)

g a n = (a+n, Hiaton n)

F or example,

deltaT f 1 ; 4 ; 3 ; 4 ; 4

2

; 7 g

4

! f 1 ; 4 ; 2 ; 1 ; 4

2

; 3 g

4

6.3.2 Timed v ectors

A timed v ector is a v ector of tok ens, mark ed in a timed stream b y the tag Datons . There are

t w o primitiv es for w orking with streams con taining timed v ectors: groupT and concatT .

These functions are analogous to groupS and concatS on sync hronous streams.

groupT pro duces a timed v ector stream from a simple timed stream. Unlik e groupS ,

CHAPTER 6. D YNAMIC PR OCESS NETW ORKS 174

the last v ector ma y ha v e a di�eren t duration to the rest. F or example,

groupT 2 f 1 ; 4 ; 3 ; 4 ; 4

2

; 7 g

4

! fh 1 ; 4 i

4

; h 3 ; 4 i

4

; 4

2

; h 7 i

4

g

4

concatT joins a stream of hiatons, unit datons, and timed v ectors bac k in to a timed

stream. T o illustrate, let us use concatT to up-sample a simple timed stream. In the

follo wing de�nition, tmapT is used to replace eac h daton b y a timed v ector con taining

the daton and a hiaton, and to m ultiply the duration of eac h hiaton b y the up-sampling

factor. concatT joins the timed v ector stream bac k in to a timed stream.

upsampleT :: Int ! Timed � ! Timed �

upsampleT k = concatT . tmapT f g

where

f x = Datons h Daton x, Hiaton (k-1) i

g n = Hiaton (k*n)

F or example,

upsampleT 2 f 1 ; 4 ; 3 ; 4 ; 4

2

; 7 g

4

! f 1 ; 4 ; 4

2

; 3 ; 4 ; 4 ; 4 ; 4

4

; 7 ; 4 g

4

A more complex function using concatT \retimes" a simple timed stream. This is useful

for reducing the n um b er of hiatons in streams pro duced b y �lterT . The �rst argumen t

is the latency of the output stream; the function assumes that the latency of the input

stream is no greater than this v alue. It w orks b y propagating a coun t of the n um b er of

tic ks since the last daton w as output, and emitting a hiaton when a daton is encoun tered

or the coun t reac hes the latency:

retimeT :: Int ! Timed � ! Timed �

retimeT k = concatT . tstateT f g 0

where

f 0 x = (0, Daton x)

f i x = (0, Datons h Hiaton i, Daton x i)

g i n | i+n < k = (i+n, Datons h i)

| otherwise = (i+n-k, Hiaton k)

CHAPTER 6. D YNAMIC PR OCESS NETW ORKS 175

F or example,

retimeT 2 f 1 ; 4 ; 3 ; 4 ; 4 ; 4 ; 7 g

4

! f 1 ; 4 ; 3 ; 4 ; 4

2

; 7 g

4

The requiremen t that input latency b e no greater than the output latency mak es sense

when real-time e�ects are considered. If the input stream has some latency L , then the

timing of the output tok ens will still, in e�ect, exhibit a dela y of L ; just b ecause the output

hiatons ha v e a lo w er maxim um duration do es not mak e them adv ance in time. F or the

sak e of follo wing examples, assume there is a global v ariable named latency with v alue

t w o.

6.3.3 Sync hronous and timed streams

The last t w o functions of �gure 6.2 op erate on b oth timed and sync hronous streams.

concatvT concatenates a v ector con taining only unit datons and sync hronous v ectors in to

a sync hronous stream. Tw o useful functions de�ned using concatvT are �llT , whic h inserts

a sp eci�ed v alue in to empt y slots of a stream, and holdT , whic h inserts the most recen t

daton v alue in to empt y slots:

fillT :: � ! Timed � ! Stream �

fillT a = concatvT . tmapT f g

where

f x = Daton x

g n = Block (copyV n a)

holdT :: � ! Timed � ! Stream �

holdT a = concatvT . tstateT f g a

where

f v x = (x, Daton x)

g v n = (v, Block (copyV n v))

F or example,

�llT 0 f 1 ; 4 ; 3 ; 4 ; 4

2

; 7 g

4

! f 1 ; 0 ; 3 ; 4 ; 0 ; 0 ; 7 g

holdT 0 f 1 ; 4 ; 3 ; 4 ; 4

2

; 7 g

4

! f 1 ; 1 ; 3 ; 4 ; 4 ; 4 ; 7 g

The in tro duction to this c hapter ga v e a simple example of a timed user con trol o v er a

real-time signal pro cessing function. The \digital gain con trol" is easily de�ned b y:

CHAPTER 6. D YNAMIC PR OCESS NETW ORKS 176

digitalGain :: Num �) Stream � ! Timed � ! Stream �

digitalGain signal control

= zipWithS (*) signal (holdT zero control)

This simple idea can b e used to con v ert an y kind of real-time pro cess in to one with

dynamic user con trol.

timeT con v erts a sync hronous stream to a timed stream b y adding Daton tags. F or

example, w e could use it to con v ert a sync hronous b o olean signal in to a \clo c k" stream,

de�ned only when the original stream con tains the v alue T rue :

clockT :: Stream Bool ! Timed Bool

clockT = retimeT latency . filterT (== True) . timeT

Note that the clo c k signal is retimed to latency . One use for timed streams ma y b e

to reduce the data rate of a signal. T o do so, de�ne a function that outputs a daton only

when the input v alue c hanges. This function, edges , is de�ned in terms of clo c kT and

whenT ; its �rst argumen t is the starting v alue with whic h it compares the �rst v alue in

the stream:

edges :: Eq �) � ! Stream � ! Timed �

edges a xs = retimeT latency

((timeT xs) � whenT � (clockT (zipWithS (/=) xs (a:-xs))))

F or example,

edges 0 f 1 ; 1 ; 3 ; 4 ; 4 ; 4 ; 7 ; 7 g ! f 1 ; 4 ; 3 ; 4 ; 4

2

; 7 ; 4 g

4

edges can b e used with deltaT to �nd the distance b et w een zero-crossings of a signal:

(deltaT � edges T rue � mapS (� 0)) f 0 ; 1 ; 2 ; � 1 ; � 1 ; � 2 ; 1 ; � 1 g

! f 4

2

; 4 ; 4 ; 4

2

; 3 ; 1 g

4

Supp ose w e wish to enco de and transmit a signal as straigh t-line segmen ts. The en-

co ding pro duces as its �rst v alue the �rst v alue of the signal, as its second the slop e of the

�rst segmen t, and thereafter, the slop e of the signal whenev er it c hanges:

CHAPTER 6. D YNAMIC PR OCESS NETW ORKS 177

encode :: Num �) Stream � ! Timed �

encode xs = edges huge (zipWithS (-) xs (zero:-xs))

where

huge = fromInteger (-100000000)

where h uge is some v alue that cannot app ear in the input stream.

F or example,

enco de f 0 ; 1 ; 2 ; 2 ; 2 ; 0 ; � 2 ; � 3 ; � 3 ; � 3 ; � 3 g ! f 0 ; 1 ; 4 ; 0 ; 4 ; � 2 ; 4 ; � 1 ; 0 ; 4

2

g

4

T o reconstruct the signal, do a zero-order in terp olation and then in tegrate:

decode :: Num �) Timed � ! Stream �

decode = scanS (+) zero . holdT zero

F or example,

deco de f 0 ; 1 ; 4 ; 0 ; 4 ; � 2 ; 4 ; � 1 ; 0 ; 4

2

g

4

! f 0 ; 1 ; 2 ; 2 ; 2 ; 0 ; � 2 ; � 3 ; � 3 ; � 3 ; � 3 g

6.4 Dynamic pro cess net w orks

Dynamic pro cess net w orks arise when streams are \nested." T ypically , sync hronous

streams are nested within timed streams|that is, eac h daton of the timed stream creates

one or more pro cesses that pro duce a new sync hronous stream. This new stream is pro-

duced concurren tly with other streams already initiated b y the timed stream. After some

time, the sync hronous streams end, and the pro cess or pro cesses pro ducing it disapp ear.

This section describ es primitiv e functions that mak e �nite sync hronous streams, \spa wn"

new pro cesses, and com bine streams. The t yp es of these functions are listed in �gure 6.3.

6.4.1 Finite sync hronous streams

The �rst four functions of �gure 6.3 are used to create �nite sync hronous streams. As

the example in section 6.5 will sho w, sync hronous streams are often created b y taking an

initial pre�x of one stream, follo wing it with another stream, and so on. Consider ho w w e

migh t do this with Hask ell standard prelude functions on lists (describ ed in section 2.2.1).

CHAPTER 6. D YNAMIC PR OCESS NETW ORKS 178

doneS :: Generator �

truncateS :: Stream � ! Stream � ! Generator � ! Stream �

takeFiniteS :: (� ! � ! �) ! (� ! � ! Bool) ! � ! �

! Stream � ! Generator � ! Stream �

takeAsLongS :: (� ! Bool) ! Timed � ! Stream �

! Generator � ! Stream �

Figure 6.3. T yp es of �nite stream functions

T o de�ne a function that pro duces a stream con taining the �rst �v e elemen ts of a list

follo w ed b y an in�nite n um b er of copies of the �fth elemen t, w e write:

fiver xs = let ys = take 5 xs

in ys ++ repeat (last ys)

F or example,

�v er [1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 ; 10] ! [1 ; 2 ; 3 ; 4 ; 5 ; 5 ; 5 ; : : :]

If w e in terpret the functions used in �v er as pro cesses, there are four: tak e , + +, rep eat ,

and last . + + and last do almost no w ork: + + outputs elemen ts of one stream un til it

terminates, and then outputs elemen ts of a second stream; last just w aits for a stream to

terminate, then outputs the last elemen t.

Because a �nite stream often has a second stream app ended to it, I ha v e de�ned

functions on streams to tak e an additional function argumen t, of t yp e � ! Stream � .

A function of this t yp e is called a gener ator ; a Hask ell t yp e synon ym mak es it easier to

recognise:

type Generator � = � ! Stream �

F or example, the stream v ersion of tak e , tak eS , outputs a giv en n um b er of elemen ts

from its input stream; it then applies the generator to the last of these elemen ts. Used this

w a y , the generator is called a str e am c ontinuation . The generator b ecomes a new pro cess

whic h pro duces further elemen ts in to the output stream. If tak eS is unable to pro duce an y

output elemen ts (for example, the input stream is empt y or k = 0), there is no elemen t to

CHAPTER 6. D YNAMIC PR OCESS NETW ORKS 179

whic h to apply the con tin uation. T o w ork around this, tak eS also accepts a v alue to b e

passed to the con tin uation.

F or example, the ab o v e example, translated to sync hronous streams, b ecomes

fiver xs = takeS 5 0 xs repeatS

whic h requires only t w o pro cesses.

T o terminate the output stream, use the doneS generator. doneS tak es a single elemen t,

ignores it, and pro duces an empt y stream. F or example, to tak e the �rst �v e elemen ts of

a sync hronous stream xs and terminate:

tak eS 5 0 f 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 ; 10 g doneS ! f 1 ; 2 ; 3 ; 4 ; 5 g

tak eS is de�ned in terms of a more complex primitiv e function, tak eFiniteS ; the def-

inition of tak eS and that of additional �nite stream functions are listed in �gure 6.4.

tak eFiniteS accepts the follo wing argumen ts:

{ A function from a state and the curren t input v alue to the next state.

{ A predicate from a state and the curren t input v alue; the stream con tin uation is applied

to the last output elemen t when the predicate returns T rue .

{ The initial state.

{ The argumen t to the stream con tin uation if no output elemen ts w ere pro duced.

{ The input stream.

{ The stream con tin uation.

tak e WhileS is also de�ned in terms of tak eFiniteS ; it stops reading its input stream

when a predicate fails. F or example,

tak e WhileS (< 4) 0 f 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 g doneS ! f 1 ; 2 ; 3 g

truncateS is a primitiv e; it stops reading its second argumen t stream when its �rst

argumen t stream terminates. F or example,

truncateS f 1 ; 2 ; 3 ; 4 g f a; b; c; d; e; f g doneS ! f a; b; c; d g

CHAPTER 6. D YNAMIC PR OCESS NETW ORKS 180

takeS :: Int -> a -> Stream a -> Generator a -> Stream a

takeS = takeFiniteS (\n _ -> n-1) (\n _ -> n > 0)

takeWhileS :: (a -> Bool) -> a -> Stream a -> Generator a-> Stream a

takeWhileS p = takeFiniteS (_ _ -> ()) (_ x -> p x) ()

mapWhileS :: (a -> Bool) -> (a -> b) -> a

-> Stream a -> Generator b -> Stream b

mapWhileS p f a xs = truncateS

(takeWhileS p a xs doneS)

(mapS f xs)

takeWhileDeltaS :: Num a => (a -> Bool) -> a

-> Stream a -> Generator a -> Stream a

takeWhileDeltaS p a (x:-xs) c

= x :- truncateS

(takeWhileS p a (zipWithS (-) xs (x:-xs)) doneS)

xs

c

Figure 6.4. More functions for making �nite streams

With truncateS , w e can de�ne a few more �nite stream functions, whic h will b e used

in the syn thesiser example. map WhileS (�gure 6.4) applies a function to elemen ts of its

input stream; it stops reading the input stream and calls the con tin uation when a supplied

predicate fails. F or example,

map WhileS (< 4) (+1) 0 f 1 ; 2 ; 3 ; 4 ; 5 ; 6 g rep eatS ! f 2 ; 3 ; 4 ; 4 ; 4 ; 4 ; : : : g

tak e WhileDeltaS is lik e tak e WhileS , but stops reading the input stream and calls the

con tin uation when the di�er enc e b et w een successiv e elemen ts fails to satisfy the supplied

predicate. F or example,

tak e WhileDeltaS (< 2) 0 f 1 ; 2 ; 3 ; 5 ; 7 ; 9 g doneS ! f 1 ; 2 ; 3 g

The �nal primitiv e in this group is tak eAsLongS . This function stops reading a syn-

c hronous stream when a daton of a timed stream fails a supplied predicate. F or example,

tak eAsLongS (< 6) f 1 ; 4

2

; 4 ; 4

2

; 7 ; 4 g

4

f 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 g doneS ! f 1 ; 2 ; 3 ; 4 ; 5 ; 6 g

CHAPTER 6. D YNAMIC PR OCESS NETW ORKS 181

spawnT :: (� ! Bool) ! Timed � ! Timed (Timed �)

combineT :: (Vector � ! �) ! Timed (Stream �) ! Stream �

Figure 6.5. T yp es of dynamic pro cess functions

6.4.2 Dynamic pro cess functions

The last t w o primitiv e functions giv en in this section \spa wn" new streams, and com bine

sync hronous streams. Their t yp es are giv en in �gure 6.5. spa wnT is the k ey to building

dynamic pro cess net w orks. F or eac h daton that satis�es a giv en predicate, spa wnT creates

a new daton that is its argumen t stream from that daton on. Datons that do not satisfy

the predicate result in a unit hiaton. F or example,

spa wnT o dd f 1 ; 4 ; 3 ; 4 ; 4

2

; 7 g

4

! ff 1 ; 4 ; 3 ; 4 ; 4

2

; 7 g

4

; 4 ; f 3 ; 4 ; 4

2

; 7 g

4

; 4 ; 4

2

; f 7 g

4

g

4

Eac h stream within the top-lev el stream can pro duce new pro cesses. Let us de�ne a

function whic h pro duces, for eac h o dd daton in a timed stream, a sync hronous stream

con taining 3 copies of that daton:

odder :: Num �) Timed � ! Timed (Stream �)

odder xs = mapT proc (spawnT odd xs)

where

proc (Daton x :-: xs) = takeS 3 (repeatS x) doneS

F or example,

o dder f 1 ; 4 ; 3 ; 4 ; 4

2

; 7 g

4

! ff 1 ; 1 ; 1 g ; 4 ; f 3 ; 3 ; 3 g ; 4 ; 4

2

; f 7 ; 7 ; 7 gg

4

If w e line these streams up to sho w the times at whic h elemen ts are pro duced, w e get

Time 1 2 3 4 5 6 7 8 9

----------------------- -------- --

Values 1 1 1

3 3 3

7 7 7

CHAPTER 6. D YNAMIC PR OCESS NETW ORKS 182

A nested stream of sync hronous streams can b e com bined in to a single sync hronous

stream with com bineT . com bineT accepts a function whic h is applied to a v ector of v alues

pro duced in that tic k b y all existing sync hronous sub-streams; if there are no streams

pro ducing data at that time, this function will b e applied to an empt y v ector. F or example,

com bineT sumV ff 1 ; 1 ; 1 g ; 4 ; f 3 ; 3 ; 3 g ; 4 ; 4

2

; f 7 ; 7 ; 7 gg

4

! f 1 ; 1 ; 4 ; 3 ; 3 ; 0 ; 7 ; 7 ; 7 g

6.5 A digital m usic syn thesiser

This section illustrates the use of dynamic pro cess creation to generate m usical tones.

The syn thesiser receiv es a timed stream of tok ens that represen t \note-on" and \note-o� "

ev en ts; on eac h note-on ev en t, it creates new pro cesses to generate a note of the sp eci�ed

frequency . Ev en tually , the note deca ys to nothing, and the pro cesses pro ducing that note

disapp ear.

There is a great deal of dynamism in this example, and readers familiar with the

strict real-time constrain ts of DSP ma y doubt that it is p ossible to implemen t a program

lik e this in real time. That it is p ossible has b een sho wn b y the implemen tation of a

p olyphonic syn thesiser in C on a single TMS320C30, b y Mic hael Colefax [36]. Colefax'

program implemen ts a syn thesiser with a similar (although simpler) structure to that of

the follo wing Hask ell program. It can generate up to 17 notes when generating sine w a v es,

but only t w o with forman t-w a v e-function (FWF) syn thesis (section 6.5.4). With re-co ding

of selected parts of the FWF algorithm in assem bler, considerably more notes should b e

ac hiev able.

6.5.1 Notes

The input to the syn thesiser is a timed stream of notes. The NoteEv en t t yp e and asso ciated

t yp es and functions are listed in �gure 6.6. This stream is t ypically pro duced b y an

in terface to a m usic k eyb oard: when a k ey is pressed, a NoteOn daton is generated,

con taining the note ID, its frequency , and an amplitude v alue reecting ho w hard the k ey

w as struc k; when the note is released, a NoteO� daton is generated, con taining the note

ID. Some time after the note-o� ev en t, the note deca ys to nothing; a note th us exists

from the time that its note-on ev en t o ccurs un til some time a corresp onding note-o� ev en t

CHAPTER 6. D YNAMIC PR OCESS NETW ORKS 183

type Frequency = Float

type Amplitude = Float

type NoteID = Int

type Envelope = [(Float, Float)]

data NoteEvent = NoteOn NoteID Frequency Amplitude

| NoteOff NoteID

isNoteOn (NoteOn _ _ _) = True

isNoteOn (NoteOff _) = False

isNoteOff noteid (NoteOff nid)

| noteid == nid = True

| otherwise = False

isNoteOff noteid _ = False

sampleRate :: Float

sampleRate = 32000.0

Figure 6.6. Note ev en ts and asso ciated co de

o ccurs. This is a p olyphonic syn thesiser, so an arbitrary n um b er of notes can b e activ e

sim ultaneously .

The note ev en t stream I will use in this example is:

notes = f 4

4

; NoteOn 7 3000 : 0 0 : 25 ; 4

15

; NoteOn 3 5000 : 0 0 : 4 ;

4

14

; NoteO� 3 ; 4

25

; NoteO� 7 ;

4

18

; NoteOn 11 6000 : 0 0 : 1 ; 4

9

; NoteO� 11 ; 4

24

g

4

The sample rate of the syn thesiser is 32,000 Hz.

6.5.2 En v elop es

When a note-on ev en t is receiv ed, the syn thesiser starts generating a note of the appropri-

ate frequency . The amplitude of the note is con trolled b y an \en v elop e," whic h is a series

of straigh t-line segmen ts, sampled at 1 =T . An en v elop e is sp eci�ed as a list of (slop e,

target) pairs; when eac h segmen t is started, it pro ceeds to w ards the target v alue at the

v alue indicated b y the slop e. A slop e of zero indicates that the curren t v alue is to b e held

CHAPTER 6. D YNAMIC PR OCESS NETW ORKS 184

ramp :: Float -> Generator Float

ramp slope = tailS . iterateS (+ (slope/sampleRate))

rampTo :: Float -> Float -> Float -> Generator Float -> Stream Float

rampTo start slope target cont

| slope < 0.0 = takeWhileS (>= target) start (ramp slope start) cont

| slope > 0.0 = takeWhileS (<= target) start (ramp slope start) cont

| otherwise = repeatS start

ramps :: Envelope -> Generator Float

ramps ((slope, target) : rest) start = rampTo start slope target (ramps rest)

ramps _ _ = NullS

envelope :: Timed NoteEvent -> Envelope -> Envelope -> Stream Float

envelope notes@((Daton (NoteOn noteid _ _)):-:_) a d

= attack decay

where

attack = takeAsLongS (not . isNoteOff noteid)

notes

(0.0 :- ramps a 0.0)

decay x = ramps d x

Figure 6.7. Ramp and en v elop e generators

inde�nitely . The function rampT o of �gure 6.7 generates a sync hronous stream for a single

segmen t of the en v elop e; the function ramps recursiv ely pro cesses a list of (slop e,target)

pairs to join a series of segmen t streams end-to-end.

A t ypical note-on en v elop e is an \attac k-deca y-sustain" en v elop e, suc h as

attac k = [(6400 : 0 ; 1 : 01) ; (� 3200 : 0 ; 0 : 4 9) ; (0 : 0 ; 0 : 0)]

When a note-o� ev en t is receiv ed, the note en v elop e deca ys from its curren t v alue to

zero:

deca y = [(� 1000 : 0 ; 0 : 0)]

The complete note en v elop e is its attac k en v elop e follo w ed b y its deca y en v elop e.

F unction en v elop e of �gure 6.7 generates the complete note en v elop e: it starts an en v elop e

on a note-on ev en t, and uses tak eAsLongS to switc h to the deca y en v elop e when the

corresp onding note-o� ev en t o ccurs in the note ev en t stream. The amplitude of eac h

CHAPTER 6. D YNAMIC PR OCESS NETW ORKS 185

siner :: Generator Float

siner freq = mapS sin (phaser 0.0 freq)

phaser :: Float -> Float -> Stream Float

phaser init freq = iterateS next init

where

next phase = fmod (phase + phinc) (2.0 * pi)

fmod x m = if x > m then x - m else x

phinc = (2.0 * pi * freq) / sampleRate

flatline :: Generator Float

flatline freq = repeatS one

notegen :: Envelope -> Envelope -> Generator Float

-> Timed NoteEvent

-> Stream Float

notegen on off gen notes@((Daton (NoteOn _ freq ampl)) :-: ns)

= mapS (* ampl) (zipWithS (*)

(envelope notes on off)

(gen freq))

Figure 6.8. Note generators

note's en v elop e is scaled b y the amplitude parameter in the note-on ev en t. The dashed

line in �gure 6.10 sho ws the sup erimp osed en v elop es of the ab o v e note ev en t stream.

6.5.3 Note generation

Figure 6.8 lists the co de asso ciated with the generation of a single note. siner is a sine

w a v e generator: giv en a frequency parameter, it generates an in�nite sine w a v e of that

frequency . atline is used for testing en v elop e generators: it generates an in�nite stream

of ones.

The notegen function accepts an attac k and deca y en v elop e, a w a v eform generator

(suc h as siner), and the note-ev en t stream that starts with the curren t note. It uses

en v elop e to generate the note en v elop e, the w a v eform generator to generate the note's

w a v eform, and m ultiplies the t w o. It also scales the w a v eform b y the note's amplitude.

The note terminates when the en v elop e terminates.

The complete syn thesiser is a pip eline of three stages|its co de is giv en in �gure 6.9.

Its structure is iden tical to the dynamic pro cess example on page 181. Eac h note-on ev en t

CHAPTER 6. D YNAMIC PR OCESS NETW ORKS 186

synthesiser :: Envelope -> Envelope -> Generator Float

-> Timed NoteEvent -> Stream Float

synthesiser on off generate = combineT sumV

. mapT (notegen on off generate)

. spawnT isNoteOn

Figure 6.9. The top-lev el syn thesiser

pro duces a new timed stream; for eac h of these, a note generator pro cess is created to pro-

duce the sync hronous stream corresp onding to that note; �nally , all of these sync hronous

streams are summed in to a single sync hronous stream.

The w a v eform generator used b y the syn thesiser is passed to it as the argumen t

generate . Figure 6.10 sho ws the result of ev aluating the expression

syn thesiser attac k deca y siner notes

The dashed line in the �gure is the sum of the note en v elop es, pro duced b y

syn thesiser attac k deca y atline notes

6.5.4 A forman t-w a v e-function note generator

Although useful for testing, sine w a v es are m usically unin teresting. F orman t-w a v e func-

tion (FWF) syn thesis is a time-domain metho d for sim ulating the excitation-pulse +

resonan t-�lter mo del of sound syn thesis [125]. F or m usic syn thesis, the FWF algorithm is

relativ ely simple to implemen t, as demonstrated b y the implemen tation of a monophonic

syn thesiser in assem bler on a TMS320C25 �xed-p oin t DSP c hip [120]. P arameters of the

algorithm ha v e a direct relation to the shap e of the frequency sp ectrum, whic h is helpful

for programming m usical sounds, and it can pro duce ric h and in teresting sounds.

A formant is a p eak in the sp ectrum of a m usical note, and is t ypical of instrumen ts

based on an excitation pulse and a resonan t ca vit y , including brass, w o o dwind, organ, and

the h uman v oice. An impulse passed through a resonan t ca vit y with a single sp ectral p eak

pro duces a sine w a v e with an exp onen tially deca ying en v elop e; in the FWF algorithm,

CHAPTER 6. D YNAMIC PR OCESS NETW ORKS 187

Figure 6.10. Sine-w a v e syn thesiser output

this w a v eform is pro duced directly in the time domain. T ypical instrumen ts ha v e three

or four resonan t p eaks, the shap e of whic h, and the time-v ariation in the shap e of whic h,

giv e the instrumen t its c haracteristic tim bre. In this example, I will pro duce only a single,

non-time-v arying, forman t.

Eac h forman t-w a v e function (FWF) is the pro duct of a sine w a v e at the resonan t

frequency , and an en v elop e, whic h determines the shap e of the sp ectral p eak [125]. The

en v elop e is giv en b y:

e (t) =

8

>

>

>

>

<

>

>

>

>

:

0 ; t � 0

1

2

(1 � cos (� t)) e

� �t

; 0 < t �

�

�

e

� �t

; t >

�

�

(6.1)

The parameters � and � con trol the shap e of the sp ectral p eak. The exp onen tial e

� �t

nev er terminates, so, to minimise the computational burden, the en v elop e is c hanged to a

linear deca y when the rate of deca y drops b elo w some slop e � [120]. The mo di�ed en v elop e

is then:

e (t) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

0 ; t � 0

1

2

(1 � cos (� t)) e

� �t

; 0 < t �

�

�

e

� �t

;

�

�

< t � �

e

� ��

� (t � �) � ; t > �

(6.2)

CHAPTER 6. D YNAMIC PR OCESS NETW ORKS 188

fwfEnvelope :: Float -> Float -> Float -> Stream Float

fwfEnvelope alpha beta delta = zipWithS (*) attack decay

where

attack = mapWhileS (<= pi)

(\p -> 0.5 - 0.5 * cos p)

0.0 (phaser 0.0 (beta/(2.0*pi)))

repeatS

decay = takeWhileDeltaS

(< (-delta/sampleRate))

1.0 (1.0 :- mapS exp (ramp (-alpha) 0.0))

(\x -> rampTo x (-delta) 0.0 doneS)

fwf :: [Float] -> Generator Float

fwf [alpha, beta, delta, fc] freq

= zipWithS (*) (fwfEnvelope alpha beta delta) (siner fc)

periods :: Float -> Timed Float

periods freq = timed (cycle [Daton 0.0, Hiaton ((truncate period) - 1)])

where

period = sampleRate / freq

formanter :: [Float] -> Generator Float

formanter parms = combineT sumV . mapT (fwf parms) . periods

Figure 6.11. F orman t-w a v e-function tone generation

where � = �e

� �t

. Th us, � =

1

�

ln (

�

�

) is the time at whic h the exp onen tial deca y c hanges

to a linear deca y .

Figure 6.11 lists the co de for FWF tone generation. fwfEn v elop e generates the en v elop e

of a single forman t-w a v e-function. The attac k stream is the rising half-cosine w a v e un til

time � =� , follo w ed b y the last of those v alues rep eated forev er. The deca y stream is

the exp onen tial deca y un til time � , follo w ed b y a linear deca y . The total en v elop e is the

p oin t-wise pro duct of the t w o.

A single format-w a v e function is generated b y fwf , whic h accepts a list of FWF param-

eters, and pro duces the p oin t-wise pro duct of the en v elop e and a sine w a v e at the resonan t

frequency , f

c

.

An FWF w a v eform generator is a series of p ossibly-o v erlapping forman t-w a v e-functions.

A timed stream con taining datons only at the times at whic h a new FWF is to start is

CHAPTER 6. D YNAMIC PR OCESS NETW ORKS 189

Figure 6.12. F orman t-w a v e-function output

generated b y the p erio ds generator. (p erio ds is quite coarse: it just truncates the p erio d to

the nearest in teger n um b er of tic ks. This will result in incorrect tuning at higher frequen-

cies, but it is adequate for this example.) The forman ter function mimics the structure of

the top lev el of the syn thesiser: it pro duces a single FWF for eac h daton in p erio ds , then

sums them together in to a single w a v eform.

Figure 6.12 sho ws a p ortion of the output of the FWF w a v eform generator. The dotted

line is the en v elop e of a single FWF. Note that this w a v eform will b e m ultiplied b y the

note's en v elop e. Th us, the FWF syn thesiser exhibits async hronicit y b oth in the times at

whic h notes are pro duced, and within eac h note, at the note's pitc h p erio d. T o pro duce

a single FWF, sev eral pro cesses are created; for eac h note, h undreds or thousands are

created. This dynamism is inheren t in the algorithm; it remains to b e seen whether this

degree of dynamism can b e implemen ted in real time, or whether algorithms lik e this can

only b e implemen ted b y remo ving some of this dynamism.

6.6 Summary

This c hapter demonstrated the use of stream pro cessing functions for writing dynamic

pro cess net w orks. The approac h hinges on a particular c hoice of time represen tation

suitable for real-time implemen tation: hiatons that represen t an in tegral n um b er of tic ks

of a base clo c k. Because of the complexit y of this represen tation, I ha v e b een unable

CHAPTER 6. D YNAMIC PR OCESS NETW ORKS 190

to pro duce a complete set of primitiv e functions (section 6.3), as I did for sync hronous

streams. Nonetheless, man y useful examples w ere sho wn.

The functions that generate dynamic pro cess net w orks (section 6.4) are ev en harder to

limit to a few k ey functions. Those I de�ned and demonstrated in that section w ere suited

to the kinds of net w ork structure used in the example application (section 6.5), but other

applications will lik ely require additional functions. It is not clear y et whether it will b e

p ossible to pro vide a su�cien t set of primitiv e functions, or whether it will b e necessary

to allo w programmers to de�ne their o wn recursiv e functions. More w ork on other appli-

cations of dynamic pro cess net w orks will b e necessary to mak e further assessmen t of the

v alidit y of this approac h.

Chapter 7

Summary

This thesis has co v ered a lot of ground, not all to the depth individual topics deserv e.

In this �nal c hapter, I summarise the particular con tributions made b y the thesis, and

indicate sp eci�c directions in whic h further w ork can pro ceed. Finally , I conclude with

m y though ts on the v alue of the framew ork in tro duced in c hapter 1 and exp ounded in

remaining c hapters.

7.1 Con tributions

In c hapter 1, I in tro duced a new framew ork for signal pro cessing dev elopmen t, in whic h a

high-lev el textual language, a visual language, and an e�cien t lo w-lev el execution mo del

(datao w pro cess net w orks) com bine to form an extremely p o w erful to ol. Although there is

no implemen tation of the complete framew ork, I b eliev e I ha v e laid m uc h of the groundw ork

for further implemen tation. Apart from the w orking Hask ell protot yp e co de (app endix A

and in the text), p ortions of the framew ork ha v e b een implemen ted: Da wson's protot yp e

Visual Hask ell editor [41]; the t w o implemen tations of SPOOK|Signal Pro cessing Ob ject-

Orien ted Kernel|describ ed in [118] and [96] (see also page 9); and some p ortions of a

compiler for mo dern digital signal pro cessors [119].

Key to the framew ork is an e�cien t implemen tation mo del. The mo del, datao w

pro cess net w orks, although widely used in signal pro cessing dev elopmen t en vironmen ts,

lac ks a formal description of its seman tics. In c hapter 3, I presen ted a formal syn tax and

seman tics of datao w actors and pro cesses. As far as I kno w, this is the �rst attempt to

191

CHAPTER 7. SUMMAR Y 192

presen t a formal seman tics of datao w actors and pro cesses in this w a y . In the �nal p ortion

of the c hapter, I presen ted a new form of actor, phased-form actors. Although early in its

dev elopmen t, this kind of actor o�ers new insigh ts in to the b eha viour of datao w actors,

and sho ws promise as a path to impro v ed seman tic descriptions of datao w net w orks.

Chapter 4 presen ted the Visual Hask ell language. Visual Hask ell is a substan tial design

for a visual language; it builds on the w ork in the functional programming comm unit y that

has lead to the establishmen t of Hask ell as the de facto functional programming language.

It conforms to the most successful mo del of visual languages, pip eline datao w. The

formal syn tax presen ted in c hapter 4 co v ers a substan tial p ortion of standard Hask ell. I

used Visual Hask ell extensiv ely in c hapter 5 to illustrate functional programs; I b eliev e

these examples demonstrate that the language is usable and (within its stated limitations)

complete. When used to dra w functions on streams, it closely resem bles blo c k diagrams

(see, for example, �gure 5.11). Da wson's protot yp e implemen tation of the language [41]

demonstrates the feasibilit y of constructing an editor for it.

Throughout the thesis, I ha v e main tained that a functional programming language is

an excellen t v ehicle for expressing datao w and \blo c k-diagram" st yle systems. Although

this realisation is not new, I b eliev e that, in c hapters 5 and 6, I ha v e explored this relation

in the con text of signal pro cessing to a depth not considered previously . A k ey realisation

during this w ork is the fact that an y SDF net w ork can b e built from only dela ys and

�v e actors (section 3.2.5). Because of this, just six functions are all that is required to

represen t an y �rst-order SDF net w ork in a functional programming language (section 5.3).

This enables us to emplo y SDF sc heduling tec hniques as an implemen tation tec hnology

for this restricted class of functional programs.

Ha ving iden ti�ed the utilit y of functional programming for datao w, I explored the

implications of t w o k ey facets of functional programming: higher-order functions, and

program transformation (sections 5.4 and 5.5). Although w ell-dev elop ed in the functional

programming comm unit y , these concepts w ere foreign to the signal pro cessing comm unit y .

The use of higher-order functions in signal pro cessing has b een implemen ted in the Ptolem y

system [86], based on m y w ork on this topic.

Finally , I ha v e prop osed and explored a no v el represen tation of timed streams (c hap-

ter 6). A realistic and complete example illustrates ho w this represen tation can b e used

CHAPTER 7. SUMMAR Y 193

to express dynamically-c hanging pro cess net w orks. Although this w ork is still ev olving, it

nonetheless illustrates a complex dynamic net w ork.

7.2 F urther w ork

There are sev eral k ey directions in whic h further w ork can pro ceed.

The seman tic description of datao w actors in c hapter 3 could b ene�t from a more

concise notation. Additional sugaring on the syn tax of standard-form actors w ould mak e

it easier to write actors. F or example, refutable state patterns w ould mak e it p ossible to

write actors lik e iota as a standard-form actor|in other w ords, the state b ecomes part

of the rule-selection pro cess. F urther w ork is needed on the relationship of phased-form

actors and dynamic pro cess net w orks. Because of the di�cult y of �nding a complete set of

primitiv e functions o v er timed streams, the b est approac h w ould, I think, b e to translate

recursiv ely de�ned functions on timed streams in to phased-form actors. F urther w ork is

also need on phased-form actors|in particular, an algorithm that deriv es the phased form

of a net w ork of phased-form actors.

Although Visual Hask ell (c hapter 4) has pro v ed to b e an in v aluable visualisation to ol,

and there has b een a protot yp e implemen tation, there is still no complete implemen tation.

It w ould b e an in teresting e�ort to construct a complete editor; an in teresting approac h

ma y b e build a complete Visual Hask ell domain in to the Ptolem y system for use in signal

pro cessing exploration and sim ulation, using sa y Tcl/Tk [103] as the graphical en viron-

men t. F urther w ork is also needed on iconic represen tations and t yp e annotations, to �nd

useful represen tations of the dynamic pro cess net w orks of c hapter 6.

Some of the features describ ed in c hapter 5 could b e incremen tally added to existing

signal pro cessing dev elopmen t systems: higher-order functions, and a simple catalogue of

program transformations, for example. Still, the most e�ectiv e means of implemen ting

the datao w-net w ork-in-Hask ell approac h w ould b e to add a new domain to the Ptolem y

system. By doing so, there is no need to adapt functional I/O mec hanisms (page 93)

to real-time streams; instead, Hask ell expr essions represen t datao w net w orks, whic h are

then em b edded in to an existing datao w en vironmen t.

The w ork in c hapter 6 is a �rst attempt at iden tifying the minimal set of functions

needed to supp ort timed datao w. F urther w ork is needed to mak e this set of functions

CHAPTER 7. SUMMAR Y 194

complete, and to relate these functions to phased-form datao w actors. Also, the relation

of this w ork to sync hronous languages [13] needs to b e clari�ed. The exploration of

dynamic pro cess net w orks in sections 6.4 and 6.5 is in triguing, but further examples need to

b e dev elop ed. An imp ortan t ingredien t in further w ork along this line will b e dev elopmen t

of a formal mo del for dynamically-ev olvin g datao w net w orks.

7.3 Concluding Remarks

The complete framew ork presen ted in this thesis is somewhat idealistic. Giv en that users

of suc h a framew ork are lik ely to b e engineers, requiring that they learn a functional

programming language is unlik ely to b e a w elcome learning o v erhead. Lazy ev aluation is

probably out-of-place in a pro duction signal pro cessing en vironmen t, despite its utilit y in

exploration and protot yping. And the complexities of mo dern DSP devices are suc h that

generating assem bler co de e�cien t enough to meet p erformance exp ectations from high-

lev el co de (suc h as standard-form actors) requires analysis and optimisation tec hnology

that do es not y et exist.

The real v alue of the framew ork lies p erhaps in its use as an ideal mo del and as a

framew ork within whic h sp eci�c areas of w ork can pro ceed (as I ha v e done in the b o dy

of this thesis). I see t w o k ey directions in whic h practical dev elopmen t based on the

framew ork can pro ceed: i) to use it to iden tify limitations in existing systems, and new

features that can b e added to them; and ii) to design a Hask ell-lik e visual datao w language

that has an appropriate mix of strict and non-strict ev aluation. I hop e to b e able to pursue

b oth of these directions within the Ptolem y system, b y extending it to supp ort asp ects of

m y ideal mo del, and b y implemen ting the new datao w language as a Ptolem y domain.

Bibli ograph y

[1] William B. Ac k erman. Data o w languages. IEEE Computer , pages 15{24, F ebruary

1982.

[2] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, T e chniques, and T o ols .

Addison-W esley , Reading, MA, 1986.

[3] Sudhir Ah uja, Nic holas Carriero, and Da vid Gelern ter. Linda and friends. IEEE

Computer , pages 26{34, August 1986.

[4] Alan L. Am bler, Margaret M. Burnett, and Betsy A. Zimmerman. Op erational

v ersus de�nitional: A p ersp ectiv e on programming paradigms. IEEE Computer ,

25(9):28{43, Septem b er 1992.

[5] Analog Devices. ADSP-21020 User's Manual , 1991.

[6] Analog Devices. ADSP-21060 SHAR C Sup er Harvar d A r chite ctur e Computer , Oc-

tob er 1993. Preliminary datasheet.

[7] Arvind and Da vid E. Culler. Datao w arc hitectures. A nnual R eviews in Computer

Scienc e , 1:225{253, 1986.

[8] Arvind and Kattam uri Ek anadham. F uture scien ti�c programming on parallel ma-

c hines. Journal of Par al lel and Distribute d Computing , 5:460{493, 1988.

[9] E. A. Ashcroft. Eazyo w arc hitecture. SRI T ec hnical Rep ort CSL-147, SRI In ter-

national, 333 Ra v ensw o o d Av e, Menlo P ark, CA 94025, April 1985.

[10] T om Axford and Mik e Jo y . List pro cessing primitiv es for parallel computation.

Computer L anguage , 19(1):1{17, 1993.

[11] John Bac kus. Can programming b e lib erated from the Von Neumann st yle? Com-

munic ations of the A CM , 21(8):613{6 41, 1978.

[12] Brian Barrera and Edw ard A. Lee. Multirate signal pro cessing in Comdisco's SPW.

In ICASSP 91 , pages 1113{1116, Ma y 1991.

[13] Alb ert Ben v eniste, P aul Caspi, P aul Le Guernic, and Nicolas Halb w ac hs. Data-o w

sync hronous languages. In A De c ade of Concurr ency: R ee ctions and Persp e ctive ,

pages 1{45. Springer-V erlag, June 1993.

195

BIBLIOGRAPHY 196

[14] Alb ert Ben v eniste, P aul Le Guernic, and Christian Jacquenot. Sync hronous pro-

gramming with ev en ts and relations: the SIGNAL language and its seman tics. Sci-

enc e of Computer Pr o gr amming , 16(2):103{149 , Septem b er 1991.

[15] Gerard Berry and Georges Gon thier. The ESTEREL sync hronous programming

language. Scienc e of Computer Pr o gr amming , 19:87{152, 1992.

[16] Sh uvra S. Bhattac haryy a and Edw ard A. Lee. Sc heduling sync hronous datao w

graphs for e�cien t lo oping. Journal of VLSI Signal Pr o c essing , 6, 1993.

[17] J. C. Bier, E. E. Go ei, W. H. Ho, P . D. Lapsley , M. P . O'Reilly , G. C. Sih, and E. A.

Lee. Gabriel: A design en vironmen t for DSP. IEEE Micr o , pages 28{45, Octob er

1990.

[18] Ric hard Bird and Philip W adler. Intr o duction to F unctional Pr o gr amming . Pren tice

Hall, 1988.

[19] R.S. Bird. Using circular programs to eliminate m ultiple tra v ersals of data. A cta

Informatic a , 21(3):239{25 0, 1984.

[20] R.S. Bird. Lectures on constructiv e functional programming. T ec hnical Rep ort T ec h-

nical Monograph PR G-69, Oxford Univ ersit y Computing Lab oratory , Programming

Researc h Group, Oxford, 1988.

[21] R.S. Bird. Algebraic iden tities for program calculation. The Computer Journal ,

32(2):122{126, 1989.

[22] T ore A. Bratv old. Skeleton-Base d Par al lelisation of F unctiona Pr o gr ams . PhD thesis,

Dept. of Computing and Electrical Engineering, Heriot-W att Univ ersit y , Edin burgh,

UK, No v em b er 1994.

[23] K. P . Bro oks. Lilac: A t w o-view do cumen t editor. IEEE Computer , pages 7{19,

June 1991.

[24] Manfred Bro y . Applicativ e real-time programming. In R. E. A. Mason, editor,

Information Pr o c essing 83 , 1983.

[25] Joseph Buc k, So onhoi Ha, Edw ard A. Lee, and Da vid G. Messersc hmitt. Ptolem y:

A framew ork for sim ulating and protot yping heterogenous systems. International

Journal of Computer Simulation , 1992. Sp ecial issue on \Sim ulation Soft w are De-

v elopmen t".

[26] Joseph T. Buc k. Sche duling Dynamic Dataow Gr aphs with Bounde d Memory Using

the T oken Flow Mo del . PhD thesis, Electrical Engineering and Computer Sciences,

Univ ersit y of California Berk eley , 1993.

[27] Joseph T. Buc k. Static sc heduling and co de generation from dynamic datao w

graphs with in teger-v alued con trol streams. In 28th Asilomar Confer enc e on Cir cuits,

Signals and Systems , No v em b er 1994.

[28] W. H. Burge. Stream pro cessing functions. IBM Journal of R ese ar ch and Develop-

ment , 19(1):12{25, Jan uary 1975.

BIBLIOGRAPHY 197

[29] Margaret Burnett and Benjamin Summers. Some real-w orld uses of visual program-

ming systems. T ec hnical Rep ort TR 94-60-7, Oregon State Univ ersit y , 1994.

[30] Da vid Busvine. Implemen ting recursiv e functions as pro ceeor farms. Par al lel Com-

puting , 19:1141{1153, 1993.

[31] Luca Cardelli. Tw o-dimensional syn tax for functional languages. In Pr o c. Inte gr ate d

Inter active Computing Systems , pages 107{119, 1983.

[32] Nic holas Carriero and Da vid Gelern ter. How to Write Par al lel Pr o gr ams: A First

Course . MIT Press, 1990.

[33] P . Caspi, D. Pilaud, N. Halb w ac hs, and J. A. Plaice. LUSTRE: A declaration

language for programming sync hronous systems. In 14th A CM Symp. on Principles

of Pr o gr amming L anguages, Munich, West Germany , pages 178{188, Jan uary 1987.

[34] Rulph Chassaing. Digital Signal Pr o c essing with C and the TMS320C30 . T opics in

Digital Signal Pro cessing. John Wiley and Sons, 1992.

[35] Murra y I. Cole. A lgorithmic Skeletons: Structur e d Management of Par al lel Compu-

tation . Pitman Publishing, 1989.

[36] Mic hael Colefax. A realtime p olyphonic m usic syn thesiser. T ec hnical rep ort, Sc ho ol

of Electrical Engineering, Univ ersit y of T ec hnology , Sydney , No v em b er 1993. Un-

dergraduate thesis rep ort.

[37] Gennaro Costagliola, Geno v e�a T ortora, Sergio Ore�ce, and Andrea de Lucia. Au-

tomatic generation of visual programming en vironmen ts. IEEE Computer , 28(3):56{

66, Marc h 1995.

[38] Stuart Co x, Shell-Ying Huang, P aul Kelly , Junxian Liu, and F rank T a ylor. An

implemen tation of static functional pro cess net w orks. In P ARLE'92|Par al lel A r-

chite ctur es and L anguages Eur op e , pages 497{512. Springer V erlag, 1992. LNCS

605.

[39] Alan D. Cullo c h. P orting the 3L P arallel C en vironmen t to the Texas Instrumen ts

TMS320C40. In A. V eronis and Y. P ak er, editors, T r ansputer R ese ar ch and Appli-

c ations 5 . IOS Press, 1992.

[40] J. Darlington, A. J. Field, P . G. Harrison, P . H. J. Kelly , D. W. N. Sharp, Q. W u,

and R. L. While. P arallel programming using sk eleton functions. In P ARLE'93|

Par al lel A r chite ctur es and L anguages Eur op e , pages 146{160. Springer V erlag, June

1993.

[41] Ken Da wson. Visual Hask ell editor and parser. T ec hnical rep ort, Sc ho ol of Electrical

Engineering, Univ ersit y of T ec hnology , Sydney , No v em b er 1993. Undergraduate

thesis rep ort.

[42] Electronics Researc h Lab oratory , Univ ersit y of California Berk eley . The Almagest:

Ptolemy User's Manual V ersion 0.5 , 1994.

BIBLIOGRAPHY 198

[43] Marc Engels, Greet Bilson, Rudy Lau w ereins, and Jean P ep erstrate. Cyclo-static

datao w: Mo del and implemen tation. In 28th Asilomar Confer enc e on Cir cuits,

Signals and Systems , No v em b er 1994.

[44] P aul Hudak et al. Rep ort on the functional programming language Hask ell, a non-

strict purely-functional language, v ersion 1.2. SIGPLAN Notic es , Ma y 1992.

[45] An ton y A. F austini and Edgar B. Lewis. T o w ard a real-time datao w language.

IEEE Softwar e , pages 29{35, Jan uary 1986.

[46] John T. F eo, Da vid C. Cann, and Ro dney R. Oldeho eft. A rep ort on the SISAL

language pro ject. Journal of Par al lel and Distribute d Computing , 10:349{366, 1990.

[47] An ton y J. Field and P eter G. Harrison. F unctional Pr o gr amming . Addison-W esley ,

1988.

[48] Markus F reeric ks and Alaois Knoll. F ormally correct translation of DSP algorithms

sp eci�ed in an async hronous applicativ e language. In ICASSP 93, Minne ap olis,

USA , pages I{417{I{420, April 1993.

[49] Daniel D. Ga jski, Da vid A. P adua, Da vid J. Kuc k, and Rob ert H. Kuhn. A sec-

ond opinion on data o w mac hines and languages. IEEE Computer , pages 58{69,

F ebruary 1982.

[50] H. Garsden and A. L. W endelb orn. Exp erimen ts with pip elini ng parallelism in

SISAL. In 25th Intl. Hawaii Conf. on System Scienc es , Jan uary 1992.

[51] Andrew Gill, John Launc h bury , and Simon L. P eyton Jones. A short cut to defor-

estation. In F unctional L anguages and Computer A r chite ctur e (FPCA) 93 , 1993.

[52] Da vid M. Globirsc h. An in tro duction to Hask ell with applications to digital sig-

nal pro cessing. T ec hnical rep ort, The MITRE Corp oration, 7525 Colshire Driv e,

McLean, Virginia 22102-3481, Septem b er 1993.

[53] Eric J. Golin and Stev en P . Reiss. The sp eci�cation of visual language syn tax. In

Pr o c. 1989 IEEE Workshop on Visual L anguages , pages 105{110, Rome, Italy , 1989.

[54] Kevin Hammond. P arallel functional programming: An in tro duction. In Pr o c.

1st Intl. Symp. on Par al lel Symb olic Computation (P ASCO '94) , pages 181{193,

Hagen burg, Austria, 1994. W orld Scien ti�c.

[55] Philip J. Hatc her and Mic hael J. Quinn. Data-Par al lel Pr o gr amming on MIMD

Computers . MIT Press, 1991.

[56] P . Henderson. Purely functional op erating systems. In F unctional Pr o gr amming and

its Applic ations . Cam bridge Univ ersit y Press, 1982.

[57] P . Hil�nger, J. Rabaey , D. Genin, C. Sc heers, and H. De Man. DSP sp eci�cation

using the Silage language. In ICASSP 90 , Alburqurque, New Mexico, April 1990.

[58] Daniel D. Hils. DataVis: A visual programming language for scien ti�c visualisation.

In Pr o c. 1991 A CM Computer Scienc e Confer enc e , pages 439{448, San An tonio,

T exas, Marc h 1991.

BIBLIOGRAPHY 199

[59] Daniel D. Hils. Visual languages and computing surv ey: Data o w visual program-

ming languages. Journal of Visual L anguages and Computing , 3:69{101, 1992.

[60] Charles An ton y Ric hard Hoare. Communic ating Se quential Pr o c esses . Pren tice-Hall,

1985.

[61] P aul Hudak. P ara-functional programming. IEEE Computer , pages 60{70, August

1986.

[62] P aul Hudak. Conception, ev olution, and application of functional programming

languages. A CM Computing Surveys , 21(3):359{411 , Septem b er 1989.

[63] P aul Hudak and Mark Jones. Hask ell vs Ada vs C++ vs Awk vs ...: An exp erimen t

in soft w are protot yping pro ductivit y . Researc h rep ort, Dept. of Computer Science,

Y ale Univ ersit y , July 1994.

[64] John Hughes. Wh y functional programming matters. The Computer Journal ,

32(2):98{107, 1989.

[65] R. Jagannathan. Datao w mo dels. In E. Y. Zoma y a, editor, Par al lel and Distribute d

Computing Handb o ok . McGra w-Hill, 1995.

[66] Thomas Johnsson. A ttribute grammars as a functional programming paradigm.

In F unctional Pr o gr amming L anguages and Computer A r chite ctur e , pages 154{173,

P ortland, Oregon, 1987. Springer-V erlag. LNCS 274.

[67] G. Jones. Deriving the fast F ourier algorithm b y calculation. In K. Da vis and

J. Hughes, editors, F unctional Pr o gr amming: Pr o c e e dings of the 1989 Glasgow Work-

shop, 21-23 A ugust 1989 , pages 80{102. Springer-V erlag, 1990.

[68] Gerain t Jones and Mary Sheeran. Circuit design in rub y . In J. Staunstrup, editor,

F ormal Metho ds for VLSI Design , pages 13{70. North-Holland, 1990.

[69] Mark Jones. A system of constructor classes: Ov erloading and implicit higher-order

p olymorphism. In Pr o c. A CM Conf. on F unctional Pr o gr amming L anguages and

Computer A r chite ctur e , pages 52{61, Cop enhagen, Denmark, June 1993.

[70] S. B. Jones and A. F. Sinclair. F unctional programming and op erating systems. The

Computer Journal , 32(2):162{174, F ebruary 1989.

[71] Simon B. Jones. A range of op erating systems written in a purely functional st yle.

T ec hnical Monograph PR G-42, Oxford Univ ersit y Computing Lab oratory , Septem-

b er 1984.

[72] Simon L. P eyton Jones. The Implementation of F unctional Pr o gr amming L anguages .

Pren tice-Hall, 1987.

[73] Simon P eyton Jones and Philip W adler. Imp erativ e functional programming. In

A CM Principles of Pr o gr amming L anguages 93 , pages 71{84, Jan uary 1993.

[74] John L. Kelly Jr., Carol Lo c h baum, and V. A. Vyssotsky . A blo c k diagram compiler.

The Bel l System T e chnic al Journal , pages 669{678, Ma y 1961.

BIBLIOGRAPHY 200

[75] Gilles Kahn. The seman tics of a simple language for parallel pro cessing. In Infor-

mation Pr o c essing 74 , pages 471{475. North-Holland, 1974.

[76] Gilles Kahn and Da vid MacQueen. Coroutines and net w orks of parallel pro cesses.

In B. Gilc hrist, editor, Information Pr o c essing 77 . North-Holland, 1977.

[77] Ric hard M. Karp and Ra ymond E. Miller. Prop erties of a mo del for parallel compu-

tations, determinacy , termination, and queueing. SIAM Journal of Applie d Mathe-

matics , 14(6):1390{14 11, No v em b er 1966.

[78] P aul Kelly . F unctional Pr o gr amming for L o osely-c ouple d Multipr o c essors . Researc h

Monographs in P arallel and Distributed Computing. Pitman, 1989.

[79] Jo el Kelso. A visual represen tation for functional programs. T ec hnical Rep ort CS-

95/01, Murdo c h Univ ersit y , Australia, Decem b er 1994.

[80] T ak a yuki Dan Kim ura, Aja y Apte, Sam udra Sengupta, and Julie W. Chan.

F orm/form ula: A visual programming paradigm for user-de�nable user in terfaces.

IEEE Computer , 28(3):27{35, Marc h 1995.

[81] Alois Knoll and Markus F reeric ks. An applicativ e real-time language for DSP pro-

gramming supp orting async hronous data-o w concepts. Micr opr o c essing and Micr o-

pr o gr amming , 32:541{548, August 1991.

[82] Je�rey Ko dosky , Jac k MacCrisk en, and Gary Rymar. Visual programming using

structured data o w. In Pr o c. 1991 IEEE Workshop on Visual L anguages , pages

34{39, Kob e, Japan, Octob er 1991.

[83] Konstan tinos Konstan tinides and John R. Rasure. The Khoros soft w are dev elop-

men t en vironmen t for image and signal pro cessing. IEEE T r ansactions on Image

Pr o c essing , 3(3):243{252 , Ma y 1994.

[84] P .J. Landin. A corresp ondence b et w een ALGOL60 and Ch urc h's lam b da-notation:

P art I. Communic ations of the A CM , 8:89{101, 1965.

[85] Rudy Lau w ereins, Piet W auters, Merleen Ade, and J. A. P ep erstraete. Geometric

parallelism and cyclo-static data o w in GRAPE-I I. In 5th Intl Workshop on R apid

System Pr ototyping , Grenoble, F rance, June 1994.

[86] Edw ard A. Lee. priv ate comm unication, 1993.

[87] Edw ard A. Lee. Datao w pro cess net w orks. Memorandum UCB/ERL M94/53,

Electronics Reserac h Lab oratory , July 1994.

[88] Edw ard A. Lee and Da vid G. Messersc hmitt et al. An o v erview of the Ptolem y

pro ject. Anon ymous ftp from ptolem y .eecs.b erk eley .edu, Marc h 1994.

[89] Edw ard A. Lee and Da vid G. Messersc hmitt. Static sc heduling of sync hronous data

o w programs for digital signal pro cessing. IEEE T r ans. on Computers , 36(1):24{35,

Jan uary 1987.

[90] Edw ard A. Lee and Da vid G. Messersc hmitt. Sync hronous data o w. Pr o c e e dings of

the IEEE , 75(9):1235{1 245 , Septem b er 1987.

BIBLIOGRAPHY 201

[91] Allen Leung and Prateek Mishra. Reasoning ab out simple and exhaustiv e demand

in higher-order lazy languages. In 5th A CM Conf. on F unctional Pr o gr amming L an-

guages and Computer A r chite ctur e , pages 328{351, Cam bridge, MA, August 1991.

[92] Andreas Maasen. P arallel programming with data structures and higher-order func-

tions. Scienc e of Computer Pr o gr amming , 18:1{38, 1992.

[93] G. P . McKeo wn and A. P . Revitt. Sp eci�cation and sim ulation of systolic systems

functional programming. In Pr o c. 6th Intl. Workshop on Implementation of F unc-

tional L anguages , Univ ersit y of East Anglia, Norwic h, UK, Septem b er 1994.

[94] Da vid G. Messersc hmitt. A to ol for structured functional sim ulation. IEEE T r ans.

on Sp e cial T opics in Communic ations , Jan uary 1984.

[95] Bertrand Mey er. Applying `design b y con tract'. IEEE Computer , 25(10):40{51 ,

Octob er 1992.

[96] Matthias Mey er. A pilot implemen tation of the host-engine soft w are arc hitecture

for parallel digital signal pro cessing. T ec hnical rep ort, Sc ho ol of Electrical Engineer-

ing, Univ ersit y of T ec hnology Sydney , and T ec hnical Univ ersit y Ham burg-Harburg,

No v em b er 1994. FTP from ftp.ee.uts.edu.au as /pub/DSP/papers/spook.ps.g z .

[97] G. J. Mic haelson, N. R. Scaife, and A. M. W allace. Protot yping parallel algorithms

using Standard ML. In Pr o c. British Machine Vision Confer enc e , 1995.

[98] Motorola Inc. DSP96002 IEEE Flo ating-Point Dual-Port Pr o c essor User's Manual ,

1989.

[99] Marc A. Na jork and Eric Golin. Enhancing Sho w-and-Tell with a p olymorphic

t yp e system and higher-order functions. In Pr o c. 1990 IEEE Workshop on Visual

L anguages, Skokie, Il linois , pages 215{220, Octob er 1990.

[100] Marc A. Na jork and Simon M. Kaplan. The CUBE language. In Pr o c. 1991 IEEE

Workshop on Visual L anguages , pages 218{224, Kob e, Japan, Octob er 1991.

[101] Marc A. Na jork and Simon M. Kaplan. Sp ecifying visual languages with conditional

set rewrite systems. In Pr o c. 1993 IEEE Symp osium on Visual L anguages , pages

12{18, August 1993.

[102] Je�rey V. Nic k erson. Visual programming: Limits of graphical represen tation. In

Pr o c. 1994 IEEE Symp osium on Visual L anguages , pages 178{179, Octob er 1994.

[103] John K. Ousterhout. Tcl and the Tk T o olkit . Addison-W esley , 1994.

[104] P erihelion Soft w are Ltd. The Helios Par al lel Op er ating System . Pren tice Hall, 1991.

[105] Simon L. P eyton-Jones. P arallel implemen tations of functional programming lan-

guages. The Computer Journal , 32(2):175{1 86, F ebruary 1989.

[106] Simon L. P eyton-Jones and Da vid Lester. A mo dular fully-lazy lam b da-lifter in

Hask ell. Softwar e { Pr actic e and Exp erienc e , 21(5):479{506, Ma y 1991.

BIBLIOGRAPHY 202

[107] Kesha v Pingali and Arvind. E�cien t demand-driv en ev aluation, part 1. A CM T r ans.

on Pr o gr amming L anguages and Systems , 7(2):311{333, April 1985.

[108] Jose Luis Pino, Thomas M. P arks, and Edw ard A. Lee. Mapping m ultiple inde-

p enden t sync hronous datao w graphs on to heterogeneous m ultipro cessors. In 28th

Asilomar Confer enc e on Cir cuits, Signals and Systems , No v em b er 1994.

[109] John A. Plaice. RLucid, a general real-time datao w language. In Pr o c. F ormal

T e chniques in R e al-time and F ault-toler ant Systems , Nijmegan, the Netherlands,

Jan uary 1992. Springer-V erlag. LNCS 571.

[110] Jorg P oswig, Guido V rank ar, and Claudio Moraga. VisaVis|a higher-order func-

tional visual programming language. Journal of Visual L anguages and Computing ,

5:83{111, 1994.

[111] Douglas B. P o w ell, Edw ard A. Lee, and William C. Newman. Direct syn thesis of

optimized DSP assem bly co de from signal o w blo c k diagrams. In ICASSP 92 , pages

V{553{V{556, 1992.

[112] John Rasure and Mark Y oung. Datao w visual languages. IEEE Potentials ,

11(2):30{33, April 1992.

[113] Chris Reade. Elements of F unctional Pr o gr amming . Addison W esley , 1989.

[114] H. John Reekie. T o w ards e�ectiv e programming for parallel digital signal pro cessing.

T ec hnical Rep ort 92.1, Key Cen tre for Adv anced Computing Sciences, Univ ersit y of

T ec hnology , Sydney , Ma y 1992.

[115] H. John Reekie. Real-time DSP in C and assem bler. FTP from ftp.ee.uts.edu.au

as /pub/prose/c30course.ps.gz , 1993.

[116] H. John Reekie. Mo delling async hronous streams in Hask ell. T ec hnical Rep ort 94.3,

Key Cen tre for Adv anced Computing Sciences, Univ ersit y of T ec hnology , Sydney ,

June 1994. FTP from ftp.ee.uts.edu.au as /pub/prose/async-streams.p s.gz .

[117] H. John Reekie. Visual Hask ell: A �rst attempt. T ec hnical Rep ort 94.5, Key Cen tre

for Adv anced Computing Sciences, Univ ersit y of T ec hnology , Sydney , August 1994.

FTP from ftp.ee.uts.edu.au as /pub/prose/visual-haskell.p s.gz .

[118] H. John Reekie and Matthias Mey er. The host-engine soft w are arc hitecture for

parallel digital signal pro cessing. In Pr o c. P AR T'94, Workshop on Par al lel and R e al-

time Systems, Melb ourne, A ustr alia , July 1994. FTP from ftp.ee.uts.edu.au as

/pub/prose/host-engine.ps.gz .

[119] H. John Reekie and John M. P otter. Generating e�cien t lo op co de for programmable

dsps. In ICASSP 94 , pages I I{469{I I{472. IEEE, 1994.

[120] Hideki John Reekie. A real-time p erformance-orien ted m usic syn thesiser. T ec hnical

rep ort, Sc ho ol of Electrical Engineering, Univ ersit y of T ec hnology , Sydney , No v em b er

1987. Undergraduate thesis rep ort.

BIBLIOGRAPHY 203

[121] John Reekie. In tegrating blo c k-diagram and textual programming for parallel DSP.

In Pr o c. 3r d Intl. Symp. on Signal Pr o c essing and its Applic ations (ISSP A 92) , pages

622{625, August 1992.

[122] John Reekie and John P otter. T ransforming pro cess net w orks. In Pr o c. MFPW'92,

the Massey F unctional Pr o gr amming Workshop , P almerston North, New Zealand,

August 1992. Massey Univ ersit y .

[123] John Reekie and John P otter. Pro cess net w ork transformation. In Da vid Arnold,

editor, Par al lel Computing and T r ansputers (PCA T-93) , pages 376{383. IOS Press,

No v em b er 1993.

[124] Stev en P . Reiss. PECAN: Program dev elopmen t systems that supp ort m ultiple

views. IEEE T r ans. Softwar e Engine ering , 11(3):324{333, Marc h 1985.

[125] Xa vier Ro det. Time-domain forman t-w a v e-function syn thesis. Computer Music

Journal , 8(3):9{14, 1984.

[126] P aul Ro e. Par al lel Pr o gr amming using F unctional L anguages . PhD thesis, Dept. of

Computing Science, Univ ersit y of Glasgo w, 1991.

[127] Gary Sab ot. The Par alation Mo del: A r chite ctur e-Indep endent Par al lel Pr o gr amming .

MIT Press, 1988.

[128] Mary Sheeran. Designing regular arra y arc hitectures using higher order functions.

In J.-P . Jouannaud, editor, F unctional Pr o gr amming L anguages and Computer A r-

chite ctur e , pages 220{237, Nancy , F rance, Septem b er 1985. Springer-V erlag. LNCS

201.

[129] Ja y M. Sip elstein and Guy E. Blello c h. Collection-orien ted languages. Pr o c e e dings

of the IEEE , 79(4):504{523 , April 1991.

[130] Da vid Skillicorn. Stream languages and datao w. In J.-L Gaudiot and L. Bic, editors,

A dvanc e d T opics in Dataow Computing , pages 439{454. Pren tice-Hall, 1991.

[131] Da vid Skillicorn and Janice Glasgo w. Real-time sp eci�cation using Lucid. IEEE

T r ans. on Softwar e Engine ering , 15(2):221{22 9, F ebruary 1989.

[132] D.B. Skillicorn. P arallelism and the Bird-Meertens formalism. FTP from

qucis.queensu.ca in /pub/skill, April 1992.

[133] John A. Stank o vic and Krithi Ramamritham. In tro duction. In John A. Stank o vic and

Krithi Ramamritham, editors, Har d R e al-Time Systems , c hapter 1. IEEE Computer

So ciet y Press, 1988.

[134] W. D. Stanley , G. R. Doughert y , and R. Doughert y . Digital Signal Pr o c essing . Reston

Publishing, 1984.

[135] William Sto y e. Message-based functional op erating systems. Scienc e of Computer

Pr o gr amming , 6(3):291{31 1, Ma y 1986.

BIBLIOGRAPHY 204

[136] V. S. Sunderan, G. A. Geist, J. Dongarra, and R. Manc hek. The PVM concurren t

computing system: Ev olution, exp erience, and trends. Par al lel Computing , 1994. T o

app ear.

[137] T exas Instrumen ts Inc. TMS320C4x User's Guide , 1991. Literature n um b er

SPR U063.

[138] T exas Instrumen ts Inc. TMS320C3x User's Guide , 1992. Literature n um b er

SPR U031C.

[139] D.A. T urner. The seman tic elegance of applicativ e languages. Pr o c. A CM Conf. on

F unctional Pr o gr amming and Computer A r chite ctur e , pages 85{92, 1981.

[140] Da vid A. T urner. An approac h to functional op erating systems. In D.A. T urner,

editor, R ese ar ch T opics in F unctional Pr o gr amming , pages 199{218. Addison-W elsey ,

Reading, MA, 1990.

[141] Stev en R. V egdahl. A surv ey of prop osed arc hitectures for the execution of functional

languages. IEEE T r ansactions on Computers , C-23(12):1050{ 1071 , Decem b er 1984.

[142] Ingrid M. V erbau whede, Chris J. Sc heers, and Jan M. Rabaey . Sp eci�cation and

supp ort for m ulti-dimensional DSP in the Silage language. In ICASSP 94 , pages

I I{473{I I{476, Adelaide, Australia, April 1994.

[143] Eric V erh ulst. Meeting the parallel DSP c hallenge with the real-time Virtuoso pro-

gramming system. DSP Applic ations , pages 41{56, Jan uary 1994.

[144] W. W. W adge and A. Ashcroft. Lucid|the Dataow Pr o gr amming L anguage . Aca-

demic Press, 1985.

[145] P . W adler. Applicativ e st yle programming, program transformation and list op-

erators. In F unctional Pr o gr amming L anguages and Computer A r chite ctur e , pages

25{32. A CM, 1981.

[146] Philip W adler. Listlessness is b etter than laziness: Lazy ev aluation and garbage col-

lection at compile time. In Pr o c. A CM Symp. on Lisp and F unctional Pr o gr amming ,

1984.

[147] Philip W adler. Ho w to replace failure b y a list of successes|a metho d for exception-

handling, bac ktrac king, and pattern-matc hing in lazy functional languages. In J.-P .

Jouannaud, editor, F unctional Pr o gr amming L anguages and Computer A r chite ctur e ,

pages 113{128. Springer-V erlag, 1985. LNCS 201.

[148] Philip W adler. Deforestation: T ransforming programs to eliminate trees. The or etic al

Computer Scienc e , 73:231{248, 1990.

[149] Philip W adler and Stephen Blott. Ho w to mak e ad-ho c p olymorphism less ad-ho c .

In A CM Symp osium on Principles of Pr o gr amming L anguages , pages 60{76, Austin,

T exas, Jan uary 1989.

[150] Malcolm W allace. F unctional Pr o gr amming and Emb e dde d Systems . PhD thesis,

Dept. Of Computer Science, Univ ersit y of Y ork, UK, Jan uary 1995.

BIBLIOGRAPHY 205

[151] Malcolm W allace and Colin Runciman. T yp e-c hec k ed message-passing b et w een func-

tional pro cesses. In Pr o c. Glasgow F unctional Pr o gr amming Workshop . Springer-

V erlag, Septem b er 1994. W orkshops in Computer Science Series.

[152] Kevin W augh, P atric k McAndrew, and Greg Mic haelson. P arallel implemen tations

from functional protot yp es|a case study . T ec hnical Rep ort 90/4, Heriot-W att Uni-

v ersit y , Edin burgh, UK, 1990.

[153] A. L. W endelb orn and H. Garsden. Exploring the stream data t yp e in SISAL and

other languages. In M. Cosnard, K. Eb cioglu, and J.-L. Gaudiot, editors, A r chite c-

tur es for Fine and Me dium Gr ain Par al lelism , pages 283{294. IFIP , Elsevier Science

Publishers, 1993.

[154] P atric k Willek ens, Dirk Devisc h, Marc V an Canneyt, P aul Conitti, and Dominique

Genin. Algorithm sp eci�cation in DSP station using Data Flo w Language. DSP

Applic ations , pages 8{16, Jan uary 1994.

[155] Carla S. Williams and John R. Rasure. A visual language for image pro cessing. In

Pr o c. 1990 IEEE Workshop on Visual L anguages , pages 86{91, 1990.

App endix A

Hask ell Co de

The V ector mo dule

-- Types --

infixr 5 +++, :>

data Vector a = NullV

| a :> (Vector a)

vector :: [a] -> Vector a

vector [] = NullV

vector (x:xs) = strict (:>) x (vector xs) -- evaluate spine

nullV :: Vector a -> Bool

nullV NullV = True

nullV (_:>_) = False

unitV :: a -> Vector a

unitV x = x :> NullV

-- Iterators --

mapV :: (a -> b) -> Vector a -> Vector b

mapV f NullV = NullV

mapV f (x:>xs) = f x :> mapV f xs

generateV :: Int -> (a -> a) -> a -> Vector a

generateV 0 f a = NullV

generateV n f a = x :> generateV (n-1) f x where x = f a

iterateV :: Int -> (a -> a) -> a -> Vector a

iterateV 0 f a = NullV

iterateV n f a = a :> iterateV (n-1) f (f a)

foldlV :: (a -> b -> a) -> a -> Vector b -> a

foldlV f a NullV = a

foldlV f a (x:>xs) = foldlV f (f a x) xs

206

scanlV :: (a -> b -> a) -> a -> Vector b -> Vector a

scanlV f a NullV = NullV

scanlV f a (x:>xs) = q :> scanlV f q xs where q = f a x

meshlV :: (a -> b -> (a,c)) -> a -> Vector b -> (a, Vector c)

meshlV f a NullV = (a, NullV)

meshlV f a (x:>xs) = (a'', y:>ys) where

(a', y) = f a x

(a'', ys) = meshlV f a' xs

foldrV :: (b -> a -> a) -> a -> Vector b -> a

foldrV f a NullV = a

foldrV f a (x:>xs) = f x (foldrV f a xs)

scanrV :: (b -> a -> a) -> a -> Vector b -> Vector a

scanrV f a NullV = NullV

scanrV f a (x:>NullV) = f x a :> NullV

scanrV f a (x:>xs) = f x y :> ys where ys@(y:>_) = scanrV f a xs

meshrV :: (b -> a -> (c,a)) -> a -> Vector b -> (Vector c,a)

meshrV f a NullV = (NullV, a)

meshrV f a (x:>xs) = (y:>ys, a'') where

(y, a'') = f x a'

(ys, a') = meshrV f a xs

-- Permutors --

(+++) :: Vector a -> Vector a -> Vector a

NullV +++ ys = ys

(x:>xs) +++ ys = x :> (xs +++ ys)

lengthV :: Vector a -> Int

lengthV NullV = 0

lengthV (x:>xs) = 1 + lengthV xs

atV :: Vector a -> Int -> a

(x:>xs) `atV` 0 = x

(x:>xs) `atV` (n+1) = xs `atV` n

selectV :: Int -> Int -> Int -> Vector a -> Vector a

selectV _ _ 0 xs = NullV

selectV o s n xs = xs `atV` o :> selectV (o+s) s (n-1) xs

groupV :: Int -> Vector a -> Vector (Vector a)

groupV n v

| lengthV v < n = NullV

| otherwise = selectV 0 1 n v :> groupV n (selectV n 1 (lengthV v - n) v)

concatV :: Vector (Vector a) -> Vector a

concatV = foldrV (+++) NullV

zipV :: Vector a -> Vector b -> Vector (a,b)

zipV (x:>xs) (y:>ys) = (x,y) :> zipV xs ys

zipV _ _ = NullV

unzipV :: Vector (a,b) -> (Vector a, Vector b)

unzipV NullV = (NullV, NullV)

207

unzipV ((x,y):> xys) = (x:>xs, y:>ys) where (xs,ys) = unzipV xys

-- permutors (using addition al functions) --

infixr 5 >>

infixl 5 <:, <<

(<:) :: Vector a -> a -> Vector a

xs <: x = xs +++ unitV x

(<<) :: Vector a -> a -> Vector a

xs << x = tailV xs +++ unitV x

(>>) :: a -> Vector a -> Vector a

x >> xs = unitV x +++ initV xs

The Stream mo dule

-- Types --

infixr 5 :-

data Stream a = NullS

| a :- (Stream a)

stream :: [a] -> Stream a

stream [] = NullS

stream (x:xs) = x :- stream xs

unitS :: a -> Stream a

unitS x = x :- NullS

nullS :: Stream a -> Bool

nullS NullS = True

nullS (_:-_) = False

headS :: Stream a -> a

headS (x:-_) = x

tailS :: Stream a -> Stream a

tailS (_:-xs) = xs

-- Primitives --

mapS :: (a -> b) -> Stream a -> Stream b

mapS f NullS = NullS

mapS f (x:-xs) = f x :- mapS f xs

groupS :: Int -> Stream a -> Stream (Vector a)

groupS n NullS = NullS

groupS 0 _ = NullS

groupS n xs

| nullV v = NullS

| otherwise = v :- groupS n (dropS n xs)

where v = takeSV n xs

concatS :: Stream (Vector a) -> Stream a

208

concatS NullS = NullS

concatS (v:-vs) = appendVS v (concatS vs)

zipS :: Stream a -> Stream b -> Stream (a,b)

zipS (x:-xs) (y:-ys) = (x,y) :- zipS xs ys

zipS _ _ = NullS

unzipS :: Stream (a,b) -> (Stream a, Stream b)

unzipS NullS = (NullS, NullS)

unzipS ((x,y):- xys) = (x:-xs, y:-ys) where (xs, ys) = unzipS xys

-- Useful functions --

appendVS :: Vector a -> Stream a -> Stream a

appendVS NullV s = s

appendVS (x:>xs) s = x :- appendVS xs s

takeSV :: Int -> Stream a -> Vector a

takeSV k = tk k NullV

where

tk 0 v s = v

tk k v NullS = NullV

tk k v (x:-xs) = tk (k-1) (v <: x) xs

dropS :: Int -> Stream a -> Stream a

dropS k NullS = NullS

dropS 0 s = s

dropS k (x:-xs) = dropS (k-1) xs

The Timed mo dule

-- Types--

infixr 5 :-:

data Timed a = NullT

| Token a :-: (Timed a)

data Token a = Hiaton Int

| Daton a

| Datons (Vector (Token a))

| Block (Vector a)

-- Make timed stream from list --

timed :: [Token a] -> Timed a

timed [] = NullT

timed (x:xs) = x :-: timed xs

timeT :: Stream a -> Timed a

timeT NullS = NullT

timeT (x:-xs) = Daton x :-: timeT xs

unitT :: Token a -> Timed a

unitT t = t :-: NullT

209

-- Utilities need for "primitiv es " --

nullT :: Timed a -> Bool

nullT NullT = True

nullT _ = False

-- Map on timed stream

tmapT :: (a -> Token b) -> (Int -> Token b) -> Timed a -> Timed b

tmapT f g (Daton x :-: xs) = f x :-: tmapT f g xs

tmapT f g (Hiaton n :-: xs) = g n :-: tmapT f g xs

tmapT f g _ = NullT

-- Zip two timed streams together --

zipT :: Timed a -> Timed b -> Timed (Token a, Token b)

zipT xs ys = zipT' 0 0 xs ys

where

zipT' 0 0 (Daton x :-: xs) (Daton y :-: ys)

= Daton (Daton x, Daton y) :-: zipT' 0 0 xs ys

zipT' 0 0 (Daton x :-: xs) (Hiaton n :-: ys)

= Daton (Daton x, Hiaton 1) :-: zipT' 0 (n-1) xs ys

zipT' 0 0 (Hiaton m :-: xs) (Daton y :-: ys)

= Daton (Hiaton 1, Daton y) :-: zipT' (m-1) 0 xs ys

zipT' 0 0 (Hiaton m :-: xs) (Hiaton n :-: ys)

| m == n = Hiaton m :-: zipT' 0 0 xs ys

| m < n = Hiaton m :-: zipT' 0 (n-m) xs ys

| m > n = Hiaton n :-: zipT' (m-n) 0 xs ys

zipT' 0 n (Daton x :-: xs) ys

= Daton (Daton x, Hiaton 1) :-: zipT' 0 (n-1) xs ys

zipT' 0 n (Hiaton m :-: xs) ys

| m == n = Hiaton m :-: zipT' 0 0 xs ys

| m < n = Hiaton m :-: zipT' 0 (n-m) xs ys

| m > n = Hiaton n :-: zipT' (m-n) 0 xs ys

zipT' m 0 xs (Daton y :-: ys)

= Daton (Hiaton 1, Daton y) :-: zipT' (m-1) 0 xs ys

zipT' m 0 xs (Hiaton n :-: ys)

| m == n = Hiaton m :-: zipT' 0 0 xs ys

| m < n = Hiaton m :-: zipT' 0 (n-m) xs ys

| m > n = Hiaton n :-: zipT' (m-n) 0 xs ys

zipT' _ _ _ _ = NullT

-- Unzip a stream of pairs (not used!)

unzipT :: Timed (Token a, Token b) -> (Timed a, Timed b)

unzipT ((Daton (Daton x, Daton y)) :-: xys)

= (Daton x :-: xs, Daton y :-: ys) where (xs,ys) = unzipT xys

unzipT ((Daton (Daton x, Hiaton 1)) :-: xys)

= (Daton x :-: xs, Hiaton 1 :-: ys) where (xs,ys) = unzipT xys

unzipT ((Daton (Hiaton 1, Daton y)) :-: xys)

= (Hiaton 1 :-: xs, Daton y :-: ys) where (xs,ys) = unzipT xys

unzipT ((Hiaton n) :-: xys)

= (Hiaton n :-: xs, Hiaton n :-: ys)where (xs,ys) = unzipT xys

unzipT _ = (NullT,Nu ll T)

210

-- State process on timed stream. Defined directly rather than --

-- in terms of tmapT, to get around ``break-up '' of hiatons. --

tstateT :: (a -> b -> (a, Token c)) -> (a -> Int -> (a, Token c)) -> a -> Timed b -> Timed c

tstateT f g a (Daton x :-: xs) = y :-: tstateT f g b xs where (b,y) = f a x

tstateT f g a (Hiaton n :-: xs) = y :-: tstateT f g b xs where (b,y) = g a n

tstateT _ _ _ _ = NullT

-- Concatenat e a stream of tokens and token vectors --

concatT :: Timed a -> Timed a

concatT (Hiaton n :-: xs) = Hiaton n :-: concatT xs

concatT (Daton x :-: xs) = Daton x :-: concatT xs

concatT (Datons v :-: xs) = v `append` concatT xs

where

NullV `append` ys = ys

(x:>xs) `append` ys = x :-: (xs `append` ys)

concatT _ = NullT

-- Group a stream into vectors (k greater than 1) --

groupT k xs = groupT' 0 xs

where

groupT' 0 NullT = NullT

groupT' i NullT

| k == i = unitT (Hiaton k)

| k < i = Hiaton k :-: groupT' (i-k) NullT

| k > i = unitT (Hiaton i)

groupT' 0 xs = v :-: groupT' j rest where (v,j,rest) = splitT k xs

groupT' i xs

| k == i = Hiaton k :-: groupT' 0 xs

| k < i = Hiaton k :-: groupT' (i-k) xs

| k > i = (Hiaton i `consT` v) :-: groupT' j rest where (v,j,rest) = splitT (k-i) xs

groupT _ _ = NullT

-- Take a vector off the front of a stream. Also returns the --

-- rest of the stream and an initial hiaton value for it. --

splitT :: Int -> Timed a -> (Token a, Int, Timed a)

splitT 1 (Daton x :-: xs) = (Datons (unitV (Daton x)), 0, xs)

splitT k (Daton x :-: xs) = (Daton x `consT` v, j, rest) where (v,j,rest) = splitT (k-1) xs

splitT m (Hiaton n :-: xs)

| m == n = (Hiaton n, 0, xs)

| m < n = (Hiaton m, n-m, xs)

| nullT xs = (Hiaton n, 0, NullT)

| m > n = (Hiaton n `consT` v, j, rest) where (v,j,rest) = splitT (m-n) xs

splitT _ _ = (Hiaton 0, 0, NullT)

-- (Join a token onto a token vector) --

consT :: Token a -> Token a -> Token a

consT x (Hiaton n) = Datons (x :> unitV (Hiaton n))

consT x (Datons v) = Datons (x :> v)

211

-- Join a vector of blocks back into sync stream. Hiatons not allowed. --

concatvT :: Timed a -> Stream a

concatvT (Daton x :-: xs) = x :- concatvT xs

concatvT (Block v :-: xs) = v `appendVS ` concatvT xs

concatvT _ = NullS

-- ``Spawn'' new streams from a timed stream --

spawnT :: (a -> Bool) -> Timed a -> Timed (Timed a)

spawnT p NullT = NullT

spawnT p s@(Daton x :-: xs)

| p x = Daton s :-: spawnT p xs

| otherwise = Hiaton 1 :-: spawnT p xs

spawnT p (Hiaton n :-: xs) = Hiaton n :-: spawnT p xs

-- Combine timed sync streams into single top-level sync stream --

combineT :: (Vector a -> b) -> Timed (Stream a) -> Stream b

combineT c = concatvT . tstateT f g []

where

f ss s = (mdrop 1 (s:ss), Daton (c (vector (map headS (s:ss)))))

g ss k = (mdrop k ss, Block (takeSV k (mmap c ss)))

mdrop :: Int -> [Stream a] -> [Stream a]

mdrop n = filter (not . nullS) . map (dropS n)

mmap :: (Vector a -> b) -> [Stream a] -> Stream b

mmap f ss = f (vector (map headS ss)) :- mmap f (mdrop 1 ss)

{-

New functions for truncatin g streams...

-}

type Generator a = a -> Stream a

-- doneS:-: terminate a stream --

doneS :: Generator a

doneS = const NullS

-- truncate stream according to predicate and state.

takeFinite S :: (s -> a -> s) -> (s -> a -> Bool)

-> s -> a -> Stream a -> Generator a -> Stream a

takeFinite S f p s a t@~(x:-x s) c

| nullS t = c a

| p s x = x :- takeFinit eS' (f s x) xs x

| otherwise = c a

where

takeFinit eS ' s NullS z = c z

takeFinit eS ' s (x:-xs) z

| p s x = x :- takeFinite S' (f s x) xs x

| otherwise = c z

-- takeAsLong S :-: take items until predicate on control --

-- stream satisfied. First daton must satisfy. --

212

takeAsLong S :: (a -> Bool) -> Timed a -> Stream b -> Generator b -> Stream b

takeAsLong S p (Daton y :-: ys) (x:-xs) c

| p y = x :- takeAsLong S' p ys xs c x

| otherwise = error "takeAsLo ngS "

takeAsLong S p (Hiaton n :-: ys) (x:-xs) c

= x :- takeAsLong S' p (Hiaton (n-1) :-: ys) xs c x

takeAsLong S' p (Daton y :-: ys) (x:-xs) c a

| p y = x :- takeAsLon gS' p ys xs c x

| otherwise = c a

takeAsLong S' p (Hiaton 1 :-: ys) (x:-xs) c a

= x :- takeAsLon gS' p ys xs c x

takeAsLong S' p (Hiaton n :-: ys) (x:-xs) c a

= x :- takeAsLon gS' p (Hiaton (n-1) :-: ys) xs c x

takeAsLong S' p _ _ c a = c a

-- Truncate a stream to the same length as another

truncateS :: Stream a -> Stream b -> Generator b -> Stream b

truncateS (x:-NullS) (y:-ys) c = y :- c y

truncateS (x:-xs) (y:-NullS) c = y :- c y

truncateS (x:-xs) (y:-ys) c = y :- truncateS xs ys c

213

